TW201207454A - Light-guide apparatus with micro-structure, and a backlight module and an LCD device having the same - Google Patents

Light-guide apparatus with micro-structure, and a backlight module and an LCD device having the same Download PDF

Info

Publication number
TW201207454A
TW201207454A TW100125351A TW100125351A TW201207454A TW 201207454 A TW201207454 A TW 201207454A TW 100125351 A TW100125351 A TW 100125351A TW 100125351 A TW100125351 A TW 100125351A TW 201207454 A TW201207454 A TW 201207454A
Authority
TW
Taiwan
Prior art keywords
light
layer
microstructure
reflective
light guiding
Prior art date
Application number
TW100125351A
Other languages
Chinese (zh)
Other versions
TWI418864B (en
Inventor
Jia-Jen Chen
yu-chun Tao
Yan-Zuo Chen
Hao-Xiang Lin
Chen-Yu Hsieh
Original Assignee
Entire Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entire Technology Co Ltd filed Critical Entire Technology Co Ltd
Publication of TW201207454A publication Critical patent/TW201207454A/en
Application granted granted Critical
Publication of TWI418864B publication Critical patent/TWI418864B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/30Making multilayered or multicoloured articles
    • B29C43/305Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/045Light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

A light-guide apparatus with micro-structure can accompany an optional edge light source to act as a backlight module of a LCD device. The light-guide apparatus comprises a light-distributing layer, a light-guiding layer and a reflective layer. The light-guiding layer has a light-introducing surface which allows entrance of lights from the edge light source. The reflective layer is to reflect lights back to the light-guiding layer. The upper surface of the light-distributing layer is a light-exiting surface which is perpendicular to the light-introducing surface and is to allow at least a portion of the lights in the light-guiding layer to leave the light-exiting surface. The reflective layer, the light-guiding layer and the light-distributing layer are manufactured integrally by a co-extrusion process so as to avoid possible existence of an air spacing between the reflective layer and the light-guiding layer. In addition, the upper surface of the reflective layer is a reflective surface which is formed with three-dimensional micro-structures. Such that, the light-guiding efficiency is increased, the existing light is more uniform, the brightness is more bright, the cost of backlight module is reduced, and the necessity of micro-lens module is omitted.

Description

201207454 六、發明說明: 【發明所屬之技術領域】 本發明是關於一種具微結構之導光裝置,尤指一種以 共押出製程一體成型製作且兼具有反射、均光與導光功能 的具微結構之導光裝置,其可搭配一側光源使用來構成一 顯示器的背光模組。 【先前技術】 導光板(Light Guide Plate)是顯示器背光模組中的 光導引媒介,主要是多數背光模組為側光型(Edge Type) ’藉由導光板導引侧向的光線由顯示器正面射出, 能提高面板輝度(luminance)及控制亮度均勻。 導光板的原理是利用光線進入導光板後產生光反 射,將光線傳至導光板的另一端,特別可利用導光板的一 側特定結構產生各個角度的擴散現象,將反射光導引至導 光板正面,折射率越大,其導光能力越好。另外,除了射 向正面的光線外,有些光線會由導光板底部之反射板再次 導入導光板。 如圖一所示,為習知技術如美國專利第7,1〇8,385號 (公告於西元2006年9月19日)所揭露的發光元件的光 源模組,其揭露一種導光板。其中,液晶面板57、擴散 膜56、菱鏡模組55、光源模組50、光射出的平面523, 包含導光板520與反射板524,光源模組50中電路板51 與反光層54,上述各元件形成一個背光模組5。 然而,習知技術導光板中各部元件的缺點,包括反射 201207454 片、導光板、擴散片、菱鏡片等,可歸納為如下表一: 表一:習知技術導光板中各部元件的缺點 項目 功能 缺點 反射板524 1·將光線反射回導光 板内,使光線再利 用。 1·與板材之間有空氣 層,增加光損耗,降 低光利用率。 2.增加背先模組成本。 導光板520 1.將光線由側向光源 導向正向光源。 1. 需利用網點或結構做 為光源導光元件,而 此元件有明顯亮線現 象’導致視覺效果不 佳。 2. 需擴散膜霧化亮線現 象及打散光線。使光 線均勻化。 擴散膜56 1. 霧化導光板亮線現 象0 2. 均勻化導光板光 線。 3. 保護菱鏡片刮傷。 1.增加背光模組成本。 菱鏡模組55 (BEF) 1.收斂、增亮。 1·設計難,加工不易, 增加背光模組成本。 2. 微結構易損壞、刮傷。 3. 與導光板微結構形成 重複加工現象。 如圖二所示,習知技術之導光板520在光線傳導過程 中,會面臨光損耗問題。為了在背光模組5增加反射光的 效果’習知技術會新增一反射板524,由於此習知的反射 板524與導光板520之間有空氣層525,將增加光581損 耗達8%左右’降低光利用率,並且會增加背光模組5製 程程序及成本。 201207454 此外’習知技術之導光板若是採取印刷導光板之技 術’則易因印刷導光板需經過網版、油墨、及網印技術等, 造成產品良率控制不佳及亮帶的缺失。如圖三所示,為習 知技術之導光板520之亮帶示意圖;於導光板520之出光 面上將會因出光不均勻而在其中央部分出現條狀最亮區 域582 (亦即亮線)、次亮區域583、以及最外圍之較暗區 域 584。 如上所述’習知技術由於導光板與板材之間有空氣層 而增加光損耗、背光模組成本較高、有明顯亮線現象、菱 鏡模組加工不易且微結構易損壞等缺失,而有進一步改良 之空間。 【發明内容】 本發明之主要目的是在於提供一種具微結構之導光 裝置及具有該導光裝置的背光模組與液晶顯示器,該導光 裝置為共押出製程之簡單之一體成型之三層複材結構,可 具有提升光之利用率、出光更為均勻、輝度更為增亮、降 低背光模組成本、不需菱鏡模組等優點。 為達上述之目的,本發明揭露了 一種具微結構之導光 裝置’可搭配一側光源使用來構成一顯示器的背光模組。 該導光裝置至少包括有:一均光層、一導光層及一反射 層。導光層係定義有一入光面,該入光面可供該側光源所 發出之一光自該入光面進入該導光層中。反射層可將該導 光層中射向該反射層之該光加以反射回該導光層。於均光 層較遠離該反射層之側的表面是一出光面,該導光層是位 6 201207454 於該反射層與該均光層之間。該出光面與該入光面垂直, 可供該導光層内之該光至少有一部分可自該出光面射 出。其中,該反射層、該導光層與該均光層三者為共押出 一體成型,該反射層與該導光層之間無空氣界面;並且, 於該導光層與該反射層之間係定義有一反射面,且於該反 射面上係設置有立體之一微結構。 於一較佳實施例中’該反射面之微結構的深寬比數據 係符合以下關係式: 45e<c〇rl(^k)<sinM(& ;並且’ nl<n2 ; 其中,H2是該反射面之微結構的深度、p2是該反 射面之微結構的寬度、nl是該均光層的折射率、且心是 該導光層的折射率。 於一較佳實施例中,該具微結構之導光裝置更符合至 少下列其中之一條件: 0.233^ (Η2/Ρ2) ^0.419 ; Ρ2值係介於8〇脾至25〇师之間; 反射面深寬比(Η2/Ρ2)值介於〇 2至0.319之間,且 均光層厚度tl與導光層厚度^的比值範圍為 l^tl/t2^29 ; 該反射面之微結構為非連續性之微結構,且兩相鄰微 結構之間距G值介於〇〜14mm。 於一較佳實_巾,該驗結構之導光裝置更包括 至少下列其中之一: 複數擴散奸,添加於該導光層中; 201207454 複數擴散粒子,添加於該均光層中; 於該出光面上設有立體之一微結構; 不同折射率之兩種塑料,混合於該反射層中; 複數反射粒子,添加於該反射層中;以及 可控制疏密變化之一粗糙面或一霧面,形成於該出光 面上。 【實施方式】 為了能更清楚地描述本發明所提出之具微結構之導 光裝置及具有該導光裝置之背光模組與液晶顯示器,以下 將配合圖式詳細說明之。 (一)本發明裝置(三層結構)之概述: 如圖四所示,本發明之具微結構之導光裝置1,特別 是指一種多合一(ALLINONE)的導光裝置,透過共押 出一體成型之整合性製程,在導光裝置之導光層與反射層 之間的反射面上形成立體之微結構,使得單一導光裝置 即可達成均光、導光與光反射的效果,可應用於任何側光 源2形式之大型面板,其導光裝置1之本體主要包含: 一微結構反射層11 ; 一導光層12 ;及 一微結構均光層13。 如圖四所示為本發明具微結構之導光裝置丨之本體 實施例之一。此具微結構之導光裝置丨為一簡單之一體成 型之三層複材(為共押出製程)之微結構導光裝置。 201207454 (二)本發明微結構反射層11 (下層)之概述·· 本發明之具微結構之導光裝置1的數個重要概念中 的其中之一,是利用反射面微結構的設計來造成由側 光源2所產生之光於導光裝置1内的反射現象,以取代 傳統網點方式來散佈光源;且該微結構係形成於反射層 U與導光層12之間的反射面上,進而取代反射板的使 用。其中’利用微結構均光層13之擴散粒子將線光源或 點光源形成面光源,並於均光層13與反射層11之微結 構相互對應’進而取代反射片的使用,達到反射、 導光及均光之效果。 藉由上述技術,本發明減少了因為反射片所產生的光 損耗’主要方式為與導光層12同時形成的反射片或是反 射層11。如圖五所示,本發明之具微結構之導光裝置i 利用在導光層12之一底側增加微結構以及一層反射層 Π ’與此導光裝置1同時形成,使得此具微結構之導光裝 置1之本體中的反射層11與導光層12間無空氣界面層。 由於本發明反射層11與導光層12板材之間無空氣層,與 圖一所示有空氣間隔的習知技術相較之下,本發明之具微 結構之導光裝置1可提昇光利用率,其微結構亦可作導 光層之反射與光擴散現象,同時達到反射與導光的效 果,可有效降低光損耗至4%以下。同時,由於本發明之 具微結構之導綠置1㈣程鋪化,故可減彡、導光裝置 貼膜程序、背光模組製程程序及成本。 9 201207454 而本發明之具微結構之導光裝置1的反射層11之較 佳實施例為: (1) 以不同折射率之兩種塑料進行混合、或是在反射 層塑料中添加少量之反射粒子的方式,來製作本發明之反 射層11。 (2) 若是以不同折射率之兩種塑料進行混合來製作反 射層11時,其不同折射率塑料之混合比例為7 : 3。 (3) 若是以添加反射粒子111的方式來製作反射層11 時,其反射粒子111折射率為2.2〜3.2,添加濃度小於〇.50/〇 重量百分比。 (4) 反射粒子粒徑hi介於ι_100μιη,最佳範圍為 4-50μιη。 (5) 反射層11本身塑料之折射率介於16_2 5。 (6) 反射層11與導光層12折射率差值介於0 054。 (二)本發明微結構均光層13 (上層)之概述:: 在本發明之具微結構之導光裝置丨的實施例中,更利 用微結構均光層13中所添加的複數微小擴散粒子131將 線光源或點光源形成面光源,達到均光與遮瑕的效果,藉 由折射率差提昇光利用率。 本發明之紐結構之導光裝置1的微結構均光層13 的較佳實施例可以為: ⑴在均光層13 +添加少量之擴散粒子⑶、或是針 對均光層13之4光面132絲面進行霧化處理。 201207454 (2)擴散粒子131與均光層13之塑料基材折射率差介 於 0.04<Δη <0.1。 (3)擴散粒子131粒徑介於2μιη〜ΙΟμιη。 (4) 均光層13之上表面(出光面132)粗糙度(Ra) 介於lMin<Ra<6nm,可提升輝度及均勻度。 (5) 均光層13本身塑料基材之折射率介於1424 63。 (四)本發明微結構: 在本發明之具微結構之導光裝置丨的實施例中,在 導光層12與反射層11相鄰接之表面(也就是導光層12 之底側面,或是反射層U之頂側面)係定義為—反射面。 本發明在此反射面上及(或)均光層13之上表面(出光 面132)上增加複數個微結構之設計。於本發明中每一 微結構之間距離為相等距離、非等距離或是交錯排 列之微結構。各個微結構可以是三維(例如:金字 塔)結構,各面具有不對稱或對稱的三角形、側面 不對稱或對稱之三角形結構、柱狀結構、弧形結構 等。較佳實施例如下: 反射面及(或)出光面之各個微結構之深寬比為 0.02〜0.8 ’ 1且’各個微結構的寬度介於 80μιη〜250μιη為較佳。 反射層厚度(Rh)與反射面之微結構深度(Η2) 兩者關係介於0.G2<Rh⑽2)<G 8,因此 射及導光效果。 201207454 (五) 本發明微結構反射層11 (下層)之導光效果 與厚度關係: 本發明之具微結構之導光裝置1的實施例中,其反射 層11微結構厚度與入光量的關係,可以得出一個較佳的 範圍’也就是反射層11的厚度不宜大於本艘總厚度(均 光層13、導光層12與反射層11三者厚度合計)的1/1〇。 (六) 本發明微結構反射層厚度(下層)與微結構深 度關係: 請參閱圖六,為本發明之具微結構之導光裝置的 一輝度關係曲線圖。於本曲線圖中的兩軸關係數據 如下,其中縱軸反映的是整體微結構形成的輝度 (Luminance)也就是在出光面所量測到的輝度值, 橫轴為反射層的厚度(Rh)乘上反射面之微結構深 度反比(1/H2)的反射層微結構之厚深關係值。 因此’根據圖六數據可知,不同的反射層厚度 與微結構深度比值對於出光面的輝度會有不同的影 響。當 Rh(l/H2)值落於 0.02<Rh(l/H2)<0.8 此範 圍内才能同時有反射及導光之效果,反射層之反射 率約80%,若超出此範圍則會使反射率過低或勻光 功效不佳;並且,當Rh(l/H2)值進一步落於最佳 範圍0.02<Rh(l/H2)<0.5之間時,則本發明之具微 結構之導光裝置可進一步提供較高輝度於出光面上也 就是具有較佳反射與勻光的光學表現。 201207454 (七)本發明均光層13之厚度、濃度及均勻度關係: 本發明之具微結構之導光裝置1的實施例中,其均光 層13與導光層12之厚度、濃度及均勻度關係之實施例可 以如下: (1) 導光層12添加少量擴散粒子,可解決亮帶及均勻 度不佳等現象。 (2) 當擴散粒子粒徑越小,相同穿透分佈越窄。 (3) 當擴散粒子粒徑越大,相同穿透分佈越寬。 (4) 隨著折射率差異與所需添加濃度而變化;隨著粒 徑大小與所需添加濃度而變化。 本發明之具微結構之導光裝置1,藉由在導光層12 中添加少量擴散粒子,可轉決亮帶及均勻度不佳的問 題,亦可提昇光的利用率;當擴散粒子與導光層12塑料 基材折射率差介於〇.04<Δη<〇.ΐ範圍内時,可以保持高 穿透率的狀態。並且,導光層12内之擴散粒子的粒徑介 於2μΓη〜ΙΟμπι,且該導光層12本身塑料基材之折射率介 於 1.42-1.63。 其中’本發明之均光層13與導光層12之厚度比、均 光層13與擴触子的濃度’與輝度及光均自度有關。 本發明舰結構之導找置1㈣料光層12形狀 與均光層13之粗糙度因素有: (1) 均光層13表面(出光面132)不平整時(也就是 具有粗縫度時),有助提昇導光板輝度值。 (2) 均光層13表面(出光面132)粗縫度隨反射層 11之反射面的微結構而變化。 201207454 均光層13表面(出光面132)粗縫度(Ra)優點. ⑴增加導光板輝度;(2)解決亮帶問題;⑶提高均句度。 因此’均光層13之出光面132粗縫度(Ra)與輝度 (L)的關係中’粗糖度在1μιη至6降中得較好的輝度。 (八)本發明之具微結構之導光裝置之本體具體結構 的其他多種實施例態樣: 於本發明中之具微結構之導光裝置丨中其均光層 13中可以添加也可以不添加擴散粒子131,且均光層U 上表面(出光面132)可以是鏡面平面、霧面平面、具連 續性微結構、單側入光設計之非連續性微結構、以及雙侧 入光設計之非連續性微結構等多種態樣;同時,導光層 12中可以添加也可以不添加擴散粒子122;同時反射層 11與導光層12兩者接觸面(反射面112)也可以是鏡面 平面、霧面平面、具連續性微結構、單側入光設計之非連 續性微結構、以及雙側入光設計之非連續性微結構等多種 態樣。因此,將上述之各種不同設計之反射層u、導光 層12與均光層13交又搭配後,即可得到如圖七所示之本 發明中之具微結構之導光裝置1本體中的反射層U、導 光層12與均光層13結構的多種實施態樣◊舉例來說,在 圖七之攔位41中由上往下依序的四個結構圖411、412、 413、414分別顯示了 :其均光層内具有擴散粒子(圖411、 412)與不具有擴散粒子(圖413、414)、但四者(圖411、 412、413、414)之均光層上表面(出光面4111、4121、 4131、4141)都是具有連續性結構設計而且反射層與導光 201207454 層兩者接觸面(反射面4112、4122、4132、4142)是平 面(鏡面或霧面)的四個實施例(其中,圖411、413實 施例之導光層内有擴散粒子’但圖412、414實施例則 無)。又如,攔位42中的四個結構圖42卜422、423、424 分別顯示了其均光層内具有擴散粒子(圖421、422)與 不具有擴散粒子(圖423、424)、但四者之均光層上表面 (出光面4211、422卜423卜4241)都是平面(鏡面或 霧面)而且反射層與導光層兩者接觸面(反射面4212、 4222、4232、4242)是具有雙側入光設計之非連續性微結 構的四個實施例(其中,圖421、423實施例之導光層内 有擴散粒子’但圖422、424實施例則無);其他實施例則 類推。此外,在出光面與反射面兩者皆有微結構(不論是 連續性、非連續性、單侧或雙測入光設計)的各實施例中, 其設於出光面上之微結構的排列方向和設於反射面上之 微結構的排列方向可以是互為平行或是正交的排列方向。 本發明之具微結構之導光裝置1除了其出光面與反 射面的結構可以多樣化搭配與設計之外,其出光面或(及) 反射面上所設置之微結構的具體結構設計也有許多不同 的實施例,例如但不侷限於圖八A至圖八〇所示之實施 例,逐一舉例說明如後。 如圖八A所示,本發明之具微結構之導光裝置1上 的微結構第一實施例,其出光面或(及)反射面上所設置 之微結構可具有多數狹長且平行排列之連續性三角 條狀微結構801。 如圖八B所示,本發明之具微結構之導光裝置1上 201207454 的微結構第二實施例,其出光面或(及)反射面上所設置 之微印構可具有多數狹長且平行排列之連續性半圓 條狀微結構802。 如圖八C所示,本發明之具微結構之導光裝置1上 的微結構第三實施例’其岐面或⑷反射面上所設置 之微結構可具有多數以陣列排狀立體的連續性雜 形(金字塔)微結構8〇3。 如圖八D所示’本發明之具微結構之導光裝置1上 的微結構細實_ ’其㈣面或⑷反射面上所設置 之微結構可具有多數以陣列排列之立體的連續性球 形微結構804。 如圖八E所示,本發明之具微結構之導光裝置1上 的微結構第五實_,其出光面或⑷反射面上所設置 之微結構可具有多數以陣列排列之立體的連續性狐 狀錐形微結構805。 如圖八F所示,本發明之具微結構之導光裝置1上的 微結構第六實_,其it}光面或(及)反射面上所設置之 微結構可具有多數狹長且平行排列之非連續性立體 二角條狀、不等距且兩側向遠離入光面處變密集的 可控制疏密變化的微結構8〇6 (特別適合雙側入光 也就是導光層之左右兩側面均為入光面之設計)。 如圖八G所示’本發明之具微結構之導光裝置1上 的微結構第七實補,其ih光面或(及)反射面上所設f 之微結構可具有多數狹長且平行排列之非連續性立 體二角條狀、等距疏密變化的微結構8〇7。 16 201207454 如圖八Η所示,本發明之具微結構之導光裝置^上 的微結構第八實施例,其出光面或(及)反射面上所設置 之微結構可具有多數狹長且平行排列之非連續性立 艎半圓條狀、不等距且兩側向遠離入光面處變密集 的可控制疏密變化的微結構8G8 (特別適合雙側;; 光也就是導光層之左右兩側面均為入光面之設計)。 如圖八I所示’本發明之具微結構之導光裝置〗上的 微結構第九實酬,其出光面或(及)反射面上所設置之 微結構可具有多數狹長且平行排列之非連續性立體 半圓條狀、等距疏密變化的微結構8〇9。 如圖八J所示,本發明之具微結構之導光裝置〗上的 微結構第十實細,其il{光面或(及)反射面上所設置之 微結構可具有多數以陣列排列之非連續性立體的錐 形(金字塔)、不等距且兩側向遠離入光面處變密集 的可控制疏密變化的微結構81〇 (特別適合雙侧入 光也就是導光層之左右兩側面均為入光面之設計)。 如圖八Κ所示,本發明之具微結構之導光裝置i上 的微結構第十-實施例,其出光面或(及)反射面上所設 置之微結構可具有多數狹長且以陣列排列之非連續 性立體的錐形(金字塔)、等距疏密變化的微結構 81卜 如圖八L所示’本發明之具微結構之導光裝置1上 的微結構第十二實關,其出光面或(及)反射面上所設 置之微結構可具有多數以陣列排列之非連續性立體 的球形微結構、不等距且兩側向遠離入光面處變密 17 201207454 集的可控制疏密變化的微結構8i2(特別適合雙側 入光也就是導光層之左右兩側面均為入光面之設 計)。 如囫八M所示,本發明之具微結構之導光裝置1上 的微結構第十三實施例’其出光面或(及)反射面上所設 置之微結構可具有多數轉列排列之非連續性立體 的球形微結構、等距疏密變化的微結構813。 如圖八N所示,本發明之具微結構之導光裝置1上 的微結構第十四實關,其出光面或(及)反射面上所設 置之微結構可具有多數以陣列排列之非連續性弧狀 錐形微結構、不等距且兩側向遠離入光面處變密集 的可控制疏密變化的微結構814 (特別適合雙側入 光也就是導光層之左右兩側面均為入光面之設計)。 如圖八Ο所示,本發明之具微結構之導光裝置1上 的微結構第十五實施例,其出光面或(及)反射面上所設 置之微結構可具有多數以陣列排列之非連續性弧狀 錐形微結構、等距疏密變化的微結構815。 請參閱圖九,為本發明之具微結構之導光裝置la的 另一實施例示意圖。於本實施例中,該具微結構之導光裝 置la的均光層13a之上表面也就是出光面132a上、以及 在反射層11a與導光層12a之間的反射面U2a上,均分 別設有微結構。其中,設於出光面132a與反射面U2a 上之微結構都是非連績性的,並且’設於反射面112a 上的微結構不僅是非連續性且更是有疏密變化的微結 構。並且,對於非連續性且有疏密變化的反射面112a 18 201207454 微結構來說’其最接近入光面15處之反射面U2a上 的兩相鄰微結構之間距G為最大,而越遠離入光面 15處之反射面112a上的微結構間距g則逐漸越小。 藉由在反射面112a上設置可控制疏密變化也就是越 遠離入光面15則間距G越小(越密集)的微結構, 可達到出光均勻、與避免接近入光面15處較亮越遠 離入光面15則越暗的現象。並且,當該反射面U2a 上所設置之非連續性微結構的結構間距G值介於 0〜1.4mm之較佳範圍時,若再搭配貼附於出光面 132a上之至少一光學膜590後,其出光面132a將 不會有亮線現象發生(亮線不可視)。同理,若是 在出光面132a上設置類似上述之非連續性且可控 制疏密變化的微結構,也可以達到類似的出光均勻 效果。 藉由在本發明之具微結構之導光裝置1&的出光面 132a上貼合該至少一光學膜590、以及在入光面15 處設置一側光源2 ’再搭配其他習知附屬配件後即可構 成一背光模組。之後,可將該背光模組結合一習知液晶面 板57而構成一液晶顯示器。 請參閱圖十與圖Η—,分別為本發明用來製造具微結 構之導光裝置之共押出製程的一實施例流程圖與示意 圖。以製作如圖九所示具一體成型三層結構之本發明導光 裝置la的共押出製程為例,首先需分別把用來形成反射 層11a之含有反射粒子111a之塑料置於押出機台副押出 機1料桶21中’並把用來形成導光層i2a之含有不同粒 19 201207454 徑大小及不同折射率擴散粒子122a之塑料置於押出機台 主押出機料桶22中,以及把用來形成均光層13a之含有 不同粒徑大小及不同折射率擴散粒子131a之塑料置於押 出機台副押出機2料桶23中。其中,導光層12a與均光 層13a所使用的塑料與擴散粒子122a、131a可以是相同 但也可以是不同之材料。接著,將這些料桶21、22、23 中的塑料分別藉由螺桿混煉24後,進入押出模具(τ 〇化) 25的主、副層。之後,再藉由R卜R2及R3三組滚輪將 其押合成形,進而共押出一體成型之本發明「汕in〇ne」 且兼具有反射、導光與均光功能的導光裝置la。相較於 習知技術有藉由鍍膜方式在導光層下表面鍍上一層反射 層的習知技術,本發明採用共押一體成型的技術綠實更具 有製程上的便捷性與進步性。 請參閱圖十二,為本發明用來在具微結構之導光裝置 之出光面上形成粗縫面的喷砂製程示意圖。於本發明中, 形成於在具微結構之導光裝置之出光面的粗糙面或霧 面,也就是形成於導光層之上表面的粗糙面或霧面,其粗 糙的程度可藉由控制喷砂裝置31之喷砂壓力p、喷砂速 度v、以及喷嘴32與滾輪表面33距離d來加以控制。之 後再以具有預定粗糙面之滾輪表面33作為圖十一所示之 滾輪Rl、R2、R3 ’於共押出製程中滾壓該押合成形之塑 料板材,進而在本發明共押出一體成型三層結構之導光裝 置的反射面及(或)出光面上押出粗縫面。而該粗糙面的 粗糙程度,將會影響本發明之具微結構之導光裝置之出光 面與光學膜片之間的靜電吸附程度、以及導光能力的均勻 20 201207454 性,例如下表二所示: 表二:出光面粗链度與光學膜片吸附程度關係 實施例A 實施例B 實施例C 實施例D 實施例E d(mm) 220 220 220 220 220 p (MPa) 0.38 0.38 0.38 0.38 0.38 v (m/min) 15 12 8 4 1 出光面粗 糙度Ra (μιη) 0.07 0.46 1.35 2.21 2.52 光學膜片 吸附程度 易吸附 較不吸附 更不吸附 更不吸附 更不吸附 於表'一中’當本發明中之具微結構之導光裝置的出光 面上所形成之粗糙面的粗糙度Ra小於0.46 μιη時會容易 使具微結構之導光裝置之出光面與光學膜片之間的靜電 吸附現象變嚴重而容易將其刮傷。當Ra大於2.21 μιη時 會增加光線之取出效率’有造成具微結構之導光裝置之出 光均勻度下降之虞,且當Ra大於6 μιη時其出光品質甚 至有無法通過品管之虞。因此,於本發明中,可將具微结 構之導光裝置之出光面上所形成之粗糙面的粗糙度控制 在 0·07 μιη 至 2.52μιη 之間,尤以 0.46 μπι 至 2.21 μηι 之 間為較佳’且Ιμιη至2.21 μιη之間為更佳。 於本發明中’導光層與反射層之本身塑料均可以選自 目前習知之塑料,例如但不侷限於:壓克力 (polymethylmethacrylate ;簡稱 ρμμα)、聚碳酸酯 21 201207454 (polycarbonate ;簡稱PC)、聚對苯二甲酸乙二醋 (polyethylene terephthalate ;簡稱 pET)、MS 等等。導光層 中所添加的擴散粒子也可以選自目前習知之材料,例如但 不侷限於:PMMA微粒、PC微粒、pET微粒、MS微粒 等。反射粒子也可以選自目前習知之材料,例如但不侷限 於:Si02微粒、Ti02微粒等。 對於本發明之具微結構之導光裝置而言,除了因共押 出一體成型與微結構設計而具有如前述之可提昇光利用 率、降低光損耗、無須再使用額外的反射片與增亮膜^EF) 之使用、可簡化模組架構並降低背光模組成本、以及減輕 光學膜片的靜電吸附現象等優點之外,其在導光之光學效 能(例如出光均勻性、輝度、以及品味等)的提升也是重 要的考量因素。 請參閱圖十三A與十三B,分別為本發明之導光裝 置之一實施例以及其於測試出光面之光型的角度與光亮 度之間的對應曲線囷;該曲線圖之X軸為出光面之光型 的出光角度值其範圍為〇度至90度、且γ軸為光亮度值。 以圖十三A所示之本發明之導光裝置lb的結構為例,該 導光裝置lb之本體為共押出一體成型之三層扁平板狀結 構,其包括有位於上層之均光層13b、位於中間層之導光 層12b、以及位於下層且添加有反射粒子之反射層Ub。 在導光装置lb本體之導光層12b的一旁側面係為一入光 面15 ’於入光面15旁設有一側光源2(可為CCFL或LED ) 用以產生一光20,該光20係經由該入光面15射入導光 裝置ib的導光層12b中。於導光層12b與反射層ub相 22 201207454 鄰接之表面(也就是導光層12b的底面、或是反射層ub 的頂面)是一反射面112b,而均光層13b較遠離反射層 lib之側的表面(也就是均光層13b的頂面)是一出光面 132b。於導光層與均光層中可以添加但也可不添加擴散粒 子;並且,當導光層與均光層兩者本身塑料(含其内所添 加之擴散粒子)的材質都相同時,則導光裝置lb實質上 將相當於僅有導光層與反射層的共押出一體成型的雙層 結構。而圖十三A所示之本發明之導光裝置lb的實施 例,便是以導光層與均光層兩者本身塑料(含其内所添加 之擴散粒子)的材質都相同為例。於本實施例中,該入光 面15與出光面121b相互垂直。於該出光面i2ib之任一 位置點上可定義有垂直於該出光面1211)的一法線N。由 於反射層lib的特性,使得在導光層12b内部向下偏折之 光20在射向反射面U2b時,則光20將會被具微結構之 反射面112b所反射203而折回導光層12b並改變角度。 然而,在導光層12b内部行進之光20在射向出光面132b 時’則會因為該光20的行進方向與該出光面132b之法線 N之間的夾角Θ大小的不同,而有反射2〇1或出光2〇2兩 種不同的光學效果。至於,決定光20究竟會在出光面處 反射或是出光的因素之一,則是導光層與均光層本身塑料 的折射率η與外界空氣之間的光折射臨界角㈦來決定。 其中,臨界角Gcrsin'I/n)。 於本實施例中,以導光層(同均光層)的折射率n=158 為例,將η=1·58代入上式,則可計算出臨界角此=3926〇 (约等於40。)。在另-實施例中,若導光層(同均光層) 23 201207454 的折射率n=1.49為例時,則可計算出臨界角阶=42 16。(約 等於420)。當射向出光面132b之光20與法線N之間的 夾角9小於該臨界角此時,該光2〇將會出光2〇2而自該 出光面132b折射出去;而當該夾角θ大於該臨界角吮 時,該光20將會被反射2〇1回導光層12b中。 依據圓十三A所示之本發明之導光裝置比一實施例 的結構’可測試並繚製其出光面之光型的角度與光亮度之 間的對應曲線@。如圖十三B所示,係分扉雙層架構 (亦即僅具有導光層與反射層、或是當均光層與導光層塑 料材質相同時)以及三層架構(具有不同塑料材質也就是 不同折射率所構成之均光層、導光層與反射層)兩種導光 裝置來測試並繪製其出光面之光型的角度與光亮度之間 的對應曲線圖。由圖十三B所示之曲線可知,雙層架構 且無特殊勻光設計之導光裝置實施例的曲線明顯朝向出 光角度為0度之垂直法線的右側偏移,顯示在缺乏不同折 射率之均光層的情況下,由出光面所出射之光會在約3〇 度至50度之傾斜視角範圍有最大亮度;相對地,在適於 人眼觀看的0度視角反而亮度較低。然而,對於有適當之 反射面微結構深寬比、以及適當之均光層與導光層之折射 率和厚度比值設計的三層架構導光裝置實施例的曲線,其 由出光面所出射之光線則明顯被導往正視角,使得出光面 在正、負20度角之視角範圍有最大亮度,因而可增加背 光模組之亮度。 依據前述之光效能評估方式,來對多種具有不同寬深 比微結構之反射面、不同的均光層折射率與導光潛折射 24 201207454 率、以及具有不同厚度比之均光層與導光層,來進行交叉 配對,並逐一依據如圖十三A與圖十三B所示的方式來 逐一模擬與量測其出光面之光亮度,並將結果整理如下表 ^ 〇 其中,前述之出光面光亮度的量測方式,請參閱圖十 四為本發明量測導光裝置1之出光面132的光亮度的實施 例示意圖。如圖十四所示,在上視圖方向所顯示之出光面 132範圍中選取共13個位於不同位置的測試區。藉由在 不同結構設計之導光裝置1的一側光源2發出光射入導光 裝置中,再於該導光裝置1之出光面132共13個測試區 量測其正視角光亮度後取其平均值,並將該平均值作為所 測得之光亮度填入表三中。 表三:具有不同深寬比微結構之反射面、及不同的均光層 _與導光層折射率與厚度比之導光裝置的光亮度統計 序號 結構深寬比 nl n2 tl(mm) t2(mm) tl/t2 光亮度 (nits) 1 0.5 1.58 無 3 0 無 2867 2 0.5 1.49 無 3 0 無 2932 3 0.5 1.58 1.46 2 1 2 1917 4 0.5 1.49 1.58 2 1 2 991.6 5 0.5 1.58 1.49 1.5 1.5 1 2271 6 0.5 1.49 1.58 1.5 1.5 1 1688 7 0.5 1.58 1.49 1 2 1 0.5 2600 8 0.5 1.49 1.58 1 2 0.5 2340 9 0.5 1.58 1.49 0.5 2.5 0.2 2909 10 0.5 1.49 1.58 0.5 2.5 0.2 2917 序號 結構深寬 nl n2 tl(mm) t2(mm) tl/t2 光亮度 25 201207454 比 (nits) 11 0.419 一 _ 1.58 無 3 0 無 4598 12 0.419 1.49 無 3 0 無 4593 13 _ 0.419 1.58 1.49 2 1 2 3249 14 0.419 1.49 1.58 2 1 2 3265 15 0.419 1.58 1.49 1.5 1.5 1 3699 16 0.419 1.49 1.58 1.5 1.5 1 3776 17 18 — 1.58 1.49 1 2 0.5 4123 0.419 1.49 1.58 1 2 0.5 4239 19 ‘0.419 1.58 1.49 0.5 2.5 0.2 4551 20 0.419 1.49 1.58 0.5 2.5 0.2 4625 21 0.419 1.58 1.49 0.3 2.7 0.11 4519 22 1.49 1.58 0.3 2.7 0.11 4632 序號 --—--1 結構深寬比 nl n2 tl(mm) t2(mm) tl/t2 光亮度 (nits) 23 0.319 1.58 無 3 0 無 4996 24 0.319 1.49 無 3 0 無 5318 25 0.319 1.58 1.49 2.9 0.1 29 2891 26 Γ 0.319 1.49 1.58 2.9 0.1 29 5609 27 0.319 1.58 1.49 2.5 0.5 5 2919 28 0.319 1.49 1.58 2.5 0.5 5 5634 29 0.319 1.58 1.49 2 1 2 3456 30 0.319 1.49 1.58 2 1 2 5459 31 0.319 1.58 1.49 1.5 1.5 1 4039 32 0.319 1.49 1.58 1.5 1.5 1 5321 33 0.319 1.58 1.49 1 2 0.5 4628 34 0.319 1.49 1.58 1 2 0.5 5130 序號 結構深宽比 nl n2 tl(mm) t2(mm) tl/t2 光亮度 (nits) 35 0.288 1.58 無 3 0 無 4081 36 0.288 1.49 無 3 0 無 4495 37 0.288」 1.58 1.49 2.9 0.1 29 2516 26 201207454 38 0.288 1.49 1.58 2.9 0.1 29 5735 39 0.288 1.58 1.49 2.7 0.3 9 2520 40 0.288 1.49 1.58 2.7 0.3 9 5750 41 0.288 1.58 1.49 2.6 0.4 6.5 2520 42 0.288 1.49 1.58 2.6 0.4 6.5 5755 43 0.288 1.58 1.49 2.5 0.5 5 2549 44 0.288 1.49 1.58 2.5 0.5 5 5751 45 0.288 1.58 1.49 2.3 0.7 3.29 2701 46 0.288 1.49 1.58 2.3 0.7 3.29 5592 47 0.288 1.58 1.49 2 1 2 2975 48 0.288 1.49 1.58 2 1 2 5326 49 0.288 1.58 1.49 1.5 1.5 1 3342 50 0.288 1.49 1.58 1.5 1.5 1 4900 51 0.288 1.58 1.49 1 2 0.5 3922 52 0.288 1.49 1.58 1 2 0.5 4470 序號 結構深寬比 nl n2 tl(mm) t2(mm) tl/t2 光亮度 (nits) 53 0.233 1.58 無 3 0 無 2267 54 0.233 1.49 無 3 0 無 2576 55 0.233 1.58 1.49 2.9 0.1 29 1352 56 0.233 1.49 1.58 2.9 0.1 29 4301 57 0.233 1.58 1.49 2.5 0.5 5 1383 58 0.233 1.49 1.58 2.5 0.5 5 4283 59 0.233 1.58 1.49 2 1 2 1648 60 0.233 1.49 1.58 2 1 2 3813 61 0.233 1.58 1.49 1.5 1.5 1 1941 62 0.233 1.49 1.58 1.5 1.5 1 3818 63 0.233 1.58 1.49 1 2 0.5 2239 64 0.233 1.49 1.58 1 2 0.5 2783 序號 結構深寬比 nl n2 tl(mm) t2(mm) tl/t2 光亮度 (nits) 65 0.2 1.58 無 3 0 無 2266 66 0.2 1.49 無 3 0 無 2182 67 0.2 1.58 1.49 2.9 0.1 29 815.2 68 0.2 1.49 1.58 2.9 0.1 29 2576 27 201207454 69 0.2 1.58 1.49 2.5 0.5 5 853.5 70 0.2 1.49 1.58 2.5 0.5 5 2534 71 0.2 1.58 1.49 2 1 2 1209 72 0.2 1.49 1.58 2 1 2 2553 73 0.2 1.58 1.49 1.5 1.5 1 1560 74 0.2 1.49 1.58 1.5 1.5 1 2511 75 0.2 1.58 1.49 1 2 0.5 1874 76 0.2 1.49 1.58 1 2 0.5 2436 77 0.2 1.58 1.49 0.5 2.5 0.2 2135 78 0.2 1.49 1.58 0.5 2.5 0.2 2361 序號 結構深寬比 nl n2 tl(mm) t2(mm) tl/t2 光亮度 (nits) 79 0.181 1.58 無 3 0 無 2512 80 0.181 1.49 無 3 0 無 2399 81 0.181 1.58 1.49 2 1 2 1254 82 0.181 1.49 1.58 2 1 2 2313 83 0.181 1.58 1.49 1.5 1.5 1 1655 84 0.181 1.49 1.58 1.5 1.5 1 2433 85 0.181 1.58 1.49 1 2 0.5 2038 86 0.181 1.49 1.58 1 2 0.5 2513 87 0.181 1.58 1.49 0.7 2.3 0.3 2245 88 0.181 1.49 1.58 0.7 2.3 0.3 2559 89 0.181 1.58 1.49 0.5 2.5 0.2 2352 90 0.181 1.49 1.58 0.5 2.5 0.2 2606 91 0.181 1.58 1.49 0.3 2.7 0.11 2365 92 0.181 1.49 1.58 0.3 2.7 0.11 2541 序號 結構深寬比 nl η2 tl(mm) t2(mm) tl/t2 光亮度 (nits) 93 0.134 1.58 無 3 0 無 1739 94 0.134 1.49 無 3 0 無 1601 95 0.134 1.58 1.49 2 1 2 1106 96 0.134 1.49 1.58 2 1 2 1468 97 0.134 1.58 1.49 1.5 1.5 1 1259 98 0.134 1.49 1.58 1.5 1.5 1 1562 99 0.134 1.58 1.49 1 2 0.5 1417 28 201207454201207454 VI. Description of the Invention: [Technical Field] The present invention relates to a light guiding device having a microstructure, and more particularly to a device which is integrally formed by a co-extrusion process and has both reflection, uniform light and light guiding functions. A microstructured light guiding device that can be used with a side light source to form a backlight module of a display. [Prior Art] The Light Guide Plate is a light guiding medium in the backlight module of the display, and most of the backlight modules are edge type. 'The light guided by the light guide plate is laterally directed by the display. The front side shot can improve the brightness of the panel and control the brightness evenly. The principle of the light guide plate is to use light to enter the light guide plate to generate light reflection, and to transmit the light to the other end of the light guide plate. In particular, a specific structure of one side of the light guide plate can be used to generate a diffusion phenomenon at various angles, and the reflected light is guided to the light guide plate. On the front side, the larger the refractive index, the better the light guiding ability. In addition, in addition to the light that is directed toward the front side, some of the light is again introduced into the light guide plate by the reflector at the bottom of the light guide plate. As shown in Fig. 1, a light source module of a light-emitting element disclosed in a prior art, such as U.S. Patent No. 7,1,8,385 (issued on September 19, 2006), discloses a light guide. The liquid crystal panel 57, the diffusion film 56, the prism module 55, the light source module 50, and the light-emitting plane 523 include a light guide plate 520 and a reflector 524, and the circuit board 51 and the light-reflecting layer 54 of the light source module 50, Each component forms a backlight module 5. However, the shortcomings of various components in the conventional light guide plate include reflection 201207454, light guide plate, diffusion sheet, diamond lens, etc., which can be summarized as follows: Table 1: Shortcomings of various components in the conventional light guide plate Defective reflector 524 1· Reflects light back into the light guide to reuse the light. 1. There is an air layer between the plates to increase light loss and reduce light utilization. 2. Increase the cost of the back module. Light guide plate 520 1. Directs the light from the lateral light source to the forward light source. 1. A dot or structure is required as a light source for the light source, and the component has a bright line phenomenon, resulting in poor visual effects. 2. The diffusion film is required to atomize the bright line and break up the light. Homogenize the light. Diffusion film 56 1. Atomizing the light guide plate bright line phenomenon 0 2. Homogenize the light guide plate light. 3. Protect the lens from scratches. 1. Increase the cost of the backlight module. Mirror Module 55 (BEF) 1. Convergence and brightening. 1. The design is difficult, the processing is not easy, and the cost of the backlight module is increased. 2. The microstructure is easily damaged or scratched. 3. Forming a repeating process with the microstructure of the light guide plate. As shown in FIG. 2, the light guide plate 520 of the prior art faces the problem of optical loss during light transmission. In order to increase the effect of reflecting light in the backlight module 5, a reflector 524 is added in the prior art. Since there is an air layer 525 between the reflector 524 and the light guide plate 520, the loss of the light 581 is increased by 8%. Left and right 'reduces light utilization, and will increase the backlight module 5 process and cost. 201207454 In addition, if the light guide plate of the prior art adopts the technology of printing the light guide plate, it is easy to print the light guide plate through the screen, ink, and screen printing technology, resulting in poor control of product yield and lack of bright band. As shown in FIG. 3, it is a bright band diagram of the light guide plate 520 of the prior art; on the light exit surface of the light guide plate 520, a strip-shaped brightest area 582 (ie, a bright line) appears in the central portion thereof due to uneven light emission. ), the second bright area 583, and the outermost dark area 584. As described above, the conventional technology has a loss of light loss due to an air layer between the light guide plate and the plate, a high cost of the backlight module, a bright line phenomenon, difficulty in processing the prism module, and easy damage of the microstructure. There is room for further improvement. SUMMARY OF THE INVENTION The main object of the present invention is to provide a light guide device with a microstructure and a backlight module and a liquid crystal display having the same, which are three layers of a simple co-extrusion process. The composite material structure can have the advantages of improving the utilization of light, more uniform light emission, brightening brightness, reducing the cost of the backlight module, and eliminating the need for a prism module. To achieve the above object, the present invention discloses a light-emitting device having a microstructure that can be used with a side light source to form a backlight module of a display. The light guiding device comprises at least: a light homogenizing layer, a light guiding layer and a reflective layer. The light guiding layer defines a light incident surface, and the light incident surface is provided for light from the side light source to enter the light guiding layer from the light incident surface. The reflective layer can reflect the light from the light guiding layer that is directed toward the reflective layer back to the light guiding layer. The surface of the uniform light layer farther from the side of the reflective layer is a light exiting surface, and the light guiding layer is between the reflective layer and the light homogenizing layer. The light exiting surface is perpendicular to the light incident surface, and at least a portion of the light in the light guiding layer can be emitted from the light emitting surface. Wherein, the reflective layer, the light guiding layer and the homogenous light layer are integrally formed by co-extrusion, and there is no air interface between the reflective layer and the light guiding layer; and between the light guiding layer and the reflective layer A reflective surface is defined, and a stereoscopic microstructure is disposed on the reflective surface. In a preferred embodiment, the aspect ratio data of the microstructure of the reflective surface conforms to the following relationship: 45e <c〇rl(^k) <sinM(&; and ' nl <n2; wherein H2 is the depth of the microstructure of the reflecting surface, p2 is the width of the microstructure of the reflecting surface, nl is the refractive index of the homogenous layer, and the center is the refractive index of the light guiding layer. In a preferred embodiment, the microstructured light guiding device is more in accordance with at least one of the following conditions: 0.233^(Η2/Ρ2) ^0.419; the value of Ρ2 is between 8〇 〇 and 25〇; The aspect ratio (Η2/Ρ2) of the reflecting surface is between 〇2 and 0.319, and the ratio of the thickness of the uniform layer to the thickness of the light guiding layer is l^tl/t2^29; the microstructure of the reflecting surface It is a discontinuous microstructure, and the G value between two adjacent microstructures is between 〇~14mm. In a preferred embodiment, the light guiding device of the structure further comprises at least one of the following: a plurality of diffusion particles added to the light guiding layer; 201207454 a plurality of diffusion particles added to the light homogenizing layer; a three-dimensional microstructure on the light-emitting surface; two plastics of different refractive indices mixed in the reflective layer; a plurality of reflective particles added to the reflective layer; and a rough surface or a mist that can control the density change The surface is formed on the light emitting surface. [Embodiment] In order to more clearly describe a light guide device having a microstructure and a backlight module and a liquid crystal display having the same, the following will be described in detail with reference to the drawings. (I) Overview of the device of the present invention (three-layer structure): As shown in FIG. 4, the light guide device 1 having a microstructure according to the present invention, in particular, an ALLINONE light guide device, through co-extrusion The integrated molding process forms a three-dimensional microstructure on the reflective surface between the light guiding layer and the reflective layer of the light guiding device, so that a single light guiding device can achieve the effects of uniform light, light guiding and light reflection. The utility model is applied to a large panel in the form of any side light source 2. The body of the light guiding device 1 mainly comprises: a microstructure reflecting layer 11; a light guiding layer 12; and a microstructure uniform light layer 13. As shown in FIG. 4, it is one of the embodiments of the present invention having a microstructured light guiding device. The micro-structured light guiding device is a simple one-piece three-layer composite material (for the co-extrusion process) of the microstructure light guiding device. 201207454 (b) Overview of the microstructured reflective layer 11 (lower layer) of the present invention · One of several important concepts of the microstructured light guiding device 1 of the present invention is to utilize the design of the reflective surface microstructure The light generated by the side light source 2 is reflected in the light guiding device 1 to disperse the light source instead of the conventional dot pattern; and the microstructure is formed on the reflecting surface between the reflective layer U and the light guiding layer 12, and further Replace the use of reflectors. Wherein, the diffusing particles of the microstructured light-receiving layer 13 form a surface light source or a point light source to form a surface light source, and the microstructures of the light-homogenizing layer 13 and the reflective layer 11 correspond to each other', thereby replacing the use of the reflective sheet to achieve reflection and light guiding. And the effect of uniform light. By the above technique, the present invention reduces the optical loss caused by the reflection sheet. The main mode is the reflection sheet or the reflection layer 11 which is formed simultaneously with the light guiding layer 12. As shown in FIG. 5, the micro-structured light guiding device i of the present invention is formed by adding a microstructure on the bottom side of one of the light guiding layers 12 and a reflective layer Π' simultaneously with the light guiding device 1 so that the microstructure is There is no air interface layer between the reflective layer 11 and the light guiding layer 12 in the body of the light guiding device 1. Since there is no air layer between the reflective layer 11 and the light guide layer 12 of the present invention, the micro-structured light guiding device 1 of the present invention can enhance light utilization as compared with the prior art having an air gap as shown in FIG. The microstructure can also be used as a reflection and light diffusion phenomenon of the light guiding layer, and at the same time achieve the effect of reflection and light guiding, and can effectively reduce the optical loss to below 4%. At the same time, since the micro-structured green guide of the present invention is placed in a 1 (four) process, the filming procedure of the light guide device, the backlight module process, and the cost of the backlight module can be reduced. 9 201207454 A preferred embodiment of the reflective layer 11 of the microstructured light guiding device 1 of the present invention is: (1) mixing two plastics of different refractive indices or adding a small amount of reflection to the reflective layer plastic The reflective layer 11 of the present invention is produced in the form of particles. (2) When the reflective layer 11 is formed by mixing two kinds of plastics having different refractive indexes, the mixing ratio of the different refractive index plastics is 7:3. (3) When the reflective layer 11 is formed by adding the reflective particles 111, the refractive index of the reflective particles 111 is 2.2 to 3.2, and the added concentration is less than 〇.50 / 重量 by weight. (4) The particle diameter hi of the reflective particles is between ι_100 μιη, and the optimum range is 4-50 μιη. (5) The reflective layer 11 itself has a plastic refractive index of 16_2 5. (6) The difference in refractive index between the reflective layer 11 and the light guiding layer 12 is 0 054. (b) Overview of the microstructured light-homogenizing layer 13 (upper layer) of the present invention: In the embodiment of the micro-structured light-guiding device 本 of the present invention, the complex micro-diffusion added in the microstructure-structured light-emitting layer 13 is further utilized. The particle 131 forms a surface light source or a point light source to form a surface light source to achieve uniform light and concealing effect, and enhances light utilization efficiency by a refractive index difference. A preferred embodiment of the microstructured light-receiving layer 13 of the light-guiding device 1 of the present invention may be: (1) adding a small amount of diffusion particles (3) to the light-homogenizing layer 13 + or a smooth surface for the light-homogenizing layer 13 132 silk surface is atomized. 201207454 (2) The refractive index difference between the plastic particles of the diffusion particle 131 and the light homogenizing layer 13 is 0.04 <Δη <0.1. (3) The particle size of the diffusion particles 131 is between 2 μm and ΙΟμιη. (4) The roughness (Ra) of the upper surface (light emitting surface 132) of the uniform layer 13 is between 1Min <Ra <6nm, which improves brightness and uniformity. (5) The refractive index of the plastic substrate of the homogenous layer 13 itself is between 1424 63. (4) The microstructure of the present invention: In the embodiment of the light guide device of the present invention, the surface adjacent to the light guiding layer 12 and the reflective layer 11 (that is, the bottom side of the light guiding layer 12, Or the top side of the reflective layer U is defined as a reflective surface. The present invention adds a plurality of microstructures to the reflecting surface and/or the upper surface of the smoothing layer 13 (light emitting surface 132). In the present invention, the distance between each microstructure is equal, non-equal, or staggered. Each of the microstructures may be a three-dimensional (e.g., pyramidal) structure having asymmetrical or symmetrical triangles, laterally asymmetric or symmetrical triangular structures, columnar structures, curved structures, and the like. Preferably, for example, the respective microstructures of the reflecting surface and/or the light-emitting surface have an aspect ratio of 0.02 to 0.8 Å 1 and the width of each of the microstructures is preferably 80 μm to 250 μm. The relationship between the thickness of the reflective layer (Rh) and the microstructure depth of the reflective surface (Η2) is between 0.G2 <Rh(10)2) <G 8, so the light and light guiding effect. 201207454 (5) Light guiding effect and thickness relationship of the microstructure reflective layer 11 (lower layer) of the present invention: In the embodiment of the light guiding device 1 having microstructures of the present invention, the relationship between the microstructure thickness of the reflective layer 11 and the amount of light incident A preferred range can be obtained, that is, the thickness of the reflective layer 11 is not more than 1/1 of the total thickness of the ship (the total thickness of the light-homogen layer 13, the light-guiding layer 12 and the reflective layer 11). (6) The relationship between the thickness (lower layer) of the microstructure reflection layer of the present invention and the microstructure depth: Referring to Fig. 6, a luminance relationship diagram of the light guide device having a microstructure according to the present invention is shown. The two-axis relationship data in this graph is as follows, where the vertical axis reflects the luminance of the overall microstructure (Luminance), which is the luminance value measured on the light-emitting surface, and the horizontal axis is the thickness of the reflective layer (Rh). The thickness-depth relationship of the microstructure of the reflective layer multiplied by the inverse depth of the microstructure of the reflective surface (1/H2). Therefore, according to the data in Fig. 6, different thicknesses of the reflective layer and the microstructure depth have different effects on the luminance of the light-emitting surface. When the Rh(l/H2) value falls below 0.02 <Rh(l/H2) <0.8 In this range, the reflection and light guiding effects can be simultaneously achieved, and the reflectivity of the reflective layer is about 80%. If the range is exceeded, the reflectance is too low or the uniformity is poor; and, when Rh (l/) H2) value further falls within the optimal range of 0.02 <Rh(l/H2) < between 0.5, the microstructured light guiding device of the present invention can further provide an optical performance of higher luminance on the light exiting surface, i.e., having better reflection and uniformity. 201207454 (7) Thickness, Concentration and Uniformity Relationship of the Light-Coating Layer 13 of the Present Invention: In the embodiment of the light-guide device 1 having a microstructure according to the present invention, the thickness and concentration of the light-homogenizing layer 13 and the light guiding layer 12 are The embodiment of the uniformity relationship can be as follows: (1) The light guiding layer 12 is added with a small amount of diffusing particles, which can solve the phenomenon of bright band and poor uniformity. (2) The smaller the particle size of the diffusion particles, the narrower the same penetration distribution. (3) The larger the diffusion particle size, the wider the same penetration distribution. (4) varies with the difference in refractive index and the concentration to be added; it varies with the size of the particle diameter and the concentration to be added. The light guiding device 1 with microstructure of the present invention can turn the problem of bright band and poor uniformity by adding a small amount of diffusing particles in the light guiding layer 12, and can also improve the utilization of light; The refractive index difference of the plastic substrate of the light guiding layer 12 is between 〇.04 <Δη When the range is <〇.ΐ, the state of high transmittance can be maintained. Further, the diffusion particles in the light guiding layer 12 have a particle diameter of 2 μΓη to ΙΟμπι, and the refractive index of the plastic substrate of the light guiding layer 12 itself is 1.42-1.63. Here, the thickness ratio of the light-homogenizing layer 13 and the light guiding layer 12 of the present invention, and the concentration of the light-homogenizing layer 13 and the spreader are related to the luminance and the light self-degree. The roughness of the shape of the light-receiving layer 12 and the smoothing layer 13 of the guide structure of the present invention are as follows: (1) When the surface of the light-homogenizing layer 13 (light-emitting surface 132) is uneven (that is, when there is a thick seam) It helps to increase the brightness of the light guide plate. (2) The roughness of the surface (light-emitting surface 132) of the light-homogenizing layer 13 varies depending on the microstructure of the reflecting surface of the reflecting layer 11. 201207454 The surface of the homogenizing layer 13 (light emitting surface 132) rough seam (Ra) advantages. (1) increase the brightness of the light guide; (2) solve the problem of bright band; (3) improve the uniformity. Therefore, the relationship between the roughness (Ra) and the luminance (L) of the light-emitting surface 132 of the light-homogenizing layer 13 is a good luminance in the range of 1 μm to 6 in the coarse sugar content. (VIII) Other various embodiments of the specific structure of the body of the micro-structured light guiding device of the present invention: In the light guiding device of the microstructure of the present invention, the uniform layer 13 may or may not be added The diffusion particles 131 are added, and the upper surface (light-emitting surface 132) of the uniform layer U may be a mirror plane, a matte plane, a discontinuous microstructure with a continuous microstructure, a discontinuous microstructure with a single-side light entrance design, and a double-sided light-in design. The non-continuous microstructure may be a plurality of aspects; at the same time, the diffusion layer 122 may or may not be added to the light guiding layer 12; and the contact surface of the reflective layer 11 and the light guiding layer 12 (the reflecting surface 112) may also be a mirror surface. Planar, matte plane, discontinuous microstructure with a discontinuous microstructure, a discontinuous microstructure with a single-sided light entry design, and a discontinuous microstructure with a double-sided light-in design. Therefore, after the reflective layer u, the light guiding layer 12 and the light-homogenizing layer 13 of the various designs described above are matched and matched, the body of the light guiding device 1 having the microstructure in the present invention as shown in FIG. 7 can be obtained. Various embodiments of the structure of the reflective layer U, the light guiding layer 12 and the light homogenizing layer 13 are, for example, four structural drawings 411, 412, 413 sequentially arranged from top to bottom in the block 41 of FIG. 414 shows the upper surface of the uniform layer of diffusing particles (Figs. 411, 412) and diffusing particles (Figs. 413, 414), but four (Figs. 411, 412, 413, 414) in the uniform optical layer. (The light-emitting surfaces 4111, 4121, 4131, 4141) are all of a continuous structural design and the contact surfaces of the reflective layer and the light-guided 201207454 layer (reflecting surfaces 4112, 4122, 4132, 4142) are planar (mirror or matte). Four embodiments (wherein the light guiding layers of the embodiments of Figs. 411 and 413 have diffusing particles therein, but the embodiments of Figs. 412 and 414 are absent). For another example, the four structural diagrams 42 422, 423, and 424 in the block 42 respectively show diffusing particles (Fig. 421, 422) and no diffusing particles (Fig. 423, 424) in the homogenous light layer, but four The upper surface of the light layer (light-emitting surface 4211, 422, 423, 4241) is a plane (mirror or matte surface) and the contact surface of both the reflective layer and the light guiding layer (reflecting surfaces 4212, 4222, 4232, 4242) is Four embodiments of a discontinuous microstructure having a double-sided light-in design (wherein the light-guiding layers of the embodiments of Figures 421 and 423 have diffusing particles therein; but the embodiments of Figures 422 and 424 are not); other embodiments are analogy. In addition, in various embodiments in which both the light-emitting surface and the reflective surface have a microstructure (whether continuous, discontinuous, single-sided or dual-input light design), the arrangement of microstructures on the light-emitting surface The direction of arrangement of the microstructures and the microstructures disposed on the reflective surface may be mutually parallel or orthogonal. The light guiding device 1 with microstructure of the present invention can be versatilely matched and designed in addition to the structure of the light emitting surface and the reflecting surface, and the specific structural design of the microstructure disposed on the light emitting surface or (and the reflecting surface) is also many. Different embodiments, such as but not limited to the embodiments shown in Figures 8A through 8E, are illustrated one by one. As shown in FIG. 8A, in the first embodiment of the microstructure on the microstructured light guiding device 1 of the present invention, the microstructures disposed on the light emitting surface or (and the reflecting surface) may have a plurality of narrow and parallel arrays. Continuous triangular strip microstructure 801. As shown in FIG. 8B, in the second embodiment of the microstructure of the substrate structure of the micro-structured light guiding device 1 of the present invention, the micro-printing disposed on the light-emitting surface or (and) the reflecting surface may have a plurality of narrow and parallel Arranged continuous semicircular strip microstructures 802. As shown in FIG. 8C, the microstructure of the microstructure according to the third embodiment of the micro-structured light guiding device 1 of the present invention may have a plurality of micro-structures arranged in a row of three rows. The heterogeneous (pyramid) microstructure is 8〇3. As shown in FIG. 8D, the microstructure of the micro-structured light guiding device 1 of the present invention may have a plurality of three-dimensional continuity arranged in an array. Spherical microstructure 804. As shown in FIG. 8E, the microstructure of the micro-structured light guiding device 1 of the present invention may have a plurality of three-dimensional continuous arrays arranged on the light-emitting surface or the (4) reflective surface. Sexual fox-like pyramidal microstructure 805. As shown in FIG. 8F, the microstructure of the micro-structured light guiding device 1 of the present invention may have a plurality of narrow and parallel microstructures disposed on the light surface or (and) the reflective surface. Arrangement of discontinuous three-dimensional strips, unequal distances, and densely controlled microstructures 8 〇 6 that are densely spaced away from the entrance surface (especially suitable for double-sided light entering the light-guiding layer) Both the left and right sides are designed to enter the light surface). As shown in FIG. 8G, the microstructure of the microstructure of the micro-structured light guiding device 1 of the present invention may have a majority of the elongated and parallel microstructures of the f-plane or (and) reflective surface. Arranged discontinuous three-dimensional strip-shaped, equidistant and densely varying microstructures 8〇7. 16 201207454 As shown in FIG. 8A, in the eighth embodiment of the microstructure of the micro-structured light guiding device, the microstructure disposed on the light-emitting surface or (and the reflective surface) may have a plurality of narrow and parallel Arrangement of discontinuous vertical semi-circular strips, unequal distances and densely controlled micro-structures 8G8 that are densely spaced away from the entrance surface (especially suitable for both sides; light is also the left and right of the light guide layer) Both sides are designed for the entrance surface). As shown in FIG. 8I, the microstructure of the micro-structured light guiding device of the present invention has a microstructure in which the microstructures disposed on the light-emitting surface and/or the reflecting surface can have a plurality of narrow and parallel arrangements. Non-continuous three-dimensional semi-circular strip, isometric and densely varying microstructure 8〇9. As shown in FIG. 8J, the microstructure of the micro-structured light guiding device of the present invention is tenth thin, and the microstructures disposed on the il{light surface or (and) reflecting surface may have a plurality of arrays arranged in an array. The discontinuous three-dimensional cone (pyramid), the unequal distance and the densely controlled microstructures 81 〇 which are densely spaced away from the light entrance surface (especially suitable for double-sided light entering the light guiding layer) Both the left and right sides are designed to enter the light surface). As shown in FIG. 8A, the microstructure of the microstructured light guiding device i of the present invention, the tenth embodiment of the light-emitting surface or (and the reflecting surface) may have a plurality of elongated and arrays. Arranged discontinuous three-dimensional cone (pyramid), isometric and densely varying microstructure 81 as shown in FIG. 8L. 'The microstructure of the micro-structured light guiding device 1 of the present invention is the twelfth real The microstructures disposed on the light-emitting surface and/or the reflective surface may have a plurality of discontinuous three-dimensional spherical microstructures arranged in an array, and are not equidistant and both sides are tapered away from the light entrance surface. The microstructure 8i2 can control the density change (especially suitable for the double-side light entering, that is, the left and right sides of the light guiding layer are all designed to enter the light surface). As shown in FIG. 8M, the microstructure of the thirteenth embodiment of the micro-structured light guiding device 1 of the present invention may have a plurality of arranged arrays on the light-emitting surface and/or the reflecting surface. A discontinuous three-dimensional spherical microstructure, an isometric densely varying microstructure 813. As shown in FIG. 8N, the microstructure of the microstructured light guiding device 1 of the present invention is fourteenth, and the microstructures disposed on the light emitting surface or (and the reflecting surface) may have a plurality of arrays arranged in an array. A discontinuous arc-shaped conical microstructure, a microstructure 814 that is unequal and has a controllable density variation on both sides away from the entrance surface (especially suitable for bilateral side entrance light, that is, left and right sides of the light guide layer) All are designed for the entrance surface). As shown in FIG. 8A, in the fifteenth embodiment of the microstructure of the micro-structured light guiding device 1 of the present invention, the microstructures disposed on the light-emitting surface or (and the reflective surface) may have a plurality of arrays arranged in an array. A discontinuous arcuate pyramidal microstructure, a microstructure 815 of varying isometric density. Please refer to FIG. 9 , which is a schematic diagram of another embodiment of a light guiding device 1a having a microstructure according to the present invention. In this embodiment, the upper surface of the light-homogenizing layer 13a of the microstructured light guiding device 1a is also the light-emitting surface 132a, and the reflecting surface U2a between the reflective layer 11a and the light guiding layer 12a are respectively Features a microstructure. The microstructures disposed on the light-emitting surface 132a and the reflection surface U2a are non-continuous, and the microstructures disposed on the reflection surface 112a are not only discontinuous but also densely varying micro-structures. Moreover, for the discontinuous and densely varying reflective surface 112a 18 201207454 microstructure, the distance G between two adjacent microstructures on the reflective surface U2a closest to the light entrance surface 15 is the largest, and the farther away The microstructure pitch g on the reflecting surface 112a at the light incident surface 15 is gradually smaller. By providing a microstructure on the reflecting surface 112a that can control the density variation, that is, the smaller the distance (the denser the pitch G), the smaller the distance G is, the more uniform the light is, and the brighter the light entering the light-incident surface 15 is. The darker the phenomenon away from the light entrance surface 15. Moreover, when the structural pitch G value of the discontinuous microstructure disposed on the reflecting surface U2a is in a preferred range of 0 to 1.4 mm, if at least one optical film 590 attached to the light emitting surface 132a is further used , the light-emitting surface 132a will not have a bright line phenomenon (the bright line is not visible). Similarly, if a microstructure similar to the above-described discontinuity and capable of controlling the density change is provided on the light-emitting surface 132a, a similar light-emitting uniform effect can be achieved. The at least one optical film 590 is attached to the light-emitting surface 132a of the microstructured light guiding device 1& and the side light source 2' is disposed at the light-incident surface 15 to be combined with other conventional accessory accessories. A backlight module can be constructed. Thereafter, the backlight module can be combined with a conventional liquid crystal panel 57 to form a liquid crystal display. Please refer to FIG. 10 and FIG. 3, respectively, which are flowcharts and schematic diagrams of an embodiment of a co-extrusion process for fabricating a light-guiding device having a microstructure. For example, in the co-extrusion process of the light guiding device la of the present invention having an integrally formed three-layer structure as shown in FIG. 9, the plastic containing the reflective particles 111a for forming the reflective layer 11a is first placed on the extrusion machine. The extruder 1 is in the bucket 21 and uses the plastics for forming the light guiding layer i2a containing the different particles 19 201207454 and the different refractive index diffusion particles 122a in the extrusion machine main extrusion drum 22, and The plastic containing the different particle size and different refractive index diffusion particles 131a of the homogenizing layer 13a is placed in the barrel 23 of the extrusion machine sub-extrusion machine 2. The plastic used for the light guiding layer 12a and the light homogenizing layer 13a may be the same as the diffusing particles 122a and 131a, but may be different materials. Next, the plastics in the tanks 21, 22, and 23 are respectively kneaded by the screw 24, and then enter the main and sub-layers of the extrusion die (τ 〇) 25. After that, the two sets of rollers, R, R2 and R3, are used to form a light guide device, and the light guide device having the functions of reflection, light guide and light homogenization is integrally formed by laminating the integrally formed "汕in〇ne" of the present invention. . Compared with the prior art, there is a conventional technique in which a reflective layer is plated on the lower surface of the light guiding layer by a coating method, and the greening method of the co-integration molding method of the present invention has more convenience and progress in the process. Referring to Figure 12, there is shown a schematic view of a sandblasting process for forming a rough surface on a light-emitting surface of a light guide having a microstructure. In the present invention, the rough surface or the matte surface formed on the light-emitting surface of the light guide device having a microstructure, that is, the rough surface or the matte surface formed on the upper surface of the light guiding layer, the degree of roughness can be controlled by The blasting pressure p of the blasting device 31, the blasting speed v, and the distance d between the nozzle 32 and the roller surface 33 are controlled. Then, the roller surface 33 having a predetermined rough surface is used as the roller R1, R2, R3' shown in FIG. 11 to roll the plastic sheet in the co-extruding process, and then the three layers are integrally formed in the invention. The reflective surface and/or the light-emitting surface of the light guiding device of the structure is extruded with a rough surface. The roughness of the rough surface will affect the degree of electrostatic adsorption between the light-emitting surface of the micro-structured light guiding device and the optical film of the present invention, and the uniformity of the light guiding ability, for example, in Table 2 below. Shown: Table 2: relationship between the thickness of the light-emitting surface and the degree of adsorption of the optical film Example A Example B Example C Example D Example E d (mm) 220 220 220 220 220 p (MPa) 0.38 0.38 0.38 0.38 0.38 v (m/min) 15 12 8 4 1 Roughness of the light surface Ra (μιη) 0.07 0.46 1.35 2.21 2.52 The degree of adsorption of the optical film is easy to adsorb, less adsorbed, less adsorbed, less adsorbed, and not adsorbed on the table In the present invention, when the roughness Ra of the rough surface formed on the light-emitting surface of the light-guided device having a microstructure is less than 0.46 μm, electrostatic adsorption between the light-emitting surface of the light guide device having a microstructure and the optical film is easily performed. The phenomenon becomes serious and it is easy to scratch it. When Ra is greater than 2.21 μηη, the light extraction efficiency is increased. The light uniformity of the light guide device having a microstructure is lowered, and when Ra is greater than 6 μm, the light output quality may not pass through the quality control. Therefore, in the present invention, the roughness of the rough surface formed on the light-emitting surface of the microstructure-based light guiding device can be controlled between 0·07 μm to 2.52 μm, especially between 0.46 μπι and 2.21 μηι. Preferably, and between Ιμιη to 2.21 μιη is more preferred. In the present invention, the plastics of the light guiding layer and the reflective layer can be selected from the conventional plastics, such as, but not limited to, polymethylmethacrylate (referred to as ρμμα), polycarbonate 21 201207454 (polycarbonate; PC for short). , polyethylene terephthalate (pET), MS and so on. The diffusion particles added to the light guiding layer may also be selected from conventional materials such as, but not limited to, PMMA particles, PC particles, pET particles, MS particles, and the like. The reflective particles may also be selected from currently known materials such as, but not limited to, SiO 2 particles, TiO 2 particles, and the like. For the micro-structured light guiding device of the present invention, in addition to the co-extrusion integral molding and microstructure design, the light utilization efficiency and the optical loss can be improved as described above, and no additional reflective sheet and brightness enhancement film are needed. The use of ^EF), which simplifies the module architecture and reduces the cost of the backlight module, and reduces the electrostatic adsorption of the optical film, etc., in addition to the optical performance of the light guide (such as light uniformity, brightness, taste, etc.) The promotion is also an important consideration. Please refer to FIG. 13A and FIG. 13B respectively, which are respectively an embodiment of the light guiding device of the present invention and a corresponding curve between the angle of the light type of the test light surface and the brightness of the light; the X axis of the graph The light-emitting angle value of the light-emitting surface is in the range of 〇 to 90 degrees, and the γ-axis is the lightness value. Taking the structure of the light guiding device 1b of the present invention shown in FIG. 13A as an example, the body of the light guiding device 1b is a three-layer flat plate-like structure integrally formed by co-embossing, and includes a uniform light layer 13b located at the upper layer. The light guiding layer 12b located in the middle layer and the reflective layer Ub located in the lower layer and added with reflective particles. A side surface of the light guiding layer 12b of the main body of the light guiding device lb is a light incident surface 15'. A side light source 2 (which may be a CCFL or an LED) is disposed beside the light incident surface 15 for generating a light 20, the light 20 The light incident surface 15 is incident on the light guiding layer 12b of the light guiding device ib. The surface adjacent to the light guiding layer 12b and the reflective layer ub phase 22 201207454 (that is, the bottom surface of the light guiding layer 12b or the top surface of the reflective layer ub) is a reflecting surface 112b, and the smoothing layer 13b is farther away from the reflective layer lib. The surface on the side (that is, the top surface of the light-homogenizing layer 13b) is a light-emitting surface 132b. The diffusion layer may or may not be added to the light guiding layer and the light homogenizing layer; and when the materials of the plastic material (including the diffusion particles added therein) of the light guiding layer and the light homogenizing layer are the same, then the guiding The optical device 1b will substantially correspond to a two-layer structure in which only the co-extrusion of the light guiding layer and the reflective layer is integrally formed. The embodiment of the light guiding device 1b of the present invention shown in Fig. 13A is exemplified by the same material of the plastic material (including the diffusion particles added therein) of both the light guiding layer and the light homogenizing layer. In this embodiment, the light incident surface 15 and the light exit surface 121b are perpendicular to each other. A normal N perpendicular to the light-emitting surface 1211) may be defined at any point of the light-emitting surface i2ib. Due to the characteristics of the reflective layer lib, when the light 20 deflected downward inside the light guiding layer 12b is directed toward the reflecting surface U2b, the light 20 will be reflected by the microstructured reflecting surface 112b and folded back to the light guiding layer. 12b and change the angle. However, when the light 20 traveling inside the light guiding layer 12b is incident on the light emitting surface 132b, there is a reflection due to the difference in the angle between the traveling direction of the light 20 and the normal N of the light emitting surface 132b. 2〇1 or 2〇2 two different optical effects. As for one of the factors that determine whether light 20 will reflect or emit light at the exit surface, it is determined by the critical angle of light refraction between the light guide layer and the plasticity of the homogenizing layer itself and the ambient air (7). Among them, the critical angle Gcrsin 'I / n). In the present embodiment, taking the refractive index n=158 of the light guiding layer (the homogenous light layer) as an example, and substituting η=1·58 into the above formula, the critical angle is calculated to be 3926 〇 (about 40). ). In another embodiment, if the refractive index n=1.49 of the light guiding layer (the homogenous light layer) 23 201207454 is taken as an example, the critical angle step = 42 16 can be calculated. (about equal to 420). When the angle 9 between the light 20 incident on the light-emitting surface 132b and the normal line N is smaller than the critical angle, the light 2〇 will emit light 2〇2 and be refracted from the light-emitting surface 132b; and when the angle θ is larger than At this critical angle 该, the light 20 will be reflected back into the light guiding layer 12b. According to the structure of the light guide of the present invention shown in the circular thirteenth A, a corresponding curve @ between the angle of the light pattern and the light intensity of the light-emitting surface can be tested and clamped. As shown in Figure 13B, it is a bifurcated two-layer structure (that is, only having a light guiding layer and a reflective layer, or when the homogenous light layer and the light guiding layer are made of the same plastic material) and a three-layer structure (having different plastic materials). That is, two kinds of light guiding devices, which are composed of a uniform refractive index, a light guiding layer and a reflecting layer, are used to test and draw a corresponding graph between the angle of the light pattern of the light emitting surface and the brightness of the light. It can be seen from the graph shown in FIG. 13B that the curve of the embodiment of the light guiding device with double-layer structure and no special uniform light design is obviously shifted to the right side of the vertical normal line with the light-emitting angle of 0 degree, which is shown in the lack of different refractive index. In the case of the uniform light layer, the light emitted by the light-emitting surface has a maximum brightness in a range of oblique viewing angles of about 3 to 50 degrees; in contrast, a 0 degree angle of view suitable for human eyes is relatively low in brightness. However, for a three-layered light guiding device embodiment having a suitable reflective surface microstructure aspect ratio and a suitable ratio of refractive index to thickness of the homogenous light layer and the light guiding layer, it is emitted by the light exiting surface. The light is obviously directed to the positive viewing angle, so that the light-emitting surface has the maximum brightness in the range of angles of positive and negative 20 degrees, thereby increasing the brightness of the backlight module. According to the foregoing optical performance evaluation method, a plurality of reflective surfaces having different width-to-depth ratio microstructures, different uniformity refractive index and light guiding latent refraction 24 201207454 ratio, and uniform light layers and light guiding materials having different thickness ratios Layers are used for cross-matching, and the brightness of the light-emitting surface is simulated and measured one by one according to the manners shown in FIG. 13A and FIG. 13B, and the results are organized as follows. For the measurement method of the brightness of the surface light, please refer to FIG. 14 for a schematic diagram of an embodiment of the lightness of the light-emitting surface 132 of the light-measuring light guiding device 1 of the present invention. As shown in Fig. 14, a total of 13 test zones at different positions are selected from the range of the light-emitting surface 132 displayed in the upper view direction. The light is emitted into the light guiding device by the light source 2 of the light guiding device 1 of different structure design, and the brightness of the positive viewing angle is measured after 13 test areas of the light emitting surface 132 of the light guiding device 1 are taken. The average value is added and the average value is included in Table 3 as the measured brightness. Table 3: Reflective surfaces with different aspect ratio microstructures, and different homogenizing layers _ and light guiding layer refractive index and thickness ratio of the light guides of the light guide unit. Structure aspect ratio nl n2 tl (mm) t2 (mm) tl/t2 Lightness (nits) 1 0.5 1.58 No 3 0 No 2867 2 0.5 1.49 No 3 0 No 2932 3 0.5 1.58 1.46 2 1 2 1917 4 0.5 1.49 1.58 2 1 2 991.6 5 0.5 1.58 1.49 1.5 1.5 1 2271 6 0.5 1.49 1.58 1.5 1.5 1 1688 7 0.5 1.58 1.49 1 2 1 0.5 2600 8 0.5 1.49 1.58 1 2 0.5 2340 9 0.5 1.58 1.49 0.5 2.5 0.2 2909 10 0.5 1.49 1.58 0.5 2.5 0.2 2917 No. Structure depth Width nl n2 tl ( Mm) t2(mm) tl/t2 brightness 25 201207454 ratio (nits) 11 0.419 a _ 1.58 no 3 0 no 4598 12 0.419 1.49 no 3 0 no 4593 13 _ 0.419 1.58 1.49 2 1 2 3249 14 0.419 1.49 1.58 2 1 2 3265 15 0.419 1.58 1.49 1.5 1.5 1 3699 16 0.419 1.49 1.58 1.5 1.5 1 3776 17 18 — 1.58 1.49 1 2 0.5 4123 0.419 1.49 1.58 1 2 0.5 4239 19 '0.419 1.58 1.49 0.5 2.5 0.2 4551 20 0.419 1.49 1.58 0.5 2.5 0.2 4625 21 0.419 1.58 1.49 0.3 2.7 0.11 4519 22 1.49 1 .58 0.3 2.7 0.11 4632 No.-----1 Structure aspect ratio nl n2 tl(mm) t2(mm) tl/t2 Brightness (nits) 23 0.319 1.58 No 3 0 No 4996 24 0.319 1.49 No 3 0 None 5318 25 0.319 1.58 1.49 2.9 0.1 29 2891 26 Γ 0.319 1.49 1.58 2.9 0.1 29 5609 27 0.319 1.58 1.49 2.5 0.5 5 2919 28 0.319 1.49 1.58 2.5 0.5 5 5634 29 0.319 1.58 1.49 2 1 2 3456 30 0.319 1.49 1.58 2 1 2 5459 31 0.319 1.58 1.49 1.5 1.5 1 4039 32 0.319 1.49 1.58 1.5 1.5 1 5321 33 0.319 1.58 1.49 1 2 0.5 4628 34 0.319 1.49 1.58 1 2 0.5 5130 No. Structure aspect ratio nl n2 tl(mm) t2(mm) tl/t2 Lightness (nits) 35 0.288 1.58 No 3 0 No 4081 36 0.288 1.49 No 3 0 No 4495 37 0.288" 1.58 1.49 2.9 0.1 29 2516 26 201207454 38 0.288 1.49 1.58 2.9 0.1 29 5735 39 0.288 1.58 1.49 2.7 0.3 9 2520 40 0.288 1.49 1.58 2.7 0.3 9 5750 41 0.288 1.58 1.49 2.6 0.4 6.5 2520 42 0.288 1.49 1.58 2.6 0.4 6.5 5755 43 0.288 1.58 1.49 2.5 0.5 5 2549 44 0.288 1.49 1.58 2.5 0.5 5 5751 45 0.288 1.58 1.49 2.3 0.7 3.29 2701 46 0.288 1.49 1.58 2.3 0. 7 3.29 5592 47 0.288 1.58 1.49 2 1 2 2975 48 0.288 1.49 1.58 2 1 2 5326 49 0.288 1.58 1.49 1.5 1.5 1 3342 50 0.288 1.49 1.58 1.5 1.5 1 4900 51 0.288 1.58 1.49 1 2 0.5 3922 52 0.288 1.49 1.58 1 2 0.5 4470 No. Structure aspect ratio nl n2 tl(mm) t2(mm) tl/t2 Brightness (nits) 53 0.233 1.58 No 3 0 No 2267 54 0.233 1.49 No 3 0 No 2576 55 0.233 1.58 1.49 2.9 0.1 29 1352 56 0.233 1.49 1.58 2.9 0.1 29 4301 57 0.233 1.58 1.49 2.5 0.5 5 1383 58 0.233 1.49 1.58 2.5 0.5 5 4283 59 0.233 1.58 1.49 2 1 2 1648 60 0.233 1.49 1.58 2 1 2 3813 61 0.233 1.58 1.49 1.5 1.5 1 1941 62 0.233 1.49 1.58 1.5 1.5 1 3818 63 0.233 1.58 1.49 1 2 0.5 2239 64 0.233 1.49 1.58 1 2 0.5 2783 No. Structure aspect ratio nl n2 tl(mm) t2(mm) tl/t2 Brightness (nits) 65 0.2 1.58 No 3 0 None 2266 66 0.2 1.49 without 3 0 without 2182 67 0.2 1.58 1.49 2.9 0.1 29 815.2 68 0.2 1.49 1.58 2.9 0.1 29 2576 27 201207454 69 0.2 1.58 1.49 2.5 0.5 5 853.5 70 0.2 1.49 1.58 2.5 0.5 5 2534 71 0.2 1.58 1.49 2 1 2 1209 72 0.2 1.49 1.5 8 2 1 2 2553 73 0.2 1.58 1.49 1.5 1.5 1 1560 74 0.2 1.49 1.58 1.5 1.5 1 2511 75 0.2 1.58 1.49 1 2 0.5 1874 76 0.2 1.49 1.58 1 2 0.5 2436 77 0.2 1.58 1.49 0.5 2.5 0.2 2135 78 0.2 1.49 1.58 0.5 2.5 0.2 2361 No. Structure aspect ratio nl n2 tl(mm) t2(mm) tl/t2 Brightness (nits) 79 0.181 1.58 No 3 0 No 2512 80 0.181 1.49 No 3 0 No 2399 81 0.181 1.58 1.49 2 1 2 1254 82 0.181 1.49 1.58 2 1 2 2313 83 0.181 1.58 1.49 1.5 1.5 1 1655 84 0.181 1.49 1.58 1.5 1.5 1 2433 85 0.181 1.58 1.49 1 2 0.5 2038 86 0.181 1.49 1.58 1 2 0.5 2513 87 0.181 1.58 1.49 0.7 2.3 0.3 2245 88 0.181 1.49 1.58 0.7 2.3 0.3 2559 89 0.181 1.58 1.49 0.5 2.5 0.2 2352 90 0.181 1.49 1.58 0.5 2.5 0.2 2606 91 0.181 1.58 1.49 0.3 2.7 0.11 2365 92 0.181 1.49 1.58 0.3 2.7 0.11 2541 No. Structure aspect ratio nl η2 tl(mm) t2 (mm) tl/t2 Brightness (nits) 93 0.134 1.58 No 3 0 No 1739 94 0.134 1.49 No 3 0 No 1601 95 0.134 1.58 1.49 2 1 2 1106 96 0.134 1.49 1.58 2 1 2 1468 97 0.134 1.58 1.49 1.5 1.5 1 1259 98 0.13 4 1.49 1.58 1.5 1.5 1 1562 99 0.134 1.58 1.49 1 2 0.5 1417 28 201207454

Ll〇〇,| 0.134 1 1.49 1 1.58J 1 | 2 I 0.5 I 1644 | 於表二中,「結構深寬比」棚位内的值指的是導光裝 置之反射面(也就是反射層上表面)上之微結構的深度 H2與寬度P2比值;「nl」欄位内的值是均光層之折射率 值;「n2」攔位内的值是導光層之折射率值;「Uj攔位内 的值是均光層之厚度值;「12」欄位内的值是導光層之厚 度值;「tl/t2」欄位内的值是均光層與導光層兩者厚度之 比值;「光亮度」攔位内的值是依據圖十四所示之實施例 所量測得到之出光面共13個區域的光亮度平均值。 由表三中序號11至序號64實施例所量測到的光亮度 相較於其他實施例的光亮度可知,當反射面深寬比 (H2/P2 )值介於0.233至0.419之間(亦即, 0.233SH2/P2S0.419)時可以有較佳之光亮度;並且, nl<n2之實施例的光亮度也比n2>nl之實施例來得好。 另’由表三中序號23至序號78實施例所量測到的光亮度 可知’當反射面深寬比(Η2/Ρ2)值介於0.2至0.319之間 時,具有適當均光層與導光層厚度比值範圍為 l$tl/t2S29内之三層架構的導光裝置可具有相較於兩層 架構之導光裝置(導光層厚度0)更高的光亮度;並且, 三層架構之導光裝置的光亮度甚至可以比兩層架構之導 光裝置之光亮度更高出67°/❶(例如,以序號54與序號56 兩實施例的光亮度值來比較)。至於,於圖十三B中所示 之三層架構導光裝置實施例的曲線,則是依據序號42實 施例的三層架構來模擬所得的曲線,其出光面之光亮度可 29 201207454 高達 5755 nits。 請參閱圓十五A、十五B及十五c,分別為說明本發 明之導光裝置中的反射面深寬比(H2/P2)對於光反射效 果的不同實施例圓。 如圖十五A所示,當反射面112e深寬比H2/P2太小 時,光線20c經由反射層llc之反射面U2c微結構反射 後’會使得光線往大視角方向偏折,偏離正視角,使得出 光面132c所測得之光亮度較低,故H2/p2之範圍不小於 等於0.134,佳,也就是應符合以下數學式: Γ) < 75。 Η2 L〇5*P2; 如圖十五B所示,由於當均光層13d折射率小於導 光層12d折射率(ηι<η2)時,例如當nl=1 49且% 時,將會有如下式之結果: C〇t l(0^p5) <Sin"'0 = sin_1 (tt?) = 70.57 0.5* 尸2 n2 1.58 其結果為,光線經由反射層nd結構導正後可直接出 射至出光面132d並出光,不會在均光層13d與導光層12d 介面產生全反射,造成光在導光層12d中再次傳遞、損耗 光能量,所以可以獲得較高之出光面132d的光亮度。 如圓十五C所示,當反射面U2e深寬比H2/P2太大 時,光線20e經由反射層lle之反射面112e微結構反射 後,會使得光線20e往入光面15側的方向偏折,偏離正 視角,使得光亮度較低,故H2/P2之範圍不大於等於〇.5 時較佳,也就是應符合以下數學式: H2 0.5* P2Ll〇〇,| 0.134 1 1.49 1 1.58J 1 | 2 I 0.5 I 1644 | In Table 2, the value in the "Structure Aspect Ratio" shed refers to the reflective surface of the light guide (ie the reflective layer) The ratio of the depth H2 to the width P2 of the microstructure on the surface; the value in the "nl" field is the refractive index value of the homogenizing layer; the value in the "n2" block is the refractive index value of the light guiding layer; "Uj The value in the block is the thickness of the blanket layer; the value in the "12" field is the thickness of the light guide layer; the value in the "tl/t2" field is the thickness of both the blanket layer and the light guide layer. The ratio of the "brightness" block is the average of the brightness of 13 regions of the illuminating surface measured according to the embodiment shown in FIG. The lightness measured by the examples of No. 11 to No. 64 in Table 3 is better than that of the other embodiments. When the reflection surface aspect ratio (H2/P2) is between 0.233 and 0.419 (also That is, 0.233SH2/P2S0.419) may have a better lightness; and the luminance of the embodiment of nl <n2 is also better than that of the embodiment of n2>nl. In addition, the lightness measured by the example No. 23 to No. 78 in Table 3 shows that when the reflection surface aspect ratio (Η2/Ρ2) is between 0.2 and 0.319, it has an appropriate uniformity layer and guide. The light guiding device of the three-layer structure in which the ratio of the optical layer thickness is in the range of l$tl/t2S29 can have a higher brightness than the light guiding device (the thickness of the light guiding layer 0) of the two-layer structure; and, the three-layer structure The brightness of the light guiding device can even be 67°/❶ higher than the brightness of the two-layer light guiding device (for example, by comparing the brightness values of the two embodiments of the number 54 and the serial number 56). As for the curve of the three-layer architecture light guiding device embodiment shown in FIG. 13B, the curve is simulated according to the three-layer structure of the No. 42 embodiment, and the brightness of the light emitting surface can be 29 201207454 up to 5755. Nits. Please refer to Circles 15A, 15B and 15c, respectively, for explaining different embodiment circles of the reflection surface aspect ratio (H2/P2) for light reflection effect in the light guiding device of the present invention. As shown in FIG. 15A, when the reflection surface 112e is too small in width to width ratio H2/P2, the light ray 20c is reflected by the reflection surface U2c of the reflective layer llc, which causes the light to be deflected toward a large viewing angle, deviating from the positive viewing angle. The brightness of the light measured by the light-emitting surface 132c is low, so the range of H2/p2 is not less than or equal to 0.134, which is preferably the following mathematical formula: Γ) < 75. Η2 L〇5*P2; as shown in FIG. 15B, since when the refractive index of the uniform light layer 13d is smaller than the refractive index of the light guiding layer 12d (ηι < η2), for example, when nl=149 and %, there will be The result is as follows: C〇tl(0^p5) <Sin"'0 = sin_1 (tt?) = 70.57 0.5* corpse 2 n2 1.58 The result is that light can be directly emitted through the reflective layer nd structure. The light-emitting surface 132d emits light, and does not cause total reflection on the interface between the light-homogenizing layer 13d and the light-guiding layer 12d, so that the light is again transmitted in the light-guiding layer 12d, and the light energy is lost, so that the brightness of the light-emitting surface 132d can be obtained. . As shown by the circle fifteenth C, when the depth-to-width ratio H2/P2 of the reflecting surface U2e is too large, the light ray 20e is reflected by the reflecting surface 112e of the reflecting layer lle, and the light 20e is deflected toward the side of the light-emitting surface 15 Fold, deviate from the positive viewing angle, so that the brightness is low, so the range of H2/P2 is not greater than or equal to 〇.5, which is better, that is, the following mathematical formula should be met: H2 0.5* P2

)>45 201207454 综合上述之數學式可以得知,當本發明之導光裝置的 反射面微結構符合以下數學式時,將可以得瑜高的出光 面光亮度: 45。翁丨(為)<, 其中’ P2值係介於8〇师至25〇μιη之間為較佳,其 若小於80μχη則在共押出製程中藉由滾輪押出微結構的成 型率會降低、若大於25Gpm則在出光面易有亮線現象。 唯以上所述之實施例不應用於限制本發明之可應用 範圍’本發明之保護範圍應以本發明之申請專利範圍内容 所界定技術精神及其均等變化所含括之範圍為主。即大凡 依本發明申請專利範圍所做之均等變化及修飾,仍將不失 本發明之要義所在,亦不脫離本發明之精神和範圍,故都 應視為本發明的進一步實施狀況。 【圖式簡單說明】 圖一為習知技術之發光元件的光源模組示意圖。 圖二為習知技術之導光板在光線傳導過程中發生光 損耗的示意圖。 圖三為習知技術之導光板之亮帶示意圖。 圖四為本發明之具微結構之導光裝置之第一實施例 的示意圖。 圖五為本發明之具微結構之導光裝置第一實施例可 減少光損耗的示意圖。 圖六為本發明之具微結構之導光裝置的一輝度關係 曲線圖》 31 201207454 圖七為本發明中之具微結構之導光裝置中的反射 層、導光層與均光層結構的多種實施態樣示意圖。 圖八A至圖八〇分別為本發明之具微結構之導光裝 置上的微結構的不同實施例示意圖。 圓九為本發明之具微結構之導光裝置的另一實施例 示意圓。 圖十為本發明用來製造具微結構之導光裝置之共押 出製程的一實施例流程圖。 圖十一為本發明用來製造具微結構之導光裝置之共 押出製程的一實施例示意圖。 圖十二為本發明用來在具微結構之導光裝置之出光 面上形成粗糙面的喷砂製程示意圖。 圖十二A為本發明之導光裝置之再一實施例示意圖。 圓十三丑為如圖十三a所示之本發明導光裝置於測 試出光面之光型的角度與光亮度之間的對應曲線圖。 圓十四為本發明量測導光裝置之出光面的光亮度的 實施例示意圖。 圖十五A、十五B及十五c,分別為說明本發明之導 光裝置t的反射面深寬比(聊2)雜歧射效果的不 同實施例囷。 【主要元件符號說明】 I、 la、lb〜具微結構之導光裝置 II、 11a、lib、11c、lid、lle〜反射層 III、 111a〜反射粒子 32 201207454 112、112a、112b、112c、112d、112e〜反射面 12、 12a、12b、12c、12d、12e〜導光層 122、122a〜擴散粒子 13、 13a、13b、13c、13d、13e〜均光層 131、131a〜擴散粒子 132、132a、132b、132c、132d、132e〜出光面 15〜入光面 2〜側光源 20、 20c、20d、20e 〜光 201、203〜反射 202〜出光 21、 22、23〜料桶 24〜螺桿混煉 25〜押出模具 IU、R2及R3〜滾輪 31〜喷砂裝置 32〜噴嘴 33〜滾輪表面 41、42〜欄位 出光面 反射面 41 卜 412、413、414、42 卜 422、423、424〜圖 4111'4121'4131 > 4141'4211 > 4221'4231'4241 4112、4122、4132、4142、4212、4222、4232、4242 5〜背光模組 51〜電路板 523〜光射出的平面 54〜反光層 56〜擴散膜 581〜光 583〜次亮區域 590〜光學膜 50〜光源模組 520〜光板 524〜反射板 55〜菱鏡模組 57〜液晶面板 582〜最亮區域 584〜較暗區域 801〜815〜微結構 33]>45 201207454 In summary of the above mathematical formula, it can be known that when the reflective surface microstructure of the light guiding device of the present invention conforms to the following mathematical expression, the brightness of the light exiting surface can be obtained: 45.翁丨(为)<, where 'P2 value is between 8〇 and 25〇μηη, and if it is less than 80μχη, the molding rate of the microstructure by the roller is reduced in the co-extrusion process, If it is larger than 25Gpm, it is easy to have a bright line on the light-emitting surface. The above-mentioned embodiments are not intended to limit the scope of application of the present invention. The scope of the present invention is intended to be limited by the technical spirit defined by the scope of the claims of the present invention and the scope thereof. It is to be understood that the scope of the present invention is not limited by the spirit and scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a light source module of a conventional light-emitting element. Figure 2 is a schematic diagram showing the optical loss of a light guide plate of the prior art during light transmission. FIG. 3 is a schematic diagram of a bright band of a light guide plate of the prior art. Figure 4 is a schematic illustration of a first embodiment of a microstructured light guiding device of the present invention. Fig. 5 is a schematic view showing the first embodiment of the light guiding device with microstructure according to the present invention for reducing light loss. 6 is a luminance relationship diagram of a light guiding device with microstructures according to the present invention. 31 201207454 FIG. 7 is a structure of a reflective layer, a light guiding layer and a light homogenizing layer in a light guiding device with microstructures according to the present invention. A schematic diagram of various implementations. 8A to 8B are respectively schematic views of different embodiments of the microstructure on the microstructured light guiding device of the present invention. Round nine is a schematic circle of another embodiment of the microstructured light guiding device of the present invention. Figure 10 is a flow chart showing an embodiment of a co-extrusion process for fabricating a light guide having microstructures. Figure 11 is a schematic illustration of an embodiment of a co-extrusion process for fabricating a light guide having microstructures. Figure 12 is a schematic view of a sandblasting process for forming a rough surface on a light exit surface of a light guide having a microstructure. Figure 12A is a schematic view showing still another embodiment of the light guiding device of the present invention. The figure 13 is the corresponding graph between the angle of the light type of the light-emitting surface of the present invention and the brightness of the light as shown in Fig. 13a. The circle fourteen is a schematic view of an embodiment of the lightness of the light-emitting surface of the measuring light guiding device of the present invention. Figs. 15A, 15B and 15c are respectively different embodiments for explaining the effect of the reflection surface aspect ratio (Talk 2) of the light guiding device t of the present invention. [Description of main component symbols] I, la, lb~ light guiding device II, 11a, lib, 11c, lid, lle~reflecting layer III, 111a~reflecting particles 32 201207454 112, 112a, 112b, 112c, 112d 112e to reflective surfaces 12, 12a, 12b, 12c, 12d, and 12e to light guiding layers 122 and 122a to diffusing particles 13, 13a, 13b, 13c, 13d, and 13e to light-homogenizing layers 131 and 131a to diffusing particles 132 and 132a. 132b, 132c, 132d, 132e~ light-emitting surface 15~ light-incident surface 2~ side light source 20, 20c, 20d, 20e~ light 201, 203~ reflection 202~ light out 21, 22, 23~ barrel 24~ screw mixing 25~Extrusion die IU, R2 and R3~Roller 31~ Sandblasting device 32~Nozzle 33~Roller surface 41,42~Field light-emitting surface reflecting surface 41 Bu 412, 413, 414, 42 Bu 422, 423, 424~ 4111'4121'4131 > 4141'4211 > 4221'4231'4241 4112, 4122, 4132, 4142, 4212, 4222, 4232, 4242 5 ~ backlight module 51 ~ circuit board 523 ~ light emitting plane 54 ~ reflective Layer 56 to diffusion film 581 to light 583 to sub-bright region 590 to optical film 50 to light source module 520 to light plate 524 to reflector 5 5 ~ Mirror module 57 ~ LCD panel 582 ~ brightest area 584 ~ darker area 801 ~ 815 ~ microstructure 33

Claims (1)

201207454 七、申請專利範圍: 1. 一種具微結構之導光裝置,可搭配一側光源使用且包括 有: 一導光層,其係定義有一入光面;該入光面可供該側光 源所發出之一光自該入光面進入該導光層中; 一反射層,可將該導光層中射向該反射層之該光加以反 射回該導光層;以及 一均光層,其較遠離該反射層之側的表面是一出光面, 該導光層是位於該反射層與該均光層之間,並且,該 出光面與該入光面垂直,可供該導光層内之該光至少 有一部分可自該出光面射出; 其特徵在於: 該反射層、該導光層與該均光層三者為共押出一體成 型,該反射層與該導光層之間無空氣界面;並且,於 該導光層與該反射層之間係定義有一反射面,且於該 反射面上係設置有立體之一微結構。 2. 如申請專利範圍第1項所述之具微結構之導光裝置,其 令,該反射面之微結構的深寬比數據係符合以下關係 式: 45〇<c〇rl(0^><sin-1(f);並且, π1<η2 I 其中,Η2是該反射面之微結構的深度、ρ2是該反射 面之微結構的寬度、ηΐ是該均光層的折射率、且心 是該導光層的折射率。 3. 如申請專利範圍第2項所述之具微、结構之導光裝置,其 34 201207454 更符合至少下列其中之一條件: 0.233^ (H2/P2) ^0.419 ; P2值係介於8〇师至25〇μϊη之間; 反射面深寬比(Η2/Ρ2)值介於〇.2至0 319之間,且均 光層厚度U與導光層厚度t2的比值範圍為 l^tl/t2^29 ; 該反射面之微結構為非連續性之微結構,且兩相鄰微 結構之間距G值介於〇〜i.4mm。 《如申請專利範圍第2項所述之舰、结構之導光裝置,其 中,該具微結構之導光裝置更包括有至少下列其中之 -· 複數擴散粒子,添加於該導光層中; 複數擴散粒子,添加於該均光層中; 於該出光面上設有立體之一微結構; 不同折射率之兩種塑料,混合於該反射層中; '複數反射粒子,添加於該反射層中;以及 可控制疏密變化之一粗糖面或一霧面,形成於該出光 面上。 5.如申請專利範圍第4項所述之具微結構之導光裝置,其 中: ' 當該導光層中添加有該複數擴散粒子時,該導光層内之 擴散粒子與該導光層本身塑料基材之折射率差(Δη) 值係介於0.04<Δη<0] ’該導光層内之擴散粒子的 粒徑介於2μιη〜ΙΟμιη,且該導光層本身塑料基材之折 射率介於1.42-1.63 ; 201207454 當該均光層中添加有該複數擴散粒子時,該均光層内之 擴散粒子與該均光層本身塑料基材之折射率差(Δη) 值係介於0.04<Δη<0.1,該均光層内之擴散粒子的 粒徑介於2μιη〜ΙΟμιη,且該均光層本身塑料基材之折 射率介於1.42-1.63 ; 當該反射層中混合有不同折射率之兩種塑料時,其不同 折射率之兩種塑料之混合比例為7 : 3 ; 當該反射層中添加有該複數反射粒子時,該反射粒子之 折射率為2.2〜3.2,且添加濃度小於0.5%重量百分 比,且該反射粒子之粒徑介於4-50μιη,該反射層本 身塑料之折射率介於1.6-2.5,且該反射層與該導光層 兩者折射率差值介於0.05-1 ;以及 當該出光面上具有該粗糙面時,該出光面之粗糙度(Ra) 值介於 l|im<Ra<6pm 〇 6.如申請專利範圍第4項所述之具微結構之導光裝置,其 中,當該出光面上具有該粗輪面時,該出光面之粗链度 (Ra)值是介於 lnin<Ra<2.2lKm。 7·如申請專利範圍第2項所述之具微結構之導光裝置,其 中,於該出光面上設置有立體之—微結構,並且,於該 出光面上之微結構的排财向和該反射面之微結構的 排列方向是互為平行或是正交的排列方向兩者其中之 —· 〇 8·如申請專利範圍第7項所述之具微結構之導光裝置,其 中,當該出光面上之微結構與該反射面之微結構是以下 其中之一: 201207454 具有多數狹長且平行排列之連續性三角條狀微結 構; 具有多數狹長且平行排列之連續性半圓條狀微結 構; 具有多數以陣列排列之立體的連續性錐形微結 構; 具有多數以陣列排列之立體的連續性球形微結 構; 具有多數以陣列排列之立體的連續性弧狀錐形微 結構; 具有多數狹長且平行排列之非連續性立體三角條 狀、不等距且兩側向遠離入光面處變密集的可 控制疏密變化的微結構; 具有多數狹長且平行排列之非連續性立體三角條 狀、等距疏密變化的微結構; 具有多數狹長且平行排列之非連續性立體半圓條 狀、不等距且兩側向遠離入光面處變密集的可 控制疏密變化的微結構; 具有多數狹長且平行排列之非連續性立體半圓條 狀、等距疏密變化的微結構; 具有多數以陣列排列之非連續性立體的錐形、不 等距且兩側向遠離入光面處變密集的可控制疏 密變化的微結構; 具有多數狹長且以陣列排列之非連續性立體的錐 形、等距疏密變化的微結構; 37 201207454 具有多數以陣列排列之非連續性立體的球形微結 構、不等距且兩側向遠離入光面處變密集的可 控制疏密變化的微結構; 具有多數以陣列排列之非連續性立體的球形微結 構、等距疏密變化的微結構; 具有多數以陣列排列之非連續性弧狀錐形微結 構、不等距且兩側向遠離入光面處變密集的可 控制疏密變化的微結構;以及, 具有多數以陣列排列之非連續性弧狀錐形微結 構、等距疏密變化的微結構。 9· 一種具有導光裝置之背光模組,包括有: 一側光源; 一導光層,其係定義有一入光面;該入光面可供該側光 源所發出之一光自該入光面進入該導光層中; -反射層’可將該導光層中射向該反射層之該光加以反 射回該導光層; 一均光層’其較遠離該反射層之綱表©是-出光面, 該導光層疋位於該反射層與該均光層之間,並且,該 出光面與該入光面垂直,可供該導光層内之該光至少 有部分可自該出光面射出;以及 至少一光學膜,覆蓋於該出光面上; 其特徵在於: 反射層該導光層與該均光層三者為共押出一體成 型,該反射層與該導光層之間無空氣界面;並且於 該導光層與該反射層之間係定義有—反_,且於該 38 201207454 反射面上係設置有立體之一微結構;並且, 該反射面之微結構的深寬比數據係符合以下關係式: 45〇<c〇r,(^)<siirg);並且, nl<n2 ; 其中,Η2是該反射面之微結構的深度、Ρ2是該反射 面之微結構的寬度、nl是該均光層的折射率、且心 是該導光層的折射率。 10. —種具有導光裝置之液晶顯示器,包括有: 一側光源; 一導光層,其係定義有一入光面;該入光面可供該側 光源所發出之一光自該入光面進入該導光層中; 一反射層’可將該導光層中射向該反射層之該光加以 反射回該導光層; 一均光層,其較遠離該反射層之侧的表面是一出光 面,該導光層是位於該反射層與該均光層之間,並 且,該出光面與該入光面垂直,可供該導光層内之 該光至少有一部分可自該出光面射出; 至少一光學膜,覆蓋於該出光面上;以及 一液晶面板,位於該光學膜較遠離導光層之側; 其特徵在於: 該反射層該導光層與該均光層三者為共押出一體成 型’該反射層與該導光層之間無空氣界面;並且, 於該導光層與該反射層之間係定義有一反射面,且 於該反射面上係設置有立體之一微結構;並且, 該反射面之微結構的深寬比數據係符合以下關係式: 39 201207454 45° <cot"'(———)<sin_1(·^·);並且, 0.5* 戶2 n2 nl<n2 ; 其中,Η2是該反射面之微結構的深度、Ρ2是該反射 面之微結構的寬度、nl是該均光層的折射率、且η2 是該導光層的折射率。201207454 VII. Patent application scope: 1. A light guide device with microstructures, which can be used with one side light source and includes: a light guiding layer defining a light incident surface; the light incident surface is available for the side light source One of the emitted light enters the light guiding layer from the light incident surface; a reflective layer that reflects the light incident on the reflective layer back to the light guiding layer; and a light equalizing layer, The surface of the side closer to the reflective layer is a light exiting surface, the light guiding layer is located between the reflective layer and the light homogenizing layer, and the light emitting surface is perpendicular to the light incident surface, and the light guiding layer is provided. At least a part of the light is emitted from the light-emitting surface; the reflective layer, the light-guiding layer and the light-homogenizing layer are integrally formed by co-extrusion, and there is no between the reflective layer and the light guiding layer. An air interface; and a reflective surface is defined between the light guiding layer and the reflective layer, and a stereoscopic microstructure is disposed on the reflective surface. 2. The light guiding device with microstructure as described in claim 1, wherein the microstructure of the reflecting surface has the following relationship: 45〇<c〇rl(0^ <sin-1(f); and, π1<η2 I where Η2 is the depth of the microstructure of the reflecting surface, ρ2 is the width of the microstructure of the reflecting surface, and ηΐ is the refractive index of the homogenous layer And the center of the core is the refractive index of the light guiding layer. 3. The micro-structured light guiding device according to item 2 of the patent application scope, 34 201207454 is more than one of the following conditions: 0.233^ (H2/ P2) ^0.419 ; P2 value is between 8〇 and 25〇μϊη; the aspect ratio of the reflective surface (Η2/Ρ2) is between 〇.2 and 0 319, and the thickness of the uniform layer is U and The ratio of the thickness of the optical layer t2 is l^tl/t2^29; the microstructure of the reflective surface is a discontinuous microstructure, and the G value between two adjacent microstructures is between 〇~i.4 mm. The light guide device of the ship or structure according to the second aspect of the invention, wherein the light guide device having a microstructure further includes at least one of the following - complex diffusion a plurality of diffusion particles are added to the light-homogenizing layer; a stereoscopic microstructure is provided on the light-emitting surface; and two plastics having different refractive indices are mixed in the reflective layer; a plurality of reflective particles added to the reflective layer; and a coarse sugar surface or a matte surface which can control the density change, formed on the light exit surface. 5. The microstructured material as described in claim 4 a light guiding device, wherein: ' When the plurality of diffusing particles are added to the light guiding layer, a difference in refractive index (Δη) between the diffusing particles in the light guiding layer and the plastic substrate of the light guiding layer itself is 0.04 <Δη<0] 'The particle size of the diffusion particles in the light guiding layer is between 2 μm and ΙΟμιη, and the refractive index of the plastic substrate of the light guiding layer itself is between 1.42-1.63; 201207454 when the uniform layer is added When the plurality of diffusing particles are present, the difference in refractive index (Δη) between the diffusing particles in the uniformizing layer and the plastic substrate of the homogenous layer itself is 0.04 < Δη < 0.1, and the diffusing particles in the homogenous layer The particle size is between 2μιη and ΙΟμιη, and the uniform light The refractive index of the plastic substrate itself is between 1.42-1.63; when the two plastics with different refractive indices are mixed in the reflective layer, the mixing ratio of the two plastics with different refractive indexes is 7:3; when the reflective layer is When the complex reflective particles are added, the reflective particles have a refractive index of 2.2 to 3.2, and the added concentration is less than 0.5% by weight, and the reflective particles have a particle diameter of 4-50 μm, and the refractive index of the reflective layer itself is plastic. Between 1.6 and 2.5, and the refractive index difference between the reflective layer and the light guiding layer is 0.05-1; and when the rough surface is provided on the light emitting surface, the roughness (Ra) value of the light emitting surface is between The micro-structure light guiding device according to the fourth aspect of the invention, wherein the thick surface of the light-emitting surface when the light-emitting surface has the coarse wheel surface ( The Ra) value is between lnin <Ra<2.2lKm. 7. The light guide device having a microstructure according to the second aspect of the invention, wherein the light-emitting surface is provided with a three-dimensional structure, and the microstructure of the light-emitting surface is discharged. The arrangement direction of the microstructures of the reflective surfaces is either parallel or orthogonal to each other. 〇8. The light guide device having the microstructure as described in claim 7 of the patent application, wherein The microstructure on the light-emitting surface and the microstructure of the reflective surface are one of the following: 201207454 A continuous triangular strip-shaped microstructure having a plurality of narrow and parallel arrays; a continuous semi-circular strip-shaped microstructure having a plurality of narrow and parallel arrays a plurality of continuous tapered pyramid structures arranged in an array; a plurality of continuous spherical microstructures arranged in an array; a plurality of continuous arcuate pyramid microstructures arranged in an array; having a majority of the elongated And parallel arranged non-continuous three-dimensional triangular strips, unequal distances and two sides of the microstructures which are densely controlled to be densely spaced away from the light entrance surface; a plurality of narrow, parallel-arranged discontinuous three-dimensional triangular strip-shaped, equidistant and densely-changing microstructures; having a plurality of narrow and parallel rows of discontinuous three-dimensional semi-circular strips, not equidistant and laterally away from the entrance surface a densely-structured microstructure that can control the density of changes; a discontinuous three-dimensional strip-shaped, equidistantly densely-structured microstructure with a plurality of narrow and parallel arrangements; a plurality of discontinuous three-dimensional cones arranged in an array, Microstructures that are not equidistant and have a controllable density change that is densely spaced away from the entrance surface; a semi-conical, equidistantly densely shaped microstructure that is mostly elongated and arrayed in a discontinuous three-dimensional shape; 201207454 has a plurality of non-continuous stereoscopic spherical microstructures arranged in an array, microstructures that are unequally spaced and which are densely spaced away from the entrance surface; a plurality of discontinuous three-dimensional arrays arranged in an array Spherical microstructure, isometric and densely varying microstructure; has a plurality of non-continuous arcuate pyramidal structures arranged in an array, not equidistant and laterally away from the illuminating surface Microstructures that are densely controlled to control density changes; and microstructures that have a plurality of non-continuous arcuate pyramid structures arranged in an array and equidistantly varying. A backlight module having a light guiding device, comprising: a light source; a light guiding layer defining a light incident surface; wherein the light incident surface is provided by the side light source to emit light from the light source The surface enters the light guiding layer; the reflective layer 'reflects the light from the light guiding layer that is directed toward the reflective layer back to the light guiding layer; a uniform light layer 'is farther away from the reflective layer a light-emitting surface, the light guiding layer is located between the reflective layer and the light-homogenizing layer, and the light-emitting surface is perpendicular to the light-incident surface, and the light in the light guiding layer is at least partially self-contained a light emitting surface; and at least one optical film covering the light emitting surface; wherein: the reflective layer, the light guiding layer and the light homogenizing layer are integrally formed by co-extruding, and between the reflective layer and the light guiding layer No air interface; and between the light guiding layer and the reflective layer is defined as - anti-, and on the 38 201207454 reflective surface is provided with a stereoscopic microstructure; and the microstructure of the reflective surface is deep The aspect ratio data conforms to the following relationship: 45〇<c〇r,(^)<siirg); And nl <n2; wherein Η2 is the depth of the microstructure of the reflective surface, Ρ2 is the width of the microstructure of the reflective surface, nl is the refractive index of the homogenous layer, and the center is the refractive index of the light guiding layer . 10. A liquid crystal display having a light guiding device, comprising: a light source; a light guiding layer defining a light incident surface; wherein the light incident surface is adapted to emit light from the side light source The surface enters the light guiding layer; a reflective layer 'reflects the light in the light guiding layer that is directed toward the reflective layer back to the light guiding layer; a uniform light layer that is farther away from the surface of the reflective layer Is a light emitting surface, the light guiding layer is located between the reflective layer and the light homogenizing layer, and the light emitting surface is perpendicular to the light incident surface, and at least a portion of the light in the light guiding layer is available from the light emitting layer a light emitting surface; at least one optical film covering the light emitting surface; and a liquid crystal panel located on a side of the optical film farther from the light guiding layer; wherein: the reflective layer and the light guiding layer Forming a common air interface between the reflective layer and the light guiding layer; and defining a reflective surface between the light guiding layer and the reflective layer, and having a three-dimensional surface on the reflective surface a microstructure; and, the depth of the microstructure of the reflective surface The aspect ratio data is in accordance with the following relationship: 39 201207454 45° <cot"'(--)<sin_1(·^·); and, 0.5* household 2 n2 nl<n2; wherein Η2 is the reflecting surface The depth of the microstructure, Ρ2 is the width of the microstructure of the reflecting surface, nl is the refractive index of the homogenous layer, and η2 is the refractive index of the light guiding layer.
TW100125351A 2010-07-23 2011-07-18 Light-guide apparatus with micro-structure, and a backlight module and an lcd device having the same TWI418864B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US36705510P 2010-07-23 2010-07-23

Publications (2)

Publication Number Publication Date
TW201207454A true TW201207454A (en) 2012-02-16
TWI418864B TWI418864B (en) 2013-12-11

Family

ID=45780968

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100125351A TWI418864B (en) 2010-07-23 2011-07-18 Light-guide apparatus with micro-structure, and a backlight module and an lcd device having the same

Country Status (4)

Country Link
JP (1) JP5286391B2 (en)
KR (1) KR101222163B1 (en)
CN (1) CN102411165B (en)
TW (1) TWI418864B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI559054B (en) * 2014-09-22 2016-11-21 Light emitting module
TWI628475B (en) * 2016-11-07 2018-07-01 迎輝科技股份有限公司 Light guiding structure, display device having the same and manufacturing method thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254592A (en) * 2012-06-05 2013-12-19 Sumitomo Chemical Co Ltd Light guide plate unit
TWI479209B (en) * 2012-12-27 2015-04-01 Chi Mei Corp Light guide plate
CN104251463A (en) * 2013-06-27 2014-12-31 叶金星 Light scattering plate with uniform light reflection function
CN103424930B (en) * 2013-07-31 2016-04-13 北京京东方光电科技有限公司 The manufacture method of composite light guide plate
KR102249863B1 (en) * 2014-03-17 2021-05-10 엘지이노텍 주식회사 Illuminating Member and Lighting Device Using the Same
TWI522666B (en) * 2014-08-22 2016-02-21 友達光電股份有限公司 Light guiding plate and backlight module having the same
KR102278308B1 (en) 2014-10-15 2021-07-19 삼성디스플레이 주식회사 Backlight unit and display device having the same
CN104515016B (en) * 2014-12-19 2017-10-31 欧普照明股份有限公司 A kind of LED illumination lamp
CN106569368B (en) * 2015-10-13 2019-06-28 元太科技工业股份有限公司 Reflective display and its front optical module
TWI595279B (en) 2015-10-13 2017-08-11 元太科技工業股份有限公司 Reflective display apparatus and front light module thereof
US10175393B2 (en) 2016-05-16 2019-01-08 Ubright Optronics Corporation Optical sheet having a composite structure thereon and method to make the same
CN108427157A (en) * 2018-04-24 2018-08-21 三进光电(苏州)有限公司 A kind of mackle carves light guide plate and its processing method
CN109553157A (en) * 2018-05-11 2019-04-02 深圳市微纳科学技术有限公司 UVC fluid purification sterilization component
CN109212828A (en) * 2018-09-30 2019-01-15 东莞市托普莱斯光电技术有限公司 A kind of LCD TV backlight mould group that can improve light utilization
CN111458925A (en) * 2019-01-18 2020-07-28 中强光电股份有限公司 Light source module and display device
CN112996302B (en) * 2019-12-13 2022-08-16 华硕电脑股份有限公司 Electronic device
CN111708217A (en) * 2020-06-11 2020-09-25 南京聚清新材料有限公司 Light guide reflective film, manufacturing method and backlight module
CN111708218A (en) * 2020-06-11 2020-09-25 南京聚清新材料有限公司 Light guide film and backlight module
CN111897454A (en) * 2020-07-24 2020-11-06 业成科技(成都)有限公司 Light emitting assembly, manufacturing method thereof and electronic device
CN113655558B (en) * 2021-09-02 2022-08-05 扬昕科技(苏州)有限公司 Light guide plate and backlight module

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3414448B2 (en) * 1993-08-27 2003-06-09 多摩電気工業株式会社 Diffuser for rear lighting device
JPH08286043A (en) * 1995-04-11 1996-11-01 Dainippon Printing Co Ltd Illuminating light transmission plate for liquid crystal display device and its manufacture
JP3025080U (en) * 1995-11-22 1996-06-07 信越ポリマー株式会社 Light guide for planar light source
JPH103813A (en) * 1996-06-14 1998-01-06 Sharp Corp Back light device
JP2006268060A (en) * 2000-11-13 2006-10-05 Asahi Kasei Chemicals Corp Light guide and method for producing transparent thermoplastic resin composition for the light guide
JP4294306B2 (en) * 2002-12-11 2009-07-08 恵和株式会社 Optical sheet and backlight unit using the same
US7520652B2 (en) * 2003-01-29 2009-04-21 Mitsubishi Rayon Co., Ltd. Area light source
US7108385B2 (en) * 2003-08-29 2006-09-19 Yin-Chun Huang Illumination module of light emitting elements
CN1752809A (en) * 2004-09-21 2006-03-29 庄新烈 Light guide plate module and its making method
KR100761090B1 (en) * 2005-12-30 2007-09-21 주식회사 두산 Integrated light guide pannel and method of manufacturing the same
KR20070076795A (en) * 2006-01-20 2007-07-25 삼성전자주식회사 Liquid crystal display and manufacturing method of the same
JP4765905B2 (en) * 2006-11-17 2011-09-07 日亜化学工業株式会社 Planar light emitting device and manufacturing method thereof
CN101221265A (en) * 2007-01-12 2008-07-16 财团法人工业技术研究院 Light guiding plate
US7507012B2 (en) * 2007-05-16 2009-03-24 Rohm And Haas Denmark Finance A/S LCD displays with light redirection
CN101836037A (en) * 2007-08-22 2010-09-15 三菱丽阳株式会社 Surface light source
KR100937303B1 (en) * 2007-08-24 2010-01-18 주식회사 나모텍 Light Guide Panel, Method for Manufacturing the Same, and Back Light Unit Using the Same
JPWO2009051203A1 (en) * 2007-10-19 2011-03-03 三菱レイヨン株式会社 Light guide member, method for manufacturing the same, and surface light source device using the same
JP2009103892A (en) * 2007-10-23 2009-05-14 System Tooto:Kk Light diffusing body
CN101493536B (en) * 2008-01-24 2013-05-08 财团法人工业技术研究院 Light diffuser plate and method for producing the same
CN101644788A (en) * 2008-08-07 2010-02-10 颖台科技股份有限公司 Optical membrane structure and manufacturing method thereof
JP2010086832A (en) * 2008-09-30 2010-04-15 Yoshikawa Kasei Kk Light guide plate, light diffusion plate, and lighting module
KR100988936B1 (en) * 2008-10-09 2010-10-20 한국기계연구원 Light guide plate and back light assembly having the same
KR20110086067A (en) * 2008-10-22 2011-07-27 가부시키가이샤 구라레 Surface light source element and image display device equipped with same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI559054B (en) * 2014-09-22 2016-11-21 Light emitting module
TWI628475B (en) * 2016-11-07 2018-07-01 迎輝科技股份有限公司 Light guiding structure, display device having the same and manufacturing method thereof

Also Published As

Publication number Publication date
KR101222163B1 (en) 2013-01-14
KR20120011808A (en) 2012-02-08
CN102411165B (en) 2013-08-07
JP5286391B2 (en) 2013-09-11
CN102411165A (en) 2012-04-11
TWI418864B (en) 2013-12-11
JP2012028328A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
TW201207454A (en) Light-guide apparatus with micro-structure, and a backlight module and an LCD device having the same
TWI434085B (en) Uniform reflective light-guide apparatus with micro-structure, and a backlight module and an lcd device having the same
US9304243B2 (en) Illumination device having viscoelastic lightguide
TWI434084B (en) Uniform reflective light-guide apparatus, and a backlight module and an lcd device having the same
JP5338319B2 (en) Optical sheet, surface light source device, display device, and optical sheet manufacturing method
TWI485066B (en) Laminated film
US8842239B2 (en) Light-guide apparatus with micro-structure, and backlight module and LCD device having the same
WO2013096324A1 (en) Optical film stack
JP2017107193A (en) Upper light diffusion sheet and backlight unit
CN103782204B (en) Optical sheet
TW201505847A (en) Laminate, method for producing laminate, light guide body for light source device and light source device
TWM409450U (en) Light guide plate with inner laser engraving
JP2014086245A (en) Light guide plate, backlight unit and display device
TWI518378B (en) Light diffusing flakes and the use of this backlight
JP2011233285A (en) Light guide plate, backlight unit, and display device
KR20130039091A (en) Light-guide apparatus with micro-structure, back light unit comprising the same and liquid crystal display comprising the same
KR20130039090A (en) Light-guide apparatus with micro-structure, back light unit comprising the same and liquid crystal display comprising the same
CN111045123A (en) Reflecting film and composite light guide structure