TW201204208A - Methods of treating copper surfaces for enhancing adhesion to organic substrates for use in printed circuit boards - Google Patents

Methods of treating copper surfaces for enhancing adhesion to organic substrates for use in printed circuit boards Download PDF

Info

Publication number
TW201204208A
TW201204208A TW99122222A TW99122222A TW201204208A TW 201204208 A TW201204208 A TW 201204208A TW 99122222 A TW99122222 A TW 99122222A TW 99122222 A TW99122222 A TW 99122222A TW 201204208 A TW201204208 A TW 201204208A
Authority
TW
Taiwan
Prior art keywords
copper
group
copper oxide
oxide layer
copper surface
Prior art date
Application number
TW99122222A
Other languages
Chinese (zh)
Other versions
TWI496523B (en
Inventor
Jen-Chieh Wei
Zhi-Ming Liu
Steven Z Shi
Werner G Kuhr
Original Assignee
Zettacore Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zettacore Inc filed Critical Zettacore Inc
Priority to TW099122222A priority Critical patent/TWI496523B/en
Publication of TW201204208A publication Critical patent/TW201204208A/en
Application granted granted Critical
Publication of TWI496523B publication Critical patent/TWI496523B/en

Links

Landscapes

  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

Embodiments of the present invention relates generally to the manufacture of printed circuit boards (PCB's) or printed wiring boards (PWB's), and particularly to methods for treating smooth copper surfaces to increase the adhesion between a copper surface and an organic substrate. More particularly, embodiments of the present invention related to methods of achieving improved bonding strength of PCBs without roughening the topography of the copper surface. The bonding interface between the treated copper and the resin layer of the PCB exhibits excellent resistance to heat, moisture, and chemicals involved in post-lamination process steps.

Description

201204208 六、發明說明 【發明所屬之技術領域】 本發明之具體實施例關於印刷電路板(PCB’s)或印刷 線路板(PWB’s)的製造,總括稱作PCB’s且特別是關於用 於處理銅表面以提高銅表面與PCB中所用的有機基材之 間的黏著(adhesion)之方法。在本發明的一些具體實施例 中,提供達成改善黏合強度而不會使平滑銅表面之形貌粗 糙化的方法。由此方法所獲得的銅表面提供對樹脂層的強 力黏合。該該經處理之銅與該PCB的樹脂層之間的黏合 介面顯現對熱、濕氣及層疊後之處理步驟中所涉及之化學 藥品的耐性。 【先前技術】 消費電子裝置之微型化、可攜性及一直在提高的功能 性持續驅使印刷電路板製造朝向更小且更緻密包裝的板。 增加之電路層數目、降低之核心及疊層體厚度、降低之銅 線寬度及間隔、直徑較小之貫穿孔及微導孔爲高密度互連 件(HDI)封裝件或多層PCB’s的一些關鍵特性。 典型藉由減去法或疊加法或其組合製造形成該PCB 之電路設計的銅電路。在該減去法中,藉由自層疊之薄銅 箔向下蝕刻至介電基材形成希望之電路圖案,其中以光阻 劑覆蓋該銅箔並在曝光之後在該阻劑中形成希望電路的潛 像,在阻劑顯影劑中洗掉該阻劑之非電路區域並藉由蝕刻 劑蝕刻掉下方的銅。在該疊加法中,自光阻劑所形成之電 -5- 201204208 路圖案的通道中之裸介電基材向上建構銅圖案。其他銅電 路層係藉由局部固化之介電樹脂黏合在一起,經常叫做 “預浸體”,以形成銅電路導電層與介電樹脂絕緣層交替 的多層組合件。接著對該組合件施以熱及壓力以將該局部 固化之樹脂固化。鑽取貫穿孔並以銅鍍著以電氣連接所有 電路層並由此形成多層PCB。多層PCB’s之製造方法在此 技藝中係眾所周知並於許多刊物中描述過,例如, Printed Circuits Handbook ,第 6 版,由 C. F. Coombs 編著,McGraw-Hill Professional , 2007 及 "Printed Circuit Board Materials Handbook",由 M.W. Jawitz編著,McGraw-Hill,1 997。不管PCB構造及製造 方法,重要的是達成該銅電路層與樹脂絕緣層之間的良好 黏著。黏著不足之電路板無法受得住焊料迴流及後續焊 接,導致該板子脫層及電氣故障。 經圖案化之銅電路表面係平滑的;然而,此平滑面無 法令人滿意地黏於該樹脂層。理論上已知增加該二不同材 料之間的接觸面積將會提高黏著強度。爲改善銅與樹脂之 間的黏合,大部分習用方法仰賴創造高度粗糙化之銅表面 以提高其表面積並將微谷及微脊導入扮作促進對該樹脂之 黏著的機械黏合錨之表面。 最廣爲人知及使用之方法之一爲所謂的“黑色氧化物 法”,其中將具有粗糙面之黑色氧化物層形成在該銅面頂 部上。該黑色氧化物由氧化亞銅及長度至多5微米之氧化 銅之混合物的針形樹枝狀晶體或晶鬚構成。此大型結晶性 201204208 構造提供高表面積及機械錨固效應,及因而良好之黏合 性。准予 Meyer 之美國專利第 2,3 64,993 號、第 2,460,896號及第2,460,898號首先描述使用鹼性亞氯酸鹽 溶液將銅表面氧化成黑色氧化物層。早期致力於將此方法 應用於PCB’s中之銅-樹脂黏合的一些示範性揭示內容包 括美國專利第 2,95 5,974 號、第 3,177,103 號、第 3,198,672 號、第 3,240,662 號、第 3,374,129 號及第 3,481,777 號。 儘管此針形氧化物層大幅提高表面積及黏合性,但是 在層疊處理時該等樹枝狀晶體既脆又容易受傷,於是導致 該氧化物層內之黏合失敗。隨後對該氧化物方法之修正專 注於降低晶體尺寸及因此該氧化物層之厚度以藉由將藥劑 濃度及其他處理參數最適化而改善機械安定性。關於此之 一些値得注意的修正以美國專利第 4,409,037號及第 4,844,9 8 1號爲代表,其中描述於指定濃度及氫氧化物對 亞氯酸鹽比例之鹼性亞氯酸鹽溶液的配方。美國專利第 4,5 1 2,8 1 8號描述在鹼性亞氯酸鹽溶液中添加水溶性或分 散性聚合物添加物以造成減小厚度及較高均質性之黑色氧 化物塗層。美國專利第4,7〇2,793號描述利用硫氧酸還原 劑預處理銅表面以促進氧化銅迅速形成之方法。其他用於 形成黑色氧化物層之方法包括利用美國專利第3,43 4,8 8 9 號所述的過氧化氫、美國專利第3 , 5 4 4,3 8 9號所述的鹼性 高錳酸鹽、美國專利第3,677,828號所述的熱氧化、美國 專利第3,8 3 3,4 3 3號所述的磷酸-重鉻酸鹽溶液氧化該銅表 201204208 面。 還有一個與此氧化物粗糙化方法有關之問題爲氧化銅 可溶於酸;及在涉及酸之使用的後續處理時發生黏合介面 之嚴重脫層。例如,如早先已提到貫穿孔係鑽過多層板並 利用銅鍍著以提供電路層之互連。樹脂渣滓經常形成於鑽 探之洞孔表面上並必須藉由除渣方法移除,該除渣方法涉 及高錳酸鹽蝕刻接著酸中和。該酸可自該洞孔表面向內溶 解該氧化銅至多數毫米,這由屬於下方銅之粉紅色的貫穿 孔周圍之粉紅環的形成得到證實。粉紅環之形成相當於局 部化脫層並表示該PCB’s中之嚴重缺陷。這些缺陷已變成 製造多層PCB’s之瓶頸並在尋找該氧化物層之其他改善時 擴大深入硏究以使該多層PCB’s不易受酸侵蝕及此局部化 脫疊影響。 解決該粉紅環問題之方法主要涉及該氧化銅之後處 理。例如,美國專利第3,677,828號描述先氧化該銅表面 以形成氧化物層及接著利用磷酸處理該氧化物層以形成導 致高黏合強度及耐酸性之玻璃狀磷酸銅膜之方法。美國專 利第4,7 1 7,43 9號描述藉著使該氧化銅與含有兩性元素之 溶液接觸改善氧化銅之耐酸性的方法,該兩性元素形成酸 性氧化物如二氧化砸。美國專利第4,7 75,444號描述先形 成氧化銅層及接著利用鉻酸處理以安定化及/或預防該氧 化銅分解於酸中之方法。 許多硏究已顯示該耐酸性係藉著先在該銅表面上形成 氧化銅並隨後將該氧化銅還原成氧化亞銅或富銅表面。美 -8 - 201204208 國專利第4,642,161號描述使用通式BH3NHRR’所示之硼 烷還原劑還原該氧化銅之方法,其中R及R’係各自選自 由 Η、CH3及 CH2CH3所組成的群組。美國專利第 5,006,200號描述選自由二胺(N2H4)、甲醛(HCHO)、硫代 硫酸鈉(Na2S203)及硼氫化鈉(NaBH4)所組成的群組之還原 劑。美國專利第 5,721,014號、第 5,750,087號、第 5,753,3 09號及WO 9 9/02452描述由環狀硼烷化合物,如 嗎啉硼烷、吡啶硼烷、六氫吡啶硼烷等等所構成之還原 劑。還原氧化銅以形成氧化亞銅之最常用方法爲藉由使用 還原劑二甲基胺硼烷(D M A B )。此方法將該粉紅環之半徑 減小至一定程度,但是仍然有限制且尙未完全解決此問 題,因爲氧化亞銅並非完全不溶於酸。 爲了克服上述問題,美國專利第5,492,595號及第 5,73 6,065號描述將氧化銅還原成銅同時保持該氧化物之 針狀構造之方法。然而,此針狀構造具有機械不安定性且 會在層疊處理時被壓碎。隨後硏發出替代性氧化物塗佈方 法。一些示範方法係描述於美國專利第5,5 3 2,094號、第 6,946,027B2 號、第 5,8 07,493 號、第 6,746,62 1 B2 號、第 5,8 69,1 3 0 號、第 6,5 54,948 號及第 5,800,8 5 9 號。這些替 代性方法藉由結合傳統氧化方法與受控制之蝕刻製造高度 粗糙化銅表面,這些方法將下方銅表面粗糙化同時將該下 方銅表面氧化。在許多案例中,同時塗佈有機層以扮作腐 蝕抑制劑或黏著促進劑。在美國專利第5,8 0 0,8 5 9號中, 描述利用包含過氧化氫、無機酸及腐蝕抑制劑如三唑之蝕 -9- 201204208 刻劑的微粗糙化方法。美國專利第6,7 16,281 B2號、第 6,946,027B2 號、第 7,1 0 8,7 9 5 B 2 號、第 7,2 1 1,2 0 4 B 2 號 及第7,3 5 1,3 5 3 B1號描述利用包含氧化劑、pH調節劑、 形貌改質劑、均勻度增進劑及唑抑制劑之組成物提供粗糙 化銅表面的類似方法。爲了該目的,美國專利第 5,532,094 號、第 5,700,389 號、第 5,807,493 號、第 5,885,476 號、第 5,965,036 號、第 6,426,020B1 號及第 6,746,62 1 B2號描述由氧化劑像是過氧化氫、銅離子源、 有機酸、鹵離子源及唑型抑制劑所構成之微蝕刻組成物。 這些方法已提高耐酸性;然而,介面黏合主要藉由機械錨 達成且當經處理之銅表面之表面粗糙度降低時黏著強度迅 速減弱。 容易見到的是,儘管爲了改善該銅表面與PCB’s中所 用之介電樹脂之間的黏著已經開發出許多方法,但是該等 方法全仰賴創造高度粗糙化表面以促進黏著。在先前技藝 中一般認爲爲了黏合或黏著於環氧樹脂或介電樹脂,必須 將該銅表面粗糙化以提高表面積。然而此方法蒙受嚴格之 限制,因爲銅線之寬度及/或間隔受限因此妨礙該PCB電 路進一步小型化。現在朝具有較細線電路和增加層數之較 高密度PCBs的發展方向衍然產生銅對介電樹脂之較高黏 合度及保持平滑表面之需求。很清楚地,PCBs需要進一 步之進步及發展,如但不限於提高黏合強度又不會使銅表 面粗糙化之銅表面處理方法。 -10- 201204208 【發明內容】 因此,本發明有一些具體實施例提供藉由處理平滑銅 表面以提高銅表面與有機基材之間的黏著而製造印刷電路 板(P C B S)之方法。由本發明之具體實施例所提供之提高黏 合強度又不會明顯使銅表面粗糙化之銅表面處理方法爲完 全背離習用先前技術,且與習用先前技藝技術相違。 在本發明其他具體實施例中提供黏合平滑銅表面及 PCB中之樹脂之方法,其中該黏合介面具有對熱、濕氣及 後續層疊處理步驟中所涉及之化學藥品的所欲耐性。 在一些具體實施例中,提供形成PCB之方法,該方 法包含下列步驟:以鹼及/或過氧化物溶液預清潔平滑銅 表面;藉由在該銅表面上形成氧化銅層使該表面安定化; 以還原劑及任意耦合分子調節該氧化銅層以獲得所欲之形 態、均勻性及黏合部位;及藉由,例如,熱及加壓將該經 處理之銅表面與樹脂黏在一起。在一些具體實施例中,可 將一·或多個分子耦合於該氧化銅層,該一或多個有機分子 包含帶有一或多個經配置以接合該氧化銅表面之接合基團 及一或多個經配置以附接於該樹脂之附接基團的熱安定基 底。 在另一個具體實施例中,提供製造PCB之方法,該 方法包含下列步驟:以鹼及/或過氧化物溶液預清潔銅表 面;藉由在該銅表面上形成氧化銅層使該銅表面安定化; 藉由該氧化銅與一或多種抑制劑化合物之間的自我限制反 應終止該氧化銅之形成;及以樹脂黏合該經處理之銅表 -11 - 201204208 面。在一些具體實施例中,可將一或多個分子耦合於該氧 化銅層’該一或多個有機分子包含帶有一或多個經配置以 接合該氧化銅表面之接合基團及一或多個經配置以附接於 該樹脂之附接基團的熱安定基底。 【實施方式】 咸能理解前述一般描述及下列描述均爲示範及說明且 不會侷限文中所述之方法和裝置。在本案中,除非另行指 明,否則單數之用途包括多數。而且,除非另行'指明,否 則“或”之用途意指“及/或”。類似地,“包含”、 “包括”及“具有”不意味著限制。 在一些具體實施例中,提供一種製造印刷電路板 (PC B)以促進銅表面與有機基材之間的黏著或黏合之方 法,該方法包含下列步驟:藉由在該銅表面上形成氧化銅 層使該銅表面安定化:藉由以還原劑還原該氧化銅而調節 該氧化銅層。 特別有利的是,該氧化銅層,有時候也稱作安定化 層,顯現獨特之特性。在一些具體實施例中經調節之後該 氧化銅層具有約200奈米及更小的厚度。在一些具體實施 例中該氧化銅具有實質不定形構造之形態。 在示範具體實施例中該氧化銅層具有晶粒’及經調節 之後該等晶粒具有在250奈米及更小的範圍中之尺寸。在 其他具體實施例中該氧化銅層具有晶粒,及經調節之後該 等晶粒具有在200奈米及更小的範圍中之尺寸。在一些具 -12- 201204208 體實施例中該氧化銅具有晶粒,及經調節之後該等晶粒係 實質上不規則取向。 該銅表面係藉由將該銅表面暴露於氧化劑而安定化。 在示範具體實施例中該氧化劑係選自下列任一或多者:氯 化鈉、氫氧化鈉、過氧化氫、高錳酸鹽、臭氧或其混合 物。將該銅表面安定化之步驟可於介於室溫至8 0°C的溫 度下進行。 經安定化之後,以還原劑調節該氧化銅層。在一些具 體實施例中該還原劑係選自下列任一或多者:環狀硼烷 類、嗎啉硼烷、吡啶硼烷、六氫吡啶硼烷或二甲基胺硼烷 (DMAB)。 特別有利的是’本發明之具體實施例提供由“平滑” 銅基材製造PCBs之方法’該銅基材意指未先經粗糙化之 銅基材。例如,適用於本發明方法中之銅基材包括,但不 限於,電解或電鍍銅、無電銅及輥軋銅,且不受製造該銅 基材之方法侷限。 在一些具體實施例中該銅基材或表面具有約0.13 μιη Ra之粗糙度。在一些具體實施例中該氧化銅’或也稱作 經處理之平滑銅表面或安定化層’具有約〇·14 μηι Ra或 更低之粗糙度。 在另一個方面中’本發明提供製造印刷電路板之方 法,該方法包含下列步驟:以鹼及/或過氧化物溶液預清 潔銅表面;藉由在該銅表面上形成氧化銅層使該銅表面安 定化;以還原劑調節該氧化銅層;及以樹脂黏合該經處理 13- 201204208 之銅表面。 轉向第1A及1B圖,例示平滑銅-樹脂黏合介面100A 之簡化圖解之一示範具體實施例,該介面100A包含黏合 於平滑樹脂基材104之平滑銅基材102。在該銅頂部上形 成緻密氧化物層或有機層之安定化層106以預防該銅表面 腐蝕或化學侵蝕,該腐蝕或化學侵蝕爲介面失效之主因。 在一些具體實施例中吾人所欲可,但非必要,藉由另外以 有機分子層調節該安定化層106或爲該安定化層106塗底 以形成能與該樹脂1 04中之官能基Y反應形成共價鍵的 活性黏合部位X而促成化學黏合。在此示範具體實施例 中’該等平滑銅-樹脂介面比起主要藉由機械錨達成介面 黏合之先前技藝中已知的粗糙化銅-樹脂介面100B具有優 異之黏著強度及對熱、濕氣及化學侵蝕之耐性。 對照第2圖,爲了進一步例示本發明之特徵,示範性 實驗流程以圖解例示並包含4個主要步驟:(1 )表面預處 理200,(2)表面安定化及調節300,(3)真空形成400,及 (4)熱處理500。具體數據及結果僅爲了例示目的而顯示且 並非意欲以任何方式限制本發明之範圍。第2圖也顯示進 行剝離強度試驗之方法,然而此方法僅爲了例示測試程序 才顯示。本發明之寬廣的方法步驟不包括剝離試驗步驟。 在第2圖所示之示範方法中,表面預處理係藉由鹼性 清潔2 02、沖洗204、軟質蝕刻及酸清潔206及沖洗並乾 燥該基材208進行。 接下來該表面係藉由表面氧化302及沖洗3 04安定 -14- 201204208 化。接著該表面係藉由可包括任意官能化之還原306 著沖洗並乾燥該基材3 08而調節。 在該調節步驟306之後,真空層疊係藉由將該層 裝配402在該安定化基材上面,真空層疊404,及任 空加壓4 0 6進行。 接下來進行熱處理以將該層疊組合件固化或 502,接著剝離強度測試6〇〇。 此外,本發明之一些具體實施例準備使該金屬表 —或多個有機分子接觸,該一或多個有機分子包含帶 或多個經配置以接合該金屬表面之接合基團及一或多 配置以附接於該有機基材之附接基團的熱安定基底。 範具體實施例中該一或多個表面改質劑分子爲表面活 分。 特別有利的是,該PCB包括顯現獨特特性之氧 層,有時候也稱作安定化層。在一些具體實施例中經 之後該氧化銅層具有約200奈米及更小之厚度。在一 體實施例中該氧化銅具有包含實質不定形構造之形態 在示範具體實施例中該氧化銅層具有高度分散之 構造,及經調節之後該等晶粒具有在200奈米及更小 圍中的尺寸。在一些具體實施例中該氧化銅層具有晶 及經調節之後該等晶粒具有在1 00奈米及更小之範圍 尺寸。在一些具體實施例中該氧化銅層具有晶粒,及 節之後該等晶粒係實質上不規則取向。 該銅表面係藉由將該銅表面暴露於氧化劑而安定 ,接 疊膜 意真 退火 面與 有一 個經 在示 性部 化銅 調節 些具 0 晶粒 之範 粒, 中的 經調 化。 -15- 201204208 在示範具體實施例中該氧化劑係選自下列任一或多者:胃 化鈉、氫氧化鈉、過氧化氫、尚鍤酸麵、高氯酸鹽、過硫 酸鹽、臭氧或其混合物。將該銅表面安定化之步驟可於介 於室溫至80°C的溫度下進行。或者,該銅表面可藉由熱 氧化及電化學陽極氧化安定化。 經安定化之後,以還原劑調節該氧化銅層。在—些具 體實施例中該還原劑係選自下列任一或多者:甲酸、@ # 硫酸鈉、硼氫化鈉、通式BH3NHRR’所示之硼院還原劑 (其中R及R’係各自選自由Η、CH3及CH2CH3所組成的 群組’如二甲基胺硼烷(DMAB))、環狀硼烷化合物(如嗎 啉硼烷、吡啶硼烷、六氫吡啶硼烷)。 該氧化銅層之調節可於介於室溫至約5〇t之溫度進 行。在一些具體實施例中整個方法係進行介於約2至2〇 分鐘之時間。 此外’本發明之一些具體實施例準備,在調節之後, 使該氧化銅表面與一或多個有機分子接觸,該一或多個有 機分子包含帶有一或多個經配置以接合該金屬表面之接合 基團及一或多個經配置以附接於該有機基材之附接基團的 熱安定基底。在示範具體實施例中該一或多個有機分子爲 表面活性部分。 任何適合之表面活性部分均可使用。在一些具體實施 例中該表面改質劑部分係選自由下列所組成的群組:巨環 狀前驅配位子(macrcyclic proligand)、巨環狀錯合物、夾 層配位錯合物及其聚合物。或者該表面改質劑部分可包含 -16- 201204208 口卜H林。 該一或多個有機分子可選自下列群組:卟啉 '卩卜琳巨 環、膨脹卟啉、收縮卟啉、線性卟啉聚合物、卟啉夾層配 位錯合物、卟啉陣列、甲矽烷、四有機·矽烷、胺 '糖或 上述者之任何組合。 在一些具體實施例中該一或多個附接基團包含芳基官 能基及/或烷基附接基團。當該附接基團爲芳基時’該芳 基官能基可包含選自下列任一或多者之官能基:醋酸根、 烷胺基、烯丙基、胺、胺基、溴基、溴甲基、羰基、殘酸 根、羧酸、二羥基磷醯基、環氧化物、酯、醚、乙炔基、 甲醯基、羥基、羥甲基、碘基、锍基、锍甲基、s e -乙醯 硒基、Se -乙醯硒甲基、s -乙醯硫基、S -乙醯硫甲基、氧 硒基(selenyl)、4,4,5,5-四甲基-1,3,2-二氧硼環戊_2-基、 2-(三甲基矽基)乙炔基、乙烯基及其組合。 當該附接基團包含院基時’該院基附接基團包含選自 下列任一或多者之官能基:醋酸根、烷胺基、烯丙基、 胺、胺基、溴基、溴甲基、羰基、羧酸根、羧酸、二羥基 磷醯基、環氧化物、酯、醚、乙炔基、甲醯基、羥基、羥 甲基、碘基、酼基、锍甲基、Se -乙醯硒基、Se -乙醯硒甲 基、S -乙醯硫基、S -乙醯硫甲基、氧硒基、4,4,5,5 -四甲 基-1,3,2 -二氧硼環戊-2-基、2-(三甲基砍基)乙炔基、乙嫌 基及其組合。 在替代性具體實施例中該至少一個附接基團包含醇或 膦酸根。在其他具體實施例中’該至少一個附接基團可包 5 -17- 201204208 含下列任一或多者:胺類、醇類、醚類、其他親核劑、苯 基乙炔類、苯基烯丙基、膦酸根及其組合。 一般,在一些具體實施例中該有機分子包含帶有一或 多個黏合基團X及一或多個附接基團γ的熱安定單元或 基底。在特定具體實施例中,該有機分子爲耐熱性金屬接 合分子,並可包含一或多個“表面活性分子”,在相關申 請案中也稱作“氧化還原活性部分”或“ ReAMs ” 。一 般,在一些具體實施例中有數種可用於本發明之表面活性 部分,均以多牙前驅配位子爲底,其包括巨環狀及非巨環 狀部分。 適合之前驅配位子分兩類:使用氮、氧、硫、碳或磷 原子(取決於金屬離子)作爲配位原子之配位子(在文獻中 —般稱作θ( a)供體)及有機金屬配位子如二茂金屬配位 子。 此外,單表面活性部分具有二或更多個氧化還原活性 次單元,並利用卟吩類及二茂鐵類。 在一些具體實施例中,該表面活性部分爲巨環狀配位 子,該巨環狀配位子包括巨環狀前驅配位子及巨環狀錯合 物。文中“巨環狀前驅配位子”意指含有經定向所以可接 合於金屬離子之供體原子(文中有時候稱作“配位原子”) 且大到足以環繞該金屬原子的環狀化合物。一般,該等供 體原子爲雜原子,該雜原子包括,但不限於,氮、氧及 硫,且前者尤其佳。然而,熟於此藝之士明白,不同金屬 離子優先接合於不同雜原子,且因此所用之雜原子可取決 •18- 201204208 於希望的金屬離子。此外,在一些具體實施例中,單巨環 可含有不同類型之雜原子。 "巨環狀錯合物”爲帶有至少一個金屬離子之巨環狀 前驅配位子;在一些具體實施例中該巨環狀錯合物包含單 金屬離子,但是如下所述,預計也納入多核錯合物,該多 核錯合物包括多核巨環狀錯合物。 本發明中可使用多變之巨環狀配位子,其包括電子共 軛者或沒有電子共軛者。在一些具體實施例中,環、鍵及 取代基係經選擇以導致該化合物產生電子共軛,及最起碼 具有至少兩個氧化態。 在一些具體實施例中,本發明之巨環狀配位子係選自 由卟啉類(特別是下文所界定之卟啉衍生物)及環愣胺 (cy cl en)衍生物所組成的群組。本發明適合之巨環的特佳 子集包括卟啉類,該卟啉類包括卟啉衍生物。此衍生物包 括帶有卓邊稠合(ortho-fused)或單邊互稠(〇rtho-perifused) 於該卟啉核之外環的卟啉類、該卟啉環之一或多個碳原子 被另一種元素之原子取代(骨架取代)的卟啉類、該卟啉環 之氮原子被另一種元素之原子取代(氮之骨架取代)的衍生 物、具有位於該卟啉周圍之中位、3 -或核心原子處的氫以 外之取代基的衍生物、該卟啉之一或多個鍵飽和的衍生物 (氫卟啉類,例如,葉綠三酸類、菌綠素、異菌綠素、十 氫卟啉類、咕吩類(corphins)、吡咯並咕吩類等等)、一或 多個原子(包括吡咯和吡咯亞甲基單元)插入該卟啉環的衍 生物(擴展卟啉類)、自該卟啉環除去一或多個基團的衍生 -19 - 201204208 物(收縮卟啉類,例如,咕咻(corrin)、咔咯(corrole))及前 述衍生物的組合(例如酞花青類、亞酞花青類及卟啉異構 物)。其他適合之卟啉衍生物包括,但不限於葉綠素群’ 包括初卩卜啉合鎂鹽(etiophyllin)、卩比略並卩卜啉、玫紅口卜 啉、葉卟啉、葉紅素、葉綠素a和b,以及血紅素群,包 括氘紫質、次氯血紅素、血晶素、血色素、原紫質、中血 紅素原、血紫質、中紫質、糞紫質、尿卟啉及羽紅素,及 四芳基氮雜二Π比略甲川(tetraarylazadipyrromethine)系 列。 熟於此藝之士明白,各個不飽和位置,不論是碳或雜 原子,可包括一或多個文中所界定之取代基,其取決於該 系統想要之價數。 此外,包括在”卟啉"的定義以內的是卟啉錯合物,其 包含該卟啉前驅配位子及至少一個金屬離子。適用於該等 卟啉化合物之金屬取決於作爲配位原子之雜原子,但是一 般係選自過渡金屬離子。文中所用之措辭"過渡金屬”典型 表示週期表3至12族的38種元素。過渡金屬之典型特徵 爲事實上其價電子,或其用以與其他元素合倂之電子,係 存在於多於一個殼層且因此經常呈現數個常見之氧化態。 在特定具體實施例中,本發明之過渡金屬包括,但不限於 钪、鈦、釩、鉻、錳、鐵、鈷、鎳、銅、鋅、紀、銷、 鈮、鉬、碲、釕、铑、鈀、銀、鎘、給、鉅、錫、鍊、 餓、銥、鉑、金、汞、鑪之一或多者,及/或其氧化物, 及/或其氮化物,及/或其合金,及/或其混合物。 -20- 201204208 有許多以環楞胺衍生物爲底之巨環,寬鬆地包括以環 愣胺/環胺(cyclam)衍生物爲底之巨環前驅配位子,可包括 經由包括獨立選擇之碳或雜原子所造成的骨架擴張。在一 些具體實施例中,至少一個R基團爲表面活性次單元,較 佳與該金屬電子共軛。在一些具體實施例中,包括當至少 一個R基團爲表面活性次單元時,二或多個相鄰的R2基 團形成環狀基團或芳基。在本發明中,該至少一個R基團 爲表面活性次單元或部分。 再者,在一些具體實施例中,使用仰賴有機金屬配位 子之巨環狀錯合物。除了作爲表面活性部分之純有機化合 物,及多種不同帶有8 -鍵結之有機配位子,該有機配位 子具有作爲雜環狀或環外取代基之供體原子,的過渡金屬 配位錯合物以外,可取得帶有π-鍵結之有機配位子的多變 化過渡金屬有機金屬化合物(參見 Advanced Inorganic Chemistry, 5th Ed., Cotton & Wilkinson, John Wiley & Sons, 1 98 8,第 26 章;Organometallics, A Concise Introduction,Elschenbroich 等人,第 2 版,1 992,30 VCH ;及 Comprehensive Organometallic Chemistry II,A Review of the Literature 1982-1994,Abel 等人編著,第 7 卷,第7、8、10及11章,Pergamon Press,在此以引用 方式明確地倂入本文)。此等有機金屬配位子包括環狀芳 族化合物如環戊二烯化合物離子[C5H5(-1)]及多種不同經 環取代和經環稠合之衍生物,如茚化合物(-1)離子,其產 生一種雙(環戊二烯基)金屬化合物,(即二茂金屬類);參 -21 - 201204208 見例如 Robins 等人,J. Am. Chem. Soc. 104: 1882-1 893 ( 1 982);及 Gassman 等人,J. Am. Chem. Soc. 1 08:4228-4229 (1986),在此以引用方式倂入。這些當中,二茂鐵 [(C5H5)2Fe]及其衍生物爲曾在多變之化學(Connelly等 人,Chem. Rev. 96:877-910 (1996),以引用方式倂入本文) 和電化學(Geiger 等人,Advances in Organometallic Chemistry 23: 1 -93 ;及 G e i g e r 等人,A d v a n c e s i η201204208 VI. Description of the Invention [Technical Fields of the Invention] Specific embodiments of the present invention relate to the manufacture of printed circuit boards (PCB's) or printed wiring boards (PWB's), collectively referred to as PCB's and in particular for processing copper surfaces to improve A method of adhesion between a copper surface and an organic substrate used in a PCB. In some embodiments of the invention, a method of achieving improved bond strength without coarsening the topography of the smooth copper surface is provided. The copper surface obtained by this method provides strong adhesion to the resin layer. The bonding interface between the treated copper and the resin layer of the PCB exhibits resistance to heat, moisture, and chemicals involved in the post-lamination processing steps. [Prior Art] The miniaturization, portability and ever-increasing functionality of consumer electronic devices continue to drive printed circuit board manufacturing toward smaller and denser packaging boards. Increased number of circuit layers, reduced core and laminate thickness, reduced copper wire width and spacing, smaller diameter through-holes and microvias are key to high-density interconnect (HDI) packages or multilayer PCB's characteristic. A copper circuit that forms the circuit design of the PCB is typically fabricated by subtractive or superimposing methods or combinations thereof. In the subtractive method, a desired circuit pattern is formed by etching down from a laminated thin copper foil to a dielectric substrate, wherein the copper foil is covered with a photoresist and a desired circuit is formed in the resist after exposure. The latent image, the non-circuit area of the resist is washed away in the resist developer and the underlying copper is etched away by an etchant. In the superposition method, the bare dielectric substrate in the channel of the pattern formed by the photoresist is upwardly structured with a copper pattern. Other copper circuit layers are bonded together by a partially cured dielectric resin, often referred to as a "prepreg", to form a multilayer assembly of alternating copper circuit conductive layers and dielectric resin insulating layers. The assembly is then subjected to heat and pressure to cure the partially cured resin. The through holes are drilled and plated with copper to electrically connect all of the circuit layers and thereby form a multilayer PCB. Methods of fabricating multilayer PCB's are well known in the art and are described in numerous publications, for example, Printed Circuits Handbook, 6th Edition, edited by CF Coombs, McGraw-Hill Professional, 2007 and "Printed Circuit Board Materials Handbook" Edited by MW Jawitz, McGraw-Hill, 997. Regardless of the PCB construction and manufacturing method, it is important to achieve good adhesion between the copper circuit layer and the resin insulating layer. A poorly adhered circuit board cannot withstand solder reflow and subsequent soldering, resulting in delamination and electrical failure of the board. The surface of the patterned copper circuit was smooth; however, this smooth surface did not satisfactorily adhere to the resin layer. It is theoretically known to increase the contact area between the two different materials to increase the adhesion strength. In order to improve the adhesion between copper and resin, most of the conventional methods rely on the creation of highly roughened copper surfaces to increase their surface area and to introduce microvalleys and micro-ridges into the surface of mechanically bonded anchors that promote adhesion to the resin. One of the most widely known and used methods is the so-called "black oxide method" in which a black oxide layer having a rough surface is formed on the top of the copper surface. The black oxide consists of needle-shaped dendrites or whiskers of a mixture of cuprous oxide and copper oxide of up to 5 microns in length. This large crystalline 201204208 construction provides high surface area and mechanical anchoring, and thus good adhesion. The use of an alkaline chlorite solution to oxidize a copper surface to a black oxide layer is first described in U.S. Patent Nos. 2,3,64,993, 2,460,896 and 2,460,898 to Meyer. Some exemplary disclosures of early attempts to apply this method to copper-resin bonding in PCB's include U.S. Patent Nos. 2,95,974, 3,177,103, 3,198,672, 3,240,662, 3,374,129 and 3,481,777. Although the needle-shaped oxide layer greatly increases the surface area and adhesion, the dendrites are both brittle and easily damaged during the lamination process, thus causing failure in the oxide layer. Subsequent modifications to the oxide process are focused on reducing the crystal size and thus the thickness of the oxide layer to improve mechanical stability by optimizing the concentration of the agent and other processing parameters. Some of the corrections to this note are represented by U.S. Patent Nos. 4,409,037 and 4,844,9,8, which are described in the chlorite solution of the specified concentration and hydroxide to chlorite ratio. formula. U.S. Patent No. 4,5 1 2,8 1 8 describes the addition of a water-soluble or dispersible polymer additive to an alkaline chlorite solution to produce a black oxide coating having reduced thickness and higher homogeneity. U.S. Patent No. 4,7,2,793 describes the use of a sulphuric acid reducing agent to pretreat a copper surface to promote rapid formation of copper oxide. Other methods for forming a black oxide layer include the use of hydrogen peroxide as described in U.S. Patent No. 3,43,8,8,9, and the high alkalinity described in U.S. Patent No. 3,541,389. The copper oxide table 201204208 is oxidized by the manganese oxide, the thermal oxidation described in U.S. Patent No. 3,677,828, and the phosphoric acid-dichromate solution described in U.S. Patent No. 3,83,323. A further problem associated with this oxide roughening process is that the copper oxide is soluble in the acid; and severe delamination of the bonding interface occurs during subsequent processing involving the use of the acid. For example, it has been previously mentioned that through-hole systems are drilled through a multi-layer board and copper plated to provide interconnection of circuit layers. Resin dross is often formed on the surface of the drilled hole and must be removed by a deslagging method involving permanganate etching followed by acid neutralization. The acid dissolves the copper oxide inwardly from the surface of the hole to a majority of millimeters, as evidenced by the formation of a pink ring around the through hole of the pink underlying copper. The formation of a pink ring is equivalent to a localized delamination and represents a serious defect in the PCB's. These deficiencies have become a bottleneck in the fabrication of multilayer PCB's and have expanded the depth of the search for other improvements in the oxide layer to make the multilayer PCB's less susceptible to acid attack and localized delamination. The method of solving the pink ring problem mainly involves the copper oxide after treatment. For example, U.S. Patent No. 3,677,828 describes a method of first oxidizing the surface of the copper to form an oxide layer and then treating the oxide layer with phosphoric acid to form a glassy copper phosphate film which results in high adhesion strength and acid resistance. U.S. Patent No. 4,7, 7,43,9 describes the improvement of the acid resistance of copper oxide by contacting the copper oxide with a solution containing an amphoteric element which forms an acid oxide such as cerium oxide. U.S. Patent No. 4,7,75,444 describes the formation of a copper oxide layer followed by treatment with chromic acid to stabilize and/or prevent decomposition of the copper oxide into the acid. Many studies have shown that the acid resistance is achieved by first forming copper oxide on the copper surface and then reducing the copper oxide to a cuprous oxide or copper-rich surface. U.S. Patent No. 4,642,161, the disclosure of which is incorporated herein by reference to the entire disclosure of the entire disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of group. U.S. Patent No. 5,006,200 describes a reducing agent selected from the group consisting of diamines (N2H4), formaldehyde (HCHO), sodium thiosulfate (Na2S203), and sodium borohydride (NaBH4). U.S. Patent Nos. 5,721,014, 5,750,087, 5,753,309, and WO 9 9/02452 describe cyclic borane compounds such as morpholine borane, pyridine borane, hexahydropyridine borane, and the like. A reducing agent. The most common method of reducing copper oxide to form cuprous oxide is by using the reducing agent dimethylamine borane (D M A B ). This method reduces the radius of the pink ring to a certain extent, but there are still limitations and this problem is not completely solved because the cuprous oxide is not completely insoluble in acid. In order to overcome the above problems, a method of reducing copper oxide to copper while maintaining the needle-like structure of the oxide is described in U.S. Patent Nos. 5,492,595 and 5,73,065. However, this needle-like configuration has mechanical instability and is crushed during the lamination process. An alternative oxide coating method is then issued. Some exemplary methods are described in U.S. Patent Nos. 5,5 3 2,094, 6,946,027 B2, 5,8 07,493, 6,746,62 1 B2, 5,8 69,1 3 0, 6, 5 No. 5,4848 and No. 5,800,8 5 9 . These alternative methods produce highly roughened copper surfaces by combining conventional oxidation methods with controlled etching, which roughen the underlying copper surface while oxidizing the lower copper surface. In many cases, the organic layer is applied at the same time to act as a corrosion inhibitor or adhesion promoter. A micro-roughening method using an etching agent comprising hydrogen peroxide, a mineral acid, and a corrosion inhibitor such as triazole, -9-201204208, is described in U.S. Patent No. 5,800,895. U.S. Patent Nos. 6, 7, 16, 281 B2, 6, 946, 027 B2, 7, 10, 7 9 5 B 2, 7, 2 1 1, 2 0 4 B 2 and 7, 3 5 1, 3 5 3 B1 describes a similar method of providing a roughened copper surface using a composition comprising an oxidizing agent, a pH adjusting agent, a topography modifying agent, a uniformity enhancer, and an azole inhibitor. For this purpose, U.S. Patent Nos. 5,532,094, 5,700,389, 5,807,493, 5,885,476, 5,965,036, 6,426,020 B1 and 6,746,62 1 B2 are described by oxidants as hydrogen peroxide, copper ion sources. A microetching composition composed of an organic acid, a halide ion source, and an azole type inhibitor. These methods have improved acid resistance; however, interface bonding is primarily achieved by mechanical anchoring and the adhesion strength is rapidly diminished as the surface roughness of the treated copper surface is reduced. It is readily apparent that although many methods have been developed to improve adhesion between the copper surface and the dielectric resin used in the PCB's, the methods all rely on creating highly roughened surfaces to promote adhesion. It is generally believed in the prior art that in order to bond or adhere to an epoxy or dielectric resin, the copper surface must be roughened to increase the surface area. However, this method is subject to strict limitations because the width and/or spacing of the copper lines is limited thereby preventing further miniaturization of the PCB circuitry. The development of higher density PCBs with thinner wire circuits and increased layers is now leading to a higher bond of copper to dielectric resins and a need to maintain a smooth surface. Clearly, PCBs require further advancements and developments, such as, but not limited to, copper surface treatments that increase the bond strength without roughening the copper surface. -10- 201204208 SUMMARY OF THE INVENTION Accordingly, some embodiments of the present invention provide a method of fabricating a printed circuit board (P C B S) by treating a smooth copper surface to enhance adhesion between the copper surface and the organic substrate. The copper surface treatment method provided by a specific embodiment of the present invention for improving the bond strength without significantly obscuring the copper surface is a complete departure from the prior art and is contrary to the prior art. In another embodiment of the invention, there is provided a method of bonding a smooth copper surface and a resin in a PCB, wherein the bonding interface has a desired resistance to heat, moisture, and chemicals involved in the subsequent lamination process steps. In some embodiments, a method of forming a PCB is provided, the method comprising the steps of: pre-cleaning a smooth copper surface with a base and/or a peroxide solution; and stabilizing the surface by forming a copper oxide layer on the copper surface Adjusting the copper oxide layer with a reducing agent and any coupling molecules to obtain a desired morphology, uniformity, and bonding site; and adhering the treated copper surface to the resin by, for example, heat and pressure. In some embodiments, one or more molecules can be coupled to the copper oxide layer, the one or more organic molecules comprising one or more bonding groups configured to bond the copper oxide surface and/or A plurality of thermally stable substrates configured to attach to the attachment groups of the resin. In another embodiment, a method of fabricating a PCB is provided, the method comprising the steps of: pre-cleaning a copper surface with a base and/or a peroxide solution; and stabilizing the copper surface by forming a copper oxide layer on the copper surface The formation of the copper oxide is terminated by a self-limiting reaction between the copper oxide and one or more inhibitor compounds; and the treated copper surface -11 - 201204208 is bonded with a resin. In some embodiments, one or more molecules can be coupled to the copper oxide layer. The one or more organic molecules comprise one or more bonding groups configured to bond the copper oxide surface and one or more A thermal stabilization substrate configured to attach to an attachment group of the resin. [Embodiment] It is to be understood that the foregoing general description and the following description are exemplary and illustrative and are not intended to be limited. In this case, the singular uses include the majority unless otherwise indicated. Moreover, the use of "or" means "and/or" unless otherwise specified. Similarly, "comprising", "including" and "having" does not mean a limitation. In some embodiments, a method of making a printed circuit board (PC B) to promote adhesion or adhesion between a copper surface and an organic substrate is provided, the method comprising the steps of: forming copper oxide on the copper surface The layer stabilizes the copper surface: the copper oxide layer is adjusted by reducing the copper oxide with a reducing agent. It is particularly advantageous that the copper oxide layer, sometimes referred to as a stabilization layer, exhibits unique properties. The copper oxide layer has a thickness of about 200 nm and less after conditioning in some embodiments. In some embodiments, the copper oxide has a morphology of a substantially amorphous configuration. In the exemplary embodiment, the copper oxide layer has grains ' and after conditioning, the grains have dimensions in the range of 250 nm and less. In other embodiments, the copper oxide layer has grains, and the grains have a size in the range of 200 nm and less after conditioning. In some embodiments having -12 to 201204208, the copper oxide has crystal grains, and the crystal grains are substantially irregularly oriented after being adjusted. The copper surface is stabilized by exposing the copper surface to an oxidizing agent. In an exemplary embodiment the oxidant is selected from any one or more of the group consisting of sodium chloride, sodium hydroxide, hydrogen peroxide, permanganate, ozone, or mixtures thereof. The step of setting the surface of the copper can be carried out at a temperature of from room temperature to 80 °C. After stabilization, the copper oxide layer is adjusted with a reducing agent. In some embodiments, the reducing agent is selected from any one or more of the group consisting of cyclic boranes, morpholine borane, pyridine borane, hexahydropyridine borane or dimethylamine borane (DMAB). It is particularly advantageous that the specific embodiment of the invention provides a method of making PCBs from a "smooth" copper substrate. The copper substrate means a copper substrate that has not been roughened first. For example, copper substrates suitable for use in the process of the present invention include, but are not limited to, electrolytic or electroplated copper, electroless copper, and rolled copper, and are not limited by the method of making the copper substrate. In some embodiments the copper substrate or surface has a roughness of about 0.13 μηη Ra. In some embodiments, the copper oxide or the treated smooth copper surface or the stabilization layer has a roughness of about 〇 14 μηι Ra or less. In another aspect, the invention provides a method of making a printed circuit board, the method comprising the steps of: pre-cleaning a copper surface with a base and/or a peroxide solution; and forming the copper by forming a copper oxide layer on the copper surface The surface is stabilized; the copper oxide layer is adjusted with a reducing agent; and the copper surface of the treated 13-201204208 is bonded with a resin. Turning to Figures 1A and 1B, an exemplary embodiment of a simplified diagram of a smooth copper-resin bonding interface 100A comprising a smooth copper substrate 102 bonded to a smooth resin substrate 104 is illustrated. A dense oxide layer or a stabilization layer 106 of an organic layer is formed on top of the copper to prevent corrosion or chemical attack of the copper surface, which is the main cause of interface failure. In some embodiments, it is desirable, but not necessary, to additionally coat the stabilization layer 106 with an organic molecular layer or to coat the stabilization layer 106 to form a functional group Y with the resin 104. The reaction forms a reactive bond site X of the covalent bond to promote chemical bonding. In this exemplary embodiment, the smooth copper-resin interface has excellent adhesion strength and heat and moisture compared to the roughened copper-resin interface 100B known in the prior art which is primarily bonded by mechanical anchors. And resistance to chemical attack. In order to further illustrate the features of the present invention, an exemplary experimental scheme is illustrated by way of illustration and includes four main steps: (1) surface pretreatment 200, (2) surface stabilization and conditioning 300, and (3) vacuum formation. 400, and (4) heat treatment 500. The specific data and results are shown for illustrative purposes only and are not intended to limit the scope of the invention in any way. Figure 2 also shows the method of performing the peel strength test, however this method is shown only for the illustrative test procedure. The broad method steps of the present invention do not include a peel test step. In the exemplary method illustrated in Figure 2, surface pretreatment is performed by alkaline cleaning 02, rinsing 204, soft etching and acid cleaning 206, and rinsing and drying the substrate 208. The surface is then stabilized by surface oxidation 302 and rinsing 3 04 -14-201204208. The surface is then conditioned by rinsing and drying the substrate 308, which may include any functionalized reduction 306. After the conditioning step 306, vacuum lamination is performed by assembling 402 the layer over the stabilization substrate, vacuum lamination 404, and optionally vacuuming 406. Heat treatment was then carried out to cure or 502 the laminate assembly, followed by a peel strength test of 6 Torr. Moreover, some embodiments of the present invention are prepared to contact the metal sheet or a plurality of organic molecules comprising a strip or a plurality of bonding groups configured to bond the metal surface and one or more configurations A thermally stable substrate attached to an attachment group of the organic substrate. In one embodiment, the one or more surface modifier molecules are surface active. It is particularly advantageous that the PCB comprises an oxygen layer that exhibits unique characteristics, sometimes referred to as a stabilization layer. In some embodiments, the copper oxide layer has a thickness of about 200 nm and less. In one embodiment, the copper oxide has a configuration comprising a substantially amorphous configuration. In an exemplary embodiment, the copper oxide layer has a highly dispersed structure, and after conditioning, the grains have a width of 200 nm and less. size of. In some embodiments, the copper oxide layer has crystals and the grains have a size in the range of 100 nm and less after conditioning. In some embodiments, the copper oxide layer has grains, and the grain systems are substantially irregularly oriented after the knot. The copper surface is stabilized by exposing the copper surface to an oxidizing agent, and the laminated film has an annealed surface and a modulating medium having a 0 grain in the modified portion of the copper. -15- 201204208 In an exemplary embodiment the oxidant is selected from any one or more of the group consisting of sodium sulphate, sodium hydroxide, hydrogen peroxide, succinic acid, perchlorate, persulphate, ozone or Its mixture. The step of setting the surface of the copper can be carried out at a temperature ranging from room temperature to 80 °C. Alternatively, the copper surface can be stabilized by thermal oxidation and electrochemical anodization. After stabilization, the copper oxide layer is adjusted with a reducing agent. In some embodiments, the reducing agent is selected from one or more of the following: formic acid, @# sodium sulfate, sodium borohydride, boron hospital reducing agent of the formula BH3NHRR' (wherein R and R' are each A group consisting of ruthenium, CH3 and CH2CH3, such as dimethylamine borane (DMAB), a cyclic borane compound (such as morpholine borane, pyridine borane, hexahydropyridine borane) is selected. The adjustment of the copper oxide layer can be carried out at a temperature ranging from room temperature to about 5 Torr. In some embodiments, the entire process is carried out for a period of between about 2 and 2 minutes. Further, some embodiments of the present invention prepare, after conditioning, contact the surface of the copper oxide with one or more organic molecules comprising one or more configured to bond the metal surface. A bonding group and one or more thermally stable substrates configured to attach to the attachment groups of the organic substrate. In an exemplary embodiment the one or more organic molecules are surface active moieties. Any suitable surface active moiety can be used. In some embodiments the surface modifier moiety is selected from the group consisting of a macrocyclic proligand, a macrocyclic complex, an interlayer coordination complex, and polymerization thereof. Things. Or the surface modifier portion may comprise -16-201204208 mouth H forest. The one or more organic molecules may be selected from the group consisting of porphyrin '卩 琳 巨 macro ring, expanded porphyrin, shrink porphyrin, linear porphyrin polymer, porphyrin interlayer coordination complex, porphyrin array, Formane, tetraorgano-decane, amine 'sugar or any combination of the above. In some embodiments the one or more attachment groups comprise an aryl functional group and/or an alkyl attachment group. When the attachment group is an aryl group, the aryl functional group may comprise a functional group selected from any one or more of the following: acetate, alkylamine, allyl, amine, amine, bromo, bromine Methyl, carbonyl, residual acid, carboxylic acid, dihydroxyphosphonium, epoxide, ester, ether, ethynyl, decyl, hydroxy, hydroxymethyl, iodo, decyl, fluorenyl, se - Ethyl selenyl, Se-acetyl selenium methyl, s-acetylthio, S-acetylthiomethyl, selenyl, 4,4,5,5-tetramethyl-1,3 , 2-dioxaborolan-2-yl, 2-(trimethyldecyl)ethynyl, vinyl, and combinations thereof. When the attachment group comprises a hospital base, the hospital attachment group comprises a functional group selected from any one or more of the group consisting of acetate, alkylamine, allyl, amine, amine, bromo, Bromomethyl, carbonyl, carboxylate, carboxylic acid, dihydroxyphosphonium, epoxide, ester, ether, ethynyl, decyl, hydroxy, hydroxymethyl, iodo, decyl, fluorenyl, Se - Ethyl selenyl, Se-acetyl selenium methyl, S-acetylthio, S-acetylthiomethyl, oxyseleno, 4,4,5,5-tetramethyl-1,3,2 - dioxoborolan-2-yl, 2-(trimethylsulfanyl)ethynyl, ethyl acetonide and combinations thereof. In an alternative embodiment the at least one attachment group comprises an alcohol or a phosphonate. In other embodiments, the at least one attachment group may comprise 5-17 to 201204208 comprising any one or more of the following: amines, alcohols, ethers, other nucleophiles, phenylacetylenes, phenyl groups. Allyl, phosphonate and combinations thereof. Generally, in some embodiments the organic molecule comprises a thermal stabilization unit or substrate with one or more adhesion groups X and one or more attachment groups γ. In a particular embodiment, the organic molecule is a heat resistant metal binding molecule and may comprise one or more "surface active molecules" also referred to as "redox active moieties" or "ReAMs" in related applications. In general, there are several surface active moieties useful in the present invention in some embodiments, all of which are based on polydentate precursor ligands, including macrocyclic and non-macrocyclic moieties. There are two types of suitable precursors: use a nitrogen, oxygen, sulfur, carbon or phosphorus atom (depending on the metal ion) as a ligand for the coordinating atom (generally referred to in the literature as a θ(a) donor) And organometallic ligands such as metallocene ligands. Further, the single surface active moiety has two or more redox active secondary units and utilizes porphins and ferrocenes. In some embodiments, the surface active moiety is a macrocyclic ligand comprising a macrocyclic precursor ligand and a macrocyclic complex. By "macrocyclic precursor ligands" is meant herein a cyclic compound containing a donor atom (sometimes referred to herein as a "coordinating atom") that is oriented to bind to a metal ion and large enough to surround the metal atom. Typically, the donor atoms are heteroatoms including, but not limited to, nitrogen, oxygen and sulfur, with the former being especially preferred. However, those skilled in the art understand that different metal ions preferentially bond to different heteroatoms, and thus the heteroatoms used may depend on the desired metal ion. Moreover, in some embodiments, a single macrocycle can contain different types of heteroatoms. "macrocyclic complex" is a macrocyclic precursor ligand with at least one metal ion; in some embodiments the macrocyclic complex comprises a single metal ion, but as described below, it is also expected Incorporating a multinuclear complex comprising a multinuclear macrocyclic complex. In the present invention, a variable macrocyclic ligand can be used, which includes an electron conjugate or no electron conjugate. In particular embodiments, the rings, linkages, and substituents are selected to result in electron conjugation of the compound, and at least have at least two oxidation states. In some embodiments, the macrocyclic ligand system of the invention A group consisting of a free porphyrin (particularly a porphyrin derivative as defined below) and a cy cl en derivative. A particularly good subset of macrocycles suitable for the present invention include porphyrins, Porphyrins include porphyrin derivatives. The derivatives include porphyrins with ortho-fused or 〇rtho-perifused to the outer ring of the porphyrin nucleus. One or more carbon atoms of a porphyrin ring are replaced by an atom of another element a porphyrin substituted by a skeleton, a derivative in which a nitrogen atom of the porphyrin ring is substituted by an atom of another element (substituted by a skeleton of nitrogen), having a hydrogen at a position in the vicinity of the porphyrin, a 3- or core atom a derivative other than the substituent, one or more of the porphyrin-saturated derivatives (hydroquinones, for example, chlorophyllin, bacteriochlorin, isobacteria, decahydroporphyrin, hydrazine a thiophene, pyrrole porphin, etc., one or more atoms (including pyrrole and pyrrolemethylene units) inserted into the porphyrin ring derivative (extended porphyrin), from the porphyrin ring Derivatization of one or more groups -19 - 201204208 (shrinking porphyrins, for example, corrin, corrole) and combinations of the foregoing (eg, phthalocyanine, azalea) Alkaloids and porphyrin isomers. Other suitable porphyrin derivatives include, but are not limited to, chlorophyll groups' including etiophyllin, indolopyrine, and erythroporphyrin , porphyrin, erythropoietin, chlorophyll a and b, and heme group, including puroplasmin, Hemin, hematin, hemoglobin, propurin, memoglobin, blood purpurin, purpurin, fecal purpura, urinary porphyrin and emodin, and tetraaryl azabifluorene (tetraarylazadipyrromethine) series. It is understood by those skilled in the art that each unsaturated position, whether carbon or heteroatom, may include one or more substituents as defined herein, depending on the desired valence of the system. Included within the definition of "porphyrin" is a porphyrin complex comprising the porphyrin precursor ligand and at least one metal ion. The metal suitable for the porphyrin compound depends on the hetero atom as a coordinating atom, but is generally selected from transition metal ions. The wording "transition metal" used in the text typically refers to 38 elements of Groups 3 to 12 of the periodic table. The typical characteristic of transition metals is the fact that their valence electrons, or their electrons used to combine with other elements, exist in many In a shell layer and therefore often exhibits several common oxidation states. In a particular embodiment, the transition metals of the present invention include, but are not limited to, tantalum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, One or more of zinc, kiln, pin, bismuth, molybdenum, niobium, tantalum, niobium, palladium, silver, cadmium, niobium, tin, chain, hungry, antimony, platinum, gold, mercury, furnace, and/or Its oxide, and/or its nitride, and/or its alloy, and/or mixtures thereof. -20- 201204208 There are many macrocycles based on cyclodecylamine derivatives, loosely including cyclodecylamine/ring A cyclam derivative is a bottomed macrocyclic precursor ligand which may include backbone expansion via inclusion of independently selected carbon or heteroatoms. In some embodiments, at least one R group is a surface active subunit Preferably conjugated to the metal. In some embodiments, Including, when at least one R group is a surface-active subunit, two or more adjacent R 2 groups form a cyclic group or an aryl group. In the present invention, the at least one R group is a surface active subunit or Further, in some embodiments, a macrocyclic complex that relies on an organometallic ligand is used, in addition to a pure organic compound as a surface active moiety, and a plurality of different organic coordinations with 8-bonding. In addition to the transition metal coordination complex as a donor atom of a heterocyclic or extracyclic substituent, a multi-change transition metal having a π-bonded organic ligand can be obtained. Organometallic compounds (see Advanced Inorganic Chemistry, 5th Ed., Cotton & Wilkinson, John Wiley & Sons, 1 98 8, Chapter 26; Organometallics, A Concise Introduction, Elschenbroich et al, 2nd edition, 1 992, 30 VCH; and Comprehensive Organometallic Chemistry II, A Review of the Literature 1982-1994, edited by Abel et al., Vol. 7, Chapters 7, 8, 10 and 11, Pergamon Press, hereby incorporated by reference The organometallic ligands include cyclic aromatic compounds such as cyclopentadienide ion [C5H5(-1)] and a variety of different cyclic- and cyclic-fused derivatives such as hydrazine. Compound (-1) ion which produces a bis(cyclopentadienyl) metal compound (i.e., a metallocene); Ref.-21 - 201204208 See, for example, Robins et al., J. Am. Chem. Soc. 104: 1882-1 893 (1 982); and Gassman et al., J. Am. Chem. Soc. 1 08: 4228-4229 (1986), incorporated herein by reference. Among these, ferrocene [(C5H5)2Fe] and its derivatives are those that have been in variability (Connelly et al., Chem. Rev. 96:877-910 (1996), incorporated herein by reference) and (Geiger et al., Advances in Organometallic Chemistry 23: 1 -93; and Geiger et al., A dvancesi η

Organometallic Chemistry 24:87,以引用方式倂入本文) 反應中使用的典型實範。其他可能適合之有機金屬配位子 包括環狀芳烯類如苯,以產生雙(芳烯)金屬化合物及其經 環取代之和經環稠合之衍生物,當中雙(苯)鉻爲原型實 例。其他丙烯酸系η-鍵結的配位子如烯丙基(-1)離子或丁 二烯產生可能適合之有機金屬化合物,且所有此等配位 子,與其他7c-鍵結和8-鍵結之配位子共軛構成一般分類 之具有金屬對碳鍵的有機金屬化合物。帶有架橋有機配位 子和其他非架橋配位子,及有和沒有金屬-金屬鍵的化合 物之多種不同二聚物和寡聚物的電化學硏究全都有用。 在一些具體實施例中,該等表面活性部分爲夾層配位 錯合物(sandwich coordination complexes)。該等措辭"夾 層配位化合物"或"夾層配位錯合物"表示式L-Mn-L之化合 物,其中各個L爲雜環狀配位子(如下所述),各個Μ爲金 屬,η爲2或更大,最佳爲2或3,且各個金屬係位於一 對配位子之間且鍵結至各個配位子中之一或多個雜原子 (且典型爲多個雜原子,例如,2個、3個、4個、5 -22- 201204208 個)(取決於該金屬的氧化態)°因此夾層配位化合物並非 有機金屬化合物如二茂鐵’其中該金屬係鍵結至碳原子。 該夾層配位化合物中的配位子一般係佈置爲堆疊取向 (即,一般係共面取向且與另一個配位子軸對齊’但是該 等配位子可或可不圍繞關於另一個配位子之軸旋轉)(參 見,例如,Ng and Jiang (1997) Chemical Society Reviews 26: 433-442),以引用方式倂入本文。夾層配位錯合物包 括,但不限於"雙層夾層配位化合物”及”三層夾層配位化 合物"。美國專利第 6,2 1 2,093號;第 6,45 1,942號;第 6,7 7 7,5 1 6號中詳細說明夾層配位化合物之合成及用途; 且W0 2005/0 86826說明這些分子之聚合,將其全部含括 於本文,特別是可用於夾層錯合物和"單一巨環"錯合物的 個別取代基。 此外,這些夾層化合物之聚合物也可使用;這包括 U.S.S.N. 6,212,093 ; 6,451,942 ; 6,777,516 中所述之 “ dyads” 及 “ triads” :及 W 0 2 0 0 5 / 0 8 6 8 2 6 中所述的這 些分子之聚合,在此以引用方式將其全文倂入並含括於本 文。 包含非巨環狀螯合劑之表面活性部分係鍵結至金屬離 子以形成非巨環狀螯合化合物,因爲該金屬之存在使多個 前驅配位子能一起鍵結而給予多個氧化態。 在一些具體實施例中,使用提供氮之前驅配位子。適 合之提供氮的前驅配位子爲此技藝中眾所周知並包括,但 不限於’ NH2 ; NFIR ; NRR1 ;吡啶;吡嗪;異菸鹼醯 -23- 201204208 胺;咪唑;雙吡啶和雙吡啶之經取代的衍生物;三吡啶和 經取代的衍生物;菲繞啉類,特別是1,1〇-菲繞啉(縮寫爲 phen)和菲繞啉之經取代的衍生物,如4,7-二甲基菲繞啉 和雙吡啶酚[3,2-a:2',3’-c]吩嗪(縮寫爲dppz);雙吡啶並吩 嗪;1,4,5,8,9,12-六氮三苯聯伸三苯(縮寫爲hat); 9,1〇-菲 醌二胺(縮寫爲 phi) ; 1,4,5,8-四氮菲(縮寫爲tap); 1,4,8,11-四氮環十四烷(縮寫爲〇7〇13111)及異氰化物。經取 代之衍生物(包括經稠合之衍生物)也可使用。應該要注意 爲了此目的將未使該金屬離子配位飽和且必需加入另一個 前驅配位子之巨環狀配位子視爲非巨環狀。熟悉此技藝者 明白,可共價附接大量"非巨環狀"配位子以形成配位飽和 之化合物,但是其缺乏環狀骨架。 使用碳、氧、硫和磷之適合提供σ的配位子爲此技藝 中習知者。例如,Cotton and Wilkenson,Advanc.ed Organic Chemistry,第 5 版,John Wiley & Sons,1988 中可找到適合的σ碳供體,在此以引用方式倂入本文:例 如,參見3 8頁。類似地,適合之氧配位子包括冠醚類、 水和其他此技藝中習知者。膦類和經取代之膦類也適合; 參見 C 〇 11 ο n a n d W i 1 k e n s ο η 的 3 8 頁。 該提供氧、硫、磷和氮之配位子係附接使得該等雜原 子能作爲配位原子。 此外,一些具體實施例利用形成多核之配位子的多牙 配位子’例如彼等能接合多於一個金屬離子。這些可爲巨 環狀或非巨環狀。文中該等分子元素也可包含上文槪述之 -24- 201204208 表面活性部分的聚合物;例如,可利用卟啉聚合物(包括 卟啉錯合物之聚合物)、巨環錯合物聚合物、包含兩個表 面活性次單兀之表面活性部分,等等。該等聚合物可爲均 聚物或雜聚物,且可包括任何數目之單體分子的不同混合 物(摻雜物),其中"單體"也可包括包含二或更多個次單元 之表面活性部分(例如’夾層配位化合物、以一或多個二 茂鐵類取代之卟啉衍生物,等等)。WO 2005/086826中有 描述表面活性部分聚合物,在此以引用方式將其全文明確 地倂入本文。 在特定具體實施例中,該附接基團Y包含芳基官能 基及/或烷基附接基團。在特定具體實施例中,該芳基官 能基包含選自下列任一或多者之官能基:胺基、烷胺基、 溴基、溴甲基、碘基、羥基、羥甲基、甲醯基、溴甲基、 乙烯基 '烯丙基、S-乙醯硫甲基、Se-乙醯硒甲基、乙炔 基、2-(三甲基矽基)乙炔基、锍基、锍甲基、4,4,5,5-四甲 基-1,3,2-二氧硼環戊-2-基及二羥基磷醯基。在特定具體 實施例中,該烷基附接基團包含選自下列任一或多者之官 能基:溴基、碘基、羥基、甲醯基、乙烯基、锍基、氧硒 基、S -乙廳硫甲基、Se -乙醯硒基、乙炔基、2-(二甲基石夕 基)乙炔基、4,4,5,5 -四甲基-1,3,2-二氧硼環戊-2-基及二羥 基磷醯基。在特定具體實施例中,該附接基團包含醇或膦 酸根。 在一些具體實施例中,該等表面活性部分爲砂垸類’ 其特徵爲此式,A(4-x)SiBxY,其中各個A獨立地爲可水 -25- 201204208 解基團,例如經基或院氧基,其中χ=1至3,且B獨立地 爲可或可不含有上述附接基團,Y,之院基或芳基。 在一些具體實施例中,本發明提供用平滑銅基材製造 PCB之方法,該銅基材意指未先經粗糙化之銅基材。例 如,適用於本發明方法中之銅基材包括,但不限於,電解 或電鍍銅、無電銅及輥軋銅,且不受製造該銅基材之方法 侷限。 在其他方面中,提供包含聚合物材料(如環氧樹脂)之 印刷電路板,該印刷電路板可含有實質量之塡料(如玻 璃、氧化矽或其他材料),爲了促成聚合物複合材料與金 屬層之間的強大黏著,該塡料表面上以實質改變其對金屬 (如但不限於銅)之化學親和力的化學黏著材料(如卟啉)改 質。該化學黏著層之第二層可施塗於該金屬表面,以促進 該金屬表面與後續聚合物(環氧樹脂/玻璃)層之間的黏著。 在一些具體實施例中,該PCB爲多層導電構造。 在另一個方面中,本發明提供製造印刷電路板之方 法,該方法包含下列步驟:以鹼及/或過氧化物溶液預清 潔銅表面;藉由在該銅表面上形成氧化銅層使該銅表面安 定化;藉由該氧化銅與一或多種抑制劑化合物之間的自我 限制反應終止該氧化銅之形成;及以樹脂黏合該經處理之 銅表面。在一些具體實施例中,可將一或多個分子耦合於 該氧化銅層,該一或多個有機分子包含帶有一或多個經配 置以接合該氧化銅表面之接合基團及一或多個經配置以附 接於該樹脂之附接基團的熱安定基底。 -26- 201204208 實驗 依下文所述方式進行許多實驗。這些實施例係僅爲了 例示目的而顯示且不意欲以任何方式限制本發明。 實施例 實施例1 :平滑銅基材之處理 本實施例例示根據本發明一些具體實施例之用於處理 平滑銅基材之一不範方法。如上文所討論,本發明之方法 能使用平滑銅基材,意指沒有事先粗糙化之銅基材。此銅 基材可來自多變之來源。例如,適用於本發明之方法的銅 基材包括,但不限於,電解或電鍍銅、無電銅及輥軋銅, 且不受製造該銅基材之方法侷限。在此實施例1中,先以 於5 0°c之40 g/L氫氧化鈉溶液清潔電解銅基材2分鐘, 並接著以水沖洗。另外在1重量%過氧化氫溶液中清潔(於 室溫1分鐘’及於室溫之3重量%硫酸溶液1分鐘),並接 著水沖洗。接著在具有於6 0 °C之1 2 g/ L氫氧化鈉的1 4 0 g/ L氯化物溶液中藉由氧化6分鐘將該基材安定化,接著 水沖洗。接著於35 °C下在pH經調節至12.6之40 g/L二 甲基胺硼烷(DMAB)的還原浴中處理該樣品2分鐘。接著 沖洗該樣品並藉由熱空氣乾燥。該安定化層之表面形態及 厚度可藉由變化該等處理溶液之濃度、溫度及期間而加以 調節’並藉由SEM、XRD及歐傑縱深分佈界定其特徵。 第3A圖爲於50,000倍放大倍率之示範性SEM顯微 -27- 201204208 照片,其顯示帶有團塊狀晶粒及反映結晶性構造之長程有 序(long range order)的定向晶粒生長之習用電解銅表面 (即平滑銅表面,或換句話說沒經過粗糙化之銅表面)之典 型形態。相比之下,第3 B圖顯示經根據本發明之方法處 理的電解銅表面之形態。很明顯地,在第3 B圖之經處理 之銅表面上的安定化層顯示較細緻晶粒、單向晶粒生長及 較高均勻性之形態。對照之下,第3C圖顯示習用黑色氧 化物表面,該表面顯現更厚許多且易碎之纖維構造。第 3D圖爲習用經微蝕刻之銅表面的示範性SEM顯微照片, 該照片顯示高度均勻性微谷及微脊之形態。 第4圖之表列數據比較以Ra及Rz表示之表面粗糙 度,並證明本發明之處理不會將該銅表面粗糙化。 另外藉由歐傑電子光譜學(AES)界定根據實施例1所 製造之經處理之平滑銅表面的安定化層之特徵以測定該層 之表面組成及厚度分佈。參照第5圖,用於該經處理之銅 表面的歐傑縱深分佈顯示該安定化層含有混合銅及氧化 銅,也許是氧化亞銅,且其厚度爲約1 〇〇 nm。對照之 下,該習用黑色氧化物層延伸至高於1 〇〇〇 nm之距離。爲 了確保良好之黏合強度,該安定化層之厚度希望能在約 100至200 nm之範圍以內。 實施例2 :在平滑銅上之樹脂黏合增強之證明 本實施例例示一個增進環氧樹脂在平滑銅表面之黏著 的示範性方法。如第6圖所例示將上述經處理之Cu測試 -28- 201204208 條擺在臨時墊板上。如第7A至7D圖所例示將35μιη厚度 之工業用增層(BU)環氧樹脂(或介電質)層疊膜,其已經於 周遭條件下安定化至少3小時,擺在該等Cu條頂部。該 組合件接著於1 0 0 °C、3 0秒真空及於3 Kg/cm2壓著3 0秒 下層疊。重複進行此層疊步驟2次以形成總共3層之BU 膜。 値得注意的是該銅表面在表面處理之後從微紅色變成 淡褐或綠色’並接著在層疊之後變成黑色,這暗示化學黏 合反應已經發生。該樹脂表面經常含有化學反應性基團, 如羥基、胺基、環氧基等,該等化學反應性基團會藉由形 成鍵與富含氧之銅表面反應。 爲了測定黏著強度,如第7B圖所例示把剛性墊板基 材(防撓材)層疊在該B U膜頂部。該組合件接著於1 8 0 °C 之對流烘箱中加熱處理或固化9 0分鐘。 接下來將該組合件切成小方塊以移除該臨時墊板基材 並分成用於剝離強度測試及使用高加速應力試驗(HAST) 之測試的個別試樣。藉由於9 0度剝離角之1 0 mm寬剝離 條及50 mm/min之剝離速度藉由剝離試驗機之測力計測定 所得的層叠體之黏著強度。明確地說’在基材最初形成 時,及接著在預調節及迴流之後測試剝離強度。預調節於 125°C下進行25小時,接著3(TC及60%相對濕度(RH) 192 小時。迴流於260°C下進行3次。其後於1 30°C及85% RH 下進行HAST測試96小時。第8A及8B圖例示該處理對 於HAST測試後之剝離強度殘率的衝擊。沒有(即沒有根 -29- 201204208 據本發明之安定化層)之平滑對照組在HAST後剝離強度 中下滑88% ’且習用經粗糙化對照組顯示40%損失。明顯 對照之下該經處理之平滑銅基材(即帶有根據本發明所形 成之安定化層)不僅顯示較高初始剝離強度,還有僅1 1 % 損失之較高殘率。第8 B圖之表列數據也證明已達成剝離 強度安定性之增進而不會改變表面粗糙度。此結果係優異 的,且根據先前技藝之教導無法預測。 將帶有安定化層的層疊之經處理的平滑銅表面與平滑 對照組作比較之SEM斷面圖拍照並顯示本發明之方法並 不會使該銅表面顯著粗糙化。 第9A及9B圖顯示根據本發明所形成之帶有安定化 層的層疊之經處理的平滑銅表面,在HAST之前及之後, 之SEM斷面圖,該斷面圖證明迴流及HAST可靠度試驗 之後沒有脫層。 第10A及10B圖爲經剝離之銅表面的示範性SEm顯 微照片,其顯示對於平滑銅對照組(第10A圖)該銅-樹脂 介面正好於銅表面處斷裂,而對於根據本發明所形成之帶 有安定化層之經處理的平滑銅(第10B圖)該介面斷裂在該 樹脂內。此驚人之結果證明該樹脂與本發明之經處理之銅 表面之間的黏合強度係比整塊樹脂材料本身之黏合強度 強。 實施例3 :細線圖案化及電氣絕緣可靠度之證明 裝置係爲了證明藉由本發明之具體實施例能將細線圖 -30- 201204208 案化而形成。明確地說,依照實施例1及實施例2所述之 相同程序處理並層疊具有相等尺寸(50/50、30/30、 20/20、1〇/1 〇及8/8 μπι)之線及間隔的梳形圖案。SEM斷 面圖再度確認本發明之方法不會使該等銅線粗糙化且於迴 流及H A S Τ試驗之後沒有脫層。在迴流及H A S Τ之後該絕 緣電阻於2V下仍舊高於ΙΟ12 Ω,那比PCB製造規格之絕 緣電阻高7個量級。下表1總結這些結果。所有這些構造 均獲得良好之結果,這表示本發明之處理明顯改善於細線 間隔下形成銅線圖案之能力,這是此技藝之一大進步。 表1.細線圖案化及糸 邑緣電阻可靠度 線/間隔尺寸 (um) HAST後沒有脫層 HAST後於2V下之絕緣電阻 X 1012Ω 50/50微米 通過 1.27 30/30微米 通過 1.30 20/20微米 通過 1.43 10/10微米 通過 1.29 8/8微米 通過 1.10 實施例4 :環氧樹脂層疊Cu表面之雷射鑽孔及導孔 清潔/鍍著相容性之證明 帶有雷射導孔之裝置係形成並接著進一步處理以證明 處理相容性。明確地說’依照實施例1及實施例2所述之 相同程序處理並層疊平滑銅基材。透過C〇2及UV雷射鑽 孔製造30、40' 50、75、100、150及200 μπι直徑之導孔 陣列。接著在無電銅鍍著接著電鍍之後對該等導孔構造施 以軟蝕刻及酸清潔或除渣處理。第1 1圖顯示形成在根據 -31 - 201204208 本發明之具體實施例形成之層疊的平滑經處理之銅表 的雷射導孔之SEM斷面,該斷面證明除渣及鍍著處 後沒有基蝕及脫層。 實施例5 :在平滑銅基材上之焊料阻劑黏合增強 明 本實施例例示一個增進焊料阻劑黏著在平滑銅基 的示範方法。該等平滑銅測試條係依照實施例1所述 同程序處理並如第6圖所例示擺在臨時墊板上。如身 圖所例示將30 μπι厚度之工業用焊料阻劑(SR)層疊膜 已經於周遭條件下安定化至少3小時,擺在該等Cu 部。該組合件接著於75°C、30秒真空及於1 Kg/cm2 60秒下真空層疊。接著對該組合件施以400 mJ/cm 曝光,接著於150t之對流烘箱中固化60分鐘及於 mJ/cm2的後段UV固化。 爲了測定黏著強度,如第7B圖所例示把剛性墊 材(防撓材)層疊在該SR膜頂部。接著將該組合件切 方塊以移除該臨時墊板基材並接著分成用於剝離強度 及高加速應力試驗(HAST)測試的個別試樣。明確地 在基材最初形成時,及接著在預調節、迴流及H A S T 測試剝離強度。第1 2A及1 2B圖例示本發明之處理 對於HAST測試後之剝離強度殘率的衝擊。沒有處理 滑對照組在HAST後剝離強度中下滑87%,且習用經 化對照組顯示69%損失。明顯對照之下根據本發明之 面上 理之 之證 材上 之相 5 7A ,其 條頂 壓著 2 UV 1000 板基 成小 測試 說, 之後 方法 之平 粗糙 具體 -32- 201204208 實施例形成之經處理之平滑銅表面不僅顯示較高初始剝離 強度,還有僅22%損失之較高殘率。第1 2B圖之表列數據 也證明已達成剝離強度安定性之增進而不會改變表面粗糙 度。 實施例6 : SR層疊Cu表面之UV圖案化及導孔清潔/ 鑛著相容性之證明 導孔陣列及銅線之裝置係形成並接著進一步處理以證 明處理相容性。明確地說,依照實施例5所述之相同程序 處理並層疊平滑銅基材。透過UV曝光及顯影形成介於80 至440 μιη之底部直徑及62至500 μηι之銅線的導孔陣 列。第1 3 Α圖顯示該銅線圖案及導孔陣列,且第1 3 Β圖 顯示球柵格陣列(BGA)圖案。接著在無電Ni鍍著接著Au 浸漬沉積之後對該等圖案化構造施以軟蝕刻及酸清潔或除 渣處理。第14圖顯示形成在層疊之平滑銅表面上的SR 導孔之SEM斷面,該等斷面證明除渣及鍍著處理之後沒 有基蝕及脫層。所有這些構造均獲得良好之結果,暗示本 發明之處理方法明顯改善於細線間隔下形成SR圖案之能 力,這是此技藝之一大進步。 前述方法、裝置及描述係意欲例示。綜觀文中所提供 之教導,其他方法對於熟於相關技藝之士將顯而易見’且 意欲將此等方法全歸在本發明之範圍以內。 【圖式簡單說明】 -33- 201204208 本發明之各個不同方面藉由下列詳述之檢討,聯合附 圖’將變得顯而見’其中在全文中類似之參考符號表示類 似部件,及其中: 第1 A及1 B圖以圖解例示與習用粗糙化方法相比之 根據本發明的銅-樹脂黏合方法之一具體實施例; 第2圖例示實驗流程圖,其例示本發明方法之一具體 實施例; 第3A至3D圖顯示SEM照片:(A)於任何處理之前的 平滑銅表®; (B)根據本發明之一具體實施例處理過的銅 表面,該銅表面顯示該經處理之表面的平滑度;並與(C) 先前技藝中所述之習用粗糙黑色氧化物表面;及(D)先前 技藝中所述之微粗糙化銅表面作比較; 第4圖比較第3A至3D圖所示之銅表面的Ra及RZ 所表示之表面粗糙度; 第 5圖以圖解顯示歐傑縱深分佈(Auger depth profile),該分佈根據本發明的一些具體實施例證明該經 處理之銅層具有小於100 nm之厚度; 第6圖爲用以對著環氧基材上之銅測試條進行剝離強 度試驗的試驗樣品設計之實例; 第7A至7D圖爲顯示試驗樣品之製造及例示所用之 層疊方法的簡化斷面圖; 第8A及8B圖以圖解例示與對照組基材作比較之根 據本發明之具體實施例處理的環氧樹脂層疊平滑銅表面之 剝離強度及表面粗糙度; -34- 201204208 第9A及9B圖顯示HAST之前(第9A | 後(第9B圖)根據本發明之具體實施例所形 處理的銅表面之SEM斷面圖,該等斷面圖丨 後沒有脫層; 第1 0 Α及1 0 Β圖顯示經剝離之銅表面由 該等照片證明關於平滑銅對照組(第1 〇A圖 面正好於該銅表面處斷裂及根據本發明之一 介面於經處理的平滑銅(第1 〇 B圖)之樹脂內I 第11圖顯示形成在層疊之經處理的平 雷射導孔的SEM斷面圖,該斷面圖證明沒 之基蝕及鍍著; 第I 2 A及1 2 B圖以圖解例示與對照組 根據本發明具體實施例處理過之經防焊劑層 面之剝離強度及表面粗糙度; 第1 3 A及1 3 B圖顯示在銅線和導孔陣歹 (第13A圖)及BGA圖案(第13B圖)的照片; 第14圖顯示形成在根據本發明具體實 層疊的經處理之銅表面上的S R導孔之S E Μ 面圖證明沒有除渣處理後之脫層及鍍著。 【主要元件符號說明】 100A :介面 100B :介面 1 02 :金屬 顯)及HAST之 成的層疊之經 登明H A S T之 勺SEM照片, )該銅-樹脂介 具體實施例該 斷裂; 滑銅表面上之 有除渣處理後 基材作比較之 疊的平滑銅表 丨上之SR圖案 及 施例所形成之 斷面圖,該斷 -35- 201204208 104 :樹脂 1 ο 6 :安定化層 108 :有機層 -36-Organometallic Chemistry 24:87, incorporated herein by reference.) Typical examples used in reactions. Other potentially useful organometallic ligands include cyclic arylenes such as benzene to produce bis(arylene) metal compounds and their ring-substituted and ring-fused derivatives, in which bis(phenyl)chromium is the prototype Example. Other acrylic η-bonded ligands such as allyl (-1) ions or butadiene produce organometallic compounds that may be suitable, and all such ligands, with other 7c-bonds and 8-bonds The ligand conjugate of the knot constitutes an organometallic compound having a metal-to-carbon bond generally classified. Electrochemical studies of many different dimers and oligomers with bridging organic ligands and other non-bridging ligands, and compounds with and without metal-metal bonds are all useful. In some embodiments, the surface active moieties are sandwich coordination complexes. Such phrases "interlayer coordination compounds" or "interlayer coordination complexes" represent compounds of the formula L-Mn-L wherein each L is a heterocyclic ligand (as described below), each Μ a metal, η is 2 or greater, most preferably 2 or 3, and each metal is between a pair of ligands and bonded to one or more heteroatoms in each of the ligands (and typically more a hetero atom, for example, 2, 3, 4, 5 -22-201204208) (depending on the oxidation state of the metal). Therefore, the interlayer coordination compound is not an organometallic compound such as ferrocene, wherein the metal system Bonded to a carbon atom. The ligands in the interlayer coordination compound are typically arranged in a stacked orientation (ie, generally coplanar orientation and aligned with another coordinate axis) but such ligands may or may not surround another ligand The axis is rotated) (see, for example, Ng and Jiang (1997) Chemical Society Reviews 26: 433-442), incorporated herein by reference. Interlayer coordination complexes include, but are not limited to, "two-layer interlayer coordination compounds" and "three-layer interlayer coordination compounds". The synthesis and use of interlayer coordination compounds are described in detail in U.S. Patent No. 6,2,1,093; 6,45,942; 6,7,7,5,1,6; and WO 02005/0 86826 Polymerization, all of which are included herein, in particular, can be used for the individual substituents of the interlayer complex and the "single macrocycle" complex. In addition, polymers of these interlayer compounds may also be used; this includes "dyads" and "triads" as described in USSN 6,212,093; 6,451,942; 6,777,516: and W 0 2 0 0 5 / 0 8 6 8 2 6 The polymerization of these molecules is hereby incorporated by reference in its entirety. The surface active moiety comprising a non-macrocyclic chelating agent is bonded to the metal ion to form a non-macrocyclic chelating compound because the presence of the metal allows multiple precursor ligands to bond together to impart multiple oxidation states. In some embodiments, the use of a nitrogen-providing precursor is provided. Suitable precursor ligands for providing nitrogen are well known in the art and include, but are not limited to, 'NH2; NFIR; NRR1; pyridine; pyrazine; isonicotinium --23-201204208 amine; imidazole; bipyridine and bipyridine Substituted derivatives; tripyridines and substituted derivatives; phenanthroline, especially 1,1 - phenanthroline (abbreviated as phen) and substituted derivatives of phenanthroline, such as 4,7 - dimethyl phenanthroline and bispyridinol [3,2-a:2',3'-c]phenazine (abbreviated as dppz); bipyridophenazine; 1,4,5,8,9, 12-hexanitrotriphenyl-terminated triphenyl (abbreviated as hat); 9,1〇-phenanthridine diamine (abbreviated as phi); 1,4,5,8-tetrazophenanthrene (abbreviated as tap); 1,4 8,8-tetraazacyclotetradecane (abbreviated as 〇7〇13111) and isocyanide. Substituted derivatives, including fused derivatives, can also be used. It should be noted that for this purpose, a macrocyclic ligand which does not coordinate the coordination of the metal ion and which must be added to another precursor ligand is regarded as a non-macrocyclic ring. Those skilled in the art will appreciate that a large number of "non-macro-ring" ligands can be covalently attached to form a coordination-saturated compound, but which lacks a cyclic backbone. Coordinators suitable for providing σ using carbon, oxygen, sulfur and phosphorus are well known to those skilled in the art. Suitable sigma carbon donors can be found, for example, in Cotton and Wilkenson, Advanc. ed Organic Chemistry, 5th edition, John Wiley & Sons, 1988, which is incorporated herein by reference: for example, see page 38. Similarly, suitable oxygen ligands include crown ethers, water, and other practitioners of this skill. Phosphines and substituted phosphines are also suitable; see 3 8 pages of C 〇 11 ο n a n d W i 1 k e n s ο η. The ligand system providing oxygen, sulfur, phosphorus and nitrogen is attached such that the hetero atoms can act as coordinating atoms. Moreover, some embodiments utilize multidentate ligands that form multinuclear ligands', e.g., they can bind more than one metal ion. These can be macrocyclic or non-macro. The molecular elements herein may also comprise a polymer of the surface active moiety of the above-mentioned-24-201204208; for example, a porphyrin polymer (including a polymer of a porphyrin complex), a macrocyclic complex polymerization may be utilized. , a surface active moiety comprising two surface-active subunits, and the like. The polymers may be homopolymers or heteropolymers and may include any number of different mixtures (dopants) of monomer molecules, where "monomer" may also include two or more subunits Surface active moieties (eg, 'interlayer coordination compounds, porphyrin derivatives substituted with one or more ferrocenes, and the like). The surface active moiety polymers are described in WO 2005/086826, which is hereby incorporated by reference in its entirety. In a particular embodiment, the attachment group Y comprises an aryl functional group and/or an alkyl attachment group. In a particular embodiment, the aryl functional group comprises a functional group selected from any one or more of the group consisting of an amine group, an alkylamino group, a bromo group, a bromomethyl group, an iodo group, a hydroxyl group, a hydroxymethyl group, and a methyl group. Base, bromomethyl, vinyl 'allyl, S-ethionylthiomethyl, Se-acetyl selenium methyl, ethynyl, 2-(trimethyldecyl)ethynyl, decyl, fluorenylmethyl 4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl and dihydroxyphosphonium. In a particular embodiment, the alkyl attachment group comprises a functional group selected from any one or more of the group consisting of bromo, iodo, hydroxy, decyl, vinyl, decyl, oxyselyl, S -B Hall thiomethyl, Se-acetonitrile selenyl, ethynyl, 2-(dimethylglucenyl)ethynyl, 4,4,5,5-tetramethyl-1,3,2-dioxo Boracyclopentan-2-yl and dihydroxyphosphonium. In a particular embodiment, the attachment group comprises an alcohol or a phosphonate. In some embodiments, the surface active moieties are sand scorpions, characterized by the formula, A(4-x)SiBxY, wherein each A is independently a water--25-201204208 de-cleaving group, such as a trans-base. Or a hospitaloxy group, wherein χ = 1 to 3, and B is independently or may not contain the above-mentioned attachment group, Y, a hospital group or an aryl group. In some embodiments, the present invention provides a method of making a PCB from a smooth copper substrate, which means a copper substrate that has not been roughened first. For example, copper substrates suitable for use in the process of the present invention include, but are not limited to, electrolytic or electroplated copper, electroless copper, and rolled copper, and are not limited by the method of making the copper substrate. In other aspects, a printed circuit board comprising a polymeric material, such as an epoxy resin, is provided, which may contain substantial amounts of tantalum (such as glass, yttria or other materials) in order to facilitate polymer composites and The strong adhesion between the metal layers on the surface of the material is modified with a chemically bonded material (such as a porphyrin) that substantially changes its chemical affinity for metals such as, but not limited to, copper. A second layer of the chemically adhered layer can be applied to the metal surface to promote adhesion between the metal surface and the subsequent polymer (epoxy/glass) layer. In some embodiments, the PCB is a multilayer conductive construction. In another aspect, the present invention provides a method of making a printed circuit board, the method comprising the steps of: pre-cleaning a copper surface with a base and/or a peroxide solution; and forming the copper by forming a copper oxide layer on the copper surface The surface is stabilized; the formation of the copper oxide is terminated by a self-limiting reaction between the copper oxide and one or more inhibitor compounds; and the treated copper surface is bonded with a resin. In some embodiments, one or more molecules can be coupled to the copper oxide layer, the one or more organic molecules comprising one or more bonding groups configured to bond the copper oxide surface and one or more A thermal stabilization substrate configured to attach to an attachment group of the resin. -26- 201204208 Experiments A number of experiments were performed as described below. These examples are for illustrative purposes only and are not intended to limit the invention in any way. EXAMPLES Example 1: Treatment of Smooth Copper Substrate This example illustrates an exemplary method for treating a smooth copper substrate in accordance with some embodiments of the present invention. As discussed above, the method of the present invention can use a smooth copper substrate, meaning a copper substrate without prior roughening. This copper substrate can come from a variety of sources. For example, copper substrates suitable for use in the method of the present invention include, but are not limited to, electrolytic or electroplated copper, electroless copper, and rolled copper, and are not limited by the method of making the copper substrate. In this Example 1, the electrolytic copper substrate was first cleaned with a 40 g/L sodium hydroxide solution at 50 ° C for 2 minutes, and then rinsed with water. Further, it was cleaned in a 1 wt% hydrogen peroxide solution (1 minute at room temperature and 3 wt% sulfuric acid solution at room temperature for 1 minute), and rinsed with water. The substrate was then stabilized by oxidation for 16 minutes in a 140 g/L chloride solution having 12 g/L sodium hydroxide at 60 ° C, followed by water rinsing. The sample was then treated at 35 ° C for 2 minutes in a reduction bath adjusted to 12.6 of 40 g/L dimethylamine borane (DMAB). The sample was then rinsed and dried by hot air. The surface morphology and thickness of the stabilization layer can be adjusted by varying the concentration, temperature and duration of the treatment solutions' and characterized by SEM, XRD and Eugen depth distribution. Figure 3A is an exemplary SEM micrograph -27-201204208 at 50,000x magnification showing lumped grain growth and long range order directional grain growth reflecting crystalline structures A typical form of a conventional copper surface (ie, a smooth copper surface, or in other words, a roughened copper surface). In contrast, Figure 3B shows the morphology of the surface of the electrolytic copper treated by the method according to the present invention. It is apparent that the stabilized layer on the treated copper surface of Figure 3B exhibits finer grain, unidirectional grain growth and higher uniformity. In contrast, Figure 3C shows a conventional black oxide surface that exhibits a thicker and more brittle fiber structure. Figure 3D is an exemplary SEM micrograph of a conventional microetched copper surface showing the morphology of highly uniform micro-valleys and micro-ridges. The table data in Fig. 4 compares the surface roughness expressed by Ra and Rz, and demonstrates that the treatment of the present invention does not roughen the copper surface. Further, the characteristics of the stabilized layer of the treated smooth copper surface produced in accordance with Example 1 were defined by Auger Electronic Spectroscopy (AES) to determine the surface composition and thickness distribution of the layer. Referring to Figure 5, the depth distribution of the Auger used for the treated copper surface shows that the stabilization layer contains mixed copper and copper oxide, perhaps cuprous oxide, and has a thickness of about 1 〇〇 nm. In contrast, the conventional black oxide layer extends to a distance greater than 1 〇〇〇 nm. In order to ensure good adhesion strength, the thickness of the stabilization layer is desirably within the range of about 100 to 200 nm. Example 2: Proof of resin adhesion enhancement on smooth copper This example illustrates an exemplary method of enhancing adhesion of an epoxy resin to a smooth copper surface. The above-mentioned processed Cu test -28-201204208 is placed on a temporary backing plate as illustrated in Fig. 6. An industrial build-up (BU) epoxy (or dielectric) laminated film having a thickness of 35 μm as exemplified in FIGS. 7A to 7D, which has been stabilized under ambient conditions for at least 3 hours, placed on top of the Cu strips . The assembly was then laminated at 10 ° C, a vacuum of 30 seconds and pressed at 3 Kg/cm 2 for 30 seconds. This lamination step was repeated twice to form a total of three layers of BU film. It is noted that the copper surface changes from reddish to light brown or green after surface treatment and then becomes black after lamination, suggesting that a chemical bonding reaction has occurred. The surface of the resin often contains chemically reactive groups such as hydroxyl groups, amine groups, epoxy groups, etc., which react with the oxygen-rich copper surface by forming bonds. In order to measure the adhesion strength, a rigid backing substrate (deflection material) was laminated on top of the B U film as exemplified in Fig. 7B. The assembly was then heat treated or cured in a convection oven at 180 °C for 90 minutes. The assembly was then cut into small squares to remove the temporary backing substrate and divided into individual samples for peel strength testing and testing using the High Accelerated Stress Test (HAST). The adhesion strength of the obtained laminate was measured by a dynamometer of a peeling tester by a 10 mm wide peeling strip of a 90 degree peeling angle and a peeling speed of 50 mm/min. Specifically, the peel strength was tested when the substrate was initially formed, and then after preconditioning and reflow. Pre-conditioning was carried out at 125 ° C for 25 hours, followed by 3 (TC and 60% relative humidity (RH) for 192 hours. Reflow was carried out 3 times at 260 ° C. Thereafter HAST was carried out at 1 30 ° C and 85% RH Test 96 hours. Figures 8A and 8B illustrate the impact of this treatment on the peel strength residual rate after the HAST test. No (ie no root -29-201204208 according to the invention stability layer) smooth control group peel strength after HAST The drop was 88%' and the conventionally roughened control group showed a 40% loss. The treated smooth copper substrate (ie with the stabilization layer formed according to the invention) showed not only a higher initial peel strength. There is also a higher residual rate of only 11% loss. The table data in Figure 8B also demonstrates that the improvement in peel strength stability has been achieved without changing the surface roughness. This result is excellent and based on prior art The teachings are unpredictable. The SEM cross-section of the laminated smooth copper surface with a stabilized layer compared to a smooth control was photographed and showing that the method of the present invention does not significantly roughen the copper surface. 9A and 9B are shown in accordance with the present invention The SEM cross-section of the laminated smooth copper surface with the stabilized layer formed, before and after HAST, which demonstrates no delamination after reflow and HAST reliability testing. 10A and 10B The figure shows an exemplary SEm micrograph of the stripped copper surface showing that the copper-resin interface is fractured just above the copper surface for the smooth copper control (Fig. 10A), and for the stability formed according to the invention. The processed smooth copper (Fig. 10B) is broken in the resin. This surprising result demonstrates that the bond strength between the resin and the treated copper surface of the present invention is greater than that of the monolithic resin material itself. The bonding strength is strong. Embodiment 3: Proof device for thin line patterning and electrical insulation reliability is formed in order to prove that the thin line diagram -30-201204208 can be realized by the specific embodiment of the present invention. Specifically, according to the embodiment 1 The same procedure as described in Example 2 was used to process and laminate a comb pattern having lines and spaces of equal sizes (50/50, 30/30, 20/20, 1〇/1 〇, and 8/8 μπι). Reconfirmed The method of the invention does not roughen the copper wires and does not delaminate after the reflow and HAS Τ test. After the reflow and HAS 该, the insulation resistance is still higher than ΙΟ12 Ω at 2V, which is higher than the insulation resistance of the PCB manufacturing specification. Seven orders of magnitude higher. These results are summarized in Table 1. All of these configurations yielded good results, indicating that the process of the present invention significantly improved the ability to form copper line patterns at fine line spacing, a significant advancement in this art. Table 1. Thin line patterning and edge resistance reliability line/space size (um) Insulation resistance at 10V after HAST without delamination HAST X 1012 Ω 50/50 μm through 1.27 30/30 μm through 1.30 20/20 Micron passes 1.43 10/10 micron through 1.29 8/8 micron through 1.10 Example 4: Epoxy laminated Cu surface laser drilling and via hole cleaning / plating compatibility proof device with laser via hole The system was formed and then further processed to demonstrate process compatibility. Specifically, the smooth copper substrate was processed and laminated in accordance with the same procedures as described in Example 1 and Example 2. Arrays of 30, 40' 50, 75, 100, 150, and 200 μm diameter vias were fabricated through C〇2 and UV laser drilled holes. The via structures are then subjected to a soft etch and acid cleaning or slag removal treatment after electroless copper plating followed by electroplating. Figure 11 shows an SEM section of a laser guide hole formed in a laminated smoothed copper watch formed in accordance with a specific embodiment of the present invention in the specification of -31 - 201204208, which proves that there is no slag removal and plating Base erosion and delamination. Example 5: Solder Resist Adhesion Enhancement on Smooth Copper Substrate This example illustrates an exemplary method for enhancing solder resist adhesion to a smooth copper substrate. The smooth copper test strips were processed in accordance with the procedure described in Example 1 and placed on a temporary backing plate as illustrated in Figure 6. As shown in the figure, an industrial solder resist (SR) laminated film having a thickness of 30 μm has been stabilized under ambient conditions for at least 3 hours, and is placed in the Cu portions. The assembly was then vacuum laminated at 75 ° C, 30 seconds vacuum and at 1 Kg/cm 2 for 60 seconds. The assembly was then exposed to 400 mJ/cm, followed by curing in a 150 t convection oven for 60 minutes and UV curing in the back stage of mJ/cm2. In order to measure the adhesion strength, a rigid mat (deflection material) was laminated on the top of the SR film as exemplified in Fig. 7B. The assembly is then diced to remove the temporary backing substrate and then divided into individual samples for peel strength and high accelerated stress test (HAST) testing. The peel strength was clearly tested when the substrate was initially formed, and then at preconditioning, reflux, and H A S T . Figures 1 2A and 1 2B illustrate the impact of the treatment of the present invention on the peel strength residual rate after the HAST test. No treatment The slip control group fell 87% in the peel strength after HAST, and the conventional control group showed a 69% loss. In the apparent contrast, according to the surface of the invention, the phase of the substrate is 5 7A, and the strip is pressed against the 2 UV 1000 plate base into a small test, and then the flat roughness of the method is -32-201204208. The smooth copper surface treated not only showed higher initial peel strength, but also a higher residual rate with only 22% loss. The tabulated data in Figure 1 2B also demonstrates that the improvement in peel strength stability has been achieved without changing the surface roughness. Example 6: UV patterning of SR-stacked Cu surfaces and proof of via cleaning/mineral compatibility The via array and copper line devices were formed and then further processed to demonstrate process compatibility. Specifically, the smooth copper substrate was processed and laminated in accordance with the same procedure as described in Example 5. An array of via holes having a bottom diameter of 80 to 440 μm and a copper wire of 62 to 500 μηι is formed by UV exposure and development. The first 3 Α diagram shows the copper pattern and the via array, and the 1 3 显示 diagram shows the ball grid array (BGA) pattern. The patterned structures are then subjected to a soft etch and acid cleaning or slag removal treatment after electroless Ni plating followed by Au immersion deposition. Fig. 14 shows the SEM section of the SR guide hole formed on the surface of the laminated smooth copper, which shows that there is no undercut and delamination after the slag removal and plating treatment. All of these configurations yielded good results, suggesting that the process of the present invention significantly improves the ability to form SR patterns at fine line spacing, which is a major advancement in this art. The foregoing methods, apparatus, and description are intended to be illustrative. In view of the teachings provided herein, other methods will be apparent to those skilled in the art and are intended to be within the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS - 33 - 201204208 Various aspects of the present invention will be apparent from the following detailed description, which will be read in conjunction with the accompanying drawings. 1A and 1B are diagrams illustrating one embodiment of a copper-resin bonding method according to the present invention as compared with the conventional roughening method; FIG. 2 illustrates an experimental flow chart illustrating one embodiment of the method of the present invention Examples; Figures 3A through 3D show SEM photographs: (A) Smooth Copper Sheet® prior to any treatment; (B) Copper surface treated in accordance with an embodiment of the present invention, the copper surface showing the treated surface Smoothness; and compared with (C) conventional rough black oxide surface as described in the prior art; and (D) micro-roughened copper surface as described in the prior art; Figure 4 compares 3A to 3D The surface roughness of Ra and RZ of the copper surface is shown; FIG. 5 graphically shows the Auger depth profile, which shows that the treated copper layer has a smaller diameter according to some embodiments of the present invention. 100 The thickness of nm; Figure 6 is an example of a test sample design for performing a peel strength test on a copper test strip on an epoxy substrate; FIGS. 7A to 7D are diagrams showing the lamination method used for the manufacture and illustration of the test sample. Simplified cross-sectional view; Figures 8A and 8B graphically illustrate peel strength and surface roughness of an epoxy resin laminated smooth copper surface treated according to a specific embodiment of the present invention as compared with a control substrate; -34- 201204208 9A and 9B are SEM cross-sectional views showing the surface of the copper treated in accordance with a specific embodiment of the present invention before HAST (9A | after (Fig. 9B), and the cross-sectional views are not delaminated; Α and 10 Β 显示 显示 显示 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经In the resin of Fig. 1B, Fig. 11 shows an SEM cross-sectional view of the processed flat laser guide holes formed in the stack, which shows that there is no undercut and plating; 1 2 B is illustrated by way of example and a control group according to the present invention The peel strength and surface roughness of the solder resist layer treated in the examples; FIGS. 1 3 A and 1 3 B show photographs of the copper wire and the via hole array (Fig. 13A) and the BGA pattern (Fig. 13B) Fig. 14 is a view showing the SE Μ pattern of the SR via hole formed on the surface of the treated copper layer which is actually laminated according to the present invention, and the delamination and plating after the slag removal treatment are confirmed. [Main component symbol description] 100A : Between the interface 100B: interface 012: metal display) and HAST, the SEM photograph of the stacked HAST spoon, the copper-resin is exemplified by the specific embodiment; the slag-treated substrate on the surface of the copper slip The SR pattern on the comparatively smoothed copper surface and the cross-sectional view formed by the example, the break-35-201204208 104: Resin 1 ο 6 : Stabilization layer 108: Organic layer - 36-

Claims (1)

201204208 七、申請專利範圍 1. 一種製造印刷電路板以促進銅表面與有機基材之 間的黏著之方法,其包含下列步驟: 藉由在該銅表面上形成氧化銅層使該銅表面安定化; 藉由以還原劑還原該氧化銅層而調節該經安定化之銅 表面;及 將一或多個分子耦合於該氧化銅層,該一或多個有機 分子包含帶有一或多個經配置以接合該氧化銅表面之接合 基團及一或多個經配置以附接於該有機基材之附接基團的 熱安定基底。 2. 如申請專利範圍第1項之方法,其中該氧化銅層 經調節之後具有約2 0 0奈米及更低的厚度。 3. 如申請專利範圍第1項之方法,其中該氧化銅層 經調節之後包含實質上非晶形的結構。 4. 如申請專利範圍第1項之方法,其中該氧化銅層 具有顆粒,且經調節之後該等顆粒具有在2 5 0奈米及更低 的範圍中之大小。 5. 如申請專利範圍第1項之方法,其中該氧化銅層 具有顆粒,且經調節之後該等顆粒具有在200奈米及更低 的範圍中之大小。 6. 如申請專利範圍第1項之方法,其中該氧化銅具 有顆粒,且經調節之後該等顆粒係實質上不規則取向。 7. 如申請專利範圍第1項之方法,其中藉由將該銅 表面暴露於氧化劑使該銅表面安定化。 5 -37- 201204208 8 .如申請專利範圍第7項之方法,其中該氧化劑係 選自下列任一或多者:氯化鈉、氫氧化鈉、過氧化氫 '高 錳酸鹽、臭氧或其混合物。 9. 如申請專利範圍第1項之方法,其中該還原劑係 選自下列任一或多者:環狀硼烷、嗎啉硼烷、吡啶硼烷、 六氫吡啶硼烷或二甲基胺硼烷(DMAB)。 10. 如申請專利範圍第1項之方法,其中使該銅表面 安定化係於介於室溫至約8 (TC之溫度進行。 11 ·如申請專利範圍第1項之方法,其中調節該氧化 銅層係於介於室溫至約5〇。(:之溫度進行。 1 2 .如申請專利範圍第1項之方法,其中該方法係進 行介於約5至2 0分鐘之時間。 1 3 . —種製造印刷電路板之方法,其包含下列步驟: 以鹼及/或過氧化物溶液預清潔銅表面; 藉由在該銅表面上形成氧化銅層使該銅表面安定化; 以還原劑調節該氧化銅層;及 以樹脂黏合該經處理之銅表面。 1 4.如申請專利範圍第1 3項之方法,其另外包含下 列步驟: 將一或多個分子耦合於該氧化銅層,該一或多個有機 分子包含帶有一或多個經配置以接合該氧化銅表面之接合 基團及一或多個經配置以附接於該樹脂之附接基團的熱安 定基底。 15. —種製造印刷電路板之方法,其包含下列步驟: -38- 201204208 以鹼及/或過氧化物溶液預清潔銅表面; 藉由在該銅表面上形成氧化銅層使該銅表面安定化; 藉由該氧化銅與一或多種表面改質劑化合物之間的自 我限制反應終止該氧化銅之形成;及 以樹脂黏合該經處理之銅表面。 16. 如申請專利範圍第1 5項之方法,其另外包含下 列步驟: 將一或多個分子顆(合於該氧化銅層,該一或多個有機 分子包含帶有一或多個經配置以接合該氧化銅表面之接合 基團及一或多個經配置以附接於該樹脂之附接基團的熱安 定基底。 17. 如申請專利範圍第1項之方法,其中該一或多個 有機分子爲表面活性部分。 18. 如申請專利範圍第1項之方法,其中該一或多個 有機分子係選自下列群組:卟啉、卟啉巨環、膨脹卟啉、 收縮卟啉、線性卟啉聚合物、卟啉夾層配位錯合物或卟啉 陣列。 1 9 .如申請專利範圍第1 7項之方法,其中該表面活 性部分係選自由下列所組成的群組:巨環狀前驅配位子、 巨環狀錯合物、夾層配位錯合物及其聚合物。 20.如申請專利範圍第1 7項之方法,其中該表面活 性部分爲卟啉。 2 1.如申請專利範圍第1項之方法,其中該一或多個 附接基團包含芳基官能基及/或烷基附接基團。 -39- 201204208 22. 如申請專利範圍第21項之方法 能基包含選自下列任一或多者之官能基 基、烯丙基、胺、胺基、溴基、溴甲基、 羧酸、二羥基磷醯基、環氧化物、醋、醚 基、羥基、羥甲基、碘基、疏基、锍甲 基、Se-乙醯硒甲基、S -乙醯硫基、S•乙丨 基(selenyl)、4,4,5,5-四甲基-1,3,2 - — 氧极 (三甲基矽基)乙炔基、乙烯基及其組合。 23. 如申請專利範圍第21項之方法 接基團包含選自下列任一或多者之官能基 基、烯丙基、胺、胺基、溴基、溴甲基、 羧酸、二羥基磷醯基、環氧化物、酯 '醚 基、羥基、羥甲基、碘基、锍基、巯甲 基、Se-乙醯硒甲基、S-乙醯硫基、S-乙j 基、4,4,5,5-四甲基-1,3,2-二氧硼環戊-2-g 基)乙炔基、乙烯基及其組合。 24. 如申請專利範圍第1項之方法, 附接基團包含醇或膦酸根。 25. 如申請專利範圍第1項之方法, 附接基團包含下列任一或多者:胺類、醇 親核劑、苯基乙炔類、苯基烯丙基、膦酸 ,其中該芳基官 :醋酸根、烷胺 羰基、羧酸根、 、乙炔基、甲醯 基、Se-乙醯硒 醯硫甲基、氧硒 阴環戊-2 -基' 2 _ ,其中該院基附 :醋酸根、烷胺 羰基、羧酸根、 、乙炔基、甲醯 基、Se-乙醯硒 臨硫甲基、氧硒 g、2-(三甲基矽 其中該至少一個 其中該至少一個 類、醚類、其他 根類及其組合。 -40-201204208 VII. Patent Application Range 1. A method for manufacturing a printed circuit board to promote adhesion between a copper surface and an organic substrate, comprising the steps of: stabilizing the copper surface by forming a copper oxide layer on the copper surface. Adjusting the stabilized copper surface by reducing the copper oxide layer with a reducing agent; and coupling one or more molecules to the copper oxide layer, the one or more organic molecules comprising one or more configured A bonding substrate that bonds the copper oxide surface and one or more thermal stabilization substrates configured to attach to the organic substrate. 2. The method of claim 1, wherein the copper oxide layer is adjusted to have a thickness of about 200 nm and less. 3. The method of claim 1, wherein the copper oxide layer is adjusted to comprise a substantially amorphous structure. 4. The method of claim 1, wherein the copper oxide layer has particles, and the particles have a size in the range of 250 nm and lower after being adjusted. 5. The method of claim 1, wherein the copper oxide layer has particles, and the particles have a size in the range of 200 nm and lower after being adjusted. 6. The method of claim 1, wherein the copper oxide has particles and the particles are substantially irregularly oriented after adjustment. 7. The method of claim 1, wherein the copper surface is stabilized by exposing the copper surface to an oxidizing agent. 5. The method of claim 7, wherein the oxidizing agent is selected from any one or more of the group consisting of sodium chloride, sodium hydroxide, hydrogen peroxide 'permanganate, ozone or mixture. 9. The method of claim 1, wherein the reducing agent is selected from any one or more of the group consisting of cyclic borane, morpholine borane, pyridine borane, hexahydropyridine borane or dimethylamine. Borane (DMAB). 10. The method of claim 1, wherein the copper surface is stabilized at a temperature ranging from room temperature to about 8 (TC). 11. The method of claim 1, wherein the oxidation is adjusted. The copper layer is carried out at a temperature ranging from room temperature to about 5 Torr. (2). The method of claim 1, wherein the method is carried out for a period of between about 5 and 20 minutes. A method of manufacturing a printed circuit board comprising the steps of: pre-cleaning a copper surface with a base and/or a peroxide solution; and stabilizing the copper surface by forming a copper oxide layer on the copper surface; Adjusting the copper oxide layer; and bonding the treated copper surface with a resin. 1 4. The method of claim 13 further comprising the step of: coupling one or more molecules to the copper oxide layer, The one or more organic molecules comprise a thermally stable substrate having one or more bonding groups configured to bond the copper oxide surface and one or more attachment groups configured to attach to the resin. a method of manufacturing a printed circuit board, The method comprises the steps of: -38-201204208 pre-cleaning the copper surface with a base and/or a peroxide solution; stabilizing the copper surface by forming a copper oxide layer on the copper surface; by using the copper oxide and one or more surfaces The self-limiting reaction between the modifier compounds terminates the formation of the copper oxide; and the surface of the treated copper is bonded with a resin. 16. The method of claim 15 further comprising the steps of: a plurality of molecular particles (consisting with the copper oxide layer, the one or more organic molecules comprising one or more bonding groups configured to bond the copper oxide surface and one or more configured to attach to the resin The method of claim 1, wherein the one or more organic molecules are surface-active portions. 18. The method of claim 1, wherein the one The plurality of organic molecules are selected from the group consisting of porphyrins, porphyrin macrocycles, expanded porphyrins, shrinking porphyrins, linear porphyrin polymers, porphyrin interlayer coordination complexes or porphyrin arrays. Such as applying for a patent The method of clause 17, wherein the surface active moiety is selected from the group consisting of a macrocyclic precursor ligand, a macrocyclic complex, an interlayer coordination complex, and a polymer thereof. The method of claim 17, wherein the surface active moiety is a porphyrin. The method of claim 1, wherein the one or more attachment groups comprise an aryl functional group and / or alkyl attachment group. -39- 201204208 22. The method according to claim 21, wherein the energy group comprises a functional group selected from any one or more of the following, allyl, amine, amine, bromine Base, bromomethyl, carboxylic acid, dihydroxyphosphonium, epoxide, vinegar, ether, hydroxy, hydroxymethyl, iodine, thiol, fluorenylmethyl, Se-acetyl selenomethyl, S - Ethylthio, Slenyl, 4,4,5,5-tetramethyl-1,3,2-oxo (trimethyldecyl)ethynyl, vinyl, and combinations thereof . 23. The method of claim 21, wherein the attachment group comprises a functional group selected from any one or more of the following, allyl, amine, amine, bromo, bromomethyl, carboxylic acid, dihydroxyphosphorus Sulfhydryl, epoxide, ester 'ether group, hydroxyl group, hydroxymethyl group, iodine group, fluorenyl group, fluorenylmethyl group, Se-acetyl selenomethyl group, S-ethyl sulfonyl group, S-ethyl group, 4 , 4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethynyl, vinyl, and combinations thereof. 24. The method of claim 1, wherein the attachment group comprises an alcohol or a phosphonate. 25. The method of claim 1, wherein the attachment group comprises any one or more of the following: an amine, an alcohol nucleophile, a phenyl acetylene, a phenyl allyl group, a phosphonic acid, wherein the aryl group Officer: acetate, alkylamine carbonyl, carboxylate, ethynyl, methyl thiol, Se-acetyl selenoquinone thiomethyl, oxyseleno-cyclopentan-2-yl ' 2 _ , of which the hospital base: acetic acid Root, alkylamine carbonyl, carboxylate, ethynyl, decyl, Se-acetyl seleno thiomethyl, oxy selenium g, 2-(trimethyl hydrazine wherein at least one of the at least one class, ether , other root classes and their combinations. -40-
TW099122222A 2010-07-06 2010-07-06 Methods of treating copper surfaces for enhancing adhesion to organic substrates for use in printed circuit boards TWI496523B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099122222A TWI496523B (en) 2010-07-06 2010-07-06 Methods of treating copper surfaces for enhancing adhesion to organic substrates for use in printed circuit boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099122222A TWI496523B (en) 2010-07-06 2010-07-06 Methods of treating copper surfaces for enhancing adhesion to organic substrates for use in printed circuit boards

Publications (2)

Publication Number Publication Date
TW201204208A true TW201204208A (en) 2012-01-16
TWI496523B TWI496523B (en) 2015-08-11

Family

ID=46756529

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099122222A TWI496523B (en) 2010-07-06 2010-07-06 Methods of treating copper surfaces for enhancing adhesion to organic substrates for use in printed circuit boards

Country Status (1)

Country Link
TW (1) TWI496523B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9345149B2 (en) 2010-07-06 2016-05-17 Esionic Corp. Methods of treating copper surfaces for enhancing adhesion to organic substrates for use in printed circuit boards

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071789A1 (en) * 2000-03-21 2001-09-27 Wako Pure Chemical Industries, Ltd. Semiconductor wafer cleaning agent and cleaning method
TWI230187B (en) * 2000-11-02 2005-04-01 Shipley Co Llc Process for treating adhesion promoted metal surfaces with an organo-silicon post-treatment
CN100395059C (en) * 2001-12-18 2008-06-18 旭化成株式会社 Metal oxide dispersion
WO2007020726A1 (en) * 2005-08-19 2007-02-22 Asahi Kasei Kabushiki Kaisha Laminate and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9345149B2 (en) 2010-07-06 2016-05-17 Esionic Corp. Methods of treating copper surfaces for enhancing adhesion to organic substrates for use in printed circuit boards
US9795040B2 (en) 2010-07-06 2017-10-17 Namics Corporation Methods of treating copper surfaces for enhancing adhesion to organic substrates for use in printed circuit boards

Also Published As

Publication number Publication date
TWI496523B (en) 2015-08-11

Similar Documents

Publication Publication Date Title
JP5946827B2 (en) Method for manufacturing a printed wiring board
US10375835B2 (en) Methods of treating metal surfaces and devices formed thereby
TWI445840B (en) Methods of treating a surface to promote metal plating and devices formed
TWI669041B (en) Printed circuit board and methods for producing the same
JPH06322547A (en) Bonding of organic polymeric substance
JP2005054240A (en) Electroconductive film, and its production method
US20140251502A1 (en) Methods of Treating Metal Surfaces and Devices Formed Thereby
JP4058943B2 (en) Member having metal layer, method for producing the same, and use thereof
JP6069736B2 (en) Printed wiring board
TWI496523B (en) Methods of treating copper surfaces for enhancing adhesion to organic substrates for use in printed circuit boards
JP5946802B2 (en) Printed wiring board
JP6069735B2 (en) Method for manufacturing a printed wiring board
JP6415424B2 (en) Method of treating a metal surface and apparatus formed by this method
TW201202378A (en) Methods of treating metal surfaces and devices formed thereby