TW201205925A - Multilayer nanostructured titanium oxide photoelectrode and manufacturing method thereof - Google Patents

Multilayer nanostructured titanium oxide photoelectrode and manufacturing method thereof Download PDF

Info

Publication number
TW201205925A
TW201205925A TW99125384A TW99125384A TW201205925A TW 201205925 A TW201205925 A TW 201205925A TW 99125384 A TW99125384 A TW 99125384A TW 99125384 A TW99125384 A TW 99125384A TW 201205925 A TW201205925 A TW 201205925A
Authority
TW
Taiwan
Prior art keywords
titanium dioxide
layer
sol
neutral
particle size
Prior art date
Application number
TW99125384A
Other languages
Chinese (zh)
Other versions
TWI419392B (en
Inventor
Yu-Ming Lin
Wei-Ta Li
Ching-Shin Wu
Day-Huah Lin
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW99125384A priority Critical patent/TWI419392B/en
Publication of TW201205925A publication Critical patent/TW201205925A/en
Application granted granted Critical
Publication of TWI419392B publication Critical patent/TWI419392B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A multilayer nanostructured titanium oxide photoelectrode and manufacturing method thereof are provided. In the manufacturing method, a first neutral aqueous phase titanium dioxide (TiO2) sol is prepared, and then the first neutral aqueous phase TiO2 sol is coated, dried and sintered on a substrate to form a dense layer. Thereafter, a second neutral aqueous phase TiO2 sol is prepared, and its particle size is controlled to be more than that of the first neutral aqueous phase TiO2 sol. Afterward, the second neutral aqueous phase TiO2 sol is coated, dried and sintered on the dense layer to form at least one buffer layer, and then a porous layer is then formed on the buffer layer. The first and second neutral aqueous phase TiO2 sols are utilized without adding any organic binding agent.

Description

201205925ji2TW 34830twf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種用於染料敏化太陽電池(DSSC) 之二氧化鈦光電極,特別是有關於一種多層結構奈米二氧 化鈦光電極及其製造方法。 【先前技術】 染料敏化太陽電池是由基板、透明導電膜、半導體光 電極、染料、電荷輸送介質(電解液/溶劑)和對電極等所構 成,目前上、下基板多以玻璃基板較為習用。而在傳統製 備光電極過程中,是將含有機枯結劑的TiOj料(paste)塗 ,於導電㈣基板上,再經過高溫燒結(sintering)程序,使 2 Ti02粒子間有較好的連結,並去除漿射的有機枯結 劑。傳統的做法為以異丙雜(titanium isGpn)pQxide, ττιρ) 2驅物’經水_合程賴,在鈦金屬高壓蚤中加溫水 τκΓ理骚2結晶性的Ti〇2顆粒,再添加有機點結劑形成 4二=,,塗佈於基材上’經過高溫鍛燒(約 使用。 ’形成多孔性薄膜,作為染敏電池之光電極 ^ 電池 妙燒W度勢必要錢_紐之耐熱溫度以避免變 去^而’降低燒結溫度可能面對—些問題,如I法完全 結劑、薄膜孔隙度減少而 1 2 ’專膜與基板間附著性不佳、Ti02粒子間連 3 ........ii'W 34830twf.doc/n 結不佳等。這些問題將會直接影響電池的總體效率。 此外,傳統Ti〇2光電極的製作方式,是在透明導電基 板上直接塗佈多孔性Ti〇2薄膜,由於與導電基材之間存在 孔洞的關係,使得流經導電基材的電子會與孔洞裡的電解 液進行再結合反應’造成暗電流的產生,導致電池之效率 降低。尤其在以金屬基板(如不銹鋼)為導電基材時,暗電 流的影響更為明顯,嚴重降低光電流與轉換效率。 為了防止暗電流的產生,近來研究發現須在導電基材 與多孔層之間沉積一層緻密層,其做法為使用Ticl4作為前 驅物’以浸泡方式對導電基板進行前處理,再經過高溫锻 燒以製作緻密層。也有人以鈦的有機化合物作為前驅物, 經過南溫喷塗裂解的方式在基板上形成敏密層,如美國專 利仍6,683,244。不過’這樣的方法所形成的緻密層之緻 密性皆明顯不足,因此暗電流降低有限,且都需經過高溫 處理(>450。〇,無法使用於低溫製程,加上使用的前驅物 為強酸性,無法使用於金屬基材,故在應用上受到很大限 制。 為了克服低溫製作Ti02光電極之困難,還有研究是以 添加有機枯結劑與加壓(1,000 Kg/cm2〜10,000 Kg/cm2)的方 式’促使Ti02奈米粉體與軟性基板相互結合,如美國專利 US 7,224,036,是以有機粘結劑和Ti〇2奈米粉體混合成 分’經加壓20 MPa〜200 MPa的製程方法。 上述方法是透過施加極大壓力之方式,以形成低溫型 態的Ti〇2光電極,由於壓力甚高,無法使用於大面積太陽 201205925 -----v〇12TW 34830twf,doc/n 電池製作,且設備費用高,因此限制了該方法的實用性。 【發明内容】 本發明提供一種多層結構奈米二氧化鈦光電極的製造 方法,可以藉著調控結構粒徑來降低暗電流,並提升光電 流與電池效率。 本發明另提供一種多層結構奈米二氧化鈦光電極,可 以降低暗電流,並提升光電流與電池效率。 本發明提出一種多層結構奈米二氧化鈦光電極的製造 方法’包括製備一第一中性水相二氧化鈦溶膠,再於一基 板上塗佈、乾燥與鍛燒上述第一中性水相二氧化鈦溶膠, =形成-敏密層。織,製備—第二中性水相二氧化欽溶 二’且控制第二巾性水相二氧化鈦轉之減大於上述第 =性水相二氧化鈦溶膠之粒獲。接著,於敏密層上塗佈、 ^燥與锻燒上述第二巾性水相二氧化鈦溶膠,以形成至少 。上形成—多孔層,其中在第— 。-中性水相三氧化鈦溶膠中不添加有機钻結劑。 ^本發明之-實施财,製備上述第—與第二中性水 1化鈦溶膠之方法包括以鈦金屬鹽 解、,澱、水洗、解膠與加溫迴流的程序而合成W 層之方上述緩衝層上形成該多孔 ::!性水相二氧化欽溶膠之粒徑大於上述第二中3 一魏鈦溶膠之粒徑,再於上述緩衝層上塗佈、乾燥^ 201205925 34830twf.doc/n 和讀、水洗、解膠與加溫迴流的程序而合成。 在本發明之—實闕巾,上述第―、第二與第三中性 ^目^ 了氧化鈦轉之製備條件除上述加溫迴狀時間外均 所制i本發私—實施财,上述加溫喊之時間愈長, 粒^愈^第―、第二與第三中性水相二氧化鈦溶膠之 在本發明之一實施例中,上述加溫迴流之時間在5〇 =時以内,所製備之第一、第二與第三中性水相二氧化鈦 /谷膠之粒徑範圍在lnm~300nm之間。 々在本發明之一實施例中,上述第一中性水相二氧化鈦 =膠的粒徑大小為lnm〜8nme製備第一中性水相二氧化鈦 溶膠的加溫迴流之時間例如在0.5小時至1〇小時。 在本發明之一實施例中,上述第二中性水相二氧化鈦 溶膠的粒徑大小為8nm〜20nm。製備第二中性水相二氧化 鈦溶膠的加溫迴流之時間例如在10小時至20小時。 在本發明之一實施例中’上述第三中性水相二氧化鈦 溶膠的粒徑大小為20nm〜300nm。製備第三中性水相二氧 化鈦溶膠的加溫迴流之時間例如在20小時至50小時。 201205925 12TW 34830twf.doc/n 在本發明之一實施例中,上述基材包括導電玻璃或金 屬材料。 在本發明之一實施例中,於上述基板上塗佈上述第一 中性水相二氧化鈦溶膠之前,還包括使用大氣電漿對基材 進行親水處理,增進水相溶膠塗佈效果。 在本發明之一實施例中,於上述基板上塗佈第一中性 水相二氧化鈦溶膠以及於上述緻密層上塗佈第二中性水相 二氧化鈦溶膠之方式包括浸鍍方式或喷塗方式,較佳是浸 攀 鍍方式。 在本發明之一實施例中,於上述緩衝層上形成多孔層 之方法還可以是先製備一二氧化鈦漿料(paste),再於二氧 化鈦漿料中添加有機粘結劑,之後於緩衝層上塗佈、乾燥 與鍛燒上述二氧化鈦漿料。 本發明另提出一種多層結構奈米二氧化鈦光電極,用 於一染料敏化太陽電池,所述多層結構奈米二氧化鈦光電 極至少包括一緻密層、一多孔層與至少一緩衝層。敏密層、 • 多孔層與緩衝層均是由多數個二氧化鈦顆粒所組成。至於 緩衝層是位於緻密層與多孔層之間,以促進前述緻密層與 多孔層間的顆粒連結,增進光電流產生,其中多孔層之粒 徑大於緻岔層之粒徑,且至少一緩衝層之粒徑範圍介於緻 密層的粒徑與多孔層的粒徑之間。 在本發明之另一實施例中,上述缴密層之膜厚為 50nm〜500nm、上述至少一缓衝層之膜厚為〇 1μιη〜ι μιη、 以及上述多孔層之膜厚為2μιη〜30μιη。 7 201205925:iW 34830twf.doc/n 在本發明之另-實施例中,上述多孔層的粒徑與上述 至少-緩衝層的粒徑之比值為3〜1〇,且上述至少一緩 的粒徑與上述緻密層的粒徑之比值為3〜1〇。 在本發明之另-實施例中,上述敏密層之孔隙度為 1%〜30%,抑制暗電流之效果在〇 7伏特下可達到1〇·5 A/cm2以下。 在本發明之另-實施例中,上述多孔層之孔洞大小為 5nm〜30麵’表面積為50m2/g〜15〇m2/g,以及孔隙度為201205925ji2TW 34830twf.doc/n VI. Description of the Invention: [Technical Field] The present invention relates to a titanium dioxide photoelectrode for a dye-sensitized solar cell (DSSC), and more particularly to a multilayer structure of nano titanium dioxide light Electrode and method of manufacturing the same. [Prior Art] A dye-sensitized solar cell is composed of a substrate, a transparent conductive film, a semiconductor photoelectrode, a dye, a charge transporting medium (electrolyte/solvent), and a counter electrode. Currently, the upper and lower substrates are often used as glass substrates. . In the conventional process of preparing the photoelectrode, the TiOj paste containing the organic binder is coated on the conductive (four) substrate, and then subjected to a high-temperature sintering process to make the 2 Ti02 particles have a good connection. And remove the slurry of organic dead binder. The traditional method is to use isopropyl (titanium isGpn) pQxide, ττιρ) 2 flooding 'water _ cheng Cheng Lai, in the titanium metal high pressure 加 warm water τκΓ理骚2 crystalline Ti〇2 particles, and then add The organic knotting agent is formed into 4 s =, and is applied to the substrate. 'High temperature calcination (about use. 'Forming a porous film, as a photoelectrode of a sensitized battery ^ Battery is a must-have for the battery. The heat-resistant temperature avoids the change and the 'slowing the sintering temperature may face some problems, such as the complete solution of the I method, the porosity of the film is reduced, and the adhesion between the film and the substrate is poor, and the TiO 2 particles are interposed. .......ii'W 34830twf.doc/n Poor knot, etc. These problems will directly affect the overall efficiency of the battery. In addition, the traditional Ti〇2 photoelectrode is fabricated directly on a transparent conductive substrate. Coating a porous Ti〇2 film, because of the relationship between the hole and the conductive substrate, the electrons flowing through the conductive substrate recombine with the electrolyte in the hole, resulting in the generation of dark current, resulting in the battery Reduced efficiency, especially on metal substrates such as stainless steel When the substrate is used, the influence of dark current is more obvious, which seriously reduces the photocurrent and conversion efficiency. In order to prevent the generation of dark current, recent studies have found that a dense layer must be deposited between the conductive substrate and the porous layer by using Ticl4. As a precursor, the conductive substrate is pretreated by immersion, and then subjected to high temperature calcination to form a dense layer. Some people use titanium organic compounds as precursors to form a sensitive layer on the substrate by Southern temperature spray cracking. For example, the U.S. patent is still 6,683,244. However, the compactness of the dense layer formed by such a method is obviously insufficient, so the dark current is limited to be reduced, and both are subjected to high temperature treatment (>450. 〇, cannot be used in a low temperature process, plus The precursor used is strongly acidic and cannot be used on a metal substrate, so it is greatly limited in application. In order to overcome the difficulty in fabricating a TiO2 photoelectrode at a low temperature, it is also studied to add an organic binder and pressurization (1) , 000 Kg/cm2 to 10,000 Kg/cm2) in a manner that promotes the bonding of the Ti02 nanopowder to the flexible substrate, as in US Pat. No. 7,224,036. Machine binder and Ti〇2 nano powder mixed component 'processed by pressure 20 MPa~200 MPa. The above method is to form a low temperature type Ti〇2 photoelectrode by applying extreme pressure, due to pressure Very high, can not be used for large area sun 201205925 -----v〇12TW 34830twf, doc / n battery production, and equipment costs, thus limiting the practicality of the method. [Summary of the Invention] The present invention provides a multilayer structure The manufacturing method of the nano titanium dioxide photoelectrode can reduce the dark current by adjusting the structure particle size, and improve the photocurrent and the battery efficiency. The present invention further provides a multilayer structure nano titanium dioxide photoelectrode, which can reduce dark current and improve photocurrent and cell efficiency. The invention provides a method for manufacturing a multilayer structure nano titanium dioxide photoelectrode, which comprises preparing a first neutral aqueous titanium dioxide sol, coating, drying and calcining the first neutral aqueous titanium dioxide sol on a substrate, Forming a sensitive layer. Weaving, preparing - the second neutral aqueous phase is dihydrated and is controlled to reduce the reduction of the second aqueous phase of the titanium dioxide by more than the above-mentioned fraction of the aqueous titanium dioxide sol. Next, the second aqueous phase titanium dioxide sol is coated, dried and calcined on the sensitive layer to form at least. Formed on the porous layer, where in the first. - No organic drilling agent is added to the neutral aqueous phase titania sol. The method for preparing the above-mentioned first and second neutral water titanium oxide sols comprises the steps of synthesizing the W layer by a procedure of titanium metal salt solution, precipitation, water washing, degumming and heating and refluxing. The particle size of the porous::! aqueous phase dioxygen sol is larger than the particle size of the second middle third titanium sol, and is coated and dried on the buffer layer ^ 201205925 34830twf.doc/ n Synthesized with procedures for reading, washing, degumming and warming reflux. In the actual wipe of the present invention, the above-mentioned first, second and third neutrals are prepared in accordance with the conditions for the preparation of the titanium oxide, except for the above-mentioned heating time. The longer the heating is called, the longer the second, the second and the third neutral aqueous titanium dioxide sol. In one embodiment of the present invention, the heating and refluxing time is within 5〇=time. The prepared first, second and third neutral aqueous phase titanium dioxide/gluten has a particle size ranging from 1 nm to 300 nm. In one embodiment of the present invention, the first neutral aqueous phase titanium dioxide = the particle size of the gel is from 1 nm to 8 nm. The temperature of the first neutral aqueous titanium dioxide sol is heated, for example, from 0.5 hour to 1 Torr. hour. In one embodiment of the invention, the second neutral aqueous titanium dioxide sol has a particle size of from 8 nm to 20 nm. The warming reflux time for preparing the second neutral aqueous titanium dioxide sol is, for example, 10 hours to 20 hours. In an embodiment of the invention, the third neutral aqueous titanium dioxide sol has a particle size of from 20 nm to 300 nm. The warming reflux time for preparing the third neutral aqueous titanium dioxide sol is, for example, 20 hours to 50 hours. 201205925 12TW 34830twf.doc/n In one embodiment of the invention, the substrate comprises a conductive glass or a metal material. In one embodiment of the present invention, before the first neutral aqueous titanium dioxide sol is coated on the substrate, the substrate is subjected to hydrophilic treatment using atmospheric plasma to enhance the aqueous phase sol coating effect. In one embodiment of the present invention, the first neutral aqueous titanium dioxide sol is coated on the substrate, and the second neutral aqueous titanium dioxide sol is coated on the dense layer, including a immersion plating method or a spraying method. It is preferably a dip-plating method. In an embodiment of the present invention, the method of forming a porous layer on the buffer layer may be first preparing a titanium dioxide paste, adding an organic binder to the titanium dioxide slurry, and then coating the buffer layer. The above titanium dioxide slurry is clothed, dried and calcined. The present invention further provides a multilayer structure nano titanium dioxide photoelectrode for use in a dye-sensitized solar cell comprising at least one uniform layer, a porous layer and at least one buffer layer. The sensitive layer, the porous layer and the buffer layer are composed of a plurality of titanium dioxide particles. The buffer layer is located between the dense layer and the porous layer to promote particle bonding between the dense layer and the porous layer to enhance photocurrent generation, wherein the particle size of the porous layer is larger than the particle size of the enamel layer, and at least one buffer layer The particle size ranges between the particle size of the dense layer and the particle size of the porous layer. In still another embodiment of the present invention, the film thickness of the dense layer is 50 nm to 500 nm, the film thickness of the at least one buffer layer is 〇 1 μm to ι μηη, and the film thickness of the porous layer is 2 μm to 30 μm. 7 201205925: iW 34830twf.doc/n In another embodiment of the present invention, the ratio of the particle diameter of the porous layer to the particle diameter of the at least-buffer layer is 3 to 1 〇, and the at least one retarded particle diameter The ratio of the particle diameter to the dense layer is 3 to 1 Torr. In still another embodiment of the present invention, the density of the above-mentioned sensitive layer is 1% to 30%, and the effect of suppressing dark current can be 1 〇 5 A/cm 2 or less at 〇 7 volts. In another embodiment of the present invention, the porous layer has a pore size of 5 nm to 30 Å and a surface area of 50 m 2 /g to 15 〇 m 2 /g, and the porosity is

基於上述,本發明使用中性水相Ti〇2溶膠為起始物, 並調控观溶膠之粒徑大小,並依粒鼓小之不同以塗饰 ^式製。贿層、緩衝層或多孔層。所製作之敏密層,敏 :性甚高’抑制暗電流的效果更為明顯,且輯不具強酸 腐蝕性,故可直接使用於金屬基材之塗佈。同樣的塗佈方 式亦可使用於緩衝層與多孔層薄膜之製作。由於本發明使 用的中性水相Ti〇2溶膠不須添加有機粘結劑,故可運用於 低溫製程。Based on the above, the present invention uses a neutral aqueous phase Ti 〇 2 sol as a starting material, and regulates the particle size of the sol, and is made by coating according to the difference of the granules. Bribe layer, buffer layer or porous layer. The sensitive layer produced is sensitive: the effect is very high. The effect of suppressing dark current is more obvious, and the series is not corrosive, so it can be directly applied to the coating of metal substrates. The same coating method can also be used for the production of the buffer layer and the porous layer film. Since the neutral aqueous phase Ti〇2 sol used in the present invention does not need to be added with an organic binder, it can be used in a low temperature process.

為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 圖1疋依照本發明之一實施例的一種染料敏化太陽電 池的剖面圖。 請參照圖1,這個實施例中的染料敏化太陽電池1〇〇 8 2012〇5925ui2tw 34830twf.doc/n 包括多層結構奈米二氧化鈦光電極102 ,其至少包括一緻 密層104、至少一緩衝層106與一多孔層1〇8。緻密層1〇4、 緩衝層106與多孔層1〇8都是由多數個二氧化鈦顆粒所組 成。緻密層104是用以阻絕染料敏化太陽電池1〇〇之電解 液110直接接觸導電基材112而抑制暗電流發生。多孔層 108則提供表面積作為吸附染料114的載體,以促進光線 吸收與光電子產生》在本實施例中,上述緻密層之膜 厚例如50nm〜500 nm、上述多孔層1〇8之膜厚例如 2μιη〜30μιη。此外,上述敏密層1〇4之孔隙度例如ι〇/〇〜 30°/。’抑制暗電流之效果在〇·7伏特下例如達到i〇-5A/cm2 以下。而多孔層108之孔洞大小例如5nm〜3〇nm、表面積 例如50m2/g〜150 m2/g、以及孔隙度例如30%〜65〇/〇。 在圖1中,緩衝層106是位於緻密層1〇4與多孔層1〇8 之間’以促進前述緻密層1〇4與多孔層1〇8間的顆粒連結, 增進光電流產生,其中多孔層1〇8之粒徑大於緻密層1〇4 之粒徑,且至少一緩衝層1〇6之粒徑範圍介於緻密層1〇4 φ 的粒徑與多孔層108的粒徑之間,因此能增進緻密層1〇4 與多孔層108之間的接合性。舉例來說,多孔層丨〇8的粒 棱與緩衝層106的粒徑之比值例如3〜1〇,且上述緩衝層 106的粒徑與上述敏密層104的粒徑之比值例如3〜10。緩 衝層106之膜厚例如〇.ipm 〜1 μιη。 至於染料敏化太陽電池100的其他構件均可引用現有 技術’譬如本圖在多層結構奈米二氧化鈦光電極丨02對面 有形成於對向基材116表面之對電極118。 1 w 34830twf.doc/n 201205925 奈米例的-種製造多層結構 請參照圖2,在步驟綱卜製備 氧化鈦溶膠。製備上述第一中性 水相二 例如以齡輕類(如四氯饿)騎^ 之方法 沉殿、水洗、解膠與加溫迴流的 、=解、中和 流之時間愈長,所製備之第一中性述加溫迴 ί 一ΐ之時間在50小時以内,所製 備之第_巾性水相二氧錄轉妹徑 二,實ΤΤ中性水相二氧化鈦溶膠: ^大”為1 nm〜8 nm ;舉例來說,製備這樣的第一中性 水相一氧化鈦轉的加溫迴流之_約在W小時至料 時。 在步驟202中,於-基板上塗佈、乾燥與鍛燒第一中 性水相二氧化鈦溶膠,以形成—緻密層。在進行步驟 時不需在第-中性水相二氧化鈦溶膠中添加有機钻結劑。 而上述塗佈方式例如浸鍍方式或喷塗方式,較佳是浸鍍方 式。而锻燒第-中性水相二氧化鈦溶膠之溫度約為2〇〇r 〜550 C,且溫度以低於450。(:較佳。鍛燒方式包括發熱體 加熱方式(如使用錄鉻線發熱體加溫爐)或紅外線加熱方 式,其中低溫下以紅外線加熱較佳。乾燥第一中性水相二 氧化鈦溶膠之溫度為1〇〇。(:〜15(TC。上述基材例如導電玻 璃或金屬材料。此外,於步驟202之前,還可先使用大氣 電漿對基材進行親水處理,以增進水相溶膠塗佈效果。 201205925 ------J12 Γ W 3483 Oiwf. d〇c/n 然後’在步驟204中,费借一墙, 溶膠,且需控制第二中性水相中性水相二氧化欽 述第-中性水相二氧化二:==== 程序而合成。需注意:=二==流氧的 =溶膠之㈣條辆可姉,除加溫域之時間外。因 =溫=流之時間愈長,所製備之第二中性水相二氧化鈦 各谬之粒彳讀大。舉例來說,當加溫迴流之㈣在50小時 、内所裝備之第—巾性水相二氧化鈦溶膠之粒徑範圍在 1 二〜3_n之^在本實關中,第二中性水相二氧化欽 冷膠的粒控大小為8nm〜2Gnm ;舉例來說,製備這樣的第 ;^水_相二氧化鈦溶膠的加溫迴流之時間約在1〇小時 .之後,在步驟206中,於緻密層上塗佈、乾燥與鍛燒 上述第二中性水相二氧化鈦溶膠,以形成至少一緩衝層。 11 'W 3483〇twf.doc/n 201205925 如有需要的話,可重霜推 形成-層以上,f 上步驟2()4至206,來 ==:步增進前述_=將形: 見步多孔層,其詳細步辣可參 υ 4香步驟212至216,J:中步驟石 210較適合低溫製程。 至 首先,在步驟⑽中,製備―第三中性水相 浴膠,且需控制第三中性, 礼化鈦 :第二-水相二氧化二 為前:=:;:!::屬:類(如四氣化錄) 程序而合成、解膠與加溫迴流的 攻上达第一、第二與第三中性水相二氧化鈦 2 >,製備條件均相同時,單單改變加溫迴流之時間就能 制浴膠粒控’譬如加溫迴流之時間愈長,所製備之第三 =水相二氧化鈦溶膠之粒徑愈大。舉例來說,加溫迴流 ^間在5G小時以内,所製備之第三中性水相二氧化鈦溶 /之粒徑範圍在lnm〜3〇〇nm之間。在本實施例中第三 吐水相一氧化鈦溶膠的粒徑大小為2〇nm〜300nm ;舉例 來說,製備這樣的第三中性水相二氧化鈦溶膠的加溫迴流 之時間約在20小時至5〇小時。 一然後,在步驟21〇中,於緩衝層上塗佈、乾燥與鍛燒 第二中性水相二氧化鈦溶膠,以形成多孔層,其中在第三 中性水相二氧化鈦溶膠中不添加有機粘結劑。上述塗佈方 12 201205925 34830twf.doc/n 式例如浸财式或倾方式,較佳是喷塗方式。至於锻燒 第三中性水相二氧化鈦溶膠之溫度約為2〇〇t〜55〇t,且 溫度以低於45(TC較佳。锻燒第三中性水相二氧化鈦溶膠 之方式包括發顏加熱方式或紅外線加熱方式,低溫下以 =外線加紐佳^乾鮮三巾性水相二氧化鈦溶膠之溫 度約為100°c〜15〇t:。 另外,在步驟犯中是先製備一 Ti〇2^(paste),此 處所指的漿料可採用現有技術製備,於此不再資述。 然後,在步驟214中,於Ti〇2^中添加有機粘結劑, 其中有機粘結劑例如羥乙基纖維素(hydr〇xyethyi cellulose)、乙基纖維素(ethyiceuul〇se)等。 、之後’在步驟216中,於緩衝層上塗佈、乾燥與鍛燒 上述二氧化鈦漿料,以形成多孔I在步驟212〜216 用的漿料因為含有触結劑,所崎燒溫度4 55(TC。The above described features and advantages of the present invention will become more apparent from the description of the appended claims. [Embodiment] Fig. 1 is a cross-sectional view showing a dye-sensitized solar cell according to an embodiment of the present invention. Referring to FIG. 1, the dye-sensitized solar cell of the embodiment 1〇〇8 2012〇5925ui2tw 34830twf.doc/n includes a multilayer structure nano titanium dioxide photoelectrode 102 including at least a uniform dense layer 104 and at least one buffer layer 106. With a porous layer 1〇8. The dense layer 1 〇 4, the buffer layer 106 and the porous layer 1 〇 8 are each composed of a plurality of titanium dioxide particles. The dense layer 104 is used to prevent the electrolytic solution 110 of the dye-sensitized solar cell from directly contacting the conductive substrate 112 to suppress the occurrence of dark current. The porous layer 108 provides a surface area as a carrier for adsorbing the dye 114 to promote light absorption and photoelectron generation. In the present embodiment, the film thickness of the dense layer is, for example, 50 nm to 500 nm, and the film thickness of the porous layer 1〇8 is, for example, 2 μm. ~30μιη. Further, the porosity of the above-mentioned sensitive layer 1〇4 is, for example, ι / 〇 30 ° /. The effect of suppressing dark current is, for example, i 〇 -5 A/cm 2 or less at 〇 7 volts. The porous layer 108 has a pore size of, for example, 5 nm to 3 Å, a surface area of, for example, 50 m 2 /g to 150 m 2 /g, and a porosity of, for example, 30% to 65 Å / Torr. In FIG. 1, the buffer layer 106 is located between the dense layer 1〇4 and the porous layer 1〇8 to promote particle bonding between the dense layer 1〇4 and the porous layer 1〇8, and to enhance photocurrent generation, wherein porous The particle diameter of the layer 1〇8 is larger than the particle diameter of the dense layer 1〇4, and the particle diameter of the at least one buffer layer 1〇6 is between the particle diameter of the dense layer 1〇4 φ and the particle diameter of the porous layer 108, Therefore, the bondability between the dense layer 1〇4 and the porous layer 108 can be improved. For example, the ratio of the particle size of the porous layer 8 to the particle size of the buffer layer 106 is, for example, 3 to 1 Å, and the ratio of the particle diameter of the buffer layer 106 to the particle diameter of the dense layer 104 is, for example, 3 to 10 . The film thickness of the buffer layer 106 is, for example, 〇.ipm 〜1 μιη. As for the other members of the dye-sensitized solar cell 100, the prior art can be cited. For example, the counter electrode 118 formed on the surface of the counter substrate 116 is opposed to the multilayered nano titanium dioxide photoelectrode 丨02. 1 w 34830twf.doc/n 201205925 A multilayered structure of a nanometer example. Referring to Fig. 2, a titanium oxide sol is prepared in the step of the step. The preparation of the first neutral aqueous phase 2 described above, for example, by the method of riding a lighter type (such as tetrachloroethylene), the longer the time is, the longer the solution is, the more the solution is, the more The first neutral description of heating back to ί ΐ ΐ 在 在 在 在 在 在 在 在 在 在 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备Nm~8 nm; for example, preparing such a first neutral aqueous phase-titanium oxide to be heated and refluxed at about W hours to feed. In step 202, coating, drying and coating on the substrate The first neutral aqueous titanium dioxide sol is calcined to form a dense layer. It is not necessary to add an organic drilling agent to the first neutral aqueous titanium dioxide sol during the step. The above coating method is, for example, immersion plating or spraying. The coating method is preferably a immersion plating method, and the calcined first-neutral aqueous phase titanium oxide sol has a temperature of about 2 〇〇r to 550 C, and the temperature is lower than 450. (: Preferably, the calcination method includes heating. Body heating method (such as using a chrome wire heating body heating furnace) or infrared heating method, in which red at low temperature Preferably, the temperature of the first neutral aqueous phase titanium oxide sol is 1 Torr. (: 〜15 (TC. The above substrate is, for example, a conductive glass or a metal material. Further, before step 202, the atmosphere may be used first) The plasma is hydrophilically treated to enhance the aqueous phase sol coating effect. 201205925 ------J12 Γ W 3483 Oiwf. d〇c/n Then 'in step 204, the fee borrows a wall, sol, And need to control the second neutral aqueous phase neutral water phase dioxidation to describe the first-neutral aqueous phase dioxide dioxide: ==== program and synthesis. Note: = two = = oxygen = sol (four) The vehicle can be smashed, except for the time of heating the zone. Because the temperature = the longer the flow time, the second neutral aqueous phase of the prepared titanium dioxide has a large grain reading. For example, when the temperature is reflowed (4) In the 50 hours, the particle size range of the titanium dioxide sol of the first aqueous phase is 1 2~3_n ^ In this real customs, the grain size of the second neutral aqueous phase dioxide cold gel is 8nm~ 2Gnm; for example, the preparation of such a second water-phase titanium dioxide sol is heated at a reflux time of about 1 hour. Thereafter, in step 206 The second neutral aqueous titanium dioxide sol is coated, dried and calcined on the dense layer to form at least one buffer layer. 11 'W 3483〇twf.doc/n 201205925 If necessary, the heavy frost can be pushed Forming - above layer, f on step 2 () 4 to 206, to ==: step to enhance the aforementioned _= shape: see stepped porous layer, its detailed step is savory. 4 steps 212 to 216, J: step Stone 210 is more suitable for low temperature process. Firstly, in step (10), the third neutral aqueous phase bath gel is prepared, and the third neutrality is controlled, and the second-aqueous phase is the second: :;:!:: genus: class (such as four gasification recorded) program synthesis, degumming and heating reflux to attack the first, second and third neutral aqueous phase titanium dioxide 2 >, the preparation conditions are When the same time, the temperature of the heating and reflux can be changed to make the bath pellet control. For example, the longer the temperature is refluxed, the larger the particle size of the prepared third = aqueous titanium dioxide sol. For example, the temperature of the third neutral aqueous phase of titanium dioxide dissolved within 5G hours is between 1 nm and 3 〇〇 nm. In the present embodiment, the particle size of the third effluent phase-titanium oxide sol is from 2 〇 nm to 300 nm; for example, the temperature of the third neutral aqueous titanium dioxide sol is prepared to be refluxed for about 20 hours. 5 hours. Then, in step 21, coating, drying and calcining the second neutral aqueous titanium dioxide sol on the buffer layer to form a porous layer, wherein no organic bonding is added in the third neutral aqueous titanium dioxide sol Agent. The above-mentioned coating method 12 201205925 34830 twf.doc/n is, for example, a dip or tilting method, preferably a spraying method. The temperature of the calcined third neutral aqueous titanium dioxide sol is about 2〇〇t~55〇t, and the temperature is lower than 45 (TC is preferred. The calcined third neutral aqueous titanium dioxide sol includes the hair Heating method or infrared heating method, at a low temperature, the temperature of the titanium dioxide sol is about 100 ° c 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 2^(paste), the slurry referred to herein may be prepared by the prior art, and is not described here. Then, in step 214, an organic binder is added to the Ti 2 2 compound, wherein the organic binder is, for example, Hydroxyethyl cellulose (ethyiceuul〇se), etc., then 'in step 216, coating, drying and calcining the above titanium dioxide slurry on the buffer layer to form a porous The slurry used in steps 212 to 216 has a sintering temperature of 4 55 (TC) because it contains a contact agent.

以下列舉幾個實驗來驗證本發明的效果。 實驗一 首先’針對上述中性水相二氧化鈦溶膠之製備,觀察 加溫迴流的時間與所製備之溶雜_的關係。 在實驗中以四氣化鈦(TiCl4)為前驅物,先將54 肥4溶解於23.2ml之去離子水中,溶解方式為戰緩緩 滴入去離子水巾’其滴定_約為15分鐘。織,將稀釋 後之 1M TiCl4 (28.6 ml)與 3G% NH4OH 溶液(約 2〇 ml)進行 中和沉殿,其方式是將NH4〇H溶液緩慢滴入TiCl4溶液 20120592^ 34一 中,滴定終點為pH = 8,所需時間大約90分鐘。達滴定 終點後,持續授拌老化2個小時。沉殿物須進行水洗、過 濾之步驟,共重複五次,利用水幫浦(aspirator)或機械幫浦 (mechanical pump)進行抽氣過濾。過濾後之濾餅加入適量 之去離子水並攪拌分散2個小時,將雙氧水(35%,27 ml) 緩緩加入(約5分鐘),繼續攪拌約30分鐘完成解膠。 解齊後的溶液升溫至90 °C ’進行加溫迴流,加溫迴 流的時間從0.5小時至4〇小時,可合成約200 mL之水相Several experiments are listed below to verify the effects of the present invention. Experiment 1 First, the preparation of the above neutral aqueous titanium oxide sol was observed, and the relationship between the time of warming reflux and the prepared dissolved _ was observed. In the experiment, four titanium hydride (TiCl4) was used as the precursor. First, 54 fertilizer 4 was dissolved in 23.2 ml of deionized water. The dissolution method was to slowly drop the deionized water towel to titrate _ about 15 minutes. Weaving, the diluted 1M TiCl4 (28.6 ml) and 3G% NH4OH solution (about 2 〇ml) were used to neutralize the sinking chamber by slowly dropping the NH4〇H solution into the TiCl4 solution 20120592^34, titrating the end point. For pH = 8, the time required is approximately 90 minutes. After the end of the titration, the mixture was aged for 2 hours. The sediments must be washed and filtered for a total of five repetitions, using a water pump (aspirator) or mechanical pump for suction filtration. The filtered cake was added with an appropriate amount of deionized water and stirred for 2 hours. Hydrogen peroxide (35%, 27 ml) was slowly added (about 5 minutes), and stirring was continued for about 30 minutes to complete the degumming. After the solution is warmed up to 90 °C, the temperature is refluxed, and the temperature is refluxed from 0.5 hours to 4 hours, and about 200 mL of aqueous phase can be synthesized.

二氧化欽溶膠。所得到之溶膠為中性,pH值為7〜8.5,外 觀為淡黃澄清。 以動態光線散射儀(Dynamic Light Scattering,MalvernDioxide sol. The obtained sol was neutral, pH was 7 to 8.5, and the appearance was pale yellow and clear. Dynamic Light Scattering (Dalamic Light Scattering, Malvern)

Zetasizer Nano)分析粒徑大小。粒徑大小隨著迴流時間增長 而變大’其依存性如圖3所示。迴流時間為G5小時,可 付到粒徑大小為K2 nm之溶膠,迴流時間增加到4〇小 時,可得到,徑大小100 rnn以上之溶膠。Zetasizer Nano) analyzes particle size. The particle size becomes larger as the reflow time increases. The dependence is shown in Fig. 3. The reflux time is G5 hours, and the sol having a particle size of K2 nm can be obtained. When the reflux time is increased to 4 hours, a sol having a diameter of 100 rnn or more can be obtained.

不同粒徑大小之溶膠塗佈後經乾燥、锻燒所得到 =的孔洞从、以_及·度(聰ta ,亦有所不同,粒 積及孔隙度之間的關係如表一所示。 比表面 表一The pores obtained by drying and calcining the sols of different particle sizes after coating are as follows: _ and · degrees (constantly different, the relationship between grain size and porosity is shown in Table 1. Surface surface

201205925201205925

Ji2TW 34830twf.doc/n 36.2 7.8 70.5 39 51.3 9.5 107.8 53 63 7.5 85.4 41 108 12.8 81.5 54 由表一可知,當粒徑從3.6 nm提高至51.3 nm時,孔洞 大小從4.8 nm提高至9.5 nm,比表面積從58.8 m2/g增加至 107.8 m2/g,孔隙度貝ij從28%增加至53%。當粒徑從51.3 nm 繼續提高至108 nm時,孔洞大小提高至12.8 nm,比表面積 則下降至81.5 m2/g,而孔隙度接近相同為54%。 實驗二 中性水相二氧化鈦溶膠在低溫(2〇〇。〇下進行鍛燒,亦 可得到良好的孔洞大小、比表面積及孔隙度。 以實驗一的表一中之粒徑大小為108nm之溶膠為例, 在低溫(200。〇與高溫(450。〇下鍛燒所得到孔洞特性比較 如表二所示。 表二Ji2TW 34830twf.doc/n 36.2 7.8 70.5 39 51.3 9.5 107.8 53 63 7.5 85.4 41 108 12.8 81.5 54 As shown in Table 1, when the particle size is increased from 3.6 nm to 51.3 nm, the hole size is increased from 4.8 nm to 9.5 nm. The surface area increased from 58.8 m2/g to 107.8 m2/g, and the porosity ij increased from 28% to 53%. When the particle size continues to increase from 51.3 nm to 108 nm, the pore size increases to 12.8 nm, the specific surface area decreases to 81.5 m2/g, and the porosity is approximately the same as 54%. In the second experiment, the neutral aqueous phase titanium dioxide sol was calcined at a low temperature (2 Torr., and a good pore size, specific surface area and porosity were obtained. The sol with a particle size of 108 nm in Table 1 of Experiment 1 For example, at low temperature (200. 〇 and high temperature (450. The comparison of the hole characteristics obtained by underarm calcination is shown in Table 2. Table 2)

所得之孔洞_,喊_則大幅The resulting hole _, shouting _ is large

^下仍可m /g) ’孔隙度則略為增加(56%),顯示低溫锻 燒下仍可㈣j良好的賴孔洞特性。 實驗三 15 2012〇5?25tw 3483〇twfd〇c/n 針對緻密層的製作,觀察中性水相二氧化鈦溶膠與習 知技術之差異。 ' 使用實驗一所製備之粒徑約lnm〜8nm的中性水相二 氧化鈦溶膠,以浸鍍方式塗佈MFT0玻璃基材上,且在^ 佈之前已經使用大氣電漿對基材進行親水處理,以增加溶 膠的附著性。 3 ' 。鍍膜經120 °C乾燥後再經高溫爐鍛燒,鍛燒溫度為45〇 °C °敏密層厚度可由塗佈的次數加以調控,在兩次的塗佈 次數下,敏密層厚度經擴圓儀量測,約為1〇〇nm。以粒徑 1.5 nm之中性水相二氧化鈦溶膠所製作之緻密層(樣品一 1 的孔隙度約為20%,以粒徑5 nm之中性水相二氧化鈦溶膠 所製作之緻密層(樣品二)的孔隙度約為3〇0/〇。 至於習知之緻密層製作方式有下列兩種:(1)以四異丙 基醇欽(TTIP)為祕原料4FT〇玻璃的表面以旋轉塗佈 方式塗佈上一層TTIP溶液(3〇μ1的TTIP加入! 〇mi的乙醇 中),將樣品置於烘箱中供乾,再以45叱鍛燒而成 (比較例一)。(2)以四氣化鈦(Ticl4)為起始原料:將FT〇玻 璃浸泡於濃度40mM的TiCl4水溶液30分鐘(7〇。〇。鈇德將檨 品取出。,以乙醇和去離子水清洗後,將樣品置於^箱中烘 乾(120 C) ’再以45〇°C锻燒而成(比較例二)。 之口後進行暗微制評估。評估方式是㈣得的緻密 層(樣品一、樣品二、比較例一和比較例二)作為電極,組 成元件以進行暗電流測試,並與未塗佈緻密層之ft〇玻璃 比較,緻密層的存在可明顯降低暗電流的產生,且當製作 201205925_ 34830twf.doc/n 緻密層所使用之Ti〇2粒徑越小’抑制暗電流的效果即 顯。 圖4為不同顆粒大小製作之緻密層對Ti〇2光電極之暗 電流的影響。從圖4可知,以粒徑為15nm之中性水相二^ 化鈦溶膠所製作之緻密層(樣品一),可將暗電流降低至1〇_5 A/cm2以下(電壓為0.7 V時);當粒徑增加為5 nm時(樣品 二)’暗電流略高約為5xl〇·5 A/cm2 (電壓為〇·7 乂時),兩者 皆較未塗佈緻密層之FTO玻璃之暗電流(> 丨〇-4 A/em2 @ 〇 7 參 V)低’也比以習知方法製作之緻密層(比較例一和比較例二) 所得到的暗電流低,充分顯示以本發明之中性水相二氧化 鈥溶膠製作的緻密層抑制暗電流產生之效果。 實驗四 比較單層光電極與本發明之多層結構奈米二氧化鈦光 電極在光電特性上之差異。 緩衝層的製備是使用實驗一所製備之粒徑約8 nm〜2〇 φ nm的中性水相一氧化鈦溶膠,以浸鍵方式塗佈於實驗三製 備之粒徑1.5 nm的緻密層上。 鍵膜經120 C乾燥後再經高溫爐鍛燒,锻燒溫度為45〇 C。緩衝層厚度可由塗佈的次數加以調控,在塗佈次數為 兩次下,緩衝層厚度約為15〇 nm» 夕孔層薄膜的製備是使用實驗一所製備之粒徑約 20nm〜150nm的中性水相二氧化鈦溶膠,以噴塗方式塗佈 於上述緩衝層上。鍍膜經120它乾燥後再經高溫爐鍛燒, 17 34830twf.doc/n 201205925^ can still be m / g) 'porosity is slightly increased (56%), showing that under low temperature forging can still (four) j good Lai hole characteristics. Experiment 3 15 2012〇5?25tw 3483〇twfd〇c/n For the production of the dense layer, the difference between the neutral aqueous titanium dioxide sol and the conventional technique was observed. Using a neutral aqueous phase titanium dioxide sol having a particle size of about 1 nm to 8 nm prepared in Experiment 1, the MFT0 glass substrate was coated by immersion plating, and the substrate was subjected to hydrophilic treatment using atmospheric plasma before the coating. To increase the adhesion of the sol. 3 '. The coating is dried at 120 °C and then calcined in a high-temperature furnace. The calcination temperature is 45 °C. The thickness of the sensitive layer can be controlled by the number of coatings. Under the two coating times, the thickness of the dense layer is expanded. The round meter measures about 1 〇〇 nm. A dense layer made of a neutral aqueous phase titanium dioxide sol having a particle size of 1.5 nm (the porosity of sample-1 is about 20%, and the dense layer made of a neutral aqueous titanium dioxide sol having a particle size of 5 nm (sample 2) The porosity is about 3〇0/〇. As for the conventional dense layer, there are two kinds of methods: (1) The surface of 4FT glass with 4 isopropyl alcohol (TTIP) is coated by spin coating. A layer of TTIP solution (3 〇μ1 of TTIP was added! 〇mi in ethanol), the sample was placed in an oven for drying, and then calcined at 45 ( (Comparative Example 1). (2) Four gasification Titanium (Ticl4) was used as a starting material: FT 〇 glass was immersed in a 40 mM TiCl4 aqueous solution for 30 minutes (7 〇. 〇. 鈇德檨), after washing with ethanol and deionized water, the sample was placed in ^ Drying in the box (120 C)' is then calcined at 45 °C (Comparative Example 2). The dark micro evaluation is carried out after the mouth. The evaluation method is (4) the dense layer (sample 1, sample 2, comparison) Example 1 and Comparative Example 2) As electrodes, the components were analyzed for dark current and compared with the ft-glass ratio of the uncoated dense layer. The presence of a dense layer can significantly reduce the generation of dark current, and the smaller the particle size of Ti〇2 used in making the 201205925_ 34830twf.doc/n dense layer, the effect of suppressing dark current is obvious. Figure 4 is made of different particle sizes. The effect of the dense layer on the dark current of the Ti〇2 photoelectrode. As can be seen from Fig. 4, the dark current can be reduced by a dense layer (sample 1) made of a neutral water phase titanium oxide sol having a particle diameter of 15 nm. To 1〇_5 A/cm2 or less (when the voltage is 0.7 V); when the particle size is increased to 5 nm (sample 2), the dark current is slightly higher than 5xl〇·5 A/cm2 (the voltage is 〇·7 乂) At the same time, both of them are lower than the dark current of the FTO glass (> 丨〇-4 A/em2 @ 〇7 VV) which is not coated with a dense layer, and is also denser than that produced by a conventional method (Comparative Example 1) And Comparative Example 2) The obtained dark current is low, and the effect of suppressing dark current generation by the dense layer made of the neutral aqueous phase cerium oxide sol of the present invention is sufficiently exhibited. Experiment 4 compares the single-layer photoelectrode with the multilayer structure of the present invention. The difference in photoelectric characteristics of nano titanium dioxide photoelectrode. The preparation of buffer layer is the use of experiment one. A neutral aqueous phase titanium oxide sol with a particle size of about 8 nm to 2 〇 φ nm was coated on the dense layer of 1.5 nm diameter prepared by Experiment 3 by dipping. The bond film was dried at 120 C. After calcination in a high-temperature furnace, the calcination temperature is 45 ° C. The thickness of the buffer layer can be controlled by the number of coatings. Under the application times of twice, the thickness of the buffer layer is about 15 〇 nm. A neutral aqueous phase titanium oxide sol having a particle diameter of about 20 nm to 150 nm prepared in Experiment 1 was applied to the above buffer layer by spray coating. The coating is dried by 120 and then calcined in a high temperature furnace, 17 34830twf.doc/n 201205925

.TW 鍛燒溫度為450 °C ’以完成多層結構奈米二氧化鈦光電極 之製作。 至於單層光電極是直接在FTO玻璃表面塗佈形成上述 多孔層,其厚度約為8 μιη。 將鐘好單層或多層二氧化鈦薄膜的光電極,先吸附適 量的染料(Ν719,(Bu4N)4[Ru(dcbpy)2(NCS)2]),再加上電解 質(I2/LiI/3-曱氧基丙腈)與對電極,組成一個電池元件。然 後使用太陽先模擬器作為光源照射電池元件,光照強度為 1,000 W/m2 (1 sun) ’並使用電壓/電流產生器量測不同電壓 下所產生的光電流,作成電壓-電流特性曲線,據以計算電 池之光電轉換效率。光電特性量測結果如表三所示。 表三 樣品類別 Jsc mA/cm2 V〇〇 mV FF V % 單層光電極 7.9 750 0.59 3.5 多層結構奈米二 氧化鈦光電極 9.9 740 0.54 3.9 多層結構奈米二氧化鈦光電極可得到較高的光電流與 轉換效率,其中光電流從7.9mA/cm2增加至9.9mA/cm2, 轉換效率從3.5%增加至3.9%。 實驗五 使用與實驗四相同的方式製作緻密層與緩衝層,多孔 層的製備則以習知Ti〇2^料為起始原料,以旋轉塗佈方式 201205?2512Tw 34830twf.doc/n 塗佈在緩衝層上’經120 °C乾燥後再經高溫爐鍛燒,鍛繞 溫度為450 °C ’形成多層結構奈米二氧化鈦光電極。 當直接在FTO玻璃表面塗佈多孔層薄膜,即形成單層 結構之光電極。多孔層薄膜之厚度約為10μιη。 將鍍好單層或多層Ti〇2薄膜的光電極,採用與實驗四 相同的方式組成一個電池元件,並使用太陽光模擬器作為 光源照射電池元件’光照強度為1,〇〇〇 W/m2(l sun),再使 用電壓/電流產生器量測不同電壓下所產生的光電流,作成 電壓-電流特性曲線,據以計算電池之光電轉換效率。光電 特性量測結果如表四所示。 表四 樣品類別 】sc mA/cm2 V〇c mV FF V % 單層光電極 6.8 739 0.64 3.2 多層結構奈米二 氧化欽光電極 13.8 758 0.68 7.1 • 多層結構奈米二氧化鈦光電極可得到較高的光電流與 轉換效率’其中光電流從6.8 mA/cm2增加至13.8 mA/cm2, 轉換效率從3.2%增加至7.1%。 實驗六 多層結構奈米二氧化鈦光電極與單層光電極的製作同 實驗五’但使用不鏽鋼(SS304)基板取代FTO玻璃基板,多 孔層之厚度約為8 μιη。光電特性量測結果如表五所示。 34830twf.doc/n 201205925 . 表五 樣品類別 Jsc mA/cm2 V〇c mV FF V % 單層光電極 3.0 683 0.67 1.4 多層結構奈米 二氧化光電極 9.1 687 0.56 3.5The .TW calcination temperature was 450 °C to complete the fabrication of a multilayered nano titanium dioxide photoelectrode. As for the single-layer photoelectrode, the above porous layer is formed directly on the surface of the FTO glass to have a thickness of about 8 μm. The photoelectrode of a single-layer or multi-layered titanium dioxide film is first adsorbed with an appropriate amount of dye (Ν719, (Bu4N)4[Ru(dcbpy)2(NCS)2]), plus electrolyte (I2/LiI/3-曱) Oxypropionitrile) and the counter electrode form a battery element. Then use the solar simulator as a light source to illuminate the battery components with an illumination intensity of 1,000 W/m2 (1 sun)' and measure the photocurrent generated at different voltages using a voltage/current generator to create a voltage-current characteristic curve. To calculate the photoelectric conversion efficiency of the battery. The photoelectric property measurement results are shown in Table 3. Table 3 Sample category Jsc mA/cm2 V〇〇mV FF V % Single layer photoelectrode 7.9 750 0.59 3.5 Multilayer structure Nano titanium dioxide photoelectrode 9.9 740 0.54 3.9 Multilayer structure Nano titanium dioxide photoelectrode for higher photocurrent and conversion Efficiency, in which the photocurrent was increased from 7.9 mA/cm2 to 9.9 mA/cm2, and the conversion efficiency was increased from 3.5% to 3.9%. In the fifth experiment, the dense layer and the buffer layer were prepared in the same manner as in the experiment 4. The preparation of the porous layer was carried out by using a conventional Ti〇2 compound as a starting material, and coated by spin coating method 201205? 2512Tw 34830twf.doc/n. On the buffer layer, after drying at 120 ° C and then calcining through a high temperature furnace, the forging temperature is 450 ° C to form a multilayer structure nano titanium dioxide photoelectrode. When a porous layer film is directly coated on the surface of the FTO glass, a photoelectrode of a single layer structure is formed. The thickness of the porous layer film is about 10 μm. A photoelectrode coated with a single-layer or multi-layer Ti〇2 film was formed into a battery element in the same manner as in Experiment 4, and a solar light simulator was used as a light source to illuminate the battery element 'light intensity is 1, 〇〇〇W/m2 (l sun), the voltage/current generator is used to measure the photocurrent generated at different voltages, and a voltage-current characteristic curve is generated to calculate the photoelectric conversion efficiency of the battery. The results of photoelectric characteristics measurement are shown in Table 4. Table 4 sample categories] sc mA/cm2 V〇c mV FF V % single-layer photoelectrode 6.8 739 0.64 3.2 multi-layer structure nano-dioxide optical electrode 13.8 758 0.68 7.1 • multi-layer structure nano titanium dioxide photoelectrode can get higher Photocurrent and conversion efficiency 'where the photocurrent increased from 6.8 mA/cm2 to 13.8 mA/cm2, the conversion efficiency increased from 3.2% to 7.1%. Experiment 6 The fabrication of a multilayered nano-titanium dioxide photoelectrode and a single-layer photoelectrode was carried out in the same experiment. However, a stainless steel (SS304) substrate was used instead of the FTO glass substrate, and the thickness of the porous layer was about 8 μm. The photoelectric characteristics measurement results are shown in Table 5. 34830twf.doc/n 201205925 . Table 5 Sample Category Jsc mA/cm2 V〇c mV FF V % Single Layer Photoelectrode 3.0 683 0.67 1.4 Multilayer Structure Nano Dioxide Photoelectrode 9.1 687 0.56 3.5

多層結構奈米二氧化鈦光電極可得到較高的光電流與 轉換效率,其中光電流從3.0mA/cm2增加至9.1 mA/cm2, 轉換效率從1.4%增加至3.5%。 實驗七 多層結構奈米二氧化鈦光電極的製作方式同實驗四,但 鍛燒溫度改為200 °C,加溫方式則以紅外線加熱器鍛燒, 形成光電極並組成染料敏化太陽電池元件,測試其光電特 性。光電特性量測結果如表六所示。 表六 鍛燒溫度,。c Jsc mA/cm2 V v oc mV FF V % 200 4.6 769 0.68 2.4The multilayer structure of the nano titanium dioxide photoelectrode can obtain higher photocurrent and conversion efficiency, in which the photocurrent increases from 3.0 mA/cm2 to 9.1 mA/cm2, and the conversion efficiency increases from 1.4% to 3.5%. The experimental seven-layer structure nano titanium dioxide photoelectrode was fabricated in the same manner as in Experiment 4, but the calcination temperature was changed to 200 °C, and the heating method was calcined by an infrared heater to form a photoelectrode and constitute a dye-sensitized solar cell element. Test its photoelectric properties. The photoelectric property measurement results are shown in Table 6. Table 6 Calcination temperature,. c Jsc mA/cm2 V v oc mV FF V % 200 4.6 769 0.68 2.4

,, w 一 g Ί-ψ 到光電轉換效率為2.4%,證實使用中性水相二氧化鈦溶膠 為起始原料’可在低溫下有效製作光電極並應用於染料‘ 化太陽電池。以習知Ti〇2漿料在200 °C鍛燒條件下製作 之光電極,則無法有效進行光電轉換。 雖然本發明已以實施例揭露如上,然其並非用以限定 20 201205925,⑽ 34830twf.doc/n 本發明’任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作些許之更動與潤飾,故本 發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1是依照本發明之一實施例的一種染料敏化太陽電 池的剖面圖。 圖2是依照本發明之另一實施例的一種製造多層結構 奈米二氧化鈦光電極的步驟圖。 圖3是實驗一之粒徑大小與迴流時間之關係圖。 圖4疋實驗二之不同顆粒大小製作之緻密層對暗 之關係圖》 【主要元件符號說明】 100 :染料敏化太陽電池 102·多層結構奈米二氧化欽光電極 104 :緻密層 106 :缓衝層 108 :多孔層 110 :電解液 112 :基材 114 :染料 116 :對向基材 118 :對電極 200〜216 :步驟 21, w g gΊ-ψ to the photoelectric conversion efficiency of 2.4%, confirmed the use of neutral aqueous titanium dioxide sol as a starting material' can effectively produce photoelectrodes at low temperatures and applied to dyes' solar cells. The photoelectrode produced by the conventional Ti〇2 slurry under the conditions of calcination at 200 °C cannot effectively perform photoelectric conversion. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the scope of the present invention, which is not limited to the scope of the present invention, without departing from the spirit and scope of the present invention. A few modifications and refinements may be made, and the scope of protection of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view of a dye-sensitized solar cell in accordance with an embodiment of the present invention. Fig. 2 is a view showing the steps of fabricating a multilayer structure nano titanium dioxide photoelectrode according to another embodiment of the present invention. Figure 3 is a graph showing the relationship between the particle size of Experiment 1 and the reflux time. Figure 4疋 The relationship between the dense layer and the darkness of different particle sizes in Experiment 2 [Explanation of main components] 100: Dye-sensitized solar cell 102·Multilayer structure Nano-dioxide light electrode 104: dense layer 106: slow Punching layer 108: porous layer 110: electrolyte 112: substrate 114: dye 116: opposite substrate 118: counter electrode 200 to 216: step 21

Claims (1)

uW 34830twf.doc/n 201205925 七 申請專利範圍: 括 1.-種多層結構奈来二氧化鈦光電極的製造方法,包 製備-第-中性水相二氧化鈦溶膠; 於一基板上塗佈、乾燥與鍛燒該第 鈦溶膠,以形成—缴密層; τ 水相一氧化 中性水相二氧化鈦溶膠,且㈣該第二中 咖膠之粒徑大於該第-中性水相二氧化欽 化:敏、乾燥與锻燒該第二中性水相二氧 合膠以形成至少一緩衝層;以及 於該至少一緩衝層上形成一多孔層,苴中 钻結^該第—與第:中性水相:氧_靖不添加有機 欽光2電▲利範圍第1項所述◎層結構奈米二氧化 ==:法,其中製備該第-與第二中性水t 中和、職賴金屬鹽_前驅物,經溶解、 中和由水洗、解膠與加溫迴流的程序而合成。 如申請專利範圍第1項所述之多層έ士槿太丰备 ==方法,於該至少-緩 膠 且控制該第三中 中性水相二氧化鈦 製備-第三中性水相二氧化鈦溶 水相一氧化欽溶膠之粒徑大於該第 溶膠之粒徑;以及 22 201205925 0 ------i)l2TW 34830twf.d〇c/n ^該至少一緩衝層上塗佈、乾燥與鍛燒該第三中 相-氧化鈦溶膠,其中在該第三中性水相 不添加有触結冑彳。 祕膠中 4. 如申請糊範_3摘叙 ==方法,其中製備該第三中性At 〜之方法包括.以鈦金屬鹽類為前驅物,經溶解 沉澱、水洗、解膠與加溫迴流的程序而合成。uW 34830twf.doc/n 201205925 Seven patent application scope: 1. A method for manufacturing a multi-layered nano-titanium dioxide photoelectrode, package preparation-first-neutral aqueous titanium dioxide sol; coating, drying and forging on a substrate Burning the titanium sol to form a dense layer; τ water phase oxidizing the neutral aqueous phase titanium dioxide sol, and (4) the second medium café has a larger particle size than the first neutral water phase oxidized: Drying and calcining the second neutral aqueous phase dioxygenate to form at least one buffer layer; and forming a porous layer on the at least one buffer layer, and drilling the first and the third: Aqueous phase: Oxygen _ Jing does not add organic qingguang 2 electricity ▲ Scope range mentioned in item 1 ◎ layer structure nano dioxin ==: method, in which the preparation of the first - and second neutral water t neutral, The metal salt _ precursor is synthesized by dissolving, neutralizing, washing, degumming and heating reflux. The multi-layered gentleman 槿太丰备== method according to the first aspect of the patent application, in the at least slow rubber and controlling the third neutral neutral phase titanium dioxide preparation - the third neutral aqueous phase titanium dioxide aqueous solution phase The particle size of the oxidized sol is greater than the particle size of the sol; and 22 201205925 0 ------i) l2TW 34830twf.d〇c/n ^ coating, drying and calcining the at least one buffer layer A third intermediate phase-titanium oxide sol in which no tantalum crucible is added to the third neutral aqueous phase. 4. In the secret glue 4. If the application paste _3 excerpt == method, the method for preparing the third neutral At 〜 includes: using a titanium metal salt as a precursor, dissolved precipitation, water washing, degumming and heating Synthesized by reflowing the program. 5. 如申請專利範圍第2項或第4 均相同 采二氧化鈦光電極的製造方法,其巾該第 中除水相—氧化鈦轉之製備條件除該加溫迴流之時間外 6.如申請專利範圍第5項所述之多層結構夺米二氧 化欽光電_製造方法,其找加溫迴流之時間愈長,所 製備之該第-、第二與第三巾性水相二氧化鈦 愈大。 7. 如申請專利範圍第6項所述之多層結構奈米二氧 化鈦光電極的製造方法,其中該加溫迴流之時間在50小時 以内’所製備之該第―、第二與第三中性水相二氧化欽溶 膠之粒徑範圍在lmn〜300nm之間。 8. 如申請專利範圍第7項所述之多層結構奈米二氧 化鈦光電極的製造方法,其中該第一中性水相二氧化鈦溶 膠的粒技大小為lnm〜8nm。 23 201205925」lW 34830twf.doc/n 9. 如申請專利範圍第8項所述之多層結構奈米二氧 化鈦光電極的製造方法,其中製備該第一中性水相二氧化 鈦溶膠的該加溫迴流之時間在〇 5小時至1〇小時。 10. 如申請專利範圍第7項所述之多層結構奈米二氧 化鈦光電極的製造方法,其中該第二中性水相二氧化鈦溶 膠的粒徑大小為8nm〜20nm。 11·如申請專利範圍第10項所述之多層結構奈米二氧 化鈦光電極的製造方法,其中製備該第二中性水相二氧化 鈦溶膠的該加溫迴流之時間在1〇小時至2〇小時。 12. 如申請專利範圍第7項所述之多層結構奈米二氧 化鈦光電極的製造方法,其中該第三中性水相二氧化鈦溶 膠的粒徑大小為20nm〜30〇nm。 ' 13. 如申請專利範圍第12項所述之多層結構奈米二氧 化鈦光電極的製造方法,其中製備該第三中性水相二氧化 鈦溶膠的該加溫迴流之時間在2〇小時至5〇小時。 H.如申請專利範圍第丨項所述之多層結構奈米二氧 化鈦光電極的製造方法,其中該基材包括導電玻璃或金屬 材料。 15. 如申請專利範圍第丨項所述之多層結構奈米二氧 化鈦光電極的製造方法,其中於該基板上塗佈該第一中性 水相二氧化鈦溶膠之前,更包括:使用大氣電漿對該基材 進行親水處理。 16. 如申請專利範圍第1項所述之多層結構奈米二氧 化鈦光電極的製造方法,其中於該基板上塗佈該第一中性 24 201205925 J12TW 34830twf.doc/n 水相二氧化鈦溶膠以及於該緻密層上塗佈該第二中性水相 二氧化鈦溶膠之方式包括浸鍍方式或喷塗方式。 17. 如申s青專利範圍第1項所述之多層結構奈米二氧 化鈦光電極的製造方法’其中於該至少一緩衝層上形成該 多孔層之方法包括: 製備一二氧化鈦漿料; 於該二氧化鈦漿料中添加有機粘結劑;以及 於該至少一緩衝層上塗佈、乾燥與鍛燒該二氧化鈦漿 • 料。 18. 種夕層結構奈米^一氧化欽光電極’用於一染料敏 化太陽電池’所述多層結構奈米二氧化鈦光電極至少包括: 一敏密層,由多數個二氧化鈦顆粒所組成; 一多孔層,由多數個二氧化鈦顆粒所組成;以及 至少一緩衝層,位於該緻密層與該多孔層之間,由多 數個二氧化鈦顆粒所組成,以促進該緻密層與該多孔層間 的顆粒連結,其中該多孔層之粒徑大於該緻密層之粒徑, • 且該至少一緩衝層之粒徑範圍介於該緻密層的粒徑與該多 孔層的粒經之間。 19. 如申請專利範圍第18項所述之多層結構奈米二氧 化鈦光電極’其中該緻密層之膜厚為50nm〜500 nm、該至 少一緩衝層之膜厚為、以及該多孔層之膜厚為 2μηι〜30μιη ° 20. 如申請專利範圍第μ項所述之多層結構奈米二氧 化鈦光電極,其中該多孔層的粒徑與該至少一緩衝層的粒 25 201205925 x'W 34830twf.doc/n 徑之比值為3〜10,且該至少一绫銜層的粒徑與該緻密層的 粒徑之比值為3〜10。 21. 如申請專利範圍第18頊所述之奈米二氧化鈦光電 極’其中該緻密層之孔隙度為1%—30%,抑制暗電流之效 果在〇·7伏特下可達到l(T5A/cm2以下。 22. 如申請專利範圍第18項所述之奈米二氧化鈦光電 2其中該多孔層之孔洞大小為5nm〜30nm,表面積為 m /g〜15〇 m2/g,以及孔隙度為3〇%〜65〇/〇。 265. If the second or fourth application of the patent application scope is the same as the manufacturing method of the titanium dioxide photoelectrode, the preparation condition of the second water removal phase-titanium oxide is removed, except for the time of heating and refluxing. The multilayer structure described in the fifth aspect of the invention is characterized in that the longer the time for the warming and refluxing is, the larger the titanium dioxide is prepared for the first, second and third flake aqueous phases. 7. The method for producing a multilayer structure nano titanium dioxide photoelectrode according to claim 6, wherein the heating, refluxing time is within 50 hours, and the first, second and third neutral waters are prepared. The phase of the oxidized sol has a particle size ranging from lmn to 300 nm. 8. The method of producing a multilayer structure nano titanium dioxide photoelectrode according to claim 7, wherein the first neutral aqueous titanium dioxide sol. has a particle size of from 1 nm to 8 nm. The method for producing a multilayer structure nano titanium dioxide photoelectrode according to claim 8, wherein the warming reflux time of the first neutral aqueous titanium dioxide sol is prepared. In 〇 5 hours to 1 hour. 10. The method for producing a multilayer structure nano titanium dioxide photoelectrode according to claim 7, wherein the second neutral aqueous phase titanium dioxide sol has a particle size of 8 nm to 20 nm. The method for producing a multilayer structure nano titanium dioxide photoelectrode according to claim 10, wherein the heating and refluxing time of the second neutral aqueous titanium dioxide sol is from 1 to 2 hours. 12. The method for producing a multilayer structure nano titanium dioxide photoelectrode according to claim 7, wherein the third neutral aqueous phase titanium dioxide sol has a particle size of 20 nm to 30 〇 nm. 13. The method for producing a multilayer structure nano titanium dioxide photoelectrode according to claim 12, wherein the heating and refluxing time of preparing the third neutral aqueous titanium dioxide sol is from 2 to 5 hours. . H. The method of producing a multilayer structure nano titanium dioxide photoelectrode according to claim 2, wherein the substrate comprises a conductive glass or a metal material. 15. The method for producing a multilayer structure nano titanium dioxide photoelectrode according to the above-mentioned claim, wherein before the coating the first neutral aqueous titanium dioxide sol on the substrate, the method further comprises: using atmospheric plasma to The substrate is subjected to a hydrophilic treatment. 16. The method for producing a multilayer structure nano titanium dioxide photoelectrode according to claim 1, wherein the first neutral 24 201205925 J12TW 34830twf.doc/n aqueous titanium dioxide sol is coated on the substrate and The method of coating the second neutral aqueous titanium dioxide sol on the dense layer includes a immersion plating method or a spraying method. 17. The method for producing a multilayer structure nano titanium dioxide photoelectrode according to claim 1, wherein the method for forming the porous layer on the at least one buffer layer comprises: preparing a titanium dioxide slurry; An organic binder is added to the slurry; and the titanium dioxide slurry is coated, dried and calcined on the at least one buffer layer. 18. The nano layer structure nano-mono-oxidation electrode is used for a dye-sensitized solar cell. The multilayer structure nano titanium dioxide photoelectrode comprises at least: a sensitive layer composed of a plurality of titanium dioxide particles; a porous layer composed of a plurality of titanium dioxide particles; and at least one buffer layer between the dense layer and the porous layer, composed of a plurality of titanium dioxide particles to promote particle bonding between the dense layer and the porous layer, Wherein the particle size of the porous layer is larger than the particle size of the dense layer, and the particle size of the at least one buffer layer ranges between the particle size of the dense layer and the grain size of the porous layer. 19. The multilayer structure nano titanium dioxide photoelectrode of claim 18, wherein the dense layer has a film thickness of 50 nm to 500 nm, a film thickness of the at least one buffer layer, and a film thickness of the porous layer. The multilayered nano titanium dioxide photoelectrode of the above-mentioned claim, wherein the particle size of the porous layer and the particle of the at least one buffer layer are 25 201205925 x'W 34830twf.doc/n The ratio of the diameters is 3 to 10, and the ratio of the particle diameter of the at least one layer to the particle diameter of the dense layer is 3 to 10. 21. The nano titanium dioxide photoelectrode of claim 18, wherein the dense layer has a porosity of 1% to 30%, and the effect of suppressing dark current can reach 1 (T5A/cm2) at 〇7 volts. 22. The nano titanium dioxide photoelectric 2 according to claim 18, wherein the porous layer has a pore size of 5 nm to 30 nm, a surface area of m / g 15 15 m 2 / g, and a porosity of 3 %. ~65〇/〇. 26
TW99125384A 2010-07-30 2010-07-30 Multilayer nanostructured titanium oxide photoelectrode and manufacturing method thereof TWI419392B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99125384A TWI419392B (en) 2010-07-30 2010-07-30 Multilayer nanostructured titanium oxide photoelectrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99125384A TWI419392B (en) 2010-07-30 2010-07-30 Multilayer nanostructured titanium oxide photoelectrode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201205925A true TW201205925A (en) 2012-02-01
TWI419392B TWI419392B (en) 2013-12-11

Family

ID=46761800

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99125384A TWI419392B (en) 2010-07-30 2010-07-30 Multilayer nanostructured titanium oxide photoelectrode and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI419392B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102592838A (en) * 2012-03-09 2012-07-18 北京大学 Stacked nanometer semiconductor film electrode of dye sensitized solar cell
TWI481047B (en) * 2012-08-31 2015-04-11 Univ Ishou Dye-sensitized solar cell, its photoelectrode and manufacture method thereof
TWI489669B (en) * 2012-06-21 2015-06-21 Univ Nat Yunlin Sci & Tech Dye-sensitized solar cell and method for fabricating the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728092B (en) * 2008-10-10 2012-07-04 比亚迪股份有限公司 Semiconductor electrode, manufacturing method thereof and solar cell having semiconductor electrode
TW201025630A (en) * 2008-12-16 2010-07-01 Chi Lin Technology Co Ltd Dye solar cell structure and method of manufacturing light absorption reaction layer thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102592838A (en) * 2012-03-09 2012-07-18 北京大学 Stacked nanometer semiconductor film electrode of dye sensitized solar cell
TWI489669B (en) * 2012-06-21 2015-06-21 Univ Nat Yunlin Sci & Tech Dye-sensitized solar cell and method for fabricating the same
TWI481047B (en) * 2012-08-31 2015-04-11 Univ Ishou Dye-sensitized solar cell, its photoelectrode and manufacture method thereof

Also Published As

Publication number Publication date
TWI419392B (en) 2013-12-11

Similar Documents

Publication Publication Date Title
Wu et al. Shell-in-shell TiO 2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application
Yu et al. Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells
Kim et al. Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres
Niaki et al. Double-layer dye-sensitized solar cells based on Zn-doped TiO2 transparent and light scattering layers: Improving electron injection and light scattering effect
Nair et al. Anisotropic TiO 2 nanomaterials in dye-sensitized solar cells
Park et al. Preparation of TiO 2 spheres with hierarchical pores via grafting polymerization and sol–gel process for dye-sensitized solar cells
Tricoli et al. Highly porous TiO 2 films for dye sensitized solar cells
Nguyen et al. Electrodeposition of TiO2/SiO2 nanocomposite for dye-sensitized solar cell
Sahu et al. Synthesis and application of core-shell Au–TiO2 nanowire photoanode materials for dye sensitized solar cells
Hamadanian et al. Band gap engineering of TiO2 nanostructure-based dye solar cells (DSCs) fabricated via electrophoresis
Xie et al. One-step synthesis of hierarchical SnO2/TiO2 composite hollow microspheres as an efficient scattering layer for dye-sensitized solar cells
Bakhshayesh et al. Development of nanostructured porous TiO2 thick film with uniform spherical particles by a new polymeric gel process for dye-sensitized solar cell applications
Hwang et al. Influence of the organic electrolyte and anodization conditions on the preparation of well-aligned TiO2 nanotube arrays in dye-sensitized solar cells
Berrigan et al. Protein‐Enabled Layer‐by‐Layer Syntheses of Aligned, Porous‐Wall, High‐Aspect‐Ratio TiO2 Nanotube Arrays
Vu et al. TiO2 nanofiber/nanoparticles composite photoelectrodes with improved light harvesting ability for dye-sensitized solar cells
Chander et al. Photocurrent enhancement by surface plasmon resonance of gold nanoparticles in spray deposited large area dye sensitized solar cells
Shao et al. Electrophoretic deposition of TiO 2 nanorods for low-temperature dye-sensitized solar cells
Park et al. Solid polymer electrolyte dye-sensitized solar cells with organized mesoporous TiO2 interfacial layer templated by poly (vinyl alcohol)–poly (methyl methacrylate) comb copolymer
Das et al. Nano-crystalline thin and nano-particulate thick TiO2 layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics
Mojaddami et al. Efficient dye-sensitized solar cells based on TiO2 nanoparticles and skein-like nanotubes: effect of arrangement modes of the layers and TiCl4 treatment
Bharwal et al. Tuning bimodal porosity in TiO2 photoanodes towards efficient solid-state dye-sensitized solar cells comprising polysiloxane-based polymer electrolyte
Shrestha et al. Electrochemistry at TiO2 nanotubes and other semiconductor nanostructures
TW201205925A (en) Multilayer nanostructured titanium oxide photoelectrode and manufacturing method thereof
Cha et al. Spray-dried and pre-sintered TiO 2 micro-balls for sinter-free processing of dye-sensitized solar cells
Zhang et al. A simple spray reaction synthesis and characterization of hierarchically porous SnO 2 microspheres for an enhanced dye sensitized solar cell