TW201207912A - Bonded crystal and method for bonding crystals - Google Patents

Bonded crystal and method for bonding crystals Download PDF

Info

Publication number
TW201207912A
TW201207912A TW99126543A TW99126543A TW201207912A TW 201207912 A TW201207912 A TW 201207912A TW 99126543 A TW99126543 A TW 99126543A TW 99126543 A TW99126543 A TW 99126543A TW 201207912 A TW201207912 A TW 201207912A
Authority
TW
Taiwan
Prior art keywords
crystal
bonding
bond
crystals
refractive index
Prior art date
Application number
TW99126543A
Other languages
Chinese (zh)
Inventor
Shyuan-Jeng Ho
Bing-Jung Chen
Long-Jang Hu
Original Assignee
Alpha Crystal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpha Crystal Technology Corp filed Critical Alpha Crystal Technology Corp
Priority to TW99126543A priority Critical patent/TW201207912A/en
Publication of TW201207912A publication Critical patent/TW201207912A/en

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

A bonded crystal and a method for bonding crystals are disclosed. The bonded crystal is formed by bonding at least two crystals each with at least one bonding surface, wherein the lattices and the crystal axes are aligned. The bonding surfaces have a polymer adhesive with a refractive index close to the refractive index of the crystal.

Description

201207912 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明係關於一種晶體接合物及其接合方法,特别木 種能提高晶體材料之利用率及晶圓切割研磨製輕i 效率的晶體接合物及其接合方法。 【先前技術】 [0002] 各種晶體材料廣泛應用於半導體、通訊及光電元件製移 以作為基板材料。一般晶體材料晶格具有特定方向性 利於各種製程實施加工提高製程良率。晶體材科〆知係 於1¾溫爐中進行晶棒生長製造而來,並經晶棒切片 磨及拋光等程序形成作為基板材料的晶圓。不適晶魏讨 料受限於晶體或晶棒本身品質問題, 内部常存在有例如 微氣泡(Micro-bubble)、小角度晶界(Smal1 angle grain boundary)及微崩裂(Micro-Crack 〇r Ml一 Cr〇〜chipPing)等缺陷,當晶體内缺陷比例過高時’缺 陷比例過高的部份必琿切除,而將原先的晶棒切成二段 或數段相對較短晶棒’若晶棒長度仍足可利用,則勢必 、要增如晶棒加工的次數,如此將會影響晶圓切割研磨 的成本及加工效率。 [0003] % Μ 此’本發明提出一種晶體接合物及其接合方法以 將曰曰體内部缺陷過多之部分切除後,再將晶體接合’或 將已切除之尺寸不足之晶體接合,藉此提高晶體材料之 】用率’並可因此提高晶體材料在晶圓切割研磨製程之 加工效率’亦可降低製作晶圓之加工成本。 【發明内容】 099126543 表單坞號A〇l01 第3頁/共11頁 201207912 [0004] 本發明的主要目的在於提供一種晶體接合物及其接合方 法,以將尺寸不足之晶體接合,皆此可減少加工次數及 耗材耗費,以降低加工成本,接合之晶體可增加晶體使 用率,避免浪費資源。 [0005] 根據上述目的,本發明一實施例提供一種晶體接合方法 ,包含以下步驟。首先提供至少二分別具有至少一接合 面之晶體,該接合面上具有一用於黏接之高分子膠,該 高分子膠之折射率約等於該晶體之折射率。接著將該晶 體置於一平行塊上並對準該晶體之晶格或晶體轴向以進 行接合。 [0006] 本發明另一實施例提供一種晶體接合物,此晶體接合物 係由至少二分別具有至少一接合面之晶體接合而成,該 晶體之晶格或晶體軸向為彼此對準。晶體包含單晶晶體 、多晶晶體或非晶晶體。此晶體之截面可為圓形或任意 多邊形,且該晶體係經對準後之角度偏差值為S0.3度 以内。 【實施方式】 [0007] 以下將詳述本案的各實施例,並配合圖式作為例示。除 了這些詳細描述之外,本發明還可以廣泛地實行在其他 的實施例中,任何所述實施例的輕易替代、修改、等效 變化都包含在本案的範圍内,並以之後的專利範圍為準 。在說明書的描述中,為了使讀者對本發明有較完整的 了解,提供了許多特定細節;然而,本發明可能在省略 部分或全部這些特定細節的前提下,仍可實施。此外, 眾所周知的程序步驟或元件並未描述於細節中,以避免 099126543 表單編號A0101 第4頁/共11頁 0992046552-0 201207912 造成本發明不必要之限制。 第一圖顯示本發明一實施例之晶體接合物示意圖。晶體 11與12於接合面15接合形成晶體接合物,此晶體接合物 具有圓形截面。第二圖與第三圖分別顯示本發明二實施 例之晶體接合物示意圖。參考第二圖所示,晶體21與22 於接合面25接合形成晶體接合物,此晶體接合物具有研 磨平邊23。參考第三圖所示,晶體31與32於接合面35接 合形成晶體接合物,此晶體接合物具有V型平邊33。 [0008] Ο ο [0009] 本發明實施例用於接合的晶體包含單晶(Single crys-tal )晶體、多晶(Polycrysta 11 ine )晶體及非晶( Amorphous)晶體。單晶晶體包含藍寶石單晶棒,多晶 晶體包含多晶矽晶體及非晶晶體包含非晶矽晶體。晶體 接合形成的晶體接合物,可使用在半導體、通訊及光電 元件製程以作為基板材料,例如發光二極體基板、半導 體元件基板及通訊半導體元件基板。晶體接合物之截面 除可為圓形之外,亦可為任意多邊形。晶體接合物包含 研磨平邊或V型平邊以作為晶體接合時晶格排列或晶體 軸向之對齊基準。 第四圖顯示本發明一實施例之晶體接合物接合示意圖。 晶體41與42置於一平行塊44並以研磨平邊43作為晶體接 合時晶格排列或晶體軸向的對準依據,並以接合面45進 行接合。第四圖中晶體之研磨平邊並非絕對必要,無研 磨平邊或V型平邊之晶體亦可以平行塊接合。接合晶體 之長度可為約卜50mm之間,晶體接合物長度可為約 150〜200mm之間。接合晶體之晶格方向以平邊記號作為 099126543 表單編號A0101 第5頁/共11頁 0992046552-0 201207912 基準,經對準後每個待接合之晶體方向性與角度偏差值 於S 0. 3度以内則進行接合。接合晶體相接之接合面45 可經研磨拋光將平坦度控制在約卜5um以下,使二欲接 合之晶體的接合面45皆達到此平坦度。接合晶體相接之 接合面塗佈用於黏接之助劑、高分子膠,高分子膠包含 有機高分子膠。高分子膠必須具有與接合晶體接近的折 射率。接合物相接之接合面亦可不使用助劑或高分子膠 幫助晶體固定,而於欲接合之晶體經對齊晶格排列或晶 體軸向之後,以接合晶體之0. 6倍熔點以下溫度利用表面 平坦度控制進行接合動作。當然接合晶體亦可於相接之 接合面上先塗佈黏接助劑、高分子膠後,以接合晶體之 0. 6倍熔點以下溫度進行接合動作。以藍寶石晶體為例, 藍寶石之熔點溫度高於約2000°C至2050°C,因此藍寶石 晶體接合以1200°C以下溫度進行接合。本實施例中省略 的習知特徵可應用任何相關習知技術加以實施,任何熟 悉本領域技術者均能根據一般技術水準實施本發明。 [0010] 以上所述僅為本發明之較佳實施例而已,並非用以限定 本發明之申請專利範圍;凡其他未脫離發明所揭示之精 神下所完成之等效改變或修飾,均應包含在下述之申請 專利範圍内。 【圖式簡單說明】 [0011] 第一圖顯示本發明一實施例之晶體接合物示意圖。 第二圖與第三圖分別顯示本發明二實施例之晶體接合物 示意圖。 第四圖顯示本發明一實施例之晶體接合物接合示意圖。 099126543 表單編號A0101 第6頁/共11頁 0992046552-0 201207912 【主要元件符號說明】 [0012] 11 晶體 1 2晶體 15晶體接合面 21晶體 22晶體 23研磨平邊 2 5接合面 31晶體 3 2晶體 33V型平邊 35接合面 41晶體 42晶體 43研磨平邊 44平行塊 4 5接合面 〇 099126543 表單編號A0101 第7頁/共11頁 0992046552-0201207912 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a crystal conjugate and a bonding method thereof, and particularly, a wood species capable of improving the utilization of a crystal material and a crystal of wafer cutting and polishing efficiency Bond and its joining method. [Prior Art] [0002] Various crystal materials are widely used for semiconductor, communication, and photovoltaic element migration as substrate materials. Generally, the crystal material crystal lattice has a specific directionality, which is advantageous for processing in various processes to improve the process yield. The crystal material is known to be produced by ingot growth in a 13⁄4 oven, and a wafer as a substrate material is formed by a process such as ingot polishing and polishing. Discomfort of crystals is limited by the quality of the crystal or the ingot itself. Micro-bubble, small-scale grain boundary and micro-cracking (Micro-Crack 〇r Ml- Defects such as Cr〇~chipPing), when the ratio of defects in the crystal is too high, the part with too high a defect ratio must be cut off, and the original ingot is cut into two or a few relatively short ingots. If the length is still sufficient, it is bound to increase the number of times the ingot is processed, which will affect the cost and processing efficiency of wafer cutting and polishing. [0003] % Μ This invention proposes a crystal conjugate and a bonding method thereof for removing a portion of an internal defect of a corpus call, and then joining the crystal or joining the crystal having a reduced size, thereby improving The utilization rate of the crystal material 'and thus the processing efficiency of the crystal material in the wafer dicing process' can also reduce the processing cost of the wafer. SUMMARY OF THE INVENTION 099126543 Form Dock Number A〇l01 Page 3 of 11 201207912 [0004] A primary object of the present invention is to provide a crystal bond and a bonding method thereof for joining crystals of insufficient size, thereby reducing The number of processing and consumables are used to reduce the processing cost. The bonded crystals can increase the crystal usage rate and avoid wasting resources. In accordance with the above objects, an embodiment of the present invention provides a crystal bonding method including the following steps. First, at least two crystals each having at least one bonding surface are provided, and the bonding surface has a polymer adhesive for bonding, and the refractive index of the polymer gel is approximately equal to the refractive index of the crystal. The crystal is then placed on a parallel block and aligned with the crystal lattice or crystal axis of the crystal for bonding. Another embodiment of the present invention provides a crystal bond formed by joining at least two crystals each having at least one joint surface, the crystal lattices or crystal axes of the crystal being aligned with each other. The crystal contains a single crystal crystal, a polycrystalline crystal or an amorphous crystal. The cross section of the crystal may be a circle or an arbitrary polygon, and the angular deviation of the crystal system after alignment is within S0.3 degrees. [Embodiment] Each embodiment of the present invention will be described in detail below, with reference to the drawings as an example. In addition to the detailed description, the invention may be widely practiced in other embodiments, and any alternatives, modifications, and equivalent variations of the described embodiments are included in the scope of the present invention, and the scope of the following patents is quasi. In the description of the specification, many specific details are set forth in the description of the invention. In addition, well-known program steps or elements are not described in detail to avoid 099126543 Form No. A0101 Page 4 of 11 0992046552-0 201207912 The invention is not necessarily limited. The first figure shows a schematic view of a crystal bond of an embodiment of the present invention. The crystals 11 and 12 are joined at the joint surface 15 to form a crystal joint having a circular cross section. The second and third figures respectively show schematic views of the crystal conjugate of the second embodiment of the present invention. Referring to the second figure, crystals 21 and 22 are joined at joint surface 25 to form a crystal bond having a textured flat edge 23. Referring to the third figure, crystals 31 and 32 are joined at joint surface 35 to form a crystal bond having a V-shaped flat edge 33. [0009] The crystal used for bonding in the embodiment of the present invention includes a single crystal (Single crys-tal) crystal, a polycrystalline (Polycrysta 11 ine) crystal, and an amorphous (Amorphous) crystal. The single crystal crystal contains a sapphire single crystal rod, the polycrystalline crystal contains polycrystalline germanium crystals, and the amorphous crystal contains amorphous germanium crystals. The crystal junction formed by the crystal bonding can be used in semiconductor, communication, and optoelectronic device processes as substrate materials such as a light-emitting diode substrate, a semiconductor device substrate, and a communication semiconductor device substrate. The cross section of the crystal bond may be any polygonal shape in addition to the circular shape. The crystal bond comprises a polished flat edge or a V-shaped flat edge as a reference for the alignment of the crystal lattice or the alignment of the crystal axis during crystal bonding. The fourth figure shows a schematic view of the bonding of a crystal bond according to an embodiment of the present invention. The crystals 41 and 42 are placed in a parallel block 44 and the polishing flat edge 43 is used as a basis for lattice alignment or crystal axial alignment when the crystal is bonded, and joined by the joint surface 45. The polishing flat side of the crystal in the fourth figure is not absolutely necessary, and the crystal without the grinding flat edge or the V-shaped flat side can also be joined in parallel blocks. The length of the bonded crystal may be between about 50 mm and the length of the crystal bond may be between about 150 and 200 mm. The lattice direction of the bonded crystal is defined by the flat edge mark as 099126543 Form No. A0101 Page 5 of 11 0992046552-0 201207912 The directionality and angular deviation of each crystal to be joined after alignment are at S 0. 3 degrees Engage within the inside. The bonding surface 45 where the bonding crystals are bonded can be polished to a flatness of about 5 μm or less, so that the bonding faces 45 of the crystals to be joined can reach the flatness. The bonding surface of the bonded crystal is coated with an auxiliary agent for bonding, a polymer glue, and the polymer glue comprises an organic polymer glue. The polymer glue must have a refractive index close to that of the bonded crystal. The surface of the junction of the junctions may be used without the use of an auxiliary agent or a polymer gel to assist the crystal, and after the crystals to be bonded are aligned with the crystal lattice or the crystal axis, the surface of the crystal is used. The flatness control performs the joining action. Of course, the bonding crystal may be bonded to the bonding surface, and then the bonding agent and the polymer glue may be applied, and the bonding operation may be performed at a temperature equal to or less than 0.6 times the melting point of the bonding crystal. In the case of a sapphire crystal, the melting temperature of the sapphire is higher than about 2,000 ° C to 2050 ° C, so that the sapphire crystal is joined at a temperature of 1200 ° C or lower. The conventional features omitted in the present embodiment can be implemented by any relevant conventional techniques, and anyone skilled in the art can implement the present invention according to the general technical level. The above description is only for the preferred embodiment of the present invention, and is not intended to limit the scope of the claims of the present invention; any equivalent changes or modifications which are not included in the spirit of the invention should be included. It is within the scope of the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS [0011] The first figure shows a schematic view of a crystal bond according to an embodiment of the present invention. The second and third figures respectively show schematic views of the crystal conjugate of the second embodiment of the present invention. The fourth figure shows a schematic view of the bonding of a crystal bond according to an embodiment of the present invention. 099126543 Form No. A0101 Page 6 / Total 11 Page 0992046552-0 201207912 [Description of Main Components] [0012] 11 Crystal 1 2 Crystal 15 Crystal Joint Surface 21 Crystal 22 Crystal 23 Polished Flat Edge 2 5 Joint Surface 31 Crystal 3 2 Crystal 33V type flat side 35 joint surface 41 crystal 42 crystal 43 grinding flat side 44 parallel block 4 5 joint surface 〇 099126543 Form No. A0101 Page 7 / Total 11 Page 0992046552-0

Claims (1)

201207912 七、申清專利範圍: 1 種晶體接合方法,包含: 提供至少二分別具有至少一接合面之晶體,該接合面上具 有-用於黏接之高分子膠,該高分子膠之折射率約等於該 晶體之折射率;及 將該晶體置於-平行塊上並對準該晶體之晶格或晶體轴向 以進行接合。 如申明專利範圍第1項的晶體接合方法,其中該晶體包含 —藍寶石晶體。 如申β專利範圍第1.項:的.晶體接合方法,其中該晶體具有 —研磨平邊或一V型平邊作為該晶體接合時晶格或晶體軸 向的對準依據。 .如申明專利範圍第1項的晶體接合方法,其中該晶體係經 對準後角度偏差值於$〇. 3度以内進行接合。 5 ·如申請專利範圍第1項的晶體接合方法,其中該晶體之該 接合面係經研磨拋光使其平坦度為約1 _ 5um。 6.—種晶體接合物,包含: 由至少二分別具有至少一接合面之晶體接合而成,該晶體 之晶格或晶體軸向為彼此對準。 7 .如申請專利範圍第6項的晶體接合物,其中該晶體包含單 晶(Single crystal )晶體、多晶( Polycrystalline)晶體或非晶(Amorphous)晶體。 8 .如申請專利範圍第6項的晶體接合物,其中該晶體係用於 作為發光二極體基板、半導體元件基板或通訊半導體元件 基板。 099126543 表單編號A0101 第8頁/共11頁 0992046552-0 201207912 9 .如申請專利範圍第6項的晶體接合物,其中該晶體之截面 包含圓形或任意多邊形。 10 .如申請專利範圍第6項的晶體接合物,其中該晶體係經對 準後之角度偏差值為$0.3度以内。 11 .如申請專利範圍第6項的晶體接合物,其中該晶體之間具 有一折射率約等於該晶體之折射率的高分子膠。 12 .如申請專利範圍第6項的晶體接合物,其中該晶體接合物 係以該晶體之0. 6倍熔點以下溫度進行接合。 ❹ 099126543 表單編號A0101 第9頁/共11頁 0992046552-0201207912 VII. Shenqing Patent Range: A crystal bonding method comprising: providing at least two crystals each having at least one bonding surface, the bonding surface having - a polymer glue for bonding, a refractive index of the polymer glue Approximately equal to the refractive index of the crystal; and placing the crystal on a parallel block and aligning the crystal lattice or crystal axis of the crystal for bonding. A crystal joining method according to claim 1, wherein the crystal comprises - sapphire crystal. The crystal bonding method of claim 1, wherein the crystal has a polished flat side or a V-shaped flat side as a basis for alignment of the crystal lattice or the crystal axis when the crystal is bonded. The crystal joining method of claim 1, wherein the crystal system is joined by an angular deviation value after alignment of less than 3 度. 5. The crystal joining method of claim 1, wherein the joint surface of the crystal is ground and polished to have a flatness of about 1 _ 5 um. 6. A crystal bond comprising: joining at least two crystals each having at least one bonding surface, the crystal lattice or crystal axis of the crystal being aligned with each other. 7. The crystal conjugate of claim 6, wherein the crystal comprises a single crystal crystal, a polycrystalline crystal or an amorphous crystal. 8. The crystal bond of claim 6, wherein the crystal system is used as a light-emitting diode substrate, a semiconductor element substrate, or a communication semiconductor element substrate. 099126543 Form No. A0101 Page 8 of 11 0992046552-0 201207912 9. The crystal bond of claim 6, wherein the cross section of the crystal comprises a circle or an arbitrary polygon. 10. The crystal conjugate of claim 6, wherein the crystal system has an angular deviation of within ±0.3 degrees after alignment. 11. The crystal bond of claim 6, wherein the crystal has a polymer gel having a refractive index approximately equal to a refractive index of the crystal. 12. The crystal conjugate of claim 6, wherein the crystal conjugate is joined at a temperature below 0.6 times the melting point of the crystal. ❹ 099126543 Form No. A0101 Page 9 of 11 0992046552-0
TW99126543A 2010-08-09 2010-08-09 Bonded crystal and method for bonding crystals TW201207912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99126543A TW201207912A (en) 2010-08-09 2010-08-09 Bonded crystal and method for bonding crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99126543A TW201207912A (en) 2010-08-09 2010-08-09 Bonded crystal and method for bonding crystals

Publications (1)

Publication Number Publication Date
TW201207912A true TW201207912A (en) 2012-02-16

Family

ID=46762361

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99126543A TW201207912A (en) 2010-08-09 2010-08-09 Bonded crystal and method for bonding crystals

Country Status (1)

Country Link
TW (1) TW201207912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454359B (en) * 2012-05-04 2014-10-01 Sino American Silicon Prod Inc Slicing device and manufacturing method of wafer using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454359B (en) * 2012-05-04 2014-10-01 Sino American Silicon Prod Inc Slicing device and manufacturing method of wafer using the same

Similar Documents

Publication Publication Date Title
KR102109668B1 (en) Light-emitting device and process for production thereof
EP2284872A3 (en) Method for cutting semiconductor substrate
TW200901365A (en) Method for making a chip with bonding agent
CN203371372U (en) Infrared detector wafer back thinning polishing device
WO2004021420A3 (en) Fabrication method for a monocrystalline semiconductor layer on a substrate
CN205004316U (en) Chip bonding cutting sheet
TW200539339A (en) Semiconductor device including semiconductor memory element and method for producing same
CN102514109A (en) Fixed and aligned cutting method of silicon carbide crystal
CN104551871A (en) Lithium tantalate wafer grinding method
US20090253245A1 (en) Wafer Bonding method and wafer structure
TW201207912A (en) Bonded crystal and method for bonding crystals
CN100400233C (en) Surface polishing method for protective side edge of group II-VI semiconductor material
US9165817B2 (en) Method of grinding substrate and method of manufacturing semiconductor light emitting device using the same
TW200301931A (en) Semiconductor wafer and method of manufacturing the same
CN103579106B (en) A kind of cutting-up method being applicable to small size workpiece
JP2011049384A (en) Method of manufacturing semiconductor device
JP2006012914A5 (en)
JP6327519B2 (en) Method for processing silicon carbide single crystal substrate and silicon carbide single crystal substrate with jig
CN102693902A (en) Process for the realization of islands of at least partially relaxed strained material
JP2011249523A (en) Wafer manufacturing method and wafer manufacturing apparatus
TWI401737B (en) Wafer cutting method
CN114530528A (en) LED chip preparation method
CN110459501A (en) A kind of reinforcing holding structure and preparation method thereof for disk to be thinned
CN206864473U (en) A kind of polysilicon chip of the micro- chamfering of low damaging layer
CN102646620B (en) Uniform axial force applying device for graphical heterogeneous bonding of silicon-based III-V epitaxial material