TW201025630A - Dye solar cell structure and method of manufacturing light absorption reaction layer thereof - Google Patents

Dye solar cell structure and method of manufacturing light absorption reaction layer thereof Download PDF

Info

Publication number
TW201025630A
TW201025630A TW97148911A TW97148911A TW201025630A TW 201025630 A TW201025630 A TW 201025630A TW 97148911 A TW97148911 A TW 97148911A TW 97148911 A TW97148911 A TW 97148911A TW 201025630 A TW201025630 A TW 201025630A
Authority
TW
Taiwan
Prior art keywords
electron transport
dye
substrate
light
layer
Prior art date
Application number
TW97148911A
Other languages
Chinese (zh)
Other versions
TWI378566B (en
Inventor
wen-di Wu
Mao-Xian Li
Original Assignee
Chi Lin Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Lin Technology Co Ltd filed Critical Chi Lin Technology Co Ltd
Priority to TW97148911A priority Critical patent/TW201025630A/en
Publication of TW201025630A publication Critical patent/TW201025630A/en
Application granted granted Critical
Publication of TWI378566B publication Critical patent/TWI378566B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A structure of a dye solar cell and a method of manufacturing a light absorption reaction layer thereof are disclosed. A substrate and a transparent substrate are alternatively stacked and evenly spaced from one another. Two electron transport layers are respectively installed on the opposing surfaces of the substrate and the transparent substrates. A light absorption reaction layer includes a light absorption reaction structure and a first wire, which are installed on the surface of the electron transport layer of the transparent substrate. An opposing electrode layer is installed opposite to the light absorption reaction layer. The light absorption reaction structure comprises a semiconductor layer with stacked particles from small to big, and dye molecules absorbed on the semiconductor layer which have different sizes and different light wavelength absorption ranges. As a result, when light illustrates the dye molecules through the transparent substrates, a potential difference is created and induces currents. Thus, not only the light absorption rate is increased by the three-dimensional structure, but the light absorption spectral range is improved by the dye molecules with different wavelength ranges.

Description

201025630 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種染料太陽能電池結構以及染料太陽能 電池結構之光吸收反應層的製造方法,尤指利用以擴大光波 長吸收範圍之染料太陽能電池結構以及其光吸收反應層的製 造方法。201025630 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a dye solar cell structure and a method for fabricating a light absorption reaction layer of a dye solar cell structure, and more particularly to a dye solar cell structure utilizing an optical wavelength absorption range. And a method of producing the light absorbing reaction layer.

【先前技術】 以染料感光來產生電流的染料太陽能電池,是近來被開 务出來的一種薪新的太陽能電池,係利用染料分子吸收光線 產生電位差,進而產生電流。 染料太陽能電池之基板通常是採用玻璃基板,上、下分 別有兩層,基板也可以是義且可料的聚合飾〇1輝 foil);玻璃上有-層透明導電的氧化層,通常是使用二氧化 錫(Sn〇2),導電的氧化層結合在玻璃上即成為透明導電玻璃 (transparent conducting oxide ; TC〇),此氧化層可 電流傳輸之底層。 氧碰^透畴^.長有—職_金魏化物如二 :子:染料分子附著於二氧化鈦的粒子I = 刀子對可見n很好的讀紐, 足夠的激發態氧化還原電位,使得激發g 注入高能隙峨_:她陶、觀^ 5 201025630 化鐵(Fe2〇3)、氧化鎢w〇3等;另一側透明導電玻璃上的電極進 步鍍上|翻,來當作電解質反應的催化物,兩侧電極上 白有銀導線來傳輪電流;二層電極間,則注入填滿電解質 (electrolyte)。 、 以往舨的一氧化鈦係為單層結構,後來為增加染料太 f能電池的轉換效率,有多層二氧化鈦結構的技術出現,但 是其皆為-致的結構大似及—樣的染料分子,雖然大幅增 加了純分子的總體數量,但完全-朗祕分子卻僅會吸 收一樣波長範圍的光線。 當前染料太陽能電池的成本比純太陽能電池低很多, 仁轉換效率約僅⑪晶太陽能電池的—半,若能突破更高的轉 換效率,在未來將極有可能成為太陽能電池駐流,非常值 得深入開發。 因此’本發明的主要目的在於提供一種利用以擴大光波 長吸收範圍之祕太陽㈣池結構以及其光吸收反應層的製 φ 造方法,以改善上述問題。 【發明内容】 本發明之目的在提供-種験太陽能電池結構以及其光 吸收反應層的製造方法,係能擴大光波長吸收範圍以及增加 光線的吸《,藉歧提高此染料太陽能電池整體的光電轉 換效率。 本發明係關於一種染料太陽能電池結構以及其光吸收反 應層的製造方法’能擴大統吸收率以及擴大光線吸收的頻 6 201025630 _ 譜細’進而增加整體的光電雜效率。該麵太陽能電池 結構係包含一基板、一透明基板、二電子傳輸層、一光吸收 反應層、以及一對極層。 戎透明基板係與該基板相對層疊設置,以於該基板與該 透明基板間形成-内部,該光線係自相對該内部之外部,透 過該透明基板以進入該内部。 該二電子傳輸層係設置於該内部,並相互間隔以層疊相 ❿ 對,Λ務上以貼附在該透明基板與該基板相鄰表面為較易製 作。 δ亥光吸收反應層係包含至少一光吸收反應結構以及至少 一第一導線。該光吸收反應層係於該内部並設置於鄰近該透 明基板之電子傳輸層之表面,使該光吸收反應結構透過該電 子傳輸層與該第-導線電性轉接。該光吸收反應結構進一步 包含一半導體層、以及複數個染料分子。 半導體層為複數個半導體粒子結合為多層結構體以層疊 &於該電子傳輸層表面,並且鄰近該電子冑輸層之半導體粒子 係較小,而延伸向該内部之該半導體粒子係漸大。 複數個染料分子係對應該等半導體粒子之粒子大小亦係 具有多種粒子大小,不同大小之染料分子係用以吸收不同波 長之光線,較小之染料分子附著於較小之半導體粒子,較大 之柒料仝子附著於較大之半導體粒子。其中,所述不同大小 之染料分子係用以吸收不同波長之光線,係以大粒子之染料 分子吸收長波長之光線,小粒子之染料分子吸收短波長之光 201025630 該對極層係對應該光吸收反應結構係包含至少一對極結 構,以及對應該第一導線包含至少一第二導線,該對極層係 於S亥内部並設置於鄰近該基板之電子傳輸層之表面,使該對 極結構透過該電子傳輸層與該第二導線電性耦接。 其中,3亥光吸收反應層之染料分子係吸收透過該透明基 板進入該内部之光線,以產生電位差導致電流。短波長之光 線的穿透效率較差,先由靠外部小粒子之染料分子來吸收, φ 長波長之光線的穿透效率較佳,後續由靠内側大粒子之染料 分子來吸收。 因此,藉由本發明之染料太陽能電池結構以及其光吸收 反應層的製造方法,利用不同大小之半導體粒子,配合不同 大小之染料分子吸收不同頻譜範圍之光線,並依照製程順序 形成特定之多層結構體,藉此能擴大光波長吸收範圍以及增 加光線的吸收量,以提高此染料太陽能電池整體的光電轉換 效率。 ^ 關於本發明之優點與精神可以藉由以下的發明詳述及所 附圖式得到進一步的瞭解。 【實施方式】 請參閱第—圖’第—圖係本發明染料太陽能電池結構30 之側面剖示圖。本發明係關於一種染料太陽能電池結構30, 月b擴大光線42吸收率以及擴大光線吸收的頻譜範圍,進 而牦加整體的光電轉換效率。染料太陽能電池結構3〇係包含 基板32A、一透明基板32B、二電子傳輸層33、一光吸收 8 201025630 反應層34、以及一對極層%。 透明基板32B係與基板32A相對層疊設置,以於基板32八 與透明基板32B間形成一内部4〇,實務上基板32八就可採用 透明基板32B,而所謂透明基板32B可為玻璃基板。光線犯 係自相對内部40之外部,透過透明基板32β以進入内部4〇 中〇 该二電子傳輪層33係設置於内部4〇,並相互間隔以層 ❿ 疊相對,實務上以貼附在透明基板32B與基板32A相鄰表面 為較易製作。當電子傳輸層33是貼附於透明基板32β係與基 板32A表面時’該二電子傳輸層之一電子傳輸層(需透光的那 側)係貼附於該玻璃基板之表面以形成一透明導電玻璃 (Transparent Conducting Oxide ; TC0),所述該透明導電 玻璃可以是氟摻雜的氧化錫(FT0)、錫摻雜的氧化銦(叮〇)、 或是鋁摻雜的氧化鋅(AZ0)等透明導電玻璃;該二電子傳輸層 之另一電子傳輸層(不需透光的那侧)係可以是金屬薄膜 φ (METAL F0LIE)、或是金屬板(METAL Sheet)。 光吸收反應層34係包含至少一光吸收反應結構3402以 及至少一第一導線3404。光吸收反應層34係於内部40,並 使光吸收反應結構3402以及第一導線3404皆設置於鄰近透 明基板32B之電子傳輸層33之表面,使光吸收反應結構3402 透過電子傳輸層33與第一導線3404電性耦接。光吸收反應 結構3402進一步包含具有大小不同且互相層疊半導體粒子 3402A之半導體層、以及附著在半導體粒子3402A上之複數 個染料分子3402B。 201025630 子傳子3砸結合為多層結構體以層疊於電 傳知層33表面來形成半㈣層,半導體粒子魏實務上 ,用减隙金屬氧化物如二氧化鈦⑽)、氧化鋅(_、 乳化鐵(Fd)、氧化鶴肌等。其中,鄰近電子層 導體粒子·Α係較小,峨㈣㈣4 ^ + =係漸大,換句話說,係自電子傳輸層33+表導 = 子自小 顆粒而大顆粒來層層堆疊。[Prior Art] A dye solar cell which generates light by dye sensitization is a newly-applied solar cell which is newly used to absorb light by a dye molecule to generate a potential difference, thereby generating a current. The substrate of the dye solar cell usually adopts a glass substrate, and there are two layers on the upper and the lower sides respectively, and the substrate can also be a polymerized decorative enamel (foil); the glass has a transparent conductive layer on the glass, which is usually used. Tin dioxide (Sn〇2), a conductive oxide layer bonded to the glass, becomes a transparent conducting oxide (TC〇), which can be transported to the bottom layer. Oxygen touches through the domain ^. Long has - job _ gold Wei compound such as two: child: dye molecules attached to the particles of titanium dioxide I = knife to the visible n good reading, sufficient excited state oxidation-reduction potential, so that excitation g Injecting a high energy gap 峨: her Tao, Guan ^ 5 201025630 iron (Fe2〇3), tungsten oxide w〇3, etc.; the electrode on the other side of the transparent conductive glass is progressively plated | The object has white silver wires on both sides of the electrode to transmit the current; and between the two electrodes, the electrolyte is filled with electrolyte. In the past, tantalum titanium oxide was a single-layer structure. Later, in order to increase the conversion efficiency of the dyed-to-f-cell battery, a technique of multi-layered titanium dioxide structure appeared, but all of them were similar in structure to dye molecules. Although the total number of pure molecules is greatly increased, the complete-marine molecule only absorbs light in the same wavelength range. At present, the cost of dye solar cells is much lower than that of pure solar cells. The conversion efficiency of the dye solar cell is only about half of that of the 11-crystal solar cell. If it can break through the higher conversion efficiency, it will most likely become a solar cell resident in the future, which is worthy of deepening. Development. Therefore, the main object of the present invention is to provide a method for manufacturing a secret solar (four) cell structure and a light absorbing reaction layer thereof for enlarging the absorption range of the optical wavelength to improve the above problem. SUMMARY OF THE INVENTION The object of the present invention is to provide a method for manufacturing a solar cell structure and a light absorption reaction layer thereof, which is capable of expanding the wavelength absorption range of light and increasing the absorption of light, thereby improving the photoelectricity of the dye solar cell as a whole. Conversion efficiency. The present invention relates to a dye solar cell structure and a method for producing the same for the light absorbing reaction layer, which can increase the overall absorption rate and increase the frequency of light absorption, thereby increasing the overall photoelectric impurity efficiency. The surface solar cell structure comprises a substrate, a transparent substrate, a two-electron transport layer, a light absorbing reaction layer, and a pair of pole layers. The transparent substrate is laminated on the substrate so as to form an inner portion between the substrate and the transparent substrate. The light is transmitted from the outside of the substrate to the inside through the transparent substrate. The two electron transport layers are disposed inside the plurality of layers, and are spaced apart from each other to form a pair of layers, which are relatively easy to be attached to the transparent substrate and the adjacent surface of the substrate. The δ ray absorption reaction layer comprises at least one light absorbing reaction structure and at least one first wire. The light absorbing reaction layer is disposed inside the surface of the electron transport layer adjacent to the transparent substrate, and the light absorbing reaction structure is electrically transferred to the first wire through the electron transport layer. The light absorbing reaction structure further comprises a semiconductor layer and a plurality of dye molecules. The semiconductor layer is a plurality of semiconductor particles combined into a multilayer structure to be laminated on the surface of the electron transport layer, and the semiconductor particles adjacent to the electron transport layer are small, and the semiconductor particles extending toward the inside are gradually enlarged. A plurality of dye molecules have a plurality of particle sizes corresponding to the particle size of the semiconductor particles, and the dye molecules of different sizes are used to absorb light of different wavelengths, and the smaller dye molecules are attached to the smaller semiconductor particles, and the larger ones are larger. The tweezers are attached to larger semiconductor particles. Wherein, the dye molecules of different sizes are used to absorb light of different wavelengths, the dye molecules of large particles absorb light of long wavelength, and the dye molecules of small particles absorb light of short wavelength 201025630, the pair of polar layers correspond to light The absorption reaction structure comprises at least one pair of pole structures, and the first wire comprises at least one second wire, the pair of electrodes being disposed inside the surface and disposed on a surface of the electron transport layer adjacent to the substrate, such that the opposite pole The structure is electrically coupled to the second wire through the electron transport layer. Wherein, the dye molecules of the 3 ray absorption reaction layer absorb light that enters the interior through the transparent substrate to generate a potential difference to cause a current. The short-wavelength light has a poor penetration efficiency. It is first absorbed by the dye molecules of the outer small particles. The light of the long wavelength of φ has a better penetration efficiency, and is subsequently absorbed by the dye molecules on the inner large particles. Therefore, by the dye solar cell structure of the present invention and the method for fabricating the light absorbing reaction layer thereof, semiconductor particles of different sizes are used, and dye molecules of different sizes are combined to absorb light of different spectral ranges, and a specific multilayer structure is formed according to the process sequence. Thereby, the absorption range of the light wavelength can be increased and the absorption amount of light can be increased to improve the photoelectric conversion efficiency of the dye solar cell as a whole. The advantages and spirit of the present invention will be further understood from the following detailed description of the invention. [Embodiment] Referring to Fig. 1 is a side cross-sectional view showing a dye solar cell structure 30 of the present invention. SUMMARY OF THE INVENTION The present invention is directed to a dye solar cell structure 30 in which the monthly b expands the absorption of light 42 and broadens the spectral range of light absorption, thereby increasing the overall photoelectric conversion efficiency. The dye solar cell structure 3 includes a substrate 32A, a transparent substrate 32B, two electron transport layers 33, a light absorbing layer 8, 201025630, a reaction layer 34, and a pair of pole layers. The transparent substrate 32B is laminated on the substrate 32A so as to form an inner surface between the substrate 32 and the transparent substrate 32B. The transparent substrate 32B can be used as the upper substrate 32, and the transparent substrate 32B can be a glass substrate. The ray is made from the outside of the inner portion 40, and passes through the transparent substrate 32β to enter the inner portion. The two electron transfer layer 33 is disposed inside the inner layer 4, and is spaced apart from each other to be layered and opposed. The surface adjacent to the substrate 32B of the transparent substrate 32B is relatively easy to manufacture. When the electron transport layer 33 is attached to the surface of the transparent substrate 32β and the substrate 32A, one of the two electron transport layers (the side to be light-transmitted) is attached to the surface of the glass substrate to form a transparent surface. Conductive glass (Transparent Conducting Oxide; TC0), the transparent conductive glass may be fluorine-doped tin oxide (FT0), tin-doped indium oxide (yttrium), or aluminum-doped zinc oxide (AZ0) The transparent conductive glass; the other electron transport layer of the two electron transport layer (the side that does not need to transmit light) may be a metal thin film φ (METAL F0LIE) or a metal sheet (METAL Sheet). The light absorbing reaction layer 34 includes at least one light absorbing reaction structure 3402 and at least one first wire 3404. The light absorbing reaction layer 34 is disposed inside the interior 40, and the light absorbing reaction structure 3402 and the first conductive line 3404 are disposed on the surface of the electron transport layer 33 adjacent to the transparent substrate 32B, so that the light absorbing reaction structure 3402 passes through the electron transport layer 33 and A wire 3404 is electrically coupled. The light absorbing reaction structure 3402 further includes a semiconductor layer having different sizes and inter-layered semiconductor particles 3402A, and a plurality of dye molecules 3402B attached to the semiconductor particles 3402A. 201025630 The sub-conductor 3砸 is combined into a multilayer structure to be laminated on the surface of the electro-transmission layer 33 to form a semi-four layer, and the semiconductor particles are practically used, with a reduced-resistance metal oxide such as titanium dioxide (10), zinc oxide (_, emulsified iron) (Fd), oxidized crane muscle, etc. Among them, the adjacent electron layer conductor particles · lanthanum is small, 峨 (4) (4) 4 ^ + = is gradually larger, in other words, from the electron transport layer 33 + surface guide = sub-small particles Large particles are stacked in layers.

複數個雜分子3侧係對應該等轉體粒子3碰之A plurality of heteromolecules 3 side pairs should be equivalent to the rotating body particles 3

If小亦係具有多種粒子大小,較小之染料分子34_附 =較小之半導難子3舰,較奴純分子繼B附著If small also has a variety of particle sizes, the smaller dye molecules 34_ attached = smaller semi-conducting difficult 3 ships, compared with slave pure molecules followed by B

=大之半導體粒? 3402A。因此,較小之染料分子3402B 附著於較奴轉體粒子雇A域為靠近光線⑽之進入源 '較大之“料分子34_附著於較大之半導體粒子34〇M 且幸父遠離光線42之進入源頭。 一所述不同大小之染料分子3402B係用以吸收不同波長之 光線42 ’細錄子之純分子3娜吸收紐長之光線 42 ’雜子之染料分子34〇2B吸收短波長之光線42。因為長 波長光線42傳驗遠,短波長光線42穿透力簡,所以, 丄粒子‘料分子3402B靠近外部,大粒子之染料分子34〇2B 靠近内部4G,有册廣域波長的光線42能被充分吸收。 對極層36係對應光吸收反應結構3402係包含至少一對 極結構3602,以及對應第一導線3404包含至少一第二導線 祁〇4]對極結構36〇2實務上可採用鉑金屬薄膜、鉑金屬粒 子、或是石墨’係於内部4〇並設置於鄰近基板32Α之電子傳 201025630 輸層33之表面’使對極結構36〇2透過電子傳輪層沿與第二 導線3604電性輕接。其中,第一導線以及第二導線細實 務上採用銀導線會較利於傳導。 當對極層36與光吸收反應層34之上、下結構分別完成 後’會從第一導線3404與第二導線3604相對之處以uv膠、 環氧樹脂(EPOXY)、或矽膠(snc〇N)將上、下結構接合,再於 其間之内部40填充-電解質38,就成為完整的染料太陽能 電池結構30。後續’光線42係透過透明基板娜進入内部 40,被光吸收反應層34之染料分子3402B吸收,產生電位差 而導致電流。 請參閱第二圖’第二圖係本發明染料太陽能電池結構3〇 製造方法之流糊。本發明也係染料太陽能電池結構之光 吸收反應層34的製造方法’所製作完成之染料太陽能電池包 含有相對層疊設置且以間距形成一内部4〇之基板32A與透明 基板32B ;二電子傳輸層33係設置於内部4〇,並相互間隔以 _ 層疊相對,光吸收反應層34係於内部40並設置於鄰近透明 基板32B之電子傳輸層33之表面’並包含至少一光吸收反應 結構3402 ’光吸收反應結構3402進一步包含如二氧化欽之" 半導體粒子3402A所構成之半導體層、以及複數個染料分子 3402B。 針對光吸收反應結構3402的製作,本發明之製造方法係 包含下列步驟: ” 步驟SG2 :將顆粒較小之半導體粒子觀A設置於電子 傳輸層33表面。 201025630 田步驟S04 :向内部4〇依序將較大之半導體粒子34〇2A層 疊設置於較小之半導體粒子3402A上。 根據第二圖步驟別2、步驟S04請配合第三圖,第三圖 係光吸收反應結構34G2製作初期之示意圖。由圖中可見顆粒 較t之半導體粒子3概形成於電子傳輸層33表面,再向上 堆豐並且顆粒係自小而大。上層大顆粒之間隙自然較大,下 層小顆粒之間隙自然較小。 • 再回到第二圖,進行步驟S06 :先沈積大粒子之複數個 染料分子3402B,該些染料分子34〇2β係會優先吸附於上層 較大之半導體粒子3402A。 根據第二圖步驟S06請配合第四圖,第四圖係光吸收反 應結構3402製作中期之示意圖。由圖中可見大粒子之染料分 子3402B會先被上層之大顆粒半導體層34〇2A吸附。 再回到第一圖’步驟S08 :沈積小粒子之複數個染料分 子 3402B。 齡根據第二圖步驟S08請配合第五圖,第五圖係光吸收反 應結構3402製作後期之示意圖。由圖中可見後續小粒子之染 料分子3402B會穿過大粒子之染料分子3402B之孔隙,降到 下層後,會下層之小顆粒半導體層3402A所吸附。因此,較 小之染料分子3402B附著於較小之半導體層3402A,且較為 靠近光線42之進入源頭;較大之染料分子3402B附著於較大 之半導體層3402A,較遠離光線42之進入源頭。 其中’所述不同大小之染料分子3402B係用以吸收不同 波長之光線42,係以大粒子之染料分子3402B吸收長波長之 12= Big semiconductor particles? 3402A. Therefore, the smaller dye molecule 3402B is attached to the slave atomic domain. The A domain is closer to the light source (10). The larger material molecule 34_ is attached to the larger semiconductor particle 34〇M and the father is far away from the light 42. Entering the source. One of the different sizes of dye molecules 3402B is used to absorb light of different wavelengths. 42 'The pure molecule of the fine-grained 3 is absorbed by the light of the long-term 42'. The dye molecule 34〇2B absorbs the short-wavelength light. 42. Because the long-wavelength light 42 passes far, the short-wavelength light 42 penetrates simply, so the 丄 particle 'material 3402B is close to the outside, and the large particle dye molecule 34〇2B is close to the inner 4G, and has a wide-area wavelength of light. 42 can be fully absorbed. The counter electrode 36 series corresponding light absorbing reaction structure 3402 includes at least one pair of pole structures 3602, and the corresponding first wire 3404 includes at least one second wire 祁〇 4] opposite pole structure 36 〇 2 practically A platinum metal film, a platinum metal particle, or a graphite can be used to be attached to the surface of the electron-transferring layer 201025630 of the adjacent substrate 32, and the counter electrode structure 36〇2 is transmitted through the electron-transport layer. two The wire 3604 is electrically connected. Among them, the first wire and the second wire are finely used for the silver wire to facilitate conduction. When the upper layer 36 and the light absorbing reaction layer 34 are respectively completed on the upper and lower structures, the A wire 3404 is bonded to the second wire 3604 by uv glue, epoxy resin (EPOXY), or silicone (snc〇N) to bond the upper and lower structures, and the inner portion 40 is filled with the electrolyte 38 to become complete. Dye solar cell structure 30. Subsequent 'lights 42 pass through the transparent substrate Na into the interior 40 and are absorbed by the dye molecules 3402B of the light absorbing reaction layer 34, causing a potential difference to cause a current. Please refer to the second figure 'second figure is the dye of the present invention The solar cell structure 3 is a paste of a manufacturing method. The dye solar cell produced by the method of manufacturing the light absorbing reaction layer 34 of the dye solar cell structure of the present invention comprises a relatively stacked arrangement and an internal layer formed at a pitch. The substrate 32A and the transparent substrate 32B are disposed on the inner side of the substrate 32A, and are spaced apart from each other by _ lamination, and the light absorbing reaction layer 34 is disposed inside the inner portion 40. The surface of the electron transport layer 33 adjacent to the transparent substrate 32B includes at least one light absorbing reaction structure 3402. The light absorbing reaction structure 3402 further includes a semiconductor layer composed of a semiconductor particle 3402A, and a plurality of dye molecules. 3402B. For the fabrication of the light absorbing reaction structure 3402, the manufacturing method of the present invention comprises the following steps: "Step SG2: A semiconductor particle view A having a smaller particle size is disposed on the surface of the electron transport layer 33. 201025630 Field Step S04: The larger semiconductor particles 34〇2A are stacked on the smaller semiconductor particles 3402A in sequence. According to the second step, the second step and the step S04 are matched with the third figure. The third figure is a schematic diagram of the initial stage of the light absorbing reaction structure 34G2. It can be seen from the figure that the semiconductor particles 3 having a particle size t are formed on the surface of the electron transport layer 33, and are stacked upwards and the particles are small and large. The gap between the upper large particles is naturally larger, and the gap between the lower small particles is naturally smaller. • Returning to the second figure, step S06 is performed: a plurality of dye molecules 3402B of large particles are deposited first, and the dye molecules 34〇2β are preferentially adsorbed to the upper larger semiconductor particles 3402A. According to the second step S06, please cooperate with the fourth figure, and the fourth figure is a schematic diagram of the middle stage of the light absorbing reaction structure 3402. It can be seen from the figure that the dye particle 3402B of the large particle is first adsorbed by the upper large-grain semiconductor layer 34〇2A. Returning to the first figure, step S08: depositing a plurality of dye molecules 3402B of small particles. According to the second step S08, please cooperate with the fifth figure, and the fifth figure is the schematic diagram of the light absorption reaction structure 3402. It can be seen from the figure that the dye molecules 3402B of the subsequent small particles pass through the pores of the dye molecules 3402B of the large particles, and after being lowered to the lower layer, they are adsorbed by the small particle semiconductor layer 3402A of the lower layer. Thus, the smaller dye molecule 3402B is attached to the smaller semiconductor layer 3402A and is closer to the source of the light 42; the larger dye molecule 3402B is attached to the larger semiconductor layer 3402A, further away from the source 42 of the light 42. Wherein the dye molecules 3402B of different sizes are used to absorb light rays 42 of different wavelengths, and the dye molecules 3402B of large particles absorb long wavelengths.

201025630 光線42,小粒子之染料分子3402B吸收短波長之光線42。因 為長波長m 42傳遞較遠,短波長光線穿透力較若,所 以’小粒子染料分子34卿靠近外部,大粒子之染料分子 3402B靠近内部4〇,有利於廣域波長的光線犯能被充分吸收。 因此,藉由本發明之染料太陽能電池結構3 0以及其光吸 收反應層34的f造方法’彻不同大小之半導體分子 3402A,配合不同光波長做能力之轉分子,依照製 程順序形成特定的多層結構體,藉此不僅由立體結構擴大光 線42吸收率,且因為不同波長範圍的染料分子3402Β而擴大 光4 42吸收的頻5普範圍’進而提高此染料太陽能電池整體的 光電轉換效率。 藉由壯較佳频實施狀詳述,係㈣能更加清楚描 逑本發明之與婦,賴相上述所娜啸佳且體實 施例來對本發明之範•以限制。相反地,其目的是希跋 涵蓋各種改變及具相等性的安排於本發崎欲申請之專利』 圍的範疇内。 寻扪靶 【圖式簡單說明】 第-圖係本發明染料太陽能電池結構之側面剖示圖; 圖;第二®縣發_料太陽能電池結·造方法之流程 第—0係光吸收反應結構製作初期之示意圖. 第四圖係光吸收反應結構製作中期之示意圖;以及 201025630 第五圖係光吸收反應結構製作後期之示意圖。 【主要元件符號說明】201025630 Light 42, small particle dye molecule 3402B absorbs light rays 42 of short wavelength. Because the long wavelength m 42 is transmitted farther, the short-wavelength light penetration is better, so the 'small particle dye molecule 34 is close to the outside, and the large particle dye molecule 3402B is close to the inner 4〇, which is beneficial to the wide-area wavelength light. Fully absorbed. Therefore, by the dye solar cell structure 30 of the present invention and the method for fabricating the light absorbing reaction layer 34, the semiconductor molecules 3402A of different sizes are combined with different light wavelengths to form a specific multilayer structure according to the process sequence. The body thereby expands the absorption rate of the light 42 not only by the three-dimensional structure, but also expands the frequency range of the absorption of the light 4 42 by the dye molecules 3402Β of different wavelength ranges, thereby improving the photoelectric conversion efficiency of the entire dye solar cell. By the detailed description of the embodiment of the invention, it is possible to more clearly describe the invention of the present invention, and to limit the scope of the present invention. On the contrary, the purpose is to cover all kinds of changes and equivalence arrangements within the scope of the patents that I want to apply for.扪 扪 【 【 【 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 染料 染料 染料 染料 染料 染料 染料 染料 染料 染料 染料 染料 染料 染料 染料 染料 染料 染料 染料 染料 染料 染料 染料 染料 染料 染料 染料 染料Schematic diagram of the initial stage of production. The fourth picture is a schematic diagram of the middle stage of the light absorption reaction structure; and the fifth picture of 201025630 is a schematic diagram of the later stage of the light absorption reaction structure. [Main component symbol description]

太陽能電池結構30 基板32A 透明基板32B 電子傳輸層33 光吸收反應層34 對極層36 内部40 光線42 吸收反應結構3402 第一導線3404 對極結構3602 第二導線3604 電解質38 半導體層3402A 染料分子3402B 14Solar cell structure 30 substrate 32A transparent substrate 32B electron transport layer 33 light absorbing reaction layer 34 counter electrode layer 36 inner 40 light 42 absorption reaction structure 3402 first wire 3404 counter structure 3602 second wire 3604 electrolyte 38 semiconductor layer 3402A dye molecule 3402B 14

Claims (1)

2〇1〇2563〇 十、申請專利範圍: 1、__ ^ ^ 染料太陽能電池結構,係接收光線以產生電 IL ’该染料太陽能電池結構係包含: 〜基板; 透明基板’係與該基板相對層疊設置,以於 該基板與該透明基板間形成一内部,該光線 ® 係、自相對該内部之外部,透過該透明基板以 進入該内部; 一電子傳輸層,係設置於該内部,並相互間隔 以層疊相對; 一光吸收反應層’係包含至少一光吸收反應結 構以及至少一第一導線,該光吸收反應層係 於該内部並設置於鄰近該透明基板之電子 .傳輸層之表面’使該光吸收反應結構透過該 電子傳輸層與遠第一導線電性搞接,該光吸 收反應結構進一步包含 一半導體層’為多層不同粒徑大小之半導 體粒子層疊於該電子傳輸層表面而成, 並且鄰近該電子傳輸層之半導體粒子係 較小,而延伸向該内部之該半導體粒子 15 201025630 係漸大; 複數個染料分子,係對應該等半導體粒子 之粒徑大小亦係具有多種粒子大小’不 同大小之染料分子係用以吸收不同波長 之光線,其中較小之染料分子附著於較 小之半導體粒子,較大之染料分子附著 於較大之半導體粒子;以及 一對極層,係對應該光吸收反應結構係包含至 少一對極結構,以及對應該第一導線包含至 少一第一導線,該對極層係於該内部並設置 於鄰近該基板之電子傳輸層之表面,使該對 極結構透過該電子傳輸層與該第二導線電 性辆接; 其中,該光吸收反應層之染料分子係吸收透過 該透明基板進入該内部之光線,以產生電位差 導致電流。 2、如申請專利範圍第1項所述之染料太陽能電池結 構,其中所述不同大小之染料分子係用以吸收不 同波長之光線’係以大粒子之染料分子吸收長波 長之光線’小粒子之染料分子吸收短波長之光 線。 16 201025630 3、 如申請專利範圍第1項所述之染料太陽能電池結 構’其中該基板亦係為該透明基板。 4、 如申請專利範圍第丨項所述之染料太陽能電池結 構’其中該透明基板係為一玻璃基板。 5、 如申請專利範圍第4項所述之染料太陽能電池結 構,其中該二電子傳輸層之一電子傳輸層係貼附 ❿ 於該玻璃基板之表面以形成一透明導電玻璃 (Transparent Conducting 0xide ; TC〇),所述該 透明導電玻璃係選自於由氟摻雜的氧化錫 听〇)、錫#雜的氧化銦_)、以及銘換雜的氧 化鋅(AZ0)所組成族群之透明導電玻璃,該二電 子傳輸層之另-電子傳輸層係選自於由金屬薄 膜(METAL F0LIE)、以及金屬板(METAL诎⑽) I 所組成族群之電子傳輸層。 …如申請專利範圍第1項所述之染料太陽能電池結 構’其中该半導體粒子係為高能隙金屬氧化物, 所述高㈣金屬氧化物係選自於由二氧化鈦 (Τι )氧化鋅(Zn〇)、氧化鐵也)、以及氧化 鎢亂所組成族群之高能隙金屬氧化物。 7如申明專利I。圍第i項所述之染料太陽能電池結 201025630 構’其中該對極結構之材質係選自於由鉑金屬薄 膜、鉑金屬粒子、以及石墨所組成族群之材質。 8、 如申請專利範圍第〗項所述之染料太陽能電池結 構’其中該第一導線以及該第二導線係為一銀導 線。 9、 如申請專利範圍第丨項所述之染料太陽能電池結 構,其中該内部更填充有一電解質。 10、 一種染料太陽能電池結構之光吸收反應層的製 造方法,該染料太陽能電池包含有相對層疊設置 且以間距形成一内部之基板與透明基板,二電子 傳輸層係設置於該内部,並相互間隔以層疊相 對’遠光吸收反應層係於該内部並設置於鄰近該 透明基板之電子傳輸層之表面,並包含至少一光 吸收反應結構,該光吸收反應結構進一步包含複 數個半導體粒子所構成之半導體層以及複數個 染料分子,該製造方法係包含下列步驟: 將顆粒較小之半導體粒子設置於該電子傳輸層 表面; 向該内部依序將較大之半導體粒子層疊設置於 較小之半導體粒子上; 18 201025630 沈積大粒子之複數個染料分子;以及 沈積小粒子之複數個染料分子,其中不同大小 之染料分子係用以吸收不同波長之光線; 其中,較小之染料分子附者於較小之半導體粒 子,較大之染料分子附著於較大之半導體粒 子。 ❹11、如申請專利範圍第10項所述之製造方法,其中 該光吸收反應層進一步包含至少一第一導線,該 光吸收反應結構透過該電子傳輸層與該第一導 線電性耦接。 12、 如申請專利範圍第11項所述之製造方法,其中 該染料太陽能電池結構更進一步包含一對極 β 層,該對極層係對應該光吸收反應結構係包含至 少一對極結構,以及對應該第一導線包含至少一 第二導線’該對極層係於該内部並設置於鄰近該 基板之電子傳輸層之表面’使該對極結構透過該 電子傳輸層與該第二導線電性耦接,其中該光吸 收反應層之染料分子係吸收透過該透明基板進 入該内部之光線’以產生電位差導致電流。 13、 如申請專利範圍第10項所述之製造方法,其中 19 201025630 所述不同大小之染料分子係用以吸收不同波長 之光線,係以大粒子之染料分子吸收長波長之光 線,小粒子之染料分子吸收短波長之光線。 14、 如申請專利範圍第1〇項所述之製造方法,其中 該基板亦係為該透明基板。 15、 如申请專利範圍第10項所述之製造方法,其中 5亥透明基板係為一玻璃基板。 16、 如申請專利範圍第15項所述之製造方法,其中 ^電子傳輸層之一電子傳輸層係貼附於該玻 璃基板之表面以形成一透明導電玻璃 (Transparent c〇nducting ⑽如;tc⑺所述該 透明導電玻璃係選自於由氟摻雜的氧化錫 (FTO)、錫摻.雜的氧化銦(IT〇)、以及銘推雜的氧 化鋅(AZQ)所組成族群之透明導電玻璃,該二電 子傳輸層之另-電子傳輸層係選自於由金屬薄 膜(METAL FOLIE)、以及金屬板(METAL如州 所組成族群之電子傳輸層。 17、 如申請專利範圍第1〇項所述之製造方法,其中 該半導體粒子係為高能隙金屬氧化物,所述高能 隙金屬氧化物係選自於由二氧化欽(Ti〇〇、氧化 20 201025630 鋅(ZnO)、氧化鐵(卩62〇3)、以芬_ U3;以及氧化鎢州3所組成族 群之高能隙金屬氧化物。 j 8、如申請專利範圍第12項所述之製造方法,其中 該對極結構之材質係選自於由鉑金屬薄膜、鉑金 屬粒子、以及石墨所組成族群之材質。 19、如申請專利範圍第12項所述之製造方法,其中 該第一導線以及該第二導線係為一銀導線。 2〇、如申請專利範圍第1 〇項所述之製造方法,該製 造方法於沈積染料之後’更包含下列步驟··填充 一電解質於該内部。2〇1〇2563〇10, the scope of application patent: 1, __ ^ ^ dye solar cell structure, is to receive light to produce electricity IL 'The dye solar cell structure includes: ~ substrate; transparent substrate ' is relatively stacked with the substrate Provided to form an interior between the substrate and the transparent substrate, the light beam, from the outside of the inner portion, through the transparent substrate to enter the interior; an electron transport layer disposed inside the space and spaced apart from each other a light absorbing reaction layer ′ comprising at least one light absorbing reaction structure and at least one first wire, the light absorbing reaction layer being attached to the interior and disposed on a surface of the electron transport layer adjacent to the transparent substrate The light absorbing reaction structure is electrically connected to the far first wire through the electron transport layer, and the light absorbing reaction structure further comprises a semiconductor layer formed by laminating a plurality of semiconductor particles of different particle sizes on the surface of the electron transport layer. And the semiconductor particles adjacent to the electron transport layer are small, and the semiconductor particles extending to the inside are small 15 201025630 is gradually larger; a plurality of dye molecules are corresponding to the size of the semiconductor particles and are also of various particle sizes. The dye molecules of different sizes are used to absorb light of different wavelengths, wherein the smaller dye molecules are attached to a smaller semiconductor particle, a larger dye molecule attached to the larger semiconductor particle; and a pair of pole layers corresponding to the light absorbing reaction structure comprising at least one pair of pole structures, and corresponding to the first wire comprising at least one a wire, the pair of electrodes is disposed inside the substrate and disposed on a surface of the electron transport layer adjacent to the substrate, such that the pair of electrodes is electrically connected to the second wire through the electron transport layer; wherein the light absorption reaction The dye molecules of the layer absorb light that enters the interior through the transparent substrate to create a potential difference resulting in a current. 2. The dye solar cell structure according to claim 1, wherein the dye molecules of different sizes are used to absorb light of different wavelengths, and the dye molecules of large particles absorb light of long wavelengths. The dye molecules absorb light of short wavelengths. 16 201025630 3. The dye solar cell structure according to claim 1, wherein the substrate is also the transparent substrate. 4. The dye solar cell structure as claimed in claim </RTI> wherein the transparent substrate is a glass substrate. 5. The dye solar cell structure of claim 4, wherein an electron transport layer of the two electron transport layer is attached to a surface of the glass substrate to form a transparent conductive glass (Transparent Conducting 0xide; TC 〇), the transparent conductive glass is selected from the group consisting of fluorine-doped tin oxide, bismuth-doped indium oxide, and transparent zinc oxide (AZ0). The electron-transporting layer of the two-electron transport layer is selected from the group consisting of a metal thin film (METAL F0LIE) and a metal plate (METAL诎(10)) I. The dye solar cell structure according to claim 1, wherein the semiconductor particle is a high energy gap metal oxide, and the high (tetra) metal oxide is selected from titanium oxide (Zn) zinc oxide (Zn〇). , iron oxide also), and high-gap metal oxides of the group consisting of tungsten oxide. 7 as claimed in patent I. The dye solar cell junction according to item i is 201025630. The material of the counter electrode structure is selected from the group consisting of a platinum metal film, a platinum metal particle, and graphite. 8. The dye solar cell structure of claim </RTI> wherein the first wire and the second wire are a silver wire. 9. The dye solar cell structure of claim 2, wherein the interior is further filled with an electrolyte. 10. A method of fabricating a light absorbing reaction layer of a dye solar cell structure, the dye solar cell comprising a substrate and a transparent substrate which are disposed opposite to each other and formed at an interval therebetween, wherein the two electron transport layers are disposed inside and spaced apart from each other Laminating a relatively high-beam absorption reaction layer in the interior and disposed on a surface of the electron transport layer adjacent to the transparent substrate, and comprising at least one light absorbing reaction structure, the light absorbing reaction structure further comprising a plurality of semiconductor particles a semiconductor layer and a plurality of dye molecules, the manufacturing method comprising the steps of: disposing semiconductor particles having a small particle size on a surface of the electron transport layer; and sequentially laminating the larger semiconductor particles to the smaller semiconductor particles 18 201025630 A plurality of dye molecules depositing large particles; and a plurality of dye molecules depositing small particles, wherein dye molecules of different sizes are used to absorb light of different wavelengths; wherein the smaller dye molecules are attached to smaller ones Semiconductor particles, larger dyes Attached to the large semiconductor particles. The manufacturing method of claim 10, wherein the light absorbing reaction layer further comprises at least one first wire, and the light absorbing reaction structure is electrically coupled to the first wire through the electron transport layer. 12. The manufacturing method of claim 11, wherein the dye solar cell structure further comprises a pair of pole beta layers, the pair of pole layers corresponding to the light absorbing reaction structure comprising at least one pair of pole structures, and Corresponding to the first wire comprising at least one second wire 'the pair of electrodes is disposed inside the surface and disposed on a surface of the electron transport layer adjacent to the substrate' to electrically pass the pair of pole structures through the electron transport layer and the second wire The coupling, wherein the dye molecules of the light absorbing reaction layer absorb light passing through the transparent substrate into the interior to generate a potential difference to cause a current. 13. The manufacturing method according to claim 10, wherein the dye molecules of different sizes described in 19 201025630 are used for absorbing light of different wavelengths, and the dye molecules of large particles absorb long wavelength light, small particles The dye molecules absorb light of short wavelengths. 14. The manufacturing method of claim 1, wherein the substrate is also the transparent substrate. 15. The manufacturing method according to claim 10, wherein the transparent substrate is a glass substrate. 16. The manufacturing method according to claim 15, wherein an electron transport layer of one of the electron transport layers is attached to a surface of the glass substrate to form a transparent conductive glass (Transparent c〇nducting (10) such as; tc (7) The transparent conductive glass is selected from the group consisting of fluorine-doped tin oxide (FTO), tin-doped indium oxide (IT〇), and indium-doped zinc oxide (AZQ). The electron-transporting layer of the two-electron transport layer is selected from the group consisting of a metal film (METAL FOLIE), and a metal plate (the metal-transporting layer of the group of states such as the state. 17, as described in claim 1) The manufacturing method, wherein the semiconductor particle is a high energy gap metal oxide selected from the group consisting of dioxide (Ti〇〇, oxidation 20 201025630 zinc (ZnO), iron oxide (卩62〇) 3), a high energy gap metal oxide of the group consisting of phenanthrene _ U3; and a group of tungsten oxides. The manufacturing method according to claim 12, wherein the material of the counter electrode structure is selected from Platinum metal The method of manufacturing the group of the film, the platinum metal particles, and the graphite. The method of claim 12, wherein the first wire and the second wire are a silver wire. The manufacturing method according to the first aspect of the invention, after the deposition of the dye, further comprises the following steps: filling an electrolyte in the interior. 21twenty one
TW97148911A 2008-12-16 2008-12-16 Dye solar cell structure and method of manufacturing light absorption reaction layer thereof TW201025630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97148911A TW201025630A (en) 2008-12-16 2008-12-16 Dye solar cell structure and method of manufacturing light absorption reaction layer thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97148911A TW201025630A (en) 2008-12-16 2008-12-16 Dye solar cell structure and method of manufacturing light absorption reaction layer thereof

Publications (2)

Publication Number Publication Date
TW201025630A true TW201025630A (en) 2010-07-01
TWI378566B TWI378566B (en) 2012-12-01

Family

ID=44852666

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97148911A TW201025630A (en) 2008-12-16 2008-12-16 Dye solar cell structure and method of manufacturing light absorption reaction layer thereof

Country Status (1)

Country Link
TW (1) TW201025630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI419392B (en) * 2010-07-30 2013-12-11 Ind Tech Res Inst Multilayer nanostructured titanium oxide photoelectrode and manufacturing method thereof
CN112509815A (en) * 2019-09-16 2021-03-16 成功大学 Double-sided light-receiving type dye-sensitized solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI419392B (en) * 2010-07-30 2013-12-11 Ind Tech Res Inst Multilayer nanostructured titanium oxide photoelectrode and manufacturing method thereof
CN112509815A (en) * 2019-09-16 2021-03-16 成功大学 Double-sided light-receiving type dye-sensitized solar cell
CN112509815B (en) * 2019-09-16 2022-06-10 成功大学 Double-sided light-receiving type dye-sensitized solar cell

Also Published As

Publication number Publication date
TWI378566B (en) 2012-12-01

Similar Documents

Publication Publication Date Title
Brown et al. Progress in flexible dye solar cell materials, processes and devices
Lee et al. Flexible organo-metal halide perovskite solar cells on a Ti metal substrate
Cha et al. Dye-sensitized solar cells on glass paper: TCO-free highly bendable dye-sensitized solar cells inspired by the traditional Korean door structure
Rho et al. Recent progress in dye-sensitized solar cells for improving efficiency: TiO 2 nanotube arrays in active layer
US20100243022A1 (en) Dye-Sensitized Solar Cell Module
JP2007095682A (en) Laminate type photovoltaic element and its manufacturing method
Sahu et al. Synthesis and application of core-shell Au–TiO2 nanowire photoanode materials for dye sensitized solar cells
Deng et al. Optical design in perovskite solar cells
Que et al. High-efficiency dye-sensitized solar cells based on ultra-long single crystalline titanium dioxide nanowires
JP2007335222A (en) Photoelectrode, dye-sensitized solar cell using it, and its manufacturing method
JP2012074365A (en) Tandem dye-sensitized solar cell and method for manufacturing the same
KR100624765B1 (en) Light sensitized and P-N junction silicon complexed solar cell and manufacturing method thereof
Chang et al. Graphene nanosheets inserted by silver nanoparticles as zero-dimensional nanospacers for dye sensitized solar cells
Chen et al. A novel cheap, one-step and facile synthesis of hierarchical TiO2 nanotubes as fast electron transport channels for highly efficient dye-sensitized solar cells
Mahalingam et al. Zinc oxide/graphene nanocomposite as efficient photoelectrode in dye‐sensitized solar cells: Recent advances and future outlook
TW201128785A (en) Dye-sensitized solar cell
EP1753000A2 (en) Photoelectrode substrate of dye sensitizing solar cell, and method for producing same
TW201205833A (en) Photo-chemical solar cell with acicular electrode and method manufacturing the same
KR20120020938A (en) Photo electrode for dye-sensitized solar cell, manufacturing method of the same and dye-sensitized solar cell including the same
CN107464881A (en) It is a kind of towards integrated device of photolysis water hydrogen and preparation method thereof
CN206225411U (en) A kind of perovskite solar battery group based on zinc oxide conductive layer
Hosseinnezhad et al. A review on flexible dye-sensitized solar cells as new sustainable energy resources
TWI426617B (en) Dye-sensitized solar cell and method for manufacturing the same
TW201025630A (en) Dye solar cell structure and method of manufacturing light absorption reaction layer thereof
Kim et al. Formation of double-layered TiO2 structures with selectively-positioned molecular dyes for efficient flexible dye-sensitized solar cells

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees