TW201207236A - Phase shift controller for a reciprocating pump system - Google Patents

Phase shift controller for a reciprocating pump system Download PDF

Info

Publication number
TW201207236A
TW201207236A TW100111875A TW100111875A TW201207236A TW 201207236 A TW201207236 A TW 201207236A TW 100111875 A TW100111875 A TW 100111875A TW 100111875 A TW100111875 A TW 100111875A TW 201207236 A TW201207236 A TW 201207236A
Authority
TW
Taiwan
Prior art keywords
phase
pump
phase shift
shift control
control device
Prior art date
Application number
TW100111875A
Other languages
Chinese (zh)
Inventor
Rijswick Rudolfus Johannes Adeleida Van
Osch Felix Johannes Jacobus Van
Original Assignee
Weir Minerals Netherlands Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NL2004979A external-priority patent/NL2004979C2/en
Application filed by Weir Minerals Netherlands Bv filed Critical Weir Minerals Netherlands Bv
Publication of TW201207236A publication Critical patent/TW201207236A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/005Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons
    • F04B11/0075Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons connected in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • F04B23/06Combinations of two or more pumps the pumps being all of reciprocating positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/007Installations or systems with two or more pumps or pump cylinders, wherein the flow-path through the stages can be changed, e.g. from series to parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Control Of Transmission Device (AREA)

Abstract

The present invention discloses a pump system using multiple reciprocating positive displacement pumps which phase shift is controlled by a phase shift controller. The phase shift controller uses a virtual master pump inside the phase shift controller which is used as a phase reference against which the phase shifts of the individual pumps is calculated. The phase shift controller adjusts the speed reference set-point for the variable speed drives of the individual pumps such that a desired phase shift is obtained and maintained. The operation op multiple reciprocating pumps using phase shift control can significantly reduce the pressure pulsation levels in the pump system. The use of a virtual master pump eliminates master slave scheduling and increases system reliability and availability as is the operating of the phase control is not depending on the reliability of a real master pump as is the case in prior art phase shift controllers.

Description

201207236 六、發明說明: 【發明所屬之技術領域】 本發明大致上係關於泵,且特定言之係關於處置礦物漿 體之多個往復式正位移泵。 【先前技術】 往復式正位移泵係用於在與(例如)單階離心泵相比之相 對向壓下泵送液體。此等正位移泵之進一步特徵包含高效 率及一精確流量輸出,但其等之一流量產能與離心泵相比 相對較低。當一典型應用之流量需求不可能由一單一泵滿 足時,可並行配置多個正位移泵使得其等之吸取及/或排 放連接件連接成一單一吸取及/或排放管線。此意味該等 個別泵之總流量可滿足該應用之總流量需求。該等個別泵 及互連吸取及排放管線之組合形成一泵系統。 在往復式泵中,一位移元件(諸如一活塞或柱塞)在氣缸 襯墊内部進行一往復式運動使所泵送之液體發生正位移。 在忒往復式泵之一特定實施例中,該位移元件之往復式運 動係藉由將該泵驅動器之旋轉運動轉換成該位移元件之一 往復式運動之一機構所產生。此機構之特定實施例可包含 曲軸、偏心軸、凸輪軸或凸輪盤機構。 在以下描述中,僅描述曲軸類型之實施例,其進一步被 稱為曲轴驅動之一正位移泵。在圖丨中,展示一個三氣缸 或一重單動式曲軸驅動正位移泵之一示意截面圖。該位移 元件可直接使該所泵送之液體位移或使一中間液體位移, 而該中間液體使一撓性位移元件位移,該撓性位移元件則 155255.doc -4- 201207236 使該所泵送之液體(諸如一研磨漿)位移。本發明適用於一 正位移泵之一實施例,但因為特別關注之改良係如下所述 之正漿體栗,因此該實施例使用如圖1特定所示之一中間 液體及撓性位移。 曲軸驅動正位移泵之一典型特徵係其位移元件之非怪定 在複速率。曲軸驅動正位移栗因此在各曲轴回轉時固有地 產生一非恆定流量或流量脈動。在圖2中,展示在一個三 重單動式正位移泵之一曲軸回轉或泵週期期間產生之一典 型流量脈動。取決於所連接之系統之液壓回應,此等流量 脈動在所泵送之液體中產生壓力脈動,繼而可導致管道及 該液體流過之支撐結構的振動,且該等壓力脈動可在該管 道系統中產生一不平衡負載。 當一個以上曲軸驅動正位移泵連接至一單一吸取及/或 排放入口或出口時,藉由該等個別泵產生之該等流量脈動 之間的一相互作用可能產生。此相互作用可再次取決於該 連接之系統之液壓回應而抵消或增加該泵系統中之流量及 壓力脈動之總位準。此外,該泵系統中存在之液壓諧振可 藉由每一個別泵產生之該等流量脈動而激發。決定一給定 泵系統中之總流量及壓力脈動之一重要參數係該等個別泵 之曲轴之間的相位移。控制此相位移可因此有助於控制使 用曲軸驅動正位移果之一給定系系,统中之力量及壓力脈 動。 亦被稱為栗同步之此相位移控制在下文予以描述並展示 於圖3中該相位移控制需要裝備有可用以藉由個別驅動 155255.doc 201207236 器之速度調整來調整並維持該等果之間的相位移之變速驅 動Is(VSD)之泵。再者,個別果及/或其等之驅動器係裝備 有指示個別泵之泵週期(進—步被稱為個別泵之相位)之位 置之一相位感測器。此相位資訊接著被相位移計算器使用 以計算該等個別泵之間的相位移,此等相位移接著被該相 位移控制器使用以調整該等個別泉之速度,使得相位移朝 期望相位移調整或維持在期望相位移。 在習知先前技術中,泵系統中之一泵被指定為主泵。此 主泵遵循該泵系統速度參考設定點而無針對相位移控制之 任何調整。其他栗則被指定為必須跟隨該主果之從屬泉。 該相位移控制器計算該主果與每一從屬泵之間的相位差, 並為每一個別從屬泵產生基於該主泵與該個別從屬泵之間 的該相位移之一速度設定點,以獲得並維持該主泵與從屬 泵之間的一恆定及期望相位移。 此方法具有若干缺點: 1. 系統操作員必須在啟動該泵系統前決定將哪一個泵用 作主泵,其後再決定各從屬泵相對於該所選擇之主泵之相 位移。此可導致複雜的主/從及相位移排程程序,其亦可 取決於該特定系統而有所差異。 2. 當該主泵失誤或必須關閉時該相位移即失去控制。取 決於該相位移控制之特定實施例,可能必須關閉整個泵系 統,這係因為該主及從的初始化可能需要自開始再次初始 化。對該完整的泵系統之該相位移控制之可靠性因此係取 決於被指定為該主泵之一單一泵之可靠性。 155255.doc •6· 201207236 3.當該主栗之操作不穩定時,舉例而言,由於吸取及/或 排放閥之-故障’該主泵之速度擺動可發生。從而使該主 泵之不穩定操作具有在該泵系 穩 作 定操作之結果’且因此產生整m统之—不穩定操 〇 此等缺點特別在使詩栗送高度研磨紫之採礦及礦物質 處理工業中之曲軸驅動正位移泵方面特別受到關注。該等 採礦及礦物質處理業中之應用需要縣系統之持續操作 且避免意外的停頓。進-步言之,習知配置之該等缺點在 高流速應时變得更受到關注,對於該採礦及礦物質處理 工業而言該等高流速應用亦係典型的。 先前技術中習知並使用之實施例通常係限於每一泵系統 具有三個或四個泵,且對於該泵系統而言該等主/從排程 程序相對較容易。進-步言之’具有相位移控制之先前技 術泵系統之總流速有限,因此該系統仍可可靠地操作,這 係因為該等壓力脈動產生之不平衡負載相對較低且在一些 應用申仍可接受。 然而,在採礦及礦物質處理工業中之大量漿體應用中, 可在一單一泵系統中使用數量大甚多之泵。習知實施例通 常在一單元泵系統中使用多達10個泵,使得該主/從排程 極複雜。使用於該採礦及礦物質處理工業中之尺寸增加之 系系統可導致所連接之管道中之該泵系統中之壓力脈動產 生之不平衡負載,其規模甚大使相位移控制成為達到可靠 泵系統操作之先決條件。 155255.doc 201207236 進-步言之’應注意由於導致果組件之磨損率較高之系 送衆體之研磨特徵,正位移毁體泉之兩次維護之間的時間 與非漿體應用相比可能相對較短。每次需對主果進行維護 時,必須指定-新的主泵’因此可能需要關閉一泵系統, 此將嚴重影響整個泵系統之可用性,在該粟系統中持續操 作係較佳的。 【發明内容】 本發明係關於-㈣於解決該先前技術曲健動正位移 栗之相位移控制系統之上述缺點之方法。在先前技術系統 中,一真實的果在-主/從控制方案t係用作控制該主果 與該從屬泉之間的相位移之一主菜。其缺陷包含複雜的主/ 從排程程序、取決於-單一主果之可靠性之㈣系統之減 小的可靠性以及-不穩定主系操作之情況中之整個栗系統 之減小的效能。 ;本發明係關於-種使用多個往復式正位錢之系系統, »亥夕個往復式正位移泵之相位移係由一相位移控制器控 制。該相位移控制器在該相位移控制器内部使用一虛擬主 泵,該虛擬主泵係在計算個別泵之相位移時用作一相位參 考。該相位移控制器調整該等個別泵之變速驅動器的速度 參考设定點,以獲得並維持一期望相位移。多個往復式泵 使用相位移控制之操作可顯著減小該泵系統之壓力脈動位 準。使用一虛擬主泵消除主從排程並增加系統可靠性及可 用性,这疋因為相位控制之操作並非如先前技術相位移控 制器之情況中一般取決於一真實主泵之可靠性。 155255.doc 201207236 該虛擬主$基於如-真實主线作之—單—泵系統參考 速度設定點在該相位移控制器内產生一相位參考信號。該 录系統中之所有真實栗系統在該相位移控制器中用作從屬 果。每一個別泵之相位與該控制器内之虛擬主果之相位比 較,接著將其用作該相位移控制之一輸入。在圖4中展示 該虛擬主泵相位移控制器之一控制流程圖。 使用-虛擬主泵可對該等習知先前技術曲軸驅動正位移 相位移控制系統提供-些操作性改良。該等從屬栗總是參 考相同虛擬主系,因此不需要排程。該虛擬主果被考慮為 永遠可帛、係因為該虛擬主泉並不需要維護2比一真實 機械栗可靠得多。進一步言之,該主泵之速度永遠係穩定 的,這係因為該主栗之速度並不受—單―主系之效能影 響,适在-正位移系用於系送採礦及礦物質 漿時係特別有用的❶ 〃 ,本發明並不限於三重單動式正位移泉,但適用於所有單 耽缸或多氣缸單動及雙動正位移泵。 【實施方式】 雖然任意其他形式可能落於中請專利範圍令陳述之設備 =範缚内’但是現在將藉由舉例並參考隨附圖式描述特定 貫施例。 本發明包含若干用於相位移控制器之個別部分之實施 例。為完整起見在此給定一些實施例之一列表: 變速驅動器 施例 本發明並不限於所使用之變速驅動器之一特定實 155255.doc 201207236 然而特別提及下列實施例: 1·交流(AC)電力驅動器 2. 直流(DC)電力驅動器 3. 柴油機驅動器 4. 液壓驅動器 泵週期相位感測器 本發明並不限於所使用之相位感測器之一特定實施例, 然而特別提及下列實施例: 1. 該感測器實施例可產生關於該泵週期之絕對相位資 訊。 2. 該感測器實施例可產生關於與該泵週期相位之一零點 參考組合之該泵週期之相對相位資訊。 3. 該感測器實施例可基於該泵中將泵驅動器之旋轉運動 轉換為諸位移元件(諸如一曲軸)之一往復式運動之主旋轉 組件之角位置產生關於該泵週期之相位資訊。 4_該感測器實施例可基於該泵中之一或多個位移元件之 線性位置產生關於該泵週期之相位資訊。 5. 該感測器實施例可基於可直接耦合或經由具有習知減 速比之減速裝置耦合至該泵中之主旋轉組件之變速驅動器 之角位置產生關於該泵週期之相位資訊。 6. 該感測器實施例可基於產生於該泵週期之一預定位置 處之一單脈衝產生關於該泵週期之相位資訊。 7. 該感測器實施例可基於產生於該泵週期之一預定位置 處之一多脈衝產生關於該泵週期之相位資訊。 155255.doc •10- 201207236 8. 該感測器實施例可基於產生於該泵週期之一預定位置 處之一多脈衝產生關於該泵週期之相位資訊使得每一泵週 期之脈衝數目等於該泵中之位移元件之數目。 9. 該感測器實施例可由上述感測器實施例之任意組合組 成0 相位移控制器 本發明揭示並不限於相位移控制器之一特定實施例,然 而特別提及下列實施例: 1 · 類比電子控制電路 2 ·基於固態電子學之數位電子控制電路 3. 使用微處理器技術之可程式化控制器 4. 可程式化邏輯控制器 5. 嵌入式微控制器 在前述對較佳實施例之描述中,為簡明起見訴諸於特定 術語。然而,本發明揭示並不意欲受限於如此選擇之特定 術語,且應瞭解每一特定術語包含以一類似方式操作以完 成類似技術目的之所有技術相等物❶一些術語係用作便 於提供參考點之措辭且不應被解釋為限制術語。 此說明書中對任何先前出版物(或自其衍生之資訊)或習 知之任何原因之參考並非且不應被視為該先前出版物(或 自其彳’丁生之貧訊)或習知原因在努力下形成此說明書有關 之共同常識之部分之認知或許可或建議之任意形式。 最後,應瞭解各種變更、修改及/或添加在不脫離本發 明之精神或範圍之情況下可併入諸部分之各種構造及配置 155255.doc -11· 201207236 中。 【圖式簡單說明】 圖1圖解說明一先前技術三重單動式正位移泵之一示意 截面圖,亦展示使用一中間液體及一額外撓性位移元件之 一實施例; ® 2圖解說明該先前技術之-個三重單動式正位移栗流 量脈動; 片水朴两主泵之一主從控 方案之往復式系相位控制之—先前技術控制流程圖;及 圖4圖解說明具有使用根據本發明之一虛擬主系之一 從控制方案之往復式果相位控制之一控制流程圖。 I55255.doc •12-201207236 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates generally to pumps, and in particular to a plurality of reciprocating positive displacement pumps for treating mineral slurry. [Prior Art] A reciprocating positive displacement pump is used to pump liquid in a relative pressure compared to, for example, a single-stage centrifugal pump. Further features of these positive displacement pumps include high efficiency and a precise flow output, but one of the flow capacities is relatively low compared to centrifugal pumps. When the flow demand for a typical application cannot be met by a single pump, multiple positive displacement pumps can be configured in parallel such that their suction and/or discharge connections are connected into a single suction and/or discharge line. This means that the total flow of these individual pumps can meet the total flow demand of the application. The combination of these individual pumps and interconnecting suction and discharge lines forms a pump system. In a reciprocating pump, a displacement element (such as a piston or plunger) performs a reciprocating motion inside the cylinder liner to cause a positive displacement of the pumped liquid. In a particular embodiment of the helium reciprocating pump, the reciprocating motion of the displacement element is produced by converting the rotational motion of the pump driver into one of a reciprocating motion of one of the displacement elements. Particular embodiments of this mechanism may include a crankshaft, an eccentric shaft, a camshaft or a cam disc mechanism. In the following description, only an embodiment of the crankshaft type is described, which is further referred to as a crankshaft drive one positive displacement pump. In the figure, a schematic cross-sectional view of a three-cylinder or one-load single-acting crankshaft driven positive displacement pump is shown. The displacement element directly displaces or displaces the pumped liquid, and the intermediate liquid displaces a flexible displacement element that is pumped by the 155255.doc -4- 201207236 The liquid (such as a slurry) is displaced. The present invention is applicable to an embodiment of a positive displacement pump, but since the improvement of particular concern is a positive slurry pump as described below, this embodiment uses an intermediate liquid and a flexible displacement as specifically shown in FIG. One of the typical characteristics of a crankshaft driven positive displacement pump is that its displacement element is not ambiguous at the complex rate. The crankshaft drives the positive displacement so that inherently a non-constant flow or flow pulsation occurs as each crankshaft rotates. In Figure 2, one typical flow pulsation is generated during one of the crankshaft revolutions or pump cycles of a triple single-acting positive displacement pump. Depending on the hydraulic response of the connected system, such flow pulsations create pressure pulsations in the pumped liquid, which in turn can cause vibration of the conduit and the support structure through which the liquid flows, and the pressure pulsations can be in the piping system An unbalanced load is generated. When more than one crankshaft driven positive displacement pump is coupled to a single suction and/or discharge inlet or outlet, an interaction between the flow pulsations produced by the individual pumps may result. This interaction can again offset or increase the overall level of flow and pressure pulsations in the pump system depending on the hydraulic response of the connected system. In addition, the hydraulic resonances present in the pump system can be excited by the flow pulsations generated by each individual pump. One of the important parameters determining the total flow and pressure pulsation in a given pump system is the phase shift between the crankshafts of the individual pumps. Controlling this phase shift can therefore help control the force and pressure pulsations in a given system using one of the crankshaft drive positive displacements. This phase shift control, also known as chestnut synchronization, is described below and is shown in Figure 3. The phase shift control needs to be equipped to adjust and maintain the speed by individually controlling the speed of the 155255.doc 201207236 device. A phase shifting variable speed drive Is (VSD) pump. Furthermore, the individual fruit and/or its actuators are equipped with a phase sensor that indicates the position of the individual pump's pump cycle (referred to as the phase of the individual pump). This phase information is then used by a phase shift calculator to calculate the phase shift between the individual pumps, which are then used by the phase shift controller to adjust the speed of the individual springs such that the phase shifts toward the desired phase Adjust or maintain the desired phase shift. In the prior art, one of the pumps in the pump system is designated as the main pump. This main pump follows the pump system speed reference set point without any adjustment for phase shift control. Other chestnuts are designated as dependent springs that must follow the main fruit. The phase shift controller calculates a phase difference between the main fruit and each of the slave pumps, and generates, for each individual slave pump, a speed set point based on the phase shift between the main pump and the individual slave pump to A constant and desired phase shift between the main pump and the slave pump is obtained and maintained. This method has several disadvantages: 1. The system operator must decide which pump to use as the main pump before starting the pump system, and then determine the phase shift of each slave pump relative to the selected main pump. This can lead to complex master/slave and phase shift scheduling procedures, which can also vary depending on the particular system. 2. The phase shift is out of control when the main pump fails or must be closed. Depending on the particular embodiment of the phase shift control, the entire pump system may have to be shut down because the master and slave initialization may need to be initialized again from the beginning. The reliability of this phase shift control for this complete pump system therefore depends on the reliability of a single pump designated as one of the main pumps. 155255.doc •6· 201207236 3. When the operation of the main pump is unstable, for example, the speed swing of the main pump may occur due to the suction-and/or discharge valve-fault. Therefore, the unstable operation of the main pump has the result of stable operation of the pump system, and thus the overall operation is unstable. These disadvantages are particularly caused in the mining of minerals and minerals. Special attention has been paid to handling crankshaft driven positive displacement pumps in the industry. Applications in these mining and mineral processing industries require continuous operation of the county system and avoid accidental pauses. In the first place, these shortcomings of conventional configurations have become more of a concern at high flow rates, which are also typical for the mining and mineral processing industry. Embodiments that are conventionally used and used in the prior art are generally limited to having three or four pumps per pump system, and such master/slave scheduling procedures are relatively easy for the pump system. The total flow rate of the prior art pump system with phase shift control is limited, so the system can still operate reliably because the unbalanced load generated by the pressure pulsations is relatively low and in some applications Acceptable. However, in a large number of slurry applications in the mining and mineral processing industries, a large number of pumps can be used in a single pump system. Conventional embodiments typically use up to 10 pumps in a unit pump system, making the master/slave schedule extremely complex. The increased size system used in the mining and mineral processing industry can result in unbalanced loads from pressure pulsations in the pump system in the connected pipeline, which is so large that phase shift control is achieved to achieve reliable pump system operation. Prerequisites. 155255.doc 201207236 In-steps' should pay attention to the grinding characteristics of the body due to the high wear rate of the fruit component, the time between the two maintenance of the positive displacement body spring is compared with the non-slurry application. May be relatively short. Each time a maintenance of the main fruit is required, a new main pump must be specified. It may therefore be necessary to shut down a pump system, which will seriously affect the availability of the entire pump system, where continued operation is preferred. SUMMARY OF THE INVENTION The present invention is directed to a method for solving the above disadvantages of the phase shift control system of the prior art. In prior art systems, a true fruit-to-master/slave control scheme t was used as one of the main dishes for controlling the phase shift between the main fruit and the subordinate spring. The deficiencies include complex master/slave scheduling procedures, dependencies on the reliability of the single primary fruit (4), the reduced reliability of the system, and the reduced performance of the entire pump system in the case of unstable mains operation. The present invention relates to a system for using a plurality of reciprocating right-handed money systems. The phase shift of the reciprocating positive displacement pump is controlled by a phase shift controller. The phase shift controller uses a virtual main pump inside the phase shift controller that acts as a phase reference when calculating the phase shift of the individual pumps. The phase shift controller adjusts the speed reference setpoints of the individual drive variable speed drives to achieve and maintain a desired phase shift. Multiple reciprocating pumps The operation of phase shift control significantly reduces the pressure pulsation level of the pump system. The use of a virtual master pump eliminates master-slave scheduling and increases system reliability and availability, since phase control operations are not as dependent on the reliability of a real master pump as in the case of prior art phase shift controllers. 155255.doc 201207236 The virtual master$ generates a phase reference signal in the phase shift controller based on the -real main line-single-pump system reference speed setpoint. All real chest systems in the recording system are used as dependencies in the phase shift controller. The phase of each individual pump is compared to the phase of the virtual host fruit within the controller and is then used as one of the inputs to the phase shift control. A control flow diagram of one of the virtual main pump phase shift controllers is shown in FIG. The use of a virtual main pump provides some operational improvements to these prior art prior art crankshaft drive positive displacement phase shift control systems. These slaves always refer to the same virtual master, so no scheduling is required. The virtual main fruit is considered to be forever arrogant, because the virtual main spring does not need to be maintained 2 much more reliably than a real mechanical pump. Furthermore, the speed of the main pump is always stable, because the speed of the main pump is not affected by the effectiveness of the single-main system, and the proper-positive displacement is used to feed the mining and mineral slurry. Particularly useful as ❶ 〃, the present invention is not limited to triple single-acting positive displacement springs, but is applicable to all single-cylinder or multi-cylinder single-acting and double-acting positive displacement pumps. [Embodiment] While any other form may fall within the scope of the invention, the stated device is within the scope of the invention, but the specific embodiments will now be described by way of example and with reference to the accompanying drawings. The present invention includes several embodiments for the individual portions of the phase shift controller. A list of some embodiments is given here for the sake of completeness: Variable speed drive embodiment The invention is not limited to one of the variable speed drives used. 155255.doc 201207236 However, the following embodiments are specifically mentioned: 1. AC (AC) Electric drive 2. Direct current (DC) electric drive 3. Diesel drive 4. Hydraulic drive pump periodic phase sensor The invention is not limited to a particular embodiment of the phase sensor used, although the following examples are specifically mentioned : 1. The sensor embodiment can generate absolute phase information about the pump cycle. 2. The sensor embodiment can generate relative phase information about the pump cycle in combination with one of the pump cycle phases. 3. The sensor embodiment can generate phase information about the pump cycle based on the angular position of the main rotating component of the pump that converts the rotational motion of the pump driver into one of the displacement elements (such as a crankshaft). 4_ The sensor embodiment can generate phase information about the pump cycle based on the linear position of one or more of the displacement elements in the pump. 5. The sensor embodiment can generate phase information about the pump cycle based on an angular position of the variable speed drive that can be coupled directly or via a deceleration device having a conventional deceleration ratio to the main rotating assembly in the pump. 6. The sensor embodiment can generate phase information about the pump cycle based on a single pulse generated at a predetermined location of the pump cycle. 7. The sensor embodiment can generate phase information about the pump cycle based on a multi-pulse generated at a predetermined location of the pump cycle. 155255.doc • 10-201207236 8. The sensor embodiment can generate phase information about the pump cycle based on a multi-pulse generated at one of the predetermined positions of the pump cycle such that the number of pulses per pump cycle is equal to the pump The number of displacement elements in the middle. 9. The sensor embodiment may be comprised of any combination of the above-described sensor embodiments. The 0 phase shift controller is not limited to a particular embodiment of the phase shift controller, but the following embodiments are specifically mentioned: 1 Analog electronic control circuit 2 · Digital electronic control circuit based on solid state electronics 3. Programmable controller using microprocessor technology 4. Programmable logic controller 5. Embedded microcontroller in the foregoing preferred embodiment In the description, specific terms are referred to for the sake of brevity. However, the present disclosure is not intended to be limited to the specific terms so selected, and it is understood that each specific term includes all technical equivalents that operate in a similar manner to accomplish similar technical purposes. The wording should not be construed as limiting the term. References in this manual to any prior publication (or information derived from it) or any reason for its knowledge are not and should not be considered as a prior publication (or from its own "defective") or for a known reason Any form of cognition or permission or suggestion that forms part of the common sense in this manual. Finally, various modifications, adaptations, and/or additions may be made to the various configurations and configurations that can be incorporated in the sections without departing from the spirit or scope of the invention. 155255.doc -11·201207236. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 illustrates a schematic cross-sectional view of a prior art triple single-acting positive displacement pump, also showing an embodiment using an intermediate liquid and an additional flexible displacement element; ® 2 illustrates the previous Technology - a triple single-acting positive displacement pump flow pulsation; a reciprocating phase control of one of the two master pumps of the film and water, a prior art control flow chart; and Figure 4 illustrates the use of the invention according to the present invention One of the virtual masters controls the flow chart from one of the reciprocating fruit phase controls of the control scheme. I55255.doc •12-

Claims (1)

201207236 七、申請專利範園: 1.—種用以控制多個往復式正位移泵之個別速度以獲得並 維持介於該等個別泵之泵週期之間的一期望相位移之相 位移控制裝置,其包含用於產生該等個別泵之泵週期之 相位資訊之若干相位感測器實施例,其特徵在於該等個 別泵之該相位資訊係與該相位移控制裝置内產生之一虛 擬參考相位比較,其中相位差係用以調整該等個別泵之 個別變速驅動器之速度設定點。 2·如請求項1之相位移控制裝置,其特徵在於該泵含有將 該泵驅動器之旋轉運動轉換為該泵中之該等位移元件之 一往復式運動之某種形式的機構,諸如(但不限於)一曲 軸、偏心軸、凸輪軸或凸輪盤。 3·如請求項丨之相位移控制裝置,其特徵在於該變速驅動 器可能係諸如(但不限於)AC或DC電力驅動器、柴油機驅 動器及液壓驅動器之任何實施例。 4.如請求項1之相位移控制裝置,其特徵在於該感測器實 施例產生關於該泵週期之絕對相位資訊。 5·如請求項丨之相位移控制裝置,其特徵在於該感測器實 施例產生關於與該㈣期相位之—零點參考組合之該泉 週期之相對相位資訊》 6.如請求^之相位移控制裝置,其特徵在於該感測器實 施例基於該栗中將系驅動器之旋轉運動轉換為該等位移 元件(諸如-曲轴)之一往復式運動之主旋轉組件之角位 置產生關於該泵週期之相位資訊。 S 155255.doc 201207236 7. 如請求項1之相位移控制裝置,其特徵在於該感測器實 施例基於該泵中之一或多個位移元件之線性位置產生關 於該泵週期之相位資訊。 8. 如請求項1之相位移控制裝置,其特徵在於該感測器實 施例基於可直接耦合或經由減速裝置耦合至該泵中之該 主旋轉組件之變速驅動器之角位置產生關於該泵週期之 相位資訊。 9. 如請求項1之相位移控制裝置,其特徵在於該感測器實 施例基於產生於該泵週期之一預定位置處之一單脈衝產 生關於該泵週期之相位資訊。 10·如請求項1之相位移控制裝置,其特徵在於該感測器實 施例基於產生於該泵週期之一預定位置處之一多脈衝產 生關於該泵週期之相位資訊。 π.如請求項丨之相位移控制裝置,其特徵在於該感測器實 施例基於產生於該泵週期之一預定位置處之一多脈衝產 生關於該㈣期之相位資訊使得每—㈣期之脈衝數目 等於該泵中之位移元件之數目。 12_如請求項1之相位移控制裝置,其特徵在於該感測器實 施例可由請求項4、5、6、7、8、9、1Gau中描述之感 測器實施例之任何組合組成。 以二種使用多個往復式正位隸之㈣統,其併人如前述 請求項中任一項之一相位移控制裝置。 14.種用於控制多個往復式正位移果之個別速度以獲得並 維持該等個別栗之該等㈣期之間的_期望相位移之方 155255.doc -2 * 201207236 法,其包括下列步驟: 產生該等個別泵之該等泉週期之相位資訊; 在一相位移㈣裝置内產生—虛擬參考相位; 將該等果週期之該相位資訊與該虛擬參考相位比較; 決定該相位資訊與該虛擬參考相位之間的相位差;及 基於該相位差調整該等個別果之該等個別變速驅動器 之速度設定點。 I55255.doc201207236 VII. Application for Patent Park: 1. A phase shift control device for controlling the individual speeds of a plurality of reciprocating positive displacement pumps to obtain and maintain a desired phase displacement between pump cycles of the individual pumps A plurality of phase sensor embodiments for generating phase information of pump cycles of the individual pumps, wherein the phase information of the individual pumps and a virtual reference phase are generated within the phase shift control device In comparison, the phase difference is used to adjust the speed set point of the individual variable speed drives of the individual pumps. 2. The phase shift control device of claim 1, wherein the pump includes a mechanism for converting the rotational motion of the pump driver into one of a reciprocating motion of one of the displacement elements in the pump, such as (but Not limited to) a crankshaft, eccentric shaft, camshaft or cam disc. 3. A phase shift control device as claimed in claim 1, characterized in that the variable speed drive may be any embodiment such as, but not limited to, an AC or DC electric drive, a diesel drive and a hydraulic drive. 4. The phase shift control device of claim 1, wherein the sensor embodiment produces absolute phase information about the pump cycle. 5. A phase shift control device as claimed in claim 1, wherein the sensor embodiment produces relative phase information about the spring period associated with the (four) phase phase-zero reference combination. a control device, characterized in that the sensor embodiment generates an angular position based on the angular position of the main rotating component of the reciprocating motion of one of the displacement elements (such as a crankshaft) based on the rotation of the drive in the pump Phase information. S 155255.doc 201207236 7. The phase shift control device of claim 1, wherein the sensor embodiment generates phase information about the pump cycle based on a linear position of one or more displacement elements in the pump. 8. The phase shift control device of claim 1, wherein the sensor embodiment generates an angular relationship based on an angular position of a variable speed drive that is directly coupled or coupled to the main rotating assembly in the pump via a retarding device Phase information. 9. The phase shift control device of claim 1, wherein the sensor embodiment generates phase information about the pump cycle based on a single pulse generated at a predetermined one of the pump cycles. 10. The phase shift control device of claim 1, wherein the sensor embodiment generates phase information about the pump cycle based on a multi-pulse generated at a predetermined one of the pump cycles. π. A phase shift control device according to claim ,, characterized in that the sensor embodiment generates phase information about the (four) period based on a multi-pulse generated at a predetermined position of the pump cycle such that each (four) period The number of pulses is equal to the number of displacement elements in the pump. 12_ The phase shift control device of claim 1, wherein the sensor embodiment is comprised of any combination of the sensor embodiments described in claims 4, 5, 6, 7, 8, 9, 1 Gau. The use of a plurality of reciprocating positive-positioned (four) systems, which are one of the phase shift control devices of any of the foregoing claims. 14. A method for controlling individual speeds of a plurality of reciprocating positive displacement fruits to obtain and maintain a _ desired phase displacement between the (four) periods of the individual 295255.doc -2 * 201207236, which includes the following Step: generating phase information of the spring periods of the individual pumps; generating a virtual reference phase in the one-phase displacement (four) device; comparing the phase information of the fruit periods with the virtual reference phase; determining the phase information and a phase difference between the virtual reference phases; and a speed set point of the individual variable speed drives that adjust the individual effects based on the phase difference. I55255.doc
TW100111875A 2010-04-07 2011-04-06 Phase shift controller for a reciprocating pump system TW201207236A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32160110P 2010-04-07 2010-04-07
NL2004979A NL2004979C2 (en) 2010-04-07 2010-06-28 Phase shift controller for a reciprocating pump system.

Publications (1)

Publication Number Publication Date
TW201207236A true TW201207236A (en) 2012-02-16

Family

ID=43971690

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100111875A TW201207236A (en) 2010-04-07 2011-04-06 Phase shift controller for a reciprocating pump system

Country Status (11)

Country Link
US (1) US20130078114A1 (en)
CN (1) CN102893028B (en)
AR (1) AR080839A1 (en)
AU (1) AU2011239051B2 (en)
CA (1) CA2795538C (en)
DE (1) DE112011101269B4 (en)
MX (1) MX2012011512A (en)
PE (1) PE20130791A1 (en)
RU (1) RU2012147256A (en)
TW (1) TW201207236A (en)
WO (1) WO2011126367A2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9995218B2 (en) 2012-11-16 2018-06-12 U.S. Well Services, LLC Turbine chilling for oil field power generation
US9893500B2 (en) 2012-11-16 2018-02-13 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
US9745840B2 (en) 2012-11-16 2017-08-29 Us Well Services Llc Electric powered pump down
US11476781B2 (en) 2012-11-16 2022-10-18 U.S. Well Services, LLC Wireline power supply during electric powered fracturing operations
US10232332B2 (en) 2012-11-16 2019-03-19 U.S. Well Services, Inc. Independent control of auger and hopper assembly in electric blender system
US10407990B2 (en) 2012-11-16 2019-09-10 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
US11449018B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC System and method for parallel power and blackout protection for electric powered hydraulic fracturing
AU2016229643B2 (en) * 2015-03-09 2020-10-01 Weir Minerals Netherlands B.V. Hydraulic pump system for handling a slurry medium
US11149725B2 (en) 2016-01-20 2021-10-19 Weir Minerals Netherlands B.V. Hydraulic pump system for handling a slurry medium
RU2749519C2 (en) * 2016-09-16 2021-06-11 Роберт Бош Гмбх Rotary electrohydraulic actuator
US11162482B2 (en) 2017-04-28 2021-11-02 Graco Minnesota Inc. Portable hydraulic power unit having a pump fixed to an exterior side of a fluid supply tank
NL2019357B1 (en) 2017-07-27 2019-02-18 Weir Minerals Netherlands Bv Pump system for handling a slurry medium
US10598258B2 (en) 2017-12-05 2020-03-24 U.S. Well Services, LLC Multi-plunger pumps and associated drive systems
CA3084607A1 (en) 2017-12-05 2019-06-13 U.S. Well Services, LLC High horsepower pumping configuration for an electric hydraulic fracturing system
CN110894826B (en) * 2018-09-13 2021-10-19 诺沃皮尼奥内技术股份有限公司 Method for reducing pulsation level in a multi-compressor installation using reciprocating compressors
WO2020056258A1 (en) 2018-09-14 2020-03-19 U.S. Well Services, LLC Riser assist for wellsites
US11578577B2 (en) 2019-03-20 2023-02-14 U.S. Well Services, LLC Oversized switchgear trailer for electric hydraulic fracturing
US11728709B2 (en) 2019-05-13 2023-08-15 U.S. Well Services, LLC Encoderless vector control for VFD in hydraulic fracturing applications
US11506126B2 (en) 2019-06-10 2022-11-22 U.S. Well Services, LLC Integrated fuel gas heater for mobile fuel conditioning equipment
US11459863B2 (en) 2019-10-03 2022-10-04 U.S. Well Services, LLC Electric powered hydraulic fracturing pump system with single electric powered multi-plunger fracturing pump
USD977426S1 (en) 2019-12-13 2023-02-07 Graco Minnesota Inc. Hydraulic power pack
CN112727752B (en) * 2020-12-28 2022-10-14 广东拓斯达科技股份有限公司 Multi-pump confluence flow pulsation eliminating method and device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2791179A (en) * 1953-09-29 1957-05-07 Worthington Corp Combined flow control and rephasing mechanism for fluid pumping units
JPS63302199A (en) * 1987-06-02 1988-12-09 Toyota Motor Corp Operation control for pump
US5259731A (en) * 1991-04-23 1993-11-09 Dhindsa Jasbir S Multiple reciprocating pump system
EP0669462A1 (en) * 1995-01-30 1995-08-30 Aliva Aktiengesellschaft Method to adjust the pulse amplitude and concrete pump
US5795060A (en) * 1996-05-17 1998-08-18 Stephens; Patrick J. Method and apparatus for continuous production of colloidally-mixed cement slurries and foamed cement grouts
JP3343245B2 (en) * 1998-04-03 2002-11-11 株式会社荏原製作所 Fluid machine diagnostic system
DE10004779A1 (en) * 2000-02-03 2001-08-09 Putzmeister Ag Thick matter conveyor with placing boom and method for pulsating pumping of thick matter
US20030094199A1 (en) * 2001-11-20 2003-05-22 Roediger Pittsburgh, Inc. System and method for pumping high-viscous fluids through heat exchangers
GB0329585D0 (en) * 2003-12-20 2004-01-28 Itw Ltd Pumps
DE102004015416A1 (en) * 2004-03-26 2005-10-13 Putzmeister Ag Apparatus and method for controlling a slurry pump
FI116646B (en) * 2004-06-17 2006-01-13 Vacon Oyj Drive bridge control
CN201071798Y (en) * 2007-08-10 2008-06-11 西安睿科工业设备有限公司 Soft pump control system for slush pump
JP5172245B2 (en) * 2007-08-22 2013-03-27 株式会社日立産機システム Water supply equipment
PL2229610T3 (en) * 2007-12-14 2019-08-30 Itt Manufacturing Enterprises Llc Synchronous torque balance in multiple pump systems
WO2011104548A2 (en) * 2010-02-23 2011-09-01 Artemis Intelligent Power Limited Fluid-working machine and method of operating a fluid-working machine

Also Published As

Publication number Publication date
AR080839A1 (en) 2012-05-09
US20130078114A1 (en) 2013-03-28
CA2795538A1 (en) 2011-10-13
DE112011101269T5 (en) 2013-05-02
WO2011126367A2 (en) 2011-10-13
MX2012011512A (en) 2012-11-29
AU2011239051A1 (en) 2012-11-01
PE20130791A1 (en) 2013-07-25
CA2795538C (en) 2018-02-20
WO2011126367A3 (en) 2015-07-02
DE112011101269B4 (en) 2021-05-06
CN102893028B (en) 2016-09-28
CN102893028A (en) 2013-01-23
AU2011239051B2 (en) 2015-12-24
RU2012147256A (en) 2014-05-27

Similar Documents

Publication Publication Date Title
TW201207236A (en) Phase shift controller for a reciprocating pump system
US20180119711A1 (en) Self-contained energy efficient hydraulic actuator system
EP3721088B1 (en) Electro-mechanical actuation system for a piston-driven fluid pump
WO2013002950A1 (en) System and method for driving a pump
CN104251201A (en) Pump control system based on frequency converter, pump control method based on frequency converter and pump system
JP5674853B2 (en) Piston control system and method for pump mechanical piston
AU2010276521B2 (en) Variable flow control using linear pumps
US10132264B2 (en) Method for controlling an electric motor of a vehicle pump
KR101367857B1 (en) Booster pump control system having complex inverter type and control method thereof
NL2004979C2 (en) Phase shift controller for a reciprocating pump system.
闫政 et al. Research on the characteristic of the electro-hydraulic power source composed of variable speed asynchronous motor and proportional constant pressure pump
CN103032348A (en) Axial flow type fluid supercharger with independent adjustable moving plate
JP2017115618A (en) Pump driving system
CN107387293B (en) Revolving body oil-feeding control system and the novel rotation fuel feeding variable pitch type hydraulic turbine
KR101333959B1 (en) Variable oil pump with inner actuator
CN109952432A (en) Positive displacement pump
RU2575232C1 (en) Rotary pump control system
JP6450938B2 (en) Motor drive device, compressor drive device using the same, and refrigerator
KR101284445B1 (en) Oil pump
JP5905444B2 (en) Hydraulic transmission and operation method thereof, regenerative energy type power generator and operation method thereof
RO128045B1 (en) Flexible system for the control of pressure, flow rate and power in hydraulic machines of adjustable unitary volume