TW201204866A - Thin film deposition apparatus - Google Patents

Thin film deposition apparatus Download PDF

Info

Publication number
TW201204866A
TW201204866A TW99123497A TW99123497A TW201204866A TW 201204866 A TW201204866 A TW 201204866A TW 99123497 A TW99123497 A TW 99123497A TW 99123497 A TW99123497 A TW 99123497A TW 201204866 A TW201204866 A TW 201204866A
Authority
TW
Taiwan
Prior art keywords
frequency
current source
thin film
film deposition
deposition apparatus
Prior art date
Application number
TW99123497A
Other languages
Chinese (zh)
Other versions
TWI405867B (en
Inventor
Bing-Huan Lee
Ru-Yuan Yang
Chang-Sin Ye
Yung-Chieh Chien
Original Assignee
Asiatree Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asiatree Technology Co Ltd filed Critical Asiatree Technology Co Ltd
Priority to TW99123497A priority Critical patent/TWI405867B/en
Publication of TW201204866A publication Critical patent/TW201204866A/en
Application granted granted Critical
Publication of TWI405867B publication Critical patent/TWI405867B/en

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

The disclosure is a plasma generating apparatus, which includes a plurality of interdigital electrodes, a RF power supply, a signal adjuster, and a plurality of the frequency oscillators. This apparatus can generate a larger area uniform plasma in the chamber, used for deposition of various optical thin films.

Description

201204866 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種薄膜沈積裝置,其特別有關於—種利 用指叉式電極產生大面積均勻之電漿的薄膜沈積裝置。 【先前技術】 在今曰半導體製程技術中,如晶圓廠或晶片型太陽能廠,電 漿增強型化學式氣相沈積製程(Plasma enhance chemical vapm· dePosition,PECVD)系統可在晶圓級的晶片上達到非常高效率之 薄膜沈積。 此外,傳統微晶矽質薄膜太陽能電池之製程方式,通常藉由 在電漿增強型化學式軋相沈積製程中通入大量氫氣與石夕燒做稀 釋,再經由反應形成微晶矽質薄膜而提昇其各項電特性以達到高 效率產能之目標。隨著製程中電漿頻率的提升,其錄膜速率也^ 之增加。然而頻率的增加,亦表示波長減短,當欲鑛膜之基板面 積增大時’基板上傳叙電磁麟會因其她變化造成電場之變 • 動,相對地也影響了電漿的均勻性及鍍膜之效率。在今日鍍膜基 板尺寸由昔知之八吁、十二忖晶圓增大到用於薄膜液晶顯示器 (pin film transistor Hquid crystal display,m lcd)廠或薄膜太陽 月b廠中之-平方公尺以上之大面積玻璃基板時,電浆的均勾性問 ,將會嚴重影響量產之效率及成本。為了解決上制題,有需要 提供-種具有產生均雜賴密度之電極,喊服先前技術 點。 參照美國專利公綠第6,228,438號,標題為”應驗大面積 201204866 基板的電漿反應器(Plasma reactor for the treatment of large size substrates),其揭示一種透鏡型電極板。該電極板表面佈局係以高 斯橢圓函數分佈配置,以匹配其電極板上之電場分佈,產生一均 勻分佈之《。然而該案中揭示之電極結構,其饋人點垂直於電 極板中央,因此較不易實現一次性多片鍍膜之功效。另參照美國 專利公告第7,141,516號,標題為,,具有高頻電漿產生器及其產生 方法”(High frequency plasma gene咖肪d high frequency generating method) ’其揭示一種採用梯型(ia(jder shape)電極的電聚 輔助氣相沈積系統,該梯型電極係採用以多點饋入方式對管狀電 極進行線性相位匹配以達到一大面積均勻分佈之電場。 然而,因應更大面積之鍍膜基板,電極板面積需增加,因此 其饋入點數目亦將會增加。為節省成本,因此有需要提出一種可 採用較少饋入點數目且又可形成一大面積均勻化電場之裝置。 【發明内容】 職是之故’申請人提出一種薄膜沈積裝置,其特別有關於一 種利用指叉式電極的電漿辅助化學氣相沈積裝置。本發明用於薄 膜沈積裝置可採用較少饋入點數目且又可形成一大面積均勻化電 場,具有提升薄膜太陽能電池效能及產能之價值。此外,本發明 係引用美國公告案第7,141,516號,其標題為“具有高頻電漿產生 器及其產生方法(High frequency plasma generator* and high frequency plasma generating method)’’ 以及美國公告案第 6,228,438號’其標題為“應用於大面積基板的電漿反應器(plasma reactor for the treatment of large size substrates)”作引證參考文獻。 本發明提供一種薄膜沈積裝置’其能於電極上達成一均勻電 201204866 場’進而提升矽基薄膜之鍍膜品質,可應用於高效能之太陽能電 池或平面顯示器元件。 本發明提出一種薄膜沈積裝置,包含:腔體、指又式電極、射 頻電流源、阻抗匹配器、信號調整器、第一頻率震盪器以及第二 頻率震盪器。其中,腔體係呈接地並具有一進氣孔及一出氣孔, 用以供一電漿於其内產生;指叉式電極係配置於腔體中,具有一 饋入阻抗’用以產生電場’其中指叉式電極係包含交錯配置之複 數個管狀電極組,且每個管狀電極組係包含複數根管狀電極及一 • 連接單元;射頻電流源用以提供射頻電流;阻抗匹配器係電性連 接於射頻電流源與指叉式電極,用以匹配射頻電流源所提供之射 頻電流至指又式電極之饋入阻抗;信號調整器係電性連接於射頻 電流源之一端’用於調整射頻電流源之輸出相位;第一頻率震盪 器,電性連接於射頻電流源之另一端,用以提供第一頻率予射頻 電流源·’第二頻率震盪器,電性連接於信號調整器與射頻電流源 之間,用以提供第二頻率予射頻電流源。 Φ 本發明亦提出一種薄膜沈積裝置,包含:一腔體;一指叉式 電極;一射頻電流源;一阻抗匹配器;一信號調整器;一第一頻 率震盪器;以及一第二頻率震盪器。其中腔體,其係接地並具有 進氣孔及出氣孔,用以產生電漿;指又式電極’配置於腔體中, 用以產生一電場,指叉式電極由複數個管狀電極組交錯配置所組 成’且官狀電極組係包含複數根管狀電極、連接單元、及複數個 具有饋入阻抗之饋入單元;射頻電流源,用以提供射頻電流;阻 抗匹配器’電性連接於射頻電流源與複數個饋入單元,用以匹配 射頻電流源所提供之射頻電流至複數個饋入單元之饋入阻抗;信 201204866 號調整器,係電性連接於射頻電流源之一端,用於調整射頻電流 源之輸出相位;第一頻率震盪器,電性連接於射頻電流源之另一 端,用以提供一第一頻率;第二頻率震盪器,電性連接於射頻電 流源之另一端,用以提供一第二頻率。 根據本發明之薄膜沈積裝置,其利用指叉式電極製備石夕薄膜 光電元件(包含顯示器與太陽能電池)所需之矽質薄膜,具有下 列優點:提升薄膜鍍膜速率,並可製作大面積之矽薄膜光電元件。 為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂, 下文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 雖然本發明可表現為不同形式之實施例,但附圖所示者及於 下文中說明者係為本發明可之較佳實施例,並請了解本文所揭示 者係考量為本發明之一範例,且並非意圖用以將本發明限制於圖 示及/或所描述之特定實施例中。 現凊參照第la圖,其為本發明之薄膜沈積裝置1⑽之上視 圖,其揭示一種用於薄膜沈積裝置100,其包含:腔體u〇 ;指叉 式電極120 ;第-頻率震盈器15〇 ;第二頻率震盈器16〇 ;阻抗匹 配器190 ;信號調整器170 ;射頻電流源18〇。腔體11〇係呈接地 狀態,用以產生電漿,且具有進氣孔U1及出氣孔112。薄膜沈積 裝置100可用以進行電漿辅助化學氣相蒸鑛、電漿辅助蝕刻、以 及電漿高分子化等細製程及㈣王作,於本發施例中係用 於電讓輔助化學氣相沈積之薄膜製程,其制㈣於沈積石夕薄 膜。進氣孔111制以通人至少—可產生電漿反應之氣體,於一 實施例中,其係選自氫氣(¾),魏(SiH4)氣體以沈積非晶矽 201204866 (amorphous silicon, a-Si)、奈米晶石夕(nan0CIyStai siHc〇n,nc_si)薄膜 及微晶矽(microcrystal silicon,μ-Si)薄膜。出氣孔112則用以連接一 幫浦。藉由幫浦的抽氣功能’可調節腔體11〇中壓力,並排出氫 氣(¾)與矽烷(SiH4)氣體反應後之廢氣。 其中,電漿反應之產生係為施能量予腔體110中之氣體,使 氣體中電子解離而形成解離態氣體,即為電漿。於本發明中,能 量係由射頻電流產生之電場所給予。因此,於腔體11〇中,配置 多個管狀電極以引入射頻電流而產生電場。且為達到大面積化電 鲁場,將多個管狀電極以指叉式形式實施,藉由電極上電場之耦合 效應,產生一大面積化電場。 指叉式電極120係配置於腔體11〇中,用於產生一電場。指 叉式電極120之電場係由通入射頻電流所產生,其中指又式電極 120由複數個管狀電極組交錯配置所組成。 現睛參照第lb圖及第lc圖,其所示分別為本發明第一實施 例中之第一管狀電極組130及第二管狀電極組14〇,其中第一管狀 φ 電極組13〇及第二管狀電極組140係分別包含複數根管狀電極 121,以及第一連接單元131、第二連接單元141。其中該第一連 接單元131、第二連接單元141係用以連接複數根管狀電極121 且作為射頻電流之饋入媒介。第一連接單元131及第二連接單元 141於本發明中可設置於腔體11〇之任一邊。在本實施例中,射頻 電流之饋入係在腔體110的同一邊,因此第一連接單元131及第 二連接單元141具有相異之形式。 其中’第一管狀電極組130及第二管狀電極組140各自產生 的電場彼此間具有電磁耦合效應(electromagnetic coupling),其將使 201204866 電場交互作用’且在指又式電極12G範_及其鄰近區域形成一 大面積電場。電場之強弱將會影響通人腔體no中氣體之電子所 獲得之能量’進而影響賴分佈之均勻度。指又式電極12〇之配 置方式可被應用於常壓化學氣相沈積系統(APCVD)、低壓化學氣 相此齡統(LPCVD)、尚密度電漿化學氣相沈齡統(HDpcvd)、 電賴助化學氣相沈齡統(PEcv〇)、感絲合電雜子侧系 統(icp)之-’其中管狀電極121之數量可依製程中基板大小而改 變以製造任意面積之分佈賴。於本實關巾,管狀電極數量為 12根,基板大小為1.4 X 1.4 m2。 心又式電極12〇之材質皆係選自鎳、金、銀、鈦、銅、把、 ^鏽鋼、鈹銅合金、铭、被覆铭、梦、石英、碳化石夕、氮化石夕、 石反:氮化紹、藍寶石、聚醯亞胺、與鐵氟龍之一。需注意,位於 不同系統中之指叉式電極12G亦會影響到其所沈積之薄膜品質與 均勻性。此外’於製程進行時,需考量射觀麟18()到指叉式 電極m之電流饋人_。為避免過大的電磁波反射情形產生, 阻抗匹配^ 190係同時雜連結純叉式電極12(),用以匹配射頻 電肌源180之阻抗至指又式電極12〇之饋入阻抗,藉由阻抗匹配 器190調整該射頻電流源18〇之饋入阻抗大小以避免過大的反射 波產生。 其中’射頻電流源180電性連接於阻抗匹配器丨9〇,以提供至 少一射頻電_蚊式電極12G,其操作鮮範圍為1GMHZ到 1GHz之P4。軸電流源18()輸出之射頻電流頻率會影響腔體11〇 中之氣體解離速率而改變薄膜沈積速率。需注意,管狀1;極121 之長度範圍為射頻電流辭之1/1,GGG至1/2導波長。導波長之定 201204866 義為該特定頻率之電磁波在腔體中傳遞之波長。於本發明實施例 中,複數根管狀電極121之較佳長度L1為14m ;射頻電流源18〇 饋入到指叉式電極120之阻抗為1到3⑻歐姆,其最佳阻抗為5〇 歐姆。 為形成一均勻之電場,複數根管狀電極12ι間之距離不能太 遠,以避免相鄰之管狀電極121間電磁耦合量不足。於本發明之 實施例中,複數根管狀電極121之間隔W1為〇.〇4 m。 此外,為達到一均勻之電場,可調整複數根管狀電極121上 鲁之電壓相位與振幅,因此需配置具有移動相位及振幅作用之信號 調整器170。 信號調整器170係電性連接於射頻電流源18〇之一端,用於 調整射頻電流源180之輸出相位。信號調整器17〇係結合熟習該 領域之技術者所習知之相移器(pllase也此)及信號放大器( amplifier)之功能。第一頻率震盪器15〇係電性連接於射頻電流源 180之另一端’提供第一頻率,作為射頻電流源18〇之至少一輸出 籲射頻電級之頻率。第一頻率震盈器·亦電性連接於射頻電流源 180之一端’用以提供第二頻率作為麵電流源180之至少一輸出 射頻電流之鮮。其巾,信號調整ϋ 17G及第-鮮紐器15〇 及第二頻率震妓16G係可魏頻電麵、⑽所輸出之射頻電流 具有兩組不批輸丨她/振巾1/鮮/信號形狀。 現請參照第2 a圖,其為射頻電流所產生之麵賴與相位關 係圖’其中射頻電壓值係隨相位變化呈週期性改變,其中該相位 之度數大小可等效成射頻電流通過距離,該現象可應用於分析射 頻電壓值在管狀電極上之變化。 201204866 現明參照第2 b圖’其分別為輸人相位差為 =:=r::r 時,心 妨丄一 ’其呈現-近似正齡佈曲線。 藉由觀察㈣線上之a,b,e三點之她,顯示贿由於該三點 電壓相位大小之不同達成—相位互補之效果使沿著管狀電極⑵ 上之所產生之電壓相位變動變小,形成—均勻之耗合電場。於第 -實施例中,第-頻率震盪器15G之第—頻率為4G 68MHz,第二 頻率震盪器160之第二頻率為38顯2,信號調整器⑺對具有第 二頻率之射頻電流之相位移動5〇度至18〇度之間。 現請參照S 3圖’其為本發明之第二實補之賴沈積裝置 200 ’其係包含已揭示於第一實施例中之腔體ι1〇 ;阻抗匹配器 190 ;射頻電流源180 ;信號調整器17〇 ;第一頻率震盪器15〇 ;第 二頻率震盪器160,以上構件之實施方式係與第一實施例中所述相 同。與第一實施例不同的是,於第二實施例中之指叉式電極210 係由兩組第二管狀電極組140所組成,因此第二連接單元141係 位於該腔體之不同面。 現請參照第4圖,其為本發明之第三實施例之薄膜沈積裝置 300,其係包含已揭示於第一實施例中之腔體110 ;阻抗匹配器 190 ;射頻電流源180 ;信號調整器170 ;第一頻率震盪器150 ;第 二頻率震盪器160’以上構件之實施方式係與第一實施例中所述相 同。與第一實施例不同的是,於第三實施例中之指叉式電極310 係由兩組第二管狀電極組130,以及T型連接單元320所組成。 且藉由配置於T型連接單元320上之管狀電極121與兩組第二管 狀電極組130間之耦合,可使本實施例中之電場產生面積為第一 201204866 實施例中電場面積之兩倍,因此可有效增加薄膜沈積裝置300之 製程面積。需注意’輸入T型連接單元320之射頻電流相位與輸 入兩組第二管狀電極組130之射頻電流相位不同。於本實施中, 第一頻率震盪器150之第一頻率,第二頻率震盪器160之第二頻 率,以及信號調整器170之相位移動與第一實施例相同。 現請參照第5a圖’其為本發明之第四實施例之薄膜沈積裝置 400,其係包含已揭示於第一實施例中之腔體110 ;阻抗匹配器 190 ;射頻電流源18〇 ;信號調整器17〇 ;第一頻率震盪器15〇 :第 二頻率震盪器160 ’以上構件之實施方式係與第一實施例中所述相 同。現請參照第5b圖,其為本發明之第四實施例之指又式電極 410 °與第一實施例不同的是’於第四實施例中之指叉式電極 係由複數個管狀電極12卜連接單元411、以及複數個饋入單元412 所組成。 於本實施例中,阻抗匹配器19〇同時連結複數個饋入單元 412 ’用以匹配射頻電流源18〇所提供之射頻電流至複數個饋入單 疋412之饋人阻抗。藉由增加射頻電流饋入點之數量,可有效減 少輸入射頻電流於連結單元411中傳遞時造成之相位失真及衰 減’因此本實施例中之薄膜沈積裝置4〇〇可具有較佳之功效。需 注意’於本實施例中’鄰近_人私412中錄人具有相位差 之射頻電流。其中,第—頻率震盪器15G之第—頻率,第二頻率 震盪器160之第二醉,以及信號調整器170之相位移動與第一 實施例相同,且該饋入單元412數量與管狀電極121相同,皆為 十二組。 综上所述’根據本發明之薄膜沈積裝置,其利用指叉式電極 201204866 製備矽薄膜光電元件(包含顯示器與太陽能電池)所需之石夕質薄 膜,其具有下列優點:提升薄膜鍍膜速率,並可製作大面積之矽 薄膜光電元件。 雖然本發明已以前述較佳實施例揭示,然其並非用以限定本 發明’任何熟習此技藝者,在猶離本發明之精神和範圍内,冬 ZTtltT" ° 後附之申料概a此本發明之紐範圍當視 201204866 【圖式簡單說明】 第1 a圖顯示為根據本發明之薄膜沈積裝置; 第1 b圖顯示為第一管狀電極組; 第1 c圖顯示為第二管狀電極組; 第2a圖顯不為射頻電流電壓與相位關係圖, 第2b圖顯示為本發明之實施例中管狀電極上射頻電流相位圖; 第3圖顯示為本發明第二實施例之薄膜沈積裝置; 第4圖顯示為本發明第三實施例之薄膜沈積裝置; • 第5a圖顯示為本發明第四實施例之薄膜沈積裝置; 第5b圖顯示為本發明第四實施例之指叉式電極。 【主要元件符號說明】 100 薄膜沈積裝置 110 腔體 111 進氣孔 112 出氣孔 φ 120 指叉式電極 121 管狀電極 130 第一管狀電極組 131 第一連接單元 140 第二管狀電極組 141 第二連接單元 150 第一頻率震盪器 160 第二頻率震盪器 信號調整器 13 170 201204866 180 射頻電流源 190 阻抗匹配器 200 薄膜沈積裝置 210 指叉式電極 300 薄膜沈積裝置 310 指叉式電極 320 T型連接單元 400 第四實施例之薄膜沈積裝置 410 第四實施例之指叉式電極 411 第四實施例之連結單元 412 饋入單元201204866 VI. Description of the Invention: [Technical Field] The present invention relates to a thin film deposition apparatus, and more particularly to a thin film deposition apparatus which produces a large-area uniform plasma using an interdigitated electrode. [Prior Art] In today's semiconductor process technology, such as a fab or wafer-type solar plant, a plasma enhanced chemical vapm deposion (PECVD) system can be used on wafer-level wafers. A very efficient film deposition is achieved. In addition, the manufacturing process of the conventional microcrystalline tantalum thin film solar cell is generally carried out by introducing a large amount of hydrogen into the plasma enhanced chemical phase rolling deposition process and diluting with the shovel, and then forming a microcrystalline enamel film through the reaction. Its various electrical characteristics to achieve the goal of high efficiency production capacity. As the plasma frequency increases during the process, the film recording rate also increases. However, the increase in frequency also means that the wavelength is shortened. When the substrate area of the film is increased, the substrate will increase the uniformity of the plasma due to changes in the electric field caused by other changes. The efficiency of the coating. In today's coated substrate size is increased from the known eight-inch, twelve-inch wafer to more than - square meters in the thin film transistor Hquid crystal display (m lcd) factory or thin film solar month b factory When a large-area glass substrate is used, the uniformity of the plasma will seriously affect the efficiency and cost of mass production. In order to solve the above problems, it is necessary to provide an electrode having a density of occurrence of the same, and shouting the prior art. Reference is made to U.S. Patent No. 6,228,438, entitled "Plasma reactor for the treatment of large size substrates, which discloses a lens-type electrode plate. The surface layout of the electrode plate is Gaussian. The elliptic function is distributed to match the electric field distribution on the electrode plate to produce a uniform distribution. However, the electrode structure disclosed in the case has a feeding point perpendicular to the center of the electrode plate, so that it is difficult to realize a one-time multi-coated coating. The effect of U.S. Patent No. 7,141,516, entitled "High frequency plasma gene high frequency generating method" An electrothermal-assisted vapor deposition system of an ia (jder shape) electrode which adopts a linear phase matching of a tubular electrode by a multi-point feeding method to achieve an electric field uniformly distributed over a large area. For a larger area of coated substrate, the area of the electrode plate needs to be increased, so the number of feed points will also increase. Cost, therefore, there is a need to propose a device that can use a smaller number of feed points and can form a large area uniformizing electric field. [Summary of the Invention] The applicant proposes a thin film deposition apparatus, which is particularly related to A plasma-assisted chemical vapor deposition apparatus using an interdigitated electrode. The invention can be used for a thin film deposition apparatus with a small number of feed points and a large area uniformizing electric field, which can improve the performance and productivity of the thin film solar cell. In addition, the present invention is incorporated by reference in U.S. Patent No. 7,141,516, entitled "High Frequency Plasma Generator* and high frequency plasma generating method" and US Bulletin No. 6,228,438, entitled "plasma reactor for the treatment of large size substrates", cited as a reference. The present invention provides a thin film deposition apparatus which is capable of achieving uniformity on an electrode. Electric 201204866 field 'and further improve the coating quality of ruthenium-based film, can be applied to high Solar cell or flat panel display device. The invention provides a thin film deposition device comprising: a cavity, a finger-and-receiver electrode, an RF current source, an impedance matcher, a signal adjuster, a first frequency oscillator, and a second frequency oscillator Wherein, the cavity system is grounded and has an air inlet hole and an air outlet hole for generating a plasma therein; the finger fork electrode system is disposed in the cavity and has a feed impedance 'for generating an electric field Wherein the interdigitated electrode system comprises a plurality of tubular electrode sets arranged in a staggered configuration, and each tubular electrode set comprises a plurality of tubular electrodes and a connection unit; the RF current source is used to provide RF current; the impedance matching device is electrically connected It is connected to the RF current source and the fork electrode to match the RF current provided by the RF current source to the feed impedance of the finger-type electrode; the signal regulator is electrically connected to one end of the RF current source for adjustment The output phase of the RF current source; the first frequency oscillator is electrically connected to the other end of the RF current source to provide the first frequency to the RF current source. A second frequency oscillator, is electrically connected between the regulator and the RF current signal source for providing a second radio frequency to the current source. Φ The present invention also provides a thin film deposition apparatus comprising: a cavity; an interdigital electrode; an RF current source; an impedance matching device; a signal regulator; a first frequency oscillator; and a second frequency oscillation Device. The cavity is grounded and has an air inlet hole and an air outlet hole for generating plasma; the finger electrode is disposed in the cavity to generate an electric field, and the finger electrode is staggered by a plurality of tubular electrode groups The configuration of the 'organic electrode group includes a plurality of tubular electrodes, a connecting unit, and a plurality of feeding units having a feeding impedance; an RF current source for providing a radio frequency current; the impedance matching device is electrically connected The RF current source and the plurality of feeding units are configured to match the RF current provided by the RF current source to the feeding impedance of the plurality of feeding units; the regulator 201204866 is electrically connected to one end of the RF current source, Adjusting the output phase of the RF current source; the first frequency oscillator is electrically connected to the other end of the RF current source to provide a first frequency; and the second frequency oscillator is electrically connected to the other end of the RF current source Used to provide a second frequency. According to the thin film deposition apparatus of the present invention, the enamel film required for the preparation of the Shihua thin film photovoltaic element (including the display and the solar cell) by using the interdigitated electrode has the following advantages: increasing the film coating rate and making a large area. Thin film photovoltaic elements. The above and other objects, features, and advantages of the present invention will become more apparent and understood. The present invention may be embodied in various forms, and the embodiments shown in the drawings and the following description are preferred embodiments of the present invention. The invention is not intended to limit the invention to the particular embodiments illustrated and/or described. Referring now to FIG. 1A, which is a top view of a thin film deposition apparatus 1 (10) of the present invention, it discloses a thin film deposition apparatus 100 including: a cavity u〇; a finger electrode 120; a first-frequency shaker 15〇; second frequency shaker 16〇; impedance matcher 190; signal adjuster 170; RF current source 18〇. The cavity 11 is grounded to generate plasma and has an air inlet U1 and an air outlet 112. The thin film deposition apparatus 100 can be used for plasma-assisted chemical vapor phase distillation, plasma-assisted etching, and plasma polymerization, and (4) Wang Zuo, which is used in the present embodiment to electrically assist the chemical vapor phase. The film process of deposition, which is made up of (4) deposition of Shishi film. The air inlet hole 111 is formed to pass at least a gas which can generate a plasma reaction. In one embodiment, it is selected from the group consisting of hydrogen (3⁄4) and Wei (SiH4) gas for depositing amorphous 矽201204866 (amorphous silicon, a- Si), nanocrystalline spine (nan0CIyStai siHc〇n, nc_si) film and microcrystalline silicon (μ-Si) film. The air outlet 112 is used to connect a pump. The pumping function of the pump can be used to adjust the pressure in the chamber 11 and exhaust the exhaust gas from the reaction of hydrogen (3⁄4) with decane (SiH4) gas. The plasma reaction is generated by applying energy to the gas in the cavity 110 to dissociate the electrons in the gas to form a dissociated gas, that is, a plasma. In the present invention, the energy is given by an electric field generated by radio frequency current. Therefore, in the cavity 11, a plurality of tubular electrodes are arranged to introduce an RF current to generate an electric field. In order to achieve a large-area electric field, a plurality of tubular electrodes are implemented in the form of an interdigitated form, and a large-area electric field is generated by the coupling effect of the electric field on the electrodes. The interdigitated electrode 120 is disposed in the cavity 11〇 for generating an electric field. The electric field of the finger electrode 120 is generated by the introduction of a radio frequency current, wherein the finger electrode 120 is composed of a plurality of tubular electrode groups staggered. Referring now to FIG. 1b and FIG. 1c, the first tubular electrode group 130 and the second tubular electrode group 14A are respectively shown in the first embodiment of the present invention, wherein the first tubular φ electrode group 13 and the first The two tubular electrode sets 140 each include a plurality of tubular electrodes 121, and a first connecting unit 131 and a second connecting unit 141. The first connecting unit 131 and the second connecting unit 141 are used to connect the plurality of tubular electrodes 121 and serve as a feeding medium for the radio frequency current. The first connecting unit 131 and the second connecting unit 141 may be disposed on either side of the cavity 11〇 in the present invention. In the present embodiment, the feeding of the radio frequency current is on the same side of the cavity 110, and thus the first connecting unit 131 and the second connecting unit 141 have different forms. Wherein the electric fields generated by the first tubular electrode group 130 and the second tubular electrode group 140 each have an electromagnetic coupling, which will cause the electric field interaction of 201204866 'and the proximity electrode 12G and its vicinity The area forms a large area of electric field. The strength of the electric field will affect the energy obtained by the electrons in the gas in the cavity no, which in turn affects the uniformity of the distribution. The configuration of the parallel electrode 12〇 can be applied to an atmospheric pressure chemical vapor deposition system (APCVD), a low pressure chemical vapor phase (LPCVD), a still-density plasma chemical vapor deposition system (HDpcvd), and electricity. Depending on the chemical vapor phase (PEcv〇), the wire-electric hybrid system (icp) - 'the number of tubular electrodes 121 can be changed according to the size of the substrate in the process to create a distribution of any area. In this real towel, the number of tubular electrodes is 12 and the substrate size is 1.4 X 1.4 m2. The material of the heart-type electrode 12〇 is selected from the group consisting of nickel, gold, silver, titanium, copper, handle, rust steel, beryllium copper alloy, Ming, covered Ming, dream, quartz, carbon carbide shi, nitride rock eve, stone Anti: one of nitriding, sapphire, polyimine, and Teflon. It should be noted that the interdigitated electrode 12G located in different systems also affects the quality and uniformity of the deposited film. In addition, when the process is carried out, it is necessary to consider the current feed _ of the spectator 18 () to the yoke electrode m. In order to avoid excessive electromagnetic wave reflection, the impedance matching ^ 190 is simultaneously connected to the pure fork electrode 12 () to match the impedance of the RF electromuscular source 180 to the feed impedance of the finger electrode 12 ,, by impedance The matcher 190 adjusts the feed impedance of the RF current source 18〇 to avoid excessive reflected waves. The RF current source 180 is electrically connected to the impedance matching device 丨9〇 to provide at least one RF electric-mosquito electrode 12G, which operates in a fresh range of 1 GMHZ to 1 GHz P4. The frequency of the RF current output by the shaft current source 18() affects the gas dissociation rate in the cavity 11〇 and changes the film deposition rate. It should be noted that the length of the tubular 1; pole 121 ranges from 1/1 of the RF current, and GGG to 1/2 of the wavelength. The wavelength of the conduction wavelength 201204866 is the wavelength at which the electromagnetic wave of this specific frequency is transmitted in the cavity. In the embodiment of the present invention, the preferred length L1 of the plurality of tubular electrodes 121 is 14 m; the impedance of the RF current source 18〇 fed to the interdigitated electrode 120 is 1 to 3 (8) ohms, and the optimal impedance is 5 ohms. . In order to form a uniform electric field, the distance between the plurality of tubular electrodes 12i should not be too far to avoid insufficient electromagnetic coupling between the adjacent tubular electrodes 121. In the embodiment of the present invention, the interval W1 of the plurality of tubular electrodes 121 is 〇.〇4 m. In addition, in order to achieve a uniform electric field, the voltage phase and amplitude of the plurality of tubular electrodes 121 can be adjusted. Therefore, a signal conditioner 170 having a moving phase and amplitude action is required. The signal adjuster 170 is electrically connected to one end of the RF current source 18〇 for adjusting the output phase of the RF current source 180. The signal conditioner 17 combines the functions of a phase shifter (pllase) and a signal amplifier known to those skilled in the art. The first frequency oscillator 15 is electrically coupled to the other end of the RF current source 180 to provide a first frequency as the frequency of at least one of the RF current sources 18 输出 to the RF level. The first frequency oscillator is also electrically connected to one end of the RF current source 180 to provide the second frequency as the at least one output RF current of the surface current source 180. Its towel, signal adjustment ϋ 17G and the first - fresh device 15 〇 and the second frequency shock 16G system can be Wei frequency electric surface, (10) the output of the RF current has two groups of not to lose her / vibrating towel 1 / fresh / Signal shape. Please refer to Figure 2 a, which is the relationship between the surface and the phase of the RF current. The RF voltage value changes periodically with the phase change. The degree of the phase can be equivalent to the RF current passing distance. This phenomenon can be applied to analyze changes in the RF voltage value on the tubular electrode. 201204866 It is now apparent that referring to Fig. 2b's, when the input phase difference is =:=r::r, the heart 丄 ’'s presenting-approximate positive-age cloth curve. By observing the three points a, b, and e on the (4) line, it is shown that the bribe is achieved due to the difference in the phase of the three voltages - the effect of phase complementation causes the phase variation of the voltage generated along the tubular electrode (2) to become smaller, Forming a uniform electric field. In the first embodiment, the first frequency of the first frequency oscillator 15G is 4G 68MHz, the second frequency of the second frequency oscillator 160 is 38, and the phase of the signal regulator (7) for the radio frequency current having the second frequency. Move between 5 and 18 degrees. Referring now to FIG. 3, which is a second embodiment of the present invention, the deposition apparatus 200 includes the cavity ι1〇 disclosed in the first embodiment; the impedance matching device 190; the RF current source 180; The adjuster 17A; the first frequency oscillator 15A; the second frequency oscillator 160, the above components are implemented in the same manner as described in the first embodiment. Different from the first embodiment, the interdigitated electrode 210 in the second embodiment is composed of two sets of second tubular electrode sets 140, so that the second connecting unit 141 is located on a different side of the cavity. Referring now to FIG. 4, a thin film deposition apparatus 300 according to a third embodiment of the present invention includes a cavity 110 disclosed in the first embodiment; an impedance matching unit 190; a radio frequency current source 180; and signal adjustment. The first frequency oscillator 150; the second frequency oscillator 160' is constructed in the same manner as described in the first embodiment. Different from the first embodiment, the interdigitated electrode 310 in the third embodiment is composed of two sets of second tubular electrode sets 130, and a T-shaped connecting unit 320. The electric field generating area in the embodiment is twice that of the first 201204866 embodiment by the coupling between the tubular electrode 121 disposed on the T-shaped connecting unit 320 and the two sets of the second tubular electrode group 130. Therefore, the process area of the thin film deposition apparatus 300 can be effectively increased. It should be noted that the RF current phase of the input T-type connection unit 320 is different from the RF current phase of the input two sets of the second tubular electrode group 130. In the present embodiment, the first frequency of the first frequency oscillator 150, the second frequency of the second frequency oscillator 160, and the phase shift of the signal adjuster 170 are the same as in the first embodiment. Referring now to FIG. 5a, a thin film deposition apparatus 400 according to a fourth embodiment of the present invention includes a cavity 110 disclosed in the first embodiment; an impedance matching unit 190; a radio frequency current source 18A; The adjuster 17A; the first frequency oscillator 15A: the second frequency oscillator 160' is constructed in the same manner as described in the first embodiment. Referring now to FIG. 5b, the finger-and-receiving electrode 410 of the fourth embodiment of the present invention is different from the first embodiment in that the interdigitated electrode system in the fourth embodiment is composed of a plurality of tubular electrodes 12. The connection unit 411 and the plurality of feed units 412 are composed. In this embodiment, the impedance matching unit 19 连结 simultaneously couples the plurality of feeding units 412 ′ to match the RF current supplied by the RF current source 18 至 to the feeding impedance of the plurality of feeding units 412 . By increasing the number of RF current feed points, the phase distortion and attenuation caused by the input RF current flowing in the connection unit 411 can be effectively reduced. Therefore, the thin film deposition apparatus 4 of the present embodiment can have better functions. It is to be noted that in the present embodiment, the adjacent-person private 412 records a radio frequency current having a phase difference. The first frequency of the first frequency oscillator 15G, the second drunk of the second frequency oscillator 160, and the phase shift of the signal adjuster 170 are the same as those of the first embodiment, and the number of the feeding unit 412 and the tubular electrode 121 The same, all are twelve groups. In summary, the thin film deposition apparatus according to the present invention uses the interdigitated electrode 201204866 to prepare a ruthenium film required for a ruthenium film photovoltaic element (including a display and a solar cell), which has the following advantages: increasing the film deposition rate, A large area of thin film photovoltaic elements can be fabricated. Although the present invention has been disclosed in the foregoing preferred embodiments, it is not intended to limit the invention, and it is intended to be within the spirit and scope of the invention, and the application of the winter ZTtltT" The present invention is directed to 201204866. [FIG. 1a is a thin film deposition apparatus according to the present invention; FIG. 1b is a first tubular electrode group; and FIG. 1c is a second tubular electrode. Figure 2a is a diagram showing the relationship between the RF current voltage and the phase, Figure 2b is a phase diagram of the RF current on the tubular electrode in the embodiment of the present invention; and Figure 3 is a view showing the thin film deposition apparatus of the second embodiment of the present invention. Fig. 4 is a view showing a thin film deposition apparatus according to a third embodiment of the present invention; Fig. 5a is a view showing a thin film deposition apparatus according to a fourth embodiment of the present invention; and Fig. 5b is a view showing an interdigitated electrode according to a fourth embodiment of the present invention; . [Description of main components] 100 thin film deposition apparatus 110 cavity 111 air inlet hole 112 air outlet φ 120 finger fork electrode 121 tubular electrode 130 first tubular electrode group 131 first connection unit 140 second tubular electrode group 141 second connection Unit 150 First Frequency Oscillator 160 Second Frequency Oscillator Signal Conditioner 13 170 201204866 180 RF Current Source 190 Impedance Matcher 200 Thin Film Deposition Device 210 Interdigitated Electrode 300 Thin Film Deposition Device 310 Interdigitated Electrode 320 T-Connecting Unit 400. Thin film deposition apparatus 410 of the fourth embodiment, the interdigitated electrode 411 of the fourth embodiment, the coupling unit 412 of the fourth embodiment, the feeding unit

Claims (1)

201204866 七、申請專利範圍: 1· 一種薄膜沈積裝置,包含: 瓦々、咏股體中,具有一饋入阻抗,用 以產生-電場,儲又式電極包含紐配置之複數個管狀電 極組,且每-該錄吨麵數錄狀電極及一連接單 元; 一射頻電流源,用以提供—射頻電流; ㈣電流源與該指叉式電 極’用啊配制舰麵之峨至該指叉式雜之該饋入 阻抗; 仏號調整電性連胁該射頻電麵,用以調整該 射頻電流源之輸出相位與振幅; -第-頻率震盪n,電性連接於靖頻電流源 ’用以提 供一第一頻率予該射頻電流源;以及 一第二頻率震盪器,電性連接於該射頻電流源,用以提 供一第二頻率予該射頻電流源。 2·如請求項1所述之薄膜沈積裝置,其中該指叉式電極之材質 係選自.鎳、金、銀、鈦、銅、把、不鏽鋼、鈹銅合金、鋁、 被覆鋁、矽、石英、碳化矽、氮化矽、碳、氮化鋁、藍寶石、 聚醯亞胺、鐵氟龍及其組合所構成之群組。 3.如請求項丨所述之薄膜沈積裝置,其中該管狀電極之長度 15 201204866 為該射頻電流所產生之頻率之一千分之一至二分之一導皮 長。 4.如請求項1所述之薄膜沈積裝置,其中該連接單元配置於 該腔體之周邊。 5. 如請求項1所述之薄膜沈積裝置,該射頻電流源饋入到該 指叉式電極之阻抗為1到300歐姆。 6. 如請求項1所述之薄膜沈積裝置,其中該第一頻率為 40.68MHz,且該第二頻率為38 MHz 〇 7. 如請求項1所述之薄膜沈積裝置,其中該射頻電流源之操 作頻率為10MHz到1GHz。 8. —種薄膜沈積裝置,包含: 一腔體,其係接地並具有一進氣孔及一出氣孔,用以產 生一電漿; 一指叉式電極,配置於該腔體中,用以產生一電場,該 指又式電極包含交錯配置之複數個管狀電極組,且每一該管 狀電極組係包含複數根管狀電極、一連接單元及複數個饋入 單元,其中每一該饋入單元具有一饋入阻抗; 一射頻電流源,用以提供一射頻電流; 一阻抗匹配器,電性連接於該射頻電流源與該些饋入單 元,用以匹配該射頻電流源所提供之一射頻電流至該些饋入 單元之該饋入阻抗; 一信號調整器’電性連接於該射頻電流源,用於調整該 201204866 射頻電流源之輸出相位; 一第一頻率震盪器,電性連接於該射頻電流源,用以提 供一第一頻率予該射頻電流源;以及 一第二頻率震盪器,電性連接於該射頻電流源,用以提 供一第二頻率予該射頻電流源。 9·如請求項8所述之薄膜沈積裝置,其中該指叉式電極之材質 係選自:鎳、金、銀、鈦、銅、鈀、不鏽鋼、鈹銅合金、鋁、 ❿ 被覆紹、石夕、石英、碳化石夕、氮化石夕、碳、氮化銘、藍寶石、 聚醯亞胺、鐵氟龍及其組合所構成之群組。 10·如請求項8所述之薄膜沈積裝置,其中該管狀電極之長度 為該射頻電流所產生之頻率之一千分之一至二分之一導波 長。 11.如請求項8所述之薄膜沈積裝置,其中該連接單元配置於 該腔體之周邊。 鲁12.如請求項8所述之薄膜沈積裝置,其中該射頻電流源饋入 到該指又式電極之阻抗為1到300歐姆。 13. 如請求項8所述之薄膜沈積裝置,其中該第一頻率為 40.68MHZ。 14. 如咕求項8所述之薄膜沈積裝置,其中該第二頻率為38 MHz ° 15·如請求項8所述之薄膜沈積裝置’其中該射頻電流源之操 作頻率為10MHz到1GHz。 17201204866 VII. Patent Application Range: 1. A thin film deposition apparatus comprising: a corrugated and ruthenium body having a feed impedance for generating an electric field, and the storage electrode comprising a plurality of tubular electrode groups arranged in a neon arrangement, And each of the recorded tonnage number of recording electrodes and a connecting unit; an RF current source for providing - RF current; (4) Current source and the interdigitated electrode 'Used to prepare the ship's surface to the fork type The feed impedance is mixed; the nickname adjusts the electrical connection to the RF surface to adjust the output phase and amplitude of the RF current source; - the first-frequency oscillation n is electrically connected to the ampere current source' Providing a first frequency to the RF current source; and a second frequency oscillator electrically coupled to the RF current source for providing a second frequency to the RF current source. The thin film deposition apparatus of claim 1, wherein the material of the interdigitated electrode is selected from the group consisting of nickel, gold, silver, titanium, copper, handle, stainless steel, beryllium copper alloy, aluminum, coated aluminum, tantalum, Quartz, tantalum carbide, tantalum nitride, carbon, aluminum nitride, sapphire, polyimine, Teflon, and combinations thereof. 3. The thin film deposition apparatus of claim 1, wherein the length of the tubular electrode 15 201204866 is one thousandth to one-half of the frequency of the frequency generated by the radio frequency current. 4. The thin film deposition apparatus of claim 1, wherein the connection unit is disposed at a periphery of the cavity. 5. The thin film deposition apparatus of claim 1, wherein the RF current source is fed to the interdigitated electrode with an impedance of 1 to 300 ohms. 6. The thin film deposition apparatus of claim 1, wherein the first frequency is 40.68 MHz, and the second frequency is 38 MHz. 7. The thin film deposition apparatus of claim 1, wherein the RF current source The operating frequency is 10MHz to 1GHz. 8. A thin film deposition apparatus comprising: a cavity grounded and having an air inlet and an air outlet for generating a plasma; an interdigital electrode disposed in the cavity for Generating an electric field, the finger-receiving electrode comprising a plurality of tubular electrode sets arranged in a staggered configuration, and each of the tubular electrode sets comprises a plurality of tubular electrodes, a connecting unit and a plurality of feeding units, wherein each of the feedings The unit has a feed impedance; an RF current source for providing an RF current; an impedance matching device electrically connected to the RF current source and the feed units for matching one of the RF current sources The RF current is supplied to the feed impedance of the feed unit; a signal regulator is electrically connected to the RF current source for adjusting an output phase of the 201204866 RF current source; a first frequency oscillator, electrically connected The RF current source is configured to provide a first frequency to the RF current source; and a second frequency oscillator is electrically coupled to the RF current source for providing a second frequency to the Frequency current source. 9. The thin film deposition apparatus of claim 8, wherein the material of the interdigitated electrode is selected from the group consisting of: nickel, gold, silver, titanium, copper, palladium, stainless steel, beryllium copper alloy, aluminum, bismuth, and stone. Xi, Quartz, Carbonized Stone, Nitride, Carbon, Nitride, Sapphire, Polyimine, Teflon, and combinations thereof. 10. The thin film deposition apparatus of claim 8, wherein the length of the tubular electrode is one thousandth to one half of a wavelength of the frequency generated by the radio frequency current. 11. The thin film deposition apparatus of claim 8, wherein the connection unit is disposed at a periphery of the cavity. The thin film deposition apparatus of claim 8, wherein the RF current source is fed to the finger-type electrode with an impedance of 1 to 300 ohms. 13. The thin film deposition apparatus of claim 8, wherein the first frequency is 40.68 MHz. 14. The thin film deposition apparatus of claim 8, wherein the second frequency is 38 MHz. The thin film deposition apparatus of claim 8 wherein the RF current source operates at a frequency of 10 MHz to 1 GHz. 17
TW99123497A 2010-07-16 2010-07-16 Thin film deposition apparatus TWI405867B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99123497A TWI405867B (en) 2010-07-16 2010-07-16 Thin film deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99123497A TWI405867B (en) 2010-07-16 2010-07-16 Thin film deposition apparatus

Publications (2)

Publication Number Publication Date
TW201204866A true TW201204866A (en) 2012-02-01
TWI405867B TWI405867B (en) 2013-08-21

Family

ID=46761396

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99123497A TWI405867B (en) 2010-07-16 2010-07-16 Thin film deposition apparatus

Country Status (1)

Country Link
TW (1) TWI405867B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI492267B (en) * 2013-02-05 2015-07-11

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228438B1 (en) * 1999-08-10 2001-05-08 Unakis Balzers Aktiengesellschaft Plasma reactor for the treatment of large size substrates
TWM346902U (en) * 2008-01-18 2008-12-11 Contrel Technology Co Ltd A slotted electrode with uniform distribution of electric field

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI492267B (en) * 2013-02-05 2015-07-11

Also Published As

Publication number Publication date
TWI405867B (en) 2013-08-21

Similar Documents

Publication Publication Date Title
US6566983B2 (en) Saw filter using a carbon nanotube and method for manufacturing the same
US5160869A (en) Surface acoustic wave device
TW574413B (en) Thin film forming method and forming apparatus
KR20120107008A (en) Deposition box for silicon-based thin film solar cell
WO2010013624A1 (en) Current introducing terminal, plasma surface processing apparatus provided with the current introducing terminal, and plasma surface processing method
JP4509337B2 (en) Thin film forming method and thin film forming apparatus
US8704445B2 (en) Method for improving uniformity of high-frequency plasma discharge by means of frequency modulation
JP2003031504A (en) Plasma processing apparatus and method and semiconductor device manufactured by using them
JP2001007028A (en) Discharge electrode, high-frequency plasma generation system, power feed method, and semiconductor processing method
TW201204866A (en) Thin film deposition apparatus
TWI248481B (en) Surface acoustic wave device
JP3980314B2 (en) Plasma processing apparatus and plasma processing method
JP2013065496A (en) Method for manufacturing silicon secondary battery amorphous electrode by high-frequency atmospheric pressure plasma cvd
JP3143649U (en) Slot electrode
JP2002313744A (en) Plasma treating equipment, plasma treating method, thin film formed by the equipment and the method, substrate and semiconductor device
JP2000260598A (en) Plasma generating device
JPH09320966A (en) Plasma enhanced chemical vapor deposition system and plasma etching system
JP4692878B2 (en) Plasma CVD equipment
TW201246368A (en) Method for plasma-treating a substrate in a plasma device
US20100025145A1 (en) Pressure wave generator and temperature controlling method thereof
JP2003059840A (en) Apparatus and method for plasma treatment
CN101442873A (en) Equipment and method for processing plasma
JP3575013B1 (en) High frequency power supply coaxial cable, plasma surface treatment apparatus and plasma surface treatment method constituted by the coaxial cable
JPH11111622A (en) Plasma chemical vapor deposition apparatus
JP3405375B2 (en) Composite substrate and surface acoustic wave device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees