201202378 六、發明說明: 【發明所屬之技術領域】 本發明的具體貫例大體上係有關處理金屬表面以增強 對基板及其他材料之附著或接合的方法,及藉其形成之裝 置。在某些具體實例中,本發明有關製造印刷電路板( PCB)或印刷線路板(PWB) ’更特別的是有關處理金屬 表面(諸如但不侷限於銅表面)以提高銅表面與有機材料 0 之間的附著之方法,以及由彼形成之裝置。在本發明某些 具體實例中’提供在不粗糙化金屬表面之形態的情況下達 到經改良結合強度之方法。藉由該方法所獲得之金屬表面 提供對樹脂層之牢固結合。 【先前技術】 消費性電子產品的小型化、可攜性及日益增加的功能 性持續驅使印刷電路板製造朝更小且更緊密組裝之板的方 〇 向發展。增加電路層數、縮減核心及層壓製件厚度、縮小 銅線寬度及線距、較小直徑之穿孔及微通孔係高密度互連 (HDI )封裝或多層PCB的關鍵特質其中一部分。 形成PC B之電路布局的銅電路通常係由消去程序或疊 加程序或其組合製造。在消去程序中,從層壓於介電基板 之薄銅箔向下蝕刻來形成所需之電路圖案,其中該銅箔係 經光阻覆蓋且於曝光後在該光阻中形成所需電路的潛像, 在光阻顯影劑中洗去該光阻的非電路區域且以鈾刻劑蝕刻 掉下層銅。在疊加程序中,在光阻所形成之電路圖案的通 -5- 201202378 道中從裸介電基板向上建造銅圖案。其他銅電路層係由部 分固化之介電樹脂(經常稱爲「半固化片」)結合以形成 銅電路導電層與介電樹脂絕緣交錯之多層組合件。然後對 組合件施加熱與壓力以固化該部分固化之樹脂。鑽出穿孔 且鍍銅以電性連接所有電路層,如此形成多層PCB。製造 多層PCB之方法在本技術中已爲人詳知且描述於很多出版 物中,例如 C. F. Coombs, Jr.所編之「Printed Circuits Handbook」第六版(McGraw-Hill Professional,2007 ) 以及 M.W. Jawitz所編之「Printed Circuit Board Materials Handbook」 (McGraw-Hill,1997)。不論 PCB 結構與製 造方法爲何,最基本的是銅電路層與樹脂絕緣層之間須達 到良好附著。附著不充足之電路板無法承受焊料重熔及隨 後焊接之高溫,導致該板層離及電性質失效。 該銅電路之表面於剛圖案化時爲光滑,但該光滑表面 無法與樹脂層良好附著。理論上已知增加兩種相異材料之 間的接觸面積會提高附著強度。爲了改善該銅與該樹脂之 間的結合’大部分傳統途徑依賴高度粗糙化銅表面以增加 其表面積且在該表面導入作爲機械性結合錨之微凹谷與隆 起以促進與該樹脂之附著。 最廣爲人知與使用的途徑之一係在銅表面頂部形成具 有粗糙表面之黑色氧化物層的所謂「黑色氧化物程序」。 該黑色氧化物係由長度至多達5微米之一氧化二銅及一氧 化銅的混合物之針形枝狀晶體或晶鬚組成。該大晶體結構 提供大表面積與機械性固定效果,因此提供良好結合性。 -6- 201202378201202378 VI. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The specific embodiments of the present invention are generally directed to methods of treating metal surfaces to enhance adhesion or bonding to substrates and other materials, and apparatus for forming the same. In certain embodiments, the present invention relates to the manufacture of printed circuit boards (PCBs) or printed wiring boards (PWBs). More particularly, it relates to the treatment of metal surfaces such as, but not limited to, copper surfaces to enhance copper surfaces and organic materials. The method of attachment between them, as well as the device formed by it. In certain embodiments of the invention, 'providing a method of achieving improved bond strength without roughening the morphology of the metal surface. The metal surface obtained by this method provides a strong bond to the resin layer. [Prior Art] The miniaturization, portability and increasing functionality of consumer electronics continue to drive the development of printed circuit board manufacturing toward smaller and more compact boards. Part of the key features of increasing the number of layers, reducing core and laminate thickness, reducing copper wire width and line spacing, making smaller diameter vias, and microvia interconnect high density interconnect (HDI) packages or multilayer PCBs. The copper circuit forming the circuit layout of PC B is typically fabricated by an erase program or an overlay program or a combination thereof. In the erasing process, a desired copper pattern is formed by etching down a thin copper foil laminated on a dielectric substrate, wherein the copper foil is covered by a photoresist and forms a desired circuit in the photoresist after exposure. The latent image, the non-circuit area of the photoresist is washed away in the photoresist and the underlying copper is etched away with an uranium engraving agent. In the stacking process, a copper pattern is formed upward from the bare dielectric substrate in the pass-through circuit pattern of the photoresist formed in -5-201202378. Other copper circuit layers are bonded by a partially cured dielectric resin (often referred to as a "prepreg") to form a multilayer assembly in which the copper circuit conductive layer and the dielectric resin are interleaved. Heat and pressure are then applied to the assembly to cure the partially cured resin. A perforation is drilled and copper is plated to electrically connect all of the circuit layers, thus forming a multilayer PCB. Methods of making multilayer PCBs are well known in the art and are described in many publications, such as the "Printed Circuits Handbook" sixth edition by CF Coombs, Jr. (McGraw-Hill Professional, 2007) and MW Jawitz. The "Printed Circuit Board Materials Handbook" (McGraw-Hill, 1997). Regardless of the PCB structure and manufacturing method, the most basic is the good adhesion between the copper circuit layer and the resin insulating layer. A poorly attached circuit board cannot withstand the high temperatures of solder remelting and subsequent soldering, resulting in failure of the delamination and electrical properties of the board. The surface of the copper circuit was smooth when it was just patterned, but the smooth surface could not adhere well to the resin layer. It is theoretically known to increase the contact area between two dissimilar materials to increase the adhesion strength. In order to improve the bond between the copper and the resin, most conventional approaches rely on highly roughened copper surfaces to increase their surface area and introduce micro-valves and ridges as mechanical bond anchors on the surface to promote adhesion to the resin. One of the most widely known and used approaches is the so-called "black oxide procedure" which forms a black oxide layer with a rough surface on top of the copper surface. The black oxide consists of needle-shaped dendrites or whiskers of a mixture of copper oxide and copper oxide of up to 5 microns in length. This large crystal structure provides a large surface area and mechanical anchoring effect, thus providing good bonding. -6- 201202378
Meyer提出之美國專利第2,3 64,993號、第2,460,896號及第 2,460,898號率先說明使用鹼性亞氯酸鹽溶液將銅表面氧 化成黑色氧化物層。將該方法應用於PCB中之銅-樹脂結 合的早期硏究的某些實例揭示包括美國專利第2,955,974 號、第 3,1 77,1 03 號、第 3,1 98,672 號、第 3,240,662 號、第 3,374, 1 29號及第3,481,777號。 雖然此種針形氧化物層大幅提高表面積與結合性,但 〇 該等枝狀晶體易碎且於層壓程序期間容易損壞,導致該氧 化物層內的結合失效。對於氧化物程序的後續改良已將焦 點放在最佳化反應物濃度及其他程序參數,以便縮小晶體 大小且因而縮減該氧化物層之厚度以改善機械安定性。美 國專利第4,409,037號及第4,8 44,981號呈現出有關本方面 的某些顯著改善,該等專利中有在特定濃度水準以及氫氧 化物對亞氯酸鹽比之鹼性亞氯酸鹽溶液的說明配方。美國 專利第4,512,8 18號說明在鹼性亞氯酸鹽溶液中添加水溶 〇 性或水分散性聚合物添加劑造成厚度縮減及均勻性更大之 黑色氧化物塗層。美國專利第4,7〇2,79 3號說明一種以硫 氧酸(sulfuroxy acid )還原劑預處理以促進迅速形成氧 化銅之方法。形成黑色氧化物層之其他方法包括如美國專 利第3,4 3 4,8 8 9號中所述以過氧化氫、如美國專利第 3,544,3 89號中所述之鹼性過錳酸鹽、如美國專利第 3,677,828號中所述之熱氧化,及美國專利第3,8 3 3,43 3號 所述之磷酸-二鉻酸鹽溶液來氧化該銅表面。 與該氧化物粗糙化途徑相關聯的難題係銅氧化物可溶 201202378 解於酸;以及在牽涉到使用酸的稍後程序步驟期間發生結 合表面嚴重層離。例如,如先前所提及之穿孔係鑽孔該多 層板且鍍銅以提供該等電路層之互連。該等孔的表面上經 常形成來自鑽孔之樹脂膠渣’且必須以涉及過錳酸鹽飩刻 之去膠渣程序予以移除,然後酸中和。該酸可從該孔的表 面向內溶解氧化銅達數毫米’其證據爲該穿孔周圍因下層 銅的粉紅色之故而形成粉紅色環。粉紅色環之形成與局部 層離對應,且代表該PCB中有嚴重瑕疵。該等瑕疵已成爲 製造多層PCB中的重大瓶頸,且已進行徹底硏究以尋求該 氧化物層中的進一步改善以使其不易受到酸侵襲及此種局 部層離影響。 目前解決該粉紅色環問題的途徑大部分涉及氧化銅之 後處理。例如,美國專利第3,6 77,82 8號說明一種先氧化 銅表面以形成氧化物層,然後以磷酸處理該氧化物層以形 成產生高結合強度及耐酸性的磷酸銅之玻璃狀膜的方法。 美國專利第4,7 1 7,43 9號說明一種將氧化銅與含有形成酸 性氧化物(諸如二氧化硒)之兩性元素的溶液接觸而改善 氧化銅之耐酸性的程序。美國專利第4,7 75,444號說明一 種先形成氧化銅層,然後以鉻酸處理以安定化及/或防止 該氧化銅以免溶解於酸中的程序。 許多硏究已顯7K耢由先在該銅之表面形成一氧化銅然 後將該一氧化銅還原爲一氧化二銅或富含銅之表面改善耐 酸性。美國專利第4,642,161號說明使用以通式BH3NHRR, (其中R及R’各選自Η、CH3及CH2CHd/f組成之群組)所表 201202378 示之硼烷還原劑還原該一氧化銅的方法。美國專利第 5,006,200號說明選自二胺(仏《:4)、甲醛(11(:110)、硫 代硫酸鈉(Na2S203 )及氫硼化鈉(NaBH4)所組成之群 組。美國專利第5,721,014號、第5,750,087號、第 5,753,309號,及从〇 99/02452描述由環硼烷化合物所組成 之還原劑,諸如嗎啉硼烷、吡啶硼烷(pyridine borane ) 、哌啶硼烷等。將一氧化銅還原成一氧化二銅的最常實施 0 方法係藉由使用還原劑二甲胺硼烷(DMAB )。該途徑已 將該粉紅色環半徑縮小至特定程度,但由於一氧化二銅在 酸中並非完全不溶解’故該途徑仍受侷限且未完全解決該 問題。 已進行許多努力設法解決以上提及之問題’例如美國 專利第5,492,595號及第5,736,065號中所示’彼等說明將 氧化銅還原爲金屬銅同時維持該氧化物之針狀結構的方法 。然而,此種針狀結構機械性不安定且於層壓程序期間粉 〇 碎。隨後已發展替代氧化物塗層程序。某些範例程序係描 述於美國專利第5,53 2,094號、第0,946,02732號、第 5,807,493 號、第 6,746,621B2 號、第 5,869,130 號、第 6,554,948號,及第5,800,859號。該等替代程序藉由結合 傳統氧化物程序與粗糙化下層銅表面同時將之氧化的經控 制鈾刻來產生高度粗糙化銅表面。在許多實例中’同時塗 覆有機層以作爲腐蝕抑制劑或附著促進劑。在美國專利第 5,800,859號中描述一種使用包含過氧化氫、無機酸及腐 蝕抑制劑(諸如三唑)的蝕刻之微粗糙化程序。美國專利 -9- 201202378 第6,716,28182號、第 6,946,02 782號、第7,1 08,79 5 82號 、第7,211,204 82號,及第7,351,353 81號說明使用包含 氧化劑、pH調理劑、形態改質劑、均勻性增強劑’及唑 抑制劑的組成物提供粗糙化銅表面的類似途徑。爲了相同 目的,美國專利第5,532,094號、第5,700,3 89號、第 5,807,493 號、第 5,885,476 號、第 5,965,036 號、第 6,426,02081號,及第6,746,62 1 82號說明由氧化劑(諸如 過氧化氫)、銅離子源、有機酸、齒離子源及唑型抑制劑 所組成之微蝕刻組成物。該等途徑已提高耐酸性,然而界 面結合主要係藉由機械性錨達成,且當經處理銅表面的表 面粗糙度降低時該附著強度迅速減少。因此,仍需要改良 〇 此外,難以製造可重現之氧化物層。形成氧化物的顯 著問題係其生長難以控制。控制氧化物層之生長的傳統技 術係使用時間或溫度作爲促進或停止氧化物生長的工具。 此種先前技術方法遭遇可靠度與重現性不良的問題。 很容易看出,雖然已發展許多途徑以改善銅表面與介 電樹脂之間的附著,但該等途徑依賴產生高度粗糙化表面 以促進附著。普遍認爲先前技術中該銅表面必須經粗糙化 以增加結合或附著至該環氧樹脂或介電樹脂的表面積。然 而’由於銅線的寬度及/或線距受到限制因而防止電路進 一步小型化,故該途徑受到嚴重侷限。另外,藉由先前技 術方法所形成之氧化物層遭遇重現性與可靠度不良的問題 。當前朝具有增加層數的更高密度與更細線寬之電路的趨 -10- 201202378 勢已產生對於銅與介電樹脂之更高結合強度同時保持光滑 表面的需求。很明顯地,本技術中目前需要進一步進展與 發展。 此外’防護塗層幾乎用於金屬表面曝露於氣氛、腐餓 環境或複雜界面的每一種產業。在先前技術技術中,該塗 層通常在該金屬表面之徹底清潔及預處理(進行此以產生 將與該塗層結合的表面)之後施加。該等預處理步驟可爲 〇 簡單酸清洗或鹼清洗、溶劑清洗,及氧化及/或還原處理 以增加表面積及/或該表面之粗糖度。另外,許多慣用處 理涉及沉積其他金屬,例如鉻或鈦,其係作爲隨後沉積額 外有機層之更佳錨。最後,已有使用有機(分子)反應物 來衍生該等金屬之表面以提供對於該等塗層之額外附著的 極佳嘗試。所有該等先前技術程序均費時且昂貴,藉由最 小化步驟數以及製備塗覆用之金屬的化學品濃度與複雜度 的程序可提供顯著優點。 【發明內容】 因此’本發明某些具體實例提供處理光滑金屬表面以 提高該金屬表面與有機層之間的附著之方法。如本發明之 具體實例所提供之提高該結合強度但尙未顯著粗糙化該金 屬表面的金屬表面處理程序與慣用先前技術截然不同且與 之相反。 在本發明某些具體實例中提出在不粗糙化該金屬表面 的情況下達成材料之間經改善之結合強度的方法。 -11 - 201202378 在某些具體實例中,提出一種處理金屬表面以促進該 金屬表面與有機層之間的附著或接合之方法,其特徵在於 :藉由在該金屬表面上形成金屬氧化物層而安定化該金屬 表面,然後以分子反應物及/或還原劑調理該金屬氧化物 層以達成選擇性氧化物厚度與形態。 在某些具體實例中’提出一種處理金屬表面以促進該 金屬表面與有機材料之間的附著或接合之方法,其特徵在 於:在該金屬表面上形成金屬氧化物層或安定化層,且藉 由金屬氧化物與分子反應物或表面改質化合物(有時亦稱 爲抑制化合物)之間的自限反應限制金屬氧化物層之形成 〇 在某些具體實例中,該安定化層之粗糙度至高達約 0.14 Ra且展現出包括平均粒徑在200奈米或更小之範圍的 顆粒之形態,且厚度在約1〇〇至200奈米之範圍。在某些具 體實例中,該安定化層實質上由氧化銅構成。在某些具體 實例中,在該安定化層上方形成分子層。 在另一實施樣態中,本發明之具體實例提出一種印刷 電路板,其包含:至少一層金屬層;至少一層環氧樹脂層 ;及在該金屬層與環氧樹脂層之間所形成的安定化層。 在本發明其他具體實例中,提出結合光滑金屬表面與 樹脂之方法,其中該結合界面具有對於後層壓程序步驟中 所涉及的熱 '濕氣與化學品之所需抗性,因此在許多應用 當中特別適用於多層PCB層壓。 在本發明某些具體實例中,提出使得能製造線及/或 -12 - 201202378 線距寬度等於或小於1 0微米之高密度多層P C B的方法。 在其他實施樣態中,本發明可用於大量應用中。此種 實例之一當中’本發明之具體實例可用以形成防護塗層。 在其他實施樣態中’本發明之具體實例提出製造印刷 電路板之方法’其包括以下步驟:以鹼及/或過氧化物溶 液預清潔銅表面;藉由在該銅表面上形成氧化銅層而安定 化該銅表面;藉由氧化銅與一或多種表面改質劑或抑制化 〇 合物之間的自限反應而終止氧化銅層之形成;及將該經處 理銅表面與樹脂結合。在某些具體實例中,可將一或多種 分子與該氧化銅層偶合,該一或多種有機分子包含帶有一 或多個經建構以與該氧化銅表面接合之接合基團及/或一 或多個經建構以與該樹脂附接之附接基團的熱安定基質。 在又一實施樣態中,本發明之具體實例提出一種控制 金屬之表面上的氧化物層生長的方法,該方法包括:藉由 氧化物層與一或多種表面改質化合物之間的自限反應而終 〇 止氧化物層之生長。 另外,本發明其他具體實例提出還原組成物,其包含 :一或多種還原劑;及一或多種分子反應物化合物。 另外,本發明之其他具體實例提出氧化劑組成物,其 包含一或多種氧化劑;及一或多種表面改質劑或抑制化合 物。 發明詳細說明 應暸解前述一般說明及以下說明僅爲範例及解釋用 -13- 201202378 其不爲本文所述方法及裝置之限制。在該申請 另外明確指定,否則使用之單數形包括複數形 另外說明,否則所使用之「或」意指「及/或 ,不希望「包含」、「包括」及「具有」爲限 本發明之具體實例於許多實施樣態當中尤 金屬基板(諸如但不偈限於環氧樹脂或樹脂基 形成與有機材料牢固附著的安定化層而提供塗 品之製造以及在特定印刷電路板中明顯優於先 點。該安定化層具有較光滑形態,因此彼等對 之附著令人驚奇且在意料之外。事實上,先前 中心教示與途徑係該金屬氧化物表面必須經粗 成充足附著。 已發展形成具有所需厚度與形態的安定化 化層具有與沉積其上之後續有機材料附著能力 。即’在某些具體實例中,經改質金屬氧化物 修改該氧化物層之生長與安定性的分子反應物 制或父替進行該氧化步驟與還原步驟,或此二 通常’氧化物生長非常難以控制。先前技術通 化物步驟以便縮減該氧化物之厚度,以進一步 物形態等。本發明之具體實例藉由使用與該氧 控制或限制氧化物生長程序的表面改質劑或抑 提供顯著革新。此可藉由於該氧化溶液形成時 劑添加於其中以減緩該氧化物生長,然後阻絕 來完成。或者’可使用標準氧化反應,隨後進 案中,除非 。又,除非 」。類似地 制性用詞。 其是藉由在 板)之表面 層與電子產 前技術的優 於有機材料 技術方法的 糙化以便形 層且該安定 的獨特方法 係經由使用 來選擇性控 者而形成。 常需要後氧 調理該氧化 化物反應以 制化合物而 將表面改質 進一步氧化 行已藉由添 "14- 201202378 加表面改質劑而改質的還原步驟以提供安定化。本發明之 具體實例使用該反應以控制生長速率、厚度、氧化物形態 ,且該等實施樣態全部可於單一步驟中完成。所得之金屬 氧化物膜於剛形成時即展現出所需之厚度與形態性質,無 需後處理步驟。消除後處理步驟明顯降低該程序的複雜度 ,且提供顯著的成本節省效果。 此外,本發明之具體實例提供控制金屬表面上之氧化 〇 物層生長的方法。更明確地說,在某些具體實例中,藉由 該氧化物層與一或多種表面改質劑或抑制化合物之間的自 限反應而終止氧化物層的生長。顯著優點係本發明具體實 例提供安定、可控制製程範圍。此一安定製程範圍提供穩 健可重複之程序。尤其是因爲先前技術方法中金屬氧化物 層之連續氧化物生長是慣用PCB板主要失效機制之一,故 本發明係一大進步。 藉由將該金屬表面曝露於氧化劑使該金屬表面安定化 〇 。在一範例具體實例中,該氧化劑係選自下列之任一或多 者:氯化鈉、氫氧化鈉、過氧化氫、過錳酸鹽、臭氧或其 混合物。安定化該金屬表面之步驟可在室溫至約8(TC之範 圍的溫度下進行。 氧化之後’可以還原劑調理該金屬氧化物層。在某些 具體實例中,該還原劑係選自下列之任一或多者:環硼烷 類、嗎啉硼院、版啶鎗硼烷(pyridium borane )、哌啶硼 烷或二甲胺硼院。該金屬氧化物層的調理作用可在室溫至 約50 °C之範圍的溫度下進行。在某些具體實例中,整體方 201202378 法進行時間在約5至2 0分鐘之範圍。 另外,本發明之某些具體實例提出在調理之後令該經 氧化表面與一或多種有機分子接觸,該等有機分子包含帶 有一或多個經建構以與該金屬表面接合之接合基團以及一 或多個經建構以與該有機材料附接之附接基團的熱安定基 質。在範例具體實例中,該一或多種有機分子爲該表面改 質劑或抑制化合物。 在某些具體實例中,提出一種處理金屬表面以促進該 金屬表面與有機材料之間的附著或接合的方法,其特徵在 於:在該金屬表面上形成安定化層,且該安定化層之形成 係由該金屬氧化物與表面改質劑或抑制化合物之間的自限 反應所控制。顯著進展係根據本發明之具體實例,氧化物 層之形成及其生長之控制(包括終止)二者均在一個步驟 中達成。 特別優點係,該金屬氧化物層(有時亦稱爲安定化層 )展現獨特且所需之特徵。在某些具體實例中,所形成之 安定化層的厚度爲約2 00奈米或更小。在某些具體實例中 ,該安定化層之形態係由實質非晶體結構所構成。 在範例具體實例中,該形成之安定化層具有粒徑在 2 0 0奈米或更小之範圍的顆粒。在其他範例具體實例中’ 該形成之安定化層具有粒徑在1 5〇奈米或更小之範圍的顆 粒。在某些具體實例中,該形成之安定化層具有實質無規 取向之顆粒。通常(但不完全),該安定化層係由氧化銅 與分子反應物所組成。 -16- 201202378 爲了開始形成該安定化層’藉由將該金屬表面曝露於 氧化劑來進行開始氧化。在某些具體實例中,該氧化劑溶 液係由一或多種氧化劑所組成,且可添加一或多種表面改 質劑。在範例具體實例中’一或多種氧化劑係由下列所組 成:亞氯酸鈉、過氧化氫、過錳酸鹽、過氯酸鹽、過硫酸 鹽、臭氧,或其混合物。 可使用任何適用濃度之氧化劑溶液。在某些具體實例 〇 中’該氧化劑溶液實質上由一或多種溶液內之氧化劑所組 成。通常,該表面改質劑係選自在自限反應中與該安定化 層反應的化合物。在某些具體實例中,該表面改質化合物 係經選擇以使其在形成金屬氧化物時與該金屬氧化物表面 反應而控制反應速率。隨意地,可在該表面改質化合物添 加官能基以提供與有機材料之額外結合,該官能基係諸如 但不侷限於環氧化物等。 氧化作用開始之後,氧化物開始生長於該金屬表面頂 〇 部。形成該安定化層之後,該表面改質化合物開始與該金 屬表面上之含氧部分反應。此將減緩且阻絕進一步氧化, 因此達到該氧化物形成的自限反應。 另外,本發明之某些具體實例提出令該經金屬表面與 一或多種有機分子接觸,該等有機分子包含帶有一或多個 經建構以與該金屬表面接合之接合基團以及一或多個經建 構以與該有機材料附接之附接基團的熱安定基質。在範例 具體實例中,該一或多種表面改質劑分子爲表面活性部分 -17- 201202378 在某些具體實例中,提出一種處理金屬表面以促進該 金屬表面與有機材料之間的附著或接合之方法,其特徵在 於:藉由在該金屬表面上形成安定化層而安定化該金屬表 面,然後以還原劑調理該安定化層以達成選擇性氧化物厚 度與形態。 特別優點係,該金屬氧化物層(有時亦稱爲安定化層 )展現獨特之特徵。在某些具體實例中,該安定化層於調 理之後的厚度爲約2 0 0奈米或更小。在某些具體實例中, 該金屬氧化物層之形態係由實質非晶體結構所構成。 在範例具體實例中,該安定化層具有高度分布之顆粒 結構’且在調理之後該等顆粒的粒徑在200奈米或更小之 範圍。在其他具體實例中,該安定化層具有顆粒,且在調 理之後該等顆Ιαα的粒徑在1 〇 〇奈米或更小之範圍。在某些 具體實例中’該金屬氧化物具有顆粒,且在調理之後該等 顆粒實質上爲無規取向。通常(但不完全),該安定化層 係由氧化銅所組成。 藉由將該金屬表面曝露於氧化劑使該金屬表面安定化 。在一範例具體實例中,該氧化劑係選自下列之任一或多 者:亞氯酸鈉、過氧化氫、過錳酸鹽、過氯酸鹽、過硫酸 鹽、臭氧或其混合物。安定化該金屬表面之步驟可在室溫 至約80 °c之範圍的溫度下進行。或者,該金屬表面可藉由 熱氧化及電化學陽極氧化j予以安定化。 安定化之後’以還原劑調理該安定化層。在某些具體 貫例中’該速原劑係選自下列之任一或多者:甲醒、硫代 -18 - 201202378 硫酸鈉、氫硼化鈉、以通式BH3NHRR'(其中R及R’各選自 Η、CH3及CH2CH3組成之群組)表示之硼烷還原劑,諸如 二甲胺硼烷(DMAB )、環硼烷,諸如嗎啉硼烷、吡啶鎗 硼院(pyridium borane ) '哌陡硼院。 該安定化層的調理作用可在室溫至約50°C之範圍的溫 度下進行。在某些具體實例中,整體方法進行時間在約2 至20分鐘之範圍。 〇 另外,本發明之某些具體實例提出在調理之後令該經 金屬表面與一或多種有機分子接觸,該等有機分子包含帶 有一或多個經建構以與該金屬表面接合之接合基團以及一 或多個經建構以與該有機材料(諸如PCB環氧化物等)附 接之附接基團的熱安定基質。在範例具體實例中,該一或 多種有機分子爲表面活性部分。 可使用任何適用之表面活性部分。在某些具體實例中 ,該表面改質劑部分係選自下列所組成之群組:巨環前配 〇 位基、巨環錯合物、夾心配位錯合物及其聚合物。或者, 該表面改質劑部分可由卟啉組成。 該一或多種有機分子可選自以下群組··卟啉、卟啉巨 環、擴展卟啉、收縮卟啉、線性卟啉聚合物、卟啉夾心配 位錯合物、卟啉陣列、矽烷、四有機矽烷、胺、糖,或上 述之任何組合。 在某些具體實例中,該一或多個附接基團係由芳基官 能基及/或烷基附接基團所構成。當該附接基團爲芳基時 ’該芳基官能基可由選自以下任一或多者之官能基所組成 -19- 201202378 :醋酸根、烷基胺基、烯丙基、胺、胺基、溴基、溴甲基 、羰基、羧酸根、羧酸、二羥基磷醯基、環氧化物、酯、 醚、乙炔基、甲醯基、羥基、羥甲基、碘基、锍基、锍甲 基、Se-乙醯基硒基、Se-乙醯基硒基甲基、S-乙醯硫基、 S -乙醯基硫甲基、氧硒基、4,4,5,5 -四甲基-1,3,2 -二噚硼 烷·2_基、2-(三甲基矽基)乙炔基、乙烯基,及其組合 〇 當該附接基團係由烷基所構成時,該烷基附接基團包 含選自以下任一或多者之官能基:醋酸根、烷基胺基、烯 丙基、胺、胺基、溴基、溴甲基、羰基、羧酸根、羧酸、 二羥基磷醯基、環氧化物、酯、醚、乙炔基、甲醯基、羥 基、羥甲基、碘基、锍基、锍甲基、Se_乙醯基硒基、Se-乙醯基硒基甲基、S -乙醯硫基、S -乙醯基硫甲基、氧硒基 、4,4,5,5-四甲基-1,3,2-二噚硼烷-2-基、2-(三甲基矽基 )乙炔基、乙嫌基,及其組合。 在另一具體實例中,該至少一個附接基團係由醇或膦 酸酯所構成。在其他具體實例中,該至少一個附接基團可 由以下任一或多者所構成:胺類 '醇類、醚類、其他親核 劑、苯基乙炔類、苯基烯丙基類、膦酸酯類,及其組合。 通常,在某些具體實例中,該有機分子係由具有一或 多個接合基團X及一或多個附接基團Y的熱安定單元或基 質。在特定具體實例中,該有機分了.爲耐熱性金屬接合分 子,且可由一或多種「表面活性部分」所構成,該「表面 活性部分」於相關申請案中亦稱爲「氧化還原活性部分」 -20- 201202378 或「ReAMs」。本發明之一具體實例包括使用表面活性部 分的分子組分之組成物,彼等大致描述於以下美國專利案 號:6208553 、 6381169 、 6657884 、 6324091 、 6272038 、 6212093 、 6451942 、 6777516 、 6674121 、 6642376 、 6728129,以下美國早期公開案號:20070108438、 20060092687、 20050243597、 20060209587、 20060195296 、 20060092687 、 20060081950 、 20050270820 、 0 20050243597、 20050207208、 20050185447、 20050162895 、 20050062097 、 20050041494 、 20030169618 、 20030111670、 20030081463、 20020180446、 20020154535 、 20020076714 、 2002/0180446 、 2003/0082444 、 2003/0081463 、 2004/0115524 ' 2004/0150465 、 2004/0 1 20 1 80 、 2002/0 1 05 8 9 , U.S.S.N.s 1 0/766,3 04、 10/834,630 ' 10/628868 、 10/456321 、 10/723315 、 10/800147、 10/795904、 10/754257、 60/687464,該等案 〇 件係以全文引用之方式倂入本文中。應注意,雖然在上文 列出之相關申請案中該耐熱性分子有時稱爲「氧化還原部 分」或「ReAMs」,但在本申請案中之術語表面活性部分 更加適切。通常,在某些具體實例中,有數種類型之表面 活性部分有用於本發明,彼等均以多牙前配位基爲底質, 包括巨環部分與非巨環部分。在前文引用之參考文獻中已 槪述若干適用之前配位基與錯合物,以及適用之取代基。 此外,許多多牙前配位基可包括取代基(本文及所引用參 考文獻中通常稱爲「R」基團),且包括美國早期公開案 -21 - 201202378 2007/0108438號中槪述之部分與定義,該案之取代基定義 部分特別以引用之方式倂入本文中。 適用之前配位基分爲兩類:使用氮、氧、硫、碳或硫 原子(視金屬離子而定)作爲配位原子(在文獻中通常係 指σ(α)施體)的配位基,及有機金屬配位基,諸如二茂 金屬配位基(在文獻中通常係指π施體,且於美國早期公 開案2〇〇7/01〇843 8號中描述爲Lm)。 此外,單一表面活性部分可具有二或多個氧化還原活 性子單元,例如美國早期公開案2 0 0 7 / 0 1 0 8 4 3 8號之圖1 3 A 所示,該案係使用卟啉及二茂鐵。 在某些具體實例中,該表面活性部分爲巨環配位基, 其包括巨環前配位基及巨環錯合物二者。本文之「巨環前 配位基」意指含有經取向使得可與金屬離子結合且大到足 以環繞該金屬原子的施體原子(本文中有時稱爲「配位原 子」)之環狀化合物。通常,該施體原子爲雜原子,其包 括但不侷限於氮、氧與硫,以前者尤佳。然而,熟悉本技 術之人士亦理解不同金屬離子優先結合至不同雜原子,因 此所使用之雜原子可視所需金屬離子而定。此外,在某些 具體實例中’單一巨環可含有不同類型之雜原子。 「巨環錯合物」係具有至少一個金屬離子的巨環前配 位基;在某些具體實例中,該巨環錯合物包含單一金屬離 子’惟如前文所述’多核錯合物(包括多核巨環錯合物) 亦包括在內。 本發明中使用各式各樣之巨環配位基,包括電子共軛 -22- 201202378 以及非電子共軛之巨環配位基。適用之巨環配位基的廣泛 示意圖係顯示且描述於美國早期公開案2007/0108438號之 圖1 5。在某些具體實例中,該等環、鍵以及取代基係經選 擇以形成電子共軛且最少具有至少兩個氧化態之化合物。 在某些具體實例中,本發明之巨環配位基係選自以下 所組成之群組:卟啉(特別是如前文界定之卟啉衍生物) 以及1,4,7,10-四氮雜環十二烷(cyclen )衍生物。適用於 0 本發明之巨環的特佳子集包括卟啉,包括卟啉衍生物。此 等衍生物包括具有鄰位稠合(ortho-fused)或鄰位-迫位 稠合(ortho-perifused )於P卜啉核之額外環的Π卜啉、卩卜啉 環之一或多個碳原子係經其他元素之原子替代(架構替代 )的卟啉、卟啉之氮原子經其他元素之原子替代(氮之架 構替代)的衍生物 '具有位於卟啉之周圍中-、3 -或核心 原子處的氫以外之取代基的衍生物、卟啉之一或多個鍵爲 飽和之衍生物(氫卟啉類,例如二氫卟酚(細菌)類、細 〇 菌二氫口卜酌(bacteriochlorin)類、異細菌二氫P卜酹( isobacteriochlorin)類、十氫卩卜琳、可吩(corphin)類、 吡咯可吩(pyrrocorphin )類等)、具有一或多個插入卟 啉環中之原子(包括吡咯及吡咯亞甲基單元)的衍生物( 擴展卟啉)、具有一或多個從卟啉環移除之基團的衍生物 (收縮B卜啉,例如咕啉(corrin )、可略(corrο 1 e )), 及前述衍生物之組合(例如酞花青類、亞酞花青類,以及 卟啉異構物)。另外適用之卟啉衍生物包括但不侷限於葉 綠素類,包括初卟咐合鎂鹽(etiophyllin )、焦卟啉( -23- 201202378 pyrroporphyrin )、玫紅 口卜啉(r h o d ο p o r p h y r i η )、葉 口卜啉 、葉紅素、葉綠素a與b,以及血紅素類,包括次卟啉( deuteroporphyrin )、亞氯化血紅素(deuterohemin )、氯 化血紅素、鐵原血紅素、原卟啉、中氯化血紅素、血卟啉 、中0卜啉、糞卩卜啉、尿卩卜啉(uruporphyrin)及羽紅素( turacin ),以及四芳基氮雜二吡咯次甲基 ( tetraarylazadipyrromethine )系歹[J 〇 熟悉本技術之人士將理解每一不飽和位置(不論是碳 或雜原子)可包括一或多個本文所界定之取代基,其係視 該系統所需之價位而定。 此外’包括在「卟啉」定義中者爲卟啉錯合物,其包 含卟琳前配位基及至少一種金屬離子。適於卟啉化合物之 金屬係視用作配位原子的雜原子而定,但通常係選自過渡 金屬離子。本文所使用之「過渡金屬」一詞通常係指週期 表第3至12族中之3S種元素。典型過渡金屬之特徵係其價 電子或其用以與其他元素結合之電子存在一個以上之外殼 中,因此經常表現出數種常見氧化態。在特定具體實例中 ,本發明之過渡金屬包括但不侷限於以下之一或多者:銃 、鈦、釩、鉻、錳、鐵、鈷、鎳、銅、鋅、釔、鉻、鈮、 鉬、鐯、釕、錢、IG、銀、鍋、給、鉬、鶴、銶、餓、銥 、鉑、鈀、金、汞、鑪’及/或其氧化物,及/或其氮化物 ,及/或其合金,及z或其混合物。 亦有許多以1,4,7,10-四氮雜環十二烷衍生物爲底質之 巨環。美國早期公開案2007/0108438號之圖17與13C描述 -24- 201202378 許多鬆散地以1,4,7,10-四氮雜環十二烷/1,4,8,11-四氮雜環 四癸烷(cyclam)衍生物爲底質之巨環前配位基,其可藉 由包含經獨立選自之碳或雜原子而包括架構擴展。在某些 具體實例中,至少一個R基團爲表面活性子單元,較佳係 與該金屬電子共軛。在某些具體實例中,包括當至少一個 R基團係表面活性子單元時,二或多個鄰近R2基團形成環 狀基團或芳基。在本發明中,該至少一個R基團係表面活 〇 性子單元或部分。 此外,在某些具體實例中,使用依賴有機金屬配位基 之巨環錯合物。除了用作表面活性部分之純有機化合物以 及具有施體原子作爲雜環或環外取代基之8-鍵結有機配位 基的各種過渡金屬配位錯合物之外,目前有各式各樣具有 π-鍵結有機配位基之過渡金屬有機金屬化合物可用(詳見 Advanced Inorganic Chemi stry,第 5 版,Cotton & Wilkinson 著,John Wiley & Sons,1 98 8,第 26 章; Organometallics, A Concise Introduction,Elschenbroich 等人著,第 2版,1 992,30 VCH ;以及 Comprehensive Organometalli c Chemistry II, A Review of the Literature 1982-1994,Abel 等人編,第 7卷,第 7、8、1.0 & 11 章, Pergamon Press,特此此以引用方式倂入本文中)。此等 有機金屬配位基包括環芳族化合物,諸如環戊二烯離子( cyclopentadienide ion) [C5H5 ( -1)]及各種經環取代及環 稠合之衍生物,諸如茚(-1 )離子(indenylide ( -1 ) ion )’彼等產生一類雙(戊二烯基)金屬化合物(即,二茂 -25- 201202378 金屬):詳見例如Robins等人於J_ Am. Chem. Soc. 104:1882-1893 ( 1982)之文章;以及 Gassm an 等人於 j. Am. Chem. Soc. 1 08:4228-4229 ( 1 986 )之文章,該等文 章以引用方式倂入本文。其中,二茂鐵[(C5H5) 2Fe]及 其衍生物係已用於各式化學反應(c〇nnelly等人著, Chem. Rev. 96:877-9 1 0 ( 1 996 ),以引用方式倂入本文中 ) 及電化學反應 (Geiger等人著,Advances in Organometallic Chemistry 23 : 1 ·93 ;以及 Geiger等人著, Advances in Organometallic Chemistry 2 4:8 7,以弓| 用方 式倂入本文中)之典型實例。其他可能適用之有機金屬配 位基包括諸如苯之環芳烴以產生雙(芳烴)金屬化合物及 其經環取代及環稠合衍生物,其中雙(苯)鉻爲典型實例 。其他非環η-鍵結配位基諸如烯丙基(-1)離子或丁二烯 產生可能適用之有機金屬化合物,且所有此等配位基與其 他7 c-鍵結及8-鍵結之配位基一起構成具有金屬-碳鍵之一 般類型有機金屬化合物。此等具有橋聯有機配位基與額外 非橋聯配位基,以及具有與不具金屬-金屬鍵之化合物的 各種二聚物與低聚物的電化學硏究全都有用。 在某些具體實例中’該表面活性部分係夾層配位錯合 物。術語「夾層配位化合物」或「夾層配位錯合物」係指 通式L-Mn-L之化合物,其中每個L爲雜環配位基(如下述 ),每個Μ爲金屬,η爲2或更大,最佳爲2或3,且每一金 屬係位於一對配位基之間且係鍵結於每一配位基中的一或 多個雜原子(通常爲複數個雜原子,例如2、3、4、5個) -26- 201202378 (視該金屬之氧化態而定)。因此,該夾層配位化合 金屬係鍵結於碳原子之有機金屬化合物,諸如二茂鐵 夾層配位化合物中的配位基通常以堆疊取向排列(即 常爲共面取向(cofacially oriented)且彼此軸對準, 等配位基可能或不能相對於彼此以該軸旋轉)(詳見 N g 與 J i ang ( 1 9 9 7 )之 Chemical Society Reviews 26: 442,以引用方式倂入本文中)。夾層配位錯合物包 〇 不侷限於「雙層夾層配位化合物」及「三層夾層配位 物」。夾層配位化合物之合成與使用係描述於美國 6,212,093; 6,451,942; 6,777,516;且該等分子之聚 用係描述於WO 2005/086826,彼等均包括在本文內 別是用於夾層錯合物及「單一巨環」錯合物二者之個 代基。 此外,亦使用該等夾層化合物之聚合物;此 U.S.S.N 6,212,093; 6,451,942; 6,777,516中所述之 〇 元組(dyad )」及「三元組(triad )」:且該等分子 合作用係描述W0 2005/08 6826,該等專利均以引用 倂入且包括在本文中。 由於金屬之存在使得多個前配位基接合在一起而 多重氧化態,故包含非巨環螯合劑之表面活性部分係 於金屬離子以形成非巨環螯合化合物。 在某些具體實例中,使用給予氮之前配位基。適 給予氮之前配位基在本技術中爲人詳知,且包括但不 於NH2 ; NFIR ; NRR1 ;吡啶;吡哄;異菸鹼醯胺;咪 物非 。該 ,通 惟該 例如 43 3 - 括但 化合 專利 合作 ,特 別取 包括 厂二 之聚 方式 提供 結合 用之 侷限 唑; -27- 201202378 聯卩比π定及聯吡陡之取代衍生物;三耻陡及經取代衍生物; 啡啉類,特別是1 ,1 0 -啡啉(縮寫爲p h e η )及啡啉類之經 替代衍生物,諸如4,7-二甲基啡啉及二吡啶酚[3,2-a:2,,3,-c ]啡哄(縮寫爲d p p z );二耻D定並啡哄;1,4,5,8,9,1 2 -六氮 雜聯三伸苯(縮寫爲h a t ) ; 9,1 0 •菲醌二亞胺(縮寫爲p h i );1,4,5,8-四氮雜菲(縮寫爲tap) ; 1,4,8,11-四氮雜環 四十四烷(縮寫爲1,4,8,11-四氮雜環四癸烷)及異氰化物 。亦可使用經取代衍生物(包括稠合衍生物)。應注意非 配位飽和該金屬離子且需要添加其他前配位基之巨環配位 基被視作用於此目的之非巨環配位基。熟悉本技術之人士 將理解,可能共價附接許多「非巨環」配位基以形成配位 飽和化合物,但其缺乏環狀架構。 使用碳、氧、硫及磷的適用之給予σ配位基在本技術 中亦爲人習知。例如,適用之σ碳施體係於C 〇 11 ο η及 Wilkenson著之 Advanced Organic Chemistry > 第 5 片反,John Wiley & Sons,1988中發現,特此以引用方式倂入本文中 :詳見例如第3 8頁。類似地,適用之氧配位基包括冠醚類 、水及本發明中習知之其他者。膦類及經取代膦類亦適用 ;詳見Cotton與Wilkensosee文章之第38頁。 該等含氧、硫、磷及氮之配位基係以使雜原子作爲配 位原子之方式附接。 此外,某些具體實例使用是爲多核配位基之多牙配位 基,例如,其能接合一個以上之金屬離子。彼等可爲巨環 或非巨環。此處之分子元素亦可包含如前文槪述之表面活 -28- 201202378 性部分的聚合物;例如可使用卟啉聚合物(包括卟啉錯合 物之聚合物)、巨環錯合物聚合物、包含兩種表面活性子 單元之表面活性部分等。該等聚合物可爲同元聚合物或雜 聚物’且可包括任意數量之單體表面活性部分的不同混合 物(摻合物),其中「單體」亦可包括包含二或多種子單 元的表面活性部分(例如夾層配位化合物、經一或多種二 茂鐵取代之卟啉衍生物等)。表面活性部分聚合物係描述 〇 於WO 2〇〇5/0 8 6 826,該案特別以全文引用之方式倂入本 文中。 在特定具體實例中,該附接基團Y包含芳基官能基及/ 或烷基附接基團。在特定具體實例中,該芳基官能基包含 選自下列組成之群組的官能基:胺基、烷基胺基、溴基、 碘基、羥基、羥甲基、甲醯基' 溴甲基、乙烯基、烯丙基 、S -乙醯硫基、Se -乙醯基硒基甲基、乙炔基、2-(三甲 基矽基)乙炔基、锍基、锍甲基、4,4,5,5 -四甲基-1,3,2-O 二噚硼烷-2-基’及二羥基磷醯基。在特定具體實例中,該 烷基附接基團包含選自下列組成之群組的官能基:溴基、 碘基、羥基、甲醯基、乙烯基、巯基、氧硒基、S -乙醯硫 基' Se -乙醯基硒基、乙炔基、2-(三甲基矽基)乙炔基 、4,4,5,5-四甲基-1,3,2 -二噚硼烷_2·基,及二羥基磷醯基 。在特定具體實例中,該附接基團包含醇或膦酸酯。 在某些具體實例中’該等表面活性部分爲矽烷,其特 徵爲A(4_x)SiBxY’其中每個A係獨立爲可水解基團,例 如羥基或烷氧基’其中x = l至3’且B獨立爲烷基或芳基, -29- 201202378 其可含有或可不含有如上述之附接基團γ。 本發明之具體實例係適用於許多有機基板。在範例具 體實例中,該有機基板可由以下之任一或多者構成:電子 基板、PCB基板、半導體基板、光伏打基板、聚合物、陶 瓷、碳、環氧樹脂、玻璃強化環氧樹脂、酚、聚醯亞胺樹 脂、玻璃強化聚醯亞胺、氰酸酯、酯類、特夫綸、塑膠類 、塗料及其混合物。 在另一實施樣態中,本發明之具體實例提出一種印刷 電路板,其包含:至少一層金屬層;至少一層環氧樹脂層 :及在該金屬層與環氧樹脂層之間所形成的安定化層。 在某些具體實例中,該安定化層係由厚度爲約200奈 米或更小之範圍的金屬氧化物所構成。在其他具體實例中 ,該安定化層係由展現實質上非晶體結構之金屬氧化物所 構成。在其他具體實例中,該安定化層係由厚度爲約1 50 奈米或更小且展現實質上非晶體結構之金屬氧化物所構成 〇 通常’該安定化層係由具有顆粒之安定化層所構成, 其中該等顆粒之粒徑在200奈米或更小之範圍。在另一具 體實例中’該等顆粒之粒徑在1 0 0奈米或更小之範圍。通 常(但不完全),該金屬氧化物係由氧化銅所組成。 特別優點係本發明具體實例提供處理「光滑」金屬基 板之途徑。在某些具體實例中,本發明使得能使用光滑金 屬基板’其意指未經事先粗糙化之金屬基板。在銅基板之 實例中’此種基板可來自各式各樣來源。例如,適用於本 -30 - 201202378 發明方法之銅基板包括但不侷限於電解或電鍍銅、無電鍍 銅及軋製銅,且不受製備彼之方法所限制。 在某些具體實例中’該金屬層之粗糙度爲約0.13 μηι Ra。在某些具體實例中,該形成之氧化銅(或亦稱爲「經 處理光滑銅表面」)或本發明之安定化層的粗糙度爲約 0.14 pmRa,如此證實本發明方法未顯著粗糙化該表面。 在其他實施樣態中,提出一種包含聚合物材料(諸如 〇 環氧樹脂)之印刷電路板,該聚合物材料可含有大量塡料 材料,諸如玻璃、氧化矽或其他材料,其表面係以化學附 著材料(諸如卟啉)予以改質,如此顯著改變其對於金屬 (諸如但不侷限於銅)之化學親和力,以促進該聚合物複 合物與該金屬層之間的強力附著。可對該金屬表面施加第 二層化學附著層以促進其與隨後之聚合物(環氧樹脂/玻 璃)層之間的附著。在某些具體實例中,該PCB爲多層導 電結構。 Ο 例如在一實施樣態中,提出一種印刷電路板,其包含 :至少一層金屬層;與該至少一層金屬層附接之有機分子 層;以及在該有機分子層頂部之環氧樹脂層。在某些具體 實例中,該至少一層金屬層展現出1.0 kg/cm之剝離強度 及小於150 nm之表面粗糙度。在某些具體實例中,該至少 一層金屬層另外包含在其上形成之圖案化金屬線,其中該 圖案化金屬線的寬度等於或小於25微米。另外,經圖案化 金屬線的寬度等於或小於15微米、1〇微米或5微米。 在本發明另一實施樣態中,提出一種具有一或更多層 -31 - 201202378 金屬層與一或更多層形成於該金屬層上之環氧樹 刷電路板,其特徵在於:該一或更多層金屬之至 示之剝離強度大於1.0 kg/cm且表面粗糙度小於 本發明之具體實例使得能形成非常小之線寬。在 實例中,該金屬層係由形成於其上之圖案化金屬 ,該等圖案化金屬線之寬度等於或小於25微米。 體實例中,該金屬層包含於其上形成之圖案化金 中該等圖案化金屬線之寬度等於或小於1 5微米, 小於1 〇微米。在又另外之具體實例中,可形成圖 線,其中圖案化金屬線之寬度等於或小於5微米= 在其他實施樣態中,本發明提出製造印刷電 法,其包括以下步驟:以鹼及/或過氧化物溶液 表面;藉由在該銅表面上形成氧化銅層而安定化 :藉由氧化銅與一或多種表面改質劑或抑制化合 自限反應而終止氧化銅之形成;及將該經處理銅 脂結合。在某些具體實例中,可將一或多種分子 銅層偶合,該一或多種有機分子包含帶有一或多 以與該氧化銅表面接合之接合基團及一或多個經 該樹脂附接之附接基團的熱安定基質。 參考圖1A,其中圖示說明光滑金屬-樹脂 1 〇〇 A之簡化圖式的一範例具體實例,其包含與 104結合之光滑金屬基板1〇2。在該金屬頂部形成 結合有機層1 〇 8之緻密氧化物層的安定化層! 〇6以 表面腐蝕或受化學侵襲。在某些具體實例中可能 脂層的印 少一者顯 15 0 nm ° 某些具體 線所構成 在其他具 屬線,其 且進一步 案化金屬 路板之方 預清潔銅 該銅表面 物之間的 表面與樹 與該氧化 個經建構 建構以與 結合界面 樹脂基板 結合或不 防止金屬 需要但不 -32 - 201202378 一定藉由另外調理或以有機分子層1 08打底以形成與樹脂 中之官能基Y反應的活性結合位置X來促進化學結合形成 共價鍵。在該範例具體實例中,與圖1 B所顯示之先前技術 中習知之具有主要藉由機械性錨所達成之界面結合的粗糙 化銅-樹脂界面100B相比,該光滑金屬·樹脂界面100A具有 較優良之附著強度及對於熱、濕氣與化學侵襲之抗性。 參考圖2,爲了進一步圖示本發明之特徵,該圖中示 0 意圖示範例實驗程序流程且該流程包括四個主要步驟:( 1 )表面預處理200,( 2 )表面安定化及調理,以及隨意 之官能化210,( 3 )隨意之表面還原(若必要)220,( 4 )真空層壓240,以及(5 )熱處理(若必要)260。具體 子步驟及實驗數據僅顯示以供說明用,不希望以任何方式 限制本發明範圍。圖2亦顯示進行該剝離強度試驗之程序 ,但其僅顯示以說明該試驗流程。本發明之廣義方法步驟 不包括剝離試驗步驟。 Ο 在圖2所不之範例方法中,表面預處理200係藉由驗清 潔、清洗、輕度蝕刻(soft etching)及酸清潔進行,且清 洗及乾燥該基板。其次於步驟210安定化該表面。在該具 體實例中,藉由表面氧化來安定化該表面。表面氧化之步 驟包括令該金屬表面曝露於包含一或多種氧化劑與一或多 種表面活性部分之氧化劑溶液。該步驟產生具有所需厚度 與形態之安定化層。然後可進行隨意之官能化,隨後清洗 及乾燥該基板。 若必要,可於步驟220進行隨意的還原作用。在一具 -33- 201202378 體實例中,於pH調整至12.6的40 g/L二甲胺硼烷(DMAB )之還原浴中以3 5 t處理該樣本2小時。此使得該氧化物 層緻密化且移除過多之氧化物。此時,可使用分子反應物 官能化該安定化層。然後沖洗該樣本且以熱空氣予以乾燥 〇 在安定化步驟210及隨意的還原步驟220之後,於步驟 240藉由將該層壓膜組裝在該安定化基板上、施加真空層 壓,及隨意地施加真空壓力來進行真空層壓。 然後進行隨意的熱處理260以固化或退火該經層壓組 合件。然後視需要進行剝離強度試驗。 參考圖3A與3B,示意圖示本發明兩個獨立具體實例 。例如在圖3A中,以標準表面氧化作用處理金屬3 00,以 形成氧化物層3 1 0。以慣用方法(諸如藉由熱氧化)生長 氧化物層。形成氧化物層3 1 0之後,將該氧化物層3 1 0還原 以形成本發明之安定化層3 20。隨意地將分子試劑添加於 該還原劑中以形成安定化層3 2 0。圖3 B顯示另一具體實例 ’其中於氧化步驟期間以隨意地添加於氧化劑中之分子試 劑處理金屬3 50以限制該氧化物層之生長,因而形成安定 化層36〇。在二者實例中,在不造成該金屬表面顯著粗糙 化之情況下’藉由安定化層3 2 0、3 6 0之存在增強隨後層之 附著。 在其他實施樣態中,本發明可用於大量應用中。此種 實例之一當中’本發明之具體實例可用以形成防護塗層。 在某些具體實例中,提供將改質表面之分子組分添加於該 -34- 201202378 等處理溶液(例如氧化浴或還原浴)之一當中的 法’該等方法其大幅簡化金屬表面之預加工。 學於反應物(例如氧化劑或還原劑)之存在下作 序較短且提供更均句之覆蓋及安定性。其可大幅 預加工程序之成本且對該經改質金屬表面提供額 諸如更大之光滑度及/或與增強與後續層附著可 該經MI改質表面可原樣使用,或可以其他既定 〇 (諸如矽烷化學品)改質以提供額外官能性。本 體實例亦可與形成安定氧化物之其他材料使用, 材料包括氧化矽、氧化鋁或氧化銷。根據本發明 實例之應用的簡短清單包括但不侷限於以下者: 結合耐驗且耐刮之硬塗層的基板,用於該等 覆溶液,以及用於該等基板之塗覆聚合物矽烷偶 屬氧化物粒子之製造; 抗原子氧之有機/無機混合聚醯亞胺化合物; 〇 汽車電力電纜之塗層,及製造該等組成物之 用於液晶顯示面板之含有經表面處理無機材 組成物; 金屬板之附著劑。該附著劑可具有高剪切強 離強度。使用該附著劑之金屬複合板具有高阻尼 用於阻尼/消音片; 用於運載工具或建築物窗之玻璃板上的矽烷 斥水塗層。運載工具或玻璃窗之斥水玻璃板係藉 合於表面之排斥性塗層覆蓋該玻璃表面而製造; 本發明方 由於MI化 用,該程 減少表面 外特徵( 靠度)。 的化學品 發明之具 該等其他 某些具體 基板之塗 合劑的金 程序; 料的密封 度與高剝 係數且可 爲底質之 由共價結 -35- 201202378 用於蛋白質分離之可相容明膠-環氧樹脂矽烷陽極氧 化鋁複合膜之製備。該塗層應具有良好親水性及生物相容 性,且可廣泛用於多種化學分離; 塗覆樹脂基板、半固化片及塗覆樹脂之金屬箔之製造 贅 不聚集之經表面處理無機粉末。該無機粉末係以具有 極性部分與非極性部分且在周圍溫度下爲液態之有機化合 物予以表面處理。該粉末亦可以矽烷偶合劑予以表面處理 f 。將該經表面處理之無機粉末分散於用作EMC (環氧樹脂 模製化合物)之樹脂組成物、液態密封劑、基板材料、電 子零件之附著劑、樹脂化合物或塗層; 用於長效表面衍生之多官能基矽烷聚合物及其抗微生 物性質。其需要能在反應性與非反應性表面上形成持久性 塗層之共價表面固定作用及聚合物交聯作用。含有反應性 甲氧基矽烷基之聚合物與氧化物表面形成牢固Si-0-Si鍵 ,因而多點固定該等聚合物鏈; 用於包裝材料之在塑膠基板與無機層之間具有良好附 著性的透明氣體阻擋膜; 必須抗負物質且與矽烷偶合劑反應之鋁電極箔表面, 其可用作電池組及/或電容器之電極; 經官能微粒子改質之熔融吹紡不織布。該製造方法需 要經表面改質官能微粒子與熔體結合並以慣用程序擠出該 樹脂片; 用於熱界面糊劑之奈米結構化發煙金屬氧化物,其有 -36- 201202378 效作爲熱糊劑中之熱傳導固體組分。其與碳黑一 但在其非導電性方面更有利。在不發煙狀態下, 物較無效。藉由以矽烷塗覆該微粒子,該糊劑之 ,使得於使用時更有效; 有益於鋼片之表面處理的無鉻組成物,其賦 之鋼片優良抗腐蝕性、加工性能、可加工性、粉 質及潤滑性質。具有優異粉末塗覆性質之表面處 〇 組成物,其包含丙烯酸系胺基甲酸酯樹脂、膠態 物、矽烷偶合劑、氧化矽及異氰酸酯交聯劑,以 覆彼之經鍍覆鋼片的方法; 半導體裝置製造包括在基板上之孔洞型接收 由使用含有塗覆金屬之氧化矽、氧化鋁及/或氧 物之多孔膜在該接收層上形成之Si膜; 使用三烷氧基矽烷對耐刮及耐磨蝕聚丙烯酸 之奈米/微米粒子混合複合物表面改質以促進分彰 〇 具有良好潤滑性質之塗覆氟聚合物的鍍鋅鋼 造; 含有經矽烷改質之氧化鋁奈米粒子的耐刮塗 具有經改良耐刮性之塗覆材料含有有機黏合劑, 丙烯酸系雙組分聚胺基甲酸酯或可UV固化黏合 劑’及經矽烷改質氧化鋁奈米粒子,其係藉由在 之存在下解聚含有諸如金剛砂或氯氫氧化鋁( chloro hydrate )粒子之黏聚物且同時或之後進 理而製備; 般有效, 該等氧化 黏度降低 予塗覆彼 末塗覆性 理溶液用 複合氧化 及製造塗 層以及藉 化鋁水合 酯塗層用 I- 板及其製 覆材料。 諸如含水 劑、添加 有機溶劑 aluminum 行矽烷處 -37- 201202378Meyer's U.S. Patent Nos. 2,3,64,993, 2,460,896 and 2,460,898 are the first to describe the use of an alkaline chlorite solution to oxidize a copper surface to a black oxide layer. Some examples of the early application of this method to copper-resin bonding in PCBs include U.S. Patent Nos. 2,955,974, 3,1 77,1 03, 3,1 98,672, 3,240,662, 3,374, 1 29 and 3,481,777. While such a needle-shaped oxide layer greatly increases surface area and bonding, the dendrites are fragile and susceptible to damage during the lamination process, resulting in failure of bonding within the oxide layer. Subsequent improvements to the oxide program have placed the focus on optimizing the reactant concentration and other program parameters in order to reduce the crystal size and thus the thickness of the oxide layer to improve mechanical stability. U.S. Patent Nos. 4,409,037 and 4,8,44,981 show some significant improvements in this aspect, which have a specific concentration level and a hydroxide to chlorite ratio of an alkaline chlorite solution. Description of the recipe. U.S. Patent No. 4,512,8,18, the disclosure of which is incorporated herein by reference to the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire portion U.S. Patent No. 4,7,2,79, the disclosure of which is incorporated herein by reference to the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire all Other methods of forming a black oxide layer include the use of hydrogen peroxide, as described in U.S. Patent No. 3,344,8,8, the disclosure of which is incorporated herein by reference. The copper surface is oxidized by thermal oxidation as described in U.S. Patent No. 3,677,828, and a phosphoric acid-dichromate solution as described in U.S. Patent No. 3,83,433. The problem associated with this oxide roughening pathway is that the copper oxide is soluble in the acid; and the severe delamination of the bonded surface occurs during later processing steps involving the use of the acid. For example, the perforation as previously mentioned drills the multi-layer board and is plated with copper to provide interconnection of the circuit layers. The pores of the holes are often formed from resinous dross from the borehole and must be removed by a desmear process involving permanganate engraving and then acid neutralized. The acid can dissolve copper oxide a few millimeters from the surface of the pore. The evidence is that a red ring is formed around the perforation due to the pink color of the underlying copper. The formation of the pink ring corresponds to local delamination and represents a severe flaw in the PCB. These have become major bottlenecks in the manufacture of multilayer PCBs and have been thoroughly investigated to seek further improvements in the oxide layer to make them less susceptible to acid attack and such local delamination. Most of the current solutions to the pink ring problem involve post-treatment of copper oxide. For example, U.S. Patent No. 3,6,77,82,8, the disclosure of which is incorporated herein by reference to the entire disclosure of the entire disclosure of the disclosure of the entire disclosure of the disclosure of the entire disclosure of the disclosure of the entire disclosure of the disclosure of the entire disclosure of the disclosure of the entire disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the entire disclosure of the disclosure of method. U.S. Patent No. 4,7,7,43,9 discloses a procedure for improving the acid resistance of copper oxide by contacting copper oxide with a solution containing an amphoteric element forming an acid oxide such as selenium dioxide. U.S. Patent No. 4,7,75,444 describes a procedure for forming a copper oxide layer which is then treated with chromic acid to stabilize and/or prevent the copper oxide from being dissolved in the acid. Many studies have shown that 7K is formed by first forming copper oxide on the surface of the copper and then reducing the copper oxide to copper oxide or a copper-rich surface to improve acid resistance. U.S. Patent No. 4,642,161 teaches the use of a borane reducing agent of the formula BH3NHRR, wherein R and R' are each selected from the group consisting of ruthenium, CH3 and CH2CHd/f, to be reduced by the borane reducing agent shown in 201202378. method. U.S. Patent No. 5,006,200 describes a group selected from the group consisting of diamines (仏::4), formaldehyde (11 (:110), sodium thiosulfate (Na2S203), and sodium borohydride (NaBH4). U.S. Patent No. 5,721,014 No. 5,750,087, 5,753,309, and a reducing agent consisting of a borane compound such as morpholine borane, pyridine borane, piperidine borane, etc., from 〇99/02452. The most common method for the reduction of copper oxide to copper pentoxide is by using the reducing agent dimethylamine borane (DMAB), which has reduced the radius of the pink ring to a certain extent, but since the copper oxychloride is in acid It is not completely insoluble, so the route is still limited and does not completely solve the problem. Many efforts have been made to solve the above mentioned problems, as shown in, for example, U.S. Patent Nos. 5,492,595 and 5,736,065, A method of reducing copper to metallic copper while maintaining the needle-like structure of the oxide. However, such a needle-like structure is mechanically unstable and is mashed during the lamination process. Subsequent development of an alternative oxide coating process has been developed. Some of the exemplary procedures are described in U.S. Patent Nos. 5,53,094, 0,946,02732, 5,807,493, 6,746,621 B2, 5,869,130, 6,554,948, and 5,800,859. A highly roughened copper surface is created by a controlled uranium that combines a conventional oxide procedure with a roughened underlying copper surface to simultaneously oxidize it. In many instances, the organic layer is simultaneously coated as a corrosion inhibitor or adhesion promoter. A micro-roughening procedure using an etch comprising hydrogen peroxide, a mineral acid, and a corrosion inhibitor such as triazole is described in U.S. Patent No. 5,800,859. U.S. Patent No. 6, 2012, No. 6, 716, No. 6, 182, No. 6, 946, No. 7,108,79 5 82, 7,211,204 82, and 7,351,353 81, the use of an oxidizing agent, a pH conditioner, a morphological modifier, a homogeneity enhancer, and an azole inhibitor The composition provides a similar way to roughen the copper surface. For the same purpose, U.S. Patent Nos. 5,532,094, 5,700,3 89, 5,807,493, 5,885,476, 5,965,036 No. 6,426,02081, and 6,746,62 1 82 describe a microetching composition consisting of an oxidizing agent (such as hydrogen peroxide), a source of copper ions, an organic acid, a source of tooth ions, and an azole-type inhibitor. Equal routes have improved acid resistance, however interfacial bonding is primarily achieved by mechanical anchoring, and the adhesion strength decreases rapidly as the surface roughness of the treated copper surface decreases. Therefore, there is still a need for improvement 〇 In addition, it is difficult to manufacture a reproducible oxide layer. A significant problem with the formation of oxides is that their growth is difficult to control. Conventional techniques for controlling the growth of oxide layers use time or temperature as a means of promoting or stopping oxide growth. This prior art approach suffers from problems of poor reliability and reproducibility. It is readily apparent that although many approaches have been developed to improve the adhesion between the copper surface and the dielectric resin, these approaches rely on the creation of highly roughened surfaces to promote adhesion. It is generally accepted that the copper surface must be roughened in the prior art to increase the surface area bound or attached to the epoxy or dielectric resin. However, this approach is severely limited because the width and/or line spacing of the copper wire is limited to prevent further miniaturization of the circuit. In addition, the oxide layer formed by the prior art method suffers from problems of reproducibility and poor reliability. The current trend toward higher density and thinner line width circuits with increased number of layers has created a need for higher bonding strength of copper and dielectric resins while maintaining a smooth surface. Clearly, there is a need for further progress and development in the art. In addition, protective coatings are used in almost every industry where metal surfaces are exposed to the atmosphere, hunger environment or complex interfaces. In prior art techniques, the coating is typically applied after thorough cleaning and pretreatment of the metal surface (which is done to create a surface to be bonded to the coating). These pretreatment steps can be simple acid or alkaline cleaning, solvent cleaning, and oxidation and/or reduction to increase the surface area and/or the sugar content of the surface. In addition, many conventional treatments involve the deposition of other metals, such as chromium or titanium, which serve as a better anchor for subsequent deposition of additional organic layers. Finally, organic (molecular) reactants have been used to derivatize the surfaces of such metals to provide an excellent attempt for additional adhesion to such coatings. All of these prior art procedures are time consuming and expensive, and significant advantages can be provided by minimizing the number of steps and procedures for preparing chemical concentrations and complexity of the metal for coating. SUMMARY OF THE INVENTION Accordingly, certain embodiments of the present invention provide methods of treating a smooth metal surface to enhance adhesion between the metal surface and the organic layer. The metal surface treatment procedure provided by a specific example of the present invention to increase the bond strength without significantly roughening the metal surface is distinct and contrary to conventional prior art techniques. In some embodiments of the invention, a method of achieving improved bond strength between materials without roughening the metal surface is presented. -11 - 201202378 In some embodiments, a method of treating a metal surface to promote adhesion or bonding between the metal surface and an organic layer is provided, characterized by: forming a metal oxide layer on the metal surface The metal surface is stabilized and the metal oxide layer is then conditioned with molecular reactants and/or reducing agents to achieve a selective oxide thickness and morphology. In some embodiments, a method of treating a metal surface to promote adhesion or bonding between the metal surface and an organic material is provided, characterized in that a metal oxide layer or a stabilization layer is formed on the metal surface, and Limiting the formation of a metal oxide layer by a self-limiting reaction between a metal oxide and a molecular reactant or a surface modifying compound (sometimes referred to as a suppressing compound). In some embodiments, the roughness of the stabilizing layer Up to about 0. 14 Ra and exhibits a morphology comprising particles having an average particle diameter in the range of 200 nm or less, and a thickness in the range of about 1 Torr to 200 nm. In some embodiments, the stabilization layer consists essentially of copper oxide. In some embodiments, a molecular layer is formed over the stabilization layer. In another embodiment, a specific embodiment of the present invention provides a printed circuit board comprising: at least one metal layer; at least one epoxy layer; and stability formed between the metal layer and the epoxy layer Layer. In other embodiments of the invention, a method of combining a smooth metal surface with a resin is proposed, wherein the bonding interface has the desired resistance to heat & moisture and chemicals involved in the post lamination process step, and thus in many applications It is especially suitable for multilayer PCB lamination. In some embodiments of the present invention, a method of manufacturing a high density multilayer P C B having a line and/or -12 - 201202378 line pitch width equal to or less than 10 microns is proposed. In other embodiments, the invention can be used in a wide variety of applications. In one of such examples, a specific example of the invention can be used to form a protective coating. In other embodiments, 'a specific example of the present invention provides a method of manufacturing a printed circuit board' which comprises the steps of: pre-cleaning a copper surface with a base and/or a peroxide solution; by forming a copper oxide layer on the copper surface And stabilizing the copper surface; terminating the formation of the copper oxide layer by a self-limiting reaction between the copper oxide and one or more surface modifiers or inhibiting the chelate; and bonding the treated copper surface to the resin. In some embodiments, one or more molecules can be coupled to the copper oxide layer, the one or more organic molecules comprising one or more bonding groups that are configured to bond to the copper oxide surface and/or one or A plurality of thermally stable matrices constructed to attach groups attached to the resin. In yet another embodiment, a specific embodiment of the invention provides a method of controlling the growth of an oxide layer on a surface of a metal, the method comprising: self-limiting by an oxide layer and one or more surface modifying compounds The reaction stops the growth of the oxide layer. Additionally, other embodiments of the invention provide a reducing composition comprising: one or more reducing agents; and one or more molecular reactant compounds. Additionally, other embodiments of the invention provide oxidant compositions comprising one or more oxidizing agents; and one or more surface modifying agents or inhibiting compounds. DETAILED DESCRIPTION OF THE INVENTION It is to be understood that the foregoing general description and the following description are only illustrative and illustrative of the invention. In addition, the singular forms of the present invention are to be construed as being limited to the singular forms of the present invention, and the use of the "or" means "and/or does not wish to "include", "include" and "have" DETAILED DESCRIPTION OF THE INVENTION In many embodiments, a particularly metal substrate, such as, but not limited to, an epoxy or resin based forming a stabilization layer that is firmly attached to the organic material provides for the manufacture of the coating and is significantly superior to the particular printed circuit board. The stabilizer layer has a smoother shape, so that it is surprisingly and unexpectedly attached to it. In fact, the previous central teachings and pathways have to be sufficiently adhered to the surface of the metal oxide. The stabilization layer having the desired thickness and morphology has the ability to adhere to subsequent organic materials deposited thereon. That is, 'in certain embodiments, the modified metal oxide modifies the growth and stability of the oxide layer. The reaction or the parent is carried out to carry out the oxidation step and the reduction step, or the second usually 'oxide growth is very difficult to control. Prior art compounds The steps are to reduce the thickness of the oxide, to further form, etc. The specific embodiment of the invention provides significant innovation by using a surface modifying agent that controls or limits the oxide growth process with the oxygen. This can be attributed to the oxidation. The solution is added to the solution to slow the growth of the oxide and then blocked to complete. Or 'can be used in a standard oxidation reaction, and then in the case, unless otherwise." The surface layer of the board) and the electronic prenatal technology are superior to the roughening of the organic material technology method in order to form a layer and the unique method of stability is formed by using a selective controller. It is often necessary to post-oxidize the oxidant to form a compound to modify the surface to further oxidize the reduction step which has been modified by adding <14-201202378 plus a surface modifier to provide stabilization. Specific examples of the invention use the reaction to control growth rate, thickness, oxide morphology, and all of these embodiments can be accomplished in a single step. The resulting metal oxide film exhibits the desired thickness and morphological properties as soon as it is formed, without the need for a post-treatment step. Eliminating post-processing steps significantly reduces the complexity of the program and provides significant cost savings. Moreover, embodiments of the present invention provide methods of controlling the growth of a ruthenium oxide layer on a metal surface. More specifically, in certain embodiments, the growth of the oxide layer is terminated by a self-limiting reaction between the oxide layer and one or more surface modifiers or inhibiting compounds. A significant advantage is that the specific embodiment of the present invention provides a stable, controllable process range. This range of custom procedures provides a robust and repeatable program. In particular, the present invention is a major advancement because the continuous oxide growth of the metal oxide layer in the prior art method is one of the main failure mechanisms of conventional PCB boards. The metal surface is stabilized by exposing the metal surface to an oxidizing agent. In an exemplary embodiment, the oxidizing agent is selected from any one or more of the group consisting of sodium chloride, sodium hydroxide, hydrogen peroxide, permanganate, ozone, or mixtures thereof. The step of stabilizing the metal surface can be carried out at a temperature ranging from room temperature to about 8 (TC). After oxidation, the metal oxide layer can be conditioned with a reducing agent. In some embodiments, the reducing agent is selected from the following Any one or more of: borane, morpholine boron, pyridium borane, piperidine borane or dimethylamine boron. The metal oxide layer can be conditioned at room temperature. The temperature is carried out at a temperature in the range of about 50 ° C. In some embodiments, the overall method 201202378 is carried out in the range of about 5 to 20 minutes. In addition, certain embodiments of the invention provide for conditioning after conditioning. The oxidized surface is contacted with one or more organic molecules comprising one or more bonding groups configured to bond to the metal surface and one or more attachments configured to attach to the organic material a thermally stable matrix of a group. In an exemplary embodiment, the one or more organic molecules are the surface modifier or inhibiting compound. In some embodiments, a metal surface is treated to promote the metal surface and A method of attaching or joining between machine materials, characterized in that a stabilization layer is formed on the surface of the metal, and the formation of the stabilization layer is caused by the self between the metal oxide and the surface modifier or inhibitor compound Controlled by a limited reaction. Significant progress is achieved in accordance with a specific embodiment of the invention, the formation of an oxide layer and the control of its growth, including termination, in one step. A particular advantage is that the metal oxide layer (sometimes Also known as the stabilization layer) exhibits unique and desirable features. In some embodiments, the formed stabilization layer has a thickness of about 200 nanometers or less. In some embodiments, the stabilization The morphology of the layer is composed of a substantially amorphous structure. In an exemplary embodiment, the formed stabilization layer has particles having a particle size in the range of 200 nm or less. In other exemplary embodiments, the formation The stabilization layer has particles having a particle size in the range of 15 nanometers or less. In some embodiments, the formed stabilization layer has substantially randomly oriented particles. Usually (but not completely), The stabilization layer consists of copper oxide and a molecular reactant. -16- 201202378 To begin the formation of the stabilization layer, the oxidation is initiated by exposing the metal surface to an oxidant. In some embodiments, the oxidant The solution consists of one or more oxidizing agents and one or more surface modifying agents may be added. In the exemplary embodiment, the one or more oxidizing agents consist of sodium chlorite, hydrogen peroxide, permanganate. Perchlorate, persulfate, ozone, or mixtures thereof. Any suitable concentration of oxidizing agent solution may be used. In some embodiments, the oxidizing agent solution consists essentially of one or more oxidizing agents in the solution. The surface modifier is selected from the group consisting of a compound that reacts with the stabilization layer in a self-limiting reaction. In some embodiments, the surface modification compound is selected to oxidize the metal when forming a metal oxide. The surface reaction of the object controls the reaction rate. Optionally, a functional group may be added to the surface modifying compound to provide additional bonding to an organic material such as, but not limited to, an epoxide or the like. After the oxidation begins, the oxide begins to grow on the top surface of the metal surface. After forming the stabilization layer, the surface modifying compound begins to react with the oxygen containing moiety on the surface of the metal. This will slow down and block further oxidation, thus achieving a self-limiting reaction of the oxide formation. Additionally, certain embodiments of the invention provide for contacting the metal surface with one or more organic molecules comprising one or more bonding groups configured to bond to the metal surface and one or more A thermal stabilization matrix is constructed that is attached to the attachment of the organic material. In an exemplary embodiment, the one or more surface modifier molecules are surface active moieties -17-201202378. In some embodiments, a metal surface is treated to promote adhesion or bonding between the metal surface and the organic material. The method is characterized in that the surface of the metal is stabilized by forming a stabilization layer on the surface of the metal, and then the stabilization layer is conditioned with a reducing agent to achieve a selective oxide thickness and morphology. A particular advantage is that the metal oxide layer (sometimes referred to as the stabilization layer) exhibits unique characteristics. In some embodiments, the stabilization layer has a thickness of about 200 nm or less after conditioning. In some embodiments, the morphology of the metal oxide layer is comprised of a substantially amorphous structure. In an exemplary embodiment, the stabilization layer has a highly distributed particle structure' and the particle size of the particles after conditioning is in the range of 200 nanometers or less. In other embodiments, the stabilization layer has particles and the particle size of the particles Ιαα after conditioning is in the range of 1 〇 〇 nanometer or less. In some embodiments, the metal oxide has particles and the particles are substantially randomly oriented after conditioning. Usually (but not completely), the stabilization layer consists of copper oxide. The metal surface is stabilized by exposing the metal surface to an oxidizing agent. In an exemplary embodiment, the oxidizing agent is selected from any one or more of the group consisting of sodium chlorite, hydrogen peroxide, permanganate, perchlorate, persulphate, ozone, or mixtures thereof. The step of setting the surface of the metal can be carried out at a temperature ranging from room temperature to about 80 °C. Alternatively, the metal surface can be stabilized by thermal oxidation and electrochemical anodization. After stabilization, the stabilization layer was conditioned with a reducing agent. In some specific examples, the instant agent is selected from any one or more of the following: awake, thio-18 - 201202378 sodium sulphate, sodium borohydride, and the formula BH3NHRR' (wherein R and R 'A group selected from the group consisting of ruthenium, CH3 and CH2CH3", such as borane reducing agent, such as dimethylamine borane (DMAB), borane, such as morpholine borane, pyridium borane Piper steep boron hospital. The conditioning of the stabilization layer can be carried out at a temperature ranging from room temperature to about 50 °C. In some embodiments, the overall process time is in the range of about 2 to 20 minutes. In addition, certain embodiments of the present invention provide for contacting the metal surface with one or more organic molecules after conditioning, the organic molecules comprising one or more bonding groups configured to bond to the metal surface and One or more thermally stable matrices that are configured to attach to the organic material (such as a PCB epoxide, etc.). In an exemplary embodiment, the one or more organic molecules are surface active moieties. Any suitable surface active moiety can be used. In some embodiments, the surface modifier moiety is selected from the group consisting of a macrocyclic pro-anthracene group, a macrocyclic complex, a sandwich coordination complex, and a polymer thereof. Alternatively, the surface modifier moiety can be composed of porphyrin. The one or more organic molecules may be selected from the group consisting of porphyrins, porphyrin macrocycles, extended porphyrins, shrinking porphyrins, linear porphyrin polymers, porphyrin sandwich coordination complexes, porphyrin arrays, decanes. , tetraorganodecane, amine, sugar, or any combination of the above. In certain embodiments, the one or more attachment groups are comprised of an aryl functional group and/or an alkyl attachment group. When the attachment group is an aryl group, the aryl functional group may be composed of a functional group selected from any one or more of the following: -19-201202378: acetate, alkylamino, allyl, amine, amine Base, bromo, bromomethyl, carbonyl, carboxylate, carboxylic acid, dihydroxyphosphonium, epoxide, ester, ether, ethynyl, indolyl, hydroxy, hydroxymethyl, iodo, decyl,锍Methyl, Se-ethenyl selenyl, Se-ethyl selenomethyl, S-acetylthio, S-acetylthiomethyl, oxyseleno, 4,4,5,5 - Tetramethyl-1,3,2-dioxaborane-2-yl, 2-(trimethyldecyl)ethynyl, vinyl, and combinations thereof. When the attachment group is composed of an alkyl group The alkyl attachment group comprises a functional group selected from any one or more of the group consisting of acetate, alkylamino, allyl, amine, amine, bromo, bromomethyl, carbonyl, carboxylate , carboxylic acid, dihydroxyphosphonium, epoxide, ester, ether, ethynyl, methionyl, hydroxy, hydroxymethyl, iodine, decyl, fluorenylmethyl, Se-ethyl seleno selenyl, Se -Ethyl selenylmethyl, S-acetylthio, S-acetylthiomethyl , oxyseleno group, 4,4,5,5-tetramethyl-1,3,2-dioxaborane-2-yl, 2-(trimethyldecyl)ethynyl, ethyl stilbene, and combination. In another embodiment, the at least one attachment group consists of an alcohol or a phosphonate. In other embodiments, the at least one attachment group can be composed of any one or more of the following: amines 'alcohols, ethers, other nucleophiles, phenylacetylenes, phenylallyls, phosphines Acid esters, and combinations thereof. Typically, in certain embodiments, the organic molecule is comprised of a thermal stabilization unit or matrix having one or more bonding groups X and one or more attachment groups Y. In a specific example, the organic part is divided. The heat-resistant metal is bonded to the molecule and may be composed of one or more "surface-active portions" which are also referred to as "redox active moieties" -20-201202378 or "ReAMs" in the related application. A specific example of the present invention includes the use of a composition of molecular components of a surface active moiety, which are generally described in the following U.S. Patent Nos.: 6208553, 6381169, 6657884, 6324091, 6272038, 6212093, 6451942, 6777516, 6674121, 6642376, 6728129, the following US Early Publications Nos.: 20070108438, 20060092687, 20050243597, 20060209587, 20060195296, 20060092687, 20060081950, 20050270820, 0 20050243597, 20050207208, 20050185447, 20050162895, 20050062097, 20050041494, 20030169618, 20030111670, 20030081463, 20020180446, 20020154535, 20020076714, 2002/0180446, 2003/0082444, 2003/0081463, 2004/0115524 ' 2004/0150465 , 2004/0 1 20 1 80 , 2002/0 1 05 8 9 , U. S. S. N. s 1 0/766,3 04, 10/834,630 ' 10/628868, 10/456321, 10/723315, 10/800147, 10/795904, 10/754257, 60/687464, the contents of which are cited in full The way to break into this article. It should be noted that although the heat resistant molecules are sometimes referred to as "redox moieties" or "ReAMs" in the related applications listed above, the term surface active portion is more appropriate in the present application. Generally, in some embodiments, several types of surface active moieties are useful in the present invention, all of which have a multidental ligand as a substrate, including a macrocyclic moiety and a non-macrocyclic moiety. A number of suitable ligands and complexes, as well as suitable substituents, are described in the references cited above. In addition, many multidental ligands may include substituents (generally referred to herein as "R" groups) and include those described in earlier US Publication No. 21 - 201202378 2007/0108438 With respect to definitions, the definition of substituents in this case is specifically incorporated herein by reference. Prior to the application of the ligands are divided into two categories: the use of nitrogen, oxygen, sulfur, carbon or sulfur atoms (depending on the metal ion) as a coordination atom (in the literature usually refers to the σ (α) donor) ligand And organometallic ligands, such as metallocene ligands (generally referred to in the literature as π-donor, and are described as Lm in U.S. Patent Publication No. 2,197,086,843). In addition, a single surface active moiety may have two or more redox active subunits, such as shown in Figure 13A of U.S. Patent Publication No. 2 0 0 7 / 0 1 0 8 4 38, which uses porphyrins. And ferrocene. In certain embodiments, the surface active moiety is a macrocyclic ligand comprising both a macrocyclic proligand and a macrocyclic complex. By "macrocyclic proligand" herein is meant a cyclic compound containing a donor atom (sometimes referred to herein as a "coordinating atom") oriented such that it can bind to a metal ion and is large enough to surround the metal atom. . Typically, the donor atom is a heteroatom, which includes, but is not limited to, nitrogen, oxygen and sulfur, with the former being preferred. However, those skilled in the art will also appreciate that different metal ions preferentially bind to different heteroatoms, and thus the heteroatoms used may depend on the desired metal ion. Moreover, in some embodiments, a single macrocycle may contain different types of heteroatoms. A "macrocyclic complex" is a macrocyclic proligand having at least one metal ion; in some embodiments, the macrocyclic complex comprises a single metal ion 'only as described above' a multinuclear complex ( Including multinuclear macrocyclic complexes) is also included. A wide variety of macrocyclic ligands are used in the present invention, including electron conjugation -22-201202378 and non-electron conjugated macrocyclic ligands. A broad schematic diagram of a suitable macrocyclic ligand is shown and described in Figure 15 of U.S. Patent Publication No. 2007/0108438. In certain embodiments, the rings, bonds, and substituents are selected to form a compound that is electronically conjugated and has at least two oxidation states. In certain embodiments, the macrocyclic ligands of the present invention are selected from the group consisting of porphyrins (especially porphyrin derivatives as defined above) and 1,4,7,10-tetrazo A heterocyclic dodecane derivative. A particularly good subset of the macrocycles of the invention includes porphyrins, including porphyrin derivatives. Such derivatives include one or more carbon atoms of an indole- or porphyrin ring having an ortho-fused or ortho-perifused to the extra ring of the P-porphyrin nucleus. A derivative of a porphyrin or a porphyrin nitrogen atom replaced by an atom of another element (substituted by an atom of another element) (a replacement of the nitrogen structure) has a -, or a core atom located around the porphyrin a derivative of a substituent other than hydrogen, one or more of the porphyrins being a saturated derivative (hydroquinones such as chlorin (bacteria), bacteriochlorin) ), isobacteriochlorin, isohydroiochlorin, chlorpheniramine, corphin, pyrrocorphin, etc., having one or more atoms inserted into the porphyrin ring Derivatives (including pyrrole and pyrromethylene units) (expanded porphyrins), derivatives having one or more groups removed from the porphyrin ring (shrinked B porphyrins, such as porphyrins, Corr (1), and combinations of the foregoing derivatives (eg, phthalocyanines) , Azaline cyanine, and porphyrin isomers). Further suitable porphyrin derivatives include, but are not limited to, chlorophylls, including etiophyllin, pyrophylline (-23-201202378 pyrroporphyrin), rhodoporphyrin (rhod ο porphyri η), leaves Oral porphyrin, erythropoietin, chlorophyll a and b, and heme, including porphyrin (deuteroporphyrin), heminin (deuterohemin), hemin, iron heme, protoporphyrin, chlorination Heme, hematoporphyrin, mesoporphyrin, faecal porphyrin, uruporphyrin and turacin, and tetraarylazadipyrromethine 歹[J Those skilled in the art will appreciate that each unsaturated position (whether carbon or heteroatom) may include one or more substituents as defined herein, depending on the desired price of the system. Further, the inclusion in the definition of "porphyrin" is a porphyrin complex comprising a ruthenium front ligand and at least one metal ion. The metal suitable for the porphyrin compound depends on the hetero atom used as the coordinating atom, but is usually selected from transition metal ions. The term "transition metal" as used herein generally refers to the 3S element of Groups 3 to 12 of the Periodic Table. Typical transition metals are characterized by their valence electrons or their electrons associated with other elements in more than one shell, and thus often exhibit several common oxidation states. In a specific embodiment, the transition metal of the present invention includes, but is not limited to, one or more of the following: niobium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, lanthanum, chromium, cerium, molybdenum , 鐯, 钌, money, IG, silver, pot, feed, molybdenum, crane, bismuth, hungry, antimony, platinum, palladium, gold, mercury, furnace 'and/or its oxides, and/or its nitrides, and / or its alloy, and z or a mixture thereof. There are also many macrocycles based on 1,4,7,10-tetraazacyclododecane derivatives. Figures 17 and 13C of US Publication No. 2007/0108438 describe -24-201202378 many loosely 1,4,7,10-tetraazacyclododecane/1,4,8,11-tetrazene heterocycle The cyclam derivative is a macrocyclic pro-ligand of the substrate which can be extended by inclusion of a carbon or heteroatom independently selected. In certain embodiments, at least one R group is a surface active subunit, preferably conjugated to the metal. In certain embodiments, when two at least one R group are surface active subunits, two or more adjacent R2 groups form a cyclic group or an aryl group. In the present invention, the at least one R group is a surface active subunit or moiety. Moreover, in some embodiments, macrocyclic complexes that rely on organometallic ligands are used. In addition to the pure organic compounds used as the surface active moiety and the various transition metal coordination complexes having an 8-atom organic ligand with a donor atom as a heterocyclic ring or an exocyclic substituent, there are currently a wide variety of Transition metal organometallic compounds having a π-bonded organic ligand are available (for details, see Advanced Inorganic Chemi stry, 5th edition, Cotton & Wilkinson, John Wiley & Sons, 198, Chapter 26; Organometallics, A Concise Introduction, Elschenbroich et al., 2nd edition, 1 992, 30 VCH; and Comprehensive Organometalli c Chemistry II, A Review of the Literature 1982-1994, edited by Abel et al., Vol. 7, Nos. 7, 8, 1 . 0 & Chapter 11, Pergamon Press, hereby incorporated by reference.) Such organometallic ligands include cyclic aromatic compounds such as cyclopentadienide [C5H5 (-1)] and various cyclic substituted and ring fused derivatives such as ruthenium (-1) ions. (indenylide ( -1 ) ion )' they produce a class of bis(pentadienyl) metal compounds (ie, erb-25-201202378 metal): see, for example, Robins et al. at J_Am. Chem. Soc. 104:1882-1893 (1982); and Gassm an et al. Am. Chem. Soc. 1 08:4228-4229 (1 986), which is incorporated herein by reference. Among them, ferrocene [(C5H5) 2Fe] and its derivatives have been used in various chemical reactions (c〇nnelly et al., Chem. Rev. 96:877-9 1 0 (1 996), incorporated herein by reference) and electrochemical reactions (Geiger et al., Advances in Organometallic Chemistry 23: 1 · 93; and Geiger et al., Advances in Organometallic Chemistry 2 4:8 7, a typical example of a bow | Other organometallic ligands that may be suitable include cyclic aromatic hydrocarbons such as benzene to produce bis( arene) metal compounds and cyclic substituted and ring fused derivatives thereof, of which bis(phenyl)chrome is a typical example. Other non-cyclic η-bonding ligands such as allyl (-1) ions or butadiene produce organometallic compounds that may be suitable, and all such ligands are bonded to other 7 c-bonds and 8-bonds. The ligands together form a general type of organometallic compound having a metal-carbon bond. These electrochemical studies with bridged organic ligands and additional non-bridged ligands, as well as various dimers and oligomers with compounds having no metal-metal bonds, are useful. In some embodiments, the surface active moiety is a interlayer coordination complex. The term "interlayer coordination compound" or "interlayer coordination complex" refers to a compound of the formula L-Mn-L wherein each L is a heterocyclic ligand (as described below), each of which is a metal, η 2 or greater, most preferably 2 or 3, and each metal is between a pair of ligands and is bonded to one or more heteroatoms in each of the ligands (usually a plurality of heteroatoms) Atoms, for example 2, 3, 4, 5) -26- 201202378 (depending on the oxidation state of the metal). Thus, the interlayer coordination metal is bonded to an organometallic compound of a carbon atom, such as a ligand in a ferrocene interlayer coordination compound, which are generally arranged in a stacked orientation (ie, often cofacially oriented and mutually Axis alignment, such as the ligand may or may not rotate relative to each other in this axis) (see Ng and J i ang (1 9 9 7) Chemical Society Reviews 26: 442, incorporated herein by reference) . The interlayer coordination complex package is not limited to "two-layer interlayer coordination compound" and "three-layer interlayer coordination". The synthesis and use of interlayer coordination compounds are described in U.S. 6,212,093; 6,451,942; 6,777,516; and the polymerization of such molecules is described in WO 2005/086826, all of which are incorporated herein by reference. And the base of the "single giant ring" complex. In addition, polymers of such interlayer compounds are also used; this U. S. S. N,212,093; 6,451,942; 6,777,516, dyad and triad: and the molecular cooperatives describe WO 2005/08 6826, all of which are incorporated by reference. Included in this article. The surface active moiety comprising a non-macrocyclic chelating agent is attached to the metal ion to form a non-macrocyclic chelating compound due to the presence of the metal such that the plurality of proligands are joined together in multiple oxidation states. In some embodiments, a ligand prior to administration of nitrogen is used. The ligands are well known in the art prior to the appropriate administration of nitrogen and include, but are not limited to, NH2; NFIR; NRR1; pyridine; pyridoxine; isoniazid, amide; Therefore, Tongwei, for example, 43 3 - including the patent cooperation, especially including the method of plant 2 to provide a combination of limited azole; -27- 201202378 卩 卩 π π π π π π π π π π Steep and substituted derivatives; morpholines, especially 1,10-morpholine (abbreviated as phe η) and substituted derivatives of morpholines, such as 4,7-dimethylmorpholine and dipyridinol [3,2-a:2,,3,-c] morphine (abbreviated as dppz); dioxin D morphine; 1,4,5,8,9,1 2 -hexaazatriene Benzene (abbreviated as hat); 9,1 0 • phenanthrene diimide (abbreviated as phi); 1,4,5,8-tetraazaphene (abbreviated as tap); 1,4,8,11-four Azacyclotetradecane (abbreviated as 1,4,8,11-tetraazacyclotetraoxane) and isocyanide. Substituted derivatives (including fused derivatives) can also be used. It should be noted that the macrocyclic ligand which is non-coordinating to saturate the metal ion and which needs to be added with other pre-ligands is regarded as a non-macrocyclic ligand which acts for this purpose. Those skilled in the art will appreciate that many "non-macro" ligands may be covalently attached to form a coordinating saturated compound, but lack a cyclic structure. The use of carbon, oxygen, sulfur and phosphorus to impart sigma ligands is also well known in the art. For example, a suitable sigma carbon system is disclosed in C 〇 11 ο η and Wilkenson Advanced Organic Chemistry > 5th ed., John Wiley & Sons, 1988, which is incorporated herein by reference: Page 38. Similarly, suitable oxygen ligands include crown ethers, water, and others known in the art. Phosphides and substituted phosphines are also suitable; see page 38 of the Cotton and Wilkensoesee article. The ligands containing oxygen, sulfur, phosphorus and nitrogen are attached in such a manner that the hetero atom is a coordinating atom. In addition, some specific examples use polydentate ligands which are multinuclear ligands, for example, which are capable of bonding more than one metal ion. They can be giant rings or non-giant rings. The molecular element herein may also comprise a polymer of the surface active -28-201202378 moiety as described above; for example, a porphyrin polymer (a polymer comprising a porphyrin complex), a macrocyclic complex polymerization may be used. , a surface active moiety comprising two surface active subunits, and the like. The polymers may be homopolymers or heteropolymers' and may comprise different mixtures (blends) of any number of monomeric surface-active moieties, wherein "monomers" may also include two or more subunits. A surface active moiety (eg, a sandwich coordination compound, a porphyrin derivative substituted with one or more ferrocenes, etc.). The surface active moiety polymer is described in WO 2 5/0 8 6 826, which is incorporated herein in its entirety by reference. In a particular embodiment, the attachment group Y comprises an aryl functional group and/or an alkyl attachment group. In a particular embodiment, the aryl functional group comprises a functional group selected from the group consisting of an amine group, an alkylamino group, a bromo group, an iodo group, a hydroxyl group, a hydroxymethyl group, a decyl group, a bromomethyl group. ,vinyl,allyl,S-ethinylthio,Se-ethylmercaptomethyl, ethynyl, 2-(trimethyldecyl)ethynyl, fluorenyl, fluorenylmethyl, 4,4 , 5,5-tetramethyl-1,3,2-O diborane-2-yl' and dihydroxyphosphonium. In a particular embodiment, the alkyl attachment group comprises a functional group selected from the group consisting of bromo, iodine, hydroxy, methionyl, vinyl, fluorenyl, oxyseleno, S-acetyl Sulfuryl-S-acetyl-selenyl, ethynyl, 2-(trimethyldecyl)ethynyl, 4,4,5,5-tetramethyl-1,3,2-dioxaborane · Base, and dihydroxyphosphonium. In a particular embodiment, the attachment group comprises an alcohol or a phosphonate. In certain embodiments, the surface moieties are decane characterized by A(4_x)SiBxY' wherein each A is independently a hydrolyzable group, such as a hydroxy or alkoxy group, wherein x = 1 to 3' And B is independently an alkyl or aryl group, -29-201202378 which may or may not contain an attachment group γ as described above. Specific examples of the invention are applicable to many organic substrates. In an exemplary embodiment, the organic substrate may be composed of any one or more of the following: an electronic substrate, a PCB substrate, a semiconductor substrate, a photovoltaic substrate, a polymer, a ceramic, a carbon, an epoxy resin, a glass reinforced epoxy resin, and a phenol. , polyimine resin, glass reinforced polyimine, cyanate esters, esters, teflon, plastics, coatings and mixtures thereof. In another embodiment, a specific embodiment of the present invention provides a printed circuit board comprising: at least one metal layer; at least one epoxy layer: and a stability formed between the metal layer and the epoxy layer Layer. In some embodiments, the stabilization layer is comprised of a metal oxide having a thickness in the range of about 200 nanometers or less. In other embodiments, the stabilization layer is comprised of a metal oxide that exhibits a substantially amorphous structure. In other embodiments, the stabilization layer is composed of a metal oxide having a thickness of about 150 nm or less and exhibiting a substantially amorphous structure. Generally, the stabilization layer is composed of a stabilizer layer having particles. It is constructed in which the particle diameter of the particles is in the range of 200 nm or less. In another specific example, the particle size of the particles is in the range of 100 nm or less. Typically (but not completely), the metal oxide consists of copper oxide. A particular advantage is that the specific embodiment of the invention provides a means of treating a "smooth" metal substrate. In some embodiments, the invention enables the use of a smooth metal substrate 'which means a metal substrate that has not been roughened beforehand. In the case of a copper substrate, such a substrate can come from a wide variety of sources. For example, copper substrates suitable for use in the method of the present invention include, but are not limited to, electrolytic or electroplated copper, electroless copper, and rolled copper, and are not limited by the method of preparing them. In some embodiments, the roughness of the metal layer is about 0. 13 μηι Ra. In some embodiments, the formed copper oxide (or "treated smooth copper surface") or the stabilized layer of the present invention has a roughness of about 0. 14 pm Ra, thus confirming that the method of the invention does not significantly roughen the surface. In other embodiments, a printed circuit board comprising a polymeric material, such as a ruthenium epoxy resin, is proposed, which may contain a large amount of tantalum material, such as glass, yttria or other materials, the surface of which is chemically Attachment materials, such as porphyrins, are modified to significantly alter their chemical affinity for metals such as, but not limited to, copper to promote strong adhesion between the polymer composite and the metal layer. A second layer of chemical attachment layer can be applied to the metal surface to promote adhesion to the subsequent polymer (epoxy/glass) layer. In some embodiments, the PCB is a multilayer conductive structure. For example, in one embodiment, a printed circuit board is provided comprising: at least one metal layer; an organic molecular layer attached to the at least one metal layer; and an epoxy layer on top of the organic molecular layer. In some embodiments, the at least one metal layer exhibits 1. Peel strength of 0 kg/cm and surface roughness of less than 150 nm. In some embodiments, the at least one metal layer additionally comprises a patterned metal line formed thereon, wherein the patterned metal line has a width equal to or less than 25 microns. Further, the width of the patterned metal line is equal to or less than 15 μm, 1 μm or 5 μm. In another embodiment of the present invention, an epoxy tree brush circuit board having one or more layers of -31 - 201202378 metal layers and one or more layers formed on the metal layer is proposed, characterized in that: Or more layers of metal to show a peel strength greater than 1. 0 kg/cm and a surface roughness smaller than the specific example of the present invention enables a very small line width to be formed. In an example, the metal layer is a patterned metal formed thereon, the patterned metal lines having a width equal to or less than 25 microns. In a bulk example, the metal layer comprises patterned gold formed thereon having a width equal to or less than 15 microns and less than 1 〇 micron. In yet another embodiment, a pattern can be formed in which the width of the patterned metal line is equal to or less than 5 microns. In other embodiments, the present invention contemplates the manufacture of a printed electrical method comprising the steps of: using a base and/or Or a surface of the peroxide solution; stabilized by forming a copper oxide layer on the surface of the copper: terminating the formation of copper oxide by copper oxide with one or more surface modifiers or inhibiting the self-limiting reaction of the compound; Treated copper grease combined. In some embodiments, one or more molecular copper layers can be coupled, the one or more organic molecules comprising a bonding group with one or more bonded to the surface of the copper oxide and one or more attached to the resin. A thermally stable substrate to which the group is attached. Referring to Fig. 1A, there is illustrated an exemplary embodiment of a simplified pattern of smooth metal-resin 1 〇〇 A comprising a smooth metal substrate 1 〇 2 bonded to 104. A stabilization layer of a dense oxide layer bonded to the organic layer 1 〇 8 is formed on top of the metal! 〇6 is corroded or chemically attacked. In some embodiments, it may be that the printing of the lipid layer is less than 15 nm. Some specific lines are formed in other genus lines, and further the metal slab is pre-cleaned between the copper surface. The surface and the tree are combined with the oxidized structure to bond with the interface resin substrate or do not prevent the metal needs but not -32 - 201202378 must be additionally conditioned or layered with the organic molecular layer 108 to form a functional with the resin The activity of the base Y reaction binds to position X to promote chemical bonding to form a covalent bond. In this exemplary embodiment, the smooth metal/resin interface 100A has a roughened copper-resin interface 100B having a prior art interface with a mechanical anchor as shown in FIG. 1B. Better adhesion strength and resistance to heat, moisture and chemical attack. Referring to Figure 2, in order to further illustrate the features of the present invention, the figure shows a sample experimental procedure flow and the process includes four main steps: (1) surface pretreatment 200, (2) surface stabilization and conditioning And optionally functionalized 210, (3) random surface reduction (if necessary) 220, (4) vacuum lamination 240, and (5) heat treatment (if necessary) 260. The specific sub-steps and experimental data are shown for illustrative purposes only and are not intended to limit the scope of the invention in any way. Figure 2 also shows the procedure for performing the peel strength test, but it is only shown to illustrate the test procedure. The generalized method steps of the present invention do not include a peel test step. Ο In the exemplary method illustrated in Figure 2, surface pretreatment 200 is performed by cleaning, cleaning, soft etching, and acid cleaning, and the substrate is cleaned and dried. Next, the surface is stabilized at step 210. In this particular example, the surface is stabilized by surface oxidation. The step of surface oxidation includes exposing the metal surface to an oxidant solution comprising one or more oxidizing agents and one or more surface active moieties. This step produces a stabilization layer of the desired thickness and morphology. Optionally, the functionalization can be carried out, followed by washing and drying of the substrate. If necessary, an optional reduction can be performed in step 220. In a -33-201202378 body example, the pH was adjusted to 12. The sample was treated with 3 5 t of a 40 g/L dimethylamine borane (DMAB) reduction bath for 2 hours. This densifies the oxide layer and removes excess oxide. At this point, the stabilization layer can be functionalized using molecular reactants. The sample is then rinsed and dried with hot air, after the stabilization step 210 and the optional reduction step 220, at step 240 by assembling the laminate film onto the stabilization substrate, applying vacuum lamination, and optionally Vacuum pressure was applied to perform vacuum lamination. A random heat treatment 260 is then performed to cure or anneal the laminated composition. The peel strength test is then carried out as needed. Referring to Figures 3A and 3B, there are shown two separate specific examples of the present invention. For example, in Figure 3A, metal 300 is treated with standard surface oxidation to form oxide layer 310. The oxide layer is grown by a conventional method such as by thermal oxidation. After the oxide layer 310 is formed, the oxide layer 310 is reduced to form the stabilization layer 2020 of the present invention. A molecular reagent is optionally added to the reducing agent to form a stabilization layer 320. Fig. 3B shows another embodiment where the metal 305 is treated with a molecular reagent optionally added to the oxidizing agent during the oxidation step to limit the growth of the oxide layer, thereby forming the stabilization layer 36. In both instances, the adhesion of the subsequent layers is enhanced by the presence of the stabilization layer 3 2 0, 360 without causing significant roughening of the metal surface. In other embodiments, the invention can be used in a wide variety of applications. In one of such examples, a specific example of the invention can be used to form a protective coating. In some embodiments, a method of adding a molecular component of a modified surface to one of the treatment solutions (eg, an oxidation bath or a reduction bath) such as -34-201202378 is provided, which greatly simplifies the metal surface machining. Learning from the presence of reactants (such as oxidizing agents or reducing agents) is shorter and provides more uniform coverage and stability. It can substantially cost the pre-processing program and provide a degree of smoothness to the surface of the modified metal such as greater smoothness and/or adhesion to the enhanced layer and subsequent layer. The MI modified surface can be used as is, or other predetermined defects can be used ( Modifications such as decane chemicals provide additional functionality. The present examples can also be used with other materials that form stable oxides, including cerium oxide, aluminum oxide or oxidized pins. A short list of applications in accordance with examples of the present invention includes, but is not limited to, the following: a substrate that incorporates a hard-and-scratch-resistant hard coating, a coating solution for the coating, and a coated polymer decane couple for the substrates Manufacture of oxide particles; organic/inorganic hybrid polyimine compound resistant to atomic oxygen; coating of automotive power cable, and surface-treated inorganic composition for liquid crystal display panels for manufacturing such compositions ; metal plate adhesive. The adhesive can have a high shear strength. The metal composite panel using the adhesive has high damping for the damping/muffling sheet; the decane water repellent coating for the glass plate of the vehicle or building window. The water repellent glass sheet of the vehicle or the glazing is manufactured by covering the surface of the glass with a repellent coating on the surface; the method of the present invention reduces the extra-surface feature (reliability) due to the use of the MI. The gold procedure for the coating of these other specific substrates; the degree of sealing of the material with a high stripping factor and the covalent bond of the substrate -35-201202378 compatible for protein separation Preparation of gelatin-epoxy resin decane anodized aluminum composite film. The coating should have good hydrophilicity and biocompatibility, and can be widely used for various chemical separations; fabrication of resin-coated substrates, prepregs, and resin-coated metal foils 表面 Non-aggregated surface-treated inorganic powders. The inorganic powder is surface-treated with an organic compound having a polar portion and a non-polar portion and being liquid at ambient temperature. The powder may also be surface treated with a decane coupling agent f. Dispersing the surface-treated inorganic powder in a resin composition used as an EMC (epoxy resin molding compound), a liquid sealant, a substrate material, an adhesive for an electronic component, a resin compound or a coating; for a long-lasting surface Derivatized polyfunctional decane polymers and their antimicrobial properties. It requires covalent surface immobilization and polymer crosslinking to form a permanent coating on both reactive and non-reactive surfaces. The polymer containing a reactive methoxyalkyl group forms a strong Si-0-Si bond with the surface of the oxide, thereby fixing the polymer chains at multiple points; and the packaging material has good adhesion between the plastic substrate and the inorganic layer. A transparent transparent gas barrier film; an aluminum electrode foil surface which must be resistant to negative substances and reacted with a decane coupling agent, which can be used as an electrode of a battery pack and/or a capacitor; a melt blown nonwoven fabric modified by functional microparticles. The manufacturing method requires the surface-modified functional microparticles to be combined with the melt and extruded by the conventional procedure; the nanostructured fuming metal oxide for the thermal interface paste, which has a heat of -36-201202378 A thermally conductive solid component in a paste. It is more advantageous with carbon black but in terms of its non-conductivity. In the absence of smoke, the object is ineffective. By coating the microparticles with decane, the paste is more effective in use; a chromium-free composition that is beneficial to the surface treatment of the steel sheet, which imparts excellent corrosion resistance, processability, and processability to the steel sheet. , powder and lubricating properties. a surface-intercal composition having excellent powder coating properties, comprising an acrylic urethane resin, a colloid, a decane coupling agent, a cerium oxide and an isocyanate crosslinking agent to coat the coated steel sheet Method of manufacturing a semiconductor device comprising receiving a Si film formed on a substrate by using a porous film containing a metal-coated cerium oxide, aluminum oxide and/or oxygen on a substrate; using a trialkoxy decane pair Scratch-resistant and abrasion-resistant polyacrylic acid nano/microparticle hybrid composite surface modification to promote the identification of fluorinated polymer coated galvanized steel with good lubricating properties; decane-modified alumina naphthalene Scratch-resistant coating of rice particles with improved scratch resistance coating material containing organic binder, acrylic two-component polyurethane or UV-curable adhesive 'and decane-modified alumina nanoparticles, It is prepared by depolymerizing a binder containing a particle such as silicon carbide or chlorohydrate in the presence of it, and simultaneously or afterwards; as effective as the oxidative viscosity is reduced. It applied the end of the treatment solution and for producing a composite oxide coating and esters by hydration of the coating made of aluminum clad material sheet and I-. Such as an aqueous agent, adding an organic solvent, aluminum decane -37-201202378
Ti〇2奈米粒子(奈米Ti02 )係藉由化學液相沉積塗覆 Al2〇3、Si02S矽烷偶合劑; 對於鎳鍍層具有高附著性之經改良無電鍍銅。該無電 鍍覆方法係藉由下列步驟進行:(1 )以矽烷偶合劑處理 待鍍覆之基板;(2 )將該經處理基板浸入用於在該基板 之經處理表面上無電鍍Ni的Ni鍍浴,及(3)將該鍍Ni基 板浸於PHS10之Cu鍍浴以將Cu無電鍍在該Ni鍍層上。該Ni 鍍層對於基板之附著性高,且該Cu鍍層對於該Ni鍍層之附 著性高; 在氧化鋁奈米多孔膜上之矽烷改質劑的經改良安定性 。共價結合於奈米多孔氧化鋁膜之矽烷的安定性可因A1-0-Si鍵而獲得改善。矽烷化之前的MI處理可大幅改善固定 分子之安定性; 經改良之樹脂對塗覆氧化矽之Ti基板的結合強度; 施加含有氧化銅粒子之尼龍複合物以獲得高摩擦係數 材料。現有程序方法包括(1 )以在丙酮中之矽烷偶合劑 處理氧化銅粒子及氧化鋁粒子、乾燥及硏磨;(2)在空 氣中處理碳纖維以便氧化;(3 )在球磨機中混合經處理 之氧化銅粒子、氧化鋁粒子、碳纖維及尼龍6至8小時;然 後進行標準製程;以及 說明包含可藉由溶膠-凝膠程序轉化經有機改質矽烷 獲得之網狀結構的燈用經改良塗層,其中可從經酸安定化 之膠態氧化矽分散液獲得之氧化矽粒子大量結合於該網狀 結構中。 -38- 201202378 【實施方式】 實驗 如下述進行許多實驗。該等實施例僅供說明用途,且 不希望以任何方式限制本發明。 實施例 〇 實施例1 :光滑銅基板之處理 該實施例說明根據本發明某些具體實例處理光滑銅基 板之一種範例途徑。如上述,本發明方法使得可使用經處 理金屬基板,意指事先未經粗糙化之金屬基板。在一實例 中’該金屬表面爲銅’且更明確地說爲光滑銅表面,意指 事先未經粗糙化之銅基板。此種銅基板可由各式各樣來源 形成。例如,適用於本發明方法之銅基板包括但不侷限於 電解或電鍍銅、無電鍍銅及軋製銅,且不受製備彼之方法 Ο 所限制。在實施例1中,先在5 0 °C下以4 0 g/ L氫氧化鈉溶液 清潔電解銅基板2分鐘,然後以水沖洗。該銅基板再於RT 下以1 wt%之過氧化氫溶液清潔1分鐘,且於RT下以3 wt% 之硫酸溶液清潔1分鐘,然後以水沖洗。然後藉由在6(TC 下於具有1 2 g/L之氫氧化鈉及少於1 %表面改質化合物的 140 g/L亞氯酸鹽溶液中氧化6分鐘’隨後以水沖洗來安定 化該基板。然後於PH調整至12.6的40 g/L二甲胺硼烷( DM AB )之還原浴中以35°C處理該樣本2分鐘。然後沖洗該 樣本且以熱空氣予以乾燥。可藉由改變該處理溶液之濃度 -39- 201202378 、溫度及持續時間調整該安定化層的表面形態及厚度’且 以SEM、XRD及歐皆深度分析(Auger depth profile )表 示特徵。然後沖洗該樣本且以熱空氣予以乾燥。 圖4A係50000倍放大倍率之範例SEM顯微照片,其顯 示具有針狀顆粒及反映出該晶體結構長程規則性之定向頼 粒生長之習用電解銅表面(即,光滑銅表面,或換言之’ 未經粗糙化之銅表面)的形態。相較之下,形成有安定化 層之根據本發明方法處理的電解銅表面的形態係示於圖4 B 。明顯看出,圖4B所顯示之經處理銅表面上的安定化層展 現較細微顆粒形態、非定向顆粒生長及更高均勻度。相較 之下,圖4C顯示習用黑色氧化物表面,其展現更厚且易碎 纖維狀結構。圖4D係習用微蝕刻銅表面之範例SEM顯微照 片,其顯示高度均勻微凹谷與隆起之形態。 圖5之表列數據比較以Ra與Rz二者所表示之表面粗糙 度,且證實本發明處理不會粗糙化銅表面,此與相當大幅 粗糙化表面的習用氧化與還原程序不同。 根據實施例1製備之經處理光滑銅表面的安定化層進 一步以歐皆電子能譜(AES )表示特徵以測定表面組成及 該層之厚度分布。參考圖6,該經處理光滑銅表面之AES 深度分析顯示該安定化層含有混合之銅與氧化銅(推測爲 —氧化二銅),且其厚度爲約100 nm。反之,該習用黑色 氧化物層擴展距離超過1 000 nm。該安定化層之厚度必須 在約100至200 nm之範圍以確保良好結合強度。 參考圖7A與7B’該安定化層之生長係以根據本發明 -40 - 201202378 一具體實例之銅基板實例表示其特徵。在各式各樣條件下 根據本發明具體實例使用表面改質化合物所形成之氧化銅 層的歐皆深度分析係示於圖7。如圖所示,該層之外表面 的原子組成大致爲50%銅及5〇%氧。當其經由該表層移入 該基板涂處時’該組成接近100%銅。 該方法之自限性質係示於圖7B,其中顯示在特定氧化 時間之後’氧化物層之生長基本上變平坦,該實例中係在 0 約10分鐘之後。 實施例2 :在光滑銅基板上之樹脂結合增強之證實 該實施例說明增強光滑銅基板上之環氧樹脂附著性的 範例途徑。如圖8所示,將上述經處理Cu試驗條平鋪在臨 時性背襯上。如圖9A至9D所示之示意步驟所圖示,將已 於周圍條件下安定化至少3小時的35 μιη厚市售累積(BU )環氧樹脂(或介電)層壓膜平鋪在Cu條頂部。然後在 〇 loot:下真空30秒及以3 Kg/cm2加壓3〇秒來真空層壓該組 合件。重複該層壓步驟兩次以形成總計3層之B U膜。 値得注意的是該銅表面在表面處理之後從帶紅色變成 淺棕色或綠色,然後在層壓之後變成黑色,此意謂已發生 化學結合反應。該樹脂表面含有化學反應基團,諸如羥基 、胺類、環氧化物類及其他,其可藉由形成鍵結而與富含 氧之銅表面反應。 爲了量化附著強度,如圖9 B所示,將一剛性背襯基板 (加強材)層壓在該BU膜頂部。然後在對流爐中於丨8(rc -41 - 201202378 下熱處理或固化該組合件90分鐘。 接下來,將該組合件切成小方塊以移除該臨時性背襯 基板,且分成供剝離強度試驗及使用高度加速應力試驗( H A S T )之試驗用的獨立試件。所形成之層壓製件的附著 強度係藉由剝離測試儀之測力計在1 0 mm寬之剝離條上以 9 0度剝離角及5〇 mm/分鐘之剝離速度量化。更明確地說’ 在初始形成以及然後在預調理及重熔之後的基板上試驗剝 離強度。預調理係在125°C下進行25小時,然後在30°C且 6 0 %相對濕度(R Η )下進行1 9 2小時。重熔係在2 6 0 °C進行 三次。之後,在1 30°C且85% RH下進行H AST試驗96小時。 圖10A與10B圖示該處理對於HAST試驗後之剝離強度保留 的影響。光滑對照組(即,無本發明之安定化層)在 HAST後之剝離強度下降88%,且習用經粗糙化對照組顯 示4 0%之損失。明顯對照係,該經處理光滑銅基板(即, 具有根據本發明形成之安定化層)不僅顯示較高之初始剝 離強度,亦顯示較高之保留率,其僅有26%損失。圖10 B 之表列數據亦證實在不改變表面粗糙度之下達到剝離強度 安定性之增強。該結果優於先前技術之教示,且係先前技 術之教示目前未能預測的。 顯著優點係本發明具體實例提供安定、可控制製程範 圍。此一安定製程範圍提供穩健可重複之程序。圖1 1以說 明五批根據本發明具體實例處理之層壓環氧樹脂的光滑銅 表面之樣本的剝離強度重現性或穩健性及H A S T安定性。 圖1 2 A與1 2 B顯示具有根據本發明具體實例之安定化層的 -42- 201202378 層壓經處理光滑銅表面與標準粗糙化表面對照於在H A S Τ 之前及之後的SEM斷面圖,其進一步證實本發明方法未顯 著粗糙化銅表面以及在重熔及HAST可靠度試驗之後未發 生顯著層離。 圖1 3 A與1 3 B係經剝離銅表面之s E Μ顯微照片,其顯 示光滑銅對照組(圖1 3 A )之銅-樹脂界面恰好在銅表面處 斷裂,然而根據本發明方法形成之具有安定化層的經處理 〇 光滑銅(圖UB)之界面斷裂在樹脂內。該令人意外之結 果證實樹脂與本發明之經處理銅表面之間的結合強度比整 體樹脂材料本身之結合強度更強。 實施例3 :細線圖案化及電絕緣可靠度之證實 形成裝置以說明藉由本發明之具體實例可實現細線之 圖案化。更明確地說,依照實施例1及實施例2所述之相同 製程處理及層壓線與線距具有等尺寸(5〇/5〇、3 0/3 0、 Ο 20/20、10/10及8/8 μηα )之梳狀圖案。SEM斷面圖再次確 認本發明方法未粗糙化該銅線,且於重熔及H A S Τ試驗之 後無層離。在重熔及HAST之後,2 V之電絕緣電阻保持高 於1〇12 Ω,其比PCB製造規格高7個數量級。下表1彙總該 等結果。在該等結構上均獲得良好結果’顯示本發明之處 理顯著改善以細線距圖案化銅線的能力’此係本技術之大 幅進展。 -43- 201202378 表1、細線圖案化及電絕緣可靠度 線/線距尺寸(μιη) HAST後無層離 HAST後之2V絕緣電阻X 1〇12Ω 50/50微米 合格 1.27 30/30微米 合格 1.30 20/20微米 合格 1.43 1(V10微米 合格 1.29 8/8微米 合格 1.10 實施例4 :層壓環氧樹脂之Cu表面的雷射鑽孔及通孔 清潔/鍍覆相容性之證實 形成具有雷射通孔之裝置,然後進一步加工以說明加 工相容性。更明確地說,依照實施例1及實施例2所述之相 同製程處理及層壓光滑銅基板。經由C02及UV雷射鑽孔直 徑30、40、50、75、100' 150及200 μιη之通孔陣列。然後 對該通孔結構進行輕度蝕刻及酸清潔或去膠渣程序,隨後 進行無電鍍銅,然後進行電鍍。圖14顯示在根據本發明具 體實例之層壓光滑經處理銅表面上所形成的雷射通孔之 SEM斷面,其證實在去膠渣及鍍覆程序之後無底切及層離 實施例5 :在光滑銅基板上之防焊劑結合增強之證實 該實施例說明增強光滑銅基板上之防焊劑附著性的範 例途徑。依照實施例1所述之相同製程處理該光滑銅試驗 條,且如圖8所示將其平鋪在臨時性背襯上。如圖9 Α所示 ,將已在周圍條件下安定化至少3小時之3 0 μηι厚市售防焊 -44 - 201202378 劑(SR)層壓膜平鋪在該等銅條頂部。然後在75 °C下真空 3 0秒及以1 Kg/cm2加壓60秒來真空層壓該組合件。然後對 該組合件進行400 mJ/cm2之UV曝光,隨後在對流爐中於 1 50°C下固化60分鐘,及在1〇〇〇 mj/cm2下後UV固化。 爲了量化附著強度,如圖9 B之步驟2所示,將一剛性 背襯基板(加強材)層壓在該SR膜頂部。然後將組合件 切成小方塊以移除該臨時性背襯基板,隨後將之分成供剝 〇 離強度試驗及高度加速應力試驗(HAST )用之獨立試件 。更明確地說,在初始形成及在預調理、重熔及hast之 後的基板上試驗剝離強度。圖15A與15B圖示本發明之處 理方法對於HAST試驗後之剝離強度保留的影響。未經處 理之光滑對照組在HAST後之剝離強度下降87%,且慣用 粗糙化對照組顯示69%之損失。明顯對照係,根據本發明 具體實例形成之經處理光滑銅表面不僅顯示較高之初始剝 離強度,亦顯示較高之保留率,其僅有22%損失。圖15B 〇 之表列數據亦證實在不顯著改變表面粗糙度之下達到剝離 強度安定性之增強。 實施例6 :層壓SR之Cu表面的UV圖案化及通孔清潔/ 鍍覆相容性之證實 形成具有通孔陣列與銅線之裝置,然後進一步加工以 證實加工相容性。更明確地說,依照實施例5所述之相同 製程處理及層壓光滑銅基板。經由UV曝光及顯影形成底 部直徑爲80至440 μπι之通孔陣列及線寬爲62至5 00 μιη之銅 -45- 201202378 線。圖1 6A顯示該銅線圖案及通孔陣列,且圖丨6B顯示球 柵陣列(B G A )圖案。然後對該經圖案化結構進行輕度蝕 刻及酸清潔或去膠渣程序,隨後進行無電鍍Ni,然後進行 Au浸沒沉積。圖17顯示在層壓光滑銅上所形成之SR通孔 的SEM斷面’其證實去膠渣及鍍覆程序之後無層離。在該 等結構上均獲得良好結果,意謂本發明之處理方法顯著改 善以細線距圖案化SR的能力,此係本技術之大幅進展。 總之,本文提出許多本發明具體實例。在某些具體實 例中,提出一種處理金屬表面以促進該金屬表面與有機材 料之間的附著之方法,其特徵在於:在該金屬表面上形成 金屬氧化物層,且該金屬氧化物層之形成係由該金屬氧化 物與表面改質化合物之間的自限反應所控制。該金屬氧化 物層之形成可經控制使得該金屬氧化物層具有約200奈米 或更小之厚度,或隨意地具有在約100奈米至200奈米之範 圍的厚度。該金屬氧化物層之形成可經控制以使得該金屬 氧化物層具有由實質上非晶體結構所構成之形態。在某些 具體實例中,該金屬氧化物層具有粒徑在250奈米或更小 之範圍,或隨意地在200奈米或更小之範圍的顆粒。該等 顆粒在調理之後實質上爲無規取向。該金屬氧化物層可由 氧化銅組成。 在某些具體實例中,該金屬氧化物層係藉由將該金屬 表面曝露於氧化劑而形成。該氧化劑可選自下列之任一或 多者:亞氯酸鈉、過氧化氫、過猛酸鹽、過氯酸鹽、過硫 酸鹽、臭氧或其混合物。 -46 - 201202378 在某些具體實例中’該表面改質化合物係選自在形成 該金屬氧化物時與金屬氧化物表面反應而控制反應速率的 化合物。該表面改質化合物可經選擇以使其最終減緩且終 止該氧化反應。該方法可在室溫至約80 °C之範圍的溫度下 進行。在某些具體實例中’該自限反應在約5至15分鐘後 變安定。 在其他實施樣態中’提出一種處理金屬表面以促進該 〇 金屬表面與有機材料之間的附著之方法,該方法包括以下 步驟:氧化該金屬表面以在該金屬表面上形成金屬氧化物 層;及藉由該金屬氧化物層與表面改質化合物之間的自限 反應終止該金屬氧化物層之生長。在某些具體實例中,氧 化與終止氧化之步驟另外包括令該金屬表面曝露於包含氧 化劑與表面改質化合物的溶液。隨意地,有些方法另外包 括令該金屬表面與一或多種有機分子接觸,其中該等有機 分子包含帶有一或多個經建構以與該金屬表面接合之接合 〇 基團以及一或多個經建構以與該有機材料附接之附接基團 的熱安定基質。 在某些具體實例中,該一或多種有機分子爲表面活性 部分。在某些具體實例中,該一或多種有機分子係選自以 下群組:卟啉、卟啉巨環、擴展卟啉、收縮卟啉、線性卟 啉聚合物、p卜啉夾心配位錯合物,或p卜啉陣列。該表面活 性部分可選自下列所組成之群組:巨環前配位基、巨環錯 合物、夾心配位錯合物及其聚合物。 該附接基團可由芳基官能基及/或烷基附接基團所構 -47- 201202378 成。在某些具體實例中,該芳基官能基係由選自以下任一 或多者之官能基所組成:醋酸根、烷基胺基、烯丙基、胺 、胺基、溴基、溴甲基、羰基、羧酸根、羧酸、二羥基磷 醯基、環氧化物、酯、醚、乙炔基、甲醯基、羥基、羥甲 基、碘基、锍基、锍甲基、Se-乙醯基硒基、Se-乙醯基硒 基甲基、S -乙醯硫基、S -乙醯基硫甲基、氧硒基' 4,4,5,5-四甲基-1,3,2-二噚硼烷-2-基、2-(三甲基矽基) 乙炔基、乙烯基,及其組合。在某些具體實例中,該烷基 附接基團包含選自以下任一或多者之官能基:醋酸根、烷 基胺基、烯丙基、胺、胺基、溴基、溴甲基、羰基、羧酸 根、羧酸、二羥基磷醯基、環氧化物、酯、醚、乙炔基、 甲醯基、羥基、羥甲基、碘基、锍基、锍甲基、Se-乙醯 基硒基、Se-乙醯基硒基甲基、S-乙醯硫基、S-乙醯基硫 甲基、氧硒基、4,4,5,5-四甲基-1,3,2 -二噚硼烷-2-基、2-(三甲基矽基)乙炔基、乙烯基,及其組合。在一實例中 ,該至少一個附接基團係由醇或膦酸酯所構成。在其他具 體實例中’該至少一個附接基團係由以下任一或多者所構 成:胺類、醇類、醚類、其他親核劑、苯基乙炔類、苯基 烯丙基類、膦酸酯類,及其組合。 在某些具體實例中’提出在金屬表面上形成塗層之方 法,其特徵在於在該金屬表面上形成金屬氧化物,且該金 屬氧化物層之形成係由該金屬氧化物與表面改質化合物之 間的自限反應所控制。 在其他具體實例中,提出在金屬表面上形成塗層之方 -48- 201202378 法,其包括以下步驟:氧化金屬表面以在該金屬表面上形 成金屬氧化物層;及藉由該金屬氧化物層與表面改質化合 物之間的自限反應終止該金屬氧化物層之生長。 此外,提出在金屬表面上形成塗層之方法,其包括以 下步驟:安定化該金屬表面;及調理該經安定化金屬表面 0 在本發明另一實施樣態中’提出一種印刷電路板’其 0 包含:至少一層金屬層;至少一層環氧樹脂層;及在該金 屬層與環氧樹脂層之間所形成的安定化層。該安定化層可 由厚度爲約200奈米或更小之範圍的金屬氧化物所構成。 在某些具體實例中,該安定化層係由展現實質上非晶體結 構之金屬氧化物所構成。在某些具體實例中’該安定化層 係由厚度爲約2 0 0奈米或更小且展現實質上非晶體結構之 金屬氧化物所構成。該安定化層可另外由具有顆粒之金屬 氧化物層所構成,其中該等顆粒之粒徑在2 5 0奈米或更小 〇 之範圍,或隨意地該粒徑在200奈米或更小之範圍。在某 些具體實例中,該金屬氧化物係由氧化銅所組成。該金屬 層可具有至高達約0.14 μηι Ra之粗糙度,且該金屬氧化物 層可具有至高達約〇·14 μιη Ra之粗糙度。 在某些具體實例中’該金屬層另外包含在其上形成之 圖案化金屬線,該圖案化金屬線具有等於或小於約2 5微米 之寬度,隨意地該圖案化金屬線具有等於或小於約15微米 之寬度,且隨意地該圖案化金屬線具有等於或小於約1 0微 米之寬度,且另外隨意地該圖案化金屬線具有等於或小於 -49- 201202378 約5微米之寬度。 在其他實施樣態中,提出一種製造印刷電路板之方法 ’其包括以下步驟:以鹼及/或過氧化物溶液預清潔銅表 面;藉由在該銅表面上形成氧化銅層而安定化該銅表面; 藉由氧化銅與一或多種表面改質化合物之間的自限反應而 終止氧化銅之形成;及將該經處理銅表面與樹脂結合。 在某些具體實例中,提出控制該金屬表面上之氧化物 層生長的方法,其包括:藉由該氧化物層與一或多種表面 改質化合物之間的自限反應終止該氧化物層之生長。 本發明之具體實例另外提出氧化劑組成物,其包含一 或多種氧化劑;及一或多種表面改質化合物。 此外,提出處理金屬表面以促進該金屬表面與有機材 料之間的附著或接合之方法,其特徵在於:藉由在該金屬 表面上形成安定化層而安定化該金屬表面,然後以還原劑 調理該安定化層以達成選擇性氧化物厚度與形態。在某些 具體實例中,該還原劑係選自下列之任一或多者:環硼烷 類、嗎啉硼院、卩比陡織硼院(p y r i d i u m b 〇 r a n e ) '哌U定硼 烷或二甲胺硼烷DMAB )。 在某些具體實例中,安定化該金屬表面係在室溫至約 8 0 °C之範圍的溫度下,隨意地在室溫至約5 0 °C之範圍的溫 度下進行。在某些具體實例中,整體方法進行時間在約5 至2 0分鐘之範圍。 在其他實施樣態中,提出處理金屬表面以促進該金屬 表面與有機材料之間的附著之方法,其包括以下步驟:安 -50 - 201202378 定化該金屬表面;及調理該經安定化金屬表面。在一實例 中,安定化該金屬表面包括在該金屬表面上形成金屬氧化 物層。在一實例中,調理該金屬表面之步驟包括以還原劑 還原該金屬氧化物層。在某些具體實例中,該金屬氧化物 層於調理之後的厚度爲約2 0 0奈米或更小。在某些具體實 例中,調理後之金屬氧化物層係由實質上非晶體結構所構 成。該金屬氧化物層具有顆粒,且在調理之後該等顆粒的 〇 粒徑在250奈米或更小之範圍,隨意地在200奈米或更小之 範圍。在某些具體實例中,該等顆粒在調理之後實質上爲 無規取向。在一實例中,該金屬氧化物層係由氧化銅所組 成。 在一實施樣態中,於調理之後將該金屬表面與一或多 種有機分子接觸,其中該等有機分子包含帶有一或多個經 建構以與該金屬表面接合之接合基團以及一或多個經建構 以與該有機材料附接之附接基團的熱安定基質。在某些具 〇 體實例中,該有機材料可由以下之任一或多者構成:電子 基板、PCB基板、半導體基板、光伏打基板、聚合物、陶 瓷、碳、環氧樹脂、玻璃強化環氧樹脂、酚、聚醯亞胺樹 月旨、玻璃強化聚醯亞胺、氰酸酯、酯類、特夫綸、塑膠類 及其混合物。 在又一實施樣態中,提出製造印刷電路板之方法,其 包含以下步驟:以鹼及/或過氧化物溶液預清潔銅表面; 藉由在該銅表面上形成氧化銅層來安定化該銅表面;以還 原劑調理該氧化銅層;及以結合該經處理銅表面與樹脂。 -51 - 201202378 另外’ 出將一或多種分子與該氧化銅層偶合之另外步驟 ,該一或多種有機分子包含帶有一或多個經建構以與該氧 化銅表面接合之接合基團以及一或多個經建構以與該樹脂 附接之附接基團的熱安定基質。 希望前述方法、裝置及說明係作爲例證說明用。有鑒 於本文所提出之教示’熟悉相關技術之人士將明白其他途 徑’且希望此等途徑係在本發明範圍內。 【圖式簡單說明】 於參照附圖並考量以上詳細說明時,即可瞭解本發明 具體實例之前述與其他實施樣態,在該等附圖中類似參考 數字係指全部類似部件,且其中: 圖1A與1B圖示說明根據本發明具體實例之金屬-樹脂 結合程序的一具體實例,並與慣用粗糙化程序比較; 圖2圖示說明本發明方法之一具體實例的實驗程序流 程圖; 圖3 A與3 B顯示本發明兩個具體實例之簡化範例反應 圖解; 圖4A至4D顯示下列之SEM照片:(A )任何處理前之 光滑銅表面(即,對照組);(B )根據本發明一具體實 例處理之銅表面,其顯示出該經處理表面之安定化層的光 滑度;以及比較(C )先前技術中所描述之慣用黑色氧化 物表面;及(D )先前技術中所描述之微蝕刻粗糙化銅表 面; -52 - 201202378 圖5係比較圖4A至4D中所示之銅表面的Ra與rz二者表 示的表面粗糙度; 圖6圖示顯示證實如本發明之具體實例所製備的安定 化層之厚度爲約150 nm的歐皆深度分析,其係與深度通常 大於1微米的慣用銅黑色氧化物層比較; 圖7 Λ與7 B係表示該金屬氧化物的照片;其明確圖示 圖4Α中該氧化銅的歐皆深度分析,以及圖示圖4Β之根據 〇 本發明具體實例使用表面改質化合物的經處理光滑銅表面 之自限拋物線生長; 圖8係用以在環氧樹脂基板上之銅試驗條上進行剝離 強度試驗的試樣布局實例; 圖9Α至9D係顯示製備試樣以及圖示根據某些具體實 例所使用之層壓程度的簡化斷面圖; 圖10A與10B圖示根據本發明具體實例處理之層壓環 氧樹脂的光滑銅表面之剝離強度與表面粗糙度(稱爲「經 〇 處理光滑」),其係與對照組光滑銅基板及慣用經粗糙化 銅表面比較; 圖11以圖表說明五批根據本發明具體實例處理之層壓 環氧樹脂的光滑銅表面之樣本的剝離強度重現性及H A S T 安定性; 圖12A與12B顯示根據本發明具體實例之層壓經處理 光滑銅表面(底部表面)在HAST之前及之後的SEM斷面 圖’其係與標準粗糙表面(頂部表面)比較;且證實本發 明方法未顯著粗糙化該表面以及在HAST之後界面處無層 -53- 201202378Ti〇2 nanoparticle (nano-ti02) is an Al2〇3, SiO 2 S decane coupling agent coated by chemical liquid deposition; improved electroless copper plating with high adhesion to nickel plating. The electroless plating method is carried out by the following steps: (1) treating the substrate to be plated with a decane coupling agent; (2) immersing the treated substrate in Ni for electroless Ni plating on the treated surface of the substrate a plating bath, and (3) immersing the Ni-plated substrate in a Cu plating bath of PHS 10 to electrolessly plate Cu on the Ni plating layer. The adhesion of the Ni plating layer to the substrate is high, and the adhesion of the Cu plating layer to the Ni plating layer is high; and the stability of the decane modifier on the alumina nanoporous film is improved. The stability of the decane covalently bonded to the nanoporous alumina membrane can be improved by the A1-0-Si bond. The MI treatment prior to the decaneization greatly improves the stability of the immobilized molecule; the bonding strength of the modified resin to the Ti substrate coated with cerium oxide; and the application of a nylon composite containing copper oxide particles to obtain a material having a high coefficient of friction. The existing procedural methods include (1) treating copper oxide particles and alumina particles with a decane coupling agent in acetone, drying and honing; (2) treating carbon fibers in air for oxidation; (3) mixing and treating in a ball mill Copper oxide particles, alumina particles, carbon fibers, and nylon for 6 to 8 hours; then performing a standard process; and illustrating a modified coating for a lamp comprising a network structure obtainable by conversion of an organically modified decane by a sol-gel procedure The cerium oxide particles obtainable from the acid-stabilized colloidal cerium oxide dispersion are incorporated in the network structure in a large amount. -38-201202378 [Embodiment] Experiment A number of experiments were carried out as follows. The examples are for illustrative purposes only and are not intended to limit the invention in any way. EXAMPLES Example 1: Treatment of a Smooth Copper Substrate This example illustrates an exemplary approach to treating a smooth copper substrate in accordance with certain embodiments of the present invention. As described above, the method of the present invention makes it possible to use a treated metal substrate, meaning a metal substrate which has not been roughened beforehand. In an example, the metal surface is copper and more specifically a smooth copper surface, meaning a copper substrate that has not been roughened beforehand. Such a copper substrate can be formed from a wide variety of sources. For example, copper substrates suitable for use in the method of the present invention include, but are not limited to, electrolytic or electroplated copper, electroless copper, and rolled copper, and are not limited by the method of preparing them. In Example 1, the electrolytic copper substrate was first cleaned at 40 ° C for 4 minutes with a 40 g/L sodium hydroxide solution, and then rinsed with water. The copper substrate was further cleaned with a 1 wt% hydrogen peroxide solution at RT for 1 minute, and cleaned with a 3 wt% sulfuric acid solution at RT for 1 minute, and then rinsed with water. It was then stabilized by rinsing with water at 6 (TC in a 140 g/L chlorite solution with 12 g/L sodium hydroxide and less than 1% surface modifying compound for 6 minutes). The substrate was then treated in a reduction bath of 40 g/L dimethylamine borane (DM AB) adjusted to 12.6 at 35 ° C for 2 minutes. The sample was then rinsed and dried with hot air. The surface morphology and thickness of the stabilization layer were adjusted by changing the concentration of the treatment solution -39-201202378, temperature and duration' and characterized by SEM, XRD and Auger depth profile. The sample was then rinsed and It is dried by hot air. Figure 4A is an example SEM micrograph of 50,000 times magnification showing a conventional electrolytic copper surface with needle-like particles and oriented grain growth reflecting the long-range regularity of the crystal structure (ie, smooth copper) The morphology of the surface, or in other words the 'unroughened copper surface.' In contrast, the morphology of the surface of the electrolytic copper treated according to the method of the present invention formed with a stabilization layer is shown in Figure 4B. 4B shows the past The stabilization layer on the copper surface exhibits finer particle morphology, non-directional particle growth, and higher uniformity. In contrast, Figure 4C shows a conventional black oxide surface that exhibits a thicker and brittle fibrous structure. 4D is an exemplary SEM micrograph of a conventional microetched copper surface showing a highly uniform micro-valley and ridge morphology. The table data of Figure 5 compares the surface roughness expressed by both Ra and Rz, and demonstrates the invention The treatment does not roughen the copper surface, which is different from the conventional oxidation and reduction procedure for a substantially large roughened surface. The stabilized layer of the treated smooth copper surface prepared according to Example 1 is further characterized by Eugene electron spectroscopy (AES) To determine the surface composition and the thickness distribution of the layer. Referring to Figure 6, the AES depth analysis of the treated smooth copper surface shows that the stabilization layer contains mixed copper and copper oxide (presumably - cuprous oxide), and its thickness is Approximately 100 nm. Conversely, the conventional black oxide layer extends over a distance of 1 000 nm. The thickness of the stabilization layer must be in the range of about 100 to 200 nm to ensure good bonding strength. Referring to Figures 7A and 7B', the growth of the stabilization layer is characterized by an example of a copper substrate according to a specific example of the invention -40 - 201202378. Under various conditions, a surface modifying compound is used according to a specific example of the present invention. The depth analysis of the formed copper oxide layer is shown in Fig. 7. As shown, the atomic composition of the outer surface of the layer is approximately 50% copper and 5% oxygen. When it is moved into the substrate through the surface layer The composition is close to 100% copper. The self-limiting nature of the process is shown in Figure 7B, which shows that the growth of the oxide layer is substantially flat after a particular oxidation time, in this example after about 0 minutes. Example 2: Confirmation of Resin Bonding Enhancement on Smooth Copper Substrate This example illustrates an exemplary approach to enhance epoxy adhesion on a smooth copper substrate. As shown in Figure 8, the treated Cu test strips were tiled onto a temporary backing. As shown in the schematic steps shown in Figures 9A through 9D, a 35 μm thick commercially available cumulative (BU) epoxy (or dielectric) laminate film that has been stabilized under ambient conditions for at least 3 hours is tiled in Cu. Top of the bar. The assembly was then vacuum laminated at 〇 loot: vacuum for 30 seconds and pressurization at 3 Kg/cm 2 for 3 sec seconds. This lamination step was repeated twice to form a total of 3 layers of B U film. It is noted that the copper surface changes from reddish to light brown or green after surface treatment and then turns black after lamination, which means that a chemical bonding reaction has taken place. The surface of the resin contains chemically reactive groups such as hydroxyl groups, amines, epoxides and others which can react with the oxygen-rich copper surface by forming bonds. In order to quantify the adhesion strength, as shown in Fig. 9B, a rigid backing substrate (reinforcing material) was laminated on top of the BU film. The assembly was then heat treated or cured in a convection oven at rc 8 (rc -41 - 201202378 for 90 minutes. Next, the assembly was cut into small squares to remove the temporary backing substrate and divided into peel strengths Test and use of the independent test piece for the test of the High Accelerated Stress Test (HAST). The adhesion strength of the formed laminate is 90 degrees on the 10 mm wide peeling strip by the dynamometer of the peel tester. The peel angle and the peel speed of 5 〇mm/min were quantified. More specifically, the peel strength was tested on the initial formation and then on the substrate after pre-conditioning and remelting. The pre-conditioning system was carried out at 125 ° C for 25 hours, then It was carried out at 30 ° C and 60% relative humidity (R Η ) for 1 292 hours. The remelting system was carried out three times at 260 ° C. Thereafter, the H AST test was carried out at 1 30 ° C and 85% RH. Figures 10A and 10B illustrate the effect of this treatment on the retention of peel strength after the HAST test. The smooth control group (i.e., without the stabilization layer of the present invention) has a peel strength of 88% after HAST and is conventionally roughened. The control group showed a loss of 40%. Processing a smooth copper substrate (i.e., having a stabilization layer formed in accordance with the present invention) not only exhibits a higher initial peel strength, but also exhibits a higher retention rate with only a 26% loss. The table data of Figure 10B also confirms The enhancement of peel strength stability is achieved without changing the surface roughness. This result is superior to the teachings of the prior art and is currently unpredictable by the teachings of the prior art. Significant advantages are embodiments of the present invention that provide a stable, controllable process Scope. This custom range provides a robust and repeatable procedure. Figure 11 illustrates the peel strength reproducibility or robustness and HAST of a sample of five batches of a smooth copper surface of a laminated epoxy treated according to a specific embodiment of the present invention. Stability. Figure 1 2 A and 1 2 B show the -42-201202378 laminated treated copper surface with a stabilized layer according to a specific example of the invention compared to a standard roughened surface before and after the HAS SEM The top view further demonstrates that the method of the present invention does not significantly roughen the copper surface and that no significant delamination occurs after the remelting and HAST reliability tests. Figure 1 3 A And s E Μ micrograph of the surface of the stripped copper with 1 3 B, which shows that the copper-resin interface of the smooth copper control group (Fig. 13 A) breaks just at the copper surface, whereas the method formed according to the invention has stability The interface of the treated layer of smooth copper (Fig. UB) is broken in the resin. This surprising result confirms that the bond strength between the resin and the treated copper surface of the present invention is stronger than that of the overall resin material itself. Example 3: Confirmation of Thin Line Patterning and Electrical Insulation Reliability A device was formed to illustrate that patterning of thin lines can be achieved by a specific example of the present invention. More specifically, the same process processing and lamination line and line pitch according to Embodiment 1 and Embodiment 2 have the same size (5〇/5〇, 3 0/3 0, Ο 20/20, 10/10 And a comb pattern of 8/8 μηα). The SEM cross-sectional view again confirmed that the copper wire was not roughened by the method of the present invention and was not delaminated after the remelting and H A S Τ test. After remelting and HAST, the electrical insulation resistance of 2 V remains above 1〇12 Ω, which is seven orders of magnitude higher than the PCB manufacturing specification. Table 1 below summarizes these results. Good results have been obtained on these structures' showing that the present invention significantly improves the ability to pattern copper lines with fine line pitches'. This is a significant advancement in the art. -43- 201202378 Table 1. Thin-line patterning and electrical insulation reliability line/line spacing size (μιη) 2V insulation resistance after HAST without HAST X 1〇12Ω 50/50 micron qualified 1.27 30/30 micron qualified 1.30 20/20 micron qualified 1.43 1 (V10 micron qualified 1.29 8/8 micron qualified 1.10 Example 4: Laser drilling of laminated epoxy resin surface and hole cleaning/plating compatibility confirmed to form a mine The device for passing through holes is then further processed to demonstrate process compatibility. More specifically, the smooth copper substrate is processed and laminated in accordance with the same process as described in Example 1 and Example 2. Drilling through C02 and UV lasers A via array of diameters of 30, 40, 50, 75, 100' 150, and 200 μm. The via structure is then lightly etched and acid cleaned or desmeared, followed by electroless copper plating and then electroplated. 14 shows an SEM section of a laser via formed on the surface of a laminated smooth treated copper in accordance with an embodiment of the present invention, which demonstrates no undercut and delamination after the desmear and plating procedure Example 5: Solder bond reinforcement on a smooth copper substrate This example demonstrates an exemplary approach to enhance solder resist adhesion on a smooth copper substrate. The smooth copper test strip is treated in accordance with the same process as described in Example 1 and tiled on a temporary back as shown in FIG. Lining. As shown in Fig. 9 ,, a commercially available solder mask-44 - 201202378 (SR) laminate film which has been stabilized under ambient conditions for at least 3 hours is laid on top of the copper strips. The assembly was then vacuum laminated at a vacuum of 75 ° C for 30 seconds and at 1 Kg/cm 2 for 60 seconds. The assembly was then subjected to a UV exposure of 400 mJ/cm 2 followed by a convection oven at 1 50 Curing at ° C for 60 minutes and UV curing at 1 μm/cm 2 . To quantify the adhesion strength, a rigid backing substrate (reinforcing material) is laminated as shown in step 2 of Figure 9 B. The top of the SR film. The assembly is then cut into small squares to remove the temporary backing substrate, which is then divided into separate test pieces for peel strength test and high accelerated stress test (HAST). More specifically The peel strength was tested on the initial formation and on the substrate after preconditioning, remelting and hast. 15A and 15B illustrate the effect of the treatment method of the present invention on the retention of peel strength after the HAST test. The peel strength of the untreated smooth control group after the HAST decreased by 87%, and the conventional roughened control group showed a loss of 69%. The apparently controlled system, the treated smooth copper surface formed according to the specific examples of the present invention not only shows a higher initial peel strength, but also shows a higher retention rate, which has only a 22% loss. The table data of Figure 15B also confirms The increase in peel strength stability was not significantly changed under the surface roughness. Example 6: UV patterning of Cu surface of laminated SR and verification of via cleaning/plating compatibility A device having a via array and a copper wire was formed and then further processed to confirm processing compatibility. More specifically, the smooth copper substrate was processed and laminated in the same manner as described in Example 5. A through-hole array having a bottom diameter of 80 to 440 μm and a copper-45-201202378 line having a line width of 62 to 500 μm are formed by UV exposure and development. Fig. 1A shows the copper line pattern and via array, and Fig. 6B shows the ball grid array (B G A ) pattern. The patterned structure is then subjected to a mild etching and acid cleaning or desmear process followed by electroless Ni and then Au immersion deposition. Figure 17 shows the SEM cross section of the SR through hole formed on the laminated smooth copper. It confirmed no delamination after the desmear and plating procedure. Good results have been obtained on these structures, meaning that the processing method of the present invention significantly improves the ability to pattern SR with fine line spacing, which is a significant advancement in the art. In summary, many specific examples of the invention are presented herein. In some embodiments, a method of treating a metal surface to promote adhesion between the metal surface and an organic material is provided, characterized in that a metal oxide layer is formed on the metal surface, and the metal oxide layer is formed. It is controlled by a self-limiting reaction between the metal oxide and the surface modifying compound. The formation of the metal oxide layer can be controlled such that the metal oxide layer has a thickness of about 200 nm or less, or optionally has a thickness in the range of about 100 nm to 200 nm. The formation of the metal oxide layer can be controlled such that the metal oxide layer has a morphology consisting of a substantially amorphous structure. In some embodiments, the metal oxide layer has particles having a particle size in the range of 250 nm or less, or optionally in the range of 200 nm or less. The particles are substantially randomly oriented after conditioning. The metal oxide layer may be composed of copper oxide. In some embodiments, the metal oxide layer is formed by exposing the surface of the metal to an oxidizing agent. The oxidizing agent may be selected from any one or more of the following: sodium chlorite, hydrogen peroxide, peroxyacid salt, perchlorate, persulfate, ozone or a mixture thereof. -46 - 201202378 In certain embodiments, the surface modifying compound is selected from the group consisting of compounds which react with the surface of the metal oxide to form a reaction rate upon formation of the metal oxide. The surface modifying compound can be selected such that it eventually slows down and terminates the oxidation reaction. The process can be carried out at a temperature ranging from room temperature to about 80 °C. In some embodiments, the self-limiting reaction will stabilize after about 5 to 15 minutes. In other embodiments, a method of treating a metal surface to promote adhesion between the base metal surface and an organic material is provided, the method comprising the steps of: oxidizing the metal surface to form a metal oxide layer on the metal surface; And terminating the growth of the metal oxide layer by a self-limiting reaction between the metal oxide layer and the surface modifying compound. In some embodiments, the step of oxidizing and terminating the oxidation additionally comprises exposing the surface of the metal to a solution comprising an oxidizing agent and a surface modifying compound. Optionally, some methods additionally comprise contacting the metal surface with one or more organic molecules, wherein the organic molecules comprise one or more bonded oxime groups and one or more constructed structures bonded to the metal surface A thermally stable matrix of attachment groups attached to the organic material. In some embodiments, the one or more organic molecules are surface active moieties. In some embodiments, the one or more organic molecules are selected from the group consisting of porphyrins, porphyrin macrocycles, extended porphyrins, shrinking porphyrins, linear porphyrin polymers, p-porphyrin sandwich coordination complexes , or p-porphyrin array. The surface active moiety can be selected from the group consisting of a macrocyclic proligand, a macrocyclic complex, a sandwich coordination complex, and a polymer thereof. The attachment group can be formed from an aryl functional group and/or an alkyl attachment group -47-201202378. In certain embodiments, the aryl functional group consists of a functional group selected from one or more of the following: acetate, alkylamino, allyl, amine, amine, bromo, bromo Base, carbonyl, carboxylate, carboxylic acid, dihydroxyphosphonium, epoxide, ester, ether, ethynyl, decyl, hydroxy, hydroxymethyl, iodo, decyl, fluorenyl, Se-B Mercapto selenyl, Se-ethyl selenomethyl, S-acetylthio, S-acetylthiomethyl, oxyselenos 4,4,5,5-tetramethyl-1,3 , 2-dioxaboran-2-yl, 2-(trimethyldecyl)ethynyl, vinyl, and combinations thereof. In certain embodiments, the alkyl attachment group comprises a functional group selected from any one or more of the group consisting of acetate, alkylamino, allyl, amine, amine, bromo, bromomethyl , carbonyl, carboxylate, carboxylic acid, dihydroxyphosphonium, epoxide, ester, ether, ethynyl, decyl, hydroxy, hydroxymethyl, iodo, decyl, fluorenyl, Se-acetyl Selenium, Se-ethenyl selenomethyl, S-acetylthio, S-acetylthiomethyl, oxyseleno, 4,4,5,5-tetramethyl-1,3, 2 -Bismoborane-2-yl, 2-(trimethyldecyl)ethynyl, vinyl, and combinations thereof. In one example, the at least one attachment group is comprised of an alcohol or phosphonate. In other embodiments, the at least one attachment group consists of any one or more of the following: amines, alcohols, ethers, other nucleophiles, phenyl acetylenes, phenylallyl groups, Phosphonates, and combinations thereof. In some embodiments, a method of forming a coating on a metal surface is provided, characterized in that a metal oxide is formed on the surface of the metal, and the metal oxide layer is formed by the metal oxide and the surface modifying compound. Controlled by a self-limiting reaction between them. In another embodiment, a method of forming a coating on a metal surface is disclosed in the method of -48-201202378, comprising the steps of: oxidizing a metal surface to form a metal oxide layer on the metal surface; and using the metal oxide layer A self-limiting reaction with the surface modifying compound terminates the growth of the metal oxide layer. Furthermore, a method of forming a coating on a metal surface is provided, comprising the steps of: stabilizing the metal surface; and conditioning the stabilized metal surface 0. In another embodiment of the invention, a printed circuit board is proposed 0 includes: at least one metal layer; at least one epoxy layer; and a stabilization layer formed between the metal layer and the epoxy layer. The stabilization layer can be composed of a metal oxide having a thickness of about 200 nm or less. In some embodiments, the stabilization layer is comprised of a metal oxide that exhibits a substantially amorphous structure. In some embodiments, the stabilization layer is comprised of a metal oxide having a thickness of about 200 nanometers or less and exhibiting a substantially amorphous structure. The stabilization layer may additionally be composed of a metal oxide layer having particles, wherein the particles have a particle size in the range of 250 nm or less, or optionally the particle size is 200 nm or less. The scope. In some embodiments, the metal oxide consists of copper oxide. The metal layer can have a roughness of up to about 0.14 μηι Ra, and the metal oxide layer can have a roughness of up to about 〇14 μηη Ra. In some embodiments, the metal layer additionally includes a patterned metal line formed thereon, the patterned metal line having a width equal to or less than about 25 microns, optionally the patterned metal line having equal to or less than about A width of 15 microns, and optionally the patterned metal line has a width equal to or less than about 10 microns, and optionally the patterned metal line has a width equal to or less than -49 to 201202378 of about 5 microns. In other embodiments, a method of fabricating a printed circuit board is provided that includes the steps of pre-cleaning a copper surface with a base and/or a peroxide solution; and stabilizing the copper oxide layer on the copper surface. a copper surface; the formation of copper oxide is terminated by a self-limiting reaction between copper oxide and one or more surface modifying compounds; and the treated copper surface is combined with a resin. In some embodiments, a method of controlling the growth of an oxide layer on a surface of the metal is provided, comprising: terminating the oxide layer by a self-limiting reaction between the oxide layer and one or more surface modifying compounds Growing. Specific examples of the invention additionally provide oxidant compositions comprising one or more oxidizing agents; and one or more surface modifying compounds. Furthermore, a method of treating a metal surface to promote adhesion or bonding between the metal surface and an organic material is proposed, characterized in that the metal surface is stabilized by forming a stabilization layer on the surface of the metal, and then conditioned with a reducing agent. The stabilization layer achieves a selective oxide thickness and morphology. In some embodiments, the reducing agent is selected from any one or more of the group consisting of a borane, a morpholine boron, a pyridiumb 〇rane, a piperidine or a second. Metamine borane DMAB). In some embodiments, the surface of the metal is stabilized at a temperature ranging from room temperature to about 80 ° C, optionally at a temperature ranging from room temperature to about 50 ° C. In some embodiments, the overall process time is in the range of about 5 to 20 minutes. In other embodiments, a method of treating a metal surface to promote adhesion between the metal surface and an organic material is provided, comprising the steps of: naming the metal surface; and conditioning the stabilized metal surface . In one example, stabilizing the metal surface includes forming a metal oxide layer on the metal surface. In one example, the step of conditioning the metal surface comprises reducing the metal oxide layer with a reducing agent. In some embodiments, the metal oxide layer has a thickness after conditioning of about 200 nm or less. In some embodiments, the conditioned metal oxide layer is comprised of a substantially amorphous structure. The metal oxide layer has particles, and after nucleation, the particles have a ruthenium particle size in the range of 250 nm or less, optionally in the range of 200 nm or less. In some embodiments, the particles are substantially randomly oriented after conditioning. In one example, the metal oxide layer is comprised of copper oxide. In one embodiment, the metal surface is contacted with one or more organic molecules after conditioning, wherein the organic molecules comprise one or more bonding groups configured to bond to the metal surface and one or more A thermal stabilization matrix is constructed that is attached to the attachment of the organic material. In some examples of the body, the organic material may be composed of any one or more of the following: an electronic substrate, a PCB substrate, a semiconductor substrate, a photovoltaic substrate, a polymer, a ceramic, a carbon, an epoxy resin, a glass reinforced epoxy. Resins, phenols, polyimines, glass-reinforced polyimine, cyanate esters, esters, teflon, plastics, and mixtures thereof. In still another embodiment, a method of manufacturing a printed circuit board is provided, comprising the steps of: pre-cleaning a copper surface with a base and/or a peroxide solution; and stabilizing the copper oxide layer on the copper surface a copper surface; conditioning the copper oxide layer with a reducing agent; and combining the treated copper surface with the resin. -51 - 201202378 additionally an additional step of coupling one or more molecules to the copper oxide layer, the one or more organic molecules comprising one or more bonding groups configured to bond to the surface of the copper oxide and A plurality of thermally stable matrices constructed to attach groups attached to the resin. It is to be understood that the foregoing methods, apparatus, and description are illustrative. It will be appreciated that those skilled in the art will recognize other approaches and are intended to be within the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS The foregoing and other embodiments of the specific embodiments of the invention are in the 1A and 1B illustrate a specific example of a metal-resin bonding procedure according to a specific example of the present invention, and compared with a conventional roughening procedure; FIG. 2 illustrates a flow chart of an experimental procedure illustrating one specific example of the method of the present invention; 3A and 3B show simplified example reaction diagrams for two specific examples of the invention; Figures 4A through 4D show the following SEM photographs: (A) smooth copper surface before any treatment (i.e., control group); (B) according to the present A copper surface treated in accordance with one embodiment of the invention, which exhibits a smoothness of the stabilized layer of the treated surface; and (C) a conventional black oxide surface as described in the prior art; and (D) as described in the prior art Microetching roughened copper surface; -52 - 201202378 Fig. 5 is a comparison of surface roughness expressed by both Ra and rz of the copper surface shown in Figs. 4A to 4D; The stability of the stabilized layer prepared by the specific example of the present invention is a depth analysis of about 150 nm, which is compared with a conventional copper black oxide layer having a depth of usually more than 1 micrometer; FIG. 7 shows that the metal is represented by Λ and 7 B a photograph of the oxide; it clearly illustrates the Euclid depth analysis of the copper oxide in FIG. 4A, and the self-limiting parabolic growth of the treated smooth copper surface using the surface modifying compound according to the specific example of the present invention; Figure 8 is an example of a sample layout for performing a peel strength test on a copper test strip on an epoxy substrate; Figures 9A to 9D show the preparation of the sample and the degree of lamination used according to some specific examples. Simplified cross-sectional view; Figures 10A and 10B illustrate the peel strength and surface roughness of a smooth copper surface of a laminated epoxy resin treated according to an embodiment of the present invention (referred to as "smooth treated smooth"), which is compared with a control group Comparison of a smooth copper substrate and a conventional roughened copper surface; Figure 11 graphically illustrates the peel strength of a sample of five batches of a smooth copper surface of a laminated epoxy resin treated according to an embodiment of the present invention. Reproducibility and HAST Stability; Figures 12A and 12B show SEM cross-sections of a laminated treated smooth copper surface (bottom surface) before and after HAST in accordance with an embodiment of the present invention, with a standard rough surface (top surface) Comparison; and demonstrates that the method of the invention does not significantly roughen the surface and has no layer at the interface after HAST-53-201202378
圖1 3 A顯示兩張H A S T之後的經剝離銅表面之s E Μ照片 (完整及形態模式),其證實未經處理之光滑銅表面對照 組中銅-樹脂界面斷裂。圖1 3 Β顯示兩張H A S Τ之後的經剝 離且根據本發明具體實例處理之光滑銅表面的S EM照片( 完整及形態模式),且顯示大部分區域係經樹脂覆蓋,此 意謂著失效發生於該樹脂內而非銅-樹脂界面; 圖1 4係顯示在根據本發明具體實例的層壓經處理光滑 銅表面上形成雷射通孔之斷面的S E Μ照片,其證實在該去 膠渣與電鍍程序之後未發生底切; 圖1 5 Α與1 5 Β以圖表說明根據本發明具體實例處理之 層壓焊料光阻的光滑銅表面之剝離強度與表面粗糙度,其 係與對照組基板及慣用經粗糙化銅表面比較; 圖16A與16B顯示銅線之SR圖案與通孔陣列(16A)及 BGA圖案(16B )之照片;及 圖1 7係在根據本發明具體實例所形成之層壓經處理銅 表面上形成的SR通孔之斷面的SEM照片,其證實後去膠澄 處理與電鍍並未發生層離。 【主要元件符號說明】 1 0 0 A :光滑金屬-樹脂結合界面 102 :金屬基板 104 :樹脂基板 106 :安定化層 -54- 201202378 1 〇 8 :有機層 100Β :粗糙化銅-樹脂界面 300 :金屬 3 1 0 :氧化物層 3 2 0 :安定化層 350 :金屬 3 6 0 :安定化層 〇 200 :表面預處理 2 1 0 :表面安定化及調理和隨意地官能化 220 :隨意地表面還原 240 :真空層壓 2 6 0 :熱處理Figure 1 3 A shows a photograph of the s E Μ of the stripped copper surface after two H A S T (complete and morphological modes) confirming the copper-resin interface rupture in the untreated smooth copper surface control group. Figure 1 3 shows the S EM photograph (complete and morphological pattern) of the smoothed copper surface after peeling and treated according to the specific example of the present invention after two HAS crucibles, and shows that most of the area is covered by resin, which means failure Occurs in the resin rather than the copper-resin interface; Figure 14 shows a SE Μ photograph of a cross section of a laser through hole formed on a laminated smooth copper surface according to an embodiment of the present invention, which confirms that Undercutting did not occur after the slag and plating procedure; Figure 1 5 Α and 15 Β to illustrate the peel strength and surface roughness of the smooth copper surface of the laminated solder resist treated according to the specific example of the present invention, Comparison of the substrate and the conventional roughened copper surface; FIGS. 16A and 16B show photographs of the SR pattern and the via array (16A) and the BGA pattern (16B) of the copper line; and FIG. 17 is formed in accordance with an embodiment of the present invention. A SEM photograph of the cross section of the SR through-hole formed on the surface of the treated copper was confirmed, and it was confirmed that the delamination treatment did not cause delamination. [Main component symbol description] 1 0 0 A: smooth metal-resin bonding interface 102: metal substrate 104: resin substrate 106: stabilization layer - 54 - 201202378 1 〇 8 : organic layer 100 Β : roughened copper-resin interface 300: Metal 3 1 0 : oxide layer 3 2 0 : stabilization layer 350 : metal 3 6 0 : stabilization layer 〇 200 : surface pretreatment 2 1 0 : surface stabilization and conditioning and random functionalization 220 : random surface Reduction 240: vacuum lamination 2 6 0 : heat treatment