TW201209235A - Carbon nanotube composite wire and method for making the same - Google Patents

Carbon nanotube composite wire and method for making the same Download PDF

Info

Publication number
TW201209235A
TW201209235A TW99128741A TW99128741A TW201209235A TW 201209235 A TW201209235 A TW 201209235A TW 99128741 A TW99128741 A TW 99128741A TW 99128741 A TW99128741 A TW 99128741A TW 201209235 A TW201209235 A TW 201209235A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
composite wire
support core
carbon
nanotube composite
Prior art date
Application number
TW99128741A
Other languages
Chinese (zh)
Other versions
TWI438315B (en
Inventor
Kai Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99128741A priority Critical patent/TWI438315B/en
Publication of TW201209235A publication Critical patent/TW201209235A/en
Application granted granted Critical
Publication of TWI438315B publication Critical patent/TWI438315B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention provides a carbon nanotube composite wire. The carbon nanotube composite wire includes a supporting core, and a carbon nanotube layer. The carbon nanotube layer is surrounding the supporting core, and coated on an outer surface of the supporting core. The carbon nanotube layer includes a number of carbon nanotubes connected with each other via Van Der Walls attractive force. The carbon nanotube composite wire has good tensile strength and good percentage of breaking-elongation. The present inventions also provides a method for making the carbon nanotube composite wire.

Description

201209235 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種含奈米碳管的線材’尤其渉; 久—種奈米 碳管複合線及其製備方法。 [0002] ❹ [0003] ❹ 099128741 【先刖技術】 奈米碳管在力學、電學、熱學等領域具有 糸列的優異 功能,具有廣闊的應用前景。在一般情況下製備的齐 '又 碳管為微觀結構,其在宏觀上為顆粒狀或粉束彳欠 、 於奈米碳管的宏觀應用。故製備各種宏觀的奈米碳=利 構成為人們關注的焦點。 范守善等人於2002年成功地從一奈米碳管陣列 得一奈米碳管線’具體請參見文獻“Spinjng 獲 tinuous carbon nanotube yarns” w ,叫 ture, V419, p801。所述奈米碳管線由複數個首尾相、 沿同一方向擇優取向排列的奈米碳管組成。然目而連且基本 奈米碳管線中的奈米碳管通過凡得瓦力首尾相連,由於 碳管連接處祕械魏較弱,進而導致所述奈米=米 的拉伸強度不夠大。拉伸強度(tensiu s^en反^線 係指材料產生最大均勻塑性變形的應力,在拉ΓΓΓφ ,試樣直至斷裂為止所受的最大”應力”㈣. ,其結果嫌a表示。當外力作用於該定性排列的奈㈣ 管、線時’奈米碳管線容易被拉斷。 為了進一步提高奈米碳管線的拉伸強度,範守善等提出 了通過在/tH P車列中拉取獲得—奈米碳管膜後,將 該奈米碳管膜進行扭轉,從而獲得—具有扭轉結構的奈 表單編號A0101 第3頁/共31頁 0992050474-0 [0004] 201209235 米碳管綠。山 管岣 由於該扭轉的奈米碳管線中的大部分奈米碳 轉\累旋狀環繞其轴心旋轉設置,當拉力作用在該扭 、T'米碳管線的兩端時,該首尾相連並螺旋排列的複 數個齐+山~ 圍^蚊管不會直接被拉斷,而係具有一定的彈性範 從而相較於非螺旋的奈米碳管線,拉伸強度得到了 —定的提高。 [0005] [0006] [0007] 099128741 ‘技忒包括複數個螺旋排列的奈米碳管的扭轉的奈米 的S線由軸心向外具有相同的螺旋度,然其軸心處向外 、、’、旋半徑由小到大,故,這種扭轉的奈米碳管線的軸 处的斷裂伸長率(斷裂伸長率指的試樣在拉斷時的位 一、原長的比值)較小,從而會在外力作用下先斷裂 在外力作用下,該螺旋排列的奈米碳管扭轉線沿著該 "轉的奈米碳管線的直徑的方向,由内向外逐漸斷裂, 從而該紐轉的奈米碳管線的斷裂伸長率不夠高,使得其 ’ ^杈伸強度較高,仍然具有斷裂伸長率低並且彈性小 的缺點’限制了扭轉奈来碳管線的應用。 【發明内容】 有鑒於此,確有必要提供一種具有較高的斷裂伸長率和 較高的拉伸強度的奈米碳管複合線及其製備方法。 一種奈米碳管複合線,包括一支撐芯,以及—奈米碳管 層。該奈米碳管層為複數個条米碳管通過凡得瓦力相互 連接構成。該奈米碳管層環繞該支撑芯設置,並勺覆在 所述支撐芯外表面。所述支撐芯的斷裂伸長率大於㈣ 一種奈米碳管複合線的製備方法,包括以下步驟:提供 至少一個奈米碳管結構,該奈米碳管結構包括複數個 表單編號A0101 第4頁7共31頁 0992050474-0 [0008] 201209235 尾相連定向排列的奈米碳管;提供―切芯,所述支據 芯的斷裂伸長率大於5%;將所述至少一個奈米碳管結構 沿料捕找伸时―續料設置,使得所述至少 / 一個奈米碳管結構包覆於所述支撐芯外表面。 _ 於先前技術,本判的奈米碳管複合線包括支樓芯 以及由複數個奈米碳管通過凡得瓦力相互連接形成的環 繞該支撐芯的奈米碳管層,並且所述支撐芯的斷裂伸長 率大於5%。故,在外力作用於該奈米碳管複合線時,其 〇 I有較大的拉伸形變範圍,在具魏高她伸強度的同 時,還具有較大的斷裂伸長率,從而具有較好的彈性。 【實施方式】 ,二\ 闕本發明提供-種奈米碳管複合線,該奈米碳管複合線由 兩部分組成,即—個支擇芯H個奈米碳管層。該 • 奈米碳管純覆在所述支推芯的外表面,並將支^芯的 • 外表面完全覆蓋起來。該奈米碳管層由複_奈米碳管 通過凡得瓦力相互結合形成’並且該複數個奈米碳管的 〇 #列具有㈣的趨勢。具_地,該複數個碳管沿著 所述支擇芯的長度的方向首尾相連並環繞該支揮芯螺旋 延伸。由於該奈米礙管層巾的奈米碳管具有這樣的排列 方式,故可以將該奈米碳管層看作係複數個首尾相連的 • 奈米碳管組成的奈米碳管線圍繞所述支撐芯螺旋延伸形 - 成,並且其延伸方向為所述支撐芯長度的方向。故,相 對於首尾相連定向排列的奈米碳管線,該奈米碳管層為 -個整體結構並且具有更好的拉伸強度。另外,本發明 的奈米碳管複合線中的支撐芯具有較高的斷裂伸長率, 099128741 表單編號A0101 第5頁/共31頁 0992050474-0 201209235 至少要大於5%,從而所述奈米碳管複合線整體上也具有 較好的彈性,並且由於奈米碳管具有非常高的模量及拉 伸強度。並且,由奈米碳管組成的奈米碳管層也具有較 高的模量和拉伸強度,故,奈米碳管複合線也即具有較 大的拉伸強度,又具有較高的斷裂伸長率,從而整體上 也具有較好的彈性,可以更好的應用於高強度織物的製 造,用該奈米碳管複合線紡織成的織物具有很高強度和 彈性,從而在防彈衣上具有很好的優勢。 [0011] 本發明提供的奈米碳管複合線的支撐芯為一線狀結構, 並且具有柔性。所述支撐芯的拉伸強度大於lGPa,並且 該支撐芯在受到拉力時,其斷裂伸長率大於5%,優選的 要大於10%,其中的斷裂伸長率指的試樣在拉斷時的位移 值與原長的比值。該支撐芯可以為自然界中存在的具有 高拉伸強度的纖維,也可以係人工合成的纖維,只要其 拉伸強度大於lGPa,並且斷裂伸長率大於5%即可。並且 ,由於本發明提供的奈米碳管複合線可用作高強度織物 的基礎材料,其直徑一般要小於0. 5毫米,故本發明中的 支撐芯的直徑範圍在500奈米到10微米之間。本發明的奈 米碳管複合線的支撐芯,可以為自然界中的纖維,如蜘 蛛絲或蠶絲等,蠶絲的拉伸強度一般係大於lGPa,斷裂 伸長率要大於10%,一般在15%到25°/。範圍内。而蜘蛛絲 的拉伸強度一般係大於lGPa,斷裂伸長率更係達到了 36% 到50%。本發明的奈米碳管複合線的支撐芯,也可以為人 工合成的纖維,如聚對苯撐苯並雙惡唑(PBO)纖維,拉 伸強度也可以大於5GPa。 099128741201209235 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a carbon nanotube-containing wire rod, particularly a long-term nano-carbon nanotube composite wire, and a preparation method thereof. [0002] ❹ [0003] ❹ 099128741 [First-hand technology] Nano carbon tubes have excellent functions in the fields of mechanics, electricity, heat, etc., and have broad application prospects. In general, the Qi's carbon tube is a microscopic structure, which is macroscopically granulated or powdery, and is used in macroscopic applications of carbon nanotubes. Therefore, the preparation of various macroscopic nano carbon=profits constitutes the focus of attention. Fan Shoushan and others succeeded in obtaining a nanocarbon pipeline from a carbon nanotube array in 2002. Please refer to the literature "Spinjng for tinuous carbon nanotube yarns" w, called ture, V419, p801. The nanocarbon pipeline is composed of a plurality of first and last phases, and carbon nanotubes arranged in a preferred orientation in the same direction. However, the carbon nanotubes in the basic carbon nanotubes are connected end to end by van der Waals force, and the tensile strength of the nanometers is not sufficiently large due to the weakness of the carbon tube joints. Tensile strength (tensiu s^en anti-^ line refers to the stress that produces the maximum uniform plastic deformation of the material, the maximum "stress" in the tensile ΓΓΓ, the sample until the fracture (4). The result is a. When the external force In order to further improve the tensile strength of the nanocarbon pipeline, Fan Shoushan et al. proposed to obtain the tensile strength of the nanocarbon pipeline in the qualitative arrangement of the nematic (four) tube and the wire. - After the carbon nanotube film, the carbon nanotube film is twisted to obtain - a twisted structure of the form No. A0101 Page 3 / Total 31 page 0992050474-0 [0004] 201209235 m carbon tube green. Mountain tube岣Because most of the nanocarbon in the twisted nanocarbon pipeline rotates around its axis, when the tensile force acts on both ends of the twisted and T' m carbon pipeline, the end and tail are connected and spiraled The number of arranging ++山~围^ mosquito tube will not be directly broken, but the system has a certain elastic modulus, so the tensile strength is improved compared with the non-helical nano carbon pipeline. [0006] [0007] 099128741 'Technology includes multiples The S-line of the twisted nanotube of the spin-arranged carbon nanotubes has the same helicity outward from the axis, but the axis of the core is outward, and the radius of the rotation is small to large, so the torsion is The elongation at break at the axis of the nanocarbon pipeline (the elongation at break refers to the ratio of the position of the sample at the time of the breaking and the original length) is small, so that it will be broken under the action of an external force under the action of an external force. The aligned carbon nanotube twist line is gradually broken from the inside to the outside along the diameter of the rotated carbon nanotube line, so that the elongation at break of the nylon carbon line is not high enough, making it ' ^ The high tensile strength, still has the disadvantage of low elongation at break and small elasticity, which limits the application of the twisted Nylon carbon pipeline. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide a higher elongation at break and High tensile strength carbon nanotube composite wire and preparation method thereof. A carbon nanotube composite wire comprising a support core and a carbon nanotube layer. The carbon nanotube layer is a plurality of carbon nanotube layers The tubes are connected by van der Waals. The carbon nanotube layer is disposed around the support core and is scooped on the outer surface of the support core. The elongation at break of the support core is greater than (4) a method for preparing a carbon nanotube composite wire, comprising the steps of: providing at least A carbon nanotube structure comprising a plurality of form numbers A0101, page 4, 7 of 31, 0992050474-0 [0008] 201209235 tail-aligned aligned carbon nanotubes; providing a "cut core" The elongation at break of the core is greater than 5%; the at least one carbon nanotube structure is disposed along the material to be retracted, so that the at least one carbon nanotube structure is coated on the support core The outer surface. _ In the prior art, the carbon nanotube composite wire of the present invention comprises a support core and a carbon nanotube layer surrounding the support core formed by interconnecting a plurality of carbon nanotubes by van der Waals force, and The support core has an elongation at break of greater than 5%. Therefore, when an external force acts on the carbon nanotube composite wire, the 〇I has a large tensile deformation range, and has a high elongation at break while having a high tensile strength, and thus has a good elongation. Flexibility. [Embodiment] The present invention provides a nanocarbon tube composite wire, which is composed of two parts, that is, a core H carbon nanotube layer. The carbon nanotubes are completely coated on the outer surface of the pusher core and completely cover the outer surface of the core. The carbon nanotube layer is formed by a combination of a vanadium carbon nanotube and a vanadium force, and the 〇# column of the plurality of carbon nanotubes has a tendency of (iv). With a plurality of carbon tubes, the plurality of carbon tubes are connected end to end along the length of the selected core and extend around the core spiral. Since the carbon nanotube of the nano tube layer has such an arrangement, the carbon nanotube layer can be regarded as a nano carbon line composed of a plurality of end-to-end carbon nanotubes. The support core is helically extended and formed in the direction of the length of the support core. Therefore, the carbon nanotube layer has a monolithic structure and a better tensile strength than the aligned carbon nanotubes arranged end to end. In addition, the support core in the carbon nanotube composite wire of the present invention has a high elongation at break, 099128741 Form No. A0101 Page 5 / Total 31 Page 0992050474-0 201209235 At least greater than 5%, so that the nanocarbon The tube composite wire also has good elasticity as a whole, and because the carbon nanotube has a very high modulus and tensile strength. Moreover, the carbon nanotube layer composed of carbon nanotubes also has a high modulus and tensile strength, so that the carbon nanotube composite wire has a large tensile strength and a high elongation at break. The rate, and thus the overall elasticity, can be better applied to the manufacture of high-strength fabrics. The fabric woven from the carbon nanotube composite yarn has high strength and elasticity, so that it has a very high performance on the body armor. Good advantage. [0011] The support core of the carbon nanotube composite wire provided by the present invention has a linear structure and is flexible. The tensile strength of the support core is greater than 1 GPa, and the elongation at break of the support core when subjected to tensile force is greater than 5%, preferably greater than 10%, wherein the elongation at break refers to the displacement of the sample during the breaking The ratio of the value to the original length. The support core may be a fiber having high tensile strength existing in nature, or may be a synthetic fiber as long as the tensile strength is greater than 1 GPa and the elongation at break is more than 5%. Moreover, since the carbon nanotube composite wire provided by the present invention can be used as a base material of a high-strength fabric, the diameter thereof is generally less than 0.5 mm, so the diameter of the support core in the present invention ranges from 500 nm to 10 μm. between. The support core of the carbon nanotube composite wire of the invention may be a fiber in nature, such as spider silk or silk, etc., the tensile strength of the silk is generally greater than lGPa, and the elongation at break is greater than 10%, generally 15% to 25°/. Within the scope. The tensile strength of spider silk is generally greater than lGPa, and the elongation at break is 36% to 50%. The support core of the carbon nanotube composite wire of the present invention may also be an artificially synthesized fiber such as polyparaphenylene benzobisoxazole (PBO) fiber, and the tensile strength may also be greater than 5 GPa. 099128741

表單編號A010I 第6頁/共31頁 0992050474-0 201209235 [0012]本發日錢供的奈米碳管複合線還可相互組合從而形成 直二更大的奈米碳管複合線。也就係說,本發明提供的 . v切管複合線财以包減數贱料,該複數個支 撐’。可以相互纏繞並緊密結合,從而形成-個線狀的支 H ’在由複數個相互缠繞的讀芯軸的線狀支禮 V、。構的外表面形成—個奈米碳管層。以上兩種其 複合線都係在奈米碳管層與域芯的組合的基礎:獲得 的所以本發明的核心在於將支撑芯與奈米碳管層相社 ❹ ^ ’從㈣成&伸強度較大並且高斷裂伸長率的奈求碳 f複合線。本段+提_兩種奈米碳f複合線的具體結 構將在具體實施例中詳細介紹。 剛另外,本發賴供的m管複合線可以作為—些特殊 用途的織物的基礎材料,用於紡織形成織難。由於卉米 • 碳管本身具有非常輕的質量,和較高的強度,該奈=二 管複合線中的奈米碳管層提供了較高的強度,可以抵〇 較強外力的衝擊,而支m具有較高的斷裂伸長:擋 Ο 從而使得該奈米碳管複合線同時具有了高扳伸強、, pt Ju. ^5·*^ 及 尚強度,以及高斷裂伸長率,高彈性的優點。 , 故’本發 明提供的碳納管複合線可以用於製造質量 *· 、工,且拉伸強 度高的織物,例如可以用於防彈衣的製造。 [0014] 以下將結合附圖 其製備方法。 說明本發明提供的奈来碳管複入線 及 [0015]請參閱圖1,本發明第一實施例提供一種奈米破技+ /、嚷官複合綠 10 ’其包括-個支撑芯⑽,以及一個奈米碳營層⑴、、、 該奈米碳管層110環繞該支撐芯100設置,並且包 。 099128741 表單編號A0101 S 7 s/u ¥ 匕覆於所 〇992〇5〇474h 201209235 述支撐芯100的外表面,並與所述支撐芯1〇〇形成一個整 體結構。 [0016] [0017] 所述支撐芯100為一個線狀的材料。該支撐芯1〇〇可以係 自然界中存在的纖維,也可以係人工合成的纖維,其拉 伸強度至少要大於lGPa,其斷裂拉伸率至少要大於5%。 自然界中存在的纖維,如蜘蛛絲,蠶絲等都可以作為本 發明中的支撐芯1〇〇。另外,人工合成的各種拉伸強度大 於lGPa的纖維,如聚對苯撐苯並雙惡唑(pB〇)纖維,F一 12芳綸纖維也可以作為本發明的支撐芯1〇〇。該支撐芯 100的直徑為40 0奈米至10微米。本實施例中,該支撐芯 1〇〇為蠶絲,直徑為4微米到1〇微米,其拉伸強度大於 lGPa,斷裂拉伸率大於15% » 。月併參閱圖2,所述奈米碳管層11 〇由複數個奈米碳管 112通過凡得瓦力相互連接組成。該奈米碳管層丨1〇包覆 在所述支撐芯100的外表面,並且環繞談支撐芯1〇〇與該 支撑芯10 0 —起沿相同的方向延伸^該奈米碳管層11〇中 的複數個奈米碳管112沿著支掉芯100延伸的方向,或者 也可以說係沿著支樓芯1 〇 0的長度的方向,具有首尾相連 螺旋排列的趨勢。換句話說,該奈米碳管層丨10可以看作 係由複數個奈米碳管線組成,每一個奈米碳管線中的複 數個奈米碳管均首尾相連且沿著奈米碳管線延伸的方向 排列。奈米碳管層110中的複數個奈米碳管線係螺旋環繞 著所述支撐芯100,並且沿著支撐芯1〇〇延伸的方向延伸 。由於該奈米碳管層11 〇中的奈米碳管丨丨2係圍繞支撐芯 100首尾相連螺旋排列,該奈米碳管層110具有較高的拉 099128741 表單編號A0101 第8頁/共31頁 0992050474-0 201209235 伸強度,在與 €心1〇〇結合後形成的奈米碳管複合線10 ^ '更強的拉伸強度,以及較高的斷裂拉伸率。該 奈米碳管層110的厚度為500奈米至10微米範圍。 [0018] 本實施例中的牟平雄拉、 本雙管複合線10,係通過將奈米碳管線 或^奈米碳管媒螺旋環繞支樓芯100,缠繞於支撐芯 100製成面將詳細敍述該奈米碳管複合㈣的製備 方法。 [0019]Form No. A010I Page 6 of 31 0992050474-0 201209235 [0012] The carbon nanotube composite wires supplied by the present day can also be combined to form a larger carbon nanotube composite wire. In other words, the present invention provides a v-tube composite line with a reduced number of packets, the plurality of supports'. They may be entangled and tightly bonded to each other to form a linear branch H' in a linear bond V of a plurality of mutually entangled read mandrels. The outer surface of the structure forms a layer of carbon nanotubes. The above two composite lines are based on the combination of the carbon nanotube layer and the domain core: the core of the invention is obtained by arranging the support core and the carbon nanotube layer ' ^ from (four) into & A carbon f composite wire having a high strength and a high elongation at break. The specific structure of this paragraph + mentioning _ two kinds of nano carbon f composite lines will be described in detail in the specific embodiment. In addition, the m-tube composite wire of the present invention can be used as a basic material for some special-purpose fabrics for textile weaving. Due to the very light mass and high strength of the Huimi carbon tube itself, the carbon nanotube layer in the nep=two-tube composite line provides higher strength and can withstand the impact of strong external forces. The branch m has a high elongation at break: the dam is so that the carbon nanotube composite wire has a high tensile strength, a pt Ju. ^5·*^ strength, and a high elongation at break, and a high elasticity. advantage. Therefore, the carbon nanotube composite wire provided by the present invention can be used for fabricating a fabric having a high quality and a high tensile strength, for example, it can be used for the manufacture of a body armor. [0014] The preparation method will be described below with reference to the accompanying drawings. The present invention provides a carbon nanotube reducting line and [0015] Referring to FIG. 1, a first embodiment of the present invention provides a nano-composite + /, 嚷官 composite green 10' which includes a support core (10), and A nanocarbon camp layer (1), the carbon nanotube layer 110 is disposed around the support core 100 and is wrapped. 099128741 Form No. A0101 S 7 s/u ¥ 匕 〇 〇 〇 〇 〇 〇 〇 〇 092 092 092 092 092 092 092 092 092 092 092 092 092 092 092 092 092 092 092 092 092 092 支撑 支撑 支撑 支撑 支撑 支撑 支撑 支撑 支撑 支撑 支撑 支撑 支撑 支撑 支撑 支撑[0017] The support core 100 is a linear material. The support core 1 may be a fiber existing in nature or a synthetic fiber having a tensile strength at least greater than 1 GPa and a tensile elongation at break of at least 5%. Fibers present in nature, such as spider silk, silk, etc., can be used as the support core 1 in the present invention. Further, various synthetic fibers having a tensile strength greater than lGPa, such as polyparaphenylene benzobisoxazole (pB) fibers, and F-12 aramid fibers can also be used as the support core of the present invention. The support core 100 has a diameter of 40 nm to 10 μm. In this embodiment, the support core 1 is silk, having a diameter of 4 micrometers to 1 micrometer, a tensile strength greater than lGPa, and a tensile elongation at break of greater than 15%. Referring to Fig. 2, the carbon nanotube layer 11 is composed of a plurality of carbon nanotubes 112 interconnected by van der Waals force. The carbon nanotube layer 〇1〇 is coated on the outer surface of the support core 100, and the surrounding support core 1 〇〇 extends in the same direction as the support core 10 0. The carbon nanotube layer 11 The plurality of carbon nanotubes 112 in the crucible have a tendency to extend in a direction in which the core 100 is extended, or in a direction along the length of the core 1 〇0, having an end-to-end spiral arrangement. In other words, the carbon nanotube layer 10 can be regarded as consisting of a plurality of nano carbon pipelines, each of which is connected end to end and extends along the nanocarbon pipeline. The direction of the arrangement. A plurality of nanocarbon lines in the carbon nanotube layer 110 are spirally wound around the support core 100 and extend in a direction in which the support core 1〇〇 extends. Since the carbon nanotubes 2 in the carbon nanotube layer 11 are arranged spirally around the support core 100, the carbon nanotube layer 110 has a higher pull 099128741 Form No. A0101 Page 8 of 31 Page 0992050474-0 201209235 Tensile strength, the carbon nanotube composite wire formed after the combination with the heart 1 〇〇 10 ^ 'stronger tensile strength, and higher elongation at break. The carbon nanotube layer 110 has a thickness in the range of 500 nm to 10 μm. [0018] The 牟平雄拉, the present double-tube composite line 10 in this embodiment is wound around the support core 100 by winding a nano carbon pipeline or a carbon nanotube medium around the support core 100. The preparation method of the carbon nanotube composite (IV) will be described in detail. [0019]

〇 [0020] «青參見圖3及圖4 ’本發明第二實施例進一步提供一奈米 炭管複線20 ’該奈米碳管複合線20係將複數個本發明 第實加例的奈米碳管複合線10進行組合後獲得的。所 述奈米碳官複合線20 ’包括;複數個支推芯10G,以及複數 U碳管層U 0。每—個支撐芯i Q Q外表面環繞包覆有 個不米峻管層11Q。所述奈米碳管層110由複數個奈米 厌g 、且成,且该複數個奈米碳管11 2圍繞支推芯1〇〇 首尾相連螺旋排列。所述包覆有奈来碳管層110的複數個 支撐芯100相互纏繞形成一個整體的奈米碳管複合線。 請參見圖5及圖6,本發明第三實施例提供一奈米碳管複 合線30,該奈米碳管複合線30也係由支撐芯10〇 ,以及奈 米碳管層110組成。與第一實施例的奈米碳管複合線1〇不 同的係,邊奈米碳管複合線3〇包括複數個支推芯1〇〇,該 複數個支標芯⑽相互纏繞,扭轉,從而形成由複數個支 樓怒100組成的絞線狀的支撐芯結構1〇4,一個奈来碳管 層110包覆在所述支樓芯結構104的外表面。所述奈米碳 管層110中的複數個奈米碳管112沿著所述支撐芯結構 1 0 4的延伸方向首尾相連呈螺旋狀排列。本實施例提供的 099128741 表單編號A0101 第9頁/共31頁 0992050474-0 201209235 [0021] [0022] [0023] 奈米碳管複合線30,包括複數個支撐芯1〇〇,具有更好的 拉伸強度以及斷裂拉伸率。 本發明提供的奈米碳管複合線1〇、奈米碳管複合線2〇、 奈米碳管複合線30均具有較輕的質量,以及較高的拉伸 強度和斷裂拉伸率’可以用於紡織高強度的織物,從而 應用於防彈衣等領域。 [0024] [0025] [0026] 本發明提供的奈米礙管複合線1G、奈米碳管複合線2〇、 奈米碳管複合線30在應用時,可單獨使用,也可與其他 材料的線材複合使用’也可在應_作為複钟料的骨 架使用,具體的使用方式不受限制。 本發明第二實施例及第三實施例提供的奈米碳管複合線 2〇 ’丁、米碳管複合線3〇與第一實施例的奈米碳管複合線 10的結構類似’故僅提供本發明第—實施例奈米碳管複 合線10的製備方法,奈米碳管複合線20、奈米碳管複合 線30可以在本發明第—實施例麵碳營複合㈣的㈣ 方法的基礎上獲得。 請參關7,本發明第—實施例的奈米碳管複合線10的製 備方法包括以下步驟: 第 ,提供至少一個奈米碳管結構114 099128741 請-併參閱圖8,所述奈米碳管結構114為複數個首尾相 連〜同一個擇優取向方向排列的奈米碳管112組成,該 不米石反s結構114可以為奈米碳管膜或者係奈米碳管線, =奈米碳管結構114為從—個奈米碳管陣列ιΐ6中拉取獲 得。所述奈米碳管結構114的製備方法包括 表單編號_ι 第1〇頁/共31頁 以下步驟 0992050474-0 201209235 [0027] [0028]青[0020] «青 Referring to FIG. 3 and FIG. 4' The second embodiment of the present invention further provides a carbon nanotube double line 20'. The carbon nanotube composite line 20 is a plurality of nanometers of the present invention. The carbon tube composite wire 10 is obtained after combination. The nano carbon official composite wire 20' includes: a plurality of pusher cores 10G, and a plurality of U carbon pipe layers U0. The outer surface of each of the support cores i Q Q is surrounded by a non-small tube layer 11Q. The carbon nanotube layer 110 is composed of a plurality of nanometers, and the plurality of carbon nanotubes 11 2 are spirally arranged around the inner core 1〇〇. The plurality of support cores 100 coated with the carbon nanotube layer 110 are intertwined to form a unitary carbon nanotube composite wire. Referring to Figures 5 and 6, a third embodiment of the present invention provides a carbon nanotube composite wire 30 which is also comprised of a support core 10, and a carbon nanotube layer 110. Different from the carbon nanotube composite wire 1第一 of the first embodiment, the side carbon nanotube composite wire 3〇 includes a plurality of support cores 1〇〇, and the plurality of support cores (10) are entangled and twisted with each other, thereby A stranded support core structure 1〇4 composed of a plurality of branch angers 100 is formed, and a carbon nanotube layer 110 is coated on the outer surface of the branch core structure 104. The plurality of carbon nanotubes 112 in the carbon nanotube layer 110 are spirally arranged end to end along the extending direction of the supporting core structure 104. The 099128741 form number A0101 provided by this embodiment page 9 / 31 pages 0992050474-0 201209235 [0022] [0023] The carbon nanotube composite wire 30, including a plurality of support cores 1 , has better Tensile strength and elongation at break. The carbon nanotube composite wire 1〇, the carbon nanotube composite wire 2〇, and the carbon nanotube composite wire 30 provided by the invention all have light weight, and high tensile strength and tensile elongation at break can be It is used to weave high-strength fabrics and is used in fields such as body armor. [0025] The nano-tube composite wire 1G, the carbon nanotube composite wire 2〇, and the carbon nanotube composite wire 30 provided by the invention may be used alone or in combination with other materials. The wire composite use ' can also be used as the skeleton of the composite material, and the specific use is not limited. The carbon nanotube composite wire 2〇', the carbon nanotube composite wire 3〇 provided by the second embodiment and the third embodiment of the present invention is similar to the structure of the carbon nanotube composite wire 10 of the first embodiment. Provided is a method for preparing a carbon nanotube composite wire 10 of the first embodiment of the present invention, wherein the carbon nanotube composite wire 20 and the carbon nanotube composite wire 30 can be used in the fourth embodiment of the present invention. Obtained on the basis. Please refer to step 7. The preparation method of the carbon nanotube composite wire 10 of the first embodiment of the present invention comprises the following steps: First, at least one carbon nanotube structure 114 is provided. 099128741 Please - and refer to FIG. 8, the nanocarbon The tube structure 114 is composed of a plurality of carbon nanotubes 112 arranged end to end and arranged in the same preferred orientation direction. The non-meterite anti-s structure 114 may be a carbon nanotube membrane or a nanocarbon pipeline, = carbon nanotube Structure 114 is obtained by pulling from a carbon nanotube array ι 6 . The preparation method of the carbon nanotube structure 114 includes a form number _ι第1页/total 31 pages. The following steps 0992050474-0 201209235 [0028]

Ο 步驟一:提供一奈米碳管陣列11 6,優選地,該陣列為超 順排奈米碳管陣列。 本實施例提供的奈米碳管陣列11 6為單壁奈米碳管陣列, 雙壁奈米碳管陣列,及多壁奈米碳管陣列中的一種或多 種。本實施例中,奈米碳管陣列116為多壁奈米碳管組成 的超順排奈米碳管陣列,該超順排奈米碳管陣列的製備 方法採用化學氣相沈積法,其具體步驟包括:(a)提供 一平整基底,該基底可選用P型或N型矽基底,或選用形 成有氧化層的矽基底,本實施例優選為採用4英寸的矽基 底;(b )在基底表面均勻形成一催化劑層,該催化劑層 材料可選用鐵(Fe)、鈷(Co)、鎳(Ni)或其任意組 合的合金之一;(c)將上述形成有催化劑層的基底在 700~900 °C的空氣中退火約30分鐘〜90分鐘;(d)將處 理過的基底置於反應爐中,在保護氣體環境下加熱到 500〜740 °C,然後通入碳源氣體反應約5〜30分鐘,生長 得到超順排奈米碳管陣列,其高度為200〜400微米。該超 順排奈米碳管陣列為複數個彼此平行且垂直於基底生長 的奈米碳管形成的純奈米碳管陣列。通過上述控制生長 條件,該超順排奈米碳管陣列中基本不含有雜質,如無 定型碳或殘留的催化劑金屬顆粒等。該超順排奈米碳管 陣列中的奈米碳管彼此通過凡得瓦力緊密接觸形成陣列 。該超順排奈米碳管陣列與上述基底面積基本相同。 本實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性質 較活潑的碳氫化合物,本實施例優選的碳源氣為乙炔; 保護氣體為氮氣或惰性氣體,本實施例優選的保護氣體 099128741 表單編號A0101 第11頁/共31頁 0992050474-0 [0029] 201209235 為氬氣。 [0030] 步驟二:採用一拉伸工具從所述奈米碳管陣列116中拉取 獲得一奈米碳管結構114。 [0031] 所述奈米碳管結構114的製備方法包括以下步驟:(a) 從上述奈米碳管陣列116中選定一定寬度的複數個奈米碳 管束片段,本實施例優選為採用具有一定寬度的膠帶或 一針尖接觸奈米碳管陣列11 6以選定一定寬度的複數個奈 米碳管束片段;(b )以一定速度沿基本垂直於奈米碳管 陣列11 6生長方向拉伸該複數個奈米碳管束片段,以形成 一連續的奈米碳管結構114。 [0032] 在上述拉伸過程中,該複數個奈米碳管束片段在拉力作 用下沿拉伸方向逐漸脫離基底的同時,由於凡得瓦力作 用,該選定的複數個奈米碳管束片段分別與其他奈米碳 管束片段首尾相連地連續地被拉出,從而形成一奈米碳 管結構114。該奈米碳管結構114包括複數個首尾相連且 沿該奈米碳管結構拉伸方向排列的奈米碳管束。該奈米 碳管結構114中奈米碳管的排列方向基本平行於奈米碳管 結構114的拉伸方向,也就係該奈米碳管結構的延伸方向 。由於該奈米碳管結構114中的奈米碳管具有非常大的長 徑比,該奈米碳管結構114具有一定的黏性,可以直接黏 附在支撐芯100的外表面。 [0033] 該奈米碳_管結構11 4為一奈米碳管薄膜或一奈米碳管線。 具體地,當所選定的複數個奈米碳管束片段的寬度較大 時,所獲得的奈米碳管結構114為一奈米碳管薄膜,其微 099128741 表單編號A0101 第12頁/共31頁 0992050474-0 201209235 觀結構請參關9 ;當所選定的複數個奈米碳管束片段的 寬又較]時⑼獲得的奈米碳管結構114可近似為-奈米 碳管線’微觀結構請參關1〇。 [0034] [0035] Ο [0036] ❹ [0037] 第二,提供一個支撐芯100。 /支樓心100可以通過一個支標芯提供裝置⑵提供具 的可以通過-個拉伸扭轉裝置^⑽從所述支推怎提供 裝置120中拉出-個支揮芯1〇〇本發明的支撑忠⑽為 拉伸強度大於lGi>a的纖維’該纖維可以放置於所述支撐 芯提供裝置12G内,待使料,直接《。本實施例中的 支揮芯100為蠶絲’直徑在5微米至!◦微祕圍内,其拉 伸強度大於lGPa的纖維,該蠶絲可以卷成轴放置於支樓 芯提供裝置120中。 第-將所述至少一個奈来碳管結構^ Μ沿所述支撐芯 100延伸的方向,環繞所述支料1難置,並包覆於所 述支撐芯100外表面。 月參閱圖7本實施例中可以將兩個奈米碳管陣列丨丨6設 置於所述支収'提供裝置12()_彳,待支料⑽通過所 述拉神扭轉裝置13G拉出後,將從所述兩個奈米碳管陣列 116中拉取獲得的奈米碳管結構114的-端黏附於所述支 禮芯1_表面’另-端位於切芯⑽的―側並間隔一 定間距’然後通過所述拉伸扭轉敦置咖,以支樓芯的轴 向為中〜線紅轉該支擇芯⑽,從而使得所述奈米碳管結 構114螺旋纏繞在所述支樓芯⑽的外表面,在扭轉支樓 心100的同時還可以同時拉伸該支揮芯1〇〇,從而通過這 099128741 表單編號A0101 第〗3頁/共31頁 0992050474-0 201209235 樣的方式進一步控制奈米碳管層U0的厚度。由於該奈米 碳管結構114中的奈米碳管具有非常大的長徑比,該奈米 碳管結構114具有一定的黏性’可以直接黏附在支撑芯 100的外表面。 [0038] 可以理解,可以僅採用一個奈米碳管陣列11 6供應奈米碳 官結構114黏附於所述支稽芯1〇〇表面後,旋轉支標广大 100製備奈米碳管複合線10。還可採用兩個以上的奈米碳 管陣列116供應奈米碳管結構114,供應的奈米碳管結構 114可以係奈米碳管線也可以係奈米碳管膜。另外,將奈 米碳管結構114環繞支撐芯100的方法不限於此,其他方 法,比如支撐芯100不動,奈米碳管結構114直接纏繞在 其表面等方法都可以,只需確保於支撐芯1〇〇表面形成完 整的奈米碳管層110包覆於所述支撐芯1〇〇即可。 [0039] 為了進一步提高所述奈米碳管複合線1〇的奈米碳管層"ο 中奈米碳管的密度,還可以甩有機溶劑象理纏繞在所述 支撑芯100上的奈米碳管結構114,使得所述奈米碳管結 構114在支撐芯100的外表面上收縮,從而提高奈米碳管 層110中奈米碳管的密度。 [0040] 具體地,可以通過試管或滴瓶14 0將有機溶劑1 4 2滴落在 所述預處理奈米碳管複合線1 0的表面,浸潤整個奈米碳 管複合線1 0。本實施例中,將一滴瓶1 4 〇放置於預處理奈 米碳管複合線10上方,滴瓶140底部具有一滴口 144,有 機溶劑142從滴口 144滴落於預處理奈米碳管複合線1〇的 表面的奈米碳管層110。該有機溶劑142為易揮發性的有 機溶劑,如乙醇、甲醇、丙酮、二氣乙烷或氣仿,本實 099128741 表單編號A0101 第14頁/共31頁 0992050474-0 201209235 •- 施例中所述有機溶劑採用乙醇。該預處理奈米碳管複合 線10經有機溶劑142浸潤處理後,在揮發性有機溶劑142 的表面張力的作用下,該預處理奈米碳管複合線10表面 的奈米碳管層110將收縮,從而更加緊密的包覆在所述支 撐芯100的外表面。 [0041] 〇 進一步地,還可以採用一烘乾步驟烘乾該採用有機溶劑 處理後的奈米碳管複合線10。具體地,可以使所述經有 機溶劑處理後的奈米碳管複合線10通過一烘乾箱146,該 烘乾箱146的溫度為80°C〜100°C,使該奈米碳管複合線 10奈来碳管層110中的有機溶劑迅速揮發,使得奈米碳管 層110中的奈米碳管更緊密排列。另外,也可以採用一吹 風機將該經過有機溶劑處理的奈米碳管層110中的有機溶 劑吹幹。該烘乾後的奈米碳管複合線10的直徑不小於120 微米。本實施例中,所述烘乾後的奈米碳管複合線10的 直徑為200微米。 [0042] 進一步,收集制得的奈米碳管複合線10。具體為採用電 〇 機150將該奈米碳管複合線10纏繞到該電機150的卷軸 152上。可以理解,也可採用手工的方法將該奈米碳管複 合線10卷到卷軸152上。 _ [0043] 可以理解,上述製備奈米碳管複合線10的過程係連續進 行的。 [0044] 所述奈米碳管複合線由支撐芯,和環繞該支撐芯的奈米 碳管層組成。並且奈米碳管層為複數個奈米碳管通過凡 得瓦力相互連接形成,該複數個奈米碳管在所述支撐芯 099128741 表單編號A0101 第15頁/共31頁 0992050474-0 201209235 的延伸方向上首尾相連並環繞該支撐芯螺旋排列,由於 奈米碳管具有非常好的力學性能,其強度非常高,故形 成的奈米碳管層具有非常高的強度,較好的力學性能。 並且所述支撐芯斷裂拉伸率較大,大於5%,其具有較高 的彈性。故,在所述奈米碳管複合線的延伸方向上具有 較高的拉伸強度和彈性,以及斷裂拉伸率,並且該奈米 碳管複合線在垂直於奈米碳管層方向上還具有較高的強 度,從而可以將該奈米碳管複合線用於高強度織物的製 造。 [0045] [0046] [0047] [0048] [0049] [0050] 099128741 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本發明第一實施例的奈米碳管複合線的結構示意圖 〇 圖2為本發明第一實施例的奈米碳管複合線沿11 -11線的 剖視圖。 圖3為本發明第二實施例的奈米碳管複合線的結構示意圖 〇 圖4為本發明第二實施例的奈米碳管複合線沿IV-IV線的 剖視圖。 圖5為本發明第三實施例的奈米碳管複合線的結構示意圖 表單編號A0101 第16頁/共31頁 0992050474-0 201209235 [0051] 圖6為本發明第三實施例的奈米碳管複合線沿VI -VI線的 剖視圖。 [0052] 圖7為本發明第一實施例的奈米碳管複合線的製備方法的 示意圖。 [0053] 圖8為本發明第一實施例的奈米碳管線複合線的製備方法 中用到的奈米碳管結構的製備方法的示意圖。 _ [0054] 〇 圖9為本發明第一實施例的奈米碳管複合線的製備方法中 用到的奈米碳管膜的掃描電鏡照片。 [0055] 圖10為本發明第一實施例的奈米碳管複合線的製備方法 中用到的奈米碳管線的掃描電鏡照片。 " [0056] 【主要元件符號說明】 奈米碳管複合線:10, 20, 30 [0057] 支撑芯:10 0 ◎ [0058] 支撐芯結構:104 [0059] 奈米碳管層:110 [0060] 奈米碳管:112 ' [0061] 奈米碳管結構:114 [0062] 奈米碳管陣列:116 [0063] 支撐芯提供裝置:120 [0064] 拉伸扭轉裝置:130 099128741 表單編號A0101 第17頁/共31頁 0992050474-0 201209235 [0065] 滴瓶:140 [0066] 有機溶劑:142 [0067] 滴口 : 144 [0068] 烘乾箱:146 [0069] 電機:150 [0070] 卷軸:152 0992050474-0 099128741 表單編號A0101 第18頁/共31頁Ο Step 1: Provide a carbon nanotube array 11 6 . Preferably, the array is a super-sequential carbon nanotube array. The carbon nanotube array 11 6 provided in this embodiment is one or more of a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. In this embodiment, the carbon nanotube array 116 is a super-sequential carbon nanotube array composed of a multi-walled carbon nanotube, and the preparation method of the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific method thereof The steps include: (a) providing a flat substrate, the substrate may be a P-type or N-type germanium substrate, or a germanium substrate formed with an oxide layer, preferably a 4-inch germanium substrate; (b) a substrate A catalyst layer is uniformly formed on the surface, and the catalyst layer material may be one selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni) or any combination thereof; (c) the substrate on which the catalyst layer is formed is at 700~ Annealing in air at 900 ° C for about 30 minutes to 90 minutes; (d) placing the treated substrate in a reaction furnace, heating to 500-740 ° C under a protective gas atmosphere, and then introducing a carbon source gas to react about 5 For ~30 minutes, a super-sequential carbon nanotube array is grown to a height of 200 to 400 microns. The super-sequential carbon nanotube array is a plurality of pure carbon nanotube arrays formed of carbon nanotubes that are parallel to each other and grown perpendicular to the substrate. The super-sequential carbon nanotube array is substantially free of impurities such as amorphous carbon or residual catalyst metal particles by the above controlled growth conditions. The carbon nanotubes in the super-sequential carbon nanotube array form an array by intimate contact with each other by van der Waals force. The super-sequential carbon nanotube array is substantially the same area as the above substrate. In the present embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or methane. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment. 099128741 Form No. A0101 Page 11 of 31 0992050474-0 [0029] 201209235 is argon. [0030] Step 2: Pulling a carbon nanotube structure 114 from the carbon nanotube array 116 using a stretching tool. [0031] The preparation method of the carbon nanotube structure 114 includes the following steps: (a) selecting a plurality of carbon nanotube bundle segments of a certain width from the carbon nanotube array 116, and the embodiment preferably has a certain Width of the tape or a tip of the needle contacts the carbon nanotube array 11 6 to select a plurality of carbon nanotube bundle segments of a certain width; (b) stretches the plurality of carbon nanotube arrays at a rate substantially perpendicular to the growth direction of the carbon nanotube array 11 6 The carbon nanotube bundle segments are formed to form a continuous carbon nanotube structure 114. [0032] During the stretching process, the plurality of carbon nanotube bundle segments are gradually separated from the substrate in the stretching direction under the tensile force, and the selected plurality of carbon nanotube bundle segments are respectively removed due to the effect of the van der Waals force. The other carbon nanotube bundle segments are continuously pulled out end to end to form a carbon nanotube structure 114. The carbon nanotube structure 114 includes a plurality of carbon nanotube bundles connected end to end and arranged along the direction in which the carbon nanotube structure is stretched. The orientation of the carbon nanotubes in the carbon nanotube structure 114 is substantially parallel to the direction of stretching of the carbon nanotube structure 114, which is the direction in which the carbon nanotube structure extends. Since the carbon nanotubes in the carbon nanotube structure 114 have a very large aspect ratio, the carbon nanotube structure 114 has a certain viscosity and can be directly adhered to the outer surface of the support core 100. [0033] The nanocarbon_tube structure 11 4 is a carbon nanotube film or a nano carbon line. Specifically, when the width of the selected plurality of carbon nanotube bundle segments is larger, the obtained carbon nanotube structure 114 is a carbon nanotube film, and the micro 099128741 form number A0101 is 12 pages/total 31 pages 0992050474-0 201209235 View structure please refer to 9; when the selected number of carbon nanotube bundles are wider and wider] (9), the carbon nanotube structure 114 can be approximated as - nano carbon pipeline 'microstructure Off 1〇. [0035] 第二 [0037] Second, a support core 100 is provided. The support core 100 can be provided by a support core providing device (2), which can be pulled out from the support device 120 by a tensile twisting device (10). Supporting the loyalty (10) is a fiber having a tensile strength greater than lGi > a 'the fiber can be placed in the support core providing device 12G, to be made, directly. The support core 100 in this embodiment is a silk diameter of 5 microns to! In the micro-secret, the fiber having a tensile strength greater than lGPa can be wound into a shaft and placed in the branch core providing device 120. First, the at least one carbon nanotube structure is disposed around the support 1 in a direction in which the support core 100 extends, and is coated on the outer surface of the support core 100. Referring to FIG. 7 in this embodiment, two carbon nanotube arrays 6 can be disposed on the receiving device 12 ()_彳, and the to-be-supported material (10) is pulled out through the pulling device 13G. The end of the carbon nanotube structure 114 obtained by pulling from the two carbon nanotube arrays 116 is adhered to the side of the support core 1_the other end is located at the side of the core (10) and spaced apart a certain distance 'and then twisting through the tension, the core of the support core is the middle to the red line to the core (10), so that the carbon nanotube structure 114 is spirally wound around the branch The outer surface of the core (10) can simultaneously stretch the support core 1 while twisting the support core 100, thereby further proceeding through the form of the 099128741 form number A0101, the third page, the total of 31 pages 0992050474-0 201209235. Control the thickness of the carbon nanotube layer U0. Since the carbon nanotubes in the carbon nanotube structure 114 have a very large aspect ratio, the carbon nanotube structure 114 has a certain viscosity which can adhere directly to the outer surface of the support core 100. [0038] It can be understood that only one carbon nanotube array 11 can be used to supply the nano carbon official structure 114 to the surface of the core 1 , and the rotating support 100 can prepare the carbon nanotube composite line 10 . . The carbon nanotube structure 114 may also be supplied by two or more carbon nanotube arrays 116, and the supplied carbon nanotube structure 114 may be either a carbon nanotube or a carbon nanotube membrane. In addition, the method of surrounding the carbon nanotube structure 114 around the support core 100 is not limited thereto, and other methods, such as supporting the core 100, and the carbon nanotube structure 114 directly wound on the surface thereof may be ensured only by the support core. A surface of the carbon nanotube layer 110 formed on the surface of the crucible may be coated on the support core 1 . [0039] In order to further increase the density of the carbon nanotube layer of the carbon nanotube composite wire, the density of the carbon nanotube layer may also be entangled with the organic solvent on the support core 100. The carbon nanotube structure 114 causes the carbon nanotube structure 114 to contract on the outer surface of the support core 100, thereby increasing the density of the carbon nanotubes in the carbon nanotube layer 110. [0040] Specifically, the organic solvent 14 2 may be dropped on the surface of the pretreated carbon nanotube composite wire 10 by a test tube or a drip bottle 140 to infiltrate the entire carbon nanotube composite wire 10 . In this embodiment, a drop of 1 4 瓶 is placed above the pretreated carbon nanotube composite line 10, the bottom of the drop bottle 140 has a drop 144, and the organic solvent 142 is dropped from the drip 144 to the pretreated carbon nanotube composite. The carbon nanotube layer 110 on the surface of the line 1〇. The organic solvent 142 is a volatile organic solvent such as ethanol, methanol, acetone, di-ethane or gas, and the actual 099128741 Form No. A0101 Page 14 of 31 0992050474-0 201209235 •- The organic solvent is ethanol. After the pretreated carbon nanotube composite wire 10 is infiltrated by the organic solvent 142, the surface of the volatile organic solvent 142 is subjected to the surface tension, and the carbon nanotube layer 110 on the surface of the pretreated carbon nanotube composite wire 10 will be Shrinking so as to be more tightly coated on the outer surface of the support core 100. [0041] Further, the carbon nanotube composite wire 10 treated with the organic solvent may be dried by a drying step. Specifically, the organic solvent-treated carbon nanotube composite wire 10 can be passed through a drying oven 146, and the temperature of the drying oven 146 is 80 ° C to 100 ° C to make the carbon nanotube composite The organic solvent in the carbon nanotube layer 110 is rapidly volatilized, so that the carbon nanotubes in the carbon nanotube layer 110 are more closely arranged. Alternatively, the organic solvent in the organic solvent-treated carbon nanotube layer 110 may be blown dry using a blower. The diameter of the dried carbon nanotube composite wire 10 is not less than 120 μm. In this embodiment, the dried carbon nanotube composite wire 10 has a diameter of 200 μm. [0042] Further, the obtained carbon nanotube composite wire 10 is collected. Specifically, the carbon nanotube composite wire 10 is wound onto the reel 152 of the motor 150 by the motor 150. It will be appreciated that the carbon nanotube composite wire 10 can also be wound onto the spool 152 by hand. [0043] It will be understood that the above process for preparing the carbon nanotube composite wire 10 is carried out continuously. [0044] The carbon nanotube composite wire is composed of a support core and a carbon nanotube layer surrounding the support core. And the carbon nanotube layer is formed by a plurality of carbon nanotubes connected by van der Waals force, and the plurality of carbon nanotubes are in the support core 099128741 Form No. A0101 Page 15 / Total 31 Page 0992050474-0 201209235 The extension direction is connected end to end and spirally arranged around the support core. Since the carbon nanotube has very good mechanical properties and its strength is very high, the formed carbon nanotube layer has very high strength and good mechanical properties. And the support core has a large elongation at break, more than 5%, and has high elasticity. Therefore, the tensile strength and elasticity of the carbon nanotube composite wire are extended, and the elongation at break, and the carbon nanotube composite wire is perpendicular to the direction of the carbon nanotube layer. It has a high strength so that the carbon nanotube composite wire can be used for the manufacture of high-strength fabrics. [0048] [0050] [0050] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic structural view of a carbon nanotube composite wire according to a first embodiment of the present invention. Fig. 2 is a cross-sectional view of the carbon nanotube composite wire of the first embodiment of the present invention taken along line 11-11. Fig. 3 is a view showing the structure of a carbon nanotube composite wire according to a second embodiment of the present invention. Fig. 4 is a cross-sectional view showing the carbon nanotube composite wire of the second embodiment of the present invention taken along line IV-IV. 5 is a schematic structural view of a carbon nanotube composite wire according to a third embodiment of the present invention. Form No. A0101 Page 16 of 31 0992050474-0 201209235 [0051] FIG. 6 is a carbon nanotube according to a third embodiment of the present invention. A cross-sectional view of the composite line along the VI-VI line. 7 is a schematic view showing a method of preparing a carbon nanotube composite wire according to a first embodiment of the present invention. 8 is a schematic view showing a preparation method of a carbon nanotube structure used in a method for preparing a nanocarbon pipeline composite wire according to a first embodiment of the present invention. 〇 Figure 9 is a scanning electron micrograph of a carbon nanotube film used in the method for preparing a carbon nanotube composite wire according to a first embodiment of the present invention. 10 is a scanning electron micrograph of a carbon nanotube line used in a method for preparing a carbon nanotube composite wire according to a first embodiment of the present invention. " [0056] [Main component symbol description] Carbon nanotube composite wire: 10, 20, 30 [0057] Support core: 10 0 ◎ [0058] Support core structure: 104 [0059] Nano carbon tube layer: 110 [0060] Nano carbon tube: 112 '[0061] Nano carbon tube structure: 114 [0062] Carbon nanotube array: 116 [0063] Support core providing device: 120 [0064] Stretching twisting device: 130 099128741 Form No. A0101 Page 17 of 31 0992050474-0 201209235 [0065] Dropper bottle: 140 [0066] Organic solvent: 142 [0067] Drip: 144 [0068] Drying box: 146 [0069] Motor: 150 [0070 ] Reel: 152 0992050474-0 099128741 Form No. A0101 Page 18 of 31

Claims (1)

201209235 七、申請專利範圍: 1 . 一種奈米碳管複合線,其改良在於,該奈米碳管複合線包 括一支撐芯以及一奈米碳管層,所述奈米碳管層由複數個 奈米碳管通過凡得瓦力相互結合構成,該奈米碳管層環繞 ' 該支撐芯設置,並包覆在所述支撐芯外表面,所述支撐芯 的斷裂拉伸率大於5%。 2 .如申請專利範圍第1項所述的奈米碳管複合線,其中,所 述支撐芯的拉伸強度大於lGPa。 3. 如申請專利範圍第2項所述的奈米碳管複合線,其中,所 〇 述支撐芯的斷裂拉伸率在15%〜50%之間。 4. 如申請專利範圍第3項所述的奈米碳管複合線,其中,所 述支撐芯的直徑為500奈米至10微米。 5. 如申請專利範圍第3項所述的奈米碳管複合線,其中,所 述支樓芯為蠶絲或者換1蛛絲。 6. 如申請專利範圍第3項所述的奈米碳管複合線,其中,所 述支撐芯為PBO纖維。 ^ 7 .如申請專利範圍第1項所述的奈米碳管複合線,其中,該 複數個奈米碳管在所述支撐芯的延伸方向上首尾相連並環 繞該支撐芯螺旋排列。 8 .如申請專利範圍第7項所述的奈米碳管複合線,其中,所 - 述奈米碳管層的厚度為500奈米至10微米。 9.如申請專利範圍第1項所述的奈米碳管複合線,其中,所 述奈米碳管為多壁奈米碳管。 10 .如申請專利範圍第1項所述的奈米碳管複合線,其中,所 述奈米碳管層由至少一個奈米碳管線螺旋環繞所述支撐芯 099128741 表單編號A0101 第19頁/共31頁 0992050474-0 201209235 組成,所述奈米碳管線由複數個沿該奈米碳管線延伸方向 定向排列的奈米碳管首尾相連組成。 如申請專利範圍第1項所述的奈米碳管複合線,其改良在 於,所述奈米碳管層由至少一個奈米碳管膜螺旋環繞所述 支撐芯組成,所述奈米碳管膜由複數個沿該奈米碳管膜延 伸方向定向排列的奈米碳管首尾相連組成。 12 13 . 14 . 15 一種奈米碳管複合線,其改良在於,該奈米碳管複合線包 括複數個支撐芯,以及一個奈米碳管層,所述複數個支撐 芯相互纏繞形成_個支m構,該奈米碳管層環繞該支 撐芯結構設置,並包覆在所述支撐芯結構的外表面所述 支撐芯的斷裂拉伸率大於5%。 如申請專利範圍第12項所料奈米碳管複合線,其中,所 述奈米碳管層由複數個奈米碳管通過凡得瓦力相互結合構 成,該複數個奈米碳管在料支撐料構的延伸方向上首 尾相連並環繞該支撐芯結構螺旋排列。 一種奈米碳管複合線,其改良在於,該奈米碳管複合線包 括?數個支撐芯以及複數個奈朱碳管層,每一個奈米碳管 層環繞相應的-個支料設置,並包覆在所述支撐芯的外 表面所述奈米層由複數個奈米碳管通過凡得瓦力相 互結合構成’該複數個奈米碳管在所述支料的延伸方向 上首尾相連並環繞該切芯螺旋排列,分別包覆有夺米礙 管層的複數個支撐芯相互纏繞形成_個整體,所述支撐芯 的斷裂拉伸率大於5%。 :種奈米碳管複合線的製備方法,包括以下步驟: 提供至少-個奈米碳管結構,該奈米碳管結構包括複數個 首尾相連定向排列的奈米碳管; 099128741 表單編號謝01 第20頁/共31頁 0992050474 201209235 提供一支撐芯,所述支撐芯的斷裂拉伸率大於5°/〇 ; 將所述至少一個奈米碳管結構沿所述支撐芯延伸的方向連 續環繞設置,使得所述至少一個奈米碳管結構包覆於所述 支撐芯外表面。 16 .如申請專利範圍第15項所述的複合線的製備方法,其中, 所述提供至少一奈米碳管結構的步驟包括以下步驟: 提供一超順排奈米碳管陣列; 採用一拉伸工具從所述奈米碳管陣列中連續拉取獲得一奈 米碳管結構。 Ο 17 .如申請專利範圍第15項所述的複合線的製備方法,其中, 所述將至少一奈米碳管結構沿所述支撐芯延伸的方向連續 環繞設置,使得所述至少一個奈米碳管結構包覆於所述支 撐芯外表面的步驟包括以下步驟: 將所述至少一個奈米碳管結構一端連接於所述支撐芯外表 面,另一端位於支撐芯的一側並間隔一定間距; 將支撐芯繞中心線旋轉,同時遠離所述至少一奈米碳管結 構另一端方向移動。201209235 VII. Patent application scope: 1. A carbon nanotube composite wire, the improvement is that the carbon nanotube composite wire comprises a support core and a carbon nanotube layer, and the carbon nanotube layer is composed of a plurality of The carbon nanotubes are composed of a combination of van der Waals and the carbon nanotube layer is disposed around the support core and coated on the outer surface of the support core, and the tensile elongation of the support core is greater than 5%. 2. The carbon nanotube composite wire according to claim 1, wherein the support core has a tensile strength greater than 1 GPa. 3. The carbon nanotube composite wire according to claim 2, wherein the support core has a tensile elongation at break of between 15% and 50%. 4. The carbon nanotube composite wire according to claim 3, wherein the support core has a diameter of 500 nm to 10 μm. 5. The carbon nanotube composite wire according to claim 3, wherein the core of the support is silk or a spider. 6. The carbon nanotube composite wire of claim 3, wherein the support core is a PBO fiber. The carbon nanotube composite wire according to claim 1, wherein the plurality of carbon nanotubes are connected end to end in the extending direction of the support core and spirally arranged around the support core. 8. The carbon nanotube composite wire according to claim 7, wherein the carbon nanotube layer has a thickness of from 500 nm to 10 μm. 9. The carbon nanotube composite wire according to claim 1, wherein the carbon nanotube is a multi-walled carbon nanotube. 10. The carbon nanotube composite wire of claim 1, wherein the carbon nanotube layer is spirally surrounded by the at least one nanocarbon line to the support core 099128741 Form No. A0101 Page 19 / Total On page 31, 0992050474-0 201209235, the nanocarbon pipeline consists of a plurality of carbon nanotubes oriented in the direction in which the nanocarbon pipeline extends. The modification of the carbon nanotube composite wire according to claim 1, wherein the carbon nanotube layer is composed of at least one carbon nanotube film spirally surrounding the support core, the carbon nanotube The membrane consists of a plurality of carbon nanotubes oriented in the direction in which the carbon nanotube film extends. 12 13 . 14 . 15 A carbon nanotube composite wire, the improvement is that the carbon nanotube composite wire comprises a plurality of support cores, and a carbon nanotube layer, the plurality of support cores are intertwined to form one The carbon nanotube layer is disposed around the support core structure and coated on the outer surface of the support core structure, and the tensile elongation of the support core is greater than 5%. The carbon nanotube composite wire as claimed in claim 12, wherein the carbon nanotube layer is composed of a plurality of carbon nanotubes and a combination of van der Waals forces, and the plurality of carbon nanotubes are combined The support material is connected end to end and spirally arranged around the support core structure. A modification of a carbon nanotube composite wire is that the carbon nanotube composite wire includes? a plurality of support cores and a plurality of naijo carbon tube layers, each of which is disposed around a corresponding one of the support materials and coated on the outer surface of the support core, wherein the nano layer is composed of a plurality of nanometer layers The carbon tubes are combined with each other by van der Waals force. The plurality of carbon nanotubes are connected end to end in the extending direction of the material and spirally arranged around the core, respectively, and are covered with a plurality of supports of the rice layer. The cores are intertwined to form an integral body, and the tensile elongation at break of the support core is greater than 5%. The method for preparing a carbon nanotube composite wire comprises the steps of: providing at least one carbon nanotube structure, wherein the carbon nanotube structure comprises a plurality of carbon nanotubes arranged in an end-to-end orientation; 099128741 Form No. Xie 01 Page 20 of 31 0992050474 201209235 provides a support core having a tensile elongation at break of greater than 5°/〇; continuously surrounding the at least one carbon nanotube structure in a direction in which the support core extends The at least one carbon nanotube structure is coated on the outer surface of the support core. The method for preparing a composite wire according to claim 15, wherein the step of providing at least one carbon nanotube structure comprises the steps of: providing a super-sequential carbon nanotube array; An extension tool continuously draws from the array of carbon nanotubes to obtain a carbon nanotube structure. The method for preparing a composite wire according to claim 15, wherein the at least one carbon nanotube structure is continuously circumferentially disposed along a direction in which the support core extends, such that the at least one nanometer The step of coating the carbon tube structure on the outer surface of the support core comprises the steps of: connecting one end of the at least one carbon nanotube structure to the outer surface of the support core, and the other end is located on one side of the support core and spaced apart by a certain distance ; rotating the support core about the centerline while moving away from the other end of the at least one carbon nanotube structure. 099128741 表單編號Α0101 第21頁/共31頁 0992050474-0099128741 Form number Α0101 Page 21 of 31 0992050474-0
TW99128741A 2010-08-27 2010-08-27 Carbon nanotube composite wire and method for making the same TWI438315B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99128741A TWI438315B (en) 2010-08-27 2010-08-27 Carbon nanotube composite wire and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99128741A TWI438315B (en) 2010-08-27 2010-08-27 Carbon nanotube composite wire and method for making the same

Publications (2)

Publication Number Publication Date
TW201209235A true TW201209235A (en) 2012-03-01
TWI438315B TWI438315B (en) 2014-05-21

Family

ID=46763489

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99128741A TWI438315B (en) 2010-08-27 2010-08-27 Carbon nanotube composite wire and method for making the same

Country Status (1)

Country Link
TW (1) TWI438315B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107337192B (en) * 2016-04-28 2019-10-25 清华大学 A kind of preparation method of Nanotubes

Also Published As

Publication number Publication date
TWI438315B (en) 2014-05-21

Similar Documents

Publication Publication Date Title
CN102372252B (en) Carbon nano tube compound line and preparation method thereof
JP5091278B2 (en) Method for producing carbon nanotube linear structure
CN101499328B (en) Stranded wire
CN101499338B (en) Stranded wire production method
JP5243495B2 (en) Method for producing twisted carbon nanotube wire
CN100500556C (en) Carbon nano-tube filament and its production
CN105244071B (en) cable
JP5180266B2 (en) Method for producing carbon nanotube linear structure
TWI312337B (en) Method for making the carbon nanotubes silk
US8246874B2 (en) Method for making carbon nanotube-based device
US9242443B2 (en) Method for making carbon nanotube composite hollow structure
TWI380949B (en) Carbon nanotube yarn strucutre
US8414859B2 (en) Method for making carbon nanotube structure
JP2009519621A (en) Nanostructure antenna and method of manufacturing the same
US20120045644A1 (en) Carbon nanotube wire composite structure and method for making the same
WO2014159751A1 (en) Nanofiber yarns, thread, rope, cables, fabric, articles and methods of making the same
US20120043004A1 (en) Apparatus for making carbon nanotube composite wire structure
TW200939249A (en) Method for making twisted yarn
TW201020209A (en) Carbon nanotube film
TW201209235A (en) Carbon nanotube composite wire and method for making the same
TWI391323B (en) Mehtod for manufacturing carbon nanotube linear structure
TWI402210B (en) Carbon nanotube wire structure and method for making the same
TWI342266B (en) Carbon nanotube composite film
Dai et al. Preparation of CNTs rope by electrostatic and airflow field carding with high speed rotor spinning
TWI406812B (en) Carbon nanotube wires