TW201203587A - High photoelectric conversion efficiency laminated type solar cell and manufacturing method thereof - Google Patents

High photoelectric conversion efficiency laminated type solar cell and manufacturing method thereof Download PDF

Info

Publication number
TW201203587A
TW201203587A TW099122560A TW99122560A TW201203587A TW 201203587 A TW201203587 A TW 201203587A TW 099122560 A TW099122560 A TW 099122560A TW 99122560 A TW99122560 A TW 99122560A TW 201203587 A TW201203587 A TW 201203587A
Authority
TW
Taiwan
Prior art keywords
layer
electrode
transparent substrate
solar cell
infrared light
Prior art date
Application number
TW099122560A
Other languages
Chinese (zh)
Other versions
TWI449199B (en
Inventor
Yee-Shyi Chang
Yu-Hai Liu
Chi-Jen Liu
Original Assignee
An Ching New Energy Machinery & Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by An Ching New Energy Machinery & Equipment Co Ltd filed Critical An Ching New Energy Machinery & Equipment Co Ltd
Priority to TW099122560A priority Critical patent/TWI449199B/en
Publication of TW201203587A publication Critical patent/TW201203587A/en
Application granted granted Critical
Publication of TWI449199B publication Critical patent/TWI449199B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A high photoelectric conversion efficiency laminated type solar cell and a manufacturing method thereof are provided. A first transparent substrate is provided. A first electrode is formed on the first transparent substrate. At least one stacked semiconductor structure is formed on the first electrode, wherein each stacked semiconductor structure includes a p-type semiconductor layer, an intrinsic layer and an n-type semiconductor layer. The intrinsic layer is between the p-type semiconductor layer and the n-type semiconductor layer. A second electrode is formed on the stacked semiconductor structure. A second transparent substrate is provided. An infrared light conversion layer for converting an infrared light to a visible light is formed on the second transparent substrate. An adhesive layer is formed on the infrared light conversion layer and/or the second electrode. The first transparent substrate and the second transparent substrate are laminated.

Description

201203587201203587

DC/I 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種太陽電池及其製造方法,且特別 是有關於一種高光電轉換效率(photoelectric eoiwei*si〇n efficiency ’ PCE)的壓合型太陽能電池及其製造方法。 【先前技術】 太陽能是一種乾淨無污染而且取之不盡用之不竭的 能源’在解決目前石化能源所面臨的污染與短缺的問題 時,一直是最受矚目的焦點。由於太陽能電池可直接將太 陽能轉換為電能,因此成為目前相當重要的研究課題。 矽基太陽能電池為業界常見的一種太陽能電池。矽基 太陽能電池的原理是將P型半導體與η型半導體相接合, 以形成Ρ·η接面。當太陽光照射到具有此ρ_η結構的半導 體時,光子所提供的能量可把半導體中的電子激發出來而 產生電子-電洞對。電子與電洞均會受到内建電位的影響, 使得電洞往電場的方向移動,而電子則往相反的方向移 動。如果以導線將此太陽能電池與負載(load)連接起來,則 可形成一個迴路(loop),並可使電流流過負載,此即為太陽 能電池發電的原理。 隨著環保意識抬頭,節能減碳的概念逐漸受眾人所重 視’再生^源的開發與利用成為世界各國積極投入發展的 重點。目則,太陽能電池的關鍵問題在於其光電轉換效率 的提升’而月&夠提升太陽能電池的光電轉換效率即意味著 201203587, 產品競爭力的提升。 【發明内容】 本發明提供—種高光電轉換效率的>1合型太陽能電 池的製造方法’其不需改變原有的太陽能電池製程即可快 速地製造具有高光f轉換效率社陽能電池。 本發明另提供—種高光電轉換效率的>1合型太陽能 f池’纟可將無法被太陽能電池所利用#紅外光轉換為可 被太陽能電池所利用的可見光,以提高光電轉換效率。 本發明提出一種高光電轉換效率的壓合型太陽能電 池的製造方法,此方法是先提供第一透明基板。然後,於 第透明基板上形成第一電極。接著,於第一電極上形成 至少一個堆疊半導體結構,其中每一個堆疊半導體結構包 括p型半導體層、本質層(intrinsic layer)與η型半導體層, 且本質層位於Ρ型半導體層與!!型半導體層之間。而 於堆疊半導體結構上形成第二電極。繼之,提供第二透明 • 基板。隨後,於第二透明基板上形成紅外光轉換層(infrared hght C〇nversion layer),此紅外光轉換層用以將紅外光轉換 為可見光。接下來,於紅外光轉換層和/或第二電極上形成 黏者層。之後,麗合第一透明基板與第二透明基板。 依照本發明實施例所述之高光電轉換效率的壓合型 太陽能電池的製造方法’上述之紅外光轉換層的材料例如 為稀土 (rare earth)元素。 依照本發明實施例所述之鬲光電轉換效率的壓合型DC/I VI. Description of the Invention: [Technical Field] The present invention relates to a solar cell and a method of manufacturing the same, and in particular to a high photoelectric conversion efficiency (photoelectric eoiwei*si〇n efficiency 'PCE) Press-fit solar cell and method of manufacturing the same. [Prior Art] Solar energy is a clean, pollution-free and inexhaustible source of energy. It has been the focus of attention in addressing the current pollution and shortages facing petrochemical energy. Since solar cells can directly convert solar energy into electrical energy, it has become a very important research topic at present. Silicon-based solar cells are a common type of solar cell in the industry. The principle of a ruthenium-based solar cell is to bond a P-type semiconductor to an n-type semiconductor to form a Ρ·η junction. When sunlight strikes a semiconductor having this ρ_η structure, the energy provided by the photons excites the electrons in the semiconductor to produce an electron-hole pair. Both electrons and holes are affected by built-in potentials, causing the holes to move in the direction of the electric field and the electrons moving in the opposite direction. If the solar cell is connected to a load by a wire, a loop can be formed and current can flow through the load, which is the principle of solar cell power generation. With the rise of environmental awareness, the concept of energy conservation and carbon reduction has gradually been emphasized by the audience. The development and utilization of the renewable source has become the focus of active development in all countries of the world. Therefore, the key issue of solar cells is the improvement of their photoelectric conversion efficiency. And the increase in the photoelectric conversion efficiency of solar cells means that 201203587, the competitiveness of products is improved. SUMMARY OF THE INVENTION The present invention provides a method for manufacturing a solar cell with high photoelectric conversion efficiency, which can rapidly produce a solar cell having a high light f conversion efficiency without changing the original solar cell process. The present invention further provides a high-photoelectric conversion efficiency of >1 combined solar energy, which can convert visible light that cannot be utilized by solar cells into visible light that can be utilized by solar cells to improve photoelectric conversion efficiency. The present invention proposes a method of manufacturing a press-fit type solar cell having high photoelectric conversion efficiency by first providing a first transparent substrate. Then, a first electrode is formed on the first transparent substrate. Next, at least one stacked semiconductor structure is formed on the first electrode, wherein each stacked semiconductor structure comprises a p-type semiconductor layer, an intrinsic layer and an n-type semiconductor layer, and the intrinsic layer is located in the germanium-type semiconductor layer and the !! type Between the semiconductor layers. A second electrode is formed on the stacked semiconductor structure. A second transparent substrate is then provided. Subsequently, an infrared hght conversion layer is formed on the second transparent substrate, and the infrared light conversion layer is used to convert the infrared light into visible light. Next, an adhesive layer is formed on the infrared light conversion layer and/or the second electrode. Thereafter, the first transparent substrate and the second transparent substrate are combined. The method for producing a press-fit type solar cell having high photoelectric conversion efficiency according to an embodiment of the present invention is a material of the above-mentioned infrared light conversion layer, for example, a rare earth element. Press-fit type of photoelectric conversion efficiency according to an embodiment of the present invention

oc/I 201203587 =能電池的製造方法,上述之稀土元素例如為鑛系(La) 本發明實施例所述之高光電轉換效率的麼合型 =月Γ電池的製造方法,上述之可見光例如為綠光或藍綠 本發明另提出-種高光電轉換效率 第電池電Π第一透明基板、第二透明基板、第= 第-電極、至少-料半導體結構、紅外光轉 著層。第二透明基板配置於第一透明基板上。筮雷 透明基板之間。第二電極配置於 第電極與第二透明基板之間。堆疊半贫 :與::電極之間,其中堆::= 導體層、本質層與η财導縣,且本質層位 ^ 體層與η型半導體層之間。紅外光轉換層配置於第二透曰^ 基板與第二電極之間,用以將紅外光轉換為可見光 層配置於紅外光轉換層與第二電極之間。 者 依照本發明實施例所述之高光電轉換效率的壓合 陽月&電池’上述之紅外光轉換層的材料例如為稀土元素。Oc/I 201203587 = method for producing a battery, the rare earth element described above is, for example, a mineral system (La), a method for producing a high photoelectric conversion efficiency according to an embodiment of the present invention, a method for producing a moon-shaped battery, wherein the visible light is, for example, Green Light or Blue Green The present invention further proposes a high photoelectric conversion efficiency battery cell first transparent substrate, a second transparent substrate, a first electrode, a at least a semiconductor structure, and an infrared light transfer layer. The second transparent substrate is disposed on the first transparent substrate.筮 Ray between the transparent substrates. The second electrode is disposed between the first electrode and the second transparent substrate. Stacking semi-lean: and :: between the electrodes, where the stack::= conductor layer, the intrinsic layer and ηCaixian County, and the intrinsic layer ^ between the bulk layer and the n-type semiconductor layer. The infrared light conversion layer is disposed between the second transparent substrate and the second electrode for converting infrared light into a visible light layer and disposed between the infrared light conversion layer and the second electrode. The material of the above-mentioned infrared light conversion layer of the above-mentioned infrared light conversion layer according to the high photoelectric conversion efficiency according to the embodiment of the present invention is, for example, a rare earth element.

依照本發明實關所述之高光電轉換效率的壓人 太陽能電池’上述之稀土元素例如為嶋元素。Q I 照本剌實施綱叙高光轉換效率的壓合 太陽能電池,上述之可見光例如為綠光或藍 ° ,照本發明實施例所述之高光電轉換效率的壓 太陽能電池’上述之第一電極與第二電極的材料各自例如 201203587The indentation solar cell having high photoelectric conversion efficiency as described in the present invention is, for example, a rare earth element. QI according to the present invention, a high-light conversion efficiency of a laminated solar cell, wherein the visible light is, for example, green light or blue, according to the high photoelectric conversion efficiency of the solar cell of the present invention, the first electrode and The materials of the second electrode are each for example 201203587

,一”f.doc/I ^ t A>ib^(transparent conductive oxide » TCO) 〇 太陽發明實施例所述之高光電轉換效率的壓合型 太陽此電池,上述之p型半導體層、 層的材料各自例如為非㈣或微㈣本質層” 11型+導體, a "f.doc/I ^ t A > ib ^ (transparent conductive oxide » TCO) 压 solar inventive embodiment of the high photoelectric conversion efficiency of the press-type solar cell, the above-mentioned p-type semiconductor layer, layer Each of the materials is, for example, a non-four or micro (four) intrinsic layer" type 11 + conductor

上述’本發贱分別製造具有紅外光轉換層的透 =與—般熟知的太陽能電池,然後再藉績黏著層將 - ^壓合在-起,因此在本發壓合型太陽能電池的製 程、,不需改變原有的太陽能電池製程,因而不會導致生 產成本增加。此外,由於具有紅外光轉換層的透明基板與 一,熟知的域㈣池是分鄕造的,因此可視實際需求 而在不_場賴造具妹外输騎 熟知的太陽能電池。 奴 此外,對於本發明的壓合型太陽能電池來說,當太陽 光自第二電極侧進人太陽能電池時,紅外光轉換層可將太 陽光中的紅外光轉換林質層可魏的可絲,因此可以 大幅地提升太陽能電池的光電轉換效率。另外,由於照射 至本發明的壓4型太陽能電池的太陽光中的紅外光^換 為可見光’目此可以大财地㈣紅外光所造成的教累積 效應,進哺高太陽能電池的效能。再者,若·至本發 明的壓合型太陽能電池的太陽光巾的紅外光換 或藍綠混光,财發明的壓合型鴻崎柯以應用於需 要較多綠光或制混光的農業或花卉產業,⑽於農作物 與花卉培養。 為讓本發明之上述特徵和優職更賴錢,下文特 201203587 舉實施例,並配合所附圖式作詳細說明如下β 【實施方式】 圖1Α至圖1C為依照本發明實施例所繪示的高光電轉 換效率的壓合型太陽能電池之製造流程剖面圖。首先,請 參照圖1Α ’提供透明基板1〇〇。透明基板1〇〇的材料例如 為玻璃。然後’於透明基板1〇〇上形成電極1〇2〇電極102 的材料例如為透明導電氧化物。上述的透明導電氧化物可 以是銦錫氧化物(indium tin oxide,ΙΤΟ)、氧化链鋅(Α1 doped ZnO ’ AZO)、銦鋅氧化物(indium zinc oxide,IZO) 或其他透明導電材料。電極1〇2的形成方法例如為濺鍍法 (sPuttering)、化學氣相沈積法(chemical vapor deposition, CVD)或蒸鍍法(evaporati〇n)。接著,於電極1〇2上形成堆 疊半導體結構104。在本實施例中,堆疊半導體結構1〇4 包括ρ型半導體層l〇4a、本質層i〇4b與η型半導體層 104c。詳細地說,堆疊半導體結構1〇4的形成方法例如是 先於電極102上形成ρ型半導體層1ΰ4γρ型半導體雇1〇4a 的材料例如為非晶矽或微晶矽,而p型半導體層1〇4a中所 摻雜的材料例如是選自元素週期表中IIIA族元素的群組, 其可以是硼(B)、鋁(A1)、鎵(Ga)、銦(In)或鉈(T1)。然後, 於Ρ型半導體層l〇4a上形成本質層1〇4b。本質層l〇4b作 為光產生電子_電洞制主要區域。本f層1Q4b的材料例 如為未經摻雜的非晶矽或微晶矽。之後,於本質層1〇仆 上形成η型半導體層104c^n型半導體層1〇牝的材料例如 201203587The above-mentioned 'the hairpin separately manufactures a solar cell having a transparent light-converting layer and a well-known solar cell, and then presses the adhesive layer to press-fit it, so in the process of the present-compression type solar cell, There is no need to change the original solar cell process, so it will not lead to an increase in production costs. In addition, since the transparent substrate having the infrared light conversion layer and the well-known domain (four) pool are manufactured separately, it is possible to carry out the well-known solar battery without the need of the actual demand. In addition, for the press-fit solar cell of the present invention, when the sunlight enters the solar cell from the second electrode side, the infrared light conversion layer converts the infrared light in the sunlight into the forest layer. Therefore, the photoelectric conversion efficiency of the solar cell can be greatly improved. In addition, since the infrared light in the sunlight irradiated to the type 4 solar cell of the present invention is converted into visible light, it is possible to absorb the effect of the infrared light caused by the large amount of infrared light, and to feed the high solar cell. Furthermore, if the infrared light exchange or the blue-green mixed light of the solar tissue of the press-fit type solar cell of the present invention is used, the pressed type Hongqi Ke of the invention is applied to require more green light or mixed light. Agriculture or flower industry, (10) cultivation of crops and flowers. In order to make the above-mentioned features and superior functions of the present invention more expensive, the following is a specific example of 201203587, and is described in detail below with reference to the accompanying drawings. [Embodiment] FIG. 1A to FIG. 1C are diagrams according to an embodiment of the present invention. A cross-sectional view of the manufacturing process of a press-fit solar cell with high photoelectric conversion efficiency. First, please refer to Fig. 1 Α ' to provide a transparent substrate 1 〇〇. The material of the transparent substrate 1 is, for example, glass. Then, the material for forming the electrode 1 〇 2 〇 electrode 102 on the transparent substrate 1 is, for example, a transparent conductive oxide. The above transparent conductive oxide may be indium tin oxide (ITO), oxidized zinc (Α1 doped ZnO ‘AZO), indium zinc oxide (IZO) or other transparent conductive material. The method of forming the electrode 1〇2 is, for example, sputtering, chemical vapor deposition (CVD), or vapor deposition (evaporatix). Next, a stacked semiconductor structure 104 is formed on the electrode 1〇2. In the present embodiment, the stacked semiconductor structure 1?4 includes a p-type semiconductor layer 104a, an intrinsic layer i?4b and an n-type semiconductor layer 104c. In detail, the method of forming the stacked semiconductor structure 1 〇 4 is, for example, a material for forming a p-type semiconductor layer 1 〇 4 γ 型 type semiconductor 1 〇 4a on the electrode 102, for example, an amorphous germanium or a microcrystalline germanium, and the p-type semiconductor layer 1 The material doped in the crucible 4a is, for example, a group selected from the group IIIA elements of the periodic table, which may be boron (B), aluminum (Al), gallium (Ga), indium (In) or antimony (T1). . Then, an intrinsic layer 1〇4b is formed on the germanium-type semiconductor layer 10a. The essential layer l〇4b is used as a main area for light-generating electrons. The material of the f layer 1Q4b is, for example, an undoped amorphous germanium or microcrystalline germanium. Thereafter, a material of the n-type semiconductor layer 104c^n-type semiconductor layer 1〇牝 is formed on the intrinsic layer 1 such as 201203587

· wUoc/I 為非,梦或微晶石夕’而n型半導體層购中所摻雜的材料 例如疋選自το素週期表中VA族元素的群組,其可以是磷 (P)、砷(As)、銻(Sb)或鉍(Bi)。在形成堆疊半導體結構JQ4 之後,於埃疊半導體結構1〇4上形成電極1〇6。電極1〇6 的,料例如為透明導電氧化物。上述的透明導電氧化物可 以是銦錫氧化物、氧化鋁鋅、銦鋅氧化物或其他透明導電 材料。 % 在本實施例中,堆疊半導體結構104是由依序形成於 電極102上的p型半導體層1〇4a、本質層1〇仆與11型半 導體層104c所構成。在其他實施例中,也可以視實際需 求,將η型半導體層i〇4c、本質層1〇4b與p型半導體層 l〇4a依序形成於電極1〇2上來構成堆疊半導體結構。此 外,在本實施例中,電極1〇2與電極1〇6之間僅具有一個 堆疊半導體結構,而在其他實施例中,也可以視實際需求 而於電極102與電極106之間形成依序堆疊的多個堆疊半 導體結構。 鲁 此外’上述於透明基板100上形成電極102、堆疊半 導體結構104與電極106的步驟即為一般熟知的太陽能電 池的製程步驟。也就是說’圖1中的結構即為一般熟知的 太陽能電池’其可由現有的設備來製造,不需使用額外的 設備,且不需改變目前的製程步驟。 接著,請參照圖1B,提供透明基板1〇8。透明基板 108的材料例如為玻璃。然後,於透明基板1〇8上形成紅 外光轉換層(infrared light conversion layer)l 10。紅外光轉 201203587·/! 換層lio用以將紅外光轉換為可見光^紅外光轉換層no 的形成方法例如為濺鍍法、化學氣相沈積法或蒸鍍法。紅 外光轉換層110的材料例如為稀土元素,例如綱系元素。 之後,於紅外光轉換層110上形成黏著層112。黏著層112 的材料例如為乙烯醋酸乙烯酯(ethylene vinyl acetate, EVA)。 之後,請參照圖1C,以黏著層112朝向電極106的 方式壓合透明基板100與透明基板1〇8,以形成壓合型太 陽能電池114。 在本實施例中,黏著層Π2形成於紅外光轉換層Π0 上。當然,在其他實施例中,也可以將黏著層112形成於 電極106上,然後再以黏著層112朝向紅外光轉換層11〇 的方式壓合透明基板1〇〇與透明基板1〇8,以形成壓合型 太陽能電池114。或者,也可以同時於紅外光轉換層11〇 與電極106上形成黏著層112。· wUoc/I is not, dream or microcrystalline, and the material doped in the n-type semiconductor layer, for example, is selected from the group of VA elements in the periodic table of τ, which may be phosphorus (P), Arsenic (As), antimony (Sb) or antimony (Bi). After the stacked semiconductor structure JQ4 is formed, the electrodes 1〇6 are formed on the interlayer semiconductor structure 1〇4. The material of the electrode 1〇6 is, for example, a transparent conductive oxide. The above transparent conductive oxide may be indium tin oxide, aluminum zinc oxide, indium zinc oxide or other transparent conductive material. % In the present embodiment, the stacked semiconductor structure 104 is composed of a p-type semiconductor layer 1?4a, an intrinsic layer 1 and an 11-type semiconductor layer 104c which are sequentially formed on the electrode 102. In other embodiments, the n-type semiconductor layer i〇4c, the intrinsic layer 1〇4b, and the p-type semiconductor layer 110a may be sequentially formed on the electrode 1〇2 to form a stacked semiconductor structure. In addition, in this embodiment, there is only one stacked semiconductor structure between the electrode 1〇2 and the electrode 1〇6, and in other embodiments, the order between the electrode 102 and the electrode 106 can also be formed according to actual needs. Stacked multiple stacked semiconductor structures. Further, the step of forming the electrode 102, stacking the semiconductor structure 104 and the electrode 106 on the transparent substrate 100 is a process step of a generally known solar cell. That is to say, the structure in Fig. 1 is a generally well-known solar cell, which can be manufactured by existing equipment without using additional equipment and without changing the current process steps. Next, referring to FIG. 1B, a transparent substrate 1 8 is provided. The material of the transparent substrate 108 is, for example, glass. Then, an infrared light conversion layer 10 is formed on the transparent substrate 1〇8. Infrared light conversion 201203587·/! The forming method for converting infrared light into visible light and infrared light conversion layer no is, for example, a sputtering method, a chemical vapor deposition method, or a vapor deposition method. The material of the infrared light conversion layer 110 is, for example, a rare earth element such as a skeleton element. Thereafter, an adhesive layer 112 is formed on the infrared light conversion layer 110. The material of the adhesive layer 112 is, for example, ethylene vinyl acetate (EVA). Thereafter, referring to FIG. 1C, the transparent substrate 100 and the transparent substrate 1〇8 are pressed in such a manner that the adhesive layer 112 faces the electrode 106 to form a press-fit solar cell 114. In the present embodiment, the adhesive layer Π 2 is formed on the infrared light conversion layer Π0. Of course, in other embodiments, the adhesive layer 112 may be formed on the electrode 106, and then the transparent substrate 1 〇〇 and the transparent substrate 1 〇 8 may be pressed in such a manner that the adhesive layer 112 faces the infrared light conversion layer 11 ,. A press-fit type solar cell 114 is formed. Alternatively, the adhesive layer 112 may be formed on the infrared light conversion layer 11A and the electrode 106 at the same time.

如上所述’本發明在製造壓合型太陽能電池114的過 程中’先分別製造具有紅外光轉換層11〇的透明基板1〇8 與一般熟知的太陽能電池(如圖1A所示的結構),然後再藉 由將黏著層112將二者壓合在一起。也就是說,在本發明 的壓合型太陽能電池的製程巾,*需改變原有的太陽能電 池製程’因而不會導致生產成本增加。此外,由於圖汨 中的具有紅外光轉換層110的透明基板1〇8與圖1A中的 太陽能電池是㈣製造的,因此亦可視實際需求而在不同 的場所製造具有紅外光轉換層110的透明基板108與圖1A 201203587As described above, the present invention separately manufactures a transparent substrate 1 〇 8 having an infrared light conversion layer 11 与 and a generally known solar cell (structure as shown in FIG. 1A) in the process of manufacturing the laminated solar cell 114, The two are then pressed together by the adhesive layer 112. That is to say, in the process paper of the press-fit type solar cell of the present invention, it is necessary to change the original solar cell process, and thus the production cost is not increased. In addition, since the transparent substrate 1 8 having the infrared light conversion layer 110 and the solar cell in FIG. 1A are manufactured in (4), the transparent light having the infrared light conversion layer 110 can be manufactured in different places depending on actual needs. Substrate 108 and Figure 1A 201203587

v / π f· (1og/I 中的太陽能電池。 以下將以圖1C中的壓合型太陽能電池114為例,對 本發明的太陽能電池作說明。 請參照圖1C,壓合型太陽能電池114包括透明基板 100、透明基板108、電極102、電極1〇6、堆疊半導體結 構104、紅外光轉換層110以及黏著層112〇透明基板1〇8 配置於透明基板100上。電極1〇2配置於透明基板1〇〇與 φ 透明基板108之間。電極106配置於電極102與透明基板 108之間。堆疊半導體結構104配置於電極1〇2與電極1〇6 之間。堆疊半導體結構104包括p型半1Q4 &冑 導體層10乜與!1型半導體層之間ι〇4υ紅外光轉換層11〇 配置於透明基板108與電極106之間,用以將紅外光轉換 為可見光。黏者層112配置於紅外光轉換層丨與電極mg 之間。 對於-般的太陽能電池來說’當太陽光照射至太陽能 • 電池時,由於以非晶矽或微晶矽為材料的本質層無法有效 地吸收太陽光中的紅外光(其在太陽光中約佔5〇%),因此 紅外光會直接穿過太陽能電池而無法被·,使得太陽能 電池的光電轉換效率無法大幅度地提升。然而,對於壓合 型太陽能電池114來說’當太陽光穿過透明基板1〇8而照 射至紅外光轉換層110時,紅外光轉換| 11〇可將太陽光 中無法被太陽能電池所利用的紅外光轉換為可被太陽能電 池所利用的可見光。由於本質層104b對於可見光具有較佳 11 oq/1 201203587 :=!當太陽光中的紅外光被紅外光轉換層no 2 人本f層祕時,與—般的太陽能電池 射至本㈣祕的可見光的量,因而提升 壓η i太陽能電池114的光電轉換效率。 供’相對於其他顏色的可見錄說,若M合型太陽 匕、、14的本質層是以非晶梦為材料,而非晶石夕材料對 於綠光與藍軌光具餘佳的吸”(對麟光具有最佳 的吸收率),因此可以藉由調整紅外光轉換層m中稀土元 $的種類、組航解來將太陽光巾社外光轉換為綠光 或藍綠混光’崎―步地提升壓合型太陽能電池114的光 電轉換效率。 特別一提的是,經紅外光轉換層110所轉換成的綠光 或藍綠混光經過壓合型太陽能電池114之後,未被吸收的 部分可以進一步地被利用。舉例來說,經紅外光轉換層110 轉換而形成且未被吸收的綠光或藍綠混光可以與原本穿過 壓合型太陽能電池114的未被吸收的可見光混合而產生不 同顏色的光。因此,若將壓合型太陽能電池114應用於建 築設計中,則可以視實際需求來調整而呈現出不同於白光 的光。此外,若將壓合型太陽能電池丨丨4應用於需要較多 綠光或藍綠混光的農業或花卉產業,則可有助於農作物與 花卉培養。 再者’在本實施例中,由於照射至壓合型太陽能電池 114的太陽光中的紅外光已被轉換為可見光,因此紅外光 照射至太陽能電池時所產生的熱累積效應可以被大幅度地 12 201203587 -7^^ /^iwf.doc/1 降低,使得壓合型太陽能電池114經太陽光照射之後仍可 以維持在與周遭環境相同的溫度。此外,由於熱累積效應 已被大幅度地降低,因此可以進一步避免因熱累積效應而 造成光電轉換效率降低的問題,進而達到提升太陽能電池 的效能的目的。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何所屬技術領域中具有通常知識者,在不脫離 鲁本發明之精神和範圍内,當可作些許之更動與潤飾,故本 發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1A至圖1C為依照本發明實施例所繪示的高光電轉 換效率的壓合型太陽能電池之製造流程剖面圖。 【主要元件符號說明】 100、108 :透明基板 102、106 :電極 • 104 :堆疊半導體結構... 104a : p型半導體層 l〇4b :本質層 l〇4c : n型半導體層 110 :紅外光轉換層 112 :黏著層 114 :壓合型太陽能電池 13v / π f · (Solar cell in 1og/I. Hereinafter, the solar cell of the present invention will be described by taking the press-fit type solar cell 114 of Fig. 1C as an example. Referring to Fig. 1C, the press-fit type solar cell 114 includes The transparent substrate 100, the transparent substrate 108, the electrode 102, the electrode 1〇6, the stacked semiconductor structure 104, the infrared light conversion layer 110, and the adhesive layer 112, the transparent substrate 1〇8 are disposed on the transparent substrate 100. The electrodes 1〇2 are disposed in a transparent The substrate 1 is disposed between the φ transparent substrate 108. The electrode 106 is disposed between the electrode 102 and the transparent substrate 108. The stacked semiconductor structure 104 is disposed between the electrode 1〇2 and the electrode 1〇6. The stacked semiconductor structure 104 includes a p-type Between the semi-1Q4 & 胄 conductor layer 10 乜 and the !1 type semiconductor layer, an infrared light conversion layer 11 〇 is disposed between the transparent substrate 108 and the electrode 106 for converting infrared light into visible light. It is disposed between the infrared light conversion layer and the electrode mg. For a general solar cell, when the sunlight is irradiated to the solar cell, the intrinsic layer made of amorphous germanium or microcrystalline germanium cannot be effectively absorbed. Infrared light in sunlight (which accounts for about 5% of sunlight), so infrared light can pass directly through the solar cell, making the photoelectric conversion efficiency of the solar cell not greatly improved. However, for pressing The type solar cell 114 says that when sunlight passes through the transparent substrate 1 〇 8 and is irradiated to the infrared light conversion layer 110, the infrared light conversion | 11 〇 can convert the infrared light in the sunlight that cannot be utilized by the solar cell into Visible light used by solar cells. Since the intrinsic layer 104b has a better 11 oq/1 for visible light, 201203587 :=! When the infrared light in the sunlight is converted by the infrared light conversion layer no 2 The solar cell emits the amount of visible light of the present (4) secret, thereby increasing the photoelectric conversion efficiency of the pressure η i solar cell 114. For the visible recording relative to other colors, if the M-type solar ray, the essence layer of 14 is The amorphous dream is a material, and the amorphous stone material has a good absorption for the green light and the blue light light (the best absorption rate for the lining light), so the rare earth element in the infrared light conversion layer m can be adjusted. $ The type and group of aircraft to convert the sunlight outside the solar towel into green light or blue-green mixed light 'saki-step to enhance the photoelectric conversion efficiency of the laminated solar cell 114. In particular, the infrared light conversion layer After the converted green or blue-green mixed light passes through the press-fit type solar cell 114, the unabsorbed portion can be further utilized. For example, the infrared light conversion layer 110 is converted and formed without being absorbed. The green or blue-green mixed light can be mixed with the unabsorbed visible light that originally passed through the press-fit solar cell 114 to produce different colors of light. Therefore, if the press-fit solar cell 114 is used in architectural design, It is adjusted according to actual needs to present light different from white light. In addition, if the press-fit solar cell crucible 4 is applied to an agricultural or flower industry that requires more green light or blue-green mixed light, it can contribute to crop and flower cultivation. Furthermore, in the present embodiment, since the infrared light in the sunlight irradiated to the press-type solar cell 114 has been converted into visible light, the heat accumulation effect generated when the infrared light is irradiated to the solar cell can be largely 12 201203587 -7^^ /^iwf.doc/1 The reduction allows the press-fit solar cell 114 to remain at the same temperature as the surrounding environment after being exposed to sunlight. In addition, since the heat accumulation effect has been greatly reduced, the problem of lowering the photoelectric conversion efficiency due to the heat accumulation effect can be further avoided, thereby achieving the purpose of improving the performance of the solar cell. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A to FIG. 1C are cross-sectional views showing a manufacturing process of a high-photoelectric conversion efficiency press-fit solar cell according to an embodiment of the present invention. [Description of main component symbols] 100, 108: transparent substrate 102, 106: electrode • 104: stacked semiconductor structure 104a: p-type semiconductor layer l〇4b: intrinsic layer l〇4c: n-type semiconductor layer 110: infrared light Conversion layer 112: adhesive layer 114: press-fit solar cell 13

Claims (1)

201203587 七、申請專利範圍: L 一種高光電轉換效率的壓合型太陽能電.池的 方法,包括: k供一第一透明基板; 於該第-透明基板上形成-第一電極; 一於該第一電極上形成至少一堆疊半導體結構,其中每 =疊半導體結構包括—p型半導體層…本質層與一打 導體,且該本質層位於該?型半導體層與該11型半 於該至少一堆疊半導體結構上形成一第二電極; 提供一第二透明基板; 於該第二透明基板上形成一紅外光轉換層,該红外 轉換層用以將紅外光轉換為一可見光; 層 .於該紅外光轉換層和/或該第二電極上形成一黏著 ,以及 壓合該第一透明基板與該第二透明基板 2. 如申請專利範圍第!項所述之高光電轉換效 的製造方法,其中該紅外光轉換層的材 3. 如申請專利範圍第2項所述之高光電轉換效率的 、合型太陽能電池的製造方法,其中該稀土元素包括鑭系 元素。 4. 如申請專利範圍第1項所述之高光電轉換效率的 墨合型太陽能電池的料方m該可見光包括綠光或 201203587 ,, ,^vT,f.doc/I 藍綠混光。 5. —種高光電轉換效率的壓合型太陽能電池,包括: 一第一透明基板; 一第二透明基板,配置於該第一透明基板上; 一第一電極,配置於該第一透明基板與該第二透明基 板之間; 一第二電極,配置於該第一電極與該第二透明基板之 間; 至少一堆疊半導體結構,配置於該第一電極與該第二 電極之間,其中每一堆疊半導體結構包括一 p型半導體 層、一本質層與一 η型半導體層,且該本質層位於該p型 半導體層與該η型半導體層之間; 一紅外光轉換層,配置於該第二透明基板與該第二電 極之間,用以將紅外光轉換為一可見光;以及 一黏著層,配置於該紅外光轉換層與該第二電極之 間。 6. 如申請專利範圍第5項所述之高光電轉換效率的 壓合型太陽能電池,其中該紅外光轉換層的材料包括一稀 土元素。 7. 如申請專利範圍第6項所述之高光電轉換效率的 壓合型太陽能電池,其中該稀土元素包括鑭系元素。 8. 如申請專利範圍第5項所述之高光電轉換效率的 壓合型太陽能電池,其中該可見光包括綠光或藍綠混光。 9. 如申請專利範圍第5項所述之高光電轉換效率的 15 201203587 壓合型太陽能電池,其中該第一電極與該第二電極的材料 各自包括透明導電氧化物。 10.如申請專利範圍第5項所述之高光電轉換效率的 壓合型太陽能電池,其中該p型半導體層、該本質層與該 η型半導體層的材料各自包括非晶矽或微晶矽。201203587 VII. Patent application scope: L A method for pressing a solar cell with high photoelectric conversion efficiency, comprising: k for a first transparent substrate; forming a first electrode on the first transparent substrate; Forming at least one stacked semiconductor structure on the first electrode, wherein each of the stacked semiconductor structures includes a -p-type semiconductor layer, an intrinsic layer and a dozen conductors, and the intrinsic layer is located thereon? Forming a second electrode on the at least one stacked semiconductor structure; providing a second transparent substrate; forming an infrared light conversion layer on the second transparent substrate, the infrared conversion layer for The infrared light is converted into a visible light; a layer is formed on the infrared light conversion layer and/or the second electrode, and the first transparent substrate and the second transparent substrate are pressed. 2. The method for producing a high photoelectric conversion effect according to the item, wherein the material of the infrared light conversion layer is a method for manufacturing a high-photoelectric conversion efficiency solar cell according to the second aspect of the invention, wherein the rare earth element Includes lanthanides. 4. The material of the ink-integrated solar cell of the high photoelectric conversion efficiency as described in the first paragraph of the patent application. The visible light includes green light or 201203587, , , ^vT, f.doc/I blue-green mixed light. 5. A high-photoelectric conversion efficiency press-fit solar cell, comprising: a first transparent substrate; a second transparent substrate disposed on the first transparent substrate; a first electrode disposed on the first transparent substrate a second electrode disposed between the first electrode and the second transparent substrate; at least one stacked semiconductor structure disposed between the first electrode and the second electrode, wherein Each stacked semiconductor structure includes a p-type semiconductor layer, an intrinsic layer and an n-type semiconductor layer, and the intrinsic layer is between the p-type semiconductor layer and the n-type semiconductor layer; an infrared light conversion layer is disposed on the The second transparent substrate and the second electrode are configured to convert infrared light into a visible light; and an adhesive layer is disposed between the infrared light conversion layer and the second electrode. 6. The press-fit type solar cell of high photoelectric conversion efficiency according to claim 5, wherein the material of the infrared light conversion layer comprises a rare earth element. 7. The press-fit type solar cell of high photoelectric conversion efficiency according to claim 6, wherein the rare earth element comprises a lanthanide element. 8. A press-fit type solar cell having high photoelectric conversion efficiency as described in claim 5, wherein the visible light comprises green light or blue-green mixed light. 9. The 15 201203587 press-fit solar cell according to claim 5, wherein the material of the first electrode and the second electrode each comprise a transparent conductive oxide. 10. The high-photoelectric conversion efficiency press-type solar cell according to claim 5, wherein the p-type semiconductor layer, the intrinsic layer and the material of the n-type semiconductor layer each comprise an amorphous germanium or a microcrystalline germanium. . 1616
TW099122560A 2010-07-08 2010-07-08 High photoelectric conversion efficiency laminated type solar cell and manufacturing method thereof TWI449199B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099122560A TWI449199B (en) 2010-07-08 2010-07-08 High photoelectric conversion efficiency laminated type solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099122560A TWI449199B (en) 2010-07-08 2010-07-08 High photoelectric conversion efficiency laminated type solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201203587A true TW201203587A (en) 2012-01-16
TWI449199B TWI449199B (en) 2014-08-11

Family

ID=46756398

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099122560A TWI449199B (en) 2010-07-08 2010-07-08 High photoelectric conversion efficiency laminated type solar cell and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI449199B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094128A (en) * 1999-09-22 2001-04-06 Sharp Corp Solar cell module and method for fabricating the same
JP2004031050A (en) * 2002-06-25 2004-01-29 Sumitomo Metal Mining Co Ltd Dye-sensitized solar cell

Also Published As

Publication number Publication date
TWI449199B (en) 2014-08-11

Similar Documents

Publication Publication Date Title
TW201203576A (en) Single junction CIGS/CIS solar module
JP2010537423A (en) Heterogeneous junction silicon solar cell and manufacturing method thereof
TW201025637A (en) Solar cell
KR20120002222A (en) Up conversion oxide fluorescent composition for solar cell and method of fabrication of high efficiency solar cell using thereof
TW201228017A (en) Solar cell
CN110911505A (en) Heterojunction solar cell and manufacturing method thereof
JP6140563B2 (en) Solar cell, solar cell module and installation method thereof
JP2023507176A (en) Bifacial tandem solar cells and modules
CN103187476A (en) Preparation method of solar cell
CN102270667A (en) Component for increasing power generation efficiency of N-type monocrystalline silicon photovoltaic cell and manufacturing method thereof
CN207303117U (en) A kind of lamination solar cell containing graphical optical isolation layer
CN103137716B (en) Solar cell, solar battery group and preparation method thereof
KR20080107181A (en) High efficiency solar cell
TW201203587A (en) High photoelectric conversion efficiency laminated type solar cell and manufacturing method thereof
CN102280501A (en) Silicon-based buried contact film solar cell
CN206976356U (en) A kind of MWT solar battery sheets and utilize its manufactured MWT solar cell module
TWM412467U (en) Laminated type solar cell converting infrared light to visible light
WO2015190047A1 (en) Solar cell module
CN218735823U (en) Perovskite/silicon laminated solar cell
CN102407627A (en) Catadioptric adhesive film in N-type monocrystalline silicon photovoltaic cell component and manufacture method thereof
CN202153523U (en) Assembly for improving generating efficiency of N type monocrystal silicon photovoltaic cell
CN201936905U (en) Press-fit solar cell capable of converting infrared light to visible light
TWI409965B (en) High photoelectric conversion efficiency triple junction solar cell
CN208256704U (en) A kind of solar battery
TWI438911B (en) High photoelectric conversion efficiency solar cell with high temperature and low temperature amorphous silicon intrinsic layer

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees