TW201206978A - Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, method for preparing retardation film, retardation film, polymer and method for preparing the polymer - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, method for preparing retardation film, retardation film, polymer and method for preparing the polymer Download PDF

Info

Publication number
TW201206978A
TW201206978A TW100114575A TW100114575A TW201206978A TW 201206978 A TW201206978 A TW 201206978A TW 100114575 A TW100114575 A TW 100114575A TW 100114575 A TW100114575 A TW 100114575A TW 201206978 A TW201206978 A TW 201206978A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
crystal alignment
film
polymer
display element
Prior art date
Application number
TW100114575A
Other languages
Chinese (zh)
Other versions
TWI507437B (en
Inventor
Hiroyuki Yasuda
Takashi Nagao
Original Assignee
Jsr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corp filed Critical Jsr Corp
Publication of TW201206978A publication Critical patent/TW201206978A/en
Application granted granted Critical
Publication of TWI507437B publication Critical patent/TWI507437B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polarising Elements (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The present invention provides a liquid crystal alignment film capable of carrying out property of broad view angle, and high quality of display and good property of residual image and burn-in, at the same time; or provides a liquid crystal aligning agent capable of forming liquid crystal alignment film through photo-alignment method, the said liquid crystal alignment film is used for preparing a retardation film that can maintain polarizing statement stably, and the contrast of border of adjacent area having different polarizing statement is excellent. The above-mentioned liquid crystal aligning agent comprises a polymer having structure represented by following formula (1). (in formula(1), R is each independently alkyl of 1 to 4 carbon atoms, hydroxyl, halogen atom or cyano, a is each independently an integer of 0 to 4, ''*'' is a binding bond).

Description

201206978 六、發明說明: 【發明所屬之技術領域】 本發明係關於液晶配向劑、液晶配向膜、液晶顯示元 件 '相位差薄膜的形成方法、相位差薄膜、聚合物以及聚 合物的製造方法。更詳細地,特別係關於適合在通過光配 向法形成橫電場式液晶顯示元件或相位差薄膜使用的液晶 配向膜時使用的液晶配向劑。 【先前技術】 在液晶顯示元件中,爲了使液晶分子針對基板面在規 定方向配向,在基板表面設置液晶配向膜。該液晶配向膜 通常通過尼龍等布材,在一定方向摩擦基板表面形成的有 機膜表面的方法(摩擦法)形成。這在橫電場式液晶顯示元 件中也是同樣的。但是,如果通過摩擦處理形成液晶配向 膜時,摩擦步驟中容易產生灰塵或靜電,具有在配向膜表 面黏附灰塵’成爲產生顯示不好的原因這樣的問題,以及 在爲具有TFT(薄膜電晶體)元件的基板的情形下,還具有 由於產生的靜電破壞TFT元件的電路、成爲產品成品率低 下的原因的問題。因此’作爲在液晶盒中使液晶配向的其 他手段,提出了對基板表面形成的放射線敏感性有機薄膜 照射偏光或非偏光的放射線,賦予液晶配向能的光配向法 (參照專利文獻1〜4)。該光配向法在步驟中不會產生灰塵或 靜電,可以形成均勻的液晶配向。此外,照射放射線時, 通過使用適當的光罩’可以只對有機薄膜上的任意區域賦 -4- 201206978 予液晶配向能’或者通過改變照射方向或偏光軸的 射多次放射線的方法或將該方法和使用光罩的方法 用,也可以在一個有機薄膜上形成液晶配向方向不 個區域。 然而,通過光配向法形成的液晶配向膜,在形 即使具有所希望的預傾角顯現性,但是指出了形成 配向狀態可能會由於長時間施加電壓而隨著時間變 以要求改良。 另外’作爲液晶顯示元件除了具有目前已知的 曲向列)型、STN(超扭曲向列)型、VA(垂直配向)型 盒的液晶顯示元件以外,還已知IPS (面內切換)型或 緣場轉換)型等只在對向配置的一對基板的一側 極,在和基板平行的方向產生電場的橫電場式液晶 件(專利文獻5〜7以及非專利文獻1)。已知該橫電場 顯示元件與現有的在兩基板上形成電極並和基板垂 上產生電場的縱電場式的液晶顯示元件相比,具有 視角性質,而且可以高品質地顯示。橫電場式的液 元件由於液晶分子只在和基板平行的方向上回應電 以液晶分子的長軸方向的折射率變化不會成爲問題 改變視角時,觀察者確認的對比度和顯示顏色的濃 少,因此,可以不限視角地高品質顯示。爲了得到 利的效果,有利的是入射偏光的入射角的依賴性小 對橫電場式的液晶顯示元件而言,希望未施加電場 始配向性質中的預傾角小。 方向照 一起使 同的多 成初始 初始的 化,所 TN (扭 等液晶 FFS(邊 形成電 顯示元 式液晶 直方向 更廣的 晶顯不 場,所 ,即使 度變化 這種有 ,所以 時的初 201206978 在這種橫電場式的液晶顯示元件中,在液晶配向膜中 賦予液晶配向性時,爲了避免上述摩擦法的缺陷,希望是 光配向法。然而,可以在上述光配向法中使用的液晶配向 劑爲了對其中含有的聚合物賦予感光性,必須大比例地含 有芳香族結構。但是,如果使用大比例地含有芳香族結構 的液晶配向膜,則預傾角不可避免地增大,會消除橫電場 式顯示元件中的如上所述的有利效果。 另外,在使用光配向法的橫電場式的液晶顯示元件 中,具有殘影和燒屏問題,希望對其進行改良。特別是, 上述配向狀態的隨時間變化引起的畫面上產生的亮度差, 會被觀察者認爲是燒屏,亟需對其進行改良。 如上所述,在橫電場式的液晶顯示元件中,目前還不 知道可以通過光配向法而充分顯現出上述有利的效果,而 且可以形成顯示出改良的殘影性質和燒屏性質的液晶配向 膜的液晶配向劑,強烈希望提供這種液晶配向劑。 在液晶顯示元件中,進一步基於消除顯示發色的轉 移、消除視角依賴性等目的,使用相位差薄膜(參照專利文 獻9和10)。 這種相位差薄膜通過利用塑膠薄膜的延展步驟的方 法、使聚合性液晶在基板上硬化的方法等製造。其中,通 過後者之方法製造的相位差薄膜可以具有更複雜的光學性 質’在液晶顯不元件中極爲有用。在硬化聚合性液晶的方 法中’由於必須要使聚合性液晶分子以相對基板面在規定 -6 - 201206978 方向配向的狀態硬化,所以一般是在基板表面設置液晶配 向膜後,形成聚合性液晶分子的層,將其硬化的方法。在 對該液晶配向膜賦予液晶配向能時,由於具有上述同樣的 問題,所以在該領域也硏究應用光配向法。 此外,近年來,流行表現3D(3維)影像的技術,即使 在家中也可以視聽3 D影像的顯示器正逐漸普及。作爲3 d 影像的顯示方式例如在專利文獻1 7中提出了使用具有下 述配置的偏光板的偏光眼鏡的方式:在右眼用影像和左眼 用影像中形成偏光狀態不同的影像,右眼和左眼只看到各 自的偏光狀態的影像(參照專利文獻Π )。這種方式得到的 立體影像沒有閃爍,觀察者戴上質輕且廉價的偏光眼鏡, 可以鑒賞立體影像。 作爲家庭用3D影像的顯示裝置而假設的在一台顯示 裝置中形成右眼用影像和左眼用影像的偏光狀態不同的影 像的技術,已知的有下述方式:將在鄰接的像素之間,偏 光軸相互正交的馬賽克狀的偏光層密合到一台顯示裝置的 前面,觀察者戴上偏光眼鏡,可以觀察到立體影像。 就該偏光層而言,一般認爲係形成微米級圖案的圖案 狀相位差薄膜之用途。作爲這種圖案狀的相位差薄膜的製 造方法例如在專利文獻1 2中公開了對感光性聚合物層照 射偏光的方法。但是,具有該技術得到的感光性聚合物層 的熱穩定性不足,而且偏光狀態不同的鄰接區域間的邊界 的對比度不足的缺點。 201206978 像這樣’在相位差薄膜的領域中,渴望提供可以穩定 地維持偏光狀態,偏光狀態不同的鄰接區域間的邊界的對 比度優異的材料。 [先前技術文獻] [專利文獻] [專利文獻1]日本特開2003_307736號公報 [專利文獻2]日本特開2〇〇4_163646號公報 [專利文獻3]日本特開2〇〇2_25〇924號公報 [專利文獻4]日本特開2〇〇4_8381〇號公報 [專利文獻5]美國專利第5928733號說明書 [專利文獻6]日本特開昭56_91277號公報 [專利文獻7]日本特開2〇〇8_46184號公報 [專利文獻8]日本特開昭63_291922號公報 [專利文獻9]日本特開平4-229828號公報 [專利文獻10]日本特開平4-258923號公報 [專利文獻11]日本專利第3461680號說明書 [專利文獻12]日本特開2005-49865號公報 [專利文獻13]日本特開2010-97188號公報 [非專利文獻] [非專利文獻 l]“Liq. Cryst.,,,vol. 22,p379(1996) [非專利文獻2]“UV可硬化液晶及其應用”,液晶,第3卷, 第 1 期,1999 年,pp34~42 201206978 【發明內容】 [發明所欲解決之課題] 本發明是根據上述問題而提出的,其目的在於提供可 以通過光配向法形成液晶配向膜的液晶配向劑,該液晶配 向膜在應用於TN型、STN型或橫電場式的液晶顯示元件 時,特別是應用於橫電場式液晶顯示元件時,可以同時實 現廣的視角性質和高品質的顯示與良好的燒屏性質。 本發明的另一目的是提供形成液晶配向膜的液晶配向 劑,該液晶配向膜用於製造可以穩定地維持偏光狀態’在 偏光狀態不同的鄰接區域間的邊界的對比度優異的相位差 薄膜。 本發明的其他目的和優點如下說明可知。 [解決課題之方法] 根據本發明,本發明的上述目的和優點是通過—種 '液 晶配向劑實現,該液晶配向劑包含具有下述式(1 )所示@糸吉 構的聚合物:201206978 VI. Description of the Invention: The present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, a liquid crystal display element, a method of forming a retardation film, a retardation film, a polymer, and a method for producing a polymer. More specifically, the liquid crystal alignment agent which is suitable for use in forming a liquid crystal alignment film for use in forming a horizontal electric field type liquid crystal display element or a retardation film by an optical alignment method. [Prior Art] In the liquid crystal display device, a liquid crystal alignment film is provided on the surface of the substrate in order to align liquid crystal molecules in a predetermined direction with respect to the substrate surface. The liquid crystal alignment film is usually formed by a method (rubbing method) of rubbing the surface of the organic film formed on the surface of the substrate in a certain direction by a cloth such as nylon. This is also the same in the horizontal electric field type liquid crystal display element. However, when the liquid crystal alignment film is formed by the rubbing treatment, dust or static electricity is easily generated in the rubbing step, and there is a problem that the dust adheres to the surface of the alignment film, which causes a poor display, and has a TFT (Thin Film Transistor). In the case of the substrate of the element, there is also a problem that the circuit of the TFT element is destroyed by the generated static electricity, which causes a decrease in the yield of the product. Therefore, as another means for aligning the liquid crystal in the liquid crystal cell, a radiation-aligned organic film formed on the surface of the substrate is irradiated with polarized or non-polarized radiation, and a light alignment method for imparting liquid crystal alignment energy is proposed (see Patent Documents 1 to 4). . The photo-alignment method does not generate dust or static electricity in the step, and a uniform liquid crystal alignment can be formed. In addition, when irradiating the radiation, by using an appropriate mask ', it is possible to impart a liquid crystal alignment energy only to any region on the organic film or to change the irradiation direction or the polarization axis by multiple radiation. The method and the method using the reticle may also form a region in which the liquid crystal alignment direction is not formed on one organic film. However, the liquid crystal alignment film formed by the photo-alignment method has a desired pretilt angle developability in the shape, but it is pointed out that the formation of the alignment state may be improved over time due to the application of voltage for a long period of time. In addition, as a liquid crystal display element of a liquid crystal display element having a currently known meandering type, an STN (super twisted nematic) type, and a VA (vertical alignment) type, an IPS (in-plane switching) type is also known. A cross-field type liquid crystal device in which an electric field is generated in a direction parallel to the substrate on one side of the pair of substrates arranged in the opposite direction (Patent Documents 5 to 7 and Non-Patent Document 1). It is known that the horizontal electric field display element has a viewing angle property and can be displayed with high quality as compared with a conventional vertical electric field type liquid crystal display element in which an electrode is formed on both substrates and an electric field is generated perpendicularly to the substrate. In the liquid electric field type liquid element, since the liquid crystal molecules respond to electric power only in a direction parallel to the substrate, the refractive index change in the long-axis direction of the liquid crystal molecules does not become a problem. When the viewing angle is changed, the contrast and the display color confirmed by the observer are small. Therefore, it is possible to display with high quality regardless of the angle of view. In order to obtain an advantageous effect, it is advantageous that the dependence of the incident angle of the incident polarized light is small. For the horizontal electric field type liquid crystal display element, it is desirable that the pretilt angle in the initial alignment property is not applied to be small. The direction is taken together to make the same initial initialization, and the TN (twisted liquid crystal FFS (the side forms the electric display, and the liquid crystal is more linear in the straight direction), even if the degree changes, so the time In the case of such a horizontal electric field type liquid crystal display device, when liquid crystal alignment is imparted to the liquid crystal alignment film, in order to avoid the defects of the above rubbing method, it is desirable to use a photoalignment method. However, it can be used in the above photoalignment method. In order to impart photosensitivity to the polymer contained therein, the liquid crystal alignment agent must contain an aromatic structure in a large proportion. However, if a liquid crystal alignment film containing an aromatic structure in a large proportion is used, the pretilt angle is inevitably increased and is eliminated. The above-described advantageous effects of the horizontal electric field type display element. In addition, in the horizontal electric field type liquid crystal display element using the optical alignment method, there is a problem of image sticking and burn-in, and it is desired to improve it. The difference in brightness produced on the screen caused by the change of state over time will be considered by the observer to be burned, and it is not necessary to improve it. As described above, in the horizontal electric field type liquid crystal display element, it is not known that the above advantageous effects can be sufficiently exhibited by the photo-alignment method, and a liquid crystal alignment film which exhibits improved afterimage properties and burn-in properties can be formed. In the liquid crystal display device, it is strongly desired to use a retardation film for the purpose of eliminating the transition of display color development and eliminating the dependence of viewing angle (see Patent Documents 9 and 10). The retardation film is produced by a method using an extension step of a plastic film, a method of curing a polymerizable liquid crystal on a substrate, etc. Among them, a retardation film produced by the latter method can have more complicated optical properties 'in liquid crystal display In the method of hardening a polymerizable liquid crystal, since it is necessary to harden the polymerizable liquid crystal molecules in a state of being aligned with respect to the substrate surface in the direction of the predetermined -6 - 201206978, generally after the liquid crystal alignment film is provided on the surface of the substrate, a method of forming a layer of a polymerizable liquid crystal molecule and hardening it. When the liquid crystal alignment energy is imparted to the film, the optical alignment method is applied to the field. In addition, in recent years, the technique of displaying 3D (three-dimensional) images is popular, and even in the home, it is possible to view 3 A D-Video display is becoming popular. As a display method of a 3D image, for example, Patent Document 17 proposes a method of using polarized glasses having a polarizing plate having a configuration in which a right-eye image and a left-eye image are formed. For images with different polarization states, the right eye and the left eye only see images of their respective polarized states (refer to the patent document Π). The stereo image obtained in this way does not flicker, and the observer wears light and inexpensive polarized glasses, which can be appreciated. A technique for forming a video having a different polarization state of a right-eye image and a left-eye image in one display device as a display device for a home 3D video image is known as follows: Between the pixels, a mosaic-like polarizing layer whose polarization axes are orthogonal to each other is closely attached to the front of one display device, and the observer wears polarized glasses. To observe a stereoscopic image. In the case of the polarizing layer, it is generally considered to be used as a pattern-like retardation film having a micron-order pattern. As a method of producing such a patterned retardation film, for example, Patent Document 12 discloses a method of irradiating a polarizing polymer layer with a polarized light. However, the thermal stability of the photosensitive polymer layer obtained by this technique is insufficient, and the contrast of the boundary between adjacent regions having different polarization states is insufficient. 201206978 In the field of the retardation film, it is desired to provide a material which is excellent in contrast between adjacent regions in which the polarization state can be stably maintained and the polarization state is different. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Laid-Open Patent Publication No. JP-A No. Hei. No. Hei. [Patent Document 4] Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. [Patent Document 12] Japanese Laid-Open Patent Publication No. 2005-49865 [Patent Document 13] JP-A-2010-97188 [Non-Patent Document] [Non-Patent Document 1] "Liq. Cryst.,,, vol. 22, P379 (1996) [Non-Patent Document 2] "UV-curable liquid crystal and its application", Liquid Crystal, Vol. 3, No. 1, 1999, pp 34~42 201206978 [Summary of the Invention] [Problems to be Solved by the Invention] The invention is based on the above problems, and its purpose is to provide A liquid crystal alignment agent which forms a liquid crystal alignment film by a photo-alignment method, and when the liquid crystal alignment film is applied to a liquid crystal display element of a TN type, an STN type or a lateral electric field type, particularly when applied to a horizontal electric field type liquid crystal display element, A wide viewing angle property and a high quality display and good burn-in property are achieved. Another object of the present invention is to provide a liquid crystal alignment agent for forming a liquid crystal alignment film which can be used for manufacturing to stably maintain a polarization state. A phase difference film having excellent contrast between adjacent regions in different states is known. The other objects and advantages of the present invention will be described below. [Means for Solving the Problems] According to the present invention, the above objects and advantages of the present invention are through a liquid crystal. The alignment agent is realized, and the liquid crystal alignment agent comprises a polymer having the following formula (1):

(式(1)中,R分別是碳原子數爲1〜4的烷基、經基、齒 原子或氰基,a分別是0〜4的整數,表示連接鍵)° -9 * 201206978 [發明之效果] 本發明的液晶配向劑可以通過光配向法形成一種液晶 配向膜,該液晶配向膜尤其是在用於橫電場式的液晶顯示 元件時,可以同時實現廣的視角性質和高品質的顯示與良 好的燒屏性質。 因此,具有由該液晶配向劑形成的液晶配向膜的橫電 場式的液晶顯示元件同時實現廣的視角性質和高品質的顯 示與良好的燒屏性質,適合作爲各種液晶顯示元件,例如 鐘錶、便攜型遊戲機、文字處理器、筆記本電腦、導航系 統、攝影錄影機、PDA、數位相機、行動電話、各種監視 器、液晶電視等顯示裝置中使用的液晶顯示元件而使用。 此外,本發明的液晶配向劑還可以提供一種液晶配向 膜,該液晶配向膜用於製造可以穩定地維持偏光狀態,在 偏光狀態不同的鄰接區域間的邊界的對比度優異的相位差 薄膜。使用由本發明的液晶配向劑形成的液晶配向膜製造 的相位差薄膜適合作爲3D影像顯示用的裝置中使用的相 位差薄膜使用》 【實施方式】 本發明的液晶配向劑包含具有上述式(1)所示的結構 (以下,稱作“結構(1)”)的聚合物(以下,稱作“特定聚合物”)。 <特定聚合物> 作爲上述式(1)中的R,較佳爲碳原子數爲1〜4的烷基 或鹵原子,更佳爲甲基或氟原子。a較佳爲0〜2,更佳爲0 或1。 -10- 201206978 本發明中的特定聚合物除了如上所述的結構(1 )以 外,較佳進一步具有由亞甲基或碳原子數爲2〜12的伸烷基 (其中,作爲該伸烷基是該伸烷基的末端以外的位置的亞甲 基和(二)烷基亞甲基中的一個以上可以被氧原子、酯鍵、 碳原子數爲5〜10的2價脂環基、碳原子數爲6~24的伸芳 基、二烷基伸甲矽烷基或矽原子數爲2~10的二烷基伸矽氧 烷基取代)形成的結構(以下,稱作“結構(2)”)。特定聚合物 通過進一步具有這種結構,可以對由含有該特定聚合物的 液晶配向劑形成的液晶配向膜賦予適當的柔韌性,從而顯 示出良好的液晶配向性,在這方面是較佳。 分別地,作爲上述碳原子數爲5〜10的2價脂環基,可 以列舉出例如1,4-伸環己基等; 作爲上述碳原子數爲6〜24的伸芳基,可以列舉出例如 1 ,3-伸苯基、1,4-伸苯基等; 作爲上述砂原子數爲2〜10的二烷基伸砂氧院基,可以 列舉出例如下述式所示的基團等:(In the formula (1), R is an alkyl group having a carbon number of 1 to 4, a transradical group, a tooth atom or a cyano group, and a is an integer of 0 to 4, respectively, indicating a linkage;) -9 * 201206978 [Invention Effect] The liquid crystal alignment agent of the present invention can form a liquid crystal alignment film by photo-alignment method, and the liquid crystal alignment film can realize both wide viewing angle properties and high-quality display, especially when used for a horizontal electric field type liquid crystal display element. With good burn-in properties. Therefore, the liquid crystal display element having the liquid crystal alignment film formed of the liquid crystal alignment agent simultaneously realizes wide viewing angle properties, high-quality display, and good burn-in property, and is suitable as various liquid crystal display elements such as watches and clocks. It is used for liquid crystal display elements used in display devices such as game machines, word processors, notebook computers, navigation systems, video recorders, PDAs, digital cameras, mobile phones, various monitors, and liquid crystal televisions. Further, the liquid crystal alignment agent of the present invention can also provide a liquid crystal alignment film for producing a phase difference film which is excellent in contrast between adjacent regions in which polarization states are stably maintained in a polarized state. The retardation film produced using the liquid crystal alignment film formed of the liquid crystal alignment agent of the present invention is suitably used as a retardation film used in a device for 3D image display. [Embodiment] The liquid crystal alignment agent of the present invention comprises the above formula (1) The polymer of the structure shown below (hereinafter referred to as "structure (1)") (hereinafter referred to as "specific polymer"). <Specific polymer> The R in the above formula (1) is preferably an alkyl group or a halogen atom having 1 to 4 carbon atoms, more preferably a methyl group or a fluorine atom. a is preferably 0 to 2, more preferably 0 or 1. -10- 201206978 The specific polymer in the present invention preferably further has, in addition to the structure (1) as described above, a methylene group or an alkylene group having 2 to 12 carbon atoms (wherein the alkylene group) One or more of a methylene group and a (di)alkylmethylene group at a position other than the terminal of the alkylene group may be an oxygen atom, an ester bond, a divalent alicyclic group having 5 to 10 carbon atoms, or carbon A structure formed by a aryl group having 2 to 24 atoms, a dialkylmethylidene group or a dialkyl decyloxy group having 2 to 10 atoms (hereinafter referred to as "structure (2)") . By further having such a structure, it is possible to impart appropriate flexibility to a liquid crystal alignment film formed of a liquid crystal alignment agent containing the specific polymer, thereby exhibiting good liquid crystal alignment, which is preferable in this respect. In the above, the divalent alicyclic group having 5 to 10 carbon atoms is exemplified by, for example, 1,4-cyclohexylene group; and the above-mentioned aryl group having 6 to 24 carbon atoms is exemplified by 1 , 3-phenylene, 1,4-phenylene, etc.; The dialkyl oxalate group having 2 to 10 sand atoms, for example, a group represented by the following formula:

Si Ο--Si— * ^b^2b+1 /c CbH2b+i (上述式中,b分別是的整數,c是1〜9的整數, 而且表示連接鍵) -11- 201206978 如由1,2-伸 10-伸癸基、 結構等。 作爲該結構(2)的具體例子’可以列舉出例 乙基、1,4-伸丁基、丨,6-伸己基、1,8-伸辛基、1, 1,1 2-伸十二基和下述式分別表示的基團形成的 * —CH2〇(CH2)2〇CH2— 1_ * —CH20(CH2)40CH2— 1 * CH2〇(CH2)6〇CH2~ 1 ch3 I 3 -ch2och2-c—ch2och2-ch3 * —ch2o-ch—ch2och2-ch3 * ——ch2o(ch2)2o(ch2)2och2— 1 *-CH2O—C一(CH2)4~C—OCH2~ 1 〇 ° * —CH2〇1~( οοη2~ 1Si Ο--Si— * ^b^2b+1 /c CbH2b+i (in the above formula, b is an integer, c is an integer from 1 to 9, and represents a linkage) -11- 201206978 as by 1, 2-stretching 10-stretching base, structure, etc. Specific examples of the structure (2) include ethyl, 1,4-tert-butyl, anthracene, 6-exexyl, 1,8-exenyl, 1, 1, 1- 2-. The group formed by the group represented by the following formula: *CH2〇(CH2)2〇CH2—1_*—CH20(CH2)40CH2— 1 *CH2〇(CH2)6〇CH2~ 1 ch3 I 3 -ch2och2- C—ch2och2-ch3 * —ch2o-ch—ch2och2-ch3 * ——ch2o(ch2)2o(ch2)2och2— 1 *-CH2O—C—(CH2)4~C—OCH2~ 1 〇° * —CH2〇 1~( οοη2~ 1

-12- 1 _ch2o-(^—y—c—och2— 1 0 0 201206978 —ch2o--12- 1 _ch2o-(^—y—c—och2— 1 0 0 201206978 —ch2o-

O CH· CH·O CH· CH·

c-och2- O ch3 ch3 一CH2〇(CH2)3_ 宁卜。一宁卜(CH2)3〇CH2- ch3 ch3 -ch2o och2- --0CH2~ -CH, -ch2〇A } \ /-〇ch2-C-och2- O ch3 ch3 a CH2〇(CH2)3_ 宁卜.一宁卜(CH2)3〇CH2- ch3 ch3 -ch2o och2- --0CH2~ -CH, -ch2〇A } \ /-〇ch2-

CHCH

-CH-CH

/-〇ch2- CH./-〇ch2- CH.

-och2— (上述式中,表示連接鍵)。 作爲本發明中的結構(2),較佳爲由碳原子數爲2~ 12 的伸烷基(其中,該伸烷基是該伸烷基的末端以外的位置的 亞甲基和(二)烷基亞甲基中的一個以上可以被氧原子、酯 鍵和碳原子數爲5〜1 〇的2價脂環基取代)形成的結構。 -13- 201206978 特定聚合物中的上述結構(1)的含有比例較佳爲 5xl〇-4~4xl(T3mol/g,更佳爲 lxl(r3~3.5xl(r3mol/g’ 又更 佳爲 l_5xl〇_3~3xl(T3mol/g。 特定聚合物中的上述結構(2)的含有比例較佳爲 6xl(T3mol/g 以下,更佳爲 lxl0·3 〜6χ10·3πιο1/8’ 又更佳爲 1.5xlO-3~4xl(T3mol/g ° 特定聚合物中的結構(1)和(2)分別可以位於由聚合物 的主鏈、側鏈和末端選出的一個以上的位置’但是從形成 的液晶配向膜的預傾角小的方面出發’較佳位於聚合物的 主鏈。 作爲本發明中的特定聚合物的主骨架,可以列舉出例 如聚有機矽氧烷、聚醯胺酸、聚醯亞胺、聚醯胺酸酯、聚 酯、聚醯胺、聚矽氧烷、纖維素衍生物、聚縮醛、聚苯乙 烯衍生物、聚(苯乙烯-苯基馬來醯亞胺)衍生物、聚(甲基) 丙烯酸酯、多官能羧酸與多官能環氧化合物的反應物等, 它們之中’較佳爲多官能羧酸與多官能環氧化合物的反應 物。 作爲本發明中的特定聚合物的多官能羧酸與多官能環 氧化合物的反應物’只要具有上述結構(1 )的物質,可以是 Μ iii ί壬彳可$ '法g造’但是從製造方法的簡便性以及特定聚 合物谷易分離、精製的觀點出發,較佳包含二環氧化合物 氧化合物與包含具有結構(1)的二元羧酸的多 官能羧酸的反應產物。 -14- 201206978 以下,詳細說明本發明中較佳的特定聚合物的製造方 法。 [多官能環氧化合物] 用於製造本發明中較佳的特定聚合物而使用的多官能 環氧化合物包含二環氧化合物。所述的這種二環氧化合物 是具有兩個環氧基的化合物,可以是結合了兩個環氧基的 化合物,也可以是除了兩個環氧基以外,還進一步具有如 上所述的結構(2)的化合物。二環氧化合物通過使用除了兩 個環氧基以外還進一步具有如上所述的結構(2)的化合 物,所得的特定聚合物除了具有結構(1)以外,還具有結構 (2 ),所以較佳。 作爲該二環氧化合物的具體例子,分別是作爲結合了 兩個環氧基的化合物,可以列舉出下述式(DE-1 )所示的化 合物; 作爲除了兩個環氧基以外還具有如上所述的結構(2) 的化合物,例如可以列舉出下述式(DE_2)〜(DE_U)分別表 示的化合物等。 -15- 201206978 Δ_Δ ( DE-1 ) ^-(CH2)4-^ ( de·2 ) Λ CH2〇(CH2)4〇CH^ (DE-3 )-och2— (In the above formula, the connection key is indicated). The structure (2) in the present invention is preferably an alkylene group having 2 to 12 carbon atoms (wherein the alkylene group is a methylene group at a position other than the terminal of the alkylene group and (2) One or more of the alkylmethylene groups may be formed by an oxygen atom, an ester bond, and a divalent alicyclic group having 5 to 1 ring of carbon atoms. -13- 201206978 The content of the above structure (1) in a specific polymer is preferably 5xl 〇 4 to 4xl (T3mol/g, more preferably lxl (r3 to 3.5xl (r3mol/g' and more preferably l_5xl) 〇_3~3xl (T3mol/g. The content of the above structure (2) in the specific polymer is preferably 6xl (T3mol/g or less, more preferably lxl0·3 〜6χ10·3πιο1/8') and more preferably 1.5xlO-3~4xl (T3mol/g ° The structures (1) and (2) in the specific polymer may be located at more than one position selected from the main chain, side chain and end of the polymer' but from the formed liquid crystal The aspect of the alignment film having a small pretilt angle is preferably located in the main chain of the polymer. As the main skeleton of the specific polymer in the present invention, for example, polyorganooxane, polylysine, and polyimine may be mentioned. , polyglycolate, polyester, polyamine, polyoxyalkylene, cellulose derivatives, polyacetal, polystyrene derivatives, poly(styrene-phenylmaleimide) derivatives, a poly(meth) acrylate, a reactant of a polyfunctional carboxylic acid and a polyfunctional epoxy compound, etc., among which 'preferably a polyfunctional carboxylic acid and a plurality of officials The reactant of the epoxy compound. The reactant of the polyfunctional carboxylic acid and the polyfunctional epoxy compound as the specific polymer in the present invention' may be Μ iii 壬彳 只要 只要It is preferable to include a diepoxy compound oxygen compound and a polyfunctional carboxy group containing a dicarboxylic acid having the structure (1) from the viewpoints of the simplicity of the production method and the ease of separation and purification of a specific polymer valley. The reaction product of an acid. -14-201206978 Hereinafter, a method for producing a specific polymer which is preferable in the present invention will be described in detail. [Polyfunctional epoxy compound] A polyfunctional compound used for producing a specific polymer preferred in the present invention. The epoxy compound comprises a diepoxide compound. The diepoxide compound is a compound having two epoxy groups, which may be a compound in which two epoxy groups are bonded, or may be in addition to two epoxy groups. Further having the compound of the structure (2) as described above. The diepoxide compound further has a structure (2) as described above by using two epoxy groups. The specific polymer obtained preferably has the structure (2) in addition to the structure (1), and is preferred. Specific examples of the diepoxy compound are compounds in which two epoxy groups are bonded, respectively. A compound represented by the following formula (DE-1); and a compound having the structure (2) as described above in addition to the two epoxy groups, for example, the following formulae (DE_2) to (DE_U), respectively Compounds indicated, etc. -15- 201206978 Δ_Δ ( DE-1 ) ^-(CH2)4-^ ( de·2 ) Λ CH2〇(CH2)4〇CH^ (DE-3 )

9H3 2—C~CH2OCH2'9H3 2—C~CH2OCH2'

(DE-4 ) CH2OCH CH3(DE-4 ) CH2OCH CH3

(DE-5 )(DE-5)

CH3 ch3 (DE-6 )CH3 ch3 (DE-6 )

CH2〇(CH2)3~Si-〇—Si-(CH2)3〇CH2' ch3 ch3 ^-CH2〇(CH2)2〇CH2·^ ( DE-9 ) ^CH2OCH2〇CH2OCH2·^ ^-CH20(CH2)2〇(CH2)2〇CH2-^ ( DE-11} -16- 201206978 二環氧化合物可以單獨只使用一種,也可以混合兩種 以上使用。 作爲本發明中的多官能環氧化合物,可以將其他多官 能環氧化合物和上述的二環氧化合物一起使用。作爲可以 在這裏使用的其他多官能環氧化合物較佳具有三個以上環 氧基的化合物,更佳具有三個或四個環氧基的化合物,作 爲較佳的物質,可以列舉出例如三羥甲基丙烷三縮水甘油 基醚、Ν,Ν,Ν’,Ν’ -四縮水甘油基-間二甲苯二胺、1,3 -二 0,-二縮水甘油基胺基甲基)環己垸、>^川,>^,:^’-四縮水甘 油基-4,4’-二胺基二苯基甲烷等,可以使用由它們之中選出 的一種以上" 多官能環氧化合物中的二環氧化合物的使用比例,相 對於總計lmol的多官能環氧化合物,較佳超過〇.5mol ’更 佳大於〇.5mol、0.999mol以下,又更佳爲大於〇.8mol' 0.998mol以下,特佳爲大於0.9mol、0_995mol以下。通過 形成這種使用比例,可以無損本發明的效果’進一步提高 形成的液晶配向膜的電性質的耐熱耐光性。 [多官能羧酸] 用於製造本發明中較佳的特定聚合物而使用的多官能 教酸’是包含具有至少一個以上的上述結構(1)和兩個殘基 的化合物(具有上述結構(1)的二元羧酸,以下也簡稱爲“二 元羧酸”)。 -17- 201206978 作爲這種二元羧酸,可以列舉出例如下述式 (DC-1)〜(DC-4)分別表示的化合物。CH2〇(CH2)3~Si-〇-Si-(CH2)3〇CH2' ch3 ch3 ^-CH2〇(CH2)2〇CH2·^ ( DE-9 ) ^CH2OCH2〇CH2OCH2·^ ^-CH20(CH2 2〇(CH2)2〇CH2-^ (DE-11} -16- 201206978 The diepoxy compound may be used singly or in combination of two or more. As the polyfunctional epoxy compound in the present invention, Other polyfunctional epoxy compounds are used together with the above-mentioned diepoxy compound. As other polyfunctional epoxy compounds which can be used herein, it is preferred to have a compound having three or more epoxy groups, more preferably three or four rings. Examples of the oxy group compound include, for example, trimethylolpropane triglycidyl ether, hydrazine, hydrazine, hydrazine, Ν'-tetraglycidyl-m-xylenediamine, 1,3. - bis, diglycidylaminomethyl)cyclohexane, >^chuan, >^,:^'-tetraglycidyl-4,4'-diaminodiphenylmethane, etc. The ratio of the use of the diepoxy compound in one or more of the "multifunctional epoxy compounds" selected from among them may be used, relative to a total of 1 mol of the polyfunctional epoxy compound. Preferred over 〇.5mol 'greater than 〇.5mol more excellent, 0.999mol less, and more preferably greater than 〇.8mol' 0.998mol less, particularly preferably greater than 0.9mol, 0_995mol less. By forming such a use ratio, the effect of the present invention can be impaired', and the heat resistance and light resistance of the electrical properties of the formed liquid crystal alignment film can be further improved. [Polyfunctional carboxylic acid] The polyfunctional teaching acid used in the production of a preferred specific polymer in the present invention is a compound comprising at least one of the above structures (1) and two residues (having the above structure ( The dicarboxylic acid of 1) is hereinafter also referred to simply as "dicarboxylic acid"). -17-201206978 Examples of such a dicarboxylic acid include compounds represented by the following formulas (DC-1) to (DC-4), respectively.

二元羧酸可以單獨只使用一種,也可以混合兩種以上 使用。 作爲本發明中的多官能羧酸,可以將其他多官能羧酸 和上述的一元羧酸一起使用。作爲可以在這裏使用的其他 多官能竣酸是沒有上述結構(丨)的多官能羧酸,較佳具有三 個以上殘基的化合物,更佳具有三個或四個羧基的化合物。 作爲這種其他多官能羧酸,作爲較佳的物質,可以列 舉出例如偏苯三酸、苯均四酸、,3,5_三(4_羧基苯基)苯、 I,2,4-環己烷三酸、1,2,4,5-環己烷四酸等,可以使用由它 們中選出的一種以上。 多官能羧酸中的二元羧酸的使用比例,相對於總計 lmol的多官能環氧化合物,較佳超過O.Smol,更佳超過 0.5mol且爲〇_999mol以下,又更佳爲超過〇 8m〇1且 0.998mol以下,特佳超過〇 9m〇1且〇 995m〇1以下。通過 -18- 201206978 形成這種使用比例,可以無損本發明的效果,進一 電性質的耐熱耐光性。 [特定聚合物的製造方法] 本發明中較佳的特定聚合物可以通過將如上所 官能環氧化合物和多官能羧酸較佳在適當的有機溶 應得到。 製造特定聚合物時的多官能環氧化合物和多官 的使用比例是相對於1 mol多官能環氧化合物,多官 的用量較佳爲0.8〜1.2mol,更佳爲〇.9~l.lmol。 作爲多官能環氧化合物與多官能羧酸反應時可 的有機溶劑,可以列舉出例如脂肪族烴、酚性溶劑 酯、酮、非質子性極性溶劑等。它們之中,從原料 的溶解性等觀點出發,較佳爲酚性溶劑或非質子性 劑。作爲上述較佳的有機溶劑的具體例子,分別是 酚性溶劑,可以列舉出例如間甲酚、二甲苯酚、苯 代苯酚等; 作爲非質子性極性溶劑,可以列舉出例如N- E 毗咯啶酮、N , N -二甲基乙醯胺、N , N -二甲基甲醯胺 二甲基咪唑啶酮、二甲基亞颯、γ -丁內酯、四甲基 甲基磷醯三胺等。 有機溶劑以固體成分濃度(反應溶液中的有機 外的成分的重量佔據溶液全部重量的比例)較佳爲5 以上的比例,更佳爲10〜50重量%的比例使用。 步提高 述的多 劑中反 能羧酸 能羧酸 以使用 、醚、 和產物 極性溶 ,作爲 酚、鹵 戸基-2-、Ν,Ν-脲、六 溶劑以 重量% -19- 201206978 多官能環氧化合物和多官能羧酸的反應可以根據需要 在催化劑的存在下進行。作爲該催化劑,除了有機鹼以外, 還可以使用作爲促進環氧化合物和酸酐的反應的所謂硬化 促進劑而公知的化合物。 作爲上述有機鹼,可以列舉出例如像乙胺、二乙胺、 哌畊、哌啶、吡咯啶、吡咯這樣的1 ~2級有機胺; 像三乙胺、三正丙基胺、三正丁基胺、吡啶、4 -二甲 基胺基吡啶、二氮雜二環十一烯這樣的3級有機胺; 像氫氧化四甲基銨這樣的4級有機胺等。這些有機鹼 中,較佳像三乙胺、三正丙基胺、三正丁基胺、啦卩定、4-二甲基胺基吡啶這樣的3級有機胺;像氫氧化四甲基銨這 樣的4級有機胺》 作爲上述硬化促進劑’可以列舉出例如像节基二甲基 胺、2,4,6 -三(二甲基胺基甲基)苯酚、環己基二甲基胺 '三 乙醇胺這樣的3級胺; 像2-甲基咪唑、2-正庚基咪唑、2-正十一烷基咪唑、 2_苯基咪唑、2 -苯基-4-甲基咪唑、卜苄基·2_甲基咪唑、^ 苄基·2 -苯基咪唑、丨,2-二甲基咪唑、2 -乙基-4-甲基咪唑、 1-(2 -氰基乙基)_2 -甲基咪唑、1-(2 -氰基乙基)-2-正^烷基 咪唑、1-(2-氰基乙基)-2·苯基咪唑、1-(2-氰基乙基)-2-乙基 _4-甲基咪唑、2-苯基甲基-5-羥甲基咪唑、2·苯基·4,5_ 二(羥甲基)咪唑、:l-(2-氰基乙基)-2-苯基-4,5-二[(2,-氰基 乙氧基)甲基]咪哩、1_(2 -氰基乙基)-2 -正十一烷基咪唑鑰苯 -20- 201206978 偏三酸鹽、1-(2-氰基乙基)-2-苯基咪唑鑰苯偏三酸鹽、1-(2-氰基乙基)-2-乙基_4·甲基咪唑鑰苯偏三酸鹽、2,4·二胺基 -6-[2’-甲基咪唑基-(1,)]乙基-s-三哄、2,4-二胺基-6-(2’-正 十一烷基咪唑基)乙基-s-三畊、2,4-二胺基-6-[2,-乙基-4’-甲基咪唑基_(1’)]乙基-s-三阱、2_甲基咪唑的異氰尿酸加成 物、2 -苯基咪唑的異氰尿酸加成物、2,4-二胺基-6- [2’-甲基 咪唑基_(1’)]乙基-s-三阱的異氰尿酸加成物這樣的咪唑化 合物; 像二苯基膦、三苯基膦、亞磷酸三苯基酯這樣的有機 磷化合物; 像氯化苄基三苯基錢、溴化四正丁基鐄、溴化甲基三 苯基鐵、溴化乙基三苯基鐵、溴化正丁基三苯基鱗、溴化 四苯基鳞、碘化乙基三苯基鐄、乙基三苯基鱗乙酸鹽、四 正丁基鳞〇,〇 -二乙基偶磷二硫代硫酸鹽、四正丁基鱗苯并 三哩鹽、四正丁基鳞四氟硼酸鹽、四正丁基鳞四苯基硼酸 鹽、四苯基鱗四苯基硼酸鹽這樣的4級鱗鹽; 像1,8-二氮雜二環[54〇]十一烯_7及其有機酸鹽這樣 的二氮雜二環烯烴; 像辛酸鋅、辛酸錫、乙醯丙酮鋁鍺合物這樣的有機金 屬化合物; 像漠化四乙基銨、溴化四正丁基銨、氯化四乙基銨、 氯化四正丁基錢适樣的4級錢鹽; 像二氣化棚、棚酸三苯基酯這樣的硼化合物; -2 1- 201206978 像氯化鋅、氯化錫這樣的金屬鹵化物; 高熔點分散型潛在性硬化促進劑、微膠囊型潛在性硬 化促進劑、熱陽離子聚合型潛在性硬化促進劑等潛在性硬 化促進劑等。分別是作爲上述高熔點分散型潛在性硬化促 進劑’可以列舉出例如二氰基二醯胺或胺和環氧樹脂的加 成物等胺加成型促進劑等; 作爲上述微膠囊型潛在性硬化促進劑,可以列舉出例 如上述咪唑化合物、有機磷化合物以及4級鱗鹽等硬化促 進劑的表面用聚合物覆蓋形成的促進劑等; 作爲上述熱陽離子聚合型潛在性硬化促進劑,可以列 舉出例如路易士酸、布倫斯特酸鹽等。 上述催化劑的使用比例相對於多官能環氧化合物和多 官能羧酸總計100重量份,較佳爲30重量份以下。 多官能環氧化合物和多官能羧酸的反應較佳在25〜2 00 °C ’更佳在40〜180°C的溫度下,較佳進行1〇分鐘〜48小時, 更佳進行1〜2 4小時。 本發明中的特定聚合物的末端可以是羧基,也可以是 環氧基,或者還可以是通過水解等開環的環氧基。本發明 中的特定聚合物尤其是即使末端不修飾,也可以直接用於 製備配向劑。但是’本發明的特定聚合物的製造時或製造 後’例如添加像苯甲酸這樣的一元羧酸或者像苄基縮水甘 油醚這樣的單環氧化合物進行反應,從而形成末端修飾的 特定聚合物後,用於製備配向劑。 -22- 201206978 <其他成分> 本發明的液晶配向劑含有如上的特定聚合物作爲必胃 成分,只要不削弱本發明的效果,也可以含有其他成分。 作爲該其他成分,可以列舉出例如沒有結構π)的聚合物(以 下,稱作“其他聚合物”)、在分子內具有至少一個環氧基的 化合物(其中,不包括特定聚合物。以下,稱作“環氧化合 物”)、官能性矽烷化合物等。 [其他聚合物] 上述其他聚合物可以用於進一步改善本發明的液晶配 向劑的溶液性質和所得的液晶配向膜的電性質。作爲該其 他聚合物,是沒有結構(1)的聚合物,較佳從例如由聚醯胺 酸、聚醯亞胺、聚有機矽氧烷、聚醯胺酸酯、聚酯、聚醯 胺、纖維素衍生物、聚縮醛、聚苯乙烯衍生物、聚(苯乙烯 -苯基馬來醯亞胺)衍生物、聚(甲基)丙烯酸酯等中選出的, 可以使用它們中的一種以上。 作爲本發明的其他聚合物,較佳使用由聚醯胺酸和聚 醯亞胺構成的群組中選出的至少一種聚合物。 {聚醯胺酸} 上述聚醯胺酸可以通過使四酸二酐和二胺反應得到。 作爲用於合成本發明中的聚醯胺酸的四酸二酐,可以 列舉出例如脂肪族四酸二酐、脂環式四酸二酐、芳香族四 酸二酐等。作爲它們的具體地例子,分別是作爲脂肪族四 酸二酐,可以列舉出例如丁四酸二酐等; -23- 201206978 作爲脂環式四酸二酐,可以列舉出例如1,2,3,4 -環丁四 酸二酐、2,3,5 -三羧基環戊基乙酸二酐、l,3,3a,4,5,9b -六氫 -5 -(四氫-2,5 -二側氧基-3 -呋喃基)·萘并[1,2 - c ]呋喃-1 , 3 -二 酮、l,3,3a,4,5,9b-六氫-8-甲基-5·(四氫- 2,5-二側氧基-3-呋 喃基)-萘并[1,2-(;]呋喃-1,3-二酮、3-氧雜二環[3.2.1]辛 -2,4-二酮-6-螺- 3’-(四氫呋喃·2’,5,-二酮)、5-(2,5-二側氧基 四氫-3-呋喃基)-3 -甲基-3-環己烯-1,2 -二酸酐、3,5,6-三羧 基-2-羧甲基降冰片烷-2:3,5:6-二酐、2,4,6,8-四羧基二環 [3.3.0]辛烷-2:4,6:8-二酐、4,9-二氧雜三環[5.3.1.02’6]十一 碳-3,5,8,10-四酮等; 作爲芳香族四酸二酐’可以列舉出例如.苯均四酸二酐 等; 以及使用專利文獻13(日本特開20 1 0-97 1 8 8號公報) 中記載的四酸二酐。 作爲用於合成前述聚醯胺酸的四酸二酐,較佳它們之 中包含脂環式四酸二酐的四酸二酐,更佳爲包含由2,3,5-三羧基環戊基乙酸二酐和1,2,3,4·環丁四酸二酐構成的群 組中選出的至少一種四酸二酐,特佳包含2,3, 5 -三羧基環 戊基乙酸二酐的四酸二酐。 作爲用於合成前述聚醯胺酸的四酸二酐,相對全部四 酸二酐,較佳包含50mol%以上、更佳選包含80m〇l%以上 的由2,3,5-三羧基環戊基乙酸二酐和1,2,3,4-環丁四酸二酐 構成的群組中選出的至少一種四酸二酐;最佳只由2,3,5- -24- 201206978 三羧基環戊基乙酸二酐和1,2,3,4 -環丁四酸二酐構成的群 組中選出的至少一種構成。 作爲用於合成聚醯胺酸的二胺,可以列舉出例如脂肪 族二胺、脂環式二胺、芳香族二胺、二胺基有機矽氧烷等。 作爲它們的具體例子’分別是作爲脂肪族二胺,可以列舉 出例如1,卜間二甲苯二胺、1,3·丙二胺、1,4-丁二胺、1,5-戊二胺、1,6 -己二胺等; 作爲脂環式二胺,可以列舉出例如1 ,4 -二胺基環己 烷、4,4’-亞甲基二(環己基胺)、1,3_二(胺基甲基)環己烷等: 作爲芳香族二胺,可以列舉出例如對伸苯基二胺、4,4,_ 二胺基二苯基甲烷、4,4’-二胺基二苯基硫醚、:!,5_二胺基 萘、2,2’-二甲基-4,4,-二胺基聯苯、4,4,-二胺基- 2,2’-二(三 氟甲基)聯苯、2,7 -二胺基蒔、4,4,·二胺基二苯基醚、2,2-二[4-(4-胺基苯氧基)苯基]丙烷、9,9_二(4_胺基苯基)苐、 2,2 -二[4-(4 -胺基苯氧基)苯基]六氟丙烷、2,2 -二(4 -胺基苯 基)六氟丙烷、4,4,-(對苯二亞異丙基)二(苯胺)、4,4,_(間苯 —亞異两基)二(苯胺)、1,4-二(4·胺基苯氧基)苯、4,4,-二(4-胺基苯氧基)聯苯、2,6_二胺基吡啶、3,4-二胺基吡啶、2,4_ 二胺基嘧啶、3,6 -二胺基吖啶、3,6 -二胺基咔唑、 N -甲基-3,6 -二胺基咔唑、N -乙基-3,6 -二胺基咔唑' N-苯基-3,6 -二胺基咔哩、 N,N’-二(4-胺基苯基)·聯苯胺、N,N’_二(4-胺基苯 基)-N,N’-二甲基聯苯胺、14-二(4_胺基苯基)_哌畊、3,5_ -25- 201206978 二胺基苯甲酸、膽甾烷氧基-3 , 5 -二胺基苯、膽甾烯氧基 -3,5-二胺基苯、膽甾烷氧基-2,4-二胺基苯、膽甾烯氧基 -2,4-二胺基苯、3,5-二胺基苯甲酸膽甾烷基酯、3,5-二胺基 苯甲酸膽甾烯基酯、3,5-二胺基苯甲酸羊毛甾烷基酯、3,6· 二(4-胺基苯甲醯氧基)膽甾烷、3,6-二(4-胺基苯氧基)膽甾 烷、4-(4’-三氟甲氧基苯甲醯氧基)環己基-3,5-二胺基苯甲 酸酯、4-(4’-三氟甲基苯甲醯氧基)環己基-3,5-二胺基苯甲 酸酯、1,1-二(4-((胺基苯基)甲基)苯基)-4-丁基環己烷、1,卜 二(4-((胺基苯基)甲基)苯基)-4-庚基環己烷、1,1-二(4-((胺 基苯氧基)甲基)苯基)-4-庚基環己烷、1,1-二(4-((胺基苯基) 甲基)苯基)-4-(4-庚基環己基)環己烷以及下述式(D-D所示 的化合物等;The dicarboxylic acid may be used singly or in combination of two or more. As the polyfunctional carboxylic acid in the present invention, other polyfunctional carboxylic acid may be used together with the above monocarboxylic acid. The other polyfunctional phthalic acid which can be used herein is a polyfunctional carboxylic acid having no such structure (丨), preferably a compound having three or more residues, more preferably a compound having three or four carboxyl groups. As such a polyfunctional carboxylic acid, preferred examples thereof include trimellitic acid, pyromellitic acid, 3,5-tris(4-carboxyphenyl)benzene, and I, 2,4-. As the cyclohexanetricarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid or the like, one or more selected from them can be used. The use ratio of the dicarboxylic acid in the polyfunctional carboxylic acid is preferably more than 0.1 mol, more preferably more than 0.5 mol, and more preferably 〇 999 mol or less, more preferably more than 〇, based on the total of 1 mol of the polyfunctional epoxy compound. 8 m〇1 and 0.998 mol or less, particularly preferably more than 〇9 m〇1 and 〇995 m〇1 or less. By using -18-201206978 to form such a use ratio, the effect of the present invention can be impaired, and the heat resistance and light resistance of an electric property can be improved. [Method for Producing Specific Polymer] The specific polymer preferred in the present invention can be obtained by preferably dissolving the above-mentioned functional epoxy compound and polyfunctional carboxylic acid in an appropriate organic solvent. The ratio of the polyfunctional epoxy compound and the polyorganism when the specific polymer is produced is relative to 1 mol of the polyfunctional epoxy compound, and the amount of the polyfunctional compound is preferably 0.8 to 1.2 mol, more preferably 〇.9 to 1.1 mol. . Examples of the organic solvent which can be used in the reaction of the polyfunctional epoxy compound with the polyfunctional carboxylic acid include aliphatic hydrocarbons, phenolic solvent esters, ketones, and aprotic polar solvents. Among them, a phenolic solvent or an aprotic agent is preferred from the viewpoint of solubility of the raw material and the like. Specific examples of the above-mentioned preferred organic solvent include a phenolic solvent, and examples thereof include m-cresol, xylenol, and phenylphenol; and examples of the aprotic polar solvent include N-E-pyrrole. Pyridone, N,N-dimethylacetamide, N,N-dimethylformamide dimethylimidazolidinone, dimethyl hydrazine, γ-butyrolactone, tetramethylmethylphosphonium Triamine and the like. The organic solvent is preferably used in a ratio of 5 or more, more preferably 10 to 50% by weight, based on the solid content concentration (the ratio of the weight of the organic component in the reaction solution to the total weight of the solution). Step by step to improve the multi-agent anti-carboxylic acid carboxylic acid in the use of, ether, and product polar solubility, as phenol, haloin-2-, hydrazine, hydrazine-urea, six solvents in wt% -19- 201206978 The reaction of the functional epoxy compound and the polyfunctional carboxylic acid can be carried out in the presence of a catalyst as needed. As the catalyst, in addition to the organic base, a compound known as a so-called curing accelerator which promotes the reaction between the epoxy compound and the acid anhydride can be used. Examples of the organic base include 1-4 organic amines such as ethylamine, diethylamine, piperazine, piperidine, pyrrolidine, and pyrrole; and triethylamine, tri-n-propylamine, and tri-n-butyl A tertiary organic amine such as a base amine, pyridine, 4-dimethylaminopyridine or diazabicycloundecene; a 4-grade organic amine such as tetramethylammonium hydroxide. Among these organic bases, a tertiary organic amine such as triethylamine, tri-n-propylamine, tri-n-butylamine, ruthenium or 4-dimethylaminopyridine is preferred; tetramethylammonium hydroxide is preferred. Such a 4-stage organic amine" as the above-mentioned hardening accelerator' may, for example, be benzylated dimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol, or cyclohexyldimethylamine a tertiary amine such as triethanolamine; like 2-methylimidazole, 2-n-heptyl imidazole, 2-n-undecylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, benzylidene 2-methylimidazole, benzyl-2-phenylimidazole, hydrazine, 2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1-(2-cyanoethyl)_2-methyl Imidazole, 1-(2-cyanoethyl)-2-n-alkylimidazole, 1-(2-cyanoethyl)-2.phenylimidazole, 1-(2-cyanoethyl)-2 -ethyl_4-methylimidazole, 2-phenylmethyl-5-hydroxymethylimidazole, 2·phenyl·4,5-bis(hydroxymethyl)imidazole, l-(2-cyanoethyl) -2-phenyl-4,5-bis[(2,-cyanoethoxy)methyl]imidate, 1-(2-cyanoethyl)-2-n-undecylimidazole benzene- 20- 201206978 Tri-stearate , 1-(2-cyanoethyl)-2-phenylimidazolium phthalate, 1-(2-cyanoethyl)-2-ethyl-4-methylimidazole Salt, 2,4·diamino-6-[2'-methylimidazolyl-(1,)]ethyl-s-triterpene, 2,4-diamino-6-(2'-positive Monoalkylimidazolyl)ethyl-s-trin, 2,4-diamino-6-[2,-ethyl-4'-methylimidazolyl-(1')]ethyl-s-three Well, isocyanuric acid adduct of 2-methylimidazole, isocyanuric acid adduct of 2-phenylimidazole, 2,4-diamino-6-[2'-methylimidazolyl_(1' An imidazole compound such as an ethyl-s-tripper isocyanuric acid adduct; an organophosphorus compound such as diphenylphosphine, triphenylphosphine or triphenylphosphite; like benzyl chloride Phenyl money, tetra-n-butyl bromide, methyl triphenyl iron bromide, ethyl triphenyl iron bromide, n-butyl triphenyl bromide, tetraphenyl bromide, iodide Triphenyl sulfonium, ethyl triphenyl sulphate, tetra-n-butyl fluorene, hydrazine-diethylphosphonium dithiosulfate, tetra-n-butyl benzotrifluoride, tetra-n-butyl Scale tetrafluoroborate, tetra-n-butyl quaternary tetraphenylborate a grade 4 scale salt such as a salt or tetraphenylphosphinium tetraphenylborate; a diazabicycloalkene such as 1,8-diazabicyclo[54〇]undecene-7 and its organic acid salt ; organometallic compounds such as zinc octoate, tin octoate, acetoacetate aluminum ruthenium; like desert tetraethylammonium, tetra-n-butylammonium bromide, tetraethylammonium chloride, tetra-n-butyl chloride a money-like grade 4 salt; a boron compound such as a gasification shed or a triphenyl phthalate; -2 1- 201206978 a metal halide such as zinc chloride or tin chloride; a high melting point dispersion type potential A latent curing accelerator such as a hardening accelerator, a microcapsule latent curing accelerator, or a thermal cationic polymerization latent curing accelerator. The above-mentioned high-melting-point-dispersion latent curing accelerator' may, for example, be an amine addition-promoting accelerator such as dicyanoguanamine or an adduct of an amine and an epoxy resin; and the above-mentioned microcapsule type latent curing Examples of the accelerator include an accelerator formed by coating a surface of a hardening accelerator such as the above-described imidazole compound, an organic phosphorus compound, and a quaternary salt salt, and the like; and the thermal cationic polymerization type latent curing accelerator is exemplified. For example, Lewis acid, Bronsted acid salt, and the like. The use ratio of the above catalyst is preferably 30 parts by weight or less based on 100 parts by weight of the polyfunctional epoxy compound and the polyfunctional carboxylic acid. The reaction of the polyfunctional epoxy compound and the polyfunctional carboxylic acid is preferably carried out at a temperature of from 25 to 200 ° C., more preferably from 40 to 180 ° C, preferably from 1 to 48 hours, more preferably from 1 to 2 4 hours. The terminal of the specific polymer in the present invention may be a carboxyl group or an epoxy group, or may be an epoxy group which is opened by hydrolysis or the like. The particular polymer of the present invention can be used directly to prepare an alignment agent, especially if the terminal is not modified. However, 'at the time of manufacture or after the production of the specific polymer of the present invention', for example, a monocarboxylic acid such as benzoic acid or a monoepoxy compound such as benzyl glycidyl ether is added to react to form a terminally modified specific polymer. For the preparation of an alignment agent. -22-201206978 <Other components> The liquid crystal alignment agent of the present invention contains the above specific polymer as a must-have component, and may contain other components as long as the effects of the present invention are not impaired. Examples of the other component include a polymer having no structure π) (hereinafter referred to as "another polymer") and a compound having at least one epoxy group in the molecule (excluding a specific polymer. Hereinafter, It is called "epoxy compound", a functional decane compound, and the like. [Other Polymers] The above other polymers can be used to further improve the solution properties of the liquid crystal alignment agent of the present invention and the electrical properties of the resulting liquid crystal alignment film. As the other polymer, there is a polymer having no structure (1), preferably from, for example, polyphthalic acid, polyimine, polyorganosiloxane, polyphthalate, polyester, polyamine, Any one selected from the group consisting of cellulose derivatives, polyacetals, polystyrene derivatives, poly(styrene-phenylmaleimide) derivatives, poly(meth)acrylates, and the like may be used. . As the other polymer of the present invention, at least one selected from the group consisting of polyproline and polyimine is preferably used. {Polyamic acid} The above polylysine can be obtained by reacting tetracarboxylic dianhydride with a diamine. The tetracarboxylic dianhydride used for the synthesis of the polyamic acid in the present invention may, for example, be an aliphatic tetraacid dianhydride, an alicyclic tetracarboxylic dianhydride or an aromatic tetracarboxylic dianhydride. Specific examples of the aliphatic tetracarboxylic dianhydride include, for example, butyric acid dianhydride; and -23 to 201206978, as the alicyclic tetracarboxylic dianhydride, for example, 1, 2, and 3 are exemplified. , 4-cyclotetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentyl acetic acid dianhydride, 1,3,3a,4,5,9b-hexahydro-5-(tetrahydro-2,5- Bis-oxy-3-furanyl)-naphtho[1,2-c]furan-1,3-dione, 1,3,3a,4,5,9b-hexahydro-8-methyl-5 · (tetrahydro-2,5-di-oxy-3-furanyl)-naphtho[1,2-(;]furan-1,3-dione, 3-oxabicyclo[3.2.1] Oct-2,4-dione-6-spiro-3'-(tetrahydrofuran.2',5,-dione), 5-(2,5-di-oxytetrahydro-3-furanyl)-3 -methyl-3-cyclohexene-1,2- dianhydride, 3,5,6-tricarboxy-2-carboxymethylnorbornane-2:3,5:6-dianhydride, 2,4, 6,8-tetracarboxybicyclo[3.3.0]octane-2:4,6:8-dianhydride, 4,9-dioxatricyclo[5.3.1.0''6]undec-3,5 (8,10-tetraketone, etc.), and the like, for example, pyromellitic dianhydride, and the like, and the use of the patent document 13 (Japanese Patent Laid-Open Publication No. Hei 20 1 0-97 1 8 8) Recorded in As the tetracarboxylic dianhydride for synthesizing the above polyamic acid, tetraic acid dianhydride containing alicyclic tetracarboxylic dianhydride is preferable, and more preferably contains 2, 3, 5 - 3 At least one tetracarboxylic dianhydride selected from the group consisting of carboxycyclopentyl acetic acid dianhydride and 1,2,3,4·cyclotetracarboxylic dianhydride, particularly preferably 2,3,5-tricarboxycyclopentyl The tetracarboxylic dianhydride of the acetic acid dianhydride. The tetracarboxylic dianhydride used for the synthesis of the polyamic acid preferably contains 50 mol% or more, more preferably 80 m〇l% or more, based on the total tetracarboxylic dianhydride. , at least one tetraacid dianhydride selected from the group consisting of 3,5-tricarboxycyclopentyl acetic acid dianhydride and 1,2,3,4-cyclotetracarboxylic dianhydride; preferably only 2, 3, 5--24- 201206978 At least one selected from the group consisting of tricarboxycyclopentyl acetic acid dianhydride and 1,2,3,4-cyclotetracarboxylic dianhydride. As a second for the synthesis of polylysine Examples of the amine include an aliphatic diamine, an alicyclic diamine, an aromatic diamine, a diamine organic decane, and the like. Specific examples thereof are as an aliphatic diamine, and examples thereof include, for example, 1 , M-xylylenediamine, 1,3,propylenediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, etc.; as the alicyclic diamine, for example, 1, 4-diaminocyclohexane, 4,4'-methylenebis(cyclohexylamine), 1,3-di(aminomethyl)cyclohexane, etc.: As the aromatic diamine, it can be enumerated For example, p-phenylenediamine, 4,4,-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, :!, 5-diaminonaphthalene, 2, 2' - dimethyl-4,4,-diaminobiphenyl, 4,4,-diamino-2,2'-bis(trifluoromethyl)biphenyl, 2,7-diamino fluorene, 4 , 4, diaminodiphenyl ether, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 9,9-bis(4-aminophenyl)anthracene, 2 ,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis(4-aminophenyl)hexafluoropropane, 4,4,-(p-benzodiazepine Isopropyl) bis(aniline), 4,4,_(m-phenyl-isohexanyl)bis(aniline), 1,4-bis(4.aminophenoxy)benzene, 4,4,-di (4-Aminophenoxy)biphenyl, 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6 -diamine acridine, 3,6-diaminocarbazole, N-methyl-3,6-diaminocarbazole, N-ethyl-3,6-diaminocarbazole 'N-benzene -3,6-diaminopurine, N,N'-bis(4-aminophenyl)-benzidine, N,N'-bis(4-aminophenyl)-N,N'- Dimethylbenzidine, 14-bis(4-aminophenyl)_piped, 3,5_ -25- 201206978 diaminobenzoic acid, cholestyloxy-3,5-diaminobenzene, gall Terpeneoxy-3,5-diaminobenzene, cholestyloxy-2,4-diaminobenzene, cholesteneoxy-2,4-diaminobenzene, 3,5-diamine Cholesteryl benzoate, cholesteryl 3,5-diaminobenzoate, lanosteryl 3,5-diaminobenzoic acid, 3,6·bis(4-aminobenzene Methoxyoxy)cholestane, 3,6-bis(4-aminophenoxy)cholestane, 4-(4'-trifluoromethoxybenzylideneoxy)cyclohexyl-3,5 -diaminobenzoic acid ester, 4-(4'-trifluoromethylbenzylideneoxy)cyclohexyl-3,5-diaminobenzoic acid ester, 1,1-di(4-(( Aminophenyl)methyl)phenyl)-4-butylcyclohexane, 1,di(4-((aminophenyl)methyl)phenyl)-4-heptylcyclohexane, 1 , 1-two (4 -((Aminophenoxy)methyl)phenyl)-4-heptylcyclohexane, 1,1-bis(4-((aminophenyl)methyl)phenyl)-4-(4) -heptylcyclohexyl)cyclohexane and a compound represented by the following formula (DD;

(式(D-1)中,X1是碳原子數爲1〜3的院基、*_〇·、*<〇〇_ 或*-OCO-(其中,帶“*”的連接鍵和二胺基苯基連接),m是 0或1,η是〇〜2的整數,p是1〜20的整數) 作爲二胺基有機矽氧烷,可以列舉出例如丨,3 _二(3 _胺 基丙基)-四甲基二矽氧烷等, 以及使用專利文獻13(日本特開2010-97188號公報) 中記載的二胺。 -26- 201206978 作爲上述式(D-1)中的χι較佳爲碳原子數爲的烷 基、*-0 -或*·(:00-(其中,帶“*,,的連接鍵和二胺基苯基連 接)。作爲基團CPH2P+I-的具體例子,可以列舉出例如甲基、 乙基、正丙基、正丁基、正戊基 '正己基、正庚基、正辛 基、正壬基、正癸基 '正十二烷基、正十三烷基、正十四 烷基、正十五烷基 '正十六烷基、正十七烷基、正十八烷 基、正十九烷基、正二十烷基等。二胺基苯基的兩個胺基, 相對於其他基團較佳爲2,4 -位或3,5 -位。 作爲上述式(D-1 )表示的化合物的具體例子,可以列舉 出例如十二烷氧基_2,4_二胺基苯、十四烷氧基-2,4-二胺基 苯、十五烷氧基-2,4-二胺基苯、十六烷氧基-2,4-二胺基 苯、十八烷氧基-2,4-二胺基苯、十二烷氧基-2,5-二胺基 苯、十四烷氧基-2,5-二胺基苯、十五烷氧基-2,5-二胺基 苯、十六烷氧基-2,5-二胺基苯、十八烷氧基-2,5-二胺基 苯,和下述式(D-1-i)〜(d-1-3)分別表示的化合物等。(In the formula (D-1), X1 is a hospital group having a carbon number of 1 to 3, *_〇·, *<〇〇_ or *-OCO- (wherein, a bond with "*" and two Aminophenyl linkage), m is 0 or 1, η is an integer of 〇~2, and p is an integer of 1 to 20) As the diamine organooxane, for example, 丨, 3 _2 (3 _ Aminopropyl)-tetramethyldioxane or the like, and a diamine described in Patent Document 13 (JP-A-2010-97188). -26- 201206978 The χι in the above formula (D-1) is preferably an alkyl group having a carbon number, *-0 - or *·(: 00- (wherein, a bond with "*," and two Aminophenyl linkage.) Specific examples of the group CPH2P+I- include, for example, methyl, ethyl, n-propyl, n-butyl, n-pentyl 'n-hexyl, n-heptyl, n-octyl , n-decyl, n-decyl 'n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl 'n-hexadecyl, n-heptadecyl, n-octadecyl , n-nonadecyl, n-icosyl, etc. The two amine groups of the diaminophenyl group are preferably 2,4-position or 3,5-position relative to other groups. Specific examples of the compound represented by -1 ) include, for example, dodecyloxy-2,4-diaminobenzene, tetradecyloxy-2,4-diaminobenzene, and pentadecyloxy group- 2,4-Diaminobenzene,hexadecyloxy-2,4-diaminobenzene, octadecyloxy-2,4-diaminobenzene, dodecyloxy-2,5-di Aminobenzene, tetradecyloxy-2,5-diaminobenzene, pentadecyloxy-2,5-diaminobenzene, hexadecyloxy-2,5-diaminobenzene, Octadecyl-2,5-diamino benzene, and the following formula (D-1-i) ~ (d-1-3) compounds represented respectively.

〇5^ (D-1-2) C5H11 (D-1-1)〇5^ (D-1-2) C5H11 (D-1-1)

-27- 201206978 上述式(D-1)中,m和η較隹不同時爲0。 這些二胺可以單獨或組合兩種以上使用。 作爲聚醯胺酸的合成反應中使用的四酸二酐和 使用比例,相對於1當量二胺化合物中含有的胺基 二酐的酸酐基較佳爲0.2〜2當量的比例,更佳爲0.3 量的比例。 聚醯胺酸的合成反應較佳在有機溶劑中,較佳: 〜1 5 0 °C,更佳在〇 °C〜1 0 0 °C的溫度條件下,較佳進行 小時,更佳進行2〜1 0小時。其中,作爲有機溶劑, 以溶解合成的聚醯胺酸的就沒有特別的限定,可以 例如N-甲基-2-吡咯啶酮、N,N-二甲基乙醯胺、Ν,Ν· 甲醯胺、Ν,Ν-二甲基咪唑啶酮、二甲基亞颯、γ-丁 四甲基脲、六甲基磷醯三胺等非質子性極性溶劑; 間甲酚、二甲苯酚、苯酚、鹵代苯酚等酚類溶 有機溶劑的用量(a)是四酸二酐和二胺化合物的總 對於反應溶液的全部量(a + b)較佳爲0.1〜50重量%、 5 ~ 3 0重量%的量。 如上,可以得到溶解聚醯胺酸形成的反應溶液 應溶液可以直接用於製備液晶配向劑,也可以在分 溶液中含有的聚醯胺酸後,用於製備液晶配向劑, 分離的聚醯胺酸精製後,用於製備液晶配向劑。 將聚醯胺酸脫水閉環形成聚醯亞胺時,可以將 應溶液直接用於脫水閉環反應;也可以分離反應溶 二胺的 ,四酸 〜1.2當 £ - 2 0 °C 0 · 5〜24 只要可 列舉出 二甲基 內酯、 劑等。 匱(b)相 更佳爲 。該反 離反應 或者將 上述反 液中含 -28- 201206978 有的聚醯胺酸後’用於脫水閉環反應;或者將分離的聚醯 胺酸精製後,用於脫水閉環反應。 聚醯胺酸的分離可以通過將上述反應溶液注入大量的 不良溶劑中,得到析出物,將該析出物減壓乾燥的方法; 或者通過蒸發器減壓蒸餾反應溶液中的有機溶劑的方法等 進行。另外’也可以通過將該聚醯胺酸再次溶解到有機溶 劑中,然後在不良溶劑中析出的方法;或者通過重複進行 一次或多次將聚醯胺酸再次溶解到有機溶劑中,洗條該溶 液後,用蒸發器減壓餾出的方法等精製聚醢胺酸。 {聚醯亞胺} 上述聚醯亞胺可以將如上得到的聚醯胺酸具有的_月安 酸結構脫水閉環進行醯亞胺化而合成。此時,可以將醯月安 酸結構全部脫水閉環,完全醯亞胺化;或者也可以只將酿 胺酸結構中的一部分脫水閉環,形成醯胺酸結構和醯亞胺 環結構並存的部分醯亞胺化物。本發明中使用的聚醯亞胺 的醯亞胺化率較佳爲40%以上,更佳爲50〜95%。 聚醯胺酸的脫水閉環可以通過(i)加熱聚醯胺酸的方 法,或者可以通過(ii)將聚醯胺酸溶解在有機溶劑中,在該 溶液中添加脫水劑和脫水閉環催化劑並因應需要加熱的方 法進行。 上述(i)的加熱聚醯胺酸的方法中的反應溫度較佳爲 5〇〜2〇0°C,更佳爲6〇~l7〇°C。反應溫度不足5〇t時,無法 充分進行脫水閉環反應;如果反應溫度超過200 °C,則所 -29- 201206978 得的聚醯亞胺的分子量可能降低。加熱聚醯胺酸的方法中 的反應時間較佳爲0.5〜48小時,更佳爲2〜20小時。 另一方面’上述(ii)的在聚醯胺酸溶液中添加脫水劑和 脫水閉環催化劑的方法中,作爲脫水劑,可以使用例如乙 酸酐、丙酸酐、三氟乙酸酐等酸酐。作爲脫水劑的用量, 相對於lmol聚醯胺酸的結構單元,較佳爲〇.〇1〜20mol。作 爲脫水閉環催化劑,可以列舉出例如吡啶、三甲基吡啶、 二甲基吡啶、三乙胺等3級胺。但是,並不限於此。作爲 脫水閉環催化劑的用量,相對於1 m 〇 1使用的脫水劑,較佳 爲0.01〜lOmol。作爲脫水閉環反應中使用的有機溶劑,可 以列舉出作爲合成聚醯胺酸使用的溶劑例示的有機溶劑。 脫水閉環反應的反應溫度較佳爲0〜18 (TC,更佳爲10〜150 °C。反應時間較佳爲〇 · 5〜2 0小時,更佳爲1〜8小時。 上述方法(i)中得到的聚醯亞胺可以將其直接用於製備 液晶配向劑,或者將所得的聚醯亞胺精製後,用於製備液 晶配向劑。另一方面,在上述方法(i i)中,可以得到含有聚 醯亞胺的反應溶液。該反應溶液可以將其直接用於製備液 晶配向劑’也可以從反應溶液除去脫水劑和脫水閉環催化 劑後’用於製備液晶配向劑;還可以分離聚醯亞胺後,用 於製備液晶配向劑;或者將分離的聚醯亞胺精製後,用於 製備液晶配向劑。爲了從反應溶液除去脫水劑和脫水閉環 催化劑’例如適合使用溶劑置換等方法。聚醯亞胺的分離、 精製可以通過作爲聚醯胺酸的分離、精製方法而進行的上 述同樣的操作進行。 -30- 201206978 {其他聚合物的使用比例) 本發明的液晶配向劑在含有前述特定聚合物和其他聚 合物時,作爲其他聚合物的使用比例,相對於聚合物的總 量(是指特定聚合物和其他聚合物的總量,以下相同),較 佳爲99重量%以下,更佳爲95重量%以下,再更佳爲80 重量%以下,特佳爲50重量%以下。通過這種使用比例, 可以無損本發明的效果,進一步改善形成的液晶配向膜的 電性質’此外還有助於削減液晶配向劑的成本,所以是較 佳的。 [環氧化合物] 上述環氧化合物從進一步提高形成的液晶配向膜對基 板表面的黏合性的觀點出發,可含於本發明的液晶配向劑 中。 作爲該環氧化合物,可以列舉出例如乙二醇二縮水甘 油醚、聚乙二醇二縮水甘油醚、丙二醇二縮水甘油醚、三 丙二醇二縮水甘油醚、聚丙二醇二縮水甘油醚、新戊二醇 二縮水甘油醚、1,6 -己二醇二縮水甘油醚、甘油二縮水甘 油醚、2,2-二溴代新戊二醇二縮水甘油醚、四縮水 甘油基-2,4-己二醇、:^,:^,:^’,:^-四縮水甘油基-間二甲苯二 胺、I,3-二(N,N -二縮水甘油基胺基甲基)環己烷、 N,N,N’,N’-四縮水甘油,基_4,4,·二胺基二苯基甲烷、Ν,Ν·二 縮水甘油基-苄基胺、Ν,Ν-二縮水甘油基-胺基甲基環己烷 等作爲較佳的物質。 -3 1- 201206978 本發明的液晶配向劑含有環氧化合物時,作爲其含有 比例,相對於上述聚合物總計1 00重量份,較佳爲40重量 份以下,更佳爲3 0重量份以下。 [官能性矽烷化合物] 上述官能性矽烷化合物,可以基於提高所得的液晶配 向膜和基板的黏合性的目的而使用。作爲官能性砂院化合 物,可以列舉出例如3-胺基丙基三甲氧基矽烷、3_胺基丙 基三乙氧基矽烷、2-胺基丙基三甲氧基矽烷、2-胺基丙基 三乙氧基矽烷、N-(2-胺基乙基)-3-胺基丙基三甲氧基矽 烷、N-(2-胺基乙基)-3-胺基丙基甲基二甲氧基矽烷、3_醯 脲丙基三甲氧基矽烷、3-醯脲丙基三乙氧基矽烷、Ν·乙氧 基羰基-3-胺基丙基三甲氧基矽烷、Ν-乙氧基羰基胺基丙 基三乙氧基砂院、Ν -三乙氧基甲砂院基丙基三亞乙基三 胺、Ν-三甲氧基甲矽烷基丙基三亞乙基三胺、1〇_三甲氧基 甲矽烷基-1,4,7_三氮雜癸烷、10-三乙氧基甲矽烷基-丨,4,7_ 三氮雜癸烷、9-三甲氧基甲矽烷基-3,6_二氮雜壬基乙酸 酯、9-二乙氧基甲矽烷基-3, 6-二氮雜壬基乙酸酯、Ν-苄基 -3-胺基丙基三甲氧基矽烷、Ν_苄基-3_胺基丙基三乙氧基矽 院、Ν -苯基_3·胺基丙基三甲氧基砂垸、Ν -苯基-3·胺基丙基 一乙氧基砂院、Ν - 一(氧乙嫌基)-3 -胺基丙基三甲氧基砂 烷、Ν -二(氧乙烯基)-3 -胺基丙基三乙氧基矽烷、3_縮水甘 油氧基丙基三甲氧基矽烷、2-(3,4 -環氧環己基)乙基三甲氧 基矽烷等,此外還可以列舉出如專利文獻8 (日本特開昭 -32- 201206978 63-291922號公報)中記載的四酸二酐和具有胺基的矽烷化 合物的反應物等。 本發明的液晶配向劑含有官能性矽烷化合物時,作爲 其含有比例,相對於聚合物總計1 00重量份,較佳爲1 〇重 量份以下,更佳爲5重量份以下。 <液晶配向劑> 本發明的液晶配向劑如上所述,含有特定聚合物作爲 必要成分,此外,根據需要可以含有其他成分,較佳將各 成分溶解到有機溶劑中,調製爲溶液狀的組合物。 作爲可以用於調製本發明的液晶配向劑的有機溶劑, 較佳溶解特定聚合物和任選使用的其他成分,而不會與它 們反應的溶劑。作爲該有機溶劑,可以列舉出例如N-甲基 -2 -卩比咯啶酮、γ-丁內酯、γ_丁內醯胺、N,N_二甲基甲醯胺、 N,N-二甲基乙醯胺' 4·羥基-4_甲基-2_戊酮、乙二醇單甲基 酸、乳酸丁酯、乙酸丁酯、甲氧基丙酸甲酯、乙氧基丙酸 乙酯、乙二醇甲基醚、乙二醇乙基醚、乙二醇正丙基醚、 乙二醇異丙基醚、乙二醇正丁基醚(丁基溶纖劑)、乙二醇 二甲基酸、乙二醇乙基醚乙酸酯、二乙二醇二甲基醚、二 乙一醇—乙基醚、二乙二醇單甲基醚、二乙二醇單乙基醚、 一乙二醇單甲基醚乙酸酯、二乙二醇單乙基醚乙酸酯、二 異丁基嗣、丙酸異戊基酯 '異丁酸異戊基酯、二異戊基醚、 碳酸乙二醋、碳酸丙二酯等,較佳使用由它們中選出的一 種以上。 -33- 201206978 用於製備本發明的液晶配向劑的較佳的溶劑,是組合 上述有機溶劑的一種或兩種以上得到的溶劑,在下述較佳 的固體成分濃度下’液晶配向劑中含有的各成分不會析 出’而且液晶配向劑的表面張力爲2 5〜4 0mN/m的範圍。 適用本發明的液晶配向劑的基板在對上述有機溶劑的 溶解性高的情況下(例如,在使用三乙基纖維素(TAC)等柔 性基板時)’可以將不會溶解基板或者難以溶解基板的其他 有機溶劑和上述有機溶劑一起使用,或者代替上述有機溶 劑使用。作爲這種其他有機溶劑,可以列舉出例如環己烷、 環戊酮、環己酮、乙醇、異丙醇、正丙醇、異丁基、正丁 醇、丙二醇甲醚、醋酸乙酯、醋酸丙酯、醋酸異丙酯、醋 酸丁酯、醋酸仲丁酯、醋酸叔丁酯、醋酸異丁酯、丙二醇 單甲醚乙酸酯、丙酮、甲乙酮、甲基異丁基酮、甲基溶纖 劑、丙二醇單甲基醚、乙基溶纖劑、2,3-戊二酮、i,2-二甲 氧基乙烷、1,1-二乙氧基乙烷、1,2 -二乙氧基乙烷等;可以 使用由它們中選出的一種以上。上述有機溶劑和其他有機 溶劑的使用比例可以在考察本發明的液晶配向劑中含有的 各成分的溶解性和適用的基板的溶解性等後適當設定。 本發明的液晶配向劑的固體成分濃度,也就是液晶配 向劑中的溶劑以外的全部成分的重量佔據液晶配向劑的全 部重量的比例考慮黏性、揮發性等選擇,較佳爲1〜10重量 %的範圍。本發明的液晶配向劑塗敷到基板表面,形成液 晶配向膜形成的塗膜,但是在固體成分濃度不足1重量% -34- 201206978 時,該塗膜的膜厚過小,可能難以得到良好的液晶配向膜。 另一方面,在固體成分濃度超過10重量%時,則塗膜的膜 厚過大,可能無法得到良好的液晶配向膜,或者液晶配向 劑的黏性增大,塗布性質可能不足。特佳的固體成分濃度 的範圍根據在基板上塗敷液晶配向劑時採用的方法而異》 例如,在使用旋塗法進行時,固體成分濃度特佳爲1 . 5〜6 重量%的範圍。在使用印刷法進行時,特佳固體成分濃度 爲3〜9重量%的範圍,由此,溶液黏度爲1 2~50mPa . s的 範圍。在使用噴墨法進行時,特佳固體成分濃度爲1〜5重 量%的範圍,由此,溶液黏度爲3~15mPa.s的範圍。 製備本發明的液晶配向劑時的溫度較佳爲 〇°C〜200 °C ,更佳爲 0°C ~40°C。 <液晶配向膜的形成方法> 本發明的液晶配向劑適合用於通過光配向法形成液晶 配向膜。本發明的液晶配向劑在用於TN型、STN型或橫 電場式液晶顯示元件時,特別是用於橫電場式液晶顯示元 件時,或者用於製造相位差薄膜時,可以最大限度發揮出 本發明的效果,所以較佳。 使用本發明的液晶配向劑形成液晶配向膜時,可以通 過經由下述步驟的方法進行: (a) 在基板上塗布本發明的液晶配向劑,形成聚合物的 塗膜的步驟;以及 (b) 對上述聚合物的塗膜照射放射線,形成液晶配向膜 的步驟。 -35- 201206978 以下,對上述步驟(a)和(b)進行說明。 •(a)在基板上塗布本發明的液晶配向劑,形 的步驟 其中,在將本發明的液晶配向劑用於 液晶顯示元件時,將設置了形成圖案的透 基板形成一對,在其各透明性導電膜形成 明的液晶配向劑,形成塗膜。本發明的液 橫電場式的液晶顯示元件時,將在一面上 的透明導電膜或金屬膜圖案的電極的基板 的對向基板形成一對,在梳齒狀電極的形 的一面上分別塗布本發明的液晶配向劑, 在上述兩種情況下,作爲基板,可以 法玻璃、鈉玻璃這樣的玻璃;像聚對苯二 對苯二甲酸丁二酯、聚醚颯、聚碳酸酯這 的透明基板等。作爲上述透明導電膜Έ In203-Sn02形成的ITO膜、由Sn02形成的 膜等。作爲上述金屬膜可以使用例如由 膜。爲了形成透明導電膜和金屬膜的圖案 形成無圖透明導電膜後,通過光蝕刻法、 案的方法;形成透明導電膜時,使用具有 掩模的方法等得到" 另一方面,使用本發明的液晶配向劑 的液晶配向膜時,在一塊透明基板上塗布 成聚合物的塗膜 TN型或STN型 明導電膜的兩塊 面上,塗布本發 晶配向劑在用於 具有形成梳齒狀 與沒有設置電極 成面和對向基板 形成塗膜。 使用例如由像浮 甲酸乙二酯、聚 樣的塑膠等形成 〇以使用例如由 NESA(注冊商標) 鉻等金屬形成的 ,可以通過例如 濺鍍法等形成圖 所希望的圖案的 製造相位差薄膜 本發明的液晶配 -36- 201206978 向劑,形成塗膜。作爲這種情況下使用的透明基板,可以 列舉出例如浮法玻璃、鈉玻璃等玻璃基材;三乙醯基纖維 素(TAC)、聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯、聚 醚砸、聚醯胺、聚醯亞胺、聚甲基丙烯酸甲酯、聚碳酸酯 等。它們之中’ T A C在液晶顯示元件中,—般是作爲起到 重要功能的偏光膜的保護層使用的材料。 在以上的任一種情況下’在向基板上塗敷液晶配向劑 時,爲了使基板或透明導電膜以及電極與塗膜的黏結性更 好,可以在基板和電極上預先塗敷官能性矽烷化合物、鈦 酸鹽化合物等。 向基板上塗布液晶配向劑較佳通過膠印法、旋塗法、 輥塗法、噴墨印刷法等適當的塗布方法進行,接著,對該 塗布面預加熱(預烘焙),然後燒製(後烘焙),形成塗膜。預 烘焙條件例如是在40~120°C下進行0.1~5分鐘,後烘焙條 件較佳在120〜300°C、更佳爲150〜250°C下,較佳進行5〜200 分鐘’更佳進行10〜100分鐘。後烘焙後的塗膜的膜厚較佳 爲 0.001 〜Ιμηι,更佳爲 〇.〇〇5~0.5μιη。 (b)對上述聚合物的塗膜照射放射線的步驟 通過對上述步驟(a)中形成的塗膜照射直線偏光或部 分偏光的放射線或無偏光的放射線,賦予液晶配向能。這 裏’作爲放射線,可以使用包含150〜800nm的波長的光的 紫外線和可見光線,較佳包含超過3 00nm且爲4〇Onm以下 的波長的光的紫外線。此時,爲了防止能量高的短波長的 -37- 201206978 紫外線照射而切斷聚合物的分子鏈等的影響而導致塗膜變 差’較佳通過濾去波長300nm以下的紫外線的UV濾光片 進行照射。照射的放射線直線偏光或部分偏光時,可以從 垂直基板面的方向照射’也可以從傾斜的方向照射,還可 以組合這些方式進行照射。在照射非偏光的放射線時,照 射方向必須是傾斜的方向。 作爲使用的光源,可以使用例如低壓水銀燈、高壓水 銀燈、重氫燈、金屬鹵化物燈、氬共振燈、氙燈、準分子 鐳射等。前述較佳波長區域的紫外線可以通過將前述光源 和例如濾光片、衍射光柵等一起使用的機構等得到。 放射線的照射量較佳爲 100〜50,000J/m2,更佳爲 300〜20,000J/m2 ° 這裏,在將液晶配向膜用於製造相位差薄膜時,可以 方便地在液晶配向膜的面內形成配向狀態不同的多個區 域。由此,製造的相位差薄膜具有偏光狀態不同的多個區 域,適合作爲例如3 D影像顯示用的相位差薄膜。 爲了形成這種具有配向狀態不同的多個區域的液晶配 向膜,例如可以列舉出以下方法。對塗膜照射放射線形成 液晶配向膜時,照射的放射線直線偏光或部分偏光的情況 下,可以通過使照射放射線的偏光方嚮往塗膜面投影的方 向在每個區域均不同的方法進行; 另外,在照射的放射線是非偏光的情況下,可以通過 改變每個區域的照射方向的方法進行。在上述任一種情況 -38- 201206978 下’作爲改變方向的程度,較佳鄰接的區域間的方向的角 度差是70~110°’更佳爲85〜95。,最佳爲90。。這種對塗膜 的每個區域改變偏光方向或照射方向的照射可以通過例如 將塗膜的一部分遮光’通過具有第一偏光方向或照射方向 的放射線進行第一照射後,此次將第一照射的曝光部遮光 後’只對第一照射遮光的區域,通過具有第二偏光方向或 照射方向的放射線進行第二照射的方法進行。遮光例如可 以通過具有所希望的開口圖案的掩模進行。 在將通過本發明的方法製造的相位差薄膜用於3D影 像顯示用的相位差薄膜時,可以方便地形成在液晶配向膜 面上分佈條紋狀的配向狀態不同的兩種區域的狀態。 如上可以形成液晶配向膜。該液晶配向膜適合用於製 造液晶顯不兀件或相位差薄膜。以下,對液晶配向元件的 製造方法以及相位差薄膜的製造方法依次進行說明。 <液晶顯示元件的製造方法> 使用本發明的液晶配向劑形成的液晶顯示元件例如可 以如下製造。 首先,像上述步驟(a)和(b)那樣,準備形成液晶配向膜 的一對基板,在這一對基板間夾住液晶,製造這種結構的 液晶盒。在製造液晶盒時,可以列舉出例如下述兩種方法。 第一種方法是目前已知的方法。首先,爲了使各液晶 配向膜對向設置,通過間隙(盒間隙),將兩塊基板對向配 置,使用密封劑將兩塊基板的周邊部位貼合,在由基板表 -39- 201206978 面和密封劑分割的盒間隙內注入塡充液晶後,密封注入 孔,可以製造液晶盒。 第二種方法是稱作ODF(滴下式注入)方式的方法。在 形成液晶配向膜的兩塊基板中的一個基板上的規定位置, 塗敷例如紫外光硬化性的密封材料,然後在液晶配向膜面 上滴加液晶後,貼合另一個基板並使液晶配向膜對向,然 後,在基板的整面照射紫外光,使密封劑硬化,可以製造 液晶盒。 在任一種方法的情況下,希望接著將液晶盒加熱到使 用的液晶各向同性的溫度後,緩慢冷卻到室溫,除去液晶 塡充時的流動配向。 然後’通過在液晶盒的外側表面貼合偏光板,可以得 到本發明的液晶顯示元件。這裏,通過適當調整形成液晶 配向膜的兩塊基板中的照射直線偏光放射線的偏光方向形 成的角度和各基板與偏光板的角度,可以得到所希望的液 晶顯示元件。 作爲前述密封劑,可以使用例如含有作爲隔片的氧化 鋁球和硬化劑的環氧樹脂等。 作爲前述液晶,可以使用例如向列型液晶、碟型液晶 等。較佳形成向列型液晶的具有正的介電各向異性的液 晶’可以使用例如聯苯類液晶、苯基環己烷類液晶、酯類 液晶' 三聯苯類液晶、聯苯基環己烷類液晶、喀啶類液晶、 二噁烷類液晶、雙環辛烷類液晶、立方烷類液晶等。另外, -40- 201206978 在前述液晶中’可以進一步添加使用例如氯化二氫膽固醇 (cholestyl chloride)、膽固醇壬酸酯、膽固醇碳酸酯等膽固 醇液晶; 以商品名“C-15”、“CB-15”(以上’ Merck公司製造)銷 售的手性試劑; 對癸氧基亞苄基-對胺基-2 -甲基丁基肉桂酸酯等強介 電性液晶等。 作爲液晶盒的外側使用的偏光板,可以列舉出邊將聚 乙烯醇延展配向,邊用醋酸纖維素保護膜夾住吸收碘稱作 “H膜”的偏光膜形成的偏光板或由Η膜本身形成的偏光板。 <相位差薄膜的製造方法> 本發明的相位差薄膜例如可以如下製造。 首先,像上述步驟(a)和(b)那樣,準備形成液晶配向膜 的一塊基板,使用該基板,經過包含下述步驟的工藝,可 以得到相位差薄膜: (Ο在液晶配向膜上塗布聚合性液晶,形成聚合性液晶 的塗膜的步驟,以及 (d)進行由加熱和照射放射線構成的群組中選出的一 種以上的處理’使上述聚合性液晶的塗膜硬化的步驟。 以下’對步驟(c)和(d)進行說明。 (c)在上述照射放射線後的聚合物的塗膜上塗布聚合性液 晶’形成聚合性液晶的塗膜的步驟 -41 - 201206978 在本步驟中,在形成的液晶配向膜面 塗布聚合性液晶。作爲這裏使用的聚合性 通過加熱或照射放射線聚合的液晶化合物 限定。例如,可以使用非專利文獻2(“UV 應用”,液晶,第3卷,第1期,1 999年, 這種向列型液晶化合物。 聚合性液晶可以只使用一種,也可以 用。另外,還可以將選自光聚合引發劑、 沒有聚合性的液晶(例如,扭曲向列配向性 晶、盤狀液晶等)、手性試劑、溶劑等的一 液晶一起使用。 作爲聚合性液晶的塗布方法,可以採 旋塗法、印刷法、噴墨法等適當的方法。 作爲聚合性液晶的塗膜的膜厚可以適 望的光學性質的膜厚。例如,在製造波長 的1 /2波長板時,選擇形成的相位差零 24〇〜3 00nm的膜厚,如果是1/4波長板, 12 0〜15 Onm的膜厚。得到目標相位差的最 的聚合性液晶的光學性質而異。例如,在 的聚合性液晶(RMS03-013C)時,作爲用於 的膜厚合適的是〇.6~1.5μιη的範圍。聚合 適當的膜厚是本領域技術人員可以通過比 容易地確定的。 的至少一部分上 液晶只要是可以 ,就沒有特別的 可硬化液晶及其 ρρ34〜42)記載的 混合兩種以上使 熱聚合引發劑、 液晶、膽固醇液 種以上和聚合性 用例如輥塗法、 當選擇得到所希 540nm的可見光 I膜的相位差爲 則選擇相位差爲 佳膜厚根據使用 使用Merck公司 製造1/4波長板 性液晶的塗膜的 較少的準備試驗 -42- 201206978 (d)進行選自由加熱和照射放射線構成的群組中選出的一 種以上處理,使上述聚合性液晶的塗膜硬化的步驟 通過加熱使聚合性液晶的硬化時的加熱條件根據使用 的聚合性液晶的聚合性而異。例如,在使用Merck公司製 造的聚合性液晶(RMS03-013C)時,較佳於40~8〇°C的範圍 的加熱溫度,20秒~1 0分鐘的加熱時間。 在通過照射放射線使聚合性液晶硬化時,作爲使用的 放射線,可以列舉出非偏光的紫外線等。作爲放射線的照 射量,較佳爲l,〇〇〇J/m2以上且不足100,000J/m2,更佳爲 1 0,000 〜5 0,000J/m2 ° 如上可以製造相位差薄膜。 [實施例] 以下,通過實施例,對本發明進行更具體地說明,但 是本發明並不受到這些實施例的限定。 以下的聚合物的合成例中的重均分子量(Mw)是通過以 下條件的凝膠滲透色譜法測定的聚苯乙烯換算的値。-27- 201206978 In the above formula (D-1), m and η are 0 when they are not different from each other. These diamines can be used individually or in combination of 2 or more types. The tetracarboxylic dianhydride used in the synthesis reaction of polylysine and the use ratio thereof are preferably 0.2 to 2 equivalents, more preferably 0.3, based on the acid anhydride group of the amino dianhydride contained in 1 equivalent of the diamine compound. The proportion of the amount. The synthesis reaction of poly-proline is preferably carried out in an organic solvent, preferably: 〜150 ° C, more preferably at a temperature of 〇 ° C to 100 ° C, preferably carried out in an hour, preferably 2 ~ 1 0 hours. Among them, the organic solvent is not particularly limited as long as it dissolves the synthesized polyamic acid, and for example, N-methyl-2-pyrrolidone, N,N-dimethylacetamide, hydrazine, hydrazine Aprotic polar solvents such as guanamine, hydrazine, hydrazine-dimethylimidazolidinone, dimethyl hydrazine, γ-butyltetramethylurea, hexamethylphosphonium triamine; m-cresol, xylenol, The amount of the phenol-soluble organic solvent such as phenol or halogenated phenol (a) is the total amount of the tetraacid dianhydride and the diamine compound to the reaction solution (a + b) is preferably 0.1 to 50% by weight, 5 to 3 An amount of 0% by weight. As above, the reaction solution solution formed by dissolving polylysine can be directly used for preparing a liquid crystal alignment agent, or can be used for preparing a liquid crystal alignment agent and a separated polyamine after the polyamine acid contained in the solution. After acid purification, it is used to prepare a liquid crystal alignment agent. When the polyglycine is dehydrated and closed to form a polyimine, the solution can be directly used for the dehydration ring closure reaction; or the reaction of the diamine can be separated, the tetraacid is 1.2 to 1.2 when £2 0 °C 0 · 5~24 Examples thereof include dimethyl lactones and the like.匮(b) is better. The reverse reaction may be carried out by using the poly-proline in some of the above-mentioned reverse liquids for dehydration ring closure reaction or by purifying the separated polyamine acid for use in a dehydration ring closure reaction. The separation of the polyamic acid can be carried out by injecting the above reaction solution into a large amount of a poor solvent to obtain a precipitate, and drying the precipitate under reduced pressure; or by vacuum-reducing the organic solvent in the reaction solution by an evaporator or the like. . In addition, 'the method of dissolving the polylysine into an organic solvent and then precipitating in a poor solvent; or by repeating one or more times to dissolve the polylysine into an organic solvent, the strip is washed. After the solution, the polyamine acid is purified by a method such as distillation under reduced pressure using an evaporator. {Polyimide] The above polyimine can be synthesized by dehydrating a hydrazine ring structure of a polyaminic acid obtained as described above. At this time, the yttrium acid structure can be completely dehydrated and closed, and the ruthenium can be completely imidized; or a part of the structure of the tyrosine acid can be dehydrated and closed to form a part of the guanidine structure and the quinone ring structure. Imine. The polyamidene used in the present invention preferably has a ruthenium iodide ratio of 40% or more, more preferably 50 to 95%. The dehydration ring closure of poly-proline can be carried out by (i) heating the poly-proline, or by (ii) dissolving the poly-proline in an organic solvent, adding a dehydrating agent and a dehydration ring-closing catalyst to the solution. It needs to be carried out by heating. The reaction temperature in the method of heating poly-proline in the above (i) is preferably 5 Torr to 2 Torr °C, more preferably 6 Torr to 17 °C. When the reaction temperature is less than 5 Torr, the dehydration ring closure reaction cannot be sufficiently carried out; if the reaction temperature exceeds 200 ° C, the molecular weight of the polyamidene obtained from -29 to 201206978 may be lowered. The reaction time in the method of heating the polyamic acid is preferably from 0.5 to 48 hours, more preferably from 2 to 20 hours. On the other hand, in the method of adding a dehydrating agent and a dehydration ring-closure catalyst to the polyaminic acid solution of the above (ii), as the dehydrating agent, an acid anhydride such as acetic anhydride, propionic anhydride or trifluoroacetic anhydride can be used. The amount of the dehydrating agent to be used is preferably from 1 to 20 mol per mol of the structural unit of 1 mol of the polyaminic acid. The dehydration ring-closure catalyst may, for example, be a tertiary amine such as pyridine, trimethylpyridine, lutidine or triethylamine. However, it is not limited to this. The amount of the dehydration ring-closing catalyst to be used is preferably 0.01 to 10 mol with respect to the dehydrating agent used for 1 m Torr. The organic solvent used in the dehydration ring-closure reaction may, for example, be an organic solvent exemplified as a solvent used for the synthesis of polyamic acid. The reaction temperature of the dehydration ring closure reaction is preferably from 0 to 18 (TC, more preferably from 10 to 150 ° C. The reaction time is preferably from 5 to 20 hours, more preferably from 1 to 8 hours. The above method (i) The polyimine obtained in the present invention can be directly used for preparing a liquid crystal alignment agent, or after the obtained polyimine is refined, and used for preparing a liquid crystal alignment agent. On the other hand, in the above method (ii), a reaction solution containing polyiminoimine. The reaction solution can be directly used for preparing a liquid crystal alignment agent, and can also be used to prepare a liquid crystal alignment agent after removing a dehydrating agent and a dehydration ring-closing catalyst from the reaction solution; After the amine, it is used to prepare a liquid crystal alignment agent; or after the separated polyimine is refined, it is used to prepare a liquid crystal alignment agent. In order to remove the dehydrating agent and the dehydration ring-closing catalyst from the reaction solution, for example, a method such as solvent replacement is suitably used. The separation and purification of the imine can be carried out by the same operation as described above for the separation and purification method of polylysine. -30- 201206978 {Use ratio of other polymers) The present invention When the liquid crystal alignment agent contains the above specific polymer and other polymers, the ratio of use as the other polymer is preferably the same as the total amount of the polymer (refer to the total amount of the specific polymer and other polymers, the same applies hereinafter). It is 99% by weight or less, more preferably 95% by weight or less, still more preferably 80% by weight or less, and particularly preferably 50% by weight or less. By such a use ratio, the effect of the present invention can be impaired, and the electrical properties of the formed liquid crystal alignment film can be further improved. Further, it is preferable to contribute to the reduction of the cost of the liquid crystal alignment agent. [Epoxy compound] The epoxy compound may be contained in the liquid crystal alignment agent of the present invention from the viewpoint of further improving the adhesion of the formed liquid crystal alignment film to the surface of the substrate. Examples of the epoxy compound include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and neopentyl Alcohol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerol diglycidyl ether, 2,2-dibromopentyl glycol diglycidyl ether, tetraglycidyl-2,4-hexyl Glycol, :^,:^,:^',:^-tetraglycidyl-m-xylylenediamine, I,3-di(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl, yl-4,4,diaminodiphenylmethane, anthracene, hydrazine diglycidyl-benzylamine, hydrazine, hydrazine-diglycidyl - Aminomethylcyclohexane or the like is preferred. In the case where the liquid crystal alignment agent of the present invention contains an epoxy compound, the content thereof is preferably 100 parts by weight or less, more preferably 30 parts by weight or less, based on the total amount of the polymer. [Functional decane compound] The above functional decane compound can be used for the purpose of improving the adhesion between the obtained liquid crystal alignment film and the substrate. Examples of the functional sand compound include 3-aminopropyltrimethoxydecane, 3-aminopropyltriethoxydecane, 2-aminopropyltrimethoxydecane, and 2-aminopropylamine. Triethoxy decane, N-(2-aminoethyl)-3-aminopropyltrimethoxydecane, N-(2-aminoethyl)-3-aminopropylmethyl dimethyl Oxy decane, 3- guanidinopropyl trimethoxy decane, 3- guanidinopropyl triethoxy decane, Ν ethoxycarbonyl-3-aminopropyl trimethoxy decane, Ν-ethoxy Carbonylaminopropyl triethoxy sand pot, Ν-triethoxy oxalate propyl triethylene triamine, Ν-trimethoxymethyl propyl propyl triethylene triamine, 1 〇 _ tri Oxymethane alkyl-1,4,7-triazadecane, 10-triethoxymethylidene-anthracene, 4,7-triazadecane, 9-trimethoxycarbamido-3, 6-diazaindolyl acetate, 9-diethoxyformamidin-3,6-diazaindolyl acetate, Ν-benzyl-3-aminopropyltrimethoxydecane, Ν_Benzyl-3-aminopropyltriethoxy oxime, Ν-phenyl-3·aminopropyltrimethoxysilane, Ν-phenyl-3·aminopropyl An ethoxylated sand, Ν-(oxyethyl)-3-aminopropyltrimethoxy sulphate, fluorene-bis(oxyvinyl)-3-aminopropyltriethoxy decane, 3_ glycidoxypropyltrimethoxydecane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxydecane, etc., and further, as disclosed in Patent Document 8 (Japanese Patent Laid-Open No. 32- A reaction product of tetracarboxylic dianhydride and a decane compound having an amine group described in 201206978 63-291922. When the liquid crystal alignment agent of the present invention contains a functional decane compound, the content thereof is preferably 1 part by weight or less, more preferably 5 parts by weight or less, based on 100 parts by weight of the total of the polymer. <Liquid crystal alignment agent> As described above, the liquid crystal alignment agent of the present invention contains a specific polymer as an essential component, and may contain other components as needed, and it is preferred to dissolve each component in an organic solvent to prepare a solution. combination. As the organic solvent which can be used for preparing the liquid crystal alignment agent of the present invention, it is preferred to dissolve the specific polymer and other components which are optionally used without reacting with them. The organic solvent may, for example, be N-methyl-2-indolepyridone, γ-butyrolactone, γ-butylide, N,N-dimethylformamide, N,N- Dimethylacetamide '4·hydroxy-4_methyl-2-pentanone, ethylene glycol monomethyl acid, butyl lactate, butyl acetate, methyl methoxypropionate, ethoxypropionic acid Ethyl ester, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol n-propyl ether, ethylene glycol isopropyl ether, ethylene glycol n-butyl ether (butyl cellosolve), ethylene glycol dimethyl Acid, ethylene glycol ethyl ether acetate, diethylene glycol dimethyl ether, diethyl ether-ethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, one ethylene Alcohol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diisobutyl hydrazine, isoamyl propionate 'isoamyl butyrate, diisoamyl ether, ethylene carbonate As the vinegar, propylene carbonate or the like, it is preferred to use one or more selected from them. -33-201206978 A preferred solvent for preparing the liquid crystal alignment agent of the present invention is a solvent obtained by combining one or two or more kinds of the above organic solvents, and is contained in a liquid crystal alignment agent at a preferred solid concentration concentration described below. The components do not precipitate 'and the surface tension of the liquid crystal alignment agent is in the range of 25 to 40 mN/m. When the substrate to which the liquid crystal alignment agent of the present invention is applied has high solubility in the above organic solvent (for example, when a flexible substrate such as triethyl cellulose (TAC) is used), the substrate may not be dissolved or the substrate may be difficult to dissolve. The other organic solvent is used together with or in place of the above organic solvent. Examples of such other organic solvents include cyclohexane, cyclopentanone, cyclohexanone, ethanol, isopropanol, n-propanol, isobutyl, n-butanol, propylene glycol methyl ether, ethyl acetate, and acetic acid. Propyl ester, isopropyl acetate, butyl acetate, sec-butyl acetate, tert-butyl acetate, isobutyl acetate, propylene glycol monomethyl ether acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl cellulose Agent, propylene glycol monomethyl ether, ethyl cellosolve, 2,3-pentanedione, i,2-dimethoxyethane, 1,1-diethoxyethane, 1,2-diethyl Ethoxyethane or the like; one or more selected from them may be used. The ratio of use of the above-mentioned organic solvent to other organic solvents can be appropriately determined after investigating the solubility of each component contained in the liquid crystal alignment agent of the present invention and the solubility of a suitable substrate. The solid content concentration of the liquid crystal alignment agent of the present invention, that is, the weight of all the components other than the solvent in the liquid crystal alignment agent, is a ratio of the total weight of the liquid crystal alignment agent, and is preferably 1 to 10 by weight in consideration of viscosity, volatility, and the like. The range of %. The liquid crystal alignment agent of the present invention is applied to the surface of the substrate to form a coating film formed of a liquid crystal alignment film. However, when the solid content concentration is less than 1% by weight to -34 to 201206978, the film thickness of the coating film is too small, and it may be difficult to obtain a good liquid crystal. Orientation film. On the other hand, when the solid content concentration exceeds 10% by weight, the film thickness of the coating film is too large, and a satisfactory liquid crystal alignment film may not be obtained, or the viscosity of the liquid crystal alignment agent may increase, and the coating property may be insufficient. The range of the solid content concentration is particularly preferably in the range of 1.5 to 6% by weight, when the spin coating method is used. When the printing method is used, the concentration of the solid content is particularly preferably in the range of 3 to 9 % by weight, whereby the solution viscosity is in the range of 1 2 to 50 mPa·s. When the ink jet method is used, the concentration of the solid content is particularly preferably in the range of 1 to 5 % by weight, whereby the solution viscosity is in the range of 3 to 15 mPa·s. The temperature at which the liquid crystal alignment agent of the present invention is prepared is preferably 〇 ° C to 200 ° C, more preferably 0 ° C to 40 ° C. <Method of Forming Liquid Crystal Alignment Film> The liquid crystal alignment agent of the present invention is suitably used for forming a liquid crystal alignment film by a photo-alignment method. When the liquid crystal alignment agent of the present invention is used for a TN type, an STN type or a horizontal electric field type liquid crystal display element, particularly when used for a horizontal electric field type liquid crystal display element, or when used for manufacturing a retardation film, the liquid crystal alignment agent can be maximized. The effect of the invention is therefore preferred. When the liquid crystal alignment film is formed using the liquid crystal alignment agent of the present invention, it can be carried out by a method of the following steps: (a) a step of applying a liquid crystal alignment agent of the present invention on a substrate to form a coating film of a polymer; and (b) The coating film of the above polymer is irradiated with radiation to form a liquid crystal alignment film. -35- 201206978 Hereinafter, the above steps (a) and (b) will be described. (a) applying a liquid crystal alignment agent of the present invention to a substrate, wherein, in the case where the liquid crystal alignment agent of the present invention is used for a liquid crystal display element, a pair of through-substrate provided with a pattern is formed, each of which is formed The transparent conductive film forms a clear liquid crystal alignment agent to form a coating film. In the liquid transverse electric field type liquid crystal display device of the present invention, a pair of opposite substrates of the substrate of the transparent conductive film or the electrode of the metal film pattern on one surface is formed, and the surface of the comb-shaped electrode is coated on each side. In the above two cases, the liquid crystal alignment agent of the invention may be a glass such as glass or soda glass, or a transparent substrate such as polybutylene terephthalate, polyether oxime or polycarbonate. Wait. The ITO film formed of the transparent conductive film Έ In203-Sn02, a film formed of Sn02, or the like. As the above metal film, for example, a film can be used. In order to form a pattern of a transparent conductive film and a metal film, a transparent conductive film is formed, and a photolithography method or a method is used. When a transparent conductive film is formed, a method using a mask or the like is obtained. When the liquid crystal alignment film of the liquid crystal alignment agent is coated on the transparent substrate, the two sides of the coating film TN type or the STN type bright conductive film are coated on the transparent substrate, and the present crystal alignment agent is applied to have a comb-like shape. A coating film is formed on the surface of the electrode and the opposite substrate. For example, a crucible formed of a metal such as floatate formic acid, polystyrene, or the like is used to form a retardation film which is formed of a metal such as NESA (registered trademark) chrome, for example, by a sputtering method or the like. The liquid crystal of the present invention is formulated to form a coating film. Examples of the transparent substrate used in this case include glass substrates such as float glass and soda glass; triethylenesulfonyl cellulose (TAC), polyethylene terephthalate, and polybutylene terephthalate. Diester, polyether oxime, polyamidamine, polyimine, polymethyl methacrylate, polycarbonate, and the like. Among them, 'TAC' is a material used as a protective layer of a polarizing film which plays an important role in a liquid crystal display element. In any of the above cases, when a liquid crystal alignment agent is applied onto a substrate, in order to improve the adhesion between the substrate or the transparent conductive film and the electrode and the coating film, a functional decane compound may be applied to the substrate and the electrode in advance. Titanate compounds and the like. The coating of the liquid crystal alignment agent onto the substrate is preferably carried out by an appropriate coating method such as an offset printing method, a spin coating method, a roll coating method, or an inkjet printing method, and then the coated surface is preheated (prebaked) and then fired (after Baking) to form a coating film. The prebaking conditions are, for example, 0.1 to 5 minutes at 40 to 120 ° C, and the post-baking conditions are preferably 120 to 300 ° C, more preferably 150 to 250 ° C, preferably 5 to 200 minutes. Carry out 10 to 100 minutes. The film thickness of the coating film after post-baking is preferably 0.001 to Ιμηι, more preferably 〇.〇〇5 to 0.5 μιη. (b) Step of irradiating radiation to the coating film of the polymer The coating film formed in the above step (a) is irradiated with linearly polarized light or partially polarized radiation or unpolarized radiation to impart liquid crystal alignment energy. Here, as the radiation, ultraviolet rays and visible rays containing light having a wavelength of 150 to 800 nm can be used, and ultraviolet rays having a wavelength of more than 300 nm and having a wavelength of 4 〇 Onm or less are preferably contained. In this case, in order to prevent the influence of the molecular chain or the like of the polymer from being cut off by the short-wavelength -37-201206978 ultraviolet irradiation with high energy, the coating film is deteriorated. It is preferable to filter the UV filter having an ultraviolet ray having a wavelength of 300 nm or less. Irradiation is performed. When the irradiated radiation is linearly polarized or partially polarized, it may be irradiated from the direction of the vertical substrate surface or may be irradiated from the oblique direction, or may be irradiated in combination. When irradiating non-polarized radiation, the direction of illumination must be the direction of tilt. As the light source to be used, for example, a low pressure mercury lamp, a high pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser or the like can be used. The ultraviolet light in the preferred wavelength region can be obtained by a mechanism for using the light source together with, for example, a filter, a diffraction grating, or the like. The irradiation amount of the radiation is preferably from 100 to 50,000 J/m 2 , more preferably from 300 to 20,000 J/m 2 °. Here, when the liquid crystal alignment film is used for producing a retardation film, it can be conveniently formed in the plane of the liquid crystal alignment film. Multiple areas with different alignment states. Thus, the produced retardation film has a plurality of regions having different polarization states, and is suitable as, for example, a retardation film for 3D image display. In order to form such a liquid crystal alignment film having a plurality of regions having different alignment states, for example, the following methods can be mentioned. When the coating film is irradiated with radiation to form a liquid crystal alignment film, when the radiation to be irradiated is linearly polarized or partially polarized, the direction in which the direction in which the polarization of the irradiation radiation is projected onto the coating film surface is different in each region; In the case where the irradiated radiation is non-polarized, it can be carried out by changing the irradiation direction of each region. In any of the above cases -38 - 201206978, the degree of change in the direction of the adjacent regions is preferably 70 to 110 °', more preferably 85 to 95. The best is 90. . Such irradiation of changing the polarization direction or the irradiation direction for each region of the coating film may be performed by, for example, blocking a part of the coating film by the first irradiation with radiation having the first polarization direction or the irradiation direction, and this time the first irradiation After the exposure portion is shielded from light, the region where only the first illumination is shielded is performed by the second irradiation by the radiation having the second polarization direction or the irradiation direction. The shading can be performed, for example, by a mask having a desired opening pattern. When the retardation film produced by the method of the present invention is used for a retardation film for 3D image display, it is possible to easily form a state in which two regions having different striped alignment states are distributed on the liquid crystal alignment film surface. The liquid crystal alignment film can be formed as above. The liquid crystal alignment film is suitable for use in the production of a liquid crystal display or a retardation film. Hereinafter, a method of producing a liquid crystal alignment element and a method of producing a retardation film will be sequentially described. <Manufacturing Method of Liquid Crystal Display Element> A liquid crystal display element formed using the liquid crystal alignment agent of the present invention can be produced, for example, as follows. First, as in the above steps (a) and (b), a pair of substrates on which a liquid crystal alignment film is formed are prepared, and liquid crystal is sandwiched between the pair of substrates to fabricate a liquid crystal cell having such a structure. When manufacturing a liquid crystal cell, the following two methods are mentioned, for example. The first method is a currently known method. First, in order to arrange the liquid crystal alignment films in the opposite direction, the two substrates are arranged to face each other through a gap (box gap), and the peripheral portions of the two substrates are bonded together using a sealant, and the surface of the substrate is -39-201206978. The liquid crystal cell can be manufactured by injecting a liquid crystal into the cell gap of the sealant and sealing the injection hole. The second method is a method called ODF (Drip Injection). A predetermined position on one of the two substrates forming the liquid crystal alignment film is coated with, for example, a UV curable sealing material, and then liquid crystal is dropped on the liquid crystal alignment film surface, and the other substrate is bonded and the liquid crystal is aligned. The film is opposed, and then the entire surface of the substrate is irradiated with ultraviolet light to harden the sealant, and a liquid crystal cell can be manufactured. In the case of any of the methods, it is desirable to subsequently heat the liquid crystal cell to a temperature at which the liquid crystal used is isotropic, and then slowly cool to room temperature to remove the flow alignment at the time of liquid crystal charging. Then, by attaching a polarizing plate to the outer surface of the liquid crystal cell, the liquid crystal display element of the present invention can be obtained. Here, a desired liquid crystal display element can be obtained by appropriately adjusting the angle formed by the polarization direction of the irradiation linearly polarized radiation in the two substrates forming the liquid crystal alignment film and the angle between each substrate and the polarizing plate. As the sealant, for example, an epoxy resin containing an alumina sphere as a separator and a curing agent can be used. As the liquid crystal, for example, a nematic liquid crystal, a dish liquid crystal or the like can be used. For example, a liquid crystal having a positive dielectric anisotropy of a nematic liquid crystal can be used. For example, a biphenyl liquid crystal, a phenylcyclohexane liquid crystal, an ester liquid crystal 'triphenyl liquid crystal, or biphenyl cyclohexane can be used. Liquid crystal, pyridine liquid crystal, dioxane liquid crystal, bicyclooctane liquid crystal, cubic liquid crystal, and the like. Further, -40-201206978 "Cholesteric liquid crystal such as cholestyl chloride, cholesterol phthalate, cholesterol carbonate or the like may be further added to the above liquid crystal; under the trade names "C-15", "CB- 15" (the above-mentioned chiral reagent sold by Merck); a ferroelectric liquid crystal such as methoxybenzylidene-p-amino-2-methylbutylcinnamate or the like. The polarizing plate used for the outer side of the liquid crystal cell may be a polarizing plate formed by stretching a polyvinyl alcohol while being aligned, and sandwiching a polarizing film called absorbing iodine called "H film" with a cellulose acetate protective film or by the ruthenium film itself. A polarizing plate is formed. <Method for Producing Phase Difference Film> The phase difference film of the present invention can be produced, for example, as follows. First, as in the above steps (a) and (b), a substrate on which a liquid crystal alignment film is formed is prepared, and a retardation film can be obtained by a process including the following steps: (Ο Coating polymerization on a liquid crystal alignment film) The step of forming a coating film of a polymerizable liquid crystal, and (d) performing one or more processes selected from the group consisting of heating and irradiating radiation to perform a step of curing the coating film of the polymerizable liquid crystal. Steps (c) and (d) are explained. (c) Step of applying a polymerizable liquid crystal to form a coating film of a polymerizable liquid crystal on the coating film of the polymer after the irradiation of the radiation - 41 - 201206978 In this step, The liquid crystal alignment film is coated with a polymerizable liquid crystal. The polymerizable property used herein is limited by a liquid crystal compound which is heated or irradiated with radiation. For example, Non-Patent Document 2 ("UV Application", Liquid Crystal, Vol. 3, No. 1) can be used. In the case of the liquid crystal compound of the nematic type, the polymerizable liquid crystal may be used alone or in combination, and may be selected from photopolymerization initiators. A liquid crystal having no polymerizable property (for example, a twisted nematic crystal, a discotic liquid crystal, or the like), a chiral reagent, a solvent, or the like is used together. As a method of applying the polymerizable liquid crystal, a spin coating method, a printing method, or the like may be employed. A suitable method such as an inkjet method. The thickness of the coating film of the polymerizable liquid crystal can be a film thickness of an optical property which is desirable. For example, when a wavelength of 1 / 2 wavelength plate is produced, a phase difference of 24 〇 is formed. The film thickness of 300 nm is a film thickness of 12 0 to 15 Onm in the case of a quarter wave plate, and the optical properties of the most polymerizable liquid crystal having a target phase difference are obtained. For example, in a polymerizable liquid crystal (RMS03-013C) When the film thickness used is suitably in the range of 〇.6 to 1.5 μm, the appropriate film thickness for polymerization can be easily determined by those skilled in the art by at least a part of the liquid crystal as long as it is possible. The special hardenable liquid crystal and the mixture of two or more types described in ρρ34 to 42) are used to obtain a visible light of 540 nm by using a thermal polymerization initiator, a liquid crystal, a cholesterol liquid or more, and a polymerization property by, for example, a roll coating method. The phase difference of the film is such that the phase difference is selected to be a good film thickness. According to the use of a coating film using a half-wave plate liquid crystal manufactured by Merck Co., Ltd., a preparation test is selected - 42 - 201206978 (d), which is selected from the group consisting of heating and irradiation of radiation. In the step of curing the coating film of the polymerizable liquid crystal by heating, the heating condition at the time of curing the polymerizable liquid crystal varies depending on the polymerizability of the polymerizable liquid crystal to be used. For example, Merck is used. In the case of the produced polymerizable liquid crystal (RMS03-013C), it is preferably a heating temperature in the range of 40 to 8 ° C and a heating time of 20 seconds to 10 minutes. When the polymerizable liquid crystal is cured by irradiation with radiation, it is used. Examples of the radiation include non-polarized ultraviolet rays and the like. The amount of radiation to be irradiated is preferably 1, 〇〇〇J/m2 or more and less than 100,000 J/m2, more preferably 10,000 to 5,000 J/m2 ° as described above. [Examples] Hereinafter, the present invention will be more specifically described by the examples, but the present invention is not limited by these examples. The weight average molecular weight (Mw) in the synthesis example of the following polymer is a polystyrene-converted oxime measured by gel permeation chromatography under the following conditions.

柱:Tosoh(股)製造,TSKgelGRCXLII 溶劑:四氫呋喃 溫度:40°C 壓力:68kgf/cm2 以下的合成例中所述的“不活潑氣氛”是氮氣氛。 另外,在以下的合成例中,通過下述的合成路線,根 據需要重複合成各化合物’以確保之後的聚合物的合成例 中所必須的量。 -43- 201206978 <二元羧酸的合成> 以下的合成例 DC-1〜DC-4 中,合成上述式 (DC-1)〜(DC-4)分別表示的化合物(以下,分別稱作“化合物 (D C - 1) ”、“化合物(D C - 2 ) ”、“化合物(d C - 3 ) ”和“化合物 (DC-4)”),作爲具有結構(1)的二元羧酸。 合成例D C -1 (1) 4-丙烯醯氧基苯甲酸的合成 將 13.8g(l〇〇mmol)的 4 -羥基苯甲酸、8g(200mmol)氫 氧化鈉和 4〇〇mL純水加入具有滴液漏斗的 1L三口燒瓶 中,冰浴冷卻。在其中,從滴液漏斗,經1 .5小時滴加含 有10.86g(120mmol)丙烯醯氯的二氯甲烷溶液l20mL。滴加 結束後,冰浴下攪拌2小時後,將反應混合物的溫度恢復 到室溫後,攪拌3小時,進行反應。接著,將反應混合物 再次進行冰浴後,滴加1當量的鹽酸以使反應混合物的液 體性質爲酸性。析出的固體使用吸液漏斗回收,通過乙醇 重結晶,得到16g的4 -丙烯醯氧基苯甲酸。 (2) 化合物(DC-1)的合成 本合成在不活潑氣氛下進行。 將5g上述得到的4 -丙烯醯氧基苯甲酸、5.3g的4 -溴 代苯甲酸、60mg的醋酸鈀、〇.32g三(鄰甲苯基)膦' llg三 乙胺和4〇mL二甲基乙醯胺在200mL燒瓶中混合,在14〇 °C下攪拌6小時進行反應。將反應混合物的溫度回復到室 溫後,加入200mL的1當量的鹽酸。過濾析出的固體,從 乙醇重結晶,得到6 g化合物(D C -1)。 -44- 201206978 合成例D C - 2 o) — (4 _丙嫌酿氧基苯基)甲院的合成 在具有滴液漏斗的200mL的三口燒瓶中加入10g的4-羥基二苯基甲烷'llg三乙胺和6〇mL四氫呋喃,形成溶液。 將該溶液冰冷卻後,從滴液漏斗在其中滴加含有l〇g丙烯 醯氯的四氫呋喃溶液5 〇mL。滴加結束後,在冰浴下再攪拌 3小時進行反應後,將反應混合物用由乙酸乙酯和水形成 的混合溶劑分液洗滌。回收有機層,用硫酸鎂乾燥後,餾 出有機溶劑,得到15g的二(4-丙烯醯氧基苯基)甲烷 (2)化合物(DC-2)的合成 本合成在不活潑氣氛下進行。 將 8g上述得到的二(4-丙烯醯氧基苯基)甲烷、l〇.5g 的4-溴代苯甲酸、uomg的醋酸鈀、〇.63g三(鄰-甲苯基) 膦、21g三乙胺和90mL二甲基乙醯胺在300mL燒瓶中混 合’在1 4 0 °C下攪拌6小時進行反應。將反應混合物的溫 度恢復到室溫後,加入5 00mL的1當量的鹽酸。過濾析出 的固體’從乙醇重結晶,得到4g化合物(DC-2)。 合成例D C - 3 (1)1,4-二丙烯醯氧基苯的合成 在具有滴液漏斗的300mL的三口燒瓶中加入10g的氫 醌、20g三乙胺和i〇0mL四氫呋喃,形成溶液。將該溶液 冰冷卻後,在其中滴加含有1 9g丙烯醯氯的四氫呋喃溶液 9OmL。在冰浴下再攪拌3小時進行反應後,將得到的反應 -45- 201206978 混合物用由乙酸乙酯和水形成的混合溶劑分液洗漉。回收 有機層,用硫酸鎂乾燥後’餾出有機溶劑,得到〗6g的1,4-二丙烯醯氧基苯。 (2 )化合物(D C - 3 )的合成 本合成在不活潑氣氛下進行。 將8g上述得到的1,4-二丙烯醯氧基苯、15g的4-溴代 苯甲酸、165mg的醋酸鈀、0.9g三(鄰甲苯基)膦、30g三乙 胺和130mL二甲基乙醯胺在5 00mL燒瓶中混合,在140°C 下攪拌6小時進行反應。反應結束後,將反應混合物的溫 度恢復到室溫後,加入7〇〇mL的1當量的鹽酸。過濾析出 的固體,從乙醇重結晶,得到8g化合物(DC-3)。 合成例DC-4 除了在上述合成例DC-2中,使用11.4g的2-氟代-4-溴代苯甲酸代替4-溴代苯甲酸以外,和合成例DC-2同樣 地,得到3.5g化合物(DC-4)。 <特定聚合物的聚合例> 合成例S P - 1 在50mL燒瓶中,力□入3g(0.01mol)作爲多官能羧酸的 上述合成例DC-1得到化合物(DC-1)、0.83g(0.01mol)作‘爲 多官能環氧化合物的上述式(DE- 1 )所示的化合物和1 〇g作 爲溶劑的N-甲基-2-吡咯啶酮,將其在140°C下攪拌6小 時,進行反應,從而得到含有作爲特定聚合物的聚合物 (SP-1)的溶液。該溶液中含有的聚合物(SP-1)的重均分子量 (Mw)是 4,200 〇 -46- 201206978 合成例SP-2〜SP-20和合成例rp_i 除了在上述合成例SP· 1中,作爲多官能羧酸和多官能 環氧化合物’除了以表1中記載的量使用以外,與表丨中 記載的種類和合成例SP- 1同樣地,得到分別含有作爲特定 聚合物的聚合物(SP-2)〜(SP-20)和作爲其他聚合物的聚合 物(rp_l )的溶液。 另外,在合成例SP-9和SP-19中,作爲多官能環氧化 合物混合使用兩種化合物,在合成例SP-2〇中,作爲多官 能竣酸混合使用兩種化合物。合成例rp_l是比較合成例。 各溶液中含有的聚合物的分子量合倂.到表1中表示。 表1中的多官能羧酸和多官能環氧化合物的簡稱分別 是以下含義。 [$官能羧酸] DC-1 :上述合成例DC-1得到的化合物(DC-1) D C - 2 :上述合成例D C - 2得到的化合物(D C - 2 ) DC-3 :上述合成例DC-3得到的化合物(DC-3) DC-4 :上述合成例DC-4得到的化合物(DC-4) tc-Ι :均苯四酸二酐 α :下述式(α )所示的化合物Column: Tosoh (manufactured by Tosoh), TSKgel GRCXLII Solvent: tetrahydrofuran Temperature: 40 ° C Pressure: 68 kgf / cm 2 or less The "inactive atmosphere" described in the synthesis example is a nitrogen atmosphere. Further, in the following synthesis examples, each compound ' is repeatedly synthesized as needed by the following synthesis route to secure the amount necessary for the subsequent synthesis example of the polymer. -43-201206978 <Synthesis of Dicarboxylic Acid> In the following Synthesis Examples DC-1 to DC-4, compounds represented by the above formulas (DC-1) to (DC-4) are synthesized (hereinafter, respectively As "compound (DC - 1)", "compound (DC - 2 )", "compound (d C - 3 )" and "compound (DC-4)"), as a dicarboxylic acid having the structure (1) . Synthesis Example DC-1 (1) Synthesis of 4-propenyloxybenzoic acid 13.8 g (10 mmol) of 4-hydroxybenzoic acid, 8 g (200 mmol) of sodium hydroxide and 4 mL of pure water were added. The 1 L three-necked flask of the dropping funnel was cooled in an ice bath. Thereto, 20 mL of a dichloromethane solution containing 10.86 g (120 mmol) of acrylonitrile chloride was added dropwise from the dropping funnel over 1.5 hours. After completion of the dropwise addition, the mixture was stirred for 2 hours in an ice bath, and after the temperature of the reaction mixture was returned to room temperature, the mixture was stirred for 3 hours to carry out a reaction. Next, after the reaction mixture was again subjected to an ice bath, 1 equivalent of hydrochloric acid was added dropwise to make the liquid property of the reaction mixture acidic. The precipitated solid was collected using a suction funnel and recrystallized from ethanol to obtain 16 g of 4-propenyloxybenzoic acid. (2) Synthesis of Compound (DC-1) This synthesis was carried out in an inert atmosphere. 5 g of 4-propenyloxybenzoic acid obtained above, 5.3 g of 4-bromobenzoic acid, 60 mg of palladium acetate, ruthenium.32 g of tris(o-tolyl)phosphine llg of triethylamine and 4 〇mL of dimethyl The hydrazine was mixed in a 200 mL flask and stirred at 14 ° C for 6 hours to carry out a reaction. After the temperature of the reaction mixture was returned to room temperature, 200 mL of 1 equivalent of hydrochloric acid was added. The precipitated solid was filtered and recrystallized from ethanol to give 6 g of compound (D C -1). -44- 201206978 Synthesis Example DC - 2 o) - Synthesis of (4 _ propylene oxyphenyl) A hospital in a 200 mL three-necked flask with a dropping funnel, 10 g of 4-hydroxydiphenylmethane 'llg Triethylamine and 6 〇 mL of tetrahydrofuran form a solution. After the solution was ice-cooled, 5 mL of a tetrahydrofuran solution containing 10 g of propylene chloride was added dropwise from the dropping funnel. After completion of the dropwise addition, the reaction mixture was further stirred for 3 hours in an ice bath, and the reaction mixture was washed with a mixed solvent of ethyl acetate and water. The organic layer was recovered, dried over magnesium sulfate, and then evaporated to give an organic solvent to give 15 g of bis(4-propenyloxyphenyl)methane (2) Compound (DC-2). The synthesis was carried out in an inert atmosphere. 8 g of the above-obtained bis(4-propenyloxyphenyl)methane, l〇.5 g of 4-bromobenzoic acid, uomg of palladium acetate, 〇.63 g of tris(o-tolyl)phosphine, 21 g of triethyl The amine and 90 mL of dimethylacetamide were mixed in a 300 mL flask and stirred at 140 ° C for 6 hours to carry out a reaction. After the temperature of the reaction mixture was returned to room temperature, 500 mL of 1 equivalent of hydrochloric acid was added. The precipitated solid was filtered and recrystallized from ethanol to give 4 g of compound (DC-2). Synthesis Example D C - 3 (1) Synthesis of 1,4-dipropenyloxybenzene Into a 300 mL three-necked flask equipped with a dropping funnel, 10 g of hydroquinone, 20 g of triethylamine and 0 mL of tetrahydrofuran were placed to form a solution. After the solution was ice-cooled, 9OmL of a tetrahydrofuran solution containing 19 g of acrylonitrile chloride was added dropwise thereto. After further stirring for 3 hours in an ice bath, the obtained reaction -45 - 201206978 mixture was washed with a mixed solvent of ethyl acetate and water. The organic layer was recovered, dried over magnesium sulfate, and the organic solvent was distilled off to give 6 g of 1,4-dipropenyloxybenzene. (2) Synthesis of Compound (D C - 3 ) The synthesis was carried out in an inert atmosphere. 8 g of the 1,4-dipropenyloxybenzene obtained above, 15 g of 4-bromobenzoic acid, 165 mg of palladium acetate, 0.9 g of tris(o-tolyl)phosphine, 30 g of triethylamine and 130 mL of dimethyl The guanamine was mixed in a 500 mL flask and stirred at 140 ° C for 6 hours to carry out a reaction. After completion of the reaction, after the temperature of the reaction mixture was returned to room temperature, 7 mL of 1 equivalent of hydrochloric acid was added. The precipitated solid was filtered and recrystallized from ethanol to give 8 g of compound (DC-3). Synthesis Example DC-4 In the same manner as in Synthesis Example DC-2 except that 11.4 g of 2-fluoro-4-bromobenzoic acid was used instead of 4-bromobenzoic acid in the above-mentioned Synthesis Example DC-2. g compound (DC-4). <Polymerization Example of Specific Polymer> Synthesis Example SP-1 In a 50 mL flask, 3 g (0.01 mol) of the above-mentioned Synthesis Example DC-1 as a polyfunctional carboxylic acid was introduced to obtain a compound (DC-1), 0.83 g. (0.01 mol) as a compound represented by the above formula (DE-1) which is a polyfunctional epoxy compound and 1 g of N-methyl-2-pyrrolidone as a solvent, which was stirred at 140 ° C The reaction was carried out for 6 hours to obtain a solution containing the polymer (SP-1) as a specific polymer. The weight average molecular weight (Mw) of the polymer (SP-1) contained in the solution is 4,200 〇-46 - 201206978 Synthesis Examples SP-2 to SP-20 and Synthesis Example rp_i except in the above Synthesis Example SP·1, The polyfunctional carboxylic acid and the polyfunctional epoxy compound were used in the same manner as in the above-described examples and in the same manner as in the synthesis example SP-1, except that the polyfunctional carboxylic acid and the polyfunctional epoxy compound were used. -2) A solution of ~(SP-20) and a polymer (rp-1) as another polymer. Further, in Synthesis Examples SP-9 and SP-19, two compounds were used as a mixture of polyfunctional epoxides, and in Synthesis Example SP-2, two compounds were used as a mixture of polyfunctional phthalic acids. The synthesis example rp_l is a comparative synthesis example. The molecular weight of the polymer contained in each solution is shown in Table 1. The abbreviations of the polyfunctional carboxylic acid and the polyfunctional epoxy compound in Table 1 are respectively the following meanings. [$functional carboxylic acid] DC-1 : Compound (DC-1) obtained by the above Synthesis Example DC-1 DC-2: Compound (DC-2) obtained by the above Synthesis Example DC-2: DC-3: Synthesis Example DC -3 obtained compound (DC-3) DC-4: Compound (DC-4) obtained by the above Synthesis Example DC-4 tc-Ι: pyromellitic dianhydride α: a compound represented by the following formula (α)

-47- 201206978 [多官能環氧化合物] DE-1 :上述式(DE-1)所示的化合物 DE-2:上述式(DE-2)所示的化合物 DE-3:上述式(DE-3)所示的化合物 DE-4:上述式(DE-4)所示的化合物 DE-5:上述式(DE-5)所示的化合物 DE-6:上述式(DE-6)所示的化合物 DE-7:上述式(DE-7)所示的化合物 DE-8:上述式(DE-8)所示的化合物 te-Ι : Ν,Ν,Ν,’Ν、四縮水甘油基-間二甲苯基二胺 表1 合成例 多官能羧酸 多官能環氧化合物 聚合物 種類 量(mmol) 種類 量(mmol) 名稱 Mw SP-1 DC-1 10 DE-1 10 SP-1 4,200 SP-2 DC-1 10 DE-2 10 SP-2 11,000 SP-3 DC-1 10 DE-3 10 SP-3 12,000 SP-4 DC-1 10 DE-4 10 SP-4 12,500 SP-5 DC-1 10 DE-5 10 SP-5 7,700 SP-6 DC-1 10 DE-6 10 SP-6 9,600 SP-7 DC-1 10 DE-7 10 SP-7 13,000 SP-8 DC-1 10 DE-8 10 SP-8 12,800 SP-9 DC-1 DE-3 5 SP-9 7,800 1U DE-6 5 SP-10 DC-2 10 DE-3 10 SP-10 3,800 SP-11 DC-2 10 DE-5 10 SP-11 3,300 SP-12 DC-2 10 DE-6 10 SP-12 4,100 SP-13 DC-3 10 DE-3 10 SP-13 6,600 SP-14 DC-3 10 DE-5 10 SP-14 5,100 SP-15 DC-3 10 DE-6 10 SP-15 4,500 SP-16 DC-4 10 DE-3 10 SP-16 4,400 SP-17 DC-4 10 DE-5 10 SP-17 3,700 SP-18 DC-4 10 DE-6 10 SP-18 4,000 SP-19 DC-4 DE-6 9.5 SP-19 7,800 ιυ te-1 0.25 SP-20 DC-4 9.5 DE-6 SP-20 7,100 tc-1 0.25 10 rp-1 α 10 DE-3 10 rp-1 8,700 -48- 201206978 <其他聚合物的合成> [聚醯胺酸的合成] 合成例PA - 1 將作爲四酸二酐的2008(1.011101)1,2,3,4_環丁四酸一肝 和作爲二胺的210g(l.〇mol)的2,2,-二甲基- 4,4’_.二胺基聯 苯’溶解到3,670g的N -甲基-2-吡咯啶酮中’在40°C下反 應3小時,得到含有10重量%聚醯胺酸(PA-1)的溶液。該 溶液的溶液黏度爲160mPa_s。 合成例PA-2 將22.4g(0.1mol)的2,3,5-三羧基環戊基乙酸二酐和 14.23g(0.1mol)環己烷二(甲基胺)溶解到3 29.3 g的N-甲基 -2-吡咯啶酮中,在60°C下反應6小時,得到含有聚醯胺酸 (PA-2)的溶液。 該含有聚醯胺酸(PA-2)的溶液將換算爲其中的聚醯胺 酸相當於17.5g的量用於合成下述的聚醯亞胺(P 1-1),剩餘 的部分用於製備液晶配向劑。 [聚醯亞胺的合成] 合成例PI-1 選取換算爲上述合成例PA-2得到的聚醯胺酸(PA-2)中 的聚醯胺酸,相當於17.5g的量,在其中添加23 2.5g的N-甲基-2-吡略啶酮、3.8g吡啶和4.9g乙酸酐,在120 °C下攪 拌4小時,脫水轉換,醯亞胺化,得到含有聚醯亞胺(PI_ 1) 的溶液。該溶液中含有的聚醯亞胺(PI-1)的醯亞胺化率是 6 0%。 -49- 201206978 實施例1 <液晶配向劑的製備> 在含有作爲特定聚合物的上述合成例SP-1得到的聚 合物(SP-1)的溶液中,加入N -甲基-2 -吡咯啶酮和丁基溶纖 劑’形成溶劑組成 N ·甲基· 2 -吡咯啶酮:丁基溶纖劑 = 5 0:5 0(重量比)、固體成分濃度3.0重量%的溶液。該溶液 使用孔徑1 μπι的過濾器過濾,製備液晶配向劑。 <液晶配向性的評價> (1)液晶顯示元件的製造 在帶有由ΙΤΟ膜形成的透明電極的玻璃基板的透明電 極面上,通過旋塗器,塗布上述製備的液晶配向劑,在80 °〇的熱板上,預烘焙1分鐘後,在箱內已被氮氣置換的烘 箱中’在2 00 °C下’加熱1小時(後烘焙),形成膜厚0.1 μηα 的塗膜。接著’在該塗膜的表面,使用Hg-Xe燈和格蘭-泰勒棱鏡,從對基板垂直的方向,照射含有波長3 1 3 n m的 輝線、使用UV濾光片切除3 0 Onm以下的輝線的偏光紫外 線1 0,000J/m2,形成液晶配向膜。重複相同的操作,製造 一對(兩塊)具有液晶配向膜的基板。 在上述基板中的一塊的具有液晶配向膜的面的外周, 通過絲網印刷塗敷加入了直徑3 · 5 μιη的氧化鋁球的環氧樹 脂黏合劑後,將一對基板的液晶配向膜面對向配置,壓接 以使各基板的紫外線光軸往基板面的投影方向逆平行,在 1 5〇°C下花費1小時將黏合劑熱硬化。接著,從液晶注入 -50- 201206978 口 ,在兩基板間的間隙中塡充 Merck公司製造的液晶 “MLC-7028”後’通過環氧類黏合劑密封液晶注入口。然 後’爲了除去液晶注入時的流動配向,將其加熱到1 5 0 °C 後’緩慢冷卻到室溫。接著,在兩基板的外側兩面,貼合 偏光板以使其偏光方向相互正交,且和液晶配向膜的紫外 線的光軸向基板面的照射方向形成4 5。的角度,製造液晶顯 示元件。 (2 )液晶配向性的評價 對上述製造的液晶顯示元件,通過光學顯微鏡觀察有 無異常區域,在沒有觀察到異常區域的情形,評價爲液晶 配向性“良好”時,該液晶顯示元件的液晶配向性“良好’’。 <燒屏性質的評價> (1)橫電場式液晶顯示元件的製造 除了在上述 < 液晶配向性的評價 > 的(1 )液晶顯示元件 的製造中,作爲玻璃基板使用具有兩個系統的由鉻形成的 梳齒狀導電膜圖案的玻璃基板和沒有導電膜的玻璃基板作 爲一對,分別在具有梳齒狀導電膜的基板的導電膜上和另 一個基板的一面上塗布上述液晶配向劑以外,和上述 <液晶 配向性的評價 > 的(1)液晶顯示元件的製造同樣地,製造橫 電場式液晶顯示元件。 上述玻璃基板上的電極圖案的結構的簡圖如第1圖所 示。 上述製造的橫電場式液晶顯示元件所具有的兩個系統 的導電膜圖案以下分別是指“電極A ”和“電極B ”。 -5 1- 201206978 (2)燒屏性質的評價 將上述製造的橫電場式液晶顯示元件放置在25 °C ' 1 大氣壓的環境下,不在電極B上施加電壓’在電極A上施 加2小時交流3.5 V和直流5 V的合成電壓。之後’在電極 A和電極B這兩者上施加交流4 V的電壓。測定從在兩電極 上開始施加交流4V的電壓的時刻,到目視確認沒有電極A 和電極B的透光性差異的時間。該時間不足2 0秒時,將燒 屏性質評價爲“最優”;在20秒以上、不足60秒時,將燒 屏性質評價爲“優異”;在6 0秒以上、不足1 0 0秒時,將燒 屏性質評價爲“良好”;在1 00秒以上、不足1 50秒時,將 燒屏性質評價爲“尙可”;然後在超過1 5 0秒時,將燒屏性 質評價爲“不好”’在這種情況下,該橫電場式的液晶顯示 元件的燒屏性質是“良好’’。 實施例2〜1 8、2 5和2 6以及比較例1 除了在上述實施例1中’作爲聚合物分別使用含有表 2中記載的種類和量的聚合物的溶液以外,和實施例1同 樣地製備液晶配向劑’製造液晶顯示元件並進行評價。評 價結果如表2所示。 另外’在比較例1中’使用其他聚合物代替特定聚合 物。 -52- 201206978 實施例1 9 在本實施例中’將特定聚合物和其他聚合物混合使用。 只選取上述合成例P A - 1得到的含有聚醯胺酸(p a _丨)的 溶液爲換算爲其中含有的聚醯胺酸(PA-1)相當於80重量份 的量,在其中加入20重量份上述合成例SP-10的得到的特 定聚合體(SP-10),然後加入N -甲基-2-吡咯啶酮和丁基溶 纖劑’形成溶劑組成爲N -甲基-2 -吡咯啶酮:丁基溶纖劑 = 50: 50(重量比)、固體成分濃度爲3.〇重量%的溶液。該 溶液使用孔徑1 μιη的過濾器過濾,製備液晶配向劑。 然後’使用該液晶配向劑,製造液晶顯示元件並進行 評價。評價結果如表2所示。 實施例20〜24 除了作爲特定聚合物和其他聚合物分別使用含有表2 中記載的種類和量的聚合物的溶液以外,和實施例1 9同樣 地製備液晶配向劑’製造液晶顯示元件並進行評價。 另外’特定聚合物和其他聚合物都形成含有表2中記 載的種類的聚合物的溶液,用於製備液晶配向劑。對於特 定聚合物和其他聚合物,表2中記載的量分別是使用的聚 合物溶液中含有的聚合物的量。 實施例2 1和24中,分別各使用兩種其他聚合物。 評價結果如表2所示。 -53- 201206978 表2 液晶配向劑的聚含物細成 液晶顯示元件 特定聚合物 其他聚合物 液晶 燒屏 種類 量(重量份) 種類 量(重量份) 配向性 __Μ- 實施例1 SP-1 100 0 良好 實施例2 SP-2 100 0 良好 優辱_ 實施例3 SP-3 . 100 0 良好 優異 實施例4 SP-4 100 0 良好 優異- 實施例5 SP-5 100 • 0 良好 優異一 實施例ό SP-6 100 • 0 良好 良好 實施例7 SP-7 100 琴 0 良好 尙4 實施例8 SP-8 100 - 0 良好 實施例9 SP-9 100 _ 0 良好 良好 實施例10 SP-10 100 • 0 良好 最優 實施例Π SP-11 100 • 0 良好 最優一 實施例12 SP-12 100 0 良好 優異- 實施例13 SP-13 100 • 0 良好 最優 實施例14 SP-14 100 - 0 良好 實施例15 SP-15 100 - 0 良好 最優 實施例16 SP-16 100 - 0 良好 最優 實施例17 SP-17 100 - 0 良好 最優一 實施例18 SP-18 100 0 良好 優異 實施例19 SP-10 20 ΡΑ-1 80 良好 優異 實施例20 SP-10 40 ΡΙ-1 60 良好 優異 實施例21 SP-10 30 ΡΑ-1 35 良好 優異 ΡΙ-1 35 實施例22 SP-16 20 ΡΑ-1 80 良好 優異_ _ 實施例23 SP-16 40 ΡΙ-1 60 良好 優異 實施例24 SP-16 30 ΡΑ-1 35 良好 優異 ΡΙ-1 35 實施例25 SP-19 100 - 0 良好 優異 實施例26 SP-20 100 - 0 良好 優異 比較例1 - 0 rp-1 100 良好 不好 實施例2 7 <相位差薄膜的製造1> 在透明玻璃基板的一面上,通過旋塗器,塗布實施例 2製備的液晶配向劑’在8 0 °C的熱板上預烘焙1分鐘後, 在箱內氮氣置換烘箱中,在200 °C下後烘焙1小時,形成 膜厚Ο.ίμιη的塗膜。在該塗膜的表面,使用Hg-Xe燈和格 蘭-泰勒棱鏡’從對基板垂直的方向,照射含有波長3〗3nm 的輝線、使用UV濾光片切除波長300nm以下的輝線的偏 光紫外線1 0,000 J/m2,製造相位差薄膜用的液晶配向膜。 -54- 201206978 接著,在形成上述製造的液晶配向膜的面上,使用旋 塗器塗布聚合性液晶(Merck公司’ RMS03-013C。通過孔徑 0·2μιη的過濾器過濾後使用)後,在60°C的熱板上烘焙1分 鐘,然後使用Hg-Xe燈,從垂直聚合性液晶塗布面的方向 照射3 0,0 00】/m2包含波長3 65 nm的輝線的非偏光的紫外 線,將聚合性液晶硬化,製造相位差薄膜。 <相位差薄膜的評價> 通過偏光顯微鏡觀察上述製造的相位差薄膜時,沒有 觀察到異常區域。 另外,上述製造的相位差薄膜夾在正交尼科耳棱鏡上 配置的兩塊偏光板間,使用從和觀察側相反的方向透過的 光(可見光)觀察。此處,在形成該相位差薄膜的液晶配向 膜時,照射相位差薄膜的偏光紫外線的偏光方向,在和偏 光板中的一塊的偏光方向平行,和另一塊的偏光方向垂直 這樣的角度夾住時,整面觀察到是暗的,相對於此,在形 成該相位差薄膜的液晶配向膜時,照射的偏光紫外線的偏 光方向是和兩塊偏光板的偏光方向分別形成45。的角度地 夾住時,整面觀察到是亮的,該相位差薄膜顯示出多種折 射。 實施例28 <每個區域具有不同的偏光方向的相位差薄膜的製造> 在透明玻璃基板的一面上,通過旋塗器,塗布實施例 2製備的液晶配向劑,在8 0 °C的熱板上,預烘焙1分鐘後, -55- 201206978 在箱內氮氣置換烘箱中,在2 0 0 °C下後烘焙1小時,形成 膜厚Ο.ΐμπι的塗膜。 在該塗膜表面的一半遮光的狀態下,從對基板垂直的 方向’照射第1偏光紫外線(使用H g - X e燈和格蘭·泰勒棱 la ’照射10,000J/m含有波長313nm的輝線的、使用uv 濾光片切除波長3〇0nm以下的輝線的偏光紫外線),進行第 一紫外線照射。接著,遮住上述第一紫外線照射的曝光部, 對未曝光部’從對基板垂直的方向,照射和第一偏光紫外 線照射的偏光紫外線的偏光方向旋轉9 0。的第2偏光紫外 線(使用Hg-Xe燈和格蘭-泰勒棱鏡,照射10,〇〇〇J/m2含有 波長313nm的輝線的、使用UV濾光片切除波長300nm以 下的輝線的偏光紫外線),進行第二紫外線照射,製造相位 差薄膜用液晶配向膜。 接著’在形成上述製造的形成液晶配向膜的面上,使 用旋塗器塗布聚合性液晶(Merck公司,RMS03-013C。通過 孔徑0.2 μιη的過濾器過濾後使用)後,在6 0 °C的熱板上烘焙 1分鐘,然後使用Hg-Xe燈,從垂直聚合性液晶塗布面的 方向照射3 0,00 0J/m2包含波長3 65 nm的輝線的非偏光的紫 外線,將聚合性液晶硬化,製造各個區域具有不同的偏光 方向的相位差薄膜。 <相位差薄膜的評價> 通過偏光顯微鏡觀察上述製造的相位差薄膜時,沒有 觀察到異常區域。 -56- 201206978 另外,上述製造的相位差薄膜夾在正交尼科耳棱鏡上 配置的偏光板1和偏光板2間’使用從和觀察側相反的方 向透過的光(可見光)觀察。此處,在形成該相位差薄膜的 液晶配向膜時,照射相位差薄膜的第一偏光紫外線的偏光 方向,在和偏光板1的偏光方向平行、和偏光板2的偏光 方向垂直這樣的角度夾住時(此時,第2偏光紫外線的偏光 方向是和偏光板1的偏光方向垂直’和偏光板2的偏光方 向平行),整面觀察到是暗的,相對於此,在形成該相位差 薄膜的液晶配向膜時,照射的第一和第二偏光紫外線的偏 光方向是和兩塊偏光板的偏光方向分別形成45°的角度地 夾住時,照射放射線的偏光方向不同的區域,整面觀察到 都是亮的,該相位差薄膜顯示出多種折射。 此外,將本實施例製造的相位差薄膜和實施例27製造 的相位差薄膜重疊,使用從和觀察側相反的方向透過的光 (可見光)觀察。這裏,在形成實施例2 7的相位差薄膜的液 晶配向膜時,照射的偏光紫外線的偏光方向和形成本實施 例(實施例28)的相位差薄膜的液晶配向膜時,照射的第一 偏光紫外線的偏光方向平行地重疊的情況下,第一紫外線 照射的曝光部是亮的,第二紫外線照射的曝光部觀察到是 暗的,相對於此’在形成實施例27的相位差薄膜的液晶配 向膜時照射的偏光紫外線的偏光方向和形成本實施例的相 位差薄膜的液晶配向膜時照射的第一偏光紫外線的偏光方 向垂直地重疊的情況下,第一紫外線照射的曝光部是暗 -57- 201206978 的,第二紫外線照射的曝光部觀察到晏亮的。在上述任— 種情況下,亮的區域和暗的區域的邊界具有明確的邊緣地 劃分。 由此,本實施例的相位差薄膜確認是在每個區域具有 不同的偏光方向的相位差薄膜。 【圖式簡單說明】 第1圖是表示實施例和比較例中使用的具有梳齒狀導 電膜的基板中的導電膜圖案的說明圖。 【主要元件符號說明】 魅。 </»、、 -58--47- 201206978 [Polyfunctional epoxy compound] DE-1 : Compound DE-2 represented by the above formula (DE-1): Compound DE-3 represented by the above formula (DE-2): the above formula (DE- 3) The compound DE-4 shown: the compound DE-5 represented by the above formula (DE-4): the compound DE-6 represented by the above formula (DE-5): represented by the above formula (DE-6) Compound DE-7: a compound represented by the above formula (DE-7): DE-8: a compound represented by the above formula (DE-8): Ν, Ν, Ν, 'Ν, tetraglycidyl-inter Dimethylphenyl diamine Table 1 Synthesis Example Polyfunctional carboxylic acid polyfunctional epoxy compound Polymer type (mmol) Species (mmol) Name Mw SP-1 DC-1 10 DE-1 10 SP-1 4,200 SP-2 DC-1 10 DE-2 10 SP-2 11,000 SP-3 DC-1 10 DE-3 10 SP-3 12,000 SP-4 DC-1 10 DE-4 10 SP-4 12,500 SP-5 DC-1 10 DE -5 10 SP-5 7,700 SP-6 DC-1 10 DE-6 10 SP-6 9,600 SP-7 DC-1 10 DE-7 10 SP-7 13,000 SP-8 DC-1 10 DE-8 10 SP- 8 12,800 SP-9 DC-1 DE-3 5 SP-9 7,800 1U DE-6 5 SP-10 DC-2 10 DE-3 10 SP-10 3,800 SP-11 DC-2 10 DE-5 10 SP-11 3,300 SP-12 DC-2 10 DE-6 10 SP-12 4,100 SP-13 DC-3 10 DE-3 10 SP-13 6,600 S P-14 DC-3 10 DE-5 10 SP-14 5,100 SP-15 DC-3 10 DE-6 10 SP-15 4,500 SP-16 DC-4 10 DE-3 10 SP-16 4,400 SP-17 DC- 4 10 DE-5 10 SP-17 3,700 SP-18 DC-4 10 DE-6 10 SP-18 4,000 SP-19 DC-4 DE-6 9.5 SP-19 7,800 ιυ te-1 0.25 SP-20 DC-4 9.5 DE-6 SP-20 7,100 tc-1 0.25 10 rp-1 α 10 DE-3 10 rp-1 8,700 -48- 201206978 <Synthesis of Other Polymers> [Synthesis of Polylysine] Synthesis Example PA - 1 2008(1.011101) 1,2,3,4-cyclobutyric acid-hepatic acid as tetracarboxylic dianhydride and 210 g (l.〇mol) of 2,2,-dimethyl- 4 as diamine 4'_. Diaminobiphenyl 'dissolved in 3,670 g of N-methyl-2-pyrrolidone' was reacted at 40 ° C for 3 hours to obtain 10% by weight of polyaminic acid (PA-1). )The solution. The solution had a solution viscosity of 160 mPa_s. Synthesis Example PA-2 22.4 g (0.1 mol) of 2,3,5-tricarboxycyclopentyl acetic acid dianhydride and 14.23 g (0.1 mol) of cyclohexane bis(methylamine) were dissolved to 3 29.3 g of N In the methyl-2-pyrrolidone, the reaction was carried out at 60 ° C for 6 hours to obtain a solution containing polyglycine (PA-2). The solution containing poly-proline (PA-2) is converted into polyacetamide in an amount equivalent to 17.5 g for synthesizing the polyimine (P 1-1) described below, and the remaining portion is used for A liquid crystal alignment agent is prepared. [Synthesis of Polyimine] Synthesis Example PI-1 The polyamic acid in the polylysine (PA-2) obtained in the above Synthesis Example PA-2 was selected, which corresponds to an amount of 17.5 g, and was added thereto. 23 2.5 g of N-methyl-2-pyrrolidone, 3.8 g of pyridine and 4.9 g of acetic anhydride, stirred at 120 ° C for 4 hours, dehydrated and converted to ruthenium iodide to obtain polyimine (PI_ 1) solution. The ruthenium imidization ratio of the polyimine (PI-1) contained in the solution was 60%. -49-201206978 Example 1 <Preparation of Liquid Crystal Aligning Agent> In a solution containing the polymer (SP-1) obtained in the above Synthesis Example SP-1 as a specific polymer, N-methyl-2 was added thereto. The pyrrolidone and butyl cellosolve 'formed a solvent composition of N.methyl-2-pyrrolidone: butyl cellosolve = 50:50 (weight ratio), and a solid concentration of 3.0% by weight. This solution was filtered using a filter having a pore size of 1 μm to prepare a liquid crystal alignment agent. <Evaluation of Liquid Crystal Alignment> (1) Production of Liquid Crystal Display Element The liquid crystal alignment agent prepared above was applied onto the transparent electrode surface of a glass substrate having a transparent electrode formed of a ruthenium film by a spin coater. After prebaking for 1 minute on a hot plate at 80 °C, it was heated at '200 °C' for 1 hour (post-baking) in an oven which had been replaced with nitrogen in the tank to form a coating film having a film thickness of 0.1 μηα. Then, on the surface of the coating film, using a Hg-Xe lamp and a Glan-Taylor prism, a bright wire having a wavelength of 3 1 3 nm was irradiated from a direction perpendicular to the substrate, and a glow wire of 3 0 Onm or less was cut using a UV filter. The polarized ultraviolet light is 10,000 J/m 2 to form a liquid crystal alignment film. The same operation was repeated to manufacture a pair of (two pieces) substrates having a liquid crystal alignment film. On the outer periphery of the surface of the substrate having the liquid crystal alignment film, an epoxy resin adhesive having an alumina ball having a diameter of 3 · 5 μm is applied by screen printing, and the liquid crystal alignment film surface of the pair of substrates is applied. In the opposite direction, the bonding was performed so that the projection direction of the ultraviolet light axis of each substrate toward the substrate surface was reversed, and the adhesive was thermally cured at 1 5 ° C for 1 hour. Next, from the liquid crystal injection -50-201206978, the liquid crystal injection port was sealed by an epoxy-based adhesive after filling the liquid crystal "MLC-7028" manufactured by Merck in the gap between the two substrates. Then, in order to remove the flow alignment at the time of liquid crystal injection, it was heated to 150 ° C and then slowly cooled to room temperature. Next, the polarizing plates are bonded to the outer surfaces of the two substrates such that the polarization directions thereof are orthogonal to each other, and the direction of the irradiation of the ultraviolet ray of the liquid crystal alignment film on the substrate surface is 45. From the perspective of manufacturing liquid crystal display elements. (2) Evaluation of liquid crystal alignment property The liquid crystal alignment element of the liquid crystal display device produced by the above-mentioned liquid crystal display device was observed by an optical microscope, and when the abnormality region was not observed, when the liquid crystal alignment property was "good", the liquid crystal alignment of the liquid crystal display device was observed. <Evaluation of burn-in property> (1) Production of a horizontal electric field type liquid crystal display element In addition to the above (1) evaluation of liquid crystal alignment property, (1) production of liquid crystal display element, The glass substrate uses a glass substrate having a comb-like conductive film pattern formed of chromium having two systems and a glass substrate having no conductive film as a pair, respectively on the conductive film of the substrate having the comb-shaped conductive film and the other substrate In the same manner as in the production of (1) liquid crystal display element (1) liquid crystal display element, the liquid crystal display element is coated on one surface, and the structure of the electrode pattern on the glass substrate is used. The simplified diagram is shown in Fig. 1. The conductive film pattern of the two systems of the horizontal electric field type liquid crystal display element manufactured above is It is referred to as "electrode A" and "electrode B" respectively. -5 1- 201206978 (2) Evaluation of burn-in properties The horizontal electric field type liquid crystal display element manufactured above was placed in an environment of 25 ° C '1 atm, not at the electrode. A voltage applied to B was applied to electrode A for a combined voltage of 3.5 V AC and 5 V DC for 2 hours. Then, a voltage of 4 V was applied to both electrode A and electrode B. The measurement was started from the two electrodes. When the voltage of 4 V is exchanged, the time when there is no difference in the light transmittance between the electrode A and the electrode B is visually confirmed. When the time is less than 20 seconds, the burn-in property is evaluated as "optimal"; in 20 seconds or more, less than 60 In the second case, the burn-in property was evaluated as "excellent"; when it was 60 seconds or more and less than 100 seconds, the burn-in property was evaluated as "good"; when it was more than 100 seconds, less than 150 seconds, it would burn. The screen property was evaluated as "尙可"; then, at more than 150 seconds, the burn-in property was evaluated as "not good". In this case, the burn-in property of the horizontal electric field type liquid crystal display element was "good". ''. Examples 2 to 18, 2 5 and 2 6 and Comparative Example 1 In the same manner as in Example 1, except that a solution containing the polymer and the amount of the polymer described in Table 2 was used as the polymer in the above Example 1 A liquid crystal alignment agent was prepared and manufactured to evaluate and evaluate the liquid crystal display element. The evaluation results are shown in Table 2. Further, in Comparative Example 1, other polymers were used instead of the specific polymer. -52- 201206978 Example 1 9 In this example, a specific polymer and other polymers were used in combination. Only the solution containing polylysine (pa 丨 得到) obtained by the above Synthesis Example PA-1 was converted into an amount of 80 parts by weight of polylysine (PA-1) contained therein, and 20 parts by weight was added thereto. Part of the specific polymer (SP-10) obtained in the above Synthesis Example SP-10, and then adding N-methyl-2-pyrrolidone and butyl cellosolve' to form a solvent composition of N-methyl-2-pyrrolidone A solution of butyl cellosolve = 50:50 (weight ratio) and a solid content concentration of 3% by weight. This solution was filtered using a filter having a pore size of 1 μm to prepare a liquid crystal alignment agent. Then, using this liquid crystal alignment agent, a liquid crystal display element was produced and evaluated. The evaluation results are shown in Table 2. Example 20 to 24 A liquid crystal display element was produced and produced in the same manner as in Example 19 except that a solution containing a polymer and a polymer of the type and amount described in Table 2 was used as the specific polymer and the other polymer, respectively. Evaluation. Further, the specific polymer and other polymers form a solution containing the polymer of the kind described in Table 2 for the preparation of a liquid crystal alignment agent. For the specific polymer and other polymers, the amounts described in Table 2 are the amounts of the polymer contained in the polymer solution used, respectively. In Examples 2 and 24, two other polymers were used, respectively. The evaluation results are shown in Table 2. -53- 201206978 Table 2 Polyester content of liquid crystal alignment agent fine liquid crystal display element specific polymer Other polymer liquid crystal burn-in type (parts by weight) Type (parts by weight) Orientation__Μ - Example 1 SP-1 100 0 Good example 2 SP-2 100 0 Good humiliation _ Example 3 SP-3 . 100 0 Good Excellent Example 4 SP-4 100 0 Excellent and excellent - Example 5 SP-5 100 • 0 Good and excellent one implementation Example SP-6 100 • 0 Good Good Example 7 SP-7 100 Piano 0 Good 尙 4 Example 8 SP-8 100 - 0 Good Example 9 SP-9 100 _ 0 Good Good Example 10 SP-10 100 • 0 Good Optimum Example Π SP-11 100 • 0 Good Optimum Example 12 SP-12 100 0 Good Excellent - Example 13 SP-13 100 • 0 Good Optimum Example 14 SP-14 100 - 0 Good Example 15 SP-15 100 - 0 Good Optimum Example 16 SP-16 100 - 0 Good Optimum Example 17 SP-17 100 - 0 Good Optimum Example 18 SP-18 100 0 Good Excellent Example 19 SP -10 20 ΡΑ-1 80 Good Excellent Example 20 SP-10 40 ΡΙ-1 60 Excellent Example 21 SP-10 30 ΡΑ-1 35 Good Excellent ΡΙ-1 35 Example 22 SP-16 20 ΡΑ-1 80 Excellent _ _ Example 23 SP-16 40 ΡΙ-1 60 Excellent Excellent Example 24 SP- 16 30 ΡΑ-1 35 Good Excellent ΡΙ-1 35 Example 25 SP-19 100 - 0 Excellent Excellent Example 26 SP-20 100 - 0 Good Excellent Comparative Example 1 - 0 rp-1 100 Good or bad Example 2 7 <Production of retardation film 1> On one surface of a transparent glass substrate, the liquid crystal alignment agent prepared in Example 2 was applied by a spin coater to be prebaked on a hot plate at 80 ° C for 1 minute, and then placed in a box. The film was baked at 200 ° C for 1 hour in a nitrogen displacement oven to form a film having a film thickness of ί. ίμιη. On the surface of the coating film, a Hg-Xe lamp and a Glan-Taylor prism were used to irradiate a polarized ultraviolet light having a wavelength of 3 to 3 nm from a direction perpendicular to the substrate, and a UV filter was used to cut a bright line having a wavelength of 300 nm or less. 0,000 J/m2, a liquid crystal alignment film for producing a retardation film. -54-201206978 Next, on the surface on which the liquid crystal alignment film produced as described above was formed, a polymerizable liquid crystal (Merck's 'RMS03-013C. Filtered by a filter having a pore size of 0·2 μm) was applied using a spin coater, and then 60 Baking on a hot plate at °C for 1 minute, then using a Hg-Xe lamp, irradiating 3 0,0 00]/m2 from the direction of the vertical polymerizable liquid crystal coated surface, containing non-polarized ultraviolet rays having a wavelength of 3 65 nm, and polymerizing The liquid crystal is hardened to produce a retardation film. <Evaluation of retardation film> When the retardation film produced as described above was observed by a polarizing microscope, no abnormal region was observed. Further, the retardation film produced as described above was sandwiched between two polarizing plates disposed on a crossed Nicols, and observed by light (visible light) transmitted in a direction opposite to the observation side. Here, when the liquid crystal alignment film of the retardation film is formed, the polarization direction of the polarized ultraviolet light that irradiates the retardation film is parallel to the polarization direction of one of the polarizing plates, and is sandwiched by an angle perpendicular to the polarization direction of the other block. In the case where the liquid crystal alignment film of the retardation film is formed, the polarization direction of the polarized ultraviolet light to be irradiated is 45 with respect to the polarization directions of the two polarizing plates. When the angle is clamped, the entire surface is observed to be bright, and the retardation film exhibits various kinds of refracting. Example 28 <Production of retardation film having different polarization directions in each region> On one surface of a transparent glass substrate, the liquid crystal alignment agent prepared in Example 2 was applied by a spin coater at 80 ° C On the hot plate, after prebaking for 1 minute, -55-201206978 was post-baked at 200 ° C for 1 hour in a nitrogen gas replacement oven to form a film thickness of Ο.ΐμπι. In a state where half of the surface of the coating film is shielded from light, the first polarized ultraviolet ray is irradiated from the direction perpendicular to the substrate (using a H g - X e lamp and Glan Taylor ella ' to irradiate 10,000 J/m of a bright wire having a wavelength of 313 nm. The first ultraviolet ray is irradiated by using a uv filter to cut off the polarized ultraviolet ray of a bright line having a wavelength of 3 〇 0 nm or less. Next, the exposed portion of the first ultraviolet ray is blocked, and the unexposed portion is rotated by 90 Å from the direction perpendicular to the substrate by the polarized ultraviolet ray irradiated with the first polarized ultraviolet ray. The second polarized ultraviolet ray (using a Hg-Xe lamp and a Glan-Taylor prism, irradiating 10, 〇〇〇J/m2 containing a bright line having a wavelength of 313 nm, and using a UV filter to cut off a polarized ultraviolet ray having a wavelength of 300 nm or less), The second ultraviolet ray irradiation is performed to produce a liquid crystal alignment film for a retardation film. Next, 'on the surface on which the liquid crystal alignment film produced as described above was formed, a polymerizable liquid crystal was applied using a spin coater (Merck, RMS 03-013C, filtered through a filter having a pore size of 0.2 μm), and then at 60 ° C. The hot plate was baked for 1 minute, and then the non-polarized ultraviolet light having a wavelength of 3 65 nm was irradiated from the direction of the vertical polymerizable liquid crystal coated surface by using an Hg-Xe lamp, and the polymerizable liquid crystal was cured. A retardation film having different polarization directions in each region is produced. <Evaluation of retardation film> When the retardation film produced as described above was observed by a polarizing microscope, no abnormal region was observed. -56-201206978 In addition, the phase difference film manufactured as described above is sandwiched between the polarizing plate 1 disposed on the crossed Nicols and the polarizing plate 2, and is observed by light (visible light) transmitted in a direction opposite to the observation side. Here, when the liquid crystal alignment film of the retardation film is formed, the polarization direction of the first polarized ultraviolet ray that irradiates the retardation film is perpendicular to the polarization direction of the polarizing plate 1 and perpendicular to the polarization direction of the polarizing plate 2 At the time of residence (in this case, the polarization direction of the second polarized ultraviolet light is perpendicular to the polarization direction of the polarizing plate 1 and the polarization direction of the polarizing plate 2), the entire surface is observed to be dark, and in contrast, the phase difference is formed. In the liquid crystal alignment film of the film, when the polarization directions of the first and second polarized ultraviolet rays that are irradiated are sandwiched by an angle of 45° with respect to the polarization directions of the two polarizing plates, the regions in which the polarization directions of the radiation are different are the entire surface. Both were observed to be bright, and the retardation film exhibited various refractions. Further, the retardation film produced in the present example was laminated with the retardation film produced in Example 27, and observed with light (visible light) transmitted in the opposite direction to the observation side. Here, in the case where the liquid crystal alignment film of the retardation film of Example 27 is formed, the polarized light direction of the polarized ultraviolet light to be irradiated and the liquid crystal alignment film of the retardation film of the present embodiment (Example 28) are irradiated, the first polarized light is irradiated. When the polarization directions of the ultraviolet rays are superposed in parallel, the exposed portion of the first ultraviolet ray is bright, and the exposed portion of the second ultraviolet ray is observed to be dark, and the liquid crystal of the retardation film of the embodiment 27 is formed. When the polarizing direction of the polarized ultraviolet light to be irradiated when the alignment film is perpendicularly overlaps with the polarization direction of the first polarized ultraviolet light to be irradiated when the liquid crystal alignment film of the retardation film of the present embodiment is formed, the exposed portion of the first ultraviolet irradiation is dark- 57- 201206978, the exposure portion of the second ultraviolet irradiation was observed to be bright. In any of the above cases, the boundaries of the bright and dark regions are clearly edged. Thus, the retardation film of the present embodiment was confirmed to be a retardation film having a different polarization direction in each region. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an explanatory view showing a conductive film pattern in a substrate having a comb-shaped conductive film used in Examples and Comparative Examples. [Main component symbol description] Charm. </»,, -58-

Claims (1)

201206978 七、申請專利範圍: 1-—種液晶配向劑,其特徵在於包含具有下述式(1)所示的201206978 VII. Patent application scope: 1--liquid crystal alignment agent, which is characterized by comprising the following formula (1) (式(1)中,R分別是碳原子數爲1〜4的烷基、羥基、 鹵原子或氰基,a分別是〇〜4的整數,表示連接鍵。) 2 ·如申請專利範圍第1項之液晶配向劑,其中該聚合物在 主鏈上具有上述結構。 3 ·如申|靑專利範圍第2項之液晶配向劑,其中該聚合物是 包含二環氧化合物的多官能環氧化合物與包含具有上述 結構的二元羧酸的多官能羧酸的反應產物。 4 · 一種液晶配向膜,其特徵在於其由如申請專利範圍第i 至3項中任一項之液晶配向劑所形成。 5 .—種液晶顯示元件’其特徵在於具有如申請專利範圍第4 項之液晶配向膜。 6 ·如申請專利範圍第5項之液晶顯示元件,該液晶顯示元 件是橫電場式的液晶顯示元件。 7.—種相位差薄膜的形成方法,其特徵在於至少包含下述 的步驟(a)~(d): (a)在基板上塗布如申請專利範圍第1至3項中任— 項之液晶配向劑而形成聚合物的塗膜的步驟; -59- 201206978 (b) 對上述聚合物的塗膜照射放射線而形成液晶配向 膜的步驟; (c) 在上述液晶配向膜上塗布聚合性液晶而形成聚合 性液晶的塗膜的步驟,以及 (d) 進行由加熱和照射放射線構成的群組中選出的— 種以上的處理,使上述聚合性液晶的塗膜硬化的步驟。 8. —種相位差薄膜,其特徵在於:通過如申請專利範圍第7 項之方法形成。 9. 一種液晶顯示元件’其特徵在於:具有如申請專利範圍 第8項之相位差薄膜。 1 〇.如申請專利範圍第9項之液晶顯示元件,該液晶顯示元 件在3D影像顯示中使用。 11. 一種聚合物,其特徵在於:具有上述式(1)所示的結構。 12. —種如申請專利範圍第11項之聚合物的製造方法,其 特徵在於:使包含二環氧化合物的多官能環氧化合物與 包含具有上述式(1)所示的結構的二元羧酸的多官能羧酸 反應。 -60-(In the formula (1), R is an alkyl group having 1 to 4 carbon atoms, a hydroxyl group, a halogen atom or a cyano group, respectively, and a is an integer of 〇~4, respectively, and represents a linkage.) 2 A liquid crystal alignment agent of the item 1, wherein the polymer has the above structure in the main chain. 3. The liquid crystal alignment agent of claim 2, wherein the polymer is a reaction product of a polyfunctional epoxy compound containing a diepoxide compound and a polyfunctional carboxylic acid comprising a dicarboxylic acid having the above structure. . A liquid crystal alignment film characterized by being formed of a liquid crystal alignment agent according to any one of claims 1 to 3. A liquid crystal display element' is characterized by having a liquid crystal alignment film according to item 4 of the patent application. 6. The liquid crystal display element of claim 5, wherein the liquid crystal display element is a horizontal electric field type liquid crystal display element. 7. A method of forming a retardation film, comprising at least the following steps (a) to (d): (a) coating a liquid crystal on a substrate as in any one of claims 1 to 3 of the patent application. Step of forming a coating film of a polymer by an alignment agent; -59-201206978 (b) a step of irradiating a coating film of the polymer to form a liquid crystal alignment film; (c) applying a polymerizable liquid crystal to the liquid crystal alignment film The step of forming a coating film of a polymerizable liquid crystal, and (d) performing a treatment of a plurality of types selected from the group consisting of heating and irradiation of radiation to cure the coating film of the polymerizable liquid crystal. 8. A retardation film characterized by being formed by the method of item 7 of the patent application. A liquid crystal display element' characterized by having a retardation film as in claim 8 of the patent application. 1 〇 In the case of the liquid crystal display element of claim 9, the liquid crystal display element is used in 3D image display. A polymer comprising the structure represented by the above formula (1). A method for producing a polymer according to claim 11 which is characterized in that a polyfunctional epoxy compound containing a diepoxide compound and a dicarboxylic acid comprising a structure represented by the above formula (1) are used. Acidic polyfunctional carboxylic acid reaction. -60-
TW100114575A 2010-04-27 2011-04-27 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, method for preparing retardation film, retardation film, polymer and method for preparing the polymer TWI507437B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010101658 2010-04-27

Publications (2)

Publication Number Publication Date
TW201206978A true TW201206978A (en) 2012-02-16
TWI507437B TWI507437B (en) 2015-11-11

Family

ID=44885649

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100114575A TWI507437B (en) 2010-04-27 2011-04-27 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, method for preparing retardation film, retardation film, polymer and method for preparing the polymer

Country Status (4)

Country Link
JP (1) JP5637019B2 (en)
KR (1) KR101746021B1 (en)
CN (1) CN102234515B (en)
TW (1) TWI507437B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5966329B2 (en) * 2011-03-30 2016-08-10 Jsr株式会社 Manufacturing method of liquid crystal display element
JP2013142727A (en) * 2012-01-06 2013-07-22 Arisawa Mfg Co Ltd Optical film manufacturing device, optical film manufacturing method, and optical film
WO2013114514A1 (en) * 2012-01-31 2013-08-08 株式会社有沢製作所 Method for producing optical film, optical film, mask, and apparatus for producing optical film
JP6372200B2 (en) * 2013-10-07 2018-08-15 Jsr株式会社 Method for producing liquid crystal alignment film, photo-alignment agent, and liquid crystal display element
US10017696B2 (en) * 2014-02-13 2018-07-10 Dai Nippon Printing Co., Ltd. Thermosetting composition with photo-alignment property, alignment layer, substrate with alignment layer, retardation plate, and device
CN105980917B (en) * 2014-02-13 2019-08-23 大日本印刷株式会社 Heat-curable composition, oriented layer with light orientation, the substrate with oriented layer, phase plate and device
JP6519151B2 (en) * 2014-11-18 2019-05-29 大日本印刷株式会社 Thermosetting composition having photoalignment, alignment layer, substrate with alignment layer and retardation plate
EP3476879B1 (en) * 2016-06-22 2022-09-21 Showa Denko Materials Co., Ltd. Epoxy resin composition, cured product and composite material
JP6497457B2 (en) * 2018-02-27 2019-04-10 住友化学株式会社 Pattern polarizing film manufacturing method
CN114902114A (en) * 2019-12-27 2022-08-12 富士胶片株式会社 Light guide element and image display device
JPWO2021167074A1 (en) * 2020-02-21 2021-08-26

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4713754B2 (en) * 2001-03-29 2011-06-29 太陽ホールディングス株式会社 Photocurable thermosetting resin composition and cured product thereof
JP5027357B2 (en) * 2001-03-30 2012-09-19 太陽ホールディングス株式会社 Photo-curable thermosetting resin composition and printed wiring board
JP2005049865A (en) * 2003-07-17 2005-02-24 Arisawa Mfg Co Ltd Manufacturing method of optical phase difference element
KR101170417B1 (en) * 2004-10-13 2012-08-02 롤리크 아게 Photocrosslinkable materials
JP2007025203A (en) * 2005-07-15 2007-02-01 Fujifilm Holdings Corp Optical compensation sheet and liquid crystal display device
JP2008102351A (en) * 2006-10-19 2008-05-01 Chisso Corp Positive photosensitive composition
JP4458305B2 (en) * 2007-08-21 2010-04-28 Jsr株式会社 Liquid crystal aligning agent, method for producing liquid crystal aligning film, and liquid crystal display element
JP4416054B2 (en) * 2007-08-21 2010-02-17 Jsr株式会社 Liquid crystal aligning agent, method for forming liquid crystal aligning film, and liquid crystal display element
CN101779159B (en) * 2007-08-21 2012-03-21 Jsr株式会社 Liquid crystal aligning agent, method for producing liquid crystal alignment film, and liquid crystal display device
KR101092397B1 (en) * 2007-09-26 2011-12-09 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and forming method thereof, and liquid crystal display device
KR100913605B1 (en) * 2007-12-07 2009-08-26 제일모직주식회사 Photoalignment agent of liquid crystal, photoalignment film of liquid crystal including the same, and liquid crystal display including the same
KR101587125B1 (en) * 2008-08-21 2016-02-03 삼성디스플레이 주식회사 Photoreactive compounds and liquid crystal display device using the same
JP5668906B2 (en) * 2009-02-19 2015-02-12 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Also Published As

Publication number Publication date
KR101746021B1 (en) 2017-06-12
JP5637019B2 (en) 2014-12-10
TWI507437B (en) 2015-11-11
JP2011248328A (en) 2011-12-08
CN102234515A (en) 2011-11-09
KR20110119545A (en) 2011-11-02
CN102234515B (en) 2014-10-15

Similar Documents

Publication Publication Date Title
TWI507437B (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, method for preparing retardation film, retardation film, polymer and method for preparing the polymer
KR101985259B1 (en) Liquid crystal aligning agent and compound
TWI535786B (en) Method for manufacturing liquid crystal display element, liquid crystal aligning agent and liquid crystal display element
JP5716428B2 (en) Liquid crystal display element and manufacturing method thereof
JP6701635B2 (en) Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device
TW201514219A (en) Method for producing liquid crystal aligning film, photo aligning agent and liquid crystal display element
TWI488917B (en) Method for producing liquid crystal display element, polymer composition and liquid crystal display element
TWI596141B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element and method for producing the same
WO2009133803A1 (en) Liquid crystal aligning agent and method for forming liquid crystal alignment films
TWI771380B (en) Compound, liquid crystal composition and liquid crystal display element
TWI541270B (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element and method for producing liquid crystal alignment film
TWI625323B (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display device, phase difference film and manufacturing method thereof, polymer and compound
TW201418326A (en) Liquid crystal alignment agent, liquid crystal alignment film, phase difference film of liquid crystal display device and liquid crystal cell of liquid crystal display device
TWI610964B (en) Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, phase difference film, manufacturing method of phase difference film and polymer
TWI632197B (en) Liquid crystal alignment agent, liquid crystal alignment film, method for producing liquid crystal alignment film, liquid crystal display element and method for producing liquid crystal display element
JP6593546B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal element and polymer
JP6828360B2 (en) A liquid crystal alignment agent, a liquid crystal alignment film, a liquid crystal element, and a method for manufacturing a liquid crystal alignment film and a liquid crystal element.
JP2017003727A (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display, polymer, and diamine
JP6682965B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal element, and method for producing liquid crystal aligning film
JP6492982B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TWI656174B (en) Liquid crystal alignment agent, method for producing liquid crystal alignment film, liquid crystal display element, polymer and compound
JP2023131106A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element
JP2017156437A (en) Liquid crystal alignment agent, liquid crystal alignment film, and method for manufacturing the same, liquid crystal device, polymer, and compound