TW201203964A - Frequency offset determination device and frequency offset determination method - Google Patents

Frequency offset determination device and frequency offset determination method Download PDF

Info

Publication number
TW201203964A
TW201203964A TW99122448A TW99122448A TW201203964A TW 201203964 A TW201203964 A TW 201203964A TW 99122448 A TW99122448 A TW 99122448A TW 99122448 A TW99122448 A TW 99122448A TW 201203964 A TW201203964 A TW 201203964A
Authority
TW
Taiwan
Prior art keywords
frequency offset
constellation
value
frequency
signal values
Prior art date
Application number
TW99122448A
Other languages
Chinese (zh)
Inventor
Kung-Piao Huang
Original Assignee
Novatek Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novatek Microelectronics Corp filed Critical Novatek Microelectronics Corp
Priority to TW99122448A priority Critical patent/TW201203964A/en
Publication of TW201203964A publication Critical patent/TW201203964A/en

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

A frequency offset determination device is disclosed for determining a frequency offset in a receiver of a communication system. The frequency offset determination device includes a calculation unit, for performing fourth power calculation on a plurality of signal values to generate a plurality of fourth power signal values, a frequency offset adjustment unit, for estimating a frequency offset and adjusting the plurality of fourth power signal values with the frequency offset to generate a plurality of frequency offset adjusted signal values, and a region determination unit, for determining the distribution of the plurality of frequency offset adjusted signal values in a constellation, and providing determination results to the frequency offset adjustment unit to adjust the frequency offset.

Description

201203964 六、發明說明: 【發明所屬之技術領域】 本發明係指一種頻偏判斷裝置及頻偏判斷方法,尤指—種用於 -正交振幅調變(quadraturcampntudemGdu丨_ 系统的 -接收端中騎_偏移_的賴觸裝置及賴觸方法。 【先前技術】 現今通訊系統大多使用載波來調變欲傳送資料,亦即在 利用-本地振i源’將欲傳送的資料調變至—特定頻率的載 再將調變後的資料發駐軌通道上,由接收端所接收此一 接收端收到傳送端所送出的訊號時,必須先利用—本地振朗將二 收减^周(亦即降頻),才能解讀傳送端所欲傳送的資料 而在=際應用上’即使是規格完全相同的兩個振盈電路也無连 生頻較全相__峨,使得傳送端與接收端有—偽较 因。此接收端解調所產生的龍會與原先傳送端欲傳送的 ’ 决差在此I#形下,為了確保接收端與傳送端的載波頻率相斤 統中必綠置—栽波頻偏估測電路,用來估測傳送端與接收^系 波頻率間所存在的軸量,_償接《所使關概_ t裁 與傳送端所使用的載波頻率吻合。 使其 201203964 舉例來說,請參考第1A圖及第1B圖,第ia圖為習知一正交 相移鍵控敝驗顏Keying,QPSK)賴⑽之訊號 於:星顧之分佈示意圖,而第1B κ為第1A财正交相移鍵控調 變系統之訊號具有頻率偏移時,於一星座圖之分佈示意圖。由第认 圖可知’若接《與傳送端不具有解偏移時,則正交相移鍵控調 變系統之訊號將僅出現於四個星座點(eGn_atiQn pQims);而當有頻 率偏移時,則如第1B _示’正交相移鍵控調㈣統之星座點將 在星座圖上旋轉,其對應的訊號可以下式表示:201203964 VI. Description of the Invention: [Technical Field] The present invention relates to a frequency offset judging device and a frequency offset judging method, and more particularly to - quadrature amplitude modulation (quadraturcampntudem Gdu丨_ system - receiving end Ride-offset device and touch method. [Prior Art] Most communication systems today use carrier waves to transmit data to be transmitted, that is, to use the local-source source to adjust the data to be transmitted to - The load of the specific frequency is sent to the track channel on the modulated channel. When the receiving end receives the signal sent by the transmitting end, the receiving end must first use the local vibration to reduce the two weeks. That is to say, frequency reduction), in order to interpret the data to be transmitted by the transmitting end, and in the application of the 'interval', even if the two vibrating circuits with the same specifications are not connected to the whole phase __峨, the transmitting end and the receiving end The terminal has a pseudo-causal. The receiver generated by the demodulation of the receiver and the original transmission terminal are to transmit the 'dead' in this I# shape, in order to ensure that the carrier frequency of the receiving end and the transmitting end are in the green - Plant wave frequency offset estimation The path is used to estimate the amount of the axis existing between the transmitting end and the receiving frequency of the chord, and the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Referring to FIG. 1A and FIG. 1B, the ia diagram is a schematic diagram of a conventional quadrature phase shift keying 敝 Keying, QPSK) Lai (10) signal: the distribution of the star Gu, and the 1st κ is the 1st When the signal of the phase shift keying modulation system has a frequency offset, the distribution diagram of the constellation diagram is shown. It can be seen from the figure that if there is no de-offset with the transmitting end, the signal of the quadrature phase shift keying modulation system will only appear in the four constellation points (eGn_atiQn pQims); At the same time, the constellation point of the 1B_showing 'orthogonal phase shift keying (4) system will be rotated on the constellation diagram, and the corresponding signal can be expressed as follows:

其中’ η是卜3、-1及_3 ’表示未有頻率偏移時四個星座點的相位, △f代表頻偏值。在此情形下,習知技術會將具有鮮偏移的正交相 移鍵控調變系統之訊號做四次方運算,可得下式: X(k)4=-|X(k)|4严,(式 2) 由式2可知,經過四次方運算以後,訊號原本代表相位部分(n)已 被消除。在此情況下,對式2做快速傅立葉變換(FastF〇urier Transform ’ FFT)後,在頻域(frequenCy d〇main)上,只會於 Af 處有一高能量譜線(spectral line)。因此,可經觀察譜線之能量分佈 以得到頻偏值Δί*。 依此類推’於正父振幅調變(quadrature amplitude modulation, QAM)系統中,由於位於對角線(即相位等於w 、3π/4 、·_ 及-3τγ/4 )位置的星座點數最多且能量最強,因此亦可使用上述之 方法來估計頻偏值。 201203964 然而’對於如128正交振幅調變調變系統等具有交錯星座(_ _Ste_on)之系統而言’卻往往無法輕錄用上述方絲獲得正 破頻偏值。如第2A圖所示,若接收端與傳送端不具有頻率偏移時, 則正128QAM系統之訊號於四個對角並無星魅(如虛線區域所 示);而當有頻率偏移時,則如第沈圖所示,128(3鳩系統之星座 點同樣會在星座圖上旋轉。由第2A圖可知,由於具有交錯星座之 系先於星座圖之四個對角並無星座點,因此於頻率偏移時使用上述 方法時’在頻域上可能無法獲得明顯較強的譜線。舉例來說,請參 考第2C圖,第2C _具瓣偏移時,f知之—卿m祕 之訊號在經過四次方運算及快速傅立葉變換後於頻域上之分佈示音 圖。如第2C圖所示,譜線A、B具有相近的高能量。因此,在正確 ==能量上之差異不明顯之情況下,習知技術必_ f龐大的快速傅立葉變換運算以運算更多的點,才能精準得到於正 確頻偏值處的高能量譜線。 、 ㈣Ϊ上述可知’習知技術對於具有交錯星座圖之正交振幅調變調 頻Γ使用大量複雜的快速傅立葉變換運算,方能得到正確 '員偏值。有鑑於此’習知技術實有改進之必要。 【發明内容】 種頻偏判斷裝置及頻偏 因此,本發明之主要目的即在於提供一 201203964 頻偏值 判斷方法,其可透過簡易之步驟即可獲得正確之 本發明揭露-種頻偏判斷裝置,用於—通訊系統的一接收端中 判斷頻率偏移情形。該頻偏判斷裝置包含有一運算單元,用來對複 數個訊號值進行四次方運算,以產生複數個四次方訊號值;一頻偏 調整單元,麵接於該運算單元,用來估計一頻偏值,並以鋪偏值 調㈣複數個四次方訊號值,以產生複數個頻偏調整訊號值;以及 單元,_頻偏調整單元,用來判斷該複數個頻偏 星座圖上的分佈情形,並提供判斷結果至該頻偏調 整早7G來調整該頻偏值。 中判偏判斷方法’用於一通訊系統的-接收端 .!!! ° 運异’以產生魏個四次方訊號值;估 :偏:=數Γ方—產生複數個二^ 觸分佈情形, 【實施方式】 :彡考®3圖帛3圖為錄-實關之―頻 之不意圖。頻偏判斷裝置3Q包含有 ’置30 元-及-區域判斷單元观。;"單來—頻偏調整單 間半术說運鼻早疋3〇2先對訊號 201203964 值Slg-進行四次方運算,以產生四次方訊號值% 4ih五 〜Sig-4th-n ’其中η為一正整數,以及訊號值Sig_l〜Sig 頻偏判斷裝置3〇所接收之一輸入訊號以一取樣頻率Fs進行取樣而 得(1〜η對應於不同時間之取樣點)。 、頻偏調整單it 3〇4再估計-頻偏值F0,並以頻偏值F〇調整四 _人方讯號值Sig—4th—1〜Sig一4th_n,以產生頻偏調整訊號值Where 'η is Bu3, -1, and _3' indicates the phase of the four constellation points when there is no frequency offset, and Δf represents the frequency offset value. Under this circumstance, the conventional technique will perform the fourth-order operation on the signal of the quadrature phase shift keying modulation system with fresh offset, and the following formula can be obtained: X(k)4=-|X(k)| 4 Yan, (Formula 2) It can be seen from Equation 2 that after the fourth power operation, the signal originally represents the phase portion (n) has been eliminated. In this case, after performing the Fast Fourier Transform (FFT) on Equation 2, in the frequency domain (frequenCy d〇main), there is only a high energy spectral line at Af. Therefore, the energy distribution of the line can be observed to obtain the frequency offset value Δί*. And so on, in the quadrature amplitude modulation (QAM) system, the number of constellation points is the most in the diagonal (ie, the phases are equal to w, 3π/4, ·_, and -3τγ/4). The energy is the strongest, so the above method can also be used to estimate the frequency offset value. 201203964 However, for a system having an interlaced constellation (_ _Ste_on) such as a 128 quadrature amplitude modulation modulation system, it is often impossible to lightly use the above-mentioned square wire to obtain a positive frequency offset value. As shown in Figure 2A, if the receiving end and the transmitting end do not have a frequency offset, then the signal of the positive 128QAM system has no star charm in four diagonals (as indicated by the dotted line area); and when there is a frequency offset , as shown in the first sinking diagram, 128 (the constellation point of the 3鸠 system will also rotate on the constellation diagram. As can be seen from Fig. 2A, since the system with the interlaced constellation has no constellation points before the four diagonals of the constellation diagram Therefore, when using the above method in frequency offset, 'significantly stronger spectral lines may not be obtained in the frequency domain. For example, please refer to Figure 2C, when 2C _ with valve offset, f knows - Qing m The signal of the secret signal is distributed in the frequency domain after the fourth power operation and the fast Fourier transform. As shown in Fig. 2C, the lines A and B have similar high energy. Therefore, on the correct == energy In the case where the difference is not obvious, the conventional technique must calculate a large number of fast Fourier transform operations to calculate more high-energy spectral lines at the correct frequency offset value. (4) Ϊ The above can be known as 'known technology. For quadrature amplitude modulation and frequency modulation with interlaced constellation With a large number of complex fast Fourier transform operations, the correct 'member bias value can be obtained. In view of this, the conventional technology is necessary for improvement. [Disclosed Summary] Frequency offset determination device and frequency offset Therefore, the main purpose of the present invention That is, a 201203964 frequency offset value judging method is provided, which can obtain the correct invention-disclosed frequency discriminating device through a simple step, and is used for determining a frequency offset situation in a receiving end of the communication system. The biasing device includes an arithmetic unit for performing a fourth power operation on the plurality of signal values to generate a plurality of quadratic signal values, and a frequency offset adjusting unit coupled to the computing unit for estimating a frequency offset a value, and adjusting (4) a plurality of quadratic signal values by a bias value to generate a plurality of frequency offset adjustment signal values; and a unit, a frequency offset adjustment unit, for determining a distribution on the plurality of frequency offset constellations And provide the judgment result until the frequency offset adjustment is 7G to adjust the frequency offset value. The medium deviation judgment method 'for a communication system - the receiving end.!!! ° Yun Yi' to generate Wei four The value of the secondary signal; the estimation: partial: = number of squares - the generation of a plurality of two-touch distribution, [Embodiment]: 彡考®3Fig. 3 is a record-reality of the frequency. The judging device 3Q includes a '30 yuan-and-area judging unit view;;"single-to-frequency offset adjustment single-semi-semi-speaking, early nose, early 疋3〇2, first signal, 201203964, Slg-, fourth-order operation, To generate a fourth power signal value % 4ih five ~ Sig-4th-n 'where η is a positive integer, and the signal value Sig_l~Sig frequency offset determining means 3 receives one of the input signals and samples at a sampling frequency Fs (1~η corresponds to the sampling point at different times). The frequency offset adjustment single it 3〇4 re-estimates the frequency offset value F0, and adjusts the four_human signal value Sig-4th with the frequency offset value F〇. 1~Sig-4th_n to generate frequency offset adjustment signal value

Sig—AdjJ〜Sig_Adj_n。於一實施例中’該頻偏值f〇之估測範圍可 依據該取樣_ FS而定。舉财之,當取樣頻率Fs為9GMHz時, 則F〇可估測為-45ΜΗζ+(90ΜΗζ)1,其中m為一預設之正整數, 其決定不同估測值之間隔;以及k為介於Q與m之間之整數 可隨每次估測來調整。 ’、 接著,區域判斷單元3〇6可根據頻偏調整訊號值% ^一Αφ—η於一星座圖上的分佈情形,判斷頻偏值阳是否估計正 斷單元—邮於齡之航Τ,該區域判 __ig-岭1 〜sig—^ 中位 2 卜圍部分(譬如可為圓心為該星座圖之中心之-預 ο又圓之圓外區域)之星座點是 分散於該外圍部分之各個隨,办於该外圍部分之部分區域還是 ^ Ο Λ «Γ , °"纟简鋪偏值是否估計正雄還是 在曰決如果區域判斷單元306判斷 即可依此頻偏值F0調整,以與 a確’則接收端 .判斷單元306判斷頻偏值頻率吻合;反之,如果區域 °十錯誤,則控制頻偏調整單元304 201203964 四次方訊號值 306判斷頻偏值FO是否 重新估計賴值F〇(譬如將k累進i),以重新調整Sig—AdjJ~Sig_Adj_n. In an embodiment, the estimation range of the frequency offset value f〇 may be determined according to the sampling_FS. For financial reasons, when the sampling frequency Fs is 9GMHz, F〇 can be estimated as -45ΜΗζ+(90ΜΗζ)1, where m is a predetermined positive integer, which determines the interval between different estimated values; The integer between Q and m can be adjusted with each estimate. Then, the area judging unit 3〇6 can determine whether the frequency offset value yang is estimated to be the unit of the aging period according to the distribution of the frequency offset adjustment signal value % ^ Α φ η on a constellation diagram. The region is judged to be __ig-ridge 1 sig-^ median 2 wei wei (for example, the center of the constellation is the center of the constellation - the outer circle of the circle) is scattered in the peripheral portion Each part of the peripheral part of the peripheral part is still ^ Γ Γ Γ ° ° ° ° ° ° ° ° 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 如果 如果 如果 如果 如果 如果 如果 如果And a; then the receiving end. The determining unit 306 determines that the frequency offset value frequency is consistent; otherwise, if the area ° is wrong, the control frequency offset adjusting unit 304 201203964 the fourth power signal value 306 determines whether the frequency offset value FO re-estimates the lag value. F〇 (for example, k is pushed into i) to re-adjust

Sig_4th_l〜Sig—4th—η ’再由區域判斷單元 正確。 在依據上訂,觀繼裝置3(狀量繁雜之 傅立葉變換運算’即可正確估測具有 、、 系統的頻偏。 &錯星叙正交振幅調變調變 以下將藉由第4A_4C圖來詳細說明頻偏判斷裝置%之工作原 理。百先,參考第4Α圖’第4Α圖係顯示在未有頻偏之情況下,第 从圖之訊號在四次方運算後於星座圖中之分佈。比較第圖及第 則之兩星座圖可觀察到,對128正交振巾崎調㈣統之訊號而 5,在未有頻偏的情況下,訊號值經過四次方運算後,星座圖中最 外圍的星座點會轉為只集中於部分區域。更具體而言,如圖从所 不’譬如將星賴之-預設圓之圓外部分成十六個區域時,星 座點可能會僅會出現於當中兩區域。 請繼續參考第犯圖及第€圖,第犯圖及第%圖分別為在 使用第2C圖中譜線a、B之頻率FA、FB為頻偏值f〇下,對有頻 偏之訊號值(其星朗如第2B騎示)進行難得到之賴調整訊 號值Sig—Adj」〜Sig—Adj_n於星座圖上之分佈示意圖。譜線A之頻 率FA為錯誤之賴值,而譜線B之頻率則為正確之賴值。於第 4C圖中’雖然譜線A、B之絕對值大小相近,但以譜線b之頻率_ 9 201203964 作為頻偏_(即™哪做調整時,由於譜線B之頻率為正確頻 偏值FO ’所以賴輕峨值綱於星朗上最賴只合集令 針六個區域當中之兩區域。反之,於第4B圖中,由於譜線曰八、之 頻率FA並非為正確頻偏值,所以以頻率FA作為頻偏值F0所獲 r 7整訊號值Sig—AdjJ〜sig_Adj_n於星座圖上最外圍處; 而分散於外圍各個區域,並不會如第4C圖中只集中於兩區域。 。之對於具有偏移之訊號,若將其進行四次方運算及正 確頻偏之調整而使得其頻偏校正為零後(即如第4C圖所示),則合盘 ί有頻偏而細次方運算之訊號類似(即如第4A圖所示),在星^圖 中最外圍處之星座點皆只集中於幾處而已。反之,對於具有偏移之 訊號’若將其進行四次方運算及錯誤頻偏之調整後(即如第4Β圖所 :)則在星座圖中之最外圍處之星座點,會旋轉而分散於外圍各 域0 由於星座圖之分佈情況與頻偏值之間具有上述之相關性 判斷裝置30因此可藉由星麵之分佈情絲制賴值。具 言’頻偏判^置3G可先髓雜值F〇,再依賴值f〇來調整 焱四-人方運算叙四:欠靠雜Sig—4th—iUj彳1 ,調整W值SilAdLl〜Sig—Adj_n於星座壯的分佈是否' 是分散,俾以判斷頻偏值FO是否估計正確抑或錯誤。上述_之 優點之-在於不需使用大量快速傅立賴換運算,即可正確估測具 有交錯星座之正交聽機觀》朗雜。 “ ’、 201203964 第5圖係顯示依— 刺斷所任實鈿例之—頻偏判斷流程50 ’以說明如行 判斷所估汁之頻偏值為正从明如何 斷裝置30之不同·m 顺觸^程50可對應頻偏判 含以下步驟: $ °如第5圖所示。頻偏判斷流程50包 步驟5〇0 :開始。Sig_4th_l~Sig-4th_η' is again determined by the area judging unit. On the basis of the order, the observation device 3 (the versatile Fourier transform operation) can correctly estimate the frequency offset of the system, and the amplitude of the system will be determined by the 4A_4C diagram. Explain in detail the working principle of the frequency deviation judging device %. For the first time, refer to the figure 4 of the 'Fig. 4' showing the distribution of the signals of the slave graph in the constellation diagram after the fourth power operation without the frequency offset. Comparing the two graphs of the first graph and the second graph, it can be observed that the signal is equal to the signal of the 128 orthogonal oscillating wiper (4), and in the case of no frequency offset, the signal value is subjected to the fourth power operation, and the constellation diagram The most peripheral constellation points in the middle will be converted to only part of the area. More specifically, if the image is not divided into the outer circle of the pre-defined circle into sixteen regions, the constellation points may only It will appear in the two areas. Please continue to refer to the map and the map. The map and the % map are the frequencies FA and FB of the spectrum lines a and B in the 2C diagram. For the signal value with frequency offset (the star is like the 2B riding), it is difficult to get the adjustment signal. The distribution of the values Sig_Adj"~Sig-Adj_n on the constellation diagram. The frequency FA of the spectral line A is the value of the error, and the frequency of the spectral line B is the correct value. In the 4C picture, although the spectrum The absolute values of the lines A and B are similar, but the frequency _ 9 201203964 of the line b is used as the frequency offset _ (that is, when the TM is adjusted, since the frequency of the spectral line B is the correct frequency offset value FO ' In the case of Xinglang, it is best to combine only two of the six regions of the needle. Conversely, in Figure 4B, since the frequency FA of the spectral line is not the correct frequency offset value, the frequency FA is used as the frequency offset. The value of the r 7 integer signal value Sig_AdjJ~sig_Adj_n obtained at the value F0 is at the outermost periphery of the constellation diagram; and the dispersion in the peripheral regions is not concentrated in the two regions as in the 4Cth picture. The signal, if it is subjected to the fourth power operation and the correct frequency offset adjustment so that its frequency offset is corrected to zero (that is, as shown in Fig. 4C), the signal of the combination of the frequency offset and the fine square operation is similar. (As shown in Figure 4A), the constellation points at the outermost periphery of the star map are concentrated only in a few places. For the signal with offset 'If it is subjected to the quadratic operation and the error frequency offset (that is, as shown in Fig. 4), the constellation points at the outermost periphery of the constellation will rotate and spread around the periphery. Each domain 0 has a correlation value judging device 30 between the distribution of the constellation diagram and the frequency offset value, so that the value of the star surface can be determined by the distribution of the star surface. F〇, and then rely on the value f〇 to adjust the four-human algorithm: four, rely on the miscellaneous Sig—4th—iUj彳1, adjust the W value SilAdLl~Sig—Adj_n in the distribution of the constellation is 'distributed,俾It is judged whether the frequency offset value FO is estimated to be correct or wrong. The advantage of the above-mentioned _ is that it is possible to correctly estimate the orthogonal listening machine view with the interlaced constellation without using a large number of fast Fourier transform operations. " ', 201203964, the fifth picture shows the basis of the actual example of the puncturing - the frequency deviation judgment process 50 ' to explain the difference in the frequency deviation of the estimated juice as determined by the line. The following steps can be performed for the frequency offset judgment: $ ° as shown in Fig. 5. The frequency offset judgment flow 50 package step 5〇0: start.

步驟5〇2 :對訊號值SigJ〜Sig』進行四次方運算,以產生四 次方訊號值 Sig_4th_l 〜Sig_4th_n。 步驟504 ·估計頻偏值F〇,並以頻偏值f〇調整四次方訊號值 4th—1〜Sig一4th一η ’以產生頻偏調整訊號值Step 5〇2: Perform a fourth power operation on the signal values SigJ~Sig to generate quadratic signal values Sig_4th_l~Sig_4th_n. Step 504: Estimating the frequency offset value F〇, and adjusting the fourth power signal value 4th-1~Sig-4th_η' by the frequency offset value f〇 to generate the frequency offset adjustment signal value.

Sig—Adj—Ι 〜Sig—Adj—η。 步驟506 :將星座圖最外圍分為區域RG_1〜RG」6,判斷是否 區域RG一 1〜RGJ6皆有星座點。若是,則進行步驟 504以重新估計頻偏值F〇 ;若否,則進行步驟5〇8。 步驟508:判斷區域RGJ〜RG」6中有星座點之區域所包含之 星座點數是否大於一預設值。若是,則進行步驟 510 ;若否,則進行步驟504以重新估計頻偏值FO。 步驟510 :結束。 須注意,於步驟506中,星座圖之最外圍可取為一預設圓(如第 4B圖及第4C圖所示之圓)之外圍區域,其中此預設圓之預設半徑在 將訊號值Sig_l〜Sig_n進行正規化(譬如平均功率可正規化至1)後 "設定為一可由經驗或實驗取得之固定值。 201203964 須注意’於此特定實施例中,係先判斷 舰峨如16個_)械—_編每之一複者數 白為非零區域)’若㈣每—麵零_ 否大於-預設值,以判斷星座點是 』之數目疋 处夕相鐘日r K疋分散,進而判斷所預 =之頻偏值疋R確或錯誤。易言之,此兩觸條件賴皆符合才 糾斷星麵為針(即所珊之賴為正確)H於其餘實施 例中,可依需祕改讀更上祕件,私是結合朗設額外之不 同判斷條件,來判斷星座點是集中或是分散。 此外,亦須注意,此實施例係將星座關分為16個具有相同圓 。角之區域RG—1〜rg_16來作說明,然而於其他實施例中,可將 星座圖最外圍分為更多或更少區域(譬如為4、8、32…等4之倍數), 以對頻偏值達不同精確度之估計。頻偏判斷流程5〇之其餘細節與第 3圖之說明大致雷同,在此不予贅述,以求簡潔。 於第5圖之步驟506中,將星座圖最外圍分為區域 RG一 16 ’判斷是否區域RG一1〜RG_16皆有星座點之步驟,可包含 一區域決定流程60,用來決定星座點之所在區域。如第6圖係顯示 依據一實施例之區域決定流程60,其包含以下步驟: 步驟600 :開始。 步驟602 :將頻偏調整訊號值Sig_Adj_x之星座點轉換至星座 圖之一第一象限,再投影至一單位圓上(x=l〜η之整 12 201203964 數)。 步驟604 :根據於單位圓上座標來判斷其於區域RGj〜rg_16 中所在之區域。 步驟606 :結束。 關於區域決定流程60之操作,可參考第7圖,第7圖為依據一 實施例之頻偏調整訊號值Sig一Adj_x之星座點所在區域決定之示意 圖。將頻偏調整訊號值Sig—Adj_x之星座點轉換至星座圖之第一象 限後可得星座點C,再將星座點c投影至單位圓上得星座點D,經 由星座點D所在之區域及頻偏調整訊號值sig_Adj_x之星座點一開 始所在之象限’可判斷頻偏調整訊號值§ig一Adj_x之星座點於區域 RG_1〜RG_16中所在之區域。轉換象限之優點之一係在於使計算過 程簡化,因為無論頻偏調整訊號值Sig—A(y—χ之星座點原本位於星 座圖之之哪一象限,經轉換後皆可以實施類似之投影及判斷程序。 第8圖為依據一實施例之第6圖中根據於單位圓上座標來判斷 星座點於區域RG—1〜RG_16中所在之區域之步驟604之示意圖。 首先可將星座點之χ座標(或y座標)由〇〜〗映射至〇〜]^^[為一大於 1之正整數,4如為256)。接下來,若星座點之x座標介於237〜256 時,則可判斷星座點經轉換象限後位於第一象限之區域RG 1 ;若χ 座標介於182〜236時,則可判斷星座點經轉換象限後位於第一象限 之區域RG_2 ’若χ座標條99〜181時,則可騎星座點鋪換象 限後位於第-象限區域RG—3(或其他象限之對應區域);以及若以 13 201203964 ^ 斷星座點經轉換象限後位於苐―象限之區域 i 絲__^tWuSlg_Adj—x 之星龜 來決疋星絲_絲限叙所祕域。 貫際象限 值得注意的是,本發明主要精神之一 依頻偏值ro聰4,崎賴碰峨㈣丨=F〇’再 2座Γ星虹的分雜形,__紐;〇衫估^^ =Γ!ΓΓ請估収麵,接收端㈣此頻偏請 與傳送端頻率吻合;反之,於判斷頻偏值F0估計錯誤時, 可控制頻偏調整單元3G4細_偏細並再進行觸。因此, 本發明不需使用大量快速傅立葉變換運算,即可正確估測具有交錯 星座之正交振幅調變調變系統的頻偏。 此外’亦須注意,本領域具通常知識者當可依上述精神修改或 變化而不限於上述實施例之說明。舉例來說,本發明並不限於應用 於上述實施例之⑶正交振幅調變調變系統,其它如32正交振幅調^ 變調變系統、512正交振幅調變調變系統等具有交錯星座之正交振 幅調變調變系統皆適用。更進一步而言,本發明亦不限於具有交錯 星座之正交振幅調變調變系統,其它可依本發明概念估計頻偏之系 統皆可適用。 另外,決定判斷頻偏調整訊號值Sig Adj wsig Adj n之星座 點於區域RG—丨〜RG_16中所在之區域之方法,亦不限於轉換骂 . 14 201203964 之方式,只要能確定所在區域 -象限後投射至單位gj上再進行判斷 即可。 另二’可採用種種不同方式來估測及調整頻偏值。孽如於以上 ^來Γ據單次星座圖之分佈情況所得的峨結果是否正確 或―,來決定是否重新調整頻偏值F0,而 =1。然而,亦可依據多次對應不同頻偏蚊 分佈情況作出-判斷結果,並依其來重新調整 不限於映的賴值變化量。 ㈣調整也Sig—Adj—Ι~Sig—Adj—η. Step 506: Divide the outermost periphery of the constellation map into regions RG_1 RG RG"6, and determine whether the regions RG-1 to RGJ6 have constellation points. If yes, proceed to step 504 to re-estimate the frequency offset value F〇; if not, proceed to step 5〇8. Step 508: Determine whether the number of constellation points included in the region of the constellation point in the region RGJ to RG"6 is greater than a preset value. If yes, proceed to step 510; if no, proceed to step 504 to re-estimate the frequency offset value FO. Step 510: End. It should be noted that in step 506, the outermost periphery of the constellation diagram may be a peripheral area of a preset circle (such as the circle shown in FIG. 4B and FIG. 4C), wherein the preset radius of the preset circle is at the signal value. Sig_l~Sig_n is normalized (for example, the average power can be normalized to 1) and then set to a fixed value that can be obtained by experience or experiment. 201203964 It should be noted that in this particular embodiment, it is first determined that the ship such as 16 _) machinery - _ each of the multiples is a non-zero area) 'If (four) per - face zero _ no greater than - preset The value is determined by judging that the constellation point is the number of 疋 相 相 r , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , It is easy to say that the two-touch condition is consistent with the correction of the star surface as the needle (that is, the reliance on the mountain is correct). In the other embodiments, the secret can be read and changed according to the needs of the secret. Additional different judgment conditions are used to determine whether the constellation points are concentrated or scattered. In addition, it should be noted that this embodiment divides the constellation into 16 having the same circle. The corner regions RG-1 to rg_16 are described. However, in other embodiments, the outermost portion of the constellation can be divided into more or less regions (for example, multiples of 4, 8, 32, etc., 4). The frequency offset value is estimated to be different in accuracy. The remaining details of the frequency deviation judging process 5 are substantially the same as those of the third drawing, and will not be described here for brevity. In step 506 of FIG. 5, the step of dividing the outermost periphery of the constellation into regions RG-16' to determine whether the regions RG-1 to RG_16 have constellation points may include a region determining process 60 for determining constellation points. your region. Figure 6 shows a region decision process 60 in accordance with an embodiment comprising the following steps: Step 600: Start. Step 602: Convert the constellation point of the frequency offset adjustment signal value Sig_Adj_x to the first quadrant of the constellation diagram, and then project it to a unit circle (x=l~η, the whole 12 201203964 number). Step 604: Determine the area in the area RGj~rg_16 according to the coordinate on the unit circle. Step 606: End. For the operation of the area decision process 60, reference may be made to FIG. 7, which is a schematic diagram of the determination of the area of the constellation point of the frequency offset adjustment signal value Sig_Adj_x according to an embodiment. Converting the constellation point of the frequency offset adjustment signal value Sig_Adj_x to the first quadrant of the constellation diagram to obtain the constellation point C, and then projecting the constellation point c onto the unit circle to obtain the constellation point D, and the region where the constellation point D is located and The quadrant of the frequency offset adjustment signal value sig_Adj_x at the beginning of the constellation point can determine the frequency offset adjustment signal value § ig - Adj_x constellation point in the region where the region RG_1 ~ RG_16. One of the advantages of the conversion quadrant is to simplify the calculation process, because regardless of the frequency offset adjustment signal value Sig-A (where the constellation point of the y-χ is originally located in the quadrant of the constellation diagram, similar projections can be implemented after conversion. Fig. 8 is a diagram showing a step 604 of judging the region where the constellation points are located in the regions RG-1 to RG_16 according to the coordinates on the unit circle in Fig. 6 according to an embodiment. The coordinates (or y coordinates) are mapped from 〇~〗 to 〇~]^^[is a positive integer greater than 1, 4 is 256). Next, if the x coordinate of the constellation point is between 237 and 256, it can be determined that the constellation point is in the first quadrant region RG 1 after the conversion quadrant; if the coordinate is between 182 and 236, the constellation point can be judged. After the transition quadrant is located in the first quadrant region RG_2 'if the squatting bars 99 to 181, the constellation point can be placed in the quadrant region RG-3 (or the corresponding region of the other quadrant) after riding the quadrant; and if 13 201203964 ^ The constellation point is in the region of the 苐-quadrant after the transition quadrant. i __^tWuSlg_Adj-x star tortoise to determine the secret domain of the silk _ silk limit. It is worth noting that the main quadrant of the present invention is based on the frequency offset value of the Cong 4, and the stagnation of the 峨 赖 四 四 四 四 四 四 四 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再^^ =Γ!ΓΓPlease estimate the face, the receiving end (4), this frequency offset should match the frequency of the transmitting end; conversely, when it is judged that the frequency offset value F0 is estimated incorrectly, the frequency offset adjusting unit 3G4 can be controlled to be fine_small and re-performed touch. Therefore, the present invention can correctly estimate the frequency offset of the quadrature amplitude modulation modulation system having the interlaced constellation without using a large number of fast Fourier transform operations. In addition, it should be noted that those skilled in the art can modify or change in the above-described spirit and are not limited to the description of the above embodiments. For example, the present invention is not limited to the (3) quadrature amplitude modulation modulation system applied to the above embodiments, and other such as 32 orthogonal amplitude modulation modulation system, 512 orthogonal amplitude modulation modulation system, etc. The AC amplitude modulation modulation system is applicable. Furthermore, the present invention is not limited to a quadrature amplitude modulation modulation system having an interlaced constellation, and other systems that can estimate the frequency offset according to the inventive concept are applicable. In addition, the method for determining the region where the constellation point of the frequency offset adjustment signal value Sig Adj wsig Adj n is located in the region RG_丨~RG_16 is not limited to the conversion method. 14 201203964, as long as the region can be determined - after the quadrant Projection to the unit gj and then judge. The other two can use different methods to estimate and adjust the frequency offset value. For example, if the result of the distribution of the single constellation is correct or ―, to determine whether to re-adjust the frequency offset value F0, and =1. However, it is also possible to make a judgment result based on a plurality of distributions of different frequency-specific mosquitoes, and to re-adjust the amount of change that is not limited to the reflection. (4) Adjustment also

整體而言,判斷頻偏調整訊號值sig_AdjJ 的分佈情形之方法並不限於上述實施例之方式,3 月匕》星座圖之分佈情形來判斷具有頻率偏移之 有頻率偏移之四吹太4咕括Μ^ 万。凡號值與未 確或錯誤即可^Τ值的不同,以確定頻偏值F0是否估計正 或是頻偏值L 論是判斷頻偏值正確與否之判斷條件, 估測方式或調整方式’均可依其需要而設定。 須庄思,本發明之頻偏判斷裝置及頻偏判斷 不同態樣來實施。舉例而言,於一實施例中,=種種 媒體可包含用於致使—處理器(譬如為—中央處取記錄 示之頻偏剌齡士、+ A 心王裔)執仃如圖5所 丨斷方法之夕個指令。該電腦可讀取媒體例如 貝抖庫,或是熟習本領域之通常之通常知識者所習知之任何= 15 201203964 它儲存媒體 電:如圖5所示之影像校正方法亦可以- 電腦程^產。所」現,在—電腦載人該電腦程式產品並執行該 電腦=產。α所包δ之概個齡後,即可執行影像校正方法 述之=从產品可儲存於—可讀取記錄媒財。此外,前^ 之電腦程式產品亦可透過網路傳輸。 " 統 在習知技射,對於具有交錯星麵之正交振幅調變調變系 必須使用大量複雜的快速傅立葉變換運算,才能得到正確頻 值。她之下,上述實施例絲估頻偏值F〇並依所預估之頻偏值 FO來膽後’即可依據頻偏調整訊號值KiUb之 星座點於星座圖上的分佈情形來判斷頻偏值是否估計正確或錯 ^ 上述實施例並不需使用A量繁雜之快速傅立葉 曰, 而可透過較簡易之步驟,即能正確估測頻偏。 ”、 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍 所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 第1A圖為習知-正交相移鍵控調變祕之訊號於—星座圖之 分佈示意圖。 16 201203964 第1B圖為第1A圖中正交相移鍵控調變系統之訊號具有頻率偏 移時’於一星座圖之分佈示意圖。 第2Α圖為習知-128正交振幅調變調變系統之訊號於一星座 圖之分佈示意圖。 Α 第2Β圖為第2Α圖中⑶正交振幅調變調變系統之訊號具有頻 率偏移時,於一星座圖之分佈示意圖。 、 第2C圖為具有頻率偏料,習知…紅交振幅調變調變系 φ '統之訊號經過四次方運算及快速傅立葉變換後於頻域上之分佈示意 圖。 第3圖為依據-實施例之—頻偏判斷裝置之示意圖。 第4Α圖係顯示在未有頻偏之情況下,第2Α圖之訊號在四次方 運算後,星座圖中之分佈;以及第4Β圖及第4c圖分別為依第% 圖中一 5酱線之頻率為頻偏值時,頻# W坶凋整讯旒於星座圖上之分佈示 意圖。 第5圖為依據一實施例In general, the method for determining the distribution of the frequency offset adjustment signal value sig_AdjJ is not limited to the manner of the above embodiment, and the distribution of the constellation diagram of March 来 is judged to have a frequency offset of the frequency offset of the four blows 4咕 Μ ^ Wan. If the value of the number is different from the value of the error or the error, it is determined whether the frequency offset value F0 is estimated or the frequency offset value is the judgment condition for determining whether the frequency offset value is correct or not, and the estimation method or adjustment method. 'Can be set according to their needs. Suzhuang Si, the frequency offset judging device of the present invention and the frequency offset judging are implemented in different aspects. For example, in one embodiment, = various media may be included to cause the processor (for example, the frequency of the middle of the record to be recorded, the + A heart of the king), as shown in Figure 5. An instruction on the night of the method. The computer readable medium, such as the Bayer library, or any of the common knowledge of those of ordinary skill in the art = 15 201203964 It stores media power: the image correction method shown in Figure 5 can also be - computer program . Now, the computer is carrying the computer program product and executing the computer = production. After the age of α is included in the δ, the image correction method can be executed. The data can be stored in the product. In addition, the computer products of the former ^ can also be transmitted over the network. In the conventional technique, for a quadrature amplitude modulation system with interlaced stars, a large number of complex fast Fourier transform operations must be used to obtain the correct frequency. Under her, the above embodiment estimates the frequency offset value F〇 and determines the frequency according to the distribution of the constellation points of the frequency offset adjustment signal value KiUb according to the estimated frequency offset value FO. Whether the bias value is estimated to be correct or wrong ^ The above embodiment does not need to use the A-complex fast Fourier transform, and the frequency offset can be correctly estimated through a relatively simple step. The above description is only the preferred embodiment of the present invention, and all the equivalent changes and modifications made by the scope of the present invention should be covered by the present invention. [Simplified Schematic] FIG. 1A is a Schematic diagram of the distribution of the signal-constellation diagram of the known-quadrature phase-shift keying. 16 201203964 Figure 1B shows the signal of the quadrature phase shift keying modulation system in Fig. 1A with frequency offset. Schematic diagram of the distribution of the constellation diagram. The second diagram is a schematic diagram of the distribution of the signal of the conventional-128 orthogonal amplitude modulation modulation system in a constellation diagram. Α The second diagram is the signal of the (3) quadrature amplitude modulation modulation system in the second diagram. When there is a frequency offset, the distribution diagram of a constellation diagram is shown. The 2C diagram is a frequency offset material. It is known that the red-crossing amplitude modulation modulation system φ 'the signal of the system is subjected to the fourth power operation and the fast Fourier transform. Schematic diagram of the distribution in the frequency domain. Fig. 3 is a schematic diagram of the frequency offset judging device according to the embodiment. The fourth graph shows that in the case of no frequency offset, the signal of the second graph is after the fourth power operation. Distribution in the constellation; The first and second FIG 4Β FIG. 4c, respectively depending on the frequency of a 5% paste line drawing is the offset value, the frequency adjustment is # W Mu hearing schematic tassel distributed on the constellation of FIG. 5 a graph of the embodiment according to Example

,丨雨到斲流程之示意圖。 第6圖為依據一實施例之第5阁 吐、 乐5圖之一區域決定流程之示意圖。 第7圖為依據一實施例之第6国> ^ 圖之頻偏調整訊號值之星座點所 在區域決定之示意圖。 第8圖為依據一實施例之第 頻偏調整步驟所在區域之示意圖 圖之根據於單位圓上座標來判斷 【主要元件符號說明】 201203964 30 頻偏判斷裝置 302 運算單元 304 頻偏調整單元 306 區域判斷單元 50 > 60 流程 500〜510、600〜606 步驟 Sig_l 〜Sig 一 η 訊號值 Sig_4t:h_l 〜Sig_4tti—η 四次方訊號值 Sig_Adj_l 〜Sig_Adj_n 頻偏調整訊號值 A、B 譜線 C、D 星座點 RG 1 〜RG 4 區域 18, the rain to the schematic diagram of the process. Fig. 6 is a view showing a flow of determining a region of a fifth cabinet and a music map according to an embodiment. Fig. 7 is a diagram showing the determination of the region of the constellation point of the frequency offset adjustment signal value according to the sixth country> FIG. 8 is a schematic diagram of a region in which the frequency offset adjustment step is performed according to an embodiment, and is determined according to coordinates on a unit circle. [Main component symbol description] 201203964 30 Frequency offset determination device 302 Operation unit 304 Frequency offset adjustment unit 306 region Judging unit 50 > 60 Flows 500 to 510, 600 to 606 Steps Sig_l to Sig - n Signal value Sig_4t: h_l ~ Sig_4tti - η Quadratic signal value Sig_Adj_l ~ Sig_Adj_n Frequency offset adjustment signal value A, B Spectrum C, D Constellation point RG 1 ~ RG 4 area 18

Claims (1)

201203964 七 2. 、申請專利範圍: :種判斷裝置,用於-通訊系統的-接收端,包含有: ’算單元帛來對複數個訊號值進行四次方運算,以產生複 數個四次方訊號值; 一頻偏調整單元,_於該運算單元,用來估計—頻偏值,並 以麵偏值調整該複數個四次方訊號值,以產生複數 偏調整訊號值;以及 £域判斷單元’触於賴偏罐單元,用來該複數個 頻偏調整訊號值於一星座圖上的分佈情形,並提供判斷結 果至該頻偏調整單元來調整該頻偏值。 ^^項1所述之賴判斷裝置,其巾該區域判斷單域依據 ’丈個頻偏調整訊號值位於該星座圖上之-外_分之星座 點來執行下列操作至少之一者: * 2該等1座點是谢於該外圍部分之部分區域,來判斷該 頻偏值是否估計正確;以及 頻魅^^座點分散_外圍部分之各個區域,來判斷該 頻偏值是否估計錯誤。 =求们所述之頻偏判斷裝置,其中若域騎單元判斷 2座圖上-預設圓之外之複數個區域並非皆為非零區域且每 個非零區域内之星座缝皆大於_預設值時,舰區域判斷 19 201203964 單元判斷該頻偏值為估計正蜂。 4. 個非零區域内之星絲數3=二域皆為非零區域,或每一 斷單元判斷^ Γ—預設值時, 則§亥區域判 5_ 如請求項1所述之頻偏判斷裝置 該頻偏值估計錯誤時,則控制該 值。 ,其中於該區域判斷單元判斷 頻偏調整單元重新估計該頻偏201203964 VII. 2. Patent application scope: The judgment device is used for the - receiving end of the communication system, and includes: 'A calculation unit 进行 to perform a quadratic operation on a plurality of signal values to generate a plurality of fourth powers a signal offsetting unit, wherein the frequency shifting unit is configured to estimate a frequency offset value, and adjust the plurality of quadratic signal values by a surface offset value to generate a complex offset signal value; and a domain determination The unit is adapted to the distribution of the plurality of frequency offset adjustment signal values on a constellation diagram, and provides a determination result to the frequency offset adjustment unit to adjust the frequency offset value. The method of determining the device according to Item 1 is to perform at least one of the following operations according to the constellation point of the outer-point of the frequency-adjusted signal value on the constellation diagram: 2 These 1 point are thanked for the partial area of the peripheral part to judge whether the frequency offset value is estimated correctly; and the frequency enchantment ^^ coordinates scattered _ peripheral parts of each part to determine whether the frequency offset value is estimated incorrectly . = The frequency deviation judging device described in the above, wherein if the domain riding unit judges that the plurality of regions other than the preset circle on the two-seat map are not all non-zero regions and the constellation seams in each non-zero region are larger than _ At the preset value, the ship area judgment 19 201203964 unit determines that the frequency offset value is an estimated positive bee. 4. The number of stars in a non-zero region is 3 = the two domains are non-zero regions, or each broken cell judges ^ Γ - the default value, then the § hai region judges 5_ as described in claim 1 When the judging device estimates the frequency offset value, the value is controlled. , wherein the determining unit determines that the frequency offset adjusting unit re-estimates the frequency offset 6· =求項2所述之頻偏判斷裝置,其中該區 油頻偏游訊卜之星座點,轉換至; 象限後’砂至-單位圓上,根據所對應座標觸該等星座 點所在的區域。 7’ ==之頻偏判斷裝置’其中該通訊系統係-正交振 8.如明求項6所述之頻偏判斷裝置,其中該區域判斷單元判斷該 複數個頻偏調整訊號值中位於該星座圖上之一預設圓外之Μ 個區域中之2個區域内之星座點數大於一預設值時,判斷該頻 偏值估計正確。 20 201203964 頻率偏 9· 一種頻偏判斷方法’用於一通訊系統的一接收端中判斷 移情形,包含有: 對複數個訊缝進行四次方運算,减生複數個四次方訊號值; 十頻偏值並以該頻偏值調整該複數個四次方訊號值,以 產生複數個頻偏調整訊號值;以及 判斷趣數個頻偏調整訊號值於一星座圖上的分佈情形,並依 據判斷結果來調整該頻偏值。 10.=求項^所述之頻偏判斷方法,其中判斷該複數個頻偏調整 :3於:星座圖上的分佈情形之步驟係包括依據該複數個頻 偏調1訊號值位於該星座圖上之一外圍部分之星座 列步驟至少之一者: 等星座點是否集中於該外圍部分之部分區域’來 頻偏值是否估計正確;以及 斷°/ 判斷該等星_衫分散贿賴部分之各個 頻偏值是雜計錯誤。 η· 頻偏判斷方法,其中判斷該複數個頻偏調整 ί ==:形之步驟係包括,星座圖 預。又圓之外之複數個區域並非皆為 =内之星座點數皆大於-預設值時,則判斷該頻偏值 21 201203964 !2.如請求項9所述之頻偏判斷方法,其中判斷該複數個頻偏調整 訊號值於該星座®上的分佈獅之步驟係包括:若判斷該星座 圖上-預設圓之外之複數個區域皆為非零區域,或每一個^ 星座點數並料大於一預設斷該頻偏值: 估§十错誤。 Π·如請求項9所述之頻偏判斷方法,其中判斷該複數個頻偏調整 喊值於該星座圖上的分佈情形之步驟係包括:若判斷該倾籲 值估計錯誤,則控制該頻偏調整單元重新估計該頻偏值。 14. 如凊求項10所述之頻偏判斷方法,其中判斷該複數個頻偏調整 峨值於該星朗上的分佈情形之步驟係包括:將該複數個 偏調整訊號值中位於該預設圓外之星座點,轉換至—第一象限 後,投影至-單位圓上’根據麟應鋪觸料星座點 的區域。 ‘”叮任 15. 如凊求項9所述之頻偏判斷方法,其中該通訊系統係一 幅調變調變系統。 、 •如:月求項15所述之頻偏判斷方法’其中判斷該複數個頻偏調整 況號值於職麵上的分鑛狀步·包括:當_ 個頻偏調整訊號值中位於該星座圖上之—預設圓外之Μ無 22 201203964 域甲之2個區域内之星座點數大於一預設值時,則判斷該頻偏 值估計正確。 17. 一種電腦可讀取記錄_,包含麟致使—處理器執行如申請 專利範圍第9項所述之頻偏判斷方法之多個指令。 利範 八、圖式: 236· = the frequency offset judging device described in item 2, wherein the constellation points of the oil frequency deviation in the region are converted to; after the quadrant, the sand is on the unit circle, and the constellation points are touched according to the corresponding coordinates. Area. A frequency offset judging device of 7' == wherein the communication system is a frequency offset judging device according to claim 6, wherein the region judging unit judges that the plurality of frequency offset adjustment signal values are located When the number of constellation points in two of the regions outside the preset circle on the constellation map is greater than a preset value, it is judged that the frequency offset value is estimated correctly. 20 201203964 Frequency offset 9 · A frequency offset determination method is used for determining a shift situation in a receiving end of a communication system, comprising: performing a quadratic operation on a plurality of seams, and subtracting a plurality of quadratic signal values; a ten-frequency offset value and adjusting the plurality of quadratic signal values by the frequency offset value to generate a plurality of frequency offset adjustment signal values; and determining a distribution of the interesting frequency offset adjustment signal values on a constellation diagram, and The frequency offset value is adjusted according to the judgment result. 10.=The method of determining the frequency offset according to the item ^, wherein determining the plurality of frequency offset adjustments: 3: the step of distributing the constellation diagram comprises: locating the constellation according to the plurality of frequency offset 1 signal values At least one of the constellation steps of the upper peripheral portion: whether the constellation point is concentrated in a part of the peripheral portion, or whether the frequency offset value is estimated correctly; and the determination of the star_shirt disperses the bribe portion Each frequency offset value is a miscellaneous error. η· frequency offset judging method, wherein judging the plurality of frequency offset adjustments ί ==: the step of the step includes: constellation pre-. If the number of constellation points other than the circle is not all = the number of constellation points is greater than - the preset value, the frequency offset value is judged 21 201203964 !2. The frequency offset judging method described in claim 9 is judged The step of distributing the plurality of frequency offset signal values on the constellation® includes: determining that the plurality of regions other than the preset circle on the constellation are non-zero regions, or each of the constellation points The material is greater than a preset to break the frequency offset value: Estimate § ten errors. The method of determining a frequency offset according to claim 9, wherein the step of determining a distribution of the plurality of frequency offset adjustment values on the constellation includes: if the panning value is determined to be incorrect, the frequency is controlled The offset adjustment unit re-estimates the frequency offset value. 14. The frequency offset determination method according to claim 10, wherein the step of determining a distribution of the plurality of frequency offset adjustment thresholds on the satellites comprises: placing the plurality of offset adjustment signal values in the pre-predetermined Set the constellation point outside the circle, after converting to the first quadrant, project onto the -unit circle 'according to the area where the lining should touch the constellation points. A method for determining a frequency offset according to claim 9, wherein the communication system is a modulation modulation system, and, for example, a frequency offset determination method described in Item 15 A plurality of frequency offset adjustment condition values are assigned to the sub-mineral steps on the job plane. Included: when the _ frequency offset adjustment signal values are located on the constellation map - the preset circle is outside the 22 22 22 22 22 22 22 22 22 When the number of constellation points in the area is greater than a preset value, it is judged that the frequency offset value is estimated correctly. 17. A computer readable record _, including a linguistic processor-processor executing the frequency as described in claim 9 Multiple instructions for the partial judgment method. Li Fan VIII, schema: 23
TW99122448A 2010-07-08 2010-07-08 Frequency offset determination device and frequency offset determination method TW201203964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99122448A TW201203964A (en) 2010-07-08 2010-07-08 Frequency offset determination device and frequency offset determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99122448A TW201203964A (en) 2010-07-08 2010-07-08 Frequency offset determination device and frequency offset determination method

Publications (1)

Publication Number Publication Date
TW201203964A true TW201203964A (en) 2012-01-16

Family

ID=46756484

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99122448A TW201203964A (en) 2010-07-08 2010-07-08 Frequency offset determination device and frequency offset determination method

Country Status (1)

Country Link
TW (1) TW201203964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109120568A (en) * 2018-08-31 2019-01-01 北京邮电大学 Based on frequency shift (FS) determination, removing method, device and the electronic equipment of cluster

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109120568A (en) * 2018-08-31 2019-01-01 北京邮电大学 Based on frequency shift (FS) determination, removing method, device and the electronic equipment of cluster
CN109120568B (en) * 2018-08-31 2020-04-03 北京邮电大学 Clustering-based frequency offset determining and eliminating method and device and electronic equipment
US11218354B2 (en) 2018-08-31 2022-01-04 Beijing University Of Posts And Telecommunications Clustering-based frequency deviation determination and elimination method and device, and electronic apparatus

Similar Documents

Publication Publication Date Title
JP6345750B2 (en) Apparatus and method for phase synchronization of a local oscillator in a transceiver
US5726973A (en) Method and arrangement for synchronization in OFDM modulation
US7010278B2 (en) Sideband suppression method and apparatus for quadrature modulator using magnitude measurements
US20140270001A1 (en) Quadrature error detection and correction
US20140099907A1 (en) Rugged iq receiver based rf gain measurements
CN103262488B (en) Controllable frequency offset for inphase and quadrature (IQ) imbalance estimation
US9438464B2 (en) System and method for IQ imbalance estimation
US10027513B2 (en) Anti-aliasing channel estimation apparatus and method and receiver
TWI463847B (en) Transceiver iq calibration system and associated method
JP2007267345A (en) Transmitter and carrier leak detection method
CN104486272A (en) Feedback signal correcting method and device
JP6340207B2 (en) Nonlinear distortion detector and distortion compensation power amplifier
US20070280380A1 (en) Method and device for compensating inphase-quadrature (iq) imbalance
EP2765719B1 (en) Signal processing device and signal processing method
TW201230736A (en) Polar transmitter and related signal transmitting method
US9191190B2 (en) Methods and apparatus for digital host-lock mode in a transceiver
TW201203964A (en) Frequency offset determination device and frequency offset determination method
US11374669B2 (en) Phase spectrum based delay estimation method and module
US20120109548A1 (en) Measurement apparatus, measurement method and recording medium
TWI504188B (en) Signal processing device and method thereof and method of determining whether spectrum of multicarrier signal is inverted or not
TW201442472A (en) Receiver with inphase-quadrature imbalance compensation and inphase-quadrature imbalance compensation method thereof
BR112018016564B1 (en) METHOD ON A RECEIVER CIRCUIT OF PROCESSING A SIGNAL
US8660209B2 (en) Transmitter and frequency deviation reduction method thereof
KR101806646B1 (en) Apparatus and method for receiving optical coherent
TWI635719B (en) Apparatus and method for estimating carrier frequency offset