TW201208169A - Film - Google Patents

Film Download PDF

Info

Publication number
TW201208169A
TW201208169A TW099126106A TW99126106A TW201208169A TW 201208169 A TW201208169 A TW 201208169A TW 099126106 A TW099126106 A TW 099126106A TW 99126106 A TW99126106 A TW 99126106A TW 201208169 A TW201208169 A TW 201208169A
Authority
TW
Taiwan
Prior art keywords
resin composition
composition layer
film
organic
moisture
Prior art date
Application number
TW099126106A
Other languages
Chinese (zh)
Other versions
TWI654783B (en
Inventor
Yuichi Kageyama
Hiroyasu Koto
Original Assignee
Ajinomoto Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Kk filed Critical Ajinomoto Kk
Publication of TW201208169A publication Critical patent/TW201208169A/en
Application granted granted Critical
Publication of TWI654783B publication Critical patent/TWI654783B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/26Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device including materials for absorbing or reacting with moisture or other undesired substances, e.g. getters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants

Abstract

Disclosed is a film which comprises a supporting body, a protective resin composition layer, and a moisture-absorbing resin composition layer. This configuration enables the film to have sufficient moisture permeation resistance and damage resistance for an element (namely, a function of preventing damage to an element) at the same time. The film is particularly suitable for the sealing of an organic EL element, and not only damage to the organic EL element during the sealing operation but also thermal deterioration of the organic EL element can be sufficiently suppressed by using the film. As a result, an organic EL element device having high reliability can be obtained.

Description

201208169 六、發明說明: 【發明所屬之技術領域】 本發明係有關特定的薄膜、及使用該薄膜之有機EL元 件裝置。 【先前技術】 有機EL ( Electroluminescence)元件係發光材料使用 有機物質的發光元件,可以低電壓得到高亮度的發光,近 年受矚目的材料。但是有機EL元件對水分極弱,有機材料 本身因水分而變質,而有亮度降低或不會發光,或電極與 有機EL層之界面因水分的影響而剝離,金屬氧化變成高電 阻化的問題。 對此,專利文獻1提案在玻璃基板上形成有機物EL層 ,再層合硬化型樹脂層以覆蓋有機物EL層全面,然後貼合 非透水性玻璃基板者。但是硬化型樹脂層因使用丙烯酸系 之紫外線硬化型樹脂組成物,因此產生因紫外線造成有機 EL元件劣化的問題或紫外線無法抵達處,產生未硬化部, 不易得到信賴性高的封閉構造。 此外,專利文獻2提案全面封閉有機EL元件之熱硬化 型硬化性樹脂組成物。但是所得之硬化物層的耐透濕性仍 不足。 [先行技術文獻] [專利文獻] [專利文獻1]特開平5- 1 8 275 9號公報 -5- 201208169 [專利文獻2]特開2006-70221號公報 【發明內容】 [發明槪要] [發明欲解決的課題] 本發明之課題係提供有利於形成信賴性高的封閉構造 之兼具充分的耐透濕性與元件之耐損傷性的薄膜。 [解決課題的手段] 本發明人等經過精心硏究的結果,發現藉由具有支持 體、保護樹脂組成物層及吸濕樹脂組成物層的薄膜,可解 決上述課題,遂完成本發明。 換言之,本發明係含有以下的形態。 (1) 一種薄膜,其特徵係具有支持體、保護樹脂組 成物層及吸濕樹脂組成物層者。 (2 )如上述(1 )薄膜,其中吸濕樹脂組成物層含有 吸濕性金屬氧化物。 (3)如上述(1)或(2)項之薄膜,其中吸濕樹脂 組成物層含有無機塡充劑(但不包括吸濕性金屬氧化物) 者。 (4 )如上述(1 )〜(3 )項中任一項之薄膜,其中保 護樹脂組成物層含有無機塡充劑(但不包括吸濕性金屬氧 化物)者。 (5)如上述(1)〜(4)項中任一項之薄膜,其係在 -6- 201208169 設定爲3 (TC之範圍的層合溫度下,吸濕樹脂組成物 層與保護樹脂組成物層之熔融黏度的差(吸濕樹脂組成物 層之溶融黏度-保護樹脂組成物層之熔融黏度)爲 3 OOpoise〜1〇〇〇〇〇p〇ise 〇 (6)—種有機EL裝置’其特徵係具有如上述(!)〜 (5)項中任一項之薄膜者。 [發明之效果] 藉由具有支持體、保護樹脂組成物層及吸濕樹脂組成 物層的薄膜,可提供兼具充分的耐透濕性與元件之耐損傷 性(即防止元件損傷的功能)的薄膜。 [實施發明之形態] 本發明之薄膜係具有支持體、吸濕樹脂組成物層及保 護樹脂組成物層者。 〔支持體〕 本發明使用的支持體係指「支持保護樹脂組成物層或 吸濕樹脂組成物層的物質」,只要能發揮該功能時,無特 別限定。 支持體係分類爲剝離系支持體與封閉系支持體。 剝離系支持體係指在各種裝置之製作時,可剝離的支 持體(即、各種裝置之製作時,可由本發明之薄膜剝離( 分離)的支持體)。此剝離系支持體之具體例有聚乙烯、 201208169 聚丙烯、聚氯乙烯等之聚烯烴、聚對苯二甲酸乙二醇酯( 以下有時簡稱爲ΓρΕΤ」)、聚萘二甲酸乙二醇酯(以下 有時簡稱爲r PEN」)等之聚酯、聚碳酸酯 '聚醯亞胺等 之塑膠所構成之薄膜。從成本的觀點,較佳爲聚對苯二甲 酸乙二醇酯薄膜、聚萘二甲酸乙二醇酯薄膜,更佳爲聚對 苯二甲酸乙二醇酯。 剝離系支持體之厚度並無限制,從本發明之薄膜之使 用性的觀點’該支持體的厚度之上限較佳爲150μιη以下, 更佳爲120μιη以下’更佳爲90μηα以下。此外,厚度之下限 ’從本發明之薄膜之使用性、防濕性等的觀點,較佳爲 ΙΟμιη以上’更佳爲4〇μηι以上,更佳爲7〇μπι以上。 剝離系支持體較佳爲預先施予脫模處理,使用於脫模 處理之脫模劑’具體例有氟系脫模劑、聚矽氧系脫模劑、 醇酸樹脂系脫模劑等。脫模劑可使用1種或混合2種以上使 用。剝離系支持體之表面可施予消光處理、電暈處理等, 經此等處理的表面上可再施予脫模處理。 封閉系支持體係指各種裝置製作時,可直接作爲各種 裝置之一部份使用(即、供各種裝置之製造,最終被組合 於所製作的裝置內),具有防濕性的支持體。更具體而言 ,該支持體係在各種裝置之封閉構造中,作爲配置於由形 成於元件(半導體元件、LED元件、有機EL元件等)之表 面之元件形成基板剝離之最外層的封閉材料使用。該支持 體例如有金屬箔、在塑膠薄膜之至少單面層合有金屬箔或 無機物蒸鍍膜的層合薄膜等。金屬箔例如有銅箔、鋁箔等 -8 - 201208169 ’無機物蒸鍍膜例如有氧化矽(silica )、氮化矽、SiCN '非晶砂等之蒸鍍膜。該支持體可使用市售之具有防濕性 的塑膠薄膜’例如有techbarrierHX、AX、LX、L系列(三 菱樹脂公司製)或更提高防濕效果的X-BARRIER (三菱樹 脂公司製)等。此外,從可賦予剛性的觀點,可使用玻璃 板 '金屬板等。利用使用封閉系支持體之本發明之薄膜製 作有機EL裝置時,所製作之有機El裝置的發光面係成爲 與形成有元件形成基板之有機EL元件的面之相反側的面。 封閉系支持體使用金屬箔或使用在塑膠薄膜之至少單 面層合有無機物蒸鍍膜或金屬箔的層合薄膜時,支持體之 厚度無特別限定,從本發明之薄膜之使用性的觀點,該支 持體之厚度的上限較佳爲150μιη以下,更佳爲120μηι以下 ’更佳爲90 μιη以下。此外,厚度的下限,從本發明之薄膜 之使用性、防濕性等的觀點,較佳爲1 Ομηι以上,更佳爲 40μηι以上,更佳爲70μηι以上。 封閉系支持體使用玻璃板或金屬板時之該支持體的厚 度上限,從使有機EL裝置本身變輕、薄的觀點,較佳爲 5 m m以下,更佳爲1 m m以下,更佳爲1 0 0 μ m以下。此外, 支持體之厚度下限,從防止水分透過的觀點、有機EL裝置 之剛性等的觀點,較佳爲5μιη以上,更佳爲ΙΟμιη以上,更 佳爲20μηι以上。 塑膠薄膜之至少單面層合有金屬箔的層合薄膜係使用 凹版塗佈機等可塗佈薄膜的塗佈頭,將接著劑塗佈於PET 薄膜等之塑膠薄膜上,在該接著劑之塗佈面層合鋁等之金 -9- 201208169 屬箔而得。金屬箔之厚度,從層合性、耐透濕性等的觀點 ,較佳爲5μιη以上,從使用性的觀點,較佳爲125μιη以下 。此3層構造之層合薄膜的總厚度,較佳爲10 μπι~ 150 μηι之 範圍內。 〔吸濕樹脂組成物層〕 本發明之薄膜所使用的吸濕樹脂組成物層係藉由含有 熱硬化性樹脂、硬化劑及吸濕性金屬氧化物之熱硬化性的 樹脂組成物所構成,且具有耐透濕性。藉此,在目的之裝 置(有機EL裝置等)的封閉構造中,可遮斷水分浸入元件 (有機EL元件等)內。 (熱硬化性樹脂及硬化劑) 熱硬化性樹脂及硬化劑無特別限定,具體而言例如有 環氧樹脂、氰酸酯樹脂、酚樹脂、雙馬來醯亞胺-三嗪樹 脂、聚醯亞胺樹脂、丙烯酸樹脂、乙烯基苯偶醯樹脂等各 種的熱硬化性樹脂與彼等之硬化劑。其中,從低溫硬化性 及硬化物之接著性等的觀點,較佳爲環氧樹脂與其硬化劑 〇 環氧樹脂只要是平均1分子具有2個以上之環氧基者即 可’具體而言,例如有雙酚Α型環氧樹脂、聯苯型環氧樹 脂、聯苯芳烷基型環氧樹脂、萘酚型環氧樹脂、萘型環氧 樹脂、雙酚F型環氧樹脂、含磷環氧樹脂、雙酚s型環氧樹 脂、芳香族縮水甘油基胺型環氧樹脂(具體而言有四縮水 -10- 201208169 甘油基二胺基二苯基甲烷、三縮水甘油基-p -胺基酚、二縮 水甘油基甲苯胺、二縮水甘油基苯胺等)、脂環式環氧樹 脂、脂肪族鎖狀環氧樹脂、酚醛清漆型環氧樹脂、甲基酚 醛型環氧樹脂、雙酚A酚醛型環氧樹脂、具有丁二烯構造 之環氧樹脂、酚芳烷基型環氧樹脂、具有二環戊二烯構造 之環氧樹脂、雙酚之二縮水甘油基醚化物、萘二醇之二縮 水甘油基醚化物、酚類之縮水甘油基醚化物、及醇類之二 縮水甘油基醚化物、及此等之環氧樹脂之烷基取代物、鹵 化物及氫化物等。此等可〗種或組合2種以上使用。 此等中,從樹脂組成物之具有高耐熱性及低透濕性等 的觀點,較佳爲雙酚A型環氧樹脂、雙酚F型環氧樹脂、酚 醛清漆型環氧樹脂、聯苯芳烷基型環氧樹脂、酚芳烷基型 環氧樹脂、芳香族縮水甘油基胺型環氧樹脂、具有二環戊 二烯構造之環氧樹脂等。 環氧樹脂可爲液狀或固形狀,或可使用液狀與固形狀 之兩者。其中「液狀」及「固形狀」係指251下之環氧樹 脂的狀態。從塗佈、加工性、接著性等的觀點,使用之環 氧樹脂全體的1 〇重量%以上爲液狀者較佳。 環氧樹脂從反應性的觀點,環氧當量較佳爲1〇〇〜1000 之範圍者’更佳爲120〜1000之範圍者。其中環氧當量係指 含有1克當量的環氧基之樹脂的克數(g/eq),依據JIS K-7 2 3 6所規定的方法測定者。 環氧樹脂之硬化劑只要是具有使環氧樹脂硬化之功能 者時’無特別限定’從抑制樹脂組成物之硬化處理時之元 -11 - 201208169 件(特別是有機EL元件)之熱劣化的觀點,樹脂組成物之 硬化處理較佳爲140°C以下,更佳爲120°C以下進行,硬化 劑在此溫度區域,具有環氧樹脂之硬化作用者較佳。 具體而言,一級胺、二級胺、三級胺系硬化劑、聚胺 基醯胺系硬化劑、雙氰胺、有機酸二肼等,其中從速硬化 性的觀點,較佳爲胺加成物系化合物(AJICUREPN-23、 AJICUREMY-24 、 AJICUREPN-D 、 A JICUREM Y-D 、 AJICUREPN-H 、 A JICUREMY-H 、 AJICUREPN-3 1 、 AJICUREPN-40、AJICUREPN-40J等(ajinomoto-fine-techno 公司製))、有機酸二肼(AJICUREVDH-J、AJICUREUDH 、AJICURELDH等(ajinomoto-fine-techno公司製))等。此 等可1種或組合2種以上使用。 此外,特佳使用以1 40 °C以下、較佳爲1 20°C以下的溫 度可硬化環氧樹脂之離子液體、即可以1 4 0 °C以下、較佳 爲120 °C以下的溫度區域可熔解的鹽,且具有環氧樹脂之 硬化作用的鹽。離子液體可用於提高吸濕樹脂組成物層之 硬化物的耐透濕性。離子液體較佳爲將該離子液體均勻溶 解於環氧樹脂中的狀態使用。 構成此離子液體的陽離子,例如有咪唑鑰離子、哌啶 鑰離子、吡咯烷鑰離子、吡唑鑰離子、脈鑰離子、吡啶鐵 離子等之銨系陽離子;四烷基鳞陽離子(具體而言有四丁 基鱗離子、三丁基己基鱗離子等)等之鐵系陽離子;三乙 基锍離子等之鏑系陽離子等。 構成此離子液體的陰離子,例如有氟化物離子、氯化 -12- 201208169 物離子、溴化物離子、碘化物離子等之鹵化物系陰離子; 甲烷磺酸離子等之烷基硫酸系陰離子;三氟甲烷磺酸離子 、六氟膦酸離子、三氟三(五氟乙基)膦酸離子、雙(三 氟甲烷磺醯基)醯亞胺離子、三氟乙酸離子、四氟硼酸離 子等之含氟化合物系陰離子;酚離子、2 -甲氧基酚離子、 2,6-二- ter t-丁基酚離子等之酚系陰離子;天冬胺酸離子、 谷胺酸離子等之酸性胺基酸離子;甘胺酸離子、丙胺酸離 子、苯基丙胺酸離子等之中性胺基酸離子;N -苯甲醯丙胺 酸離子、N-乙醯基苯基丙胺酸離子、N·乙醯基甘胺酸離子 等之下述一般式(1)表示之N -醯基胺基酸離子;甲酸離 子、乙酸離子、癸酸離子、2 -吡咯烷酮-5-羧酸離子、α -硫 辛酸離子、乳酸離子、酒石酸離子、馬尿酸離子、Ν-甲基 馬尿酸離子、苯甲酸離子等之羧酸系陰離子。 【化1】 χ人201208169 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a specific film and an organic EL element device using the film. [Prior Art] An organic EL (Electroluminescence) element is a light-emitting material using an organic material, and can emit high-intensity light at a low voltage, and has attracted attention in recent years. However, the organic EL element is extremely weak in moisture, and the organic material itself is deteriorated by moisture, and the brightness is lowered or does not emit light, or the interface between the electrode and the organic EL layer is peeled off due to the influence of moisture, and the metal oxidation becomes a problem of high resistance. On the other hand, Patent Document 1 proposes to form an organic EL layer on a glass substrate, and then laminate the hardened resin layer to cover the entire organic EL layer, and then bond the non-permeable glass substrate. However, since the acrylic resin-based ultraviolet curable resin composition is used, the problem of deterioration of the organic EL element due to ultraviolet rays or the inability of ultraviolet rays to reach is caused, and an unhardened portion is generated, and a highly reliable closed structure is hardly obtained. Further, Patent Document 2 proposes to completely seal the thermosetting type curable resin composition of the organic EL element. However, the moisture permeability of the resulting cured layer is still insufficient. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei No. Hei. No. Hei. No. Hei. No. Hei. No. 2006-70221. Problem to be Solved by the Invention An object of the present invention is to provide a film which is excellent in moisture permeability resistance and damage resistance of a device, which is advantageous in forming a highly reliable sealing structure. [Means for Solving the Problem] The inventors of the present invention have found that the above problems can be solved by a film having a support, a protective resin composition layer, and a moisture-absorbing resin composition layer, and the present invention has been completed. In other words, the present invention contains the following aspects. (1) A film characterized by having a support, a protective resin composition layer, and a moisture-absorbing resin composition layer. (2) The film according to (1) above, wherein the moisture-absorbing resin composition layer contains a hygroscopic metal oxide. (3) The film according to the above item (1) or (2), wherein the moisture absorbing resin composition layer contains an inorganic chelating agent (but not including a hygroscopic metal oxide). (4) The film according to any one of the above (1) to (3) wherein the protective resin composition layer contains an inorganic chelating agent (but not including a hygroscopic metal oxide). (5) The film according to any one of the above items (1) to (4), which is set at a lamination temperature of -6 to 201208169 (the composition of the moisture absorbing resin composition layer and the protective resin at a lamination temperature in the range of TC) The difference in the melt viscosity of the layer (the melt viscosity of the moisture-absorbing resin composition layer - the melt viscosity of the protective resin composition layer) is 3 OOpoise~1〇〇〇〇〇p〇ise 〇(6) - an organic EL device' It is characterized by having a film according to any one of the above items (!) to (5). [Effect of the Invention] A film having a support, a protective resin composition layer, and a moisture-absorbing resin composition layer can be provided. A film having sufficient moisture permeability resistance and resistance to damage of components (that is, a function of preventing damage to components). [Mode for Carrying Out the Invention] The film of the present invention has a support, a moisture-absorbing resin composition layer, and a protective resin. [Support] The support system used in the present invention is a "substance supporting the protective resin composition layer or the moisture-absorbing resin composition layer", and is not particularly limited as long as the function can be exhibited. The support system is classified into a peeling system. Support and closed line support. The peeling support system refers to a peelable support (that is, a support which can be peeled off (separated) from the film of the present invention at the time of production of various devices) at the time of production of various devices. Specific examples of the release support are poly Ethylene, 201208169 Polyolefins such as polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as "ΓρΕΤ"), polyethylene naphthalate (hereinafter sometimes abbreviated as r PEN) a film composed of a plastic such as polyester or polycarbonate, such as polyimine. From the viewpoint of cost, a polyethylene terephthalate film or a polyethylene naphthalate film is preferable. More preferably, it is polyethylene terephthalate. The thickness of the peeling support is not limited, and from the viewpoint of the usability of the film of the present invention, the upper limit of the thickness of the support is preferably 150 μm or less, more preferably In addition, the lower limit of the thickness is preferably ΙΟμηη or more 'more preferably 4 〇μηι or more, more preferably 7 from the viewpoint of the usability of the film of the present invention, moisture resistance, and the like. 〇μπι The release-off support is preferably a release-release treatment in advance, and a release agent used for the release treatment is exemplified by a fluorine-based release agent, a polyoxymethylene-based release agent, and an alkyd-based release agent. The release agent may be used alone or in combination of two or more. The surface of the release support may be subjected to matting treatment, corona treatment, or the like, and the surface of the treatment may be subjected to a release treatment. A support system refers to a support having a moisture-proof property that can be directly used as part of various devices (i.e., for the manufacture of various devices, and finally incorporated into the device to be fabricated). In the closed structure of various devices, the support system is used as a sealing material disposed on the outermost layer of the substrate formed by the element formed on the surface of the element (semiconductor element, LED element, organic EL element, etc.). The support includes, for example, a metal foil, a laminated film in which at least one side of a plastic film is laminated with a metal foil or an inorganic deposited film. The metal foil is, for example, a copper foil or an aluminum foil. -8 - 201208169 The inorganic vapor deposited film is, for example, a vapor deposited film of silica, tantalum nitride or SiCN 'amorphous sand. As the support, a commercially available plastic film having moisture resistance, for example, a techbarrier HX, AX, LX, L series (manufactured by Mitsubishi Plastics Co., Ltd.) or X-BARRIER (manufactured by Mitsubishi Plastics Co., Ltd.) having a moisture-proof effect can be used. Further, from the viewpoint of imparting rigidity, a glass plate 'metal plate or the like can be used. When an organic EL device is produced by using the film of the present invention using a closed support, the light-emitting surface of the organic EL device produced is a surface opposite to the surface of the organic EL element on which the element-forming substrate is formed. When the closed-type support is a metal foil or a laminated film in which at least one side of a plastic film is laminated with an inorganic vapor-deposited film or a metal foil, the thickness of the support is not particularly limited, and from the viewpoint of the usability of the film of the present invention, The upper limit of the thickness of the support is preferably 150 μm or less, more preferably 120 μm or less, and even more preferably 90 μm or less. In addition, the lower limit of the thickness is preferably 1 Ομηι or more, more preferably 40 μm or more, and still more preferably 70 μm or more from the viewpoints of the usability of the film of the present invention, moisture resistance and the like. The upper limit of the thickness of the support when the glass substrate or the metal plate is used for the closed-type support is preferably 5 mm or less, more preferably 1 mm or less, and even more preferably 1 from the viewpoint of making the organic EL device itself light and thin. 0 0 μ m or less. In addition, the lower limit of the thickness of the support is preferably 5 μm or more, more preferably ΙΟμηη or more, and even more preferably 20 μm or more from the viewpoint of preventing moisture permeation and the rigidity of the organic EL device. A laminated film in which at least one side of a plastic film is laminated with a metal foil is a coating head which can coat a film such as a gravure coater, and an adhesive is applied onto a plastic film such as a PET film, and the adhesive is used. Gold-coated 9-201208169, such as coated aluminum, is a foil. The thickness of the metal foil is preferably 5 μm or more from the viewpoints of lamination property, moisture permeability resistance, etc., and is preferably 125 μm or less from the viewpoint of usability. The total thickness of the laminated film of the three-layer structure is preferably in the range of 10 μπι to 150 μηι. [Moisture-absorbing resin composition layer] The moisture-absorbing resin composition layer used in the film of the present invention is composed of a thermosetting resin composition containing a thermosetting resin, a curing agent, and a hygroscopic metal oxide. And has moisture permeability. Thereby, in the closed structure of the intended device (organic EL device or the like), the moisture intrusion element (organic EL element or the like) can be blocked. (thermosetting resin and curing agent) The thermosetting resin and the curing agent are not particularly limited, and specific examples thereof include an epoxy resin, a cyanate resin, a phenol resin, a bismaleimide-triazine resin, and a polyfluorene. Various thermosetting resins such as an imide resin, an acrylic resin, and a vinyl styrene resin, and a curing agent thereof. In particular, from the viewpoints of low-temperature curability and adhesion of a cured product, etc., it is preferred that the epoxy resin and the curing agent 〇 epoxy resin have an epoxy group having two or more molecules per molecule. For example, there are bisphenol oxime type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, bisphenol F type epoxy resin, phosphorus containing Epoxy resin, bisphenol s type epoxy resin, aromatic glycidyl amine type epoxy resin (specifically, there are four shrinkage water - 201208169 glyceryl diaminodiphenylmethane, triglycidyl-p - Aminophenol, diglycidyltoluidine, diglycidylaniline, etc.), alicyclic epoxy resin, aliphatic lock epoxy resin, novolac epoxy resin, methylphenolic epoxy resin, double Phenol A phenolic epoxy resin, epoxy resin having butadiene structure, phenol aralkyl epoxy resin, epoxy resin having dicyclopentadiene structure, diglycidyl ether of bisphenol, naphthalene Diglycidyl ether of diol, glycidyl ether of phenol a glycidyl etherate of a compound and an alcohol, and an alkyl substituent, a halide, a hydride, and the like of the epoxy resin. These can be used in combination of two or more kinds. Among these, from the viewpoints of high heat resistance and low moisture permeability of the resin composition, bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, and biphenyl are preferable. An aralkyl type epoxy resin, a phenol aralkyl type epoxy resin, an aromatic glycidyl amine type epoxy resin, an epoxy resin having a dicyclopentadiene structure, or the like. The epoxy resin may be in a liquid or solid shape, or both liquid and solid shapes may be used. "Liquid" and "solid shape" refer to the state of the epoxy resin under 251. From the viewpoints of coating, workability, adhesion, and the like, it is preferred that 1% by weight or more of the entire epoxy resin used is liquid. The epoxy resin is preferably in the range of from 1 to 1000 in terms of reactivity, and more preferably in the range of from 120 to 1,000. The epoxy equivalent is the number of grams (g/eq) of a resin containing 1 gram equivalent of an epoxy group, and is measured according to the method specified in JIS K-7 2 3 6 . The epoxy resin hardener is not particularly limited as long as it has a function of curing the epoxy resin, and is thermally degraded from the element 11 - 201208169 (especially an organic EL element) during the hardening treatment of the resin composition. In view of the above, the hardening treatment of the resin composition is preferably 140 ° C or lower, more preferably 120 ° C or lower, and the curing agent is preferably cured in the temperature region with an epoxy resin. Specifically, a primary amine, a secondary amine, a tertiary amine hardener, a polyamine amide amine hardener, dicyandiamide, an organic acid bismuth or the like, and among them, an amine addition is preferred from the viewpoint of quick-curing property. Compounds (AJICUREPN-23, AJICUREMY-24, AJICUREPN-D, A JICUREM YD, AJICUREPN-H, A JICUREMY-H, AJICUREPN-3 1 , AJICUREPN-40, AJICUREPN-40J, etc. (ajinomoto-fine-techno )), organic acid diterpene (AJICUREVDH-J, AJICUREUDH, AJICURELDH, etc. (manufactured by ajinomoto-fine-techno)). These may be used alone or in combination of two or more. Further, it is particularly preferable to use an ionic liquid capable of curing an epoxy resin at a temperature of 1 40 ° C or lower, preferably 1 20 ° C or lower, that is, a temperature region of 140 ° C or lower, preferably 120 ° C or lower. A meltable salt having a hardening effect of an epoxy resin. The ionic liquid can be used to improve the moisture permeability of the cured product of the moisture absorbing resin composition layer. The ionic liquid is preferably used in a state in which the ionic liquid is uniformly dissolved in an epoxy resin. The cation constituting the ionic liquid, for example, an ammonium cation such as an imidazole key ion, a piperidine key ion, a pyrrolidine key ion, a pyrazole key ion, a sulfonium ion, a pyridinium ion or the like; a tetraalkyl scaly cation (specifically There are iron-based cations such as tetrabutyl sulfonium ions and tributylhexyl scaly ions; and lanthanoid cations such as triethylsulfonium ions. The anion constituting the ionic liquid is, for example, a fluoride ion of a fluoride ion, a chlorinated -12-201208169 ion, a bromide ion, or an iodide ion; an alkylsulfate anion such as a methanesulfonate ion; Methanesulfonate ion, hexafluorophosphonic acid ion, trifluorotris(pentafluoroethyl)phosphonate ion, bis(trifluoromethanesulfonyl)phosphonium ion, trifluoroacetate ion, tetrafluoroboric acid ion, etc. Fluorine compound anion; phenolic anion such as phenol ion, 2-methoxyphenol ion, 2,6-di-tert-butylphenol ion; acid amine group such as aspartate ion, glutamic acid ion or the like Acid ion; neutral amino acid ion such as glycine ion, alanine ion, phenylalanine ion; N-benzamide ionic acid ion, N-ethyl phenyl phenylalanine ion, N · acetamidine N-mercaptoamino acid ion represented by the following general formula (1) such as glucosamine ion; formic acid ion, acetic acid ion, citric acid ion, 2-pyrrolidone-5-carboxylic acid ion, α-lipoic acid ion , lactate ion, tartaric acid ion, hippuric acid ion, Ν-methyl horse urine Carboxylic acid ion, benzoic acid ion, etc. Anion.化人

0丫 ΝΗ R (1) (式中’ R-CO-係碳數1〜5之直鏈或支鏈之脂肪酸所衍生的 醯基' 或取代或無取代苯甲醯基,-nh-chx-co2·係天冬 胺酸' 谷胺酸等之酸性胺基酸離子、或甘胺酸、丙胺酸、 苯基丙胺酸等之中性胺基酸離子。) 上述中’陽離子較佳爲銨系陽離子、錢系陽離子,更 佳爲咪唑錙離子、鍈離子。咪唑鑰離子更詳細有丨_乙基-3 _ -13- 201208169 甲基咪唑鑰離子、1-丁基-3-甲基咪唑鑰離子、1-丙基- 3- 甲基咪唑鑰離子等。 陰離子較佳爲酚系陰離子、一般式(1)表示之N-醯 基胺基酸離子或羧酸系陰離子,更佳爲N-醯基胺基酸離子 或羧酸系陰離子。 酚系陰離子之具體例有2,6-二-tert-丁基酚離子。又, 羧酸系陰離子之具體例有乙酸離子、癸酸離子、2-吡咯烷 酮-5-羧酸離子、甲酸離子、α-硫辛酸離子、乳酸離子、酒 石酸離子、馬尿酸離子、Ν-甲基馬尿酸離子等,其中更佳 爲乙酸離子、2-吡咯烷酮-5-羧酸離子、甲酸離子、乳酸離 子、酒石酸離子、馬尿酸離子、Ν-甲基馬尿酸離子。此外 ,一般式(1)表示之Ν-醯基胺基酸離子之具體例有Ν-苯 甲醯基丙胺酸離子、Ν-乙醯基苯基丙胺酸離子、天冬胺酸 離子、甘胺酸離子、Ν-乙醯基甘胺酸離子等,其中較佳爲 Ν-苯甲醯基丙胺酸離子、Ν-乙醯基苯基丙胺酸離子、Ν-乙 醯基甘胺酸離子,更佳爲Ν-乙醯基甘胺酸離子。 具體的離子液體較佳爲1-丁基-3-甲基咪唑鑰乳酸鹽、 四丁基鱗-2-吡咯烷酮-5-羧酸鹽、四丁基鱗乙酸鹽、四丁 基鱗癸酸鹽、四丁基鱗三氟乙酸鹽、四丁基鐵α-硫辛酸鹽 、甲酸四丁基鱗鹽、四丁基鱗乳酸鹽、酒石酸雙(四丁基 鱗)鹽、馬尿酸四丁基鱗鹽、Ν-甲基馬尿酸四丁基鳞鹽、 苯甲醯基-DL-丙胺酸四丁基鱗鹽、Ν-乙醯基苯基丙胺酸四 丁基鱗鹽、2,6-二-tert-丁基酚四丁基鱗鹽、L-天冬胺酸單 四丁基鐃鹽、谷胺酸四丁基鱗鹽、N-乙醯基谷胺酸四丁基 -14- 201208169 鱗鹽、1-乙基-3-甲基咪唑鑰乳酸鹽、1-乙基-3_甲基咪唑 鑰乙酸鹽、甲酸1-乙基-3 -甲基咪唑鑰鹽、馬尿酸i-乙基-3-甲基咪唑鑰鹽、N-甲基馬尿酸1-乙基-3-甲基咪唑鎰鹽、 酒石酸雙(1-乙基-3 -甲基咪唑鑰)鹽、N -乙醯基谷胺酸1-乙基-3 -甲基咪唑鐵鹽,更佳爲N -乙醯基谷胺酸四丁基鐃 鹽、1-乙基-3-甲基咪唑鑰乙酸鹽、甲酸1-乙基-3-甲基咪 唑鑰鹽、馬尿酸1 -乙基-3 -甲基咪唑鑰鹽、N -甲基馬尿酸1 -乙基-3-甲基咪唑鎗鹽。 上述離子液體之合成法例如有使由烷基咪唑鑰、烷基 吡啶鑰、烷基銨及烷基锍離子等之陽離子部位與含有鹵素 之陰離子部位所構成之前驅物,與NaBF4、NaPF6、 CF3S03Na或LiN(S02CF3)2等反應的陰離子交換法、胺系物 質與酸酯反應,導入烷基,且使有機酸殘基成爲對陰離子 之酸酯法、及胺類以有機酸中和得到鹽的中和法等,但是 不限定於此等。陰離子與陽離子,藉由溶劑之中和法係使 用等量之陰離子與陽離子,將所得之反應液中之溶劑餾除 ,也可直接使用,或再以有機溶劑(甲醇、甲苯、乙酸乙 酯、丙酮等)進行液體濃縮。 硬化劑係相對於樹脂組成物中之不揮發分1 〇〇重量% ’ 較佳爲使用〇.1~50重量%之範圍,更佳爲〇.5~25重量%之範 圍,更佳爲1〜15重量%之範圍,更佳爲1.5〜10重量%之範 圍。少於此範圍時,有時無法得到充分的硬化性,而多於 50重量%時,不僅損及樹脂組成物之保存安定性,且有時 硬化物之耐透濕性、耐熱性會降低。使用離子液體時’從 -15- 201208169 樹脂組成物之硬化物之耐透濕性等的觀點,相對於環氧樹 脂之不揮發分100重量%,較佳爲0.1〜1〇重量%,更佳爲 0.5~8重量%,更佳爲1〜6重量%,更佳爲1.5~5重量%。 本發明中之構成吸濕樹脂組成物層之樹脂組成物中, 爲了調整硬化溫度、硬化時間等,可再含有硬化促進劑。 硬化促進劑例如有四甲基銨溴化物、四丁基銨溴化物等之 4級銨鹽、四苯基鳞溴化物、四丁基鱗溴化物等之4級銃鹽 、DBU ( 1,8 -二氮雜雙環(5.4.0)十一烯-7) 、DBN ( 1,5-二氮雜雙環(4.3.0)壬烯-5) 、DBU-酚鹽、DBU-辛 酸鹽、DBU-p-甲苯磺酸鹽、DBU-甲酸鹽、DBU-酚醛清漆 樹脂鹽等之二氮雜雙環化合物、1-苄基-2-甲基咪唑、1-苄 基-2-苯基咪唑、2-乙基-4-甲基咪唑等之咪唑化合物、三 (二甲基胺基甲基)酚、苄基二甲基胺等之3級胺、芳香 族二甲基脲、脂肪族二甲基脲、芳香族二甲基脲等之二甲 基脲化合物等。 使用硬化促進劑時的含量係相對於環氧樹脂的總量爲 0.01 ~7重量%的範圍。 (吸濕性金屬氧化物) 本發明所謂的「吸濕性金屬氧化物」係指具有吸收水 分的能力,與吸濕的水分進行化學反應,成爲氫氧化物的 金屬氧化物,只要可達成本發明之目的時,無特別限定, 具體而言,例如有選自氧化鈣、氧化鎂、氧化緦、氧化鋁 及氧化鋇之1種、或由此等選出之2種以上之金屬氧化物的 -16- 201208169 混合物或固溶物。2種以上之金屬氧化物的混合物或固溶 物之例’具體而言’例如有燒成白雲石(含有氧化鈣及氧 化鎂之混合物)、燒成水滑石(氧化鈣與氧化鋁之固溶物 )等。這種吸濕性金屬氧化物在各種技術領域中,作爲吸 濕材係公知’可使用市售品。具體而言,例如有燒成白雲 石(吉澤石灰公司製「KT」等)、氧化鈣(三共製粉公司 製「moistop#10」等)、氧化鎂(協和化學工業公司製「 KYOWAMAG MF-1 5 0」、「Κ Υ Ο W A M A G M F - 3 0」、tateho 化學工業公司製「PUREMAG FNMG」等)、輕燒氧化鎂 (tateho化學工業公司製 「#500」、「#1〇〇〇」、「 #5000」等)等。 吸濕性金屬氧化物之平均粒徑無特別限定,較佳爲 ΙΟμηι以下’更佳爲5μηι以下’更佳爲Ιμηι以下。使用這種 微小尺寸者,不僅對於吸濕樹脂組成物之硬化層可賦予高 度的耐透濕性,且可提高接著力。吸濕性金屬氧化物之平 均粒徑太小時,粒子彼此凝集,薄片加工有困難的傾向等 ,因此吸濕性金屬氧化物之平均粒徑較佳爲0.0 1 μηι以上, 更佳爲〇. 1 μΐΏ以上。 吸濕性金屬氧化物之市售品的平均粒徑爲1 ΟμίΏ以下時 ,可直接使用,但是市售品之平均粒徑超過1 Ομηι時,進行 粉碎、分級等調製平均粒徑1 〇μπι以下之粒狀物後,使用較 佳。 在此所謂「平均粒徑」係將測定對象(粒狀物)之粒 度分布以體積基準作成時之該粒度分布的等量徑。體積基 -17- 201208169 準之粒度分布可依據米(Mie )散亂理論藉由雷射繞射、 散射法進行測定,雷射繞射式粒度分布測定裝置,具體而 言可使用堀場製作所公司製LA-5 00。測定試料係使用將吸 濕性金屬氧化物藉由超音波分散於水中者較佳。 吸濕性金屬氧化物可使用以表面處理劑進行表面處理 者。使用這種表面處理吸濕性金屬氧化物,可提高構成吸 濕樹脂組成物層之樹脂組成物的保存安定性,在硬化前的 階段,可防止樹脂中之水分與吸濕性金屬氧化物進行反應 〇 表面處理所使用的表面處理劑,具體而言可使用高級 脂肪酸、烷基矽烷類、矽烷偶合劑等,其中較佳爲高級脂 肪酸或烷基矽烷類。 高級脂肪酸具體而言,較佳爲硬脂酸、二十八烷酸、 十四烷酸、十六烷酸等之碳數18以上之高級脂肪酸,其中 更佳爲硬脂酸。此等可使用1種或組合2種以上使用。 烷基矽烷類例如有甲基三甲氧基矽烷、乙基三甲氧基 矽烷、己基三甲氧基矽烷、辛基三甲氧基矽烷、癸基三甲 氧基矽烷 '十八烷基三甲氧基矽烷、二甲基二甲氧基矽烷 、辛基三乙氧基矽烷、十八烷基二甲基(3-(三甲氧基 甲矽烷基)丙基)銨氯化物等。此等可使用1種或組合2種 以上使用。 矽烷偶合劑具體而言例如有3 -縮水甘油基氧基丙基三 甲氧基矽烷、3 -縮水甘油基氧基丙基三乙氧基矽烷、3 -縮 水甘油基氧基丙基(二甲氧基)甲基矽烷及2-(3,4-環氧 -18- 201208169 環己基)乙基三甲氧基矽烷等之環氧系矽烷偶合劑:3 -氫 硫基丙基三甲氧基矽烷、3 -氫硫基丙基三乙氧基矽烷、3. 氫硫基丙基甲基二甲氧基矽烷及11-氤硫基十一烷基三甲 氧基矽烷等之氫硫基系矽烷偶合劑;3 -胺基丙基三甲氧基 矽烷、3 -胺基丙基三乙氧基矽烷、3 -胺基丙基二甲氧基甲 三甲氧基矽烷、N -甲基胺基 基乙基)-3-胺基丙基三甲氧 -胺基丙基二甲氧基甲基矽烷 基丙基三乙氧基矽烷等之脲 氧基矽烷、乙烯基三乙氧基 烷等之乙烯基系矽烷偶合劑 之苯乙烯基系矽烷偶合劑; 及3-甲基丙烯氧基丙基三甲 偶合劑;3 -異氰酸酯丙基三 烷偶合劑、雙(三乙氧基甲 三乙氧基甲矽烷基丙基)四 劑;苯基三甲氧基矽烷、甲 烷、咪唑矽烷、三嗪矽烷等 上使用。 處理之吸濕性金屬氧化物使 時添加表面處理劑進行噴霧 用公知的混合機,具體而言 、1型混合機等之混合機、 等之混合機、球磨機、切割 基矽烷、N -苯基-3-胺基丙基 丙基三甲氧基矽烷、N-( 2-胺 基矽烷及N- ( 2_胺基乙基)_3 等之胺基系矽烷偶合劑;3 -脲 基系矽烷偶合劑、乙烯基三甲 矽烷及乙烯基甲基二乙氧基矽 ;P-苯乙烯基三甲氧基矽烷等 3-丙烯氧基丙基三甲氧基矽烷 氧基矽烷等之丙烯酸酯系矽烷 甲氧基矽烷等之異氰酸酯系矽 矽烷基丙基)二硫化物、雙( 硫化物等之硫化物系矽烷偶合 基丙烯醯氧基丙基三甲氧基矽 。此等可使用1種或組合2種以 表面處理具體而言係將未 用混合機以常溫攪拌分散,同 ’攪拌5〜60分鐘。混合機可使 例如有V混合機、帶式混合機 Henshell混合機及水泥混合機 -19- 201208169 磨機等。又,以球磨機等粉碎吸濕材時,可混合前述高級 脂肪酸、烷基矽烷類或矽烷偶合劑,進行表面處理的方法 。表面處理劑之處理量係因吸濕性金屬氧化物之種類或表 面處理劑之種類等而異,相對於吸濕性金屬氧化物,較佳 爲1~1 0重量%。 樹脂組成物中之吸濕性金屬氧化物之含量的上限係當 吸濕性金屬氧化物之含量太多時,從樹脂組成物之黏度上 昇,硬化物之強度降低,變脆的觀點,相對於樹脂組成物 中之不揮發分100重量%,較佳爲40重量%以下,更佳爲35 重量%以下,更佳爲30重量%以下,更佳爲25重量%以下, 特佳爲20重量%以下。而吸濕性金屬氧化物之含量的下限 ,從可充分得到含有吸濕性金屬氧化物所產生的效果的觀 點,相對於樹脂組成物中之不揮發分1 0 0重量%,較佳爲1 重量%以上,更佳爲5重量%以上,更佳爲10重量%以上。 (無機塡充材) 構成吸濕樹脂組成物層之樹脂組成物中,可再含有無 機塡充材(但是不含吸濕性金屬氧化物)。含有該無機塡 充材,可提高樹脂組成物之硬化物的耐透濕性,且防止薄 膜製作時之組成物的小凹陷,可提高與支持體或封閉材料 的接著力。無機塡充材具體而言例如有二氧化矽、硫酸鋇 、氫氧化鋁、氫氧化鎂、碳酸鈣、碳酸鎂、氮化硼、硼酸 鋁、鈦酸鋇、鈦酸緦 '鈦酸鈣、鈦酸鎂、鈦酸鉍、氧化鈦 、锆酸鋇、錯酸鈣、滑石、黏土、雲母、勃母石、沸石、 -20- 201208169 磷灰石、高嶺土、模來石、尖晶石、橄欖石、絹雲母 潤土等。無機塡充材可使用1種或組合2種以上使用。 中’從層合時無機塡充材不易移往他層的觀點,較佳 石、黏土、雲母、勃母石等之粒子形態爲平板狀的塡 ’此外使用此等粒子形態爲平板狀的塡充材,可更提 吸濕樹脂組成物層硬化所得之硬化層的耐透濕性。 無機塡充材之平均粒徑的上限從提高分散性或防 械強度降低的觀點或層合時,無機塡充材不易移至他 觀點,較佳爲Ιμηι以下,更佳爲0.8μιη以下,更佳爲0 以下。無機塡充材之平均粒徑的下限,從防止因凝集 之分散性降低或防止樹脂組成物之黏度上昇造成使用 低的觀點,較佳爲0_01μπι以上,更佳爲Ο.ίμιη以上, 爲〇 . 3 μηι以上。其中平均粒徑係指與前述吸濕性金屬 物中之平均粒徑相同意義。 樹脂組成物中之無機塡充材之含量的上限,從當 塡充材之含量過多時,樹脂組成物之黏度上昇,硬化 強度降低、變脆的觀點,相對於樹脂組成物中之不揮 100重量%,較佳爲50重量%以下,更佳爲40重量%以 更佳爲3 5重量%以下,更佳爲3 0重量%以下。而無機 材之含量的下限,從充分得到無機塡充材之效果的觀 相對於樹脂組成物中之不揮發分1 00重量%,較佳爲1 %以上,更佳爲5重量%以上,更佳爲10重量%以上。 (橡膠粒子) 、澎 此等 爲滑 充材 尚使 止機 層的 • 6 μηι 造成 性降 更佳 氧化 無機 物之 發分 下, 塡充 點, 重量 -21 - 201208169 構成吸濕樹脂組成物層之樹脂組成物中可再含有橡膠 粒子,藉由含有橡膠粒子可提高樹脂組成物之硬化物的機 械強度及應力緩和等。該橡膠粒子係不溶解於調製樹脂組 成物之清漆(varnish)時的有機溶劑,也與環氧樹脂等之 樹脂組成物中的成分不相溶,在樹脂組成物之清漆中,以 分散狀態存在者較佳。 這種橡膠粒子一般而言,將橡膠成分之分子量提高至 不溶解於有機溶劑或樹脂的程度,以粒子狀調製而得,具 體而言,例如有芯殼型橡膠粒子、交聯丙烯腈丁二烯橡膠 粒子、交聯苯乙烯丁二烯橡膠粒子、丙烯酸橡膠粒子等。 芯殻型橡膠粒子係粒子具有芯層及殼層之橡膠粒子,具體 例有外層之殻層爲玻璃狀聚合物、內層之芯層爲橡膠狀聚 合物所構成之二層構造,或外層之殼層爲玻璃狀聚合物、 中間層爲橡膠狀聚合物、芯層爲玻璃狀聚合物所構成之三 層構造者等。玻璃層具體而言係以甲基丙烯酸甲酯之聚合 物等所構成,橡膠狀聚合物層具體而言係以丁基丙烯酸酯 聚合物(丙烯酸丁酯橡膠)等所構成。此等橡膠粒子之一 次粒子之平均粒徑的上限係藉由維持應力緩和的效果或防 止樹脂組成物封閉有機EL元件時對元件之傷害的觀點,較 佳爲2μπι以下。此外,橡膠粒子之一次粒子的平均粒徑的 下限係從防止與樹脂混合時之黏度上昇,造成使用性惡化 的觀點,較佳爲〇.〇5 μηι以上。芯殻型橡膠粒子之具體例有 Staphyloid AC3 8 3 2、AC3816N ( GANZ 化成公司製)、 metablen KW-4426 (三菱縲縈公司製)、F351 (日本 -22- 201208169 ΖΕΟΝ公司製)等。丙烯腈丁二烯橡膠(NBR )粒 體例有XER-91 ( JSR公司製)等。苯乙烯丁二烯 SBR)粒子之具體例有XSK-500 (JSR公司製)等。 橡膠粒子之具體例有metablen W300A、W450A (三 公司製)。 橡膠粒子之平均粒徑可使用動態光散射法測定 而言,藉由超音波等將橡膠粒子均勻分散於適當的 劑中,使用FPRA- 1 000 (大塚電子公司製),以重 製作橡膠粒子之粒度分布,該等量徑作爲平均粒徑 〇 橡膠粒子之含量上限,從防止吸濕樹脂組成物 熱性及耐透濕性降低的觀點,相對於吸濕樹脂組成 之不揮發分1 〇 〇重量%,較佳爲2 0重量%以下,更佳 量%以下。橡膠粒子之含量下限,從充分得到調配 子之效果的觀點,相對於吸濕樹脂組成物層中之不 1 0 0重量%,較佳爲0.1重量%以上。 將橡膠粒子以一次粒子的狀態分散於環氧樹脂 粒子分散環氧樹脂有市售品,環氧樹脂使用橡膠粒 環氧樹脂,在樹脂組成物中可含有橡膠粒子。這種 子分散環氧樹脂,具體而言例如有日本觸媒公司 BPA3 2 8」(橡膠粒子:丙烯酸系芯殼型樹脂、橡 之平均粒徑:〇·3μηι、橡膠粒子含量:17重量%、環 :環氧當量185之雙酚Α型環氧樹脂)、kaneka公司 MX120」(橡膠粒子:SBR系樹脂、橡膠粒子之平 子之具 橡膠( 丙烯酸 菱縲縈 。具體 有機溶 量基準 來測定 層之耐 物層中 爲10重 橡膠粒 揮發分 的橡膠 子分散 橡膠粒 製之^ 膠粒子 氧樹脂 製之^ 均粒徑 -23- 201208169 :0.1 μηι、橡膠粒子含量:25重量%、環氧樹脂:環 185之雙酚A型環氧樹脂)等。 (熱可塑性樹脂) 構成吸濕樹脂組成物層之樹脂組成物中可再含 塑性樹脂。藉由含有熱可塑性樹脂,對樹脂脂組成 化物可賦予可撓性,可賦予塗佈樹脂組成物時之良 工性。該熱可塑性樹脂具體而言例如有苯氧基樹脂 烯基縮醛樹脂、聚醯亞胺樹脂、聚醯胺醯亞胺樹脂 楓樹脂、聚颯樹脂等。此等熱可塑性樹脂可使用1 合2種以上使用。熱可塑性樹脂從可撓性賦予、防 時之凹陷的觀點,重量平均分子量較佳爲1 0,000以 佳爲30,000以上。但是重量平均分子量太大時,與 脂之相溶性有降低等的傾向,因此重量平均分子量 1,000,000以下,更佳爲800,000以下。 所謂的「熱可塑性樹脂之重量平均分子量」係 膠滲透色譜(GPC )法(聚苯乙烯換算)所測定。 之重量平均分子量,具體而言,測定裝置使用島津 公司製LC-9A/RID-6A,管柱使用昭和電工公司製 K-800P/K-804L/K-804L,移動相使用氯仿等,以管 4 0°C測定,使用標準聚苯乙烯之檢量線計算得到。 熱可塑性樹脂在上述例示物中,特佳爲苯氧基 苯氧基樹脂與「環氧樹脂」之相溶性佳,且對樹脂 之硬化物的接著性、耐濕性的影響較少,故較佳。 氧當量 有熱可 物之硬 好的加 、聚乙 、聚醚 種或混 止塗佈 上,更 環氧樹 較佳爲 藉由凝 GPC法 製作所 S h 〇 d e X 柱溫度 樹脂。 組成物 -24- 201208169 苯氧基樹脂例如具有選自雙酚A骨架、雙酚F骨架、雙 酚S骨架、雙酚苯乙酮骨架 '酚醛骨架 '聯苯骨架、莽骨 架、二環戊二烯骨架' 降莰烯(norbornene)骨架、萘骨 架、蒽骨架、金剛烷骨架、萜烯骨架、三甲基環己烷骨架 之1種以上的骨架者。苯氧基樹脂可混合2種以上使用。 苯氧基樹脂之市售品,具體而言較佳爲Japan Epoxy Resins公司製1256、4250 (含有雙酚A骨架之苯氧基樹脂 )、Japan Epoxy Resins公司製YX8100 (含有雙酚S骨架之 苯氧基樹脂)'Japan Epoxy Resins公司製YX6954 (含有 雙酚苯乙酮骨架之苯氧基樹脂)、Union Carbide公司製 PKHH (重量平均分子量(Mw)42600、數平均分子量 (Mn)11200)等,此外有東都化成公司製FX280、FX293、 Japan Epoxy Resins 公司製 YL75 5 3 BH30 、 YL6794 、 YL7213、YL7290、YL7482 等。 熱可塑性樹脂之含量上限,從防止硬化物之耐透濕性 降低的觀點,相對於吸濕樹脂組成物層中之不揮發分1 00 重量%,較佳爲5 0重量%以下,更佳爲2 5重量%以下。此外 ,熱可塑性樹脂之含量下限,從得到因含有熱可塑性樹脂 之充分的效果的觀點,相對於吸濕樹脂組成物層中之不揮 發分100重量%,較佳爲1重量%以上,更佳爲3重量%以上 ,更佳爲5重量%以上,更佳爲1 0重量%以上。 (偶合劑) 本發明所使用的吸濕樹脂組成物層中,再含有偶合劑 -25- 201208169 可提高與其硬化物之被黏體(支持體、保護樹脂組成物層 、封閉材料等)的密著性或硬化物之耐透濕性。該偶合劑 具體而言’例如有鈦系偶合劑、鋁系偶合劑、矽烷偶合劑 等。其中較佳爲矽烷偶合劑。此等可使用1種或組合2種以 上使用。 矽烷偶合劑具體而言例如有3 -縮水甘油基氧基丙基三 甲氧基矽烷、3-縮水甘油基氧基丙基三乙氧基矽烷、3-縮 水甘油基氧基丙基(二甲氧基)甲基矽烷及2- (3,4 -環氧 環己基)乙基三甲氧基矽烷等之環氧系矽烷偶合劑;3 -氫 硫基丙基三甲氧基矽烷、3 -氫硫基丙基三乙氧基矽烷、3-氫硫基丙基甲基二甲氧基矽烷及11-氫硫基十一烷基三甲 氧基砂院等之氫硫基系砂院偶合劑;3 -胺基丙基三甲氧基 矽烷、3 -胺基丙基三乙氧基矽烷、3 -胺基丙基二甲氧基甲 基矽烷、N-苯基-3-胺基丙基三甲氧基矽烷、N -甲基胺基 丙基三甲氧基矽烷、N- (2-胺基乙基)-3-胺基丙基三甲氧 基矽烷及N-(2-胺基乙基)-3-胺基丙基二甲氧基甲基矽烷 等之胺基系矽烷偶合劑;3-脲基丙基三乙氧基矽烷等之脲 基系矽烷偶合劑、乙烯基三甲氧基矽烷、乙烯基三乙氧基 矽烷及乙烯基甲基二乙氧基矽烷等之乙烯基系矽烷偶合劑 ;P-苯乙烯基三甲氧基矽烷等之苯乙烯基系矽烷偶合劑; 3-丙烯氧基丙基三甲氧基矽烷及3-甲基丙烯氧基丙基三甲 氧基矽烷等之丙烯酸酯系矽烷偶合劑;3-異氰酸酯丙基三 甲氧基矽烷等之異氰酸酯系矽烷偶合劑、雙(三乙氧基甲 矽烷基丙基)二硫化物、雙(三乙氧基甲矽烷基丙基)四 -26- 201208169 硫化物等之硫化物系矽烷偶合劑;苯基三甲氧基矽烷、甲 基丙烯醯氧基丙基三甲氧基矽烷、咪唑矽烷、三嗪矽烷等 。此等中,特佳爲環氧系矽烷偶合劑。 偶合劑之含量上限,從得到藉由偶合劑添加之密著性 改善效果的觀點,相對於吸濕樹脂組成物層中之不揮發分 100重量%,較佳爲10重量%以下,更佳爲5重量%以下。而 偶合劑之含量下限,從得到藉由偶合劑添加之密著性改善 效果的觀點,相對於吸濕樹脂組成物層中之不揮發分1 00 重量%,較佳爲0.5重量%以上。 本發明所使用之吸濕樹脂組成物層中,在發揮本發明 之效果的範圍內,可任意含有上述成分以外的各種添加劑 。這種添加劑具體例有聚矽氧粉末、尼龍粉末、氟粉末等 之有機塡充劑、歐本(olben)、本通(benton)等之增黏 劑、聚矽氧系、氟系、高分子系之消泡劑或平坦劑、三唑 化合物、噻唑化合物、三嗪化合物、卟啉化合物等之密著 性賦予劑等。 本發明所使用之吸濕樹脂組成物層的厚度,無特別限 定’將支持體層合於樹脂組成物層上的構造中,水分之浸 入僅由樹脂組成物層側面,因此降低吸濕樹脂組成物層的 厚度’以減少與外氣之接觸面積,遮斷水分的觀點,厚度 的上限較佳爲200μιη以下,更佳爲150μιη以下,更佳爲 1 ΟΟμιη以下。從確保得到充分的吸濕效果用之吸濕材濃度 的觀點’厚度的下限較佳爲3μιη以上,更佳爲5μηι以上, 更佳爲1 0 μ m以上。 -27- 201208169 〔保護樹脂組成物層〕 本發明之薄膜所使用的保護樹脂組成物層係藉由含有 熱硬化性樹脂、硬化劑之熱硬化性的樹脂組成物所構成, 在目的之裝置(有機EL裝置等)的封閉構造中,以直接被 覆元件(有機EL元件等),具有防止吸濕樹脂組成物層中 之吸濕性金屬氧化物接觸元件,損傷元件的功用。 (熱硬化性樹脂及硬化劑) 熱硬化性樹脂及硬化劑係使用與前述吸濕樹脂組成物 層所使用之熱硬化性樹脂及硬化劑相同者。保護樹脂組成 物層所使用之熱硬化性樹脂及硬化劑也可與吸濕樹脂組成 物層所使用之熱硬化性樹脂及硬化劑彼此不同者,從抑制 因兩層間之密著性、硬化收縮或硬化速度之不同所產生之 硬化後之兩層間的界面應力等的觀點,保護樹脂組成物層 所使用的熱硬化性樹脂及硬化劑與吸濕樹脂組成物層所使 用之熱硬化性樹脂及硬化劑相同者較佳。 (吸濕性金屬氧化物) 本發明所使用之保護樹脂組成物層中,在不影響有機 EL元件之損傷防止功能的範圍內,可再含有吸濕性金屬氧 化物。藉由含有吸濕性金屬氧化物可提高耐透濕性。 保護樹脂組成物層含有吸濕性金屬氧化物時,吸濕性 金屬氧化物之含量的上限,從有機EL元件之損傷防止的觀 -28- 201208169 點,相對於保護樹脂組成物層中之不揮發分1 〇〇重量%,較 佳爲5重量%以下。此外,吸濕性金屬氧化物之含量的下限 ,從得到提高耐透濕性之效果的觀點,相對於保護樹脂組 成物層中之不揮發分1 〇 〇重量%,較佳爲〇. 5重量%以上。 相對於保護樹脂組成物層中之不揮發分1 00重量%,即 使在5重量%以下之範圍內含有吸濕性金屬氧化物時,吸濕 性金屬氧化物之粒徑較大時,可能損傷有機EL元件,因此 ,吸濕性金屬氧化物之平均粒徑較佳爲未達1 μηι。又,即 使平均粒徑未達1 μπι,當粒度分布爲寬廣時,含有粗大粒 子,有可能損傷有機EL元件,因此平均粒徑更佳爲未達 Ιμιη,且不含有粒徑爲3μιη以上之粒子者。 此外,保護樹脂組成物層所含有之吸濕性金屬氧化物 ,可使用與前述吸濕樹脂組成物層所含有之吸濕性金屬氧 化物相同的金屬氧化物,也可與表面處理等相同的態樣來 實施。吸濕性金屬氧化物之市售品,只要是其平均粒徑未 達Ιμιη時,可直接使用,但是市售品之平均粒徑爲Ιμιη以 上時,進行粉碎、分級等,調製成平均粒徑未達1 μηι之粒 狀物來使用。此處的「平均粒徑」也與前述吸濕樹脂組成 物層所含有之吸濕性金屬氧化物之平均粒徑相同意義。 (無機塡充材) 本發明所使用的保護樹脂組成物層中再含有無機塡充 材(但是不含吸濕性金屬氧化物),可延遲層中及與EL元 件側之界面的透濕速度,可提高與基板之接著力。該無機 -29 * 201208169 塡充可使用與前述吸濕樹脂組成物層所使用之無機塡充材 相同者。從層合時,無機塡充材不易露出的觀點,較佳爲 滑石、黏土、雲母、勃母石等之粒子形態爲平板狀的塡充 材。使用無機塡充材時,無機塡充材之含量的上限,從樹 脂組成物之黏度上昇,硬化物之強度降低,變脆的觀點, 相對於樹脂組成物中之不揮發分100重量%,較佳爲15重量 %以下’更佳爲10重量%以下。而無機塡充材之含量的下 限,從可得到延遲樹脂組成物層與EL元件側之界面的透濕 速度的效果的觀點,相對於樹脂組成物中之不揮發分100 重量%,較佳爲1重量%以上,更佳爲3重量%以上。無機塡 充材與吸濕性金屬氧化物一同使用時,無機塡充材與吸濕 性金屬氧化物之合計量係相對於樹脂組成物中之不揮發分 100重量%,成爲15重量%以下的範圍內使用。 (橡膠粒子、熱可塑性樹脂、偶合劑等) 本發明所使用之保護樹脂組成物層中,再含有橡膠粒 子可提高其硬化物之機械強度及應力緩和等。此外,本發 明所使用之吸濕樹脂組成物層中,藉由再含有熱可塑性樹 脂,對其硬化物可賦予可撓性,可賦予塗佈樹脂組成物時 之良好的加工性。本發明所使用之吸濕樹脂組成物層中, 再含有偶合劑可提高與其硬化物之被黏物之密著性及硬化 物之耐透濕性。該橡膠粒子、熱可塑性樹脂及偶合劑等可 使用與前述吸濕樹脂組成物層所使用之橡膠粒子、熱可塑 性樹脂及偶合劑等相同者,偶合劑較佳爲矽烷偶合劑’熱 -30- 201208169 可塑性樹脂較佳爲苯氧基樹脂。此等在熱硬化性樹脂組成 物中的含量,基本上係與構成吸濕樹脂組成物層之熱硬化 性樹脂組成物中之橡膠粒子、熱可塑性樹脂、偶合劑相同 者。 本發明所使用之保護樹脂組成物層中,在發揮本發明 之效果的範圍內’可任意含有上述成分以外的各種添加劑 。種添加劑具體例有聚矽氧粉末、尼龍粉末、氟粉末等之 有機塡充劑、歐本(olben)、本通(benton)等之增黏劑 、聚矽氧系、氟系、高分子系之消泡劑或平坦劑、三唑化 合物、噻唑化合物、三嗪化合物、卟啉化合物等之密著性 賦予劑等。 本發明所使用之保護樹脂組成物層的厚度無特別限定 ’從透濕量之增大的觀點,厚度之上限較佳爲40 μπι以下, 更佳爲20μπι以下。此外,從充分具有有機EL元件之損傷 防止效果的厚度的觀點,厚度之下限較佳爲Ιμϊη以上。 〔保護薄膜〕 本發明之薄膜係實際使用於封閉構造形成之前爲止, 爲了防止於樹脂組成物層表面有污垢等之附著或傷痕,以 保護薄膜保護較佳,保護薄膜可使用前述剝離系支持體所 例示之塑膠薄膜。保護薄膜係預先施予脫模處理者較佳, 脫模劑具體而言,例如有氟系脫模劑、聚矽氧系脫模劑、 醇酸樹脂系脫模劑等。脫模劑可混合不同種類者使用。保 護薄膜之厚度無特別限定,較佳爲1〜ΙΟΟμηι,更佳爲 -31 - 201208169 10〜75μηι,更佳爲 Ι5~50μιη。 〔薄膜製造方法〕 本發明之薄膜無特別限定,可用於半導體、太陽能電 池、高亮度LED、LCD密封、有機EL等的各種裝置,特別 適用於有機EL元件封閉用,可適用於有機EL裝置。此外 ’本發明之薄膜輸送時,可附加保護薄膜輸送。換言之, 本發明之薄膜之構成包括以下6個態樣。 (1 )剝離系支持體+吸濕樹脂組成物層+保護樹脂組 成物層+保護薄膜 (2 )封閉系支持體+吸濕樹脂組成物層+保護樹脂組 成物層+保護薄膜 (3 )剝離系支持體+保護樹脂組成物層+吸濕樹脂組 成物層+保護薄膜 (4 )剝離系支持體+吸濕樹脂組成物層+保護樹脂組 成物層 (5 )封閉系支持體+吸濕樹脂組成物層+保護樹脂組 成物層 (6 )剝離系支持體+保護樹脂組成物層+吸濕樹脂組 成物層 上述係表不各層的層合順序。 本發明之薄膜之(1) 、(2)的構成,具體而言,分 別調製將構成吸濕樹脂組成物層之樹脂組成物經溶解的第 1清漆與將構成保護樹脂組成物層之樹脂組成物經溶解的 -32- 201208169 第2清漆,在剝離系支持體上或封閉系支持體上塗佈第1清 漆,使有機溶劑乾燥形成吸濕樹脂組成物層,其上塗佈第 2清漆,使有機溶劑乾燥形成保護樹脂組成物層,再使用 保護薄膜而得。此外,本發明之薄膜之(3)的構成係相 反地形成保護樹脂組成物層與吸濕樹脂組成物層而得。本 發明之薄膜之(4) 、 (5) 、 (6)的構成係表示在製作 (1) 、 (2) 、 (3)之構成的薄膜時,不使用保護薄膜 之情形的構成。 本發明之薄膜爲(1) 、 (3)的構成時,剝離系支持 體與保護薄膜的關係爲保護薄膜必須先剝離,而保護薄膜 比剝離系支持體更薄,或對保護薄膜施加脫模處理或壓紋 加工較佳。此外’剝離系支持體較佳爲聚對苯二甲酸乙二 醇酯(PET)薄膜,而保護薄膜較佳爲2軸延伸聚丙烯。 清漆使用之有機溶劑,具體例有丙酮、甲基乙基嗣( 以下簡稱爲「MEK」)、環己酮等之酮類、乙酸乙酯、乙 酸丁醋、賽路蘇乙酸酯、丙二醇單甲醒乙酸醋、卡必醇乙 酸酯等之乙酸酯類、賽路蘇、丁基卡必醇等之卡必醇類、 甲本、一甲本等之方香族煙類、二甲基甲醯胺、二甲基乙 醯胺、N -甲基耻略院酮等。此等可使用1種或組合2種以上 使用。 乾燥條件無特別限定,較佳爲5 0 ~ 1 〇 〇 、3〜1 5分鐘。 前述支持體上依吸濕樹脂組成物層與保護樹脂組成物 層的順序’或相反順序’依順預形成,製作本發明之薄膜 的方法’在吸濕樹脂組成物層與保護樹脂組成物層之境界 -33- 201208169 ,形成混合有兩層樹脂組成物的混合層,可能因保護樹脂 組成物層損及有機EL元件之損傷防止效果。因此,第1支 持體上使用第1清漆,製作形成有吸濕樹脂組成物層之第1 樹脂組成物薄片,另外與此不同,在第2支持體上使用第2 清漆,製作形成有保護樹脂組成物層之第2樹脂組成物薄 片,將第1樹脂組成物薄片之吸濕樹脂組成物層與第2樹脂 組成物薄片之保護樹脂組成物層進行層合,得到本發明之 薄膜的方法較佳。此外,此時,第1支持體及第2支持體中 任一成爲本發明之薄膜的支持體,另一成爲本發明之薄膜 的保護薄膜。 以此方法得到本發明之薄膜時,吸濕樹脂組成物層與 保護樹脂組成物層之層合溫度下,保護樹脂組成物層之熔 融黏度低於吸濕樹脂組成物層之熔融黏度較佳。換言之, 吸濕樹脂組成物層與保護樹脂組成物層之層合溫度下,構 成保護樹脂組成物層之樹脂組成物之熔融黏度比吸濕樹脂 組成物層之熔融黏度低,可避免吸濕樹脂組成物層所含有 之塡充材在層合時移動至保護樹脂組成物層,或通過保護 樹脂組成物層,而損傷EL元件。 所謂的「熔融黏度」係指使用ubm公司製之型式 Rheosol-G3 000,樹脂量爲lg,使用直徑18mm之平行板, 測定開始溫度60°C、昇溫速度5°C /分鐘、測定溫度 6(TC〜200。。、振動數lHz/deg下進行測定的値。 層合溫度無特別限定,配合所要求的性能可適當設定 ,需要比吸濕樹脂組成物層及保護樹脂組成物層之硬化溫 -34- 201208169 度更低,因此層合溫度之上限較佳爲1 3 0 °c以下,更佳爲 120°C以下,更佳爲110°C以下,更佳爲lOOt以下。此外, 層合溫度之下限,從常溫下之使用性良好的觀點,較佳爲 40°C以上,更佳爲45°C以上,更佳爲50°C以上,更佳爲 5 5 °C以上,特佳爲60 °C以上。在設定的層合溫度下,使吸 濕樹脂組成物層與保護樹脂組成物層不互相混合的觀點, 防止吸濕性金屬氧化物移至保護樹脂組成物層的觀點,吸 濕樹脂組成物層之熔融黏度與保護樹脂組成物層之熔融黏 度之差(吸濕樹脂組成物層之熔融黏度-保護樹脂組成物 層之熔融黏度)的下限較佳爲3 00poise以上,更佳爲 lOOOpoise以上,更佳爲5000poise以上,更佳爲l〇〇〇〇p〇ise 以上’特佳爲15000poise以上,最佳爲30000poise以上。 另外’在設定的層合溫度下,可有效的一次固定吸濕樹脂 組成物層及保護樹脂組成物層的觀點、有效率貼合吸濕樹 脂組成物層及保護樹脂組成物層的觀點,吸濕樹脂組成物 層之熔融黏度與保護樹脂組成物層之熔融黏度之差(吸濕 樹脂組成物層之熔融黏度-保護樹脂組成物層之熔融黏度 )的上限較佳爲1 000000poise以下,更佳爲5 00000poiSe以 下,更佳爲lOOOOOpoise以下。 保護樹脂組成物層及吸濕樹脂組成物層之熔融黏度的 調整方法,例如有藉由乾燥條件改變硬化度的方法、改變 液狀樹脂之調配比率的方法、改變無機塡充材之粒徑、含 有比率等的方法等,此等可組合2個以上來實施。因此, 藉由此等方法調整保護樹脂組成物層與吸濕樹脂組成物層 -35- 201208169 之黏度,可使保護樹脂組成物層之所定溫度的熔融黏度低 於吸濕樹脂組成物層之所定溫度的熔融黏度。 本發明之薄膜係適用於形成各種半導體元件(個別半 導體、光半導體、邏輯1C、類比1C、記億體等)的封閉構 造,其中特別適用於有機EL元件之封閉。 〔有機EL裝置製造方法〕 以下說明使用本發明之薄膜封閉有機EL元件,製造有 機EL裝置的方法。裝置之封閉構造中,配置保護樹脂組成 物層以被覆元件形成基板的元件,吸濕樹脂組成物層係配 置於與保護樹脂組成物層之元件形成基板側面相反側的面 上。本發明之薄膜之構成如前述,含有以下6個態樣。 (1 )剝離系支持體+吸濕樹脂組成物層+保護樹脂組 成物層+保護薄膜 (2 )封閉系支持體+吸濕樹脂組成物層+保護樹脂組 成物層+保護薄膜、 (3 )剝離系支持體+保護樹脂組成物層+吸濕樹脂組 成物層+保護薄膜、 (4 )剝離系支持體+吸濕樹脂組成物層+保護樹脂組 成物層 (5 )封閉系支持體+吸濕樹脂組成物層+保護樹脂組 成物層 (6 )剝離系支持體+保護樹脂組成物層+吸濕樹脂組 成物層 -36- 201208169 (a) 本發明之薄膜爲(1)之構成時,首先除去保護 薄膜,將保護樹脂組成物層層合於形成有有機EL元件之透 明基板上。然後,將剝離系支持體剝離,使封閉材料層合 於已露出之吸濕樹脂組成物層上,進行保護樹脂組成物層 及吸濕樹脂組成物層之熱硬化作業,可製造有機EL裝置。 (b) 本發明之薄膜爲(2)之構成時,首先除去保護 薄膜,將保護樹脂組成物層層合於形成有有機EL元件之透 明基板上,進行保護樹脂組成物層及吸濕樹脂組成物層之 熱硬化作業,可製造有機EL裝置。 (c) 本發明之薄膜爲(3)的構成時,首先除去保護 薄膜,將吸濕樹脂組成物層層合於封閉材料上。然後,將 剝離系支持體剝離,使已露出之保護樹脂組成物層層合於 形成有有機EL元件之透明基板上,進行保護樹脂組成物層 及吸濕樹脂組成物層之熱硬化作業,可製造有機EL裝置。 (d )本發明之薄膜爲(4 )的構成時,將保護樹脂組 成物層層合於形成有有機EL元件之透明基板上。然後,將 剝離系支持體剝離,使封閉材料層合於已露出之吸濕樹脂 組成物層上,進行保護樹脂組成物層及吸濕樹脂組成物層 之熱硬化作業,可製造有機EL裝置。 (e )本發明之薄膜爲(5 )的構成時,將保護樹脂組 成物層層合於形成有有機EL元件之透明基板上,此狀態下 進行保護樹脂組成物層及吸濕樹脂組成物層之熱硬化作業 ,可製造有機EL裝置。 (f )本發明之薄膜爲(6 )的構成時,將吸濕樹脂組 -37- 201208169 成物層層合於封閉材料上,然後,將剝離系支持體剝離, 使已露出之保護樹脂組成物層層合於形成有有機EL元件之 透明基板上,進行保護樹脂組成物層及吸濕樹脂組成物層 之熱硬化作業,可製造有機EL裝置。 對於有機EL元件,從不施加必要以上之熱經歷的觀點 ’以(b) 、( c) 、( e)或(f)的方法製作有機EL裝置 較佳。 (a) 、 ( c) 、 (d)及(f)的方法中所使用的封閉 材料係與本發明之薄膜不同,另外準備之形成封閉構造用 的材料,該封閉材料例如有具有防濕性之塑膠薄膜、銅箔 、鋁箔等之金屬箔、玻璃板、金屬板等。該封閉材料之厚 度的上限,從使有機EL裝置本身變輕、薄的觀點,較佳爲 5mm以下,更佳爲lmm以下,更佳爲ΐΟΟμηι以下。此外, 封閉材料之厚度下限,從防止水分透過的觀點、有機EL裝 置之剛性等的觀點,較佳爲5μπι以上,更佳爲ΙΟμιη以上, 更佳爲20μΐη以上。封閉材料可貼合2片或2片以上使用,此 時,貼合後的總厚度爲5μηι以上、5mm以下之範圍內較佳 〇 上述(a) ~(f)的方法中實施之層合的方法可爲分 批式或以輥之連續式。層合條件可在減壓下進行,可使用 真空層合機等進行層合較佳。10_3 ( 10hPa) MPa以下之減 壓下、溫度50〜130°C、壓力0.5〜10kgf/cm2的條件進行層合 較佳。真空層合機具體而言例如有名機製作所公司製之真 空加壓式層合機、nichigo-morton公司製之真空塗佈機等 -38- 201208169 保護樹脂組成物層及吸濕樹脂組成物層進行熱硬化的 方法無特別限定,可使用公知的方法。具體而言,例如有 熱風循環式烘箱、紅外線加熱器、加熱槍、高頻誘導加熱 裝置、加熱工具之壓黏的加熱等。本發明之薄膜係具有極 良好的低溫硬化性,硬化溫度之上限較佳爲1 40 °C以下, 更佳爲l2〇°C以下,更佳爲uo°c以下。此外,確保硬化物 之接著性的觀點,硬化溫度之下限較佳爲5(TC以上,更佳 爲5 5 t以上。而硬化時間之上限較佳爲1 20分以下,更佳 爲90分以下,更佳爲60分以下。從確實進行硬化物之硬化 的觀點,硬化時間之下限較佳爲20分以上,更佳爲30分以 上。藉此可使有機EL元件之熱劣化降至極低。 本發明之有機EL裝置中,有機EL元件形成於透明基 板上時,使透明基板側爲顯示器之顯示面或照明器具之發 光面時,封閉系支持體或封閉材料不一定要使用透明材料 ’可使用金屬板、金屬箔、不透明之塑膠薄膜或板等。 【實施方式】 [實施例] 以下舉實施例與比較例,更具體說明示本發明,但胃 本發明不限於以下的實施例者。 〔使用材料〕 以下說明實験所用的使用材料。 -39 - 201208169 (A )環氧樹脂 •固形環氧樹脂(DIC公司製「HP7200H」:二環戊 二烯型固形環氧樹脂、環氧當量(278g/eq )) •橡膠微粒子分散液狀環氧樹脂(日本觸媒公司製「 BPA3 28」:一次粒徑爲〇.3um之2層構造的丙烯酸樹脂粒 子在環氧當量185之雙酚A型環氧樹脂中含有17重量%所成 的組成物。環氧當量(23 0g/eq)) •液狀環氧樹脂(日本化藥公司製「GOT」:鄰甲苯 胺二縮水甘油基胺、環氧當量(135g/eq)) (B )苯氧基樹脂 •Japan Epoxy Resins 公司製「YL7213-35M」(重量 平均分子量3 5000 )之固形分35重量溶液 (C)硬化劑 •環氧樹脂用潜在性硬化促進劑(san-apro公司製「 U-CAT3502T」) •離子液體硬化劑(「TBP/N-Ac-gly」、N-乙醯基甘 胺酸四丁基鱗鹽) (D )吸濕性金屬氧化物 •燒成白雲石:吉澤石灰公司製「輕燒白雲石」進行 濕式粉碎者的MEK膠漿(固形分爲40重量%、平均粒徑: -40 - 201208169 0.8 7 μιη ) (Ε)無機塡充材 •滑石:日本滑石公司製「D_600」進行濕式粉碎之 MEK膠漿(固形分爲3〇重量%、平均粒徑:〇·72μιη ) (F )表面處理劑 •硬脂酸 (G )偶合劑 •矽烷偶合劑:信越化學公司製「ΚΒΜ-4〇3」(3-環 氧丙氧基丙基三甲氧基矽烷) 〔測定方法〕 其次說明測定方法。 〔支持體與樹脂組成物層間之接著力〕 準備2片銘范(寬5〇mm、長度50mm、厚度50μηι), 在第1片銘箔的單面上重疊基材上之樹脂組成物層(寬 4〇mm、長度5〇mm ) ’藉由真空層合機,以溫度80。(:、壓 力lkgf/cm2 ( 9·8χ 1 〇4Pa )的條件進行層合。將基材剝離, 在已露出的樹脂組成物層上重疊2片鋁箔,相同條件進行 層合’製作銘箔、樹脂組成物層、鋁箔之3層構造的試驗 片。將此試驗片以1 1 〇艺、3 〇分鐘的條件加熱硬化後,切 -41 - 201208169 成寬1 0mm、長度50mm之矩形的試驗片 之T型剝離試驗方法,測定試驗片之長 剝離力)。 〔評價方法〕 其次說明評價方法。 [耐透濕性之評價] 使有機E L裝置在6 0 °C / 9 0 % R Η恆溫環 評價薄膜之耐透濕性。薄膜之耐透濕性裔 光部所產生之發光面積之收縮(shrink ) )的狀態來判定,評價初期(0小時)與 度之相對變化率。換言之,產生收縮或詞 積會減少,增加發光部的亮度,對於無哉 亮度的相對變化率變大。此外,亮度係 1 5mA )測定2點,計算平均値。相對變化 價爲〇,相對變化率爲1. 1以上時,評價| [元件之耐損傷性之評價] 有機E L元件之損傷程度以驅動電壓 行評價。暗電流値爲未達〇·2μA時,評價 上時,評價爲X。 依據以下所示順序,調製下述表1所 硬化性樹脂組成物清漆A〜E。表1所示之名 ,依據 JIS K-6 8 54 【方向的接著力( 境下1 0 0 0小時, 由有機EL元件發 及 D S ( dark spot 1000小時後之亮 多D S時,發光面 :陷之初期狀態之 以定電流驅動( 率未達1 .1時,評 3 V之暗電流値進 爲〇,在〇.2μΑ以 :示之調配組成之 ^材料之調配量的 -42 - 201208169 數値係重量份。 (製造例1 ) 製作將固形環氧樹脂(Die公司製「HP7200H」)溶 解於苯氧基樹脂(Japan Epoxy Resins公司製「YL7213- 3 5M」之固形分35重量%之MEK溶液)的混合溶解物’在 該混合溶解物中添加橡膠微粒子分散液狀環氧樹脂(曰本 觸媒公司製「BPA328」)、液狀環氧樹脂(日本化藥公 司製「GOT」)、環氧樹脂用潛在性硬化促進劑(sail-apro公司製「U-CAT3 5 02T」)、矽烷偶合劑(信越化學 公司製「KBM-403」)、離子液體硬化劑(N-乙醯基甘胺 酸四丁基錢鹽)及MEK,使用高速旋轉混合機均勻分散, 得到清漆A。 (製造例2 ) 製作將固形環氧樹脂(DIC公司製「HP7200H」)溶 解於苯氧基樹脂(Japan Epoxy Resins公司製「YL7213-3 5M」之固形分35重量%之MEK溶液)的混合物A。此外, 在燒成白雲石(吉澤石灰公司製進行濕式粉碎者)之MEK 膠漿(固形分爲40重量% )中添加硬脂酸進行分散製作混 合物B。調配混合物A、混合物B、滑石(日本滑石公司製 「D-600」進行濕式粉碎者、固形分30重量%2MEK膠漿) 、橡膠微粒子分散液狀環氧樹脂(日本觸媒公司製「 BPA3 28」)、環氧樹脂用潛在性硬化促進劑(san-apro公 •43- 201208169 司製「U-CAT3502T」)、液狀環氧樹脂(日本化藥公司 製「GOT」)、矽烷偶合劑(信越化學公司製「KBM-403 」),使用超高速真空乳化機型混合攪拌機(PRIMIX公 司製)進行混合。其中添加離子液體硬化劑(N-乙醯基甘 胺酸四丁基鳞鹽)使用高速旋轉混合機均勻分散,得到清 漆B。 (製造例3 ) 除了添加將滑石(日本滑石公司製「D-600」進行濕 式粉碎者,固形分30重量%之MEK膠漿)外,與製造例1之 清漆A同樣的方法,依據下述表1的調配表調製清漆C。 (製造例4 ) 藉由與製造例2之清漆B同樣的方法,依據下述表1的 調配表調製清漆D。 (製造例5 ) 藉由與製造例2之清漆B同樣的方法,依據下述表1的 調配表調製清漆E。 (試驗例1〜3 ) 對於藉由清漆B、D、E製作之各自的樹脂組成物層, 測定與支持體之接著力。結果如表2所示。 由表2的結果可知本發明之薄膜的樹脂組成物層中調 -44- 201208169 配滑石,可大幅提高樹脂組成物層對支持體之接著力。 (試驗例4〜6 ) 使用模塗佈機將清漆A均勻塗佈於以醇酸系脫模劑處 理後之PET薄膜(厚度38μπι )的脫模處理面上,使乾燥後 之樹脂組成物層之厚度成爲10 μηι,然後以60〜95 °C乾燥I2 分鐘,得到保護樹脂組成物層A 1。保護樹脂組成物層A 1 之l〇〇°C的熔融黏度爲6170poise。 使用模塗佈機將清漆A均勻塗佈於以醇酸系脫模劑處 理後之PET薄膜(厚度38μη!)的脫模處理面上,使乾燥後 之樹脂組成物層之厚度成爲1 Ομηι,然後以60~80°C乾燥6分 鐘,得到保護樹脂組成物層A2。保護樹脂組成物層A2之 100°C的溶融黏度爲1030poise。 使用模塗佈機將清漆B均勻塗佈於以醇酸系脫模劑處 理後之PET薄膜(厚度38μηι )的脫模處理面上,使乾燥後 之樹脂組成物層之厚度成爲30μπι,然後以60~95°C乾燥12 分鐘,得到吸濕樹脂組成物層B 1。吸濕樹脂組成物層B 1之 100°C的熔融黏度爲23700poise。 使用模塗佈機將清漆B均勻塗佈於以醇酸系脫模劑處 理後之PET薄膜(厚度38μηι )的脫模處理面上,使乾燥後 之樹脂組成物層之厚度成爲30μηι,然後以60〜8(TC乾燥6分 鐘’得到吸濕樹脂組成物層B2。吸濕樹脂組成物層B2之 100°C的熔融黏度爲4460poise。 以表3所示之組合,將附PET薄膜之保護樹脂組成物層 -45- 201208169 與附PET薄膜之吸濕樹脂組成物層,以保護樹脂組成物層 與吸濕樹脂組成物層相對向,藉由真空層合機,以溫度 l〇〇°C、壓力lKg/cm2 ( 9.8xl04Pa)之條件進行層合,製作 具有支持體與保護樹脂組成物層與吸濕樹脂組成物層的薄 膜(試驗例4〜6 )。其後,以SEM (掃描型電子顯微鏡) 觀察(倍率2000倍)製作後之各薄膜之斷面的保護樹脂組 成物層與吸濕樹脂組成物層之境界附近。圖2係試驗例4之 薄膜斷面之SEM相片,圖3係試驗例5之薄膜斷面的SEM相 片,圖4係試驗例6之薄膜斷面的SEM相片。 薄膜中之吸濕樹脂組成物層與保護樹脂組成物層之熔 融黏度之差(吸濕樹脂組成物層之熔融黏度-保護樹脂組 成物層之熔融黏度)係試驗例4之薄膜爲17530poise、試驗 例5之薄膜爲3 43 0poise、試驗例6之薄膜爲-1710P〇iSe。試 驗例4之薄膜(圖2 )中,吸濕樹脂組成物層(上層)與保 護樹脂組成物層(下層)之界面成爲略水平,未發現吸濕 性金屬氧化物由吸濕樹脂組成物層(上層)移至保護樹脂 組成物層(下層)。試驗例5之薄膜(圖3 )也未發現吸濕 性金屬氧化物由吸濕樹脂組成物層(上層)移至保護樹脂 組成物層(下層)。而試驗例6之薄膜(圖4)中,發現吸 濕性金屬氧化物(淡色的斑點)7由吸濕樹脂組成物層( 上層)移至保護樹脂組成物層(下層)。 其次,以下述步驟製作有機EL裝置。 〔有機EL裝置之製作〕 -46- 201208169 (ITO基板及封閉用玻璃板之洗淨) ITO (銦•錫氧化物)基板及封閉用玻璃板之洗淨係 分別在等級1 0000之清靜室內與等級100之清靜室內進行。 洗淨溶劑係使用半導體洗淨用洗劑及超純水(1 8ΜΩ以上 、全有機碳(TOC ):未達lOppb ),使用超音波洗淨機 與UV洗淨機。 (蒸鍍步驟) 真空度爲1〜2xl〇-4Pa、蒸鍍速度爲1.0~2.〇A/s ’在 30mm方形(縱30mmx橫30mm) 、0.7mm厚之玻璃基板上 ,以 Glass/SiO2[53nm]/ITO[55nm]/PEDOT.PSS[40nm]/ α-NPD[50nm]/Alq3[50nm]/LiF[0.8nm]/Al[15nm]之構成蒸鍍 各層,製作有機EL元件。發光部面積係1〇χ 10mm2。 又,「PEDOT.PSS」係(聚(3,4-伸乙基二氧噻吩) )•(聚苯乙烯磺酸)之簡稱,「α-NPD」係(雙[N-(l-萘基)-N-苯基]聯苯胺)之簡稱、「Alq3」係三(8-喹啉 酚)鋁之簡稱。 (有機EL元件之封閉) 首先,將本發明之薄膜層合於封閉材料之玻璃板( 2lmmx28mm > 0.7mm厚)上。層合係在等級100之清靜室 內,以8 0 °C、減壓(1 X 1 0 —3 Μ P a以下)吸引2 0秒、壓製2 0 秒的條件下,藉由真空壓製來進行。 其次,將支持體剝離,將露出於此玻璃板之樹脂組成 -47- 201208169 物層在氧濃度lOppm以下、水分濃度l〇pPm以下之工具箱 內,在80°C、〇.〇4MPa荷重下、減壓(lxlO_3MPa以下)吸 引20秒、壓製20秒的條件下,朝有機EL元件形成基板進行 真空壓製。 其後,於工具箱內,在1 10°C之加熱板上加熱30分鐘 ,使本發明之薄膜進行熱硬化。 上述樹脂組成物層係層合保護樹脂組成物層與吸濕樹 脂組成物層者,對封閉材料之玻璃板之層合係將吸濕樹脂 組成物層壓黏於玻璃板上,對有機EL元件形成基板之層合 係將保護樹脂組成物層壓黏於有機EL元件形成基板上。 (實施例1 ) 使用模塗佈機將清漆A均勻塗佈於以醇酸系脫模劑處 理後之PET薄膜(厚度38μηι)的脫模處理面上,使乾燥後 之樹脂組成物層之厚度成爲ΙΟμιη,然後以60~95°C乾燥12 分鐘,得到保護樹脂組成物層。 同樣的,使用模塗佈機將清漆B均句塗佈於以醇酸系 脫模劑處理後之PET薄膜(厚度38μπ〇的脫模處理面上, 使乾燥後之樹脂組成物層之厚度成爲3 Ομηι,然後以 60〜95 °C乾燥12分鐘,得到吸濕樹脂組成物層。 將附PET薄膜之保護樹脂組成物層與附PET薄膜之吸 濕樹脂組成物層,以保護樹脂組成物層與吸濕樹脂組成物 層相對向,藉由真空層合機,以溫度8〇t、壓力lKg/cm2 (9.8 xl 04Pa)之條件進行層合,製作本發明之薄膜。保護 -48- 201208169 樹脂組成物層之80°C的熔融黏度爲27500poise,吸濕樹脂 組成物層之80°C的熔融黏度爲63400poise。其次,將該薄 膜之吸濕樹脂組成物層側之PET薄膜剝離,使吸濕樹脂組 成物層層合於封閉材料之玻璃板後,將保護樹脂組成物層 側之PET薄膜剝離,使保護樹脂組成物層層合於具有有機 EL元件的玻璃板,製作有機El裝置。 圖1 ( a)係製作之有機EL裝置之橫斷面的模式圖,在 形成有有機EL元件4之基板5之有機EL元件4的形成面,依 保護樹脂組成物層(無機塡充劑、不含吸濕性金屬氧化物 )3、吸濕樹脂組成物層(無機塡充劑、含有吸濕性金屬 氧化物)2及封閉材料(玻璃板)1此順序層合者。 (比較例1 ) 使用模塗佈機將清漆B均勻塗佈於以醇酸系脫模劑處 理後之PET薄膜(厚度38μηα )的脫模處理面上,使乾燥後 之樹脂組成物層之厚度成爲40μιη,然後以60〜95 °C乾燥12 分鐘,得到樹脂組成物層。將此附PET薄膜之樹脂組成物 層層合於封閉材料之玻璃板後,將PET薄膜剝離,使樹脂 組成物層層合於具有有機EL元件之玻璃板,製作有機EL 裝置。 圖1 ( b )係製作之有機EL裝置之橫斷面的模式圖,在 形成有有機EL元件4之基板5之有機EL元件4的形成面,依 樹脂組成物層(無機塡充劑、含有吸濕性金屬氧化物)2 及封閉材料(玻璃板)1之順序層合者。 -49- 201208169 (比較例2 ) 使用模塗佈機將清漆A均勻塗佈於以醇酸系脫模劑處 理後之PET薄膜(厚度38 μπι)的脫模處理面上,使乾燥後 之樹脂組成物層之厚度成爲40μιη,然後以60〜95 °C乾燥12 分鐘,得到樹脂組成物層。將此附PET薄膜之樹脂組成物 層層合於封閉材料之玻璃板後,將PET薄膜剝離,使樹脂 組成物層層合於具有有機EL元件之玻璃板,製作有機EL 裝置。 圖1 ( c )係製作之有機EL裝置之橫斷面的模式圖,在 形成有有機EL元件4之基板5之有機EL元件4的形成面,依 樹脂組成物層(無機塡充劑、不含吸濕性金屬氧化物)3 及封閉材料(玻璃板)1的順序層合者。 (比較例3 ) 除了使用清漆C取代清漆B外,與實施例1同樣製作薄 膜。將來自此薄膜之清漆C之樹脂組成物層側的PET薄膜 剝離,使該樹脂組成物層層合於封閉材料之玻璃板後,將 來自清漆A之樹脂組成物層側的PET薄膜剝離,使該樹脂 組成物層層合於具有有機EL元件之玻璃板,製作有機EL 裝置。 圖1 ( d )係製作之有機EL裝置之橫斷面的模式圖,在 形成有有機EL元件4之基板5之有機EL元件4的形成面,依 樹脂組成物層(無機塡充劑、不含吸濕性金屬氧化物)3 -50- 201208169 '樹脂組成物層(含有無機塡充劑、不含吸濕性金屬氧化 物)ό及封閉材料(玻璃板)1此順序層合者。 (比較例4 ) 使用模塗佈機將清漆C均勻塗佈於以醇酸系脫模劑處 理後之PET薄膜(厚度38μηι )的脫模處理面上,使乾燥後 之樹脂組成物層之厚度成爲40 μηι,然後以60〜95 t乾燥12 分鐘’得到樹脂組成物層。將此附PET薄膜之樹脂組成物 層層合於封閉材料之玻璃板後,將PET薄膜剝離,使樹脂 組成物層層合於具有有機EL元件之玻璃板,製作有機EL 裝置。 圖1 ( e )係製作之有機EL裝置之橫斷面的模式圖,在 形成有有機EL元件4之基板5之有機EL元件4的形成面,依 樹脂組成物層(含有無機塡充劑、不含吸濕性金屬氧化物 )6及封閉材料(玻璃板)1的順序層合者。 實施例1、比較例1〜4之有機E L裝置的性能評價結果如 表4所示。 -51 - 201208169 [表i] 配合表 製造例 1 製造例 2 製造例 3 製造例 4 製造例 5 BPA328 30 30 30 30 30 GOT 10 10 10 10 10 U-CAT3502T 3 3 3 3 3 KBM-403 1 1 1 1 1 HP7200H 60 60 60 60 60 YL7213-35M 60 60 60 60 60 燒成白雲石漿體 涸形分40重量%之 MEK溶液) 37.5 37.5 37.5 硬脂酸 0.6 0.6 0.6 D-60吩級漿體 個形分30%重量% 之MEK溶液) 50 50 33 17 MEK 25 20 TBP/N-Ac-gly 3 3 3 3 3 [表2] 滑石調配時之接著力的測定結果 試驗例1 試驗例2 試驗例3 支持體與樹脂組成物層間 之接著力 (N/ c m) 3. 5 2. 4 1. 3 -52- 201208169 [表3] 薄膜之組 試驗例4 試驗例5 試驗例6 吸濕樹脂組成物層 B 1 B 2 B 2 保護樹脂組成物層 A 1 A2 A1 [表4] 有機EL裝置之性能評價 實施例 1 比較例 1 比較例 2 比較例 3 比較例 4 耐透濕性 亮度之相對變化率 (500小時後) 0. 99 0.99 1.09 1.02 1.09 亮度之相對變化率 (1000小時後) 1.03 1.04 1.24 1.19 1.28 評價 〇 〇 X X X 元件之 耐損傷性 暗電流(μ A) 0.18 0. 24 0.11 0. 15 0.15 評價 〇 X 〇 〇 〇 由實施例1可知使用本發明之薄膜,可減輕有機EL元 件之損傷,且以簡單形成有機EL元件可以高水準隔絕水分 之有機EL元件的封閉構造。此外,實施例1係將吸濕樹脂 組成物層及保護樹脂組成物層以低溫硬化,封閉有機EL元 件,因此不僅可抑制封閉作業中之有機EL元件之損傷,且 充分抑制有機EL元件之熱劣化,得到高信賴性之有機EL 元件裝置。 而比較例1係含有許多吸濕性金屬氧化物,而損傷有 -53- 201208169 機EL元件。比較例2、3、4係不含吸濕性金屬氧化物,因 此有機E L·元件不受水分損傷。比較例4係含有滑石,但是 因平板狀之塡充劑的緣故,不易移動,而保持元件之耐損 傷性。 [產業上之可利用性] 藉由具有支持體與保護樹脂組成物層與吸濕樹脂組成 物層的薄膜,可實現兼具耐透濕性與元件之耐損傷性的薄 膜,此薄膜可提供高信賴性的有機EL裝置。 本申請案係以日本申請之特願2009-182827爲基礎, 其內容全部包含於本說明書內。 【圖面之簡單說明】 [圖1] 圖1 (a)係實施例1之有機EL裝置之模式斷面圖,圖1 (b ) ~圖1 ( e )係比較例1〜4之有機EL裝置的模式斷面圖 [圖2] 試驗例4之薄膜斷面的SEM相片。 [圖3] 試驗例5之薄膜斷面的SEM相片。 [圖4] 試驗例6之薄膜斷面的SEM相片。 -54- 201208169 【主要元件符號說明】 1 :封閉材料(玻璃板) 2 :吸濕樹脂組成物層(無機塡充劑、含有吸濕性金 屬氧化物) 3 :保護樹脂組成物層(無機塡充劑、不含有吸濕性 金屬氧化物) 4 :有機EL元件 5 :基板 6 :樹脂組成物層(含有無機塡充劑、不含有吸濕性 金屬氧化物) 7 :吸濕性金屬氧化物 -55-0丫ΝΗ R (1) (wherein R-CO- is a thiol group derived from a linear or branched fatty acid having a carbon number of 1 to 5 or a substituted or unsubstituted benzamidine group, -nh-chx- Co2·aspartic acid's acid amino acid ion such as glutamic acid or neutral amino acid ion such as glycine acid, alanine acid or phenylalanine acid.) The above-mentioned 'cation is preferably ammonium-based The cation and the money cation are more preferably an imidazolium ion or a cerium ion. More closely, the imidazole key ion has 丨_ethyl-3 _ -13- 201208169 methyl imidazole key ion, 1-butyl-3-methylimidazole key ion, 1-propyl-3-methylimidazole key ion and the like. The anion is preferably a phenol anion, an N-decylamino acid ion represented by the general formula (1) or a carboxylic acid anion, more preferably an N-decylamino acid ion or a carboxylic acid anion. A specific example of the phenolic anion is 2,6-di-tert-butylphenol ion. Further, specific examples of the carboxylic acid anion include acetate ion, citric acid ion, 2-pyrrolidone-5-carboxylic acid ion, formate ion, α-lipoic acid ion, lactate ion, tartaric acid ion, hippuric acid ion, Ν-methyl group The horse uric acid ion or the like is more preferably an acetate ion, a 2-pyrrolidone-5-carboxylic acid ion, a formic acid ion, a lactate ion, a tartaric acid ion, a hippuric acid ion, or a quinone-methyl hippuric acid ion. Further, specific examples of the fluorenyl-mercaptoamino acid ion represented by the general formula (1) include hydrazine-benzylidene propylamine ion, hydrazine-ethyl phenyl phenylalanine ion, aspartate ion, and glycine An acid ion, a ruthenium-ethionylglycine ion, or the like, preferably an oxime-benzylidene propylamine ion, a ruthenium-ethenyl phenylalanine ion, a ruthenium-ethionylglycine ion, and more Jia is a Ν-acetylglycolate ion. The specific ionic liquid is preferably 1-butyl-3-methylimidazolium lactate, tetrabutylscale-2-pyrrolidone-5-carboxylate, tetrabutylselenate, tetrabutylselenate , tetrabutyl sulphate trifluoroacetate, tetrabutyl iron α-lipoic acid salt, tetrabutyl sulphate sulphate, tetrabutyl sulphate, bis (tetrabutyl tartaric acid) salt, tetrabutyl sulphate Salt, Ν-methyl horse urate tetrabutyl sulphate, benzhydryl-DL-alanine tetrabutyl sulphate, Ν-acetyl phenylalanine tetrabutyl sulphate, 2,6-di- Tert-butyl phenol tetrabutyl sulfonium salt, L-aspartic acid monotetrabutyl sulfonium salt, tetrabutyl glutamate glutamate salt, N-acetyl glutamic acid tetrabutyl-14- 201208169 scale salt , 1-ethyl-3-methylimidazolium lactate, 1-ethyl-3-methylimidazolium acetate, 1-ethyl-3-methylimidazolium formate, i-ethyl hippurate 3-methylimidazolium salt, N-methyluric acid 1-ethyl-3-methylimidazolium salt, bis(1-ethyl-3-methylimidazolium) tartaric acid, N-ethylidene base Amino acid 1-ethyl-3-methylimidazolium iron salt, more preferably N-acetyl glutamic acid tetrabutyl phosphonium salt, 1-ethyl-3-methylimidazole Key acetate, 1-ethyl-3-methylimidazolium formate, lipoic acid 1-ethyl-3-methylimidazolium, N-methyluric acid 1-ethyl-3-methylimidazole gun salt. The method for synthesizing the ionic liquid includes, for example, a precursor composed of a cation moiety such as an alkylimidazole, an alkylpyridyl, an alkylammonium or an alkylphosphonium ion and an anion containing a halogen, and NaBF4, NaPF6, CF3S03Na. Or an anion exchange method of a reaction such as LiN(S02CF3)2, an amine-based substance reacting with an acid ester, introducing an alkyl group, an organic acid residue being an anion ester method, and an amine being neutralized with an organic acid to obtain a salt. Neutralization method, etc., but is not limited to this. Anion and cation, the solvent in the obtained reaction liquid is distilled off by using an equal amount of anions and cations in a solvent neutralization system, or may be used as it is, or an organic solvent (methanol, toluene, ethyl acetate, Acetone, etc.) is concentrated in a liquid. The hardener is preferably used in an amount of not less than 1% by weight relative to the resin composition. 1~50% by weight, more preferably 〇. The range of 5 to 25% by weight, more preferably 1 to 15% by weight, more preferably 1. 5 to 10% by weight range. When the amount is less than this range, sufficient curability may not be obtained, and when it is more than 50% by weight, not only the storage stability of the resin composition is impaired, but also the moisture permeability and heat resistance of the cured product may be lowered. When the ionic liquid is used, from the viewpoint of the moisture permeability resistance of the cured product of the resin composition of -15 to 201208169, the nonvolatile content of the epoxy resin is 100% by weight, preferably 0. 1 to 1% by weight, more preferably 0. 5 to 8 wt%, more preferably 1 to 6 wt%, more preferably 1. 5 to 5 wt%. In the resin composition constituting the moisture-absorbing resin composition layer in the present invention, a curing accelerator may be further contained in order to adjust the curing temperature, the curing time, and the like. The hardening accelerator is, for example, a tetra-ammonium salt such as tetramethylammonium bromide or tetrabutylammonium bromide, a tetradecyl phosphonium salt such as tetraphenylsulfonium bromide or tetrabutylphosphonium bromide, or DBU (1,8). - diazabicyclo (5. 4. 0) undecene-7), DBN (1,5-diazabicyclo (4. 3. 0) decene-5), DBU-phenolate, DBU-octanoate, DBU-p-toluenesulfonate, DBU-formate, DBU-novolac resin salt, etc., diazabicyclo compound, 1-benzyl Imidazole compound such as benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 2-ethyl-4-methylimidazole, tris(dimethylaminomethyl)phenol, benzyl dimethyl A dimethyl urea compound such as a tertiary amine such as a base amine, an aromatic dimethyl urea, an aliphatic dimethyl urea or an aromatic dimethyl urea. The content of the hardening accelerator is 0. 01 to 7 wt% range. (Hygroscopic Metal Oxide) The term "hygroscopic metal oxide" as used in the present invention means a metal oxide which has the ability to absorb moisture and chemically reacts with moisture-absorbing water to form a hydroxide, as long as the cost is high. The object of the invention is not particularly limited, and specifically, for example, one selected from the group consisting of calcium oxide, magnesium oxide, cerium oxide, aluminum oxide, and cerium oxide, or two or more metal oxides selected from the above - 16- 201208169 Mixture or solid solution. Examples of a mixture or solid solution of two or more kinds of metal oxides include, in particular, calcined dolomite (mixture containing calcium oxide and magnesium oxide) and calcined hydrotalcite (solid solution of calcium oxide and aluminum oxide) Things). Such a hygroscopic metal oxide is known as a moisture absorbing material in various technical fields, and a commercially available product can be used. Specifically, for example, fired dolomite ("KT" manufactured by Yoshizawa Lime Co., Ltd.), calcium oxide ("moistop #10" manufactured by Sankyo Powder Co., Ltd.), and magnesium oxide (KYOWAMAG MF-1 5 manufactured by Kyowa Chemical Industry Co., Ltd.) 0", "Κ Υ Ο WAMAGMF - 3 0", "PUREMAG FNMG" manufactured by Tateho Chemical Industries Co., Ltd.), lightly burned magnesia ("#500", "#1〇〇〇", "# by tateho Chemical Industry Co., Ltd." 5000", etc.). The average particle diameter of the hygroscopic metal oxide is not particularly limited, but is preferably ΙΟμηι or less, more preferably 5 μηι or less, and more preferably Ιμηι or less. When such a minute size is used, not only the hardened layer of the moisture absorbing resin composition but also the high moisture permeability resistance can be imparted, and the adhesion can be improved. When the average particle diameter of the hygroscopic metal oxide is too small, the particles aggregate with each other, the sheet processing tends to be difficult, and the like, and therefore the average particle diameter of the hygroscopic metal oxide is preferably 0. 0 1 μηι or more, more preferably 〇.  1 μΐΏ or more. When the average particle diameter of the commercially available product of the hygroscopic metal oxide is 1 ΟμίΏ or less, it can be used as it is. However, when the average particle size of the commercially available product exceeds 1 Ομηι, the average particle diameter of pulverization and classification is 1 〇μπι or less. After the granules, it is preferably used. Here, the "average particle diameter" is an equal diameter of the particle size distribution when the particle size distribution of the measurement target (granular material) is prepared on a volume basis. Volume group -17- 201208169 The particle size distribution can be determined by laser diffraction and scattering method according to the Mie scattering theory. The laser diffraction type particle size distribution measuring device can be specifically made by Horiba Co., Ltd. LA-5 00. The measurement of the sample is preferably carried out by dispersing the hygroscopic metal oxide in water by ultrasonic waves. The hygroscopic metal oxide can be surface treated with a surface treating agent. By using such a surface-treated hygroscopic metal oxide, the storage stability of the resin composition constituting the moisture absorbing resin composition layer can be improved, and the moisture in the resin and the hygroscopic metal oxide can be prevented at the stage before the hardening. The surface treatment agent used for the surface treatment of the reaction oxime may specifically be a higher fatty acid, a alkyl decane, a decane coupling agent or the like, and among them, a higher fatty acid or a alkyl decane is preferable. The higher fatty acid is preferably a higher fatty acid having a carbon number of 18 or more, such as stearic acid, octadecanoic acid, myristic acid or palmitic acid, and more preferably stearic acid. These may be used alone or in combination of two or more. The alkyl decanes are, for example, methyltrimethoxydecane, ethyltrimethoxydecane, hexyltrimethoxydecane, octyltrimethoxydecane, decyltrimethoxydecane 'octadecyltrimethoxydecane, and Methyldimethoxydecane, octyltriethoxydecane, octadecyldimethyl(3-(trimethoxycarbinyl)propyl)ammonium chloride, and the like. These may be used alone or in combination of two or more. The decane coupling agent is specifically, for example, 3-glycidoxypropyltrimethoxydecane, 3-glycidoxypropyltriethoxydecane, 3-glycidyloxypropyl (dimethoxy) Epoxy decane coupling agent such as methyl decane and 2-(3,4-epoxy-18-201208169 cyclohexyl)ethyltrimethoxydecane: 3-hydrothiopropyltrimethoxydecane, 3 -Hexylthiopropyltriethoxydecane, 3.  Hydrogenthio-based decane coupling agent such as thiopropylpropyldimethoxydecane and 11-fluorenylundecyltrimethoxydecane; 3-aminopropyltrimethoxydecane, 3-amine Propyltriethoxydecane, 3-aminopropyldimethoxymethyltrimethoxydecane, N-methylaminoethyl)-3-aminopropyltrimethoxy-aminopropyl a styryl decane coupling agent of a vinyl decane coupling agent such as methoxyoxydecane or vinyltriethoxysilane such as methoxymethyl decyl propyl triethoxy decane; and 3-methyl group Propyleneoxypropyltriene coupling agent; 3-isocyanate propyl trioxane coupling agent, bis(triethoxymethyltriethoxymethyl methacrylate) four-agent; phenyltrimethoxy decane, methane, imidazolium , triazine decane, etc. are used. The known hygroscopic metal oxide is a known mixer which is sprayed with a surface treatment agent, specifically, a mixer such as a type 1 mixer, a mixer such as a ball mill, a decyl decane, or an N-phenyl group. 3-aminopropylpropyltrimethoxydecane, N-(2-aminodecane) and N-(2-aminoethyl)-3, etc., amine-based decane coupling agent; 3-ureido-based decane Mixture, vinyl trimethyl decane and vinyl methyl diethoxy fluorene; P-styryl trimethoxy decane and other acrylate decane methoxy groups such as 3-propenyloxypropyltrimethoxydecaneoxydecane Isocyanate-based decyl-propyl propyl disulfide such as decane or bismuth (sulfide-based decane-coupled propylene oxypropyltrimethoxy sulfonate such as sulfide. These may be used alone or in combination with two kinds of surfaces. Specifically, the treatment is carried out by mixing without using a mixer at normal temperature, and stirring for 5 to 60 minutes. The mixer can be, for example, a V mixer, a belt mixer, a Henshell mixer, and a cement mixer -19-201208169. Etc. Also, when the absorbent material is pulverized by a ball mill or the like, it can be mixed before a method for surface treatment of a higher fatty acid, an alkyl decane or a decane coupling agent. The amount of the surface treatment agent to be treated varies depending on the type of the hygroscopic metal oxide or the type of the surface treatment agent, and is relative to the hygroscopic metal. The oxide is preferably from 1 to 10% by weight. The upper limit of the content of the hygroscopic metal oxide in the resin composition is such that when the content of the hygroscopic metal oxide is too large, the viscosity of the resin composition increases. The viewpoint that the strength of the cured product is lowered and becomes brittle is preferably 40% by weight or less, more preferably 35% by weight or less, still more preferably 30% by weight or less, based on 100% by weight of the nonvolatile matter in the resin composition. It is preferably 25% by weight or less, and particularly preferably 20% by weight or less. The lower limit of the content of the hygroscopic metal oxide is relative to the resin composition from the viewpoint of sufficiently obtaining the effect of containing the hygroscopic metal oxide. The nonvolatile matter is preferably 100% by weight, preferably 1% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more. (Inorganic cerium filling material) Resin constituting the moisture absorbing resin composition layer composition Further, the inorganic ruthenium filler (but not the hygroscopic metal oxide) may be further contained, and the inorganic ruthenium filler may be used to improve the moisture permeability of the cured product of the resin composition and prevent the composition at the time of film formation. The small depression can improve the adhesion with the support or the sealing material. The inorganic cerium filling material is specifically, for example, cerium oxide, cerium sulfate, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, boron nitride, Aluminum borate, barium titanate, barium titanate 'calcium titanate, magnesium titanate, barium titanate, titanium oxide, barium zirconate, calcium calcium citrate, talc, clay, mica, boehmite, zeolite, -20- 201208169 Apatite, kaolin, mullite, spinel, olivine, sericite, etc. The inorganic cerium filler may be used alone or in combination of two or more. From the viewpoint of the fact that the inorganic cerium filling material is not easily transferred to the other layer during lamination, it is preferable that the particle form of the stone, clay, mica, and boehmite is a flat plate-shaped 塡', and the sputum in which the particle shape is a flat plate is used. The filler can further improve the moisture permeability of the hardened layer obtained by hardening the moisture-absorbing resin composition layer. The upper limit of the average particle diameter of the inorganic cerium filler is not easily transferred from the viewpoint of improving the dispersibility or the reduction of the mechanical strength or the lamination, and is preferably Ιμηι or less, more preferably 0. 8 μιη or less, more preferably 0 or less. The lower limit of the average particle diameter of the inorganic cerium filler is preferably 0_01 μπι or more, more preferably Ο, from the viewpoint of preventing a decrease in the dispersibility due to aggregation or preventing an increase in the viscosity of the resin composition. Ίμιη above, why?  3 μηι or more. The average particle diameter therein means the same meaning as the average particle diameter in the above-mentioned hygroscopic metal. The upper limit of the content of the inorganic cerium filling material in the resin composition is such that the viscosity of the resin composition increases when the content of the cerium filling material is too large, and the curing strength is lowered and becomes brittle, and the resin composition is not colored. The weight% is preferably 50% by weight or less, more preferably 40% by weight or more, more preferably 35% by weight or less, still more preferably 30% by weight or less. The lower limit of the content of the inorganic material is preferably from 1% or more, more preferably not more than 5% by weight, more preferably from 5% by weight or more, from the viewpoint of sufficiently obtaining the effect of the inorganic cerium material to the non-volatile content in the resin composition. Preferably it is 10% by weight or more. (Rubber particles), 澎 These are the sliding fillers, and the 6 μηι of the stopper layer is better. The oxidized inorganic matter is divided, the filling point, the weight of -21 - 201208169 constitutes the moisture absorbing resin composition layer. The resin composition may further contain rubber particles, and the rubber particles may increase the mechanical strength and stress relaxation of the cured product of the resin composition. The rubber particles are not dissolved in the organic solvent in the varnish of the resin composition, and are also incompatible with the components in the resin composition such as an epoxy resin, and are present in a dispersed state in the varnish of the resin composition. Better. In general, such rubber particles are obtained by increasing the molecular weight of the rubber component to such an extent that it is not dissolved in an organic solvent or a resin, and specifically, for example, a core-shell type rubber particle or a cross-linked acrylonitrile Ethylene rubber particles, crosslinked styrene butadiene rubber particles, acrylic rubber particles, and the like. The core-shell type rubber particle-based particles have rubber particles of a core layer and a shell layer, and specific examples thereof include a two-layer structure in which a shell layer of an outer layer is a glassy polymer, a core layer of an inner layer is a rubber-like polymer, or an outer layer. The shell layer is a glassy polymer, the intermediate layer is a rubbery polymer, and the core layer is a three-layer structure composed of a glassy polymer. Specifically, the glass layer is composed of a polymer of methyl methacrylate or the like, and the rubber-like polymer layer is specifically composed of a butyl acrylate polymer (butyl acrylate rubber) or the like. The upper limit of the average particle diameter of the primary particles of the rubber particles is preferably 2 μm or less from the viewpoint of maintaining the effect of stress relaxation or preventing damage to the element when the resin composition blocks the organic EL element. Further, the lower limit of the average particle diameter of the primary particles of the rubber particles is preferably from the viewpoint of preventing the viscosity from increasing when mixed with the resin and causing deterioration in usability. 〇 5 μηι or more. Specific examples of the core-shell type rubber particles include Staphyloid AC3 8 3 2, AC3816N (manufactured by GANZ Chemical Co., Ltd.), metablen KW-4426 (manufactured by Mitsubishi Rayon Co., Ltd.), and F351 (manufactured by Japan -22-201208169 ΖΕΟΝ). Examples of the acrylonitrile butadiene rubber (NBR) granules include XER-91 (manufactured by JSR Corporation). Specific examples of the styrene butadiene SBR particles include XSK-500 (manufactured by JSR Corporation). Specific examples of the rubber particles include metablen W300A and W450A (manufactured by the three companies). In the measurement of the average particle diameter of the rubber particles, the rubber particles are uniformly dispersed in an appropriate agent by ultrasonic wave or the like, and FPRA-1 000 (manufactured by Otsuka Electronics Co., Ltd.) is used to reproduce the rubber particles. The particle size distribution, which is the upper limit of the content of the average particle diameter 〇 rubber particles, and the non-volatile content of the absorbent resin composition is 1% by weight from the viewpoint of preventing the heat resistance and moisture permeability resistance of the moisture absorbing resin composition from being lowered. It is preferably 20% by weight or less, more preferably 5% by weight or less. The lower limit of the content of the rubber particles is not more than 100% by weight, preferably 0%, from the viewpoint of sufficiently obtaining the effect of the compound. 1% by weight or more. The rubber particles are dispersed in the state of the primary particles in the epoxy resin. The particle-dispersed epoxy resin is commercially available, and the epoxy resin is a rubber particle epoxy resin, and the resin composition may contain rubber particles. Specifically, the sub-dispersed epoxy resin is, for example, Japanese catalyst company BPA3 2 8" (rubber particles: acrylic core-shell resin, average particle diameter of rubber: 〇·3μηι, rubber particle content: 17% by weight, ring) : epoxide equivalent 185 bisphenol oxime type epoxy resin), kaneka MX120" (rubber particles: SBR resin, rubber particles of flat rubber) (acrylic acid rhodium. Specific organic solvent basis to determine the resistance of the layer In the layer of the rubber, the rubber particles are dispersed in rubber particles of 10 weights of rubber particles, and the rubber particles are made of oxygen resin. The average particle size is -23-201208169:0. 1 μηι, rubber particle content: 25% by weight, epoxy resin: ring 185 bisphenol A type epoxy resin) and the like. (Thermoplastic resin) The resin composition constituting the moisture absorbing resin composition layer may further contain a plastic resin. By containing a thermoplastic resin, flexibility can be imparted to the resin resin composition, and the workability in coating the resin composition can be imparted. Specific examples of the thermoplastic resin include a phenoxy resin alkenyl acetal resin, a polyimide resin, a polyamide amide resin, a maple resin, and a polyfluorene resin. These thermoplastic resins can be used singly or in combination of two or more. The thermoplastic resin preferably has a weight average molecular weight of preferably 10,000 or more from the viewpoint of imparting flexibility and preventing dents. However, when the weight average molecular weight is too large, the compatibility with the fat tends to decrease, and therefore the weight average molecular weight is 1,000,000 or less, and more preferably 800,000 or less. The "weight average molecular weight of the thermoplastic resin" is measured by a gel permeation chromatography (GPC) method (in terms of polystyrene). Specifically, the weight average molecular weight is, for example, LC-9A/RID-6A manufactured by Shimadzu Corporation, K-800P/K-804L/K-804L manufactured by Showa Denko Co., Ltd., and chloroform or the like in the mobile phase. The measurement was carried out at 40 ° C using a calibration curve of standard polystyrene. In the above-mentioned examples, the thermoplastic resin is particularly preferably a phenoxyphenoxy resin having good compatibility with an "epoxy resin" and having less influence on the adhesion and moisture resistance of the cured product of the resin. good. The oxygen equivalent is a hard acid, a polyethylene, a polyether or a mixed coating, and the epoxy resin is preferably a S h 〇 d e X column temperature resin by a coagulation GPC method. Composition-24- 201208169 The phenoxy resin has, for example, a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol S skeleton, a bisphenol acetophenone skeleton 'phenolic skeleton' biphenyl skeleton, an anthracene skeleton, a dicyclopentane The olefin skeleton is one or more kinds of skeletons of a norbornene skeleton, a naphthalene skeleton, an anthracene skeleton, an adamantane skeleton, a terpene skeleton, and a trimethylcyclohexane skeleton. The phenoxy resin may be used in combination of two or more kinds. A commercial product of a phenoxy resin is specifically 1256, 4250 (a phenoxy resin containing a bisphenol A skeleton) manufactured by Japan Epoxy Resins Co., Ltd., and YX8100 (a benzene containing a bisphenol S skeleton) manufactured by Japan Epoxy Resins Co., Ltd. Oxygen resin] YX6954 (a phenoxy resin containing a bisphenol acetophenone skeleton) manufactured by Japan Epoxy Resins Co., Ltd., PKHH (weight average molecular weight (Mw) 42600, number average molecular weight (Mn) 11200) manufactured by Union Carbide Co., Ltd., etc. In addition, FX280 5 3 BH30, YL6794, YL7213, YL7290, YL7482, etc., manufactured by Dongdu Chemical Co., Ltd., FX280, FX293, and Japan Epoxy Resins. The upper limit of the content of the thermoplastic resin is preferably 100% by weight or less, more preferably 50% by weight or less, based on the non-volatile content in the moisture-absorbing resin composition layer from the viewpoint of preventing deterioration of moisture permeability of the cured product. 2 5 wt% or less. In addition, the lower limit of the content of the thermoplastic resin is preferably 1% by weight or more, more preferably 1% by weight or more, based on 100% by weight of the nonvolatile matter in the moisture-absorbing resin composition layer from the viewpoint of obtaining a sufficient effect of containing the thermoplastic resin. It is 3% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more. (Coupling Agent) The moisture-absorbing resin composition layer used in the present invention further contains a coupling agent -25 - 201208169 to improve the adhesion of the adherend (support, protective resin composition layer, sealing material, etc.) to the cured product. The moisture permeability of the sexual or hardened material. Specifically, the coupling agent is, for example, a titanium coupling agent, an aluminum coupling agent, a decane coupling agent or the like. Among them, a decane coupling agent is preferred. These may be used alone or in combination of two or more. The decane coupling agent is specifically, for example, 3-glycidoxypropyltrimethoxydecane, 3-glycidoxypropyltriethoxydecane, 3-glycidyloxypropyl (dimethoxy) Epoxy decane coupling agent such as methyl decane and 2-(3,4-epoxycyclohexyl)ethyltrimethoxy decane; 3-hydrothiopropyltrimethoxydecane, 3-hydrogenthio Hydrogen-sulfur-based sand chamber coupling agent such as propyl triethoxy decane, 3-hydrothiopropylmethyldimethoxy decane and 11-hydrothio-undecyltrimethoxy sand; 3 - Aminopropyltrimethoxydecane, 3-aminopropyltriethoxydecane, 3-aminopropyldimethoxymethylnonane, N-phenyl-3-aminopropyltrimethoxydecane , N-methylaminopropyltrimethoxydecane, N-(2-aminoethyl)-3-aminopropyltrimethoxydecane and N-(2-aminoethyl)-3-amine Amino decane coupling agent such as propyldimethoxymethyl decane; urea-based decane coupling agent such as 3-ureidopropyltriethoxy decane, vinyl trimethoxy decane, vinyl triethyl Oxydecane and vinylmethyldiethoxyanthracene Vinyl decane coupling agent; styryl decane coupling agent such as P-styryl trimethoxy decane; 3-propenyloxypropyltrimethoxy decane and 3-methacryloxypropyltrimethyl Acrylate-based decane coupling agent such as oxydecane; isocyanate-based decane coupling agent such as 3-isocyanate propyl trimethoxy decane, bis(triethoxymethyl sulfonylpropyl) disulfide, bis (triethoxy) Sulfhydryl propyl sulfonyl sulfonate cyclane coupling agent; phenyl trimethoxy decane, methacryloxypropyl trimethoxy decane, imidazolium, triazine decane, etc. . Among these, an epoxy decane coupling agent is particularly preferred. The upper limit of the content of the coupling agent is preferably 10% by weight or less, more preferably 10% by weight or less, based on 100% by weight of the nonvolatile matter in the moisture-absorbing resin composition layer, from the viewpoint of obtaining the adhesion improving effect by the coupling agent. 5% by weight or less. Further, the lower limit of the content of the coupling agent is preferably from 0% by weight to 0% by weight based on the non-volatile content in the moisture-absorbing resin composition layer from the viewpoint of obtaining the adhesion improving effect by the coupling agent. More than 5 wt%. In the hygroscopic resin composition layer used in the present invention, various additives other than the above components may be optionally contained within the range in which the effects of the present invention are exerted. Specific examples of such additives include organic ruthenium powders such as polyfluorene oxide powder, nylon powder, and fluorine powder, viscous agents such as olben and benton, polyfluorene, fluorine, and polymers. An antifoaming agent such as an antifoaming agent or a flat agent, a triazole compound, a thiazole compound, a triazine compound or a porphyrin compound. The thickness of the moisture-absorbent resin composition layer used in the present invention is not particularly limited to the structure in which the support layer is laminated on the resin composition layer, and the moisture is immersed only on the side of the resin composition layer, thereby lowering the moisture-absorbing resin composition. The thickness of the layer is preferably 200 μm or less, more preferably 150 μm or less, and still more preferably 1 μm or less, from the viewpoint of reducing the contact area with the outside air and blocking the water. The lower limit of the thickness from the viewpoint of ensuring the concentration of the moisture absorbing material for obtaining a sufficient moisture absorbing effect is preferably 3 μm or more, more preferably 5 μm or more, and still more preferably 10 μm or more. -27-201208169 [Protective Resin Composition Layer] The protective resin composition layer used in the film of the present invention is composed of a thermosetting resin composition containing a thermosetting resin or a curing agent, and is intended for use in a device ( In the closed structure of an organic EL device or the like, a direct-coated element (organic EL element or the like) has a function of preventing a hygroscopic metal oxide contact element in the moisture-absorbing resin composition layer from damaging the element. (Thermosetting resin and the curing agent) The thermosetting resin and the curing agent are the same as those of the thermosetting resin and the curing agent used in the moisture-absorbing resin composition layer. The thermosetting resin and the curing agent used for the protective resin composition layer may be different from the thermosetting resin and the curing agent used in the moisture-absorbing resin composition layer, and the adhesion between the two layers and the hardening shrinkage may be suppressed. Or a thermosetting resin used for protecting the resin composition layer, a thermosetting resin used for protecting the resin composition layer, and a thermosetting resin used for the moisture absorbing resin composition layer, and the viewpoint of the interface stress between the two layers after hardening due to the difference in the curing speed. The same hardener is preferred. (Hygroscopic metal oxide) The protective resin composition layer used in the present invention may further contain a hygroscopic metal oxide insofar as it does not affect the damage prevention function of the organic EL element. The moisture permeability resistance can be improved by containing a hygroscopic metal oxide. When the protective resin composition layer contains a hygroscopic metal oxide, the upper limit of the content of the hygroscopic metal oxide is not observed in the protective resin composition layer from the point of view of the damage prevention of the organic EL element. The volatile matter is 1% by weight, preferably 5% by weight or less. Further, the lower limit of the content of the hygroscopic metal oxide is preferably 〇% by weight based on the non-volatile content of the protective resin composition layer from the viewpoint of obtaining an effect of improving moisture permeability resistance.  More than 5 wt%. When the hygroscopic metal oxide contains a hygroscopic metal oxide in a range of not less than 5% by weight in the protective resin composition layer, the hygroscopic metal oxide may be damaged when the particle diameter of the hygroscopic metal oxide is large. The organic EL element, therefore, the average particle diameter of the hygroscopic metal oxide is preferably less than 1 μη. Further, even if the average particle diameter is less than 1 μm, when the particle size distribution is broad, coarse particles are contained, and the organic EL element may be damaged. Therefore, the average particle diameter is preferably less than Ιμηη, and particles having a particle diameter of 3 μm or more are not contained. By. Further, the hygroscopic metal oxide contained in the protective resin composition layer may be the same metal oxide as the hygroscopic metal oxide contained in the moisture-absorbing resin composition layer, or may be the same as the surface treatment. The situation is implemented. The commercially available product of the hygroscopic metal oxide may be used as long as the average particle diameter thereof is less than Ιμηη. However, when the average particle diameter of the commercially available product is Ιμηη or more, pulverization, classification, and the like are carried out to prepare an average particle diameter. The pellets of less than 1 μηι are used. The "average particle diameter" herein has the same meaning as the average particle diameter of the hygroscopic metal oxide contained in the moisture-absorbing resin composition layer. (Inorganic 塡 Filling Material) The protective resin composition layer used in the present invention further contains an inorganic cerium filling material (but not containing a hygroscopic metal oxide), and can retard the moisture permeable speed in the layer and the interface with the EL element side. Can improve the adhesion to the substrate. The inorganic -29 * 201208169 can be used in the same manner as the inorganic ruthenium filler used in the above-mentioned moisture absorbing resin composition layer. From the viewpoint of the fact that the inorganic cerium filler is not easily exposed at the time of lamination, it is preferable that the talc, the clay, the mica, the boehmite, and the like have a flat shape of the ceramium filler. When the inorganic cerium is used, the upper limit of the content of the inorganic cerium is increased from the viewpoint of the viscosity of the resin composition, the strength of the cured product, and the brittleness, compared with 100% by weight of the non-volatile content in the resin composition. Preferably, it is 15% by weight or less, and more preferably 10% by weight or less. The lower limit of the content of the inorganic ceramium filler is preferably 100% by weight based on the nonvolatile content in the resin composition, from the viewpoint of obtaining the effect of delaying the moisture permeability at the interface between the resin composition layer and the EL element side. 1% by weight or more, more preferably 3% by weight or more. When the inorganic cerium filler is used together with the hygroscopic metal oxide, the total amount of the inorganic cerium filler and the hygroscopic metal oxide is 15% by weight or less based on 100% by weight of the nonvolatile content in the resin composition. Used within the scope. (Rubber particles, thermoplastic resin, coupling agent, etc.) The protective resin composition layer used in the present invention further contains rubber particles to improve the mechanical strength and stress relaxation of the cured product. Further, in the moisture-absorbing resin composition layer used in the present invention, by further containing a thermoplastic resin, flexibility can be imparted to the cured product, and good workability in coating the resin composition can be imparted. Further, the moisture absorbing resin composition layer used in the present invention further contains a coupling agent to improve the adhesion of the adherend to the cured product and the moisture permeability resistance of the cured product. The rubber particles, the thermoplastic resin, the coupling agent, and the like may be the same as those of the rubber particles, the thermoplastic resin, the coupling agent, and the like used in the moisture-absorbing resin composition layer, and the coupling agent is preferably a decane coupling agent 'Hot-30- 201208169 The plastic resin is preferably a phenoxy resin. The content of the thermosetting resin composition is basically the same as that of the rubber particles, the thermoplastic resin, and the coupling agent in the thermosetting resin composition constituting the moisture absorbing resin composition layer. In the protective resin composition layer used in the present invention, various additives other than the above components may be optionally contained within the range in which the effects of the present invention are exerted. Specific examples of the additives include organic ruthenium powders such as polyfluorene oxide powder, nylon powder, and fluorine powder, viscous agents such as olben and benton, polyfluorene, fluorine, and polymer. An antifoaming agent, a flattening agent, a triazole compound, a thiazole compound, a triazine compound, a porphyrin compound, or the like. The thickness of the protective resin composition layer used in the present invention is not particularly limited. From the viewpoint of increasing the moisture permeability, the upper limit of the thickness is preferably 40 μm or less, more preferably 20 μm or less. Further, from the viewpoint of the thickness sufficient to have the damage preventing effect of the organic EL element, the lower limit of the thickness is preferably Ιμϊη or more. [Protective film] The film of the present invention is actually used until the formation of the closed structure. In order to prevent adhesion or scratches on the surface of the resin composition layer, it is preferable to protect the film. The protective film can be used as the release film support. The plastic film is exemplified. The protective film is preferably subjected to a release treatment in advance, and the release agent is specifically, for example, a fluorine-based release agent, a polyoxymethylene-based release agent, or an alkyd-based release agent. The release agent can be mixed with different types of people. The thickness of the protective film is not particularly limited, and is preferably 1 to ΙΟΟμηι, more preferably -31 - 201208169 10 to 75 μm, more preferably Ι5 to 50 μm. [Film Production Method] The film of the present invention is not particularly limited, and can be used for various devices such as semiconductors, solar cells, high-brightness LEDs, LCD seals, and organic ELs, and is particularly suitable for use in organic EL devices for sealing, and is applicable to organic EL devices. Further, when the film of the present invention is transported, a protective film can be additionally transported. In other words, the constitution of the film of the present invention includes the following six aspects. (1) Peeling support + moisture absorbing resin composition layer + protective resin composition layer + protective film (2) closed system support + moisture absorbing resin composition layer + protective resin composition layer + protective film (3) peeling Supporting body + protective resin composition layer + moisture absorbing resin composition layer + protective film (4) peeling support body + moisture absorbing resin composition layer + protective resin composition layer (5) closed system support + moisture absorbing resin Composition layer + protective resin composition layer (6) Release-type support + protective resin composition layer + moisture-absorbing resin composition layer The above-described system is not laminated. In the constitution of (1) and (2) of the film of the present invention, specifically, the first varnish in which the resin composition constituting the moisture absorbing resin composition layer is dissolved and the resin constituting the protective resin composition layer are separately prepared. The second varnish is coated on the peeling support or the closed support, and the organic solvent is dried to form a moisture absorbing resin composition layer, and the second varnish is applied thereon. The organic solvent is dried to form a protective resin composition layer, and a protective film is used. Further, the structure of the film (3) of the present invention is obtained by sequentially forming a protective resin composition layer and a moisture-absorbing resin composition layer. The configuration of (4), (5), and (6) of the film of the present invention is a configuration in which a protective film is not used when the film of the structures (1), (2), and (3) is produced. When the film of the present invention has the constitutions of (1) and (3), the relationship between the release-based support and the protective film is that the protective film must be peeled off first, and the protective film is thinner than the release-based support, or the release film is applied to the protective film. Processing or embossing is preferred. Further, the 'release layer support is preferably a polyethylene terephthalate (PET) film, and the protective film is preferably a 2-axis extended polypropylene. The organic solvent used for the varnish is exemplified by acetone, methyl ethyl hydrazine (hereinafter referred to as "MEK"), ketones such as cyclohexanone, ethyl acetate, butyl acetate, sucrose acetate, and propylene glycol monomethyl. Acetate acetates such as acetic acid vinegar and carbitol acetate, carbitol, celecoxib, butyl carbitol, etc. Indoleamine, dimethylacetamide, N-methyl sulphate, and the like. These may be used alone or in combination of two or more. The drying conditions are not particularly limited, and are preferably from 5 to 1 〇 、 and from 3 to 15 minutes. The method of producing the film of the present invention in the order of the moisture absorbing resin composition layer and the protective resin composition layer in the order of the moisture-absorbing resin composition layer and the protective resin composition layer In the boundary layer-33-201208169, a mixed layer in which two resin compositions are mixed is formed, and the protective resin composition layer may be damaged and the damage prevention effect of the organic EL element may be caused. Therefore, the first varnish is used to form the first resin composition sheet in which the moisture absorbing resin composition layer is formed, and the second varnish is used in the second support to form the protective resin. The second resin composition sheet of the composition layer is obtained by laminating the moisture-absorbing resin composition layer of the first resin composition sheet and the protective resin composition layer of the second resin composition sheet to obtain a film of the present invention. good. Further, at this time, any of the first support and the second support is a support of the film of the present invention, and the other is a protective film of the film of the present invention. When the film of the present invention is obtained by this method, the melt viscosity of the protective resin composition layer is preferably lower than the melt viscosity of the moisture-absorbing resin composition layer at the laminating temperature of the moisture-absorbing resin composition layer and the protective resin composition layer. In other words, at the laminating temperature of the moisture absorbing resin composition layer and the protective resin composition layer, the melt viscosity of the resin composition constituting the protective resin composition layer is lower than that of the moisture absorbing resin composition layer, and the hygroscopic resin can be avoided. The ruthenium contained in the composition layer moves to the protective resin composition layer at the time of lamination, or damages the EL element by protecting the resin composition layer. The term "melt viscosity" refers to the type of Rheosol-G3 000 manufactured by UBM, the amount of resin is lg, and a parallel plate of 18 mm in diameter is used. The starting temperature is 60 ° C, the heating rate is 5 ° C / min, and the measurement temperature is 6 ( TC to 200. The number of vibrations measured at a frequency of 1 Hz/deg. The lamination temperature is not particularly limited, and may be appropriately set in accordance with the required properties, and requires a hardening temperature higher than that of the moisture absorbing resin composition layer and the protective resin composition layer. -34- 201208169 degree is lower, so the upper limit of the lamination temperature is preferably 1 30 ° C or less, more preferably 120 ° C or less, more preferably 110 ° C or less, more preferably lOOt or less. The lower limit of the temperature is preferably 40 ° C or higher, more preferably 45 ° C or higher, more preferably 50 ° C or higher, and even more preferably 5 5 ° C or higher, from the viewpoint of good usability at normal temperature. 60 ° C or more. From the viewpoint of preventing the hygroscopic metal oxide from moving to the protective resin composition layer from the viewpoint of preventing the hygroscopic resin composition layer from intermingling with the protective resin composition layer at the set lamination temperature, Melt viscosity of the wet resin composition layer and protective resin composition layer The lower limit of the difference in the melt viscosity (the melt viscosity of the moisture-absorbing resin composition layer - the melt viscosity of the protective resin composition layer) is preferably 300 sec or more, more preferably 1,000 poise or more, more preferably 5,000 poise or more, and more preferably l 〇. 〇〇〇p〇ise The above is particularly good at 15000 poise or more, preferably 30,000 poise or more. In addition, at the set lamination temperature, it is effective to fix the moisture-absorbing resin composition layer and the protective resin composition layer once. From the viewpoint of efficiently adhering the moisture absorbing resin composition layer and the protective resin composition layer, the difference between the melt viscosity of the moisture absorbing resin composition layer and the melt viscosity of the protective resin composition layer (melting viscosity of the moisture absorbing resin composition layer - The upper limit of the melt viscosity of the protective resin composition layer is preferably 1,000,000 poise or less, more preferably 500,000 poiSe or less, more preferably 1,000 or less. The method for adjusting the melt viscosity of the protective resin composition layer and the moisture absorbent resin composition layer, For example, there are a method of changing the degree of hardening by drying conditions, a method of changing the mixing ratio of the liquid resin, changing the particle size of the inorganic cerium, and containing A method such as a ratio, etc., can be carried out by combining two or more of them. Therefore, by adjusting the viscosity of the protective resin composition layer and the moisture-absorbing resin composition layer -35 to 201208169 by this method, the protective resin composition layer can be obtained. The melt viscosity at a predetermined temperature is lower than the melt viscosity at a predetermined temperature of the moisture-absorbing resin composition layer. The film of the present invention is suitable for forming various semiconductor elements (individual semiconductors, optical semiconductors, logic 1C, analog 1C, mere bodies, etc.) The closed structure of the organic EL device is particularly suitable for the sealing of the organic EL device. [Method for Producing Organic EL Device] A method for producing an organic EL device by using the film-sealed organic EL device of the present invention will be described below. In the closed structure of the apparatus, an element for forming a substrate by covering the element with the protective resin composition layer is disposed, and the moisture-absorbing resin composition layer is disposed on a surface opposite to the side surface of the element forming substrate of the protective resin composition layer. The structure of the film of the present invention contains the following six aspects as described above. (1) Peeling support + moisture absorbing resin composition layer + protective resin composition layer + protective film (2) closed system support + moisture absorbing resin composition layer + protective resin composition layer + protective film, (3) Peeling support + protective resin composition layer + moisture absorbing resin composition layer + protective film, (4) release system support + moisture absorbing resin composition layer + protective resin composition layer (5) closed system support + suction Wet resin composition layer + protective resin composition layer (6) release-type support body + protective resin composition layer + moisture-absorbing resin composition layer - 36 - 201208169 (a) When the film of the present invention is constituted by (1), First, the protective film is removed, and the protective resin composition layer is laminated on the transparent substrate on which the organic EL element is formed. Then, the release-type support is peeled off, and the sealing material is laminated on the exposed moisture-absorbing resin composition layer to perform a heat hardening operation of the protective resin composition layer and the moisture-absorbing resin composition layer, whereby an organic EL device can be produced. (b) When the film of the present invention has the constitution of (2), the protective film is first removed, and the protective resin composition layer is laminated on the transparent substrate on which the organic EL element is formed, and the protective resin composition layer and the moisture absorbing resin are formed. The organic EL device can be manufactured by a thermal hardening operation of the layer. (c) When the film of the present invention has the constitution (3), the protective film is first removed, and the moisture-absorbing resin composition layer is laminated on the sealing material. Then, the release-system support is peeled off, and the exposed protective resin composition layer is laminated on the transparent substrate on which the organic EL element is formed, and the protective resin composition layer and the moisture-absorbing resin composition layer are thermally hardened. An organic EL device is manufactured. (d) When the film of the present invention has the constitution (4), the protective resin composition layer is laminated on the transparent substrate on which the organic EL element is formed. Then, the release-type support is peeled off, and the sealing material is laminated on the exposed moisture-absorbing resin composition layer to perform a heat hardening operation of the protective resin composition layer and the moisture-absorbing resin composition layer, whereby an organic EL device can be produced. (e) When the film of the present invention is in the form of (5), the protective resin composition layer is laminated on the transparent substrate on which the organic EL element is formed, and the protective resin composition layer and the moisture absorbent resin composition layer are formed in this state. The organic EL device can be manufactured by a heat hardening operation. (f) When the film of the present invention has the constitution of (6), the moisture-absorbing resin group-37-201208169 is laminated on the sealing material, and then the release-system support is peeled off to form the exposed protective resin. The organic layer device can be produced by laminating the material layer on a transparent substrate on which an organic EL element is formed, and performing a heat hardening operation of the protective resin composition layer and the moisture-absorbing resin composition layer. In the organic EL device, it is preferable to produce an organic EL device by the method of (b), (c), (e) or (f) from the viewpoint of not applying the heat history more than necessary. The sealing material used in the methods (a), (c), (d) and (f) is different from the film of the present invention, and is additionally prepared to form a material for a closed structure, for example, having a moisture-proof property. Metal foil, glass plate, metal plate, etc. of plastic film, copper foil, aluminum foil, and the like. The upper limit of the thickness of the sealing material is preferably 5 mm or less, more preferably 1 mm or less, and even more preferably ΐΟΟμηι or less, from the viewpoint of making the organic EL device itself light and thin. In addition, the lower limit of the thickness of the sealing material is preferably 5 μm or more, more preferably ΙΟμηη or more, and still more preferably 20 μΐη or more from the viewpoint of preventing moisture permeation and the rigidity of the organic EL device. The sealing material may be used in combination of two or more sheets. In this case, the total thickness after lamination is preferably in the range of 5 μm or more and 5 mm or less, preferably in the method of the above (a) to (f). The process can be batchwise or continuous in rolls. The lamination conditions can be carried out under reduced pressure, and lamination can be preferably carried out using a vacuum laminator or the like. 10_3 (10hPa) under MPa under reduced pressure, temperature 50~130 °C, pressure 0. It is preferred to carry out lamination under conditions of 5 to 10 kgf/cm2. The vacuum laminating machine is, for example, a vacuum press laminator manufactured by a famous machine manufacturer, a vacuum coater manufactured by Nichigo-morton Co., Ltd., -38-201208169, a protective resin composition layer, and a moisture-absorbing resin composition layer. The method of thermosetting is not particularly limited, and a known method can be used. Specifically, there are, for example, a hot air circulation type oven, an infrared heater, a heat gun, a high frequency induction heating device, and a pressure heating of a heating tool. The film of the present invention has excellent low-temperature hardenability, and the upper limit of the curing temperature is preferably 1 40 ° C or lower, more preferably 1 2 ° C or lower, more preferably uo ° C or lower. Further, from the viewpoint of ensuring the adhesion of the cured product, the lower limit of the curing temperature is preferably 5 (TC or more, more preferably 5 5 t or more. The upper limit of the curing time is preferably 1 20 or less, more preferably 90 or less. More preferably, it is 60 or less. From the viewpoint of the hardening of the cured product, the lower limit of the curing time is preferably 20 minutes or more, more preferably 30 minutes or more, whereby the thermal deterioration of the organic EL element can be extremely reduced. In the organic EL device of the present invention, when the organic EL element is formed on the transparent substrate, when the transparent substrate side is the display surface of the display or the light-emitting surface of the lighting fixture, the sealing material support or the sealing material does not have to use a transparent material. A metal plate, a metal foil, an opaque plastic film or a plate, etc. are used. [Embodiment] [Embodiment] Hereinafter, the present invention will be more specifically described by way of Examples and Comparative Examples, but the present invention is not limited to the following examples. [Materials for use] The materials used in the following are described below. -39 - 201208169 (A) Epoxy resin and solid epoxy resin (HP7200H manufactured by DIC Corporation: Dicyclopentadiene type solid epoxy resin) Epoxy equivalent (278g / eq)) • rubber particle dispersion liquid epoxy resin (manufactured by Nippon Shokubai "BPA3 28" primary particle diameter: square. The acrylic resin particles having a two-layer structure of 3 μm contained a composition of 17% by weight in an epoxy equivalent of 185 bisphenol A type epoxy resin. Epoxy equivalent (23 0g/eq)) • Liquid epoxy resin (GOT manufactured by Nippon Kayaku Co., Ltd.: o-toluidine diglycidylamine, epoxy equivalent (135 g/eq)) (B) phenoxy Resin ・Japan Epoxy Resins YL7213-35M (weight average molecular weight 35,000) solid content 35 weight solution (C) hardener / epoxy resin latent accelerator ("------- ” • Ionic Liquid Hardener (“TBP/N-Ac-gly”, N-Ethyl Glycinate Tetrabutyl Squamous Salt) (D) Hygroscopic Metal Oxide • Burned Dolomite: Yoshizawa Lime Company The "light burnt dolomite" is used for wet pulverizer MEK cement (solid weight is 40% by weight, average particle size: -40 - 201208169 0. 8 7 μιη ) (Ε) Inorganic 塡 filling material • Talc: MEK cement for wet pulverization “D_600” manufactured by Japan Talc Co., Ltd. (solid weight: 3〇% by weight, average particle size: 〇·72μιη) (F) surface Treatment agent, stearic acid (G) coupling agent, decane coupling agent: "ΚΒΜ-4〇3" (3-glycidoxypropyltrimethoxydecane) manufactured by Shin-Etsu Chemical Co., Ltd. [Measurement method] Next, the measurement method will be described. . [Adhesion between the support and the resin composition layer] Two sheets of the model (width 5 mm, length 50 mm, thickness 50 μm) were prepared, and the resin composition layer on the substrate was superposed on one surface of the first film foil ( Width 4〇mm, length 5〇mm) 'With a vacuum laminator, the temperature is 80. (:, the conditions of the pressure lkgf/cm2 (9·8χ 1 〇 4Pa) were laminated. The substrate was peeled off, and two aluminum foils were superposed on the exposed resin composition layer, and laminated under the same conditions. A test piece having a three-layer structure of a resin composition layer and an aluminum foil. The test piece was heat-hardened under conditions of 1 1 、, 3 〇 minutes, and then cut into -41 - 201208169 into a rectangular test piece having a width of 10 mm and a length of 50 mm. The T-peel test method measures the long peeling force of the test piece). [Evaluation Method] Next, the evaluation method will be described. [Evaluation of moisture permeability resistance] The organic E L device was evaluated for moisture permeability resistance at a temperature of 60 ° C / 90% R Η. The state of the initial (0 hour) and degree of relative change was evaluated by the state of the shrinkage of the light-emitting area of the film which is resistant to moisture permeability. In other words, the shrinkage or the word product is reduced, the brightness of the light-emitting portion is increased, and the relative change rate for the flawless brightness is increased. In addition, the brightness system was measured at 2 mA), and the average enthalpy was calculated. The relative change price is 〇, and the relative change rate is 1.  When it is 1 or more, evaluation| [Evaluation of damage resistance of components] The degree of damage of the organic EL elements was evaluated by the driving voltage. When the dark current 値 is less than 2 μA, the evaluation is X. The curable resin composition varnishes A to E in the following Table 1 were prepared in the order shown below. The name shown in Table 1 is based on JIS K-6 8 54 [Adhesive force in the direction (1 hour under the environment, from the organic EL element and DS (light spot after 1000 hours of bright DS), the light-emitting surface: The initial state of the trap is driven by a constant current (the rate is less than 1). At 1 o'clock, the dark current of 3 V is evaluated as 〇, in 〇. 2μΑ to : The composition of the composition of the ^ material mix -42 - 201208169 number of parts by weight. (Production Example 1) A mixture of a solid epoxy resin ("HP7200H" manufactured by Die Co., Ltd.) dissolved in a phenoxy resin (MEK solution of 35 wt% of a solid content of "YL7213- 3 5M" manufactured by Japan Epoxy Resins Co., Ltd.) was prepared and dissolved. In the mixed solution, a rubber fine particle dispersion liquid epoxy resin ("BPA328" manufactured by Nippon Chemical Co., Ltd.), a liquid epoxy resin ("GOT" manufactured by Nippon Kayaku Co., Ltd.), and a potential for epoxy resin are added to the mixed solution. Sex hardening accelerator ("U-CAT3 5 02T" manufactured by Sail-apro Co., Ltd.), decane coupling agent ("KBM-403" manufactured by Shin-Etsu Chemical Co., Ltd.), ionic liquid hardener (tetrabutyl N-acetylglycinate) The money salt) and MEK were uniformly dispersed using a high-speed rotary mixer to obtain varnish A. (Production Example 2) A mixture A in which a solid epoxy resin ("HP7200H" manufactured by DIC Corporation) was dissolved in a phenoxy resin (MEK solution of 35 wt% of a solid content of "YL7213-3 5M" manufactured by Japan Epoxy Resins Co., Ltd.) was prepared. . Further, stearic acid was added to the MEK dope (solid content: 40% by weight) of the fired dolomite (manufactured by Yoshizawa Lime Co., Ltd.) to prepare a mixture B. Blending mixture A, mixture B, talc (D-600 from Japan Talc Co., Ltd. for wet pulverization, 30% by weight of 2MEK cement), and rubber microparticle dispersion liquid epoxy resin ("BPA3" manufactured by Nippon Shokubai Co., Ltd. 28"), a latent curing accelerator for epoxy resin ("U-CAT3502T" manufactured by San-Apro Co., Ltd., Ltd.), liquid epoxy resin ("GOT" manufactured by Nippon Kayaku Co., Ltd.), decane coupling agent ("KBM-403" manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed using an ultra-high-speed vacuum emulsifier type mixer (manufactured by PRIMIX Co., Ltd.). An ionic liquid hardener (N-acetic acid glycine tetrabutyl quaternary salt) was added thereto and uniformly dispersed using a high-speed rotary mixer to obtain a varnish B. (Production Example 3) The same method as the varnish A of Production Example 1 was carried out except that talc (manufactured by Nippon Talc Co., Ltd. "D-600" was wet-pulverized, and solid content of 30% by weight of MEK cement) was added. The formulation table of Table 1 modifies varnish C. (Production Example 4) The varnish D was prepared in accordance with the preparation table of the following Table 1 by the same method as the varnish B of Production Example 2. (Production Example 5) The varnish E was prepared in accordance with the preparation table of the following Table 1 by the same method as the varnish B of Production Example 2. (Test Examples 1 to 3) The respective resin composition layers produced by the varnishes B, D, and E were measured for the adhesion to the support. The results are shown in Table 2. From the results of Table 2, it was found that the resin composition layer of the film of the present invention was adjusted to have a talc of -44 to 201208169, and the adhesion of the resin composition layer to the support was greatly improved. (Test Examples 4 to 6) The varnish A was uniformly applied to a release-treated surface of a PET film (thickness: 38 μm) treated with an alkyd-based release agent using a die coater to form a dried resin composition layer. The thickness was 10 μm, and then dried at 60 to 95 ° C for 1 minute to obtain a protective resin composition layer A 1 . The molten resin of the protective resin composition layer A 1 had a melt viscosity of 6170 poise. The varnish A was uniformly applied to the release-treated surface of the PET film (thickness 38 μη!) treated with the alkyd-based release agent using a die coater, and the thickness of the dried resin composition layer was 1 Ομηι. Then, it was dried at 60 to 80 ° C for 6 minutes to obtain a protective resin composition layer A2. The protective resin composition layer A2 had a melt viscosity at 100 ° C of 1030 poise. The varnish B was uniformly applied to the release-treated surface of the PET film (thickness 38 μm) treated with the alkyd-based release agent using a die coater, and the thickness of the dried resin composition layer was 30 μm, and then The mixture was dried at 60 to 95 ° C for 12 minutes to obtain a moisture-absorbing resin composition layer B 1 . The moisture-absorbing resin composition layer B 1 had a melt viscosity at 100 ° C of 23,700 poise. The varnish B was uniformly applied to the release-treated surface of the PET film (thickness 38 μm) treated with the alkyd-based release agent using a die coater, and the thickness of the dried resin composition layer was 30 μm, and then 60 to 8 (TC dried for 6 minutes) to obtain a moisture-absorbing resin composition layer B2. The moisture-absorbing resin composition layer B2 had a melt viscosity of 4,460 poise at 100 ° C. In the combination shown in Table 3, a protective film of a PET film was attached. Composition layer -45- 201208169 and the moisture-absorbing resin composition layer with the PET film, the protective resin composition layer and the moisture-absorbing resin composition layer are opposed to each other, and the temperature is l〇〇°C by a vacuum laminator. Pressure lKg/cm2 ( 9. The conditions of 8xl04Pa) were laminated to prepare a film having a support and a protective resin composition layer and a moisture-absorbing resin composition layer (Test Examples 4 to 6). Then, the vicinity of the boundary between the protective resin composition layer and the moisture-absorbing resin composition layer of the cross section of each of the films produced by SEM (scanning electron microscope) was observed. Fig. 2 is a SEM photograph of a film cross section of Test Example 4, Fig. 3 is a SEM photograph of a film cross section of Test Example 5, and Fig. 4 is a SEM photograph of a film cross section of Test Example 6. The difference in the melt viscosity of the moisture absorbing resin composition layer and the protective resin composition layer in the film (the melt viscosity of the moisture absorbing resin composition layer - the melt viscosity of the protective resin composition layer) is the film of Test Example 4 being 17530 poise, test The film of Example 5 was 3 43 0 poise, and the film of Test Example 6 was - 1710 P〇iSe. In the film of Test Example 4 (Fig. 2), the interface between the moisture-absorbing resin composition layer (upper layer) and the protective resin composition layer (lower layer) was slightly horizontal, and the moisture-absorbing metal oxide layer was not found to be composed of the moisture-absorbing resin. (Upper layer) Move to the protective resin composition layer (lower layer). The film of Test Example 5 (Fig. 3) also showed that the hygroscopic metal oxide was moved from the moisture-absorbing resin composition layer (upper layer) to the protective resin composition layer (lower layer). On the film of Test Example 6 (Fig. 4), it was found that the hygroscopic metal oxide (light spot) 7 was moved from the moisture-absorbing resin composition layer (upper layer) to the protective resin composition layer (lower layer). Next, an organic EL device was produced by the following procedure. [Production of Organic EL Device] -46- 201208169 (Washing of ITO Substrate and Glass Plate for Sealing) The cleaning system of ITO (indium/tin oxide) substrate and sealing glass plate is in a quiet room of class 1 0000 and Level 100 in a quiet room. The washing solvent used was a semiconductor washing lotion and ultrapure water (18 Ω or more, total organic carbon (TOC): less than 10 ppb), and an ultrasonic cleaner and a UV washing machine were used. (Evaporation step) The degree of vacuum is 1~2xl〇-4Pa, and the evaporation rate is 1. 0~2. 〇A/s ’ in 30mm square (longitudinal 30mmx horizontal 30mm), 0. On a 7 mm thick glass substrate, Glass/SiO2 [53 nm] / ITO [55 nm] / PEDOT. PSS [40nm] / α-NPD [50nm] / Alq3 [50nm] / LiF [0. The composition of 8 nm]/Al [15 nm] was vapor-deposited to form an organic EL device. The area of the light-emitting portion is 1 〇χ 10 mm 2 . Also, "PEDOT. PSS" (poly(3,4-extended ethyldioxythiophene)) (short for polystyrene sulfonic acid), "α-NPD" system (double [N-(l-naphthyl)-N-benzene) Abbreviation for "diphenylamine" and "Alq3" is an abbreviation for tris(8-quinolinol)aluminum. (Enclosure of Organic EL Element) First, the film of the present invention was laminated on a glass plate of a sealing material (2 lmm x 28 mm > 0. 7mm thick). The lamination system was carried out by vacuum pressing at 80 ° C under a reduced pressure (1 X 1 0 - 3 Μ P a or less) for 20 seconds and pressing for 20 seconds. Next, the support is peeled off, and the resin composition exposed on the glass plate is -47-201208169. The material layer is in a toolbox having an oxygen concentration of 10 ppm or less and a water concentration of 10 〇pPm or less, at 80 ° C, 〇. Under the condition of 〇4 MPa load and reduced pressure (lxlO_3 MPa or less) for 20 seconds and pressing for 20 seconds, the substrate was formed into an organic EL element and vacuum-pressed. Thereafter, the film of the present invention was thermally hardened by heating on a hot plate at 10 ° C for 30 minutes in a kit. In the above resin composition layer, the protective resin composition layer and the moisture absorbing resin composition layer are laminated, and the laminate of the glass plate of the sealing material is laminated on the glass plate to the organic EL element. The laminate forming the substrate bonds the protective resin composition to the organic EL element forming substrate. (Example 1) The varnish A was uniformly applied to a release-treated surface of a PET film (thickness 38 μm) treated with an alkyd-based release agent using a die coater to adjust the thickness of the dried resin composition layer. ΙΟμιη was then dried at 60 to 95 ° C for 12 minutes to obtain a protective resin composition layer. Similarly, the varnish B was applied to a PET film treated with an alkyd-based release agent (a thickness of 38 μπ〇 on a release-treated surface using a die coater to make the thickness of the dried resin composition layer become 3 Ομηι, and then dried at 60 to 95 ° C for 12 minutes to obtain a moisture-absorbing resin composition layer. A protective resin composition layer with a PET film and a moisture-absorbing resin composition layer with a PET film to protect the resin composition layer Opposite to the moisture-absorbing resin composition layer, by a vacuum laminator, at a temperature of 8 〇t, a pressure of 1 kg/cm 2 (9. The film of the present invention was produced by laminating the conditions of 8 x 104 Pa. Protection -48- 201208169 The resin composition layer has a melt viscosity of 27500 poise at 80 ° C, and a moisture viscosity of 80 ° C at 63 ° Poise of the moisture-absorbing resin composition layer. Next, the PET film on the side of the moisture-absorbing resin composition layer of the film is peeled off, and the moisture-absorbing resin composition layer is laminated on the glass plate of the sealing material, and the PET film on the side of the protective resin composition layer is peeled off to make the protective resin. The composition layer was laminated on a glass plate having an organic EL element to fabricate an organic EL device. Fig. 1 (a) is a schematic cross-sectional view of the organic EL device produced in the form of a protective resin composition layer (inorganic chelating agent, on the surface of the organic EL element 4 on which the substrate 5 of the organic EL element 4 is formed. 3, moisture-absorbing resin composition layer (inorganic chelating agent, hygroscopic metal oxide-containing metal) 2 and sealing material (glass plate) 1 laminated in this order. (Comparative Example 1) The varnish B was uniformly applied to a release-treated surface of a PET film (thickness 38 μηα) treated with an alkyd-based release agent using a die coater to adjust the thickness of the dried resin composition layer. It was 40 μm, and then dried at 60 to 95 ° C for 12 minutes to obtain a resin composition layer. After the resin composition of the PET film was laminated on the glass plate of the sealing material, the PET film was peeled off, and the resin composition layer was laminated on a glass plate having an organic EL element to fabricate an organic EL device. Fig. 1 (b) is a schematic view showing a cross section of the organic EL device produced by the substrate, and a surface of the organic EL device 4 on which the organic EL device 4 is formed, according to a resin composition layer (inorganic chelating agent, containing The laminate of the hygroscopic metal oxide 2 and the sealing material (glass plate) 1 is laminated. -49-201208169 (Comparative Example 2) The varnish A was uniformly applied to a release-treated surface of a PET film (thickness: 38 μm) treated with an alkyd-based release agent using a die coater to form a dried resin. The thickness of the composition layer was 40 μm, and then dried at 60 to 95 ° C for 12 minutes to obtain a resin composition layer. After the resin composition of the PET film was laminated on the glass plate of the sealing material, the PET film was peeled off, and the resin composition layer was laminated on a glass plate having an organic EL element to fabricate an organic EL device. Fig. 1 (c) is a schematic view showing a cross section of an organic EL device produced by the substrate, and a surface of the organic EL element 4 on which the substrate 5 of the organic EL element 4 is formed, according to a resin composition layer (inorganic chelating agent, no The sequential laminate of the hygroscopic metal oxide 3 and the sealing material (glass plate) 1. (Comparative Example 3) A film was produced in the same manner as in Example 1 except that varnish C was used instead of varnish B. The PET film from the resin composition layer side of the varnish C of the film is peeled off, and the resin composition layer is laminated on the glass plate of the sealing material, and the PET film from the resin composition layer side of the varnish A is peeled off. This resin composition layer was laminated on a glass plate having an organic EL element to fabricate an organic EL device. Fig. 1 (d) is a schematic cross-sectional view of the organic EL device produced by the substrate, and the surface of the organic EL element 4 on which the substrate 5 of the organic EL element 4 is formed is formed by a resin composition layer (inorganic chelating agent, no Moisture-absorbing metal oxide) 3 -50- 201208169 'Resin composition layer (containing inorganic chelating agent, non-hygroscopic metal oxide) 封闭 and sealing material (glass plate) 1 laminated in this order. (Comparative Example 4) The varnish C was uniformly applied to a release-treated surface of a PET film (thickness 38 μηι) treated with an alkyd-based release agent using a die coater to adjust the thickness of the dried resin composition layer. It became 40 μm and then dried at 60 to 95 t for 12 minutes to obtain a resin composition layer. After the resin composition of the PET film was laminated on the glass plate of the sealing material, the PET film was peeled off, and the resin composition layer was laminated on a glass plate having an organic EL element to fabricate an organic EL device. Fig. 1 (e) is a schematic cross-sectional view of the organic EL device produced by the substrate, and the surface of the organic EL element 4 on which the substrate 5 of the organic EL element 4 is formed is composed of a resin composition layer (containing an inorganic chelating agent, The sequence laminate of the hygroscopic metal oxide 6 and the sealing material (glass plate) 1 is not included. The performance evaluation results of the organic EL devices of Example 1 and Comparative Examples 1 to 4 are shown in Table 4. -51 - 201208169 [Table i] Matching Table Manufacturing Example 1 Manufacturing Example 2 Manufacturing Example 3 Manufacturing Example 4 Manufacturing Example 5 BPA328 30 30 30 30 30 GOT 10 10 10 10 10 U-CAT3502T 3 3 3 3 3 KBM-403 1 1 1 1 1 HP7200H 60 60 60 60 60 YL7213-35M 60 60 60 60 60 Burnt dolomite slurry 40 40% by weight of MEK solution) 37. 5 37. 5 37. 5 stearic acid 0. 6 0. 6 0. 6 D-60 phenological slurry, 30% by weight of MEK solution) 50 50 33 17 MEK 25 20 TBP/N-Ac-gly 3 3 3 3 3 [Table 2] Determination of the adhesion force when talc is formulated Results Test Example 1 Test Example 2 Test Example 3 Adhesion between the support and the resin composition layer (N/cm) 3.  5 2.  4 1.  3 - 52 - 201208169 [Table 3] Group of Films Test Example 4 Test Example 5 Test Example 6 Hygroscopic resin composition layer B 1 B 2 B 2 Protective resin composition layer A 1 A2 A1 [Table 4] Organic EL device Performance Evaluation Example 1 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Relative change rate of moisture permeability resistance (after 500 hours) 0.  99 0. 99 1. 09 1. 02 1. 09 Relative change rate of brightness (after 1000 hours) 1. 03 1. 04 1. 24 1. 19 1. 28 evaluation 〇 〇 X X X component damage resistance dark current (μ A) 0. 18 0.  24 0. 11 0.  15 0. 15 Evaluation 〇 X 〇 〇 〇 In the first embodiment, the film of the present invention can be used to reduce the damage of the organic EL element, and to form a closed structure of the organic EL element which can form a high level of moisture in the organic EL element. Further, in the first embodiment, the moisture absorbing resin composition layer and the protective resin composition layer are hardened at a low temperature to block the organic EL element, so that not only the damage of the organic EL element in the sealing operation but also the heat of the organic EL element can be sufficiently suppressed. Degraded, and a highly reliable organic EL element device is obtained. Comparative Example 1 contained a large amount of hygroscopic metal oxide, and the EL element of the damage was -53-201208169. In Comparative Examples 2, 3, and 4, the hygroscopic metal oxide was not contained, and thus the organic EL element was not damaged by moisture. In Comparative Example 4, talc was contained, but it was difficult to move due to the flat ruthenium filling agent, and the damage resistance of the element was maintained. [Industrial Applicability] By providing a film having a support and a protective resin composition layer and a moisture-absorbing resin composition layer, a film having both moisture permeability resistance and resistance to damage of the element can be obtained. Highly reliable organic EL device. The present application is based on Japanese Patent Application No. 2009-182827, the entire contents of which are incorporated herein. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1] Fig. 1 (a) is a schematic sectional view of an organic EL device of the first embodiment, and Fig. 1 (b) to Fig. 1 (e) are organic ELs of Comparative Examples 1 to 4. Schematic cross-sectional view of the apparatus [Fig. 2] SEM photograph of the film section of Test Example 4. Fig. 3 is a SEM photograph of a cross section of a film of Test Example 5. 4] A SEM photograph of a film cross section of Test Example 6. -54- 201208169 [Explanation of main component symbols] 1 : Sealing material (glass plate) 2 : Hygroscopic resin composition layer (inorganic chelating agent, containing hygroscopic metal oxide) 3 : Protective resin composition layer (inorganic bismuth) Filler, no hygroscopic metal oxide) 4 : Organic EL element 5 : Substrate 6 : Resin composition layer (containing inorganic chelating agent, no hygroscopic metal oxide) 7 : Hygroscopic metal oxide -55-

Claims (1)

201208169 七、申請專利範圍: 1. 一種薄膜,其特徵係具有支持體、保護樹脂組成物 層及吸濕樹脂組成物層者。 2. 如申請專利範圍第1項之薄膜,其中吸濕樹脂組成 物層含有吸濕性金屬氧化物。 3 .如申請專利範圍第1或2項之薄膜,其中吸濕樹脂組 成物層含有無機塡充劑(但不含吸濕性金屬氧化物)者。 4. 如申請專利範圍第1或2項之薄膜,其中保護樹脂組 成物層含有無機塡充劑(但不含吸濕性金屬氧化物)者。 5. 如申請專利範圍第1或2項之薄膜,其係在設定爲 40t〜130°C之範圍之層合溫度下,吸濕樹脂組成物層與保 護樹脂組成物層之熔融黏度的差(吸濕樹脂組成物層之熔 融黏度-保護樹脂組成物層之熔融黏度)爲300poiSe〜 1OOOOOpoise ° 6. —種有機EL裝置,其特徵係具有如申請專利範圍第 1或2項之薄膜者。 7. —種有機EL裝置,其特徵係具有如申請專利範圍第 3項之薄膜者。 8·—種有機EL裝置,其特徵係具有如申請專利範圍第 4項之薄膜者。 9·—種有機EL裝置,其特徵係具有如申請專利範圍第 5項之薄膜者。 -56-201208169 VII. Patent application scope: 1. A film characterized by having a support, a protective resin composition layer and a moisture absorbing resin composition layer. 2. The film of claim 1, wherein the moisture absorbing resin composition layer contains a hygroscopic metal oxide. 3. The film according to claim 1 or 2, wherein the hygroscopic resin composition layer contains an inorganic chelating agent (but not a hygroscopic metal oxide). 4. The film according to claim 1 or 2, wherein the protective resin composition layer contains an inorganic chelating agent (but not a hygroscopic metal oxide). 5. The film of claim 1 or 2, which is a difference in melt viscosity between the moisture absorbing resin composition layer and the protective resin composition layer at a laminating temperature set to a range of 40 t to 130 ° C ( The melt viscosity of the moisture absorbing resin composition layer - the melt viscosity of the protective resin composition layer is 300 poiSe to 1 10000 poise ° 6. An organic EL device characterized by having a film as claimed in claim 1 or 2. 7. An organic EL device characterized by having a film as in the third item of the patent application. 8. An organic EL device characterized by having a film as in the fourth item of the patent application. 9. An organic EL device characterized by having a film as in the fifth item of the patent application. -56-
TW099126106A 2009-08-05 2010-08-05 Method for producing organic EL element sealing film TWI654783B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-182827 2009-08-05
JP2009182827 2009-08-05

Publications (2)

Publication Number Publication Date
TW201208169A true TW201208169A (en) 2012-02-16
TWI654783B TWI654783B (en) 2019-03-21

Family

ID=43544304

Family Applications (2)

Application Number Title Priority Date Filing Date
TW099126106A TWI654783B (en) 2009-08-05 2010-08-05 Method for producing organic EL element sealing film
TW105123897A TWI654785B (en) 2009-08-05 2010-08-05 Film

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW105123897A TWI654785B (en) 2009-08-05 2010-08-05 Film

Country Status (4)

Country Link
JP (2) JP5970814B2 (en)
KR (2) KR20120039753A (en)
TW (2) TWI654783B (en)
WO (1) WO2011016408A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083899A1 (en) * 2012-11-30 2014-06-05 三菱樹脂株式会社 Moistureproof film and organic electronic device obtained using same
TWI602863B (en) * 2014-03-27 2017-10-21 Lg化學股份有限公司 Encapsulation film and organic electronic device comprising the same
TWI610606B (en) * 2013-02-21 2018-01-01 味之素股份有限公司 Manufacturing method and semiconductor device for built-in wiring board of parts

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011084276B4 (en) * 2011-10-11 2019-10-10 Osram Oled Gmbh Encapsulation for an organic electrical component, an organic electronic component with the encapsulation and a method for the production of an organic electronic component with the encapsulation
WO2013073846A1 (en) 2011-11-14 2013-05-23 주식회사 엘지화학 Adhesive film and method for encapsulating organic electronic device using same
WO2013103281A1 (en) 2012-01-06 2013-07-11 주식회사 엘지화학 Encapsulation film
JPWO2013122055A1 (en) * 2012-02-15 2015-05-11 コニカミノルタ株式会社 Functional film, method for producing the same, and electronic device including the functional film
KR20140102996A (en) 2013-02-15 2014-08-25 삼성디스플레이 주식회사 Organic light emitting display apparatus and manufacturing method thereof
JPWO2014178254A1 (en) * 2013-04-30 2017-02-23 コニカミノルタ株式会社 SEALING FILM, ITS MANUFACTURING METHOD, AND FUNCTIONAL DEVICE SEALED WITH SEALING FILM
KR101642568B1 (en) * 2013-06-19 2016-07-25 주식회사 엘지화학 Encapsulatn film
EP2929934B1 (en) * 2013-11-21 2019-01-30 LG Chem, Ltd. Getter material and hygroscopic film comprising same
KR20150097359A (en) * 2014-02-18 2015-08-26 주식회사 엘지화학 Encapsulation film and organic electronic device comprising the same
KR102472818B1 (en) * 2014-11-28 2022-12-02 다이니폰 인사츠 가부시키가이샤 Adhesive composition and adhesive sheet using same
CN109096932B (en) 2017-06-29 2020-03-24 新和因特泰科株式会社 Adhesive film and organic electronic device comprising same
KR101862090B1 (en) * 2017-06-29 2018-06-29 신화인터텍 주식회사 Adhesive film and organic electric device including the same
KR102041934B1 (en) * 2018-05-23 2019-11-07 신화인터텍 주식회사 Adhesive film and organic electric device including the same
KR102085696B1 (en) * 2017-09-25 2020-03-06 신화인터텍 주식회사 Cover sheet and organic electric device including the same
JP2020158739A (en) 2019-03-28 2020-10-01 味の素株式会社 Resin composition and resin sheet
JP7207079B2 (en) 2019-03-28 2023-01-18 味の素株式会社 Resin sheet with support
KR20240012547A (en) * 2021-06-24 2024-01-29 가부시끼가이샤 레조낙 Method for producing conjugates

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357230A (en) * 1986-08-29 1988-03-11 大日本印刷株式会社 Sheathing material for el panel
JPH05182759A (en) 1991-12-26 1993-07-23 Pioneer Video Corp Organic el element
JP2001085155A (en) * 1999-09-13 2001-03-30 Matsushita Electric Ind Co Ltd Organic electroluminescent element and organic electroluminescent device using it
JP4752087B2 (en) * 2000-03-22 2011-08-17 カシオ計算機株式会社 Electroluminescent device
JP2002260847A (en) * 2001-02-27 2002-09-13 Bando Chem Ind Ltd Electroluminescence element sealing film and sealed organic electroluminescence element
JP2004119317A (en) * 2002-09-27 2004-04-15 Toshiba Corp Organic electroluminescent display device
JP3650101B2 (en) * 2003-02-04 2005-05-18 三洋電機株式会社 Organic electroluminescence device and manufacturing method thereof
JP2004335208A (en) * 2003-05-06 2004-11-25 Sumitomo Electric Ind Ltd El element and sealing film for el element
JP2004006417A (en) * 2003-08-22 2004-01-08 Hitachi Chem Co Ltd Connecting element and connection structure of electrode using this
JP5196703B2 (en) * 2004-01-15 2013-05-15 デクセリアルズ株式会社 Adhesive film
JP4780275B2 (en) 2004-09-06 2011-09-28 株式会社スリーボンド Organic EL element sealing material
CN101128945A (en) * 2005-02-21 2008-02-20 共同印刷株式会社 Adsorption film and organic EL device
JP2007134321A (en) * 2005-10-14 2007-05-31 Matsushita Electric Ind Co Ltd Light emitting apparatus, method for manufacturing same, exposure apparatus, and image forming apparatus
KR100838073B1 (en) * 2005-12-30 2008-06-13 삼성에스디아이 주식회사 Organic light emitting device and manufacturing method thereof
JP2007320153A (en) * 2006-05-31 2007-12-13 Optrex Corp Water-capturing member
JP4861206B2 (en) * 2007-01-26 2012-01-25 パナソニック電工株式会社 ORGANIC ELECTROLUMINESCENT LIGHT EMITTING DEVICE AND ORGANIC ELECTROLUMINESCENT LIGHTING DEVICE
JP4977548B2 (en) * 2007-07-31 2012-07-18 住友化学株式会社 Organic electroluminescence device and manufacturing method thereof
JP2009090633A (en) * 2007-09-20 2009-04-30 Fujifilm Corp Gas-barrier film, its manufacturing method, and electronic device using gas-barrier film
JP5348869B2 (en) * 2007-10-17 2013-11-20 小松精練株式会社 Hot melt type member for organic electronic device, barrier film sealing member, organic electronic device sealing panel using them
KR20090065920A (en) * 2007-12-18 2009-06-23 엘지전자 주식회사 Organic light emitting display device
US8846169B2 (en) * 2007-12-28 2014-09-30 3M Innovative Properties Company Flexible encapsulating film systems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083899A1 (en) * 2012-11-30 2014-06-05 三菱樹脂株式会社 Moistureproof film and organic electronic device obtained using same
TWI610606B (en) * 2013-02-21 2018-01-01 味之素股份有限公司 Manufacturing method and semiconductor device for built-in wiring board of parts
TWI602863B (en) * 2014-03-27 2017-10-21 Lg化學股份有限公司 Encapsulation film and organic electronic device comprising the same
US10103353B2 (en) 2014-03-27 2018-10-16 Lg Chem, Ltd. Encapsulation film and organic electronic device comprising the same

Also Published As

Publication number Publication date
JPWO2011016408A1 (en) 2013-01-10
KR102121724B1 (en) 2020-06-11
KR20180021903A (en) 2018-03-05
WO2011016408A1 (en) 2011-02-10
JP2016207661A (en) 2016-12-08
JP5970814B2 (en) 2016-08-17
JP6376180B2 (en) 2018-08-22
TW201639215A (en) 2016-11-01
TWI654783B (en) 2019-03-21
KR20120039753A (en) 2012-04-25
TWI654785B (en) 2019-03-21

Similar Documents

Publication Publication Date Title
TW201208169A (en) Film
TWI504662B (en) Resin composition
KR102522727B1 (en) Resin composition for sealing
JP5768718B2 (en) Resin composition
WO2017057708A1 (en) Resin composition for sealing
KR102008550B1 (en) Curable resin composition, resin composition, resin sheet formed by using said curable resin composition and resin composition, and hardener for said curable resin composition and resin composition
TWI473854B (en) Resin composition
JP5577667B2 (en) Resin composition
JP6821985B2 (en) Resin composition for sealing
TWI725113B (en) Thermosetting resin composition for sealing and sheet for sealing
TWI407611B (en) Film for sealing organic el element and sealed structure of organic el element
TW202134387A (en) Sealing agent, sealing sheet, electronic device, and perovskite type solar cell
WO2015147097A1 (en) Sealing material, sealing sheet, method for sealing organic device and organic el element
JP7268596B2 (en) Encapsulation manufacturing method