M412467 陽能電池所利用的可見光’以提高光電轉換效率。 本創作提出-種將紅外光轉換為可見光祕合型太陽能 電池’其包括第-透明基板、第二透明基板、第—電極、第二 電極、至少-堆豐半導體結構、系工夕卜光轉換層㈣聰d Η咖 conversion layer)以及黏著層。第二透明基板配置於第一透明基 板上。第一電極配置於第一透明基板與第二透明基板之間。$ 二電極配置於第一電極與第二透明基板之間。堆疊半導體結構 配置於第一電極與第二電極之間,其中堆疊半導體結構包括p 型半導體層、本質層(intrinsic layer)與n型半導體層,且本質 層位於ρ型半導體層與η型半導體層之間。紅外光轉換層配= 於第二透明基板與第二電極之間,用以將紅外光轉換為可見 光。黏著層配置於紅外光轉換層與第二電極之間。 依照本創作實施例所述之將紅外光轉換為可見光的壓合 型太陽能電池,上述之紅外光轉換層的材料例如為稀土(rare earth)元素。 依照本創作貫施例所述之將紅外光轉換為可見光的壓合 型太陽能電池’上述之稀土元素例如為鑭(La)系元素。 依照本創作實施例所述之將紅外光轉換為可見光的壓合 型太陽能電池,上述之可見光例如為綠光或藍綠混光。 依照本創作實施例所述之將紅外光轉換為可見光的壓合 型太陽能電池’上述之第一電極與第二電極的材料各自例如為 透明導電氧化物(transparent conductive oxide,TCO)。 依照本創作實施例所述之將紅外光轉換為可見光的壓合 型太陽能電池,上述之p型半導體層、本質層與η型半導體層 的材料各自例如為非晶矽或微晶矽。 5 M412467 一基於上述,對於本創作的壓合型太陽能電池來說,當太 陽光自第二電極側進入太陽能電池時,紅外光轉換層可將太陽 ,中的紅外光轉換為本質層可吸收的可見光,因此可以大幅地 ,升太陽能電池的光電轉換效率。另外,由於照射至本創作的 壓δ型太陽能電池的太陽光中的紅外光被轉換為可見光因此 2以大幅度地降低紅外光所造成的熱累積效應,進而提高太陽 月b^:池的效能。再者,若照射至本創作的壓合型太陽能電池的 太陽光中的紅外光被轉換為綠光或藍綠混光,則本創作的壓合 型太陽能電池可以應用於需要較多綠光或藍綠混光的農業或 花卉產業,以助於農作物與花卉培養。 為讓本創作之上述特徵和優點能更明顯易懂,下文特舉 實施例’並配合所附圖式作詳細說明如下。 【實施方式】 圖1A至圖1C為本創作的將紅外光轉換為可見光的壓合 型太陽能電池之製造流程剖面圖。首先,請參照圖1A,提供 透明基板100。透明基板1〇〇的材料例如為玻璃。然後,於透 明基板100上形成電極102。電極102的材料例如為透明導電 氧化物。上述的透明導電氧化物可以是銦錫氧化物(indiumtin oxide ’ ITO)、氧化銘鋅(A1 doped ZnO ’ AZO)、銦鋅氧化物 (indium zinc oxide,IZO)或其他透明導電材料。電極的形 成方法例如為濺鏟法(sputtering)、化學氣相沈積法(chemical vapor deposition,CVD)或蒸鍍法(evaporation)。接著,於電極 102上形成堆疊半導體結構1 〇4。在本實施例中,堆疊半導體 結構104包括p型半導體層i〇4a、本質層i〇4b與η型半導體 層104c。詳細地說,堆疊半導體結構丨〇4的形成方法例如是 先於電極102上形成p型半導體j 1〇4a〇p型半 =材料例如為非晶♦或微晶碎,而pf!半導體層ι‘曰a 以,材料㈣是選自it素週期表巾mA族元素的群組,_ =,)、華)、鎵(Ga)、钢⑽或摩)。然後 ;: 子^職。本質層1G4b作為光產生電 電麟的主要區域。本f層獅的材料例%為未經 =曰石夕或微Μ。之後,於本f層祕上形成η型半導體: '丰導體層i〇4c中所摻雜的材料例如是選自元素週期表中 二族元气的群組,其可以是磷(P)、雜s)、銻(Sb)或罐)。 /成堆豐半導體結構104之後,於堆疊半導體結構刚上形 成電極106。電極106的材料例如為透明導電氧化物。上述的 透明導電氧化物可以是銦錫氧化物、氧化铭鋅、銦辞氧化物 其他透明導電材料。 ’ 在本實施例中,堆疊半導體結構1〇4是由依序形成於電 極102上的p型半導體層1〇如、本質層1〇仆與n型半導體層 撕所構成。在其他實補巾,也可以視實際需求,將η型 半導體層104c、本質層l〇4b與ρ型半導體層l〇4a依序形成 於電極102上來構成堆疊半導體結構。此外,在本實施例中, 電,102與電極1〇6之間僅具有一個堆疊半導體結構,而在其 他實施例中’也可以視實際需求而於電極102與電極106之間 形成依序堆疊的多個堆疊半導體結構。 此外’上述於透明基板100上形成電極102、堆疊半導體 結構104與電極1〇6的步驟即為一般熟知的太陽能電池的製程 步驟°也就是說’圖1中的結構即為一般熟知的太陽能電池, M412467 其可由現有的設備來製造,不需使用額外的設備,且不需改變 目前的製程步驟。 接著’請參照圖1B,提供透明基板1〇8 ^透明基板1〇8 的材料例如為玻璃。然後’於透明基板108上形成紅外光轉換 層(infraredlight conversion layer)l 10。紅外光轉換層 11〇 用以 將紅外光轉換為可見光。紅外光轉換層110的形成方法例如為 賤鑛法、化學氣相沈積法或蒸錢法。紅外光轉換層110的材汁斗 例如為稀土元素,例如鑭系元素。之後,於紅外光轉換層110 上形成黏著層112。黏著層112的材料例如為乙烯醋酸'乙a烯酯 (ethylene vinyl acetate,EVA) 〇 之後,請參照圖ic,以黏著層112朝向電極1〇6的方式 壓合透明基板100與透明基板1〇8,以形成壓合型太陽能電池 114。 声在本實施例中’黏著層U2形成於紅外光轉換層110上。 當然’在其他實施例中’也可以將黏著層112形成於電極 上,然後再以黏著層112朝向紅外光轉換層11G的方式壓合 明基板刚與透板1G8,以形絲合型太陽能電池114。 ,者’也可以同時於紅外光轉換層UG與電極服上 層112 。 r令 如上所述M412467 Visible light used by solar cells to improve photoelectric conversion efficiency. The present invention proposes a solar cell that converts infrared light into a visible light-collecting type solar cell, which includes a first transparent substrate, a second transparent substrate, a first electrode, a second electrode, at least a stack semiconductor structure, and a light-emitting conversion Layer (four) Cong d con coffee conversion layer) and adhesive layer. The second transparent substrate is disposed on the first transparent substrate. The first electrode is disposed between the first transparent substrate and the second transparent substrate. The two electrodes are disposed between the first electrode and the second transparent substrate. The stacked semiconductor structure is disposed between the first electrode and the second electrode, wherein the stacked semiconductor structure comprises a p-type semiconductor layer, an intrinsic layer and an n-type semiconductor layer, and the intrinsic layer is located on the p-type semiconductor layer and the n-type semiconductor layer between. The infrared light conversion layer is disposed between the second transparent substrate and the second electrode for converting infrared light into visible light. The adhesive layer is disposed between the infrared light conversion layer and the second electrode. According to the embossed solar cell for converting infrared light into visible light according to the embodiment of the present invention, the material of the infrared light conversion layer is, for example, a rare earth element. The pressed-type solar cell which converts infrared light into visible light according to the present embodiment is a lanthanum (La) element. According to the embodiment of the present invention, the fluorescent light source for converting infrared light into visible light is, for example, green light or blue-green mixed light. The material of the first electrode and the second electrode described above for converting the infrared light into visible light according to the present embodiment is, for example, a transparent conductive oxide (TCO). According to the press-fit type solar cell of the present invention, which converts infrared light into visible light, the materials of the p-type semiconductor layer, the intrinsic layer and the n-type semiconductor layer are each, for example, amorphous or microcrystalline. 5 M412467 Based on the above, for the press-fit solar cell of the present invention, when the sunlight enters the solar cell from the second electrode side, the infrared light conversion layer converts the infrared light in the sun into an essential layer absorbable. Visible light can therefore greatly increase the photoelectric conversion efficiency of solar cells. In addition, since the infrared light in the sunlight that is irradiated to the created δ-type solar cell is converted into visible light, 2 is used to greatly reduce the heat accumulation effect caused by the infrared light, thereby improving the efficiency of the solar cell. . Furthermore, if the infrared light in the sunlight that is irradiated to the created compact solar cell is converted into a green light or a blue-green mixed light, the press-fit solar cell of the present invention can be applied to require more green light or Blue-green mixed light agriculture or flower industry to help crops and flowers. In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following detailed description is made in conjunction with the accompanying drawings. [Embodiment] Figs. 1A to 1C are cross-sectional views showing the manufacturing process of a press-fit type solar cell in which infrared light is converted into visible light. First, referring to Fig. 1A, a transparent substrate 100 is provided. The material of the transparent substrate 1 is, for example, glass. Then, an electrode 102 is formed on the transparent substrate 100. The material of the electrode 102 is, for example, a transparent conductive oxide. The above transparent conductive oxide may be indium tin oxide (ITO), A1 doped ZnO ‘AZO, indium zinc oxide (IZO) or other transparent conductive material. The electrode is formed by, for example, sputtering, chemical vapor deposition (CVD) or evaporation. Next, a stacked semiconductor structure 1 〇 4 is formed on the electrode 102. In the present embodiment, the stacked semiconductor structure 104 includes a p-type semiconductor layer i〇4a, an intrinsic layer i〇4b, and an n-type semiconductor layer 104c. In detail, the method of forming the stacked semiconductor structure 丨〇4 is, for example, to form a p-type semiconductor j 1 〇 4a 〇 p-type half = material before the electrode 102, for example, amorphous ♦ or microcrystalline, and pf! semiconductor layer ι '曰a以,material (4) is a group selected from the mA group elements of the periodic table of the itinerary, _ =,), Hua), gallium (Ga), steel (10) or friction). Then ;: child ^ job. The intrinsic layer 1G4b serves as a main region of the light generating electric power. The material example of this f-layer lion is not = 曰石夕 or slight Μ. Thereafter, an n-type semiconductor is formed on the f layer: the material doped in the 'rich conductor layer i〇4c is, for example, a group selected from the group consisting of elements of the periodic table, which may be phosphorus (P), miscellaneous s), 锑 (Sb) or can). After stacking the semiconductor structure 104, the electrode 106 is formed on the stacked semiconductor structure. The material of the electrode 106 is, for example, a transparent conductive oxide. The above transparent conductive oxide may be indium tin oxide, oxidized zinc, indium oxide or other transparent conductive material. In the present embodiment, the stacked semiconductor structure 1?4 is composed of a p-type semiconductor layer 1 sequentially formed on the electrode 102, for example, an essential layer 1 and an n-type semiconductor layer. In other solid wipes, the n-type semiconductor layer 104c, the intrinsic layer l4b, and the p-type semiconductor layer 104a may be sequentially formed on the electrode 102 to form a stacked semiconductor structure. In addition, in the present embodiment, there is only one stacked semiconductor structure between the electric device 102 and the electrode 1〇6, and in other embodiments, a sequential stacking between the electrode 102 and the electrode 106 can be formed according to actual needs. Multiple stacked semiconductor structures. In addition, the step of forming the electrode 102, stacking the semiconductor structure 104 and the electrode 1〇6 on the transparent substrate 100 is a process step of a generally known solar cell. That is, the structure in FIG. 1 is a generally well-known solar cell. , M412467 It can be manufactured from existing equipment without the need for additional equipment and without changing the current process steps. Next, referring to Fig. 1B, a material for providing the transparent substrate 1 〇 8 ^ transparent substrate 1 〇 8 is, for example, glass. Then, an infrared light conversion layer 10 is formed on the transparent substrate 108. The infrared light conversion layer 11〇 is used to convert infrared light into visible light. The method of forming the infrared light conversion layer 110 is, for example, a bismuth ore method, a chemical vapor deposition method, or a steam evaporation method. The juice hopper of the infrared light conversion layer 110 is, for example, a rare earth element such as a lanthanoid element. Thereafter, an adhesive layer 112 is formed on the infrared light conversion layer 110. After the material of the adhesive layer 112 is, for example, ethylene vinyl acetate (EVA), please refer to FIG. ic, and the transparent substrate 100 and the transparent substrate 1 are pressed in such a manner that the adhesive layer 112 faces the electrode 1〇6. 8. To form a press-fit solar cell 114. In the present embodiment, the adhesive layer U2 is formed on the infrared light conversion layer 110. Of course, in other embodiments, the adhesive layer 112 may be formed on the electrode, and then the bright substrate and the transparent plate 1G8 may be pressed together with the adhesive layer 112 toward the infrared light conversion layer 11G to form a shaped solar cell. 114. , ' can also be used in the infrared light conversion layer UG and the electrode upper layer 112. r order as described above
' 表k本創作的壓合型太陽能電池114的 ,先分別製造具有紅外光轉換層11〇的透明基板刚斑 太陽能電池(如圖u所示的結構),_再藉由將 陽二从將;f壓合在一起。也就是說,在本創作的壓合型 n不需改變原有的太陽能電池製程,因而 成本增加。此外,由於圖1B令的具有紅外光轉; 8 M412467 層110的透明錄108 _ Μ中的太陽能電池是分別製造 的’因此亦可視實際需求而在不同的場所製造具有紅外光轉換 層110的透明基板108與圖1A中的太陽能電池。 以下將以圖1C巾的壓合型太陽能電池114為例,對本創 作的太陽能電池作說明。In the case of the press-fit type solar cell 114 of the present invention, a transparent substrate rigid spot solar cell having an infrared light conversion layer 11 ( is separately fabricated (structure shown in FIG. 9), and _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ f press together. That is to say, in the present invention, the press-fit type n does not need to change the original solar cell process, and thus the cost increases. In addition, since the solar cell of the transparent recording 108 _ 8 of the M 467 467 layer 110 is separately manufactured, the solar cell having the infrared light conversion layer 110 can be manufactured at different places according to actual needs. The substrate 108 is the same as the solar cell of FIG. 1A. Hereinafter, the solar cell of the present invention will be described by taking the laminated solar cell 114 of Fig. 1C as an example.
請參照_ 1C,壓合型太陽能電池114包括透明基板1〇〇、 透明基板1〇8、電極1〇2、電極106、堆疊半導體結構刚、红 外光轉換層m以及黏著層112。透明基板⑽配置於透明基 板100上。電極1〇2配置於透明基板100與透明基板1〇8之間。 電極106配置於電極102與透明基板1〇8之間。堆疊半導體結 構104配置於電極102與電極1〇6之間。堆疊半導體結構刚 包括P型半導體層lG4a、本質|觸與!!型半導體層1〇4c, 且本質層104b位於p型半導體層1〇4a#n型半導^層之間 购。紅外光轉換層110配置於透明基板1〇8與電極1 曰〇6之 間’用以將紅外光轉換為可見光。黏著層112配 換層110與電極1〇6之間。 、·.卜光轉Referring to _1C, the press-fit type solar cell 114 includes a transparent substrate 1A, a transparent substrate 1〇8, an electrode 1〇2, an electrode 106, a stacked semiconductor structure, an infrared light conversion layer m, and an adhesive layer 112. The transparent substrate (10) is disposed on the transparent substrate 100. The electrode 1〇2 is disposed between the transparent substrate 100 and the transparent substrate 1〇8. The electrode 106 is disposed between the electrode 102 and the transparent substrate 1〇8. The stacked semiconductor structure 104 is disposed between the electrode 102 and the electrode 1〇6. The stacked semiconductor structure just includes the P-type semiconductor layer lG4a, the essence|touch! The semiconductor layer 1〇4c is formed, and the intrinsic layer 104b is located between the p-type semiconductor layer 1〇4a#n-type semiconductor layer. The infrared light conversion layer 110 is disposed between the transparent substrate 1 8 and the electrode 1 曰〇 6 for converting infrared light into visible light. The adhesive layer 112 is interposed between the layer 110 and the electrode 1〇6. ,··.
對於-般的太陽能電池來說,當太陽絲射至太陽能電 池時’由於以非Μ或微晶鹤材料的本f層無法有效地吸收 太%光中的紅外光(其在太陽光中約佔5G%),因此紅外光合直 接穿過太陽能電池•法被_,使敎陽能電池㈣電^換 效率無法大幅度地提升。然而,對於壓合型太陽能電池川 來說,當太陽光穿過剌基板⑽而至紅外光轉換声ιι〇 m光轉換層ug可將太陽光巾無法被太陽能電池所利用 的、·工外光轉換為可被太陽能電池所湘的可見光。由於 祕對於可見光具有較佳的吸收率’因此當太陽光中的紅外 9 M412467 光被紅外光轉換層110轉換為可見光而進入本質層I04b時, 與—般的太陽能電池相比’増加了照射至本質層104b的可見 光的量,因而提升了壓合型太陽能電池m的光電轉換效率。 此外,相對於其他顏色的可見光來說,若壓合型太陽俨 電池114的本質層是以非晶砂為材料,而非晶矽材料對於綠^ 與藍綠混光具有較佳的吸收率(對於綠光具有最佳的吸收 率),因此可以藉由調整紅外光轉換層UG巾稀土元素的種 類、組成比例等來將太陽光中的紅外光轉換為綠光或藍綠混 光,以進一步地提升壓合型太陽能電池114的光電轉換效率。 特別一提的是,經紅外光轉換層110所轉換成的綠光或 藍綠混光經過壓合型太陽能電池丨14之後,未被吸收的部分可 以進一步地被利用。舉例來說,經紅外光轉換層11〇轉換而形 成且未被吸收的綠光或藍綠混光可以與原本穿過壓合型太陽 能電池114的未被吸收的可見光混合而產生不同顏色的光。因 此,若將壓合型太陽能電池114應用於建築設計中,則可以視 貫際需求來調整而呈現出不同於白光的光。此外,若將壓合型 太陽能電池114應用於需要較多綠光或藍綠混光的農業或花 卉產業,則可有助於農作物與花卉培養。 再者’在本實施例中,由於照射至壓合型太陽能電池114 的太陽光中的紅外光已被轉換為可見光,因此紅外光照射至太 陽能電池時所產生的熱累積效應可以被大幅度地降低,使得壓 合型太陽能電池114經太陽光照射之後仍可以維持在與周遭 環境相同的溫度。此外’由於熱累積效應已被大幅度地降低, 因此可以進一步避免因熱累積效應而造成光電轉換效率降低 的問題,進而達到提升太陽能電池的效能的目的。 M412467 雖然本創作已以實施例揭露如上,然其並非用以限定本 創作,任何所屬技術領域中具有通常知識者,在不脫離本創作 之精神和範圍内,當可作些許之更動與潤飾,故本創作之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1A至圖1C為本創作的將紅外光轉換為可見光的壓合型太 陽能電池之製造流程剖面圖。 【主要元件符號說明】For a general solar cell, when the solar filament is incident on the solar cell, 'this layer of light, which is not a bismuth or microcrystalline crane material, cannot effectively absorb infrared light in too much light (which accounts for about half of the sunlight). 5G%), so the infrared photosynthetic directly passes through the solar cell and the method is _, so that the efficiency of the solar cell (4) can not be greatly improved. However, for the press-fit solar cell, when the sunlight passes through the ruthenium substrate (10) to the infrared light conversion ιι〇m light conversion layer ug, the solar ray can not be used by the solar cell, Converted to visible light that can be used by solar cells. Since the secret has a better absorption rate for visible light', when the infrared 9 M412467 light in the sunlight is converted into visible light by the infrared light conversion layer 110 and enters the intrinsic layer I04b, it is irradiated to the general solar cell. The amount of visible light of the intensive layer 104b thus increases the photoelectric conversion efficiency of the press-fit type solar cell m. In addition, compared with the visible light of other colors, if the intrinsic layer of the laminated solar cell 114 is made of amorphous sand, the amorphous germanium material has a better absorption rate for the green and blue-green mixed light ( It has the best absorption rate for green light. Therefore, the infrared light in the sunlight can be converted into green light or blue-green mixed light by adjusting the type and composition ratio of the rare earth element of the infrared light conversion layer UG towel to further The photoelectric conversion efficiency of the press-fit type solar cell 114 is raised. In particular, after the green light or blue-green mixed light converted by the infrared light conversion layer 110 passes through the press-fit type solar cell stack 14, the unabsorbed portion can be further utilized. For example, the green or blue-green mixed light formed by the infrared light conversion layer 11〇 conversion and not absorbed may be mixed with the unabsorbed visible light originally passing through the press-fit solar cell 114 to generate light of different colors. . Therefore, if the press-fit type solar cell 114 is applied to an architectural design, it can be adjusted to exhibit light different from white light depending on the needs. Further, if the press-fit type solar cell 114 is applied to an agricultural or flower industry that requires more green light or blue-green mixed light, it can contribute to crop and flower culture. Furthermore, in the present embodiment, since the infrared light in the sunlight irradiated to the press-type solar cell 114 has been converted into visible light, the heat accumulation effect generated when the infrared light is irradiated to the solar cell can be largely The reduction allows the press-fit solar cell 114 to remain at the same temperature as the surrounding environment after being exposed to sunlight. In addition, since the heat accumulation effect has been greatly reduced, the problem of lowering the photoelectric conversion efficiency due to the heat accumulation effect can be further avoided, thereby achieving the purpose of improving the performance of the solar cell. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any person skilled in the art can make some changes and refinements without departing from the spirit and scope of the present invention. Therefore, the scope of protection of this creation is subject to the definition of the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A to Fig. 1C are cross-sectional views showing the manufacturing process of a press-fit solar cell in which infrared light is converted into visible light. [Main component symbol description]
100、108 :透明基板 102、106 :電極 104 :堆疊半導體結構 104a : p型半導體層 104b :本質層 104c : η型半導體層 110 :紅外光轉換層 112 :黏著層 114 :壓合型太陽能電池100, 108: transparent substrate 102, 106: electrode 104: stacked semiconductor structure 104a: p-type semiconductor layer 104b: intrinsic layer 104c: n-type semiconductor layer 110: infrared light conversion layer 112: adhesive layer 114: press-fit solar cell