TW201203305A - Ion source - Google Patents

Ion source Download PDF

Info

Publication number
TW201203305A
TW201203305A TW99123357A TW99123357A TW201203305A TW 201203305 A TW201203305 A TW 201203305A TW 99123357 A TW99123357 A TW 99123357A TW 99123357 A TW99123357 A TW 99123357A TW 201203305 A TW201203305 A TW 201203305A
Authority
TW
Taiwan
Prior art keywords
electron
electrode
disposed
opening
layer
Prior art date
Application number
TW99123357A
Other languages
Chinese (zh)
Other versions
TWI407476B (en
Inventor
Peng Liu
Duan-Liang Zhou
Pi-Jin Chen
Zhao-Fu Hu
Cai-Lin Guo
Bing-Chu Du
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99123357A priority Critical patent/TWI407476B/en
Publication of TW201203305A publication Critical patent/TW201203305A/en
Application granted granted Critical
Publication of TWI407476B publication Critical patent/TWI407476B/en

Links

Abstract

The present invention relates to an ion source. The ion source includes a vacuum container, an ion electrode, and a field emission electron source. The vacuum container has a gas inputting element, an ion outputting element. The ion electrode is located adjacent to the ion outputting element. The field emission electron source is located in the vacuum container and includes an insulative substrate, an electron pulling electrode, a secondary electron emission layer, a cathode, an electron emission layer, and a gate electrode. The cathode has an opening as an electron outputting element. The electron emitter of the electron emission layer is not exposed through the electron outputting element. The ion produced by the electron emitted from the electron emitter hitting the free gas molecule will not hit the electron emitter while it moves toward the pulling electrode. Therefore, the electron emitter has a long lifespan.

Description

201203305 [0001] [0002] [0003] [0004] [0005] 099123357 發明說明: 【發明所屬之技術領域】 本發明涉及一種離子源,尤其涉及一種基於場發射電子 源的離子源。 【先前技術】 場發射電子源係離子源的重要元件,其為離子源提供電 子以轟擊工作氣體,使工作氣體電離產生離子。 先前技術中的場發射電子源通常包括一絕緣基底;—設 置於该絕緣基底上的陰極電極;複數個設置於陰極電極 上的電子發射體;一設置於該絕緣基底上的第—絕緣隔 離層,所述第一絕緣隔離層具有通孔,所述電子發射體 通過該通孔暴露,以使電子發射體發射的電子通過該通 孔射出;以及一柵極電極,所述栅極電極與陰極電極間 隔設置。當所述場發射電子源工作時,向桃㈣極施加 一高電位,向陰極電極施加一低電位。故,電子發射體 發射的電子通過該通孔射出。 然而’電子發射體發射的電子會與真空中游離的氣體分 子碰撞,從而使氣體分子電離產生離子。而且,該離子 會向處於低電位的陰極電極方向運動。由於所述場發射 電子源的電子發射體通過所述通孔暴露,故, °茨%子發 射體报容易受到該離子的轟擊,從而導致電子發射體損 壞。 、 【發明内容] 有鑒於此,提供一種可以有效避免離子轟擊電子發射體 的離子源實為必要。 表單編蜆A0101 第4頁/共45頁 0992041144-0 201203305 [0006] ❹ 一種離子源,其包括:一真空容器,該真空容器具有一 氣體入口以及一離子出射孔;一離子電極,該離子電極 設置於所述真空容器的離子出射孔處;以及一場發射電 子源設置於所述真空容器中。該場發射電子源包括:一 絕緣基底;一電子引出電極,該電子引出電極設置於該 絕緣基底的一表面;一二次電子發射層,該二次電子發 射層設置於該電子引出電極的表面;一陰極電極,該陰 極電極通過一第一絕緣隔離層與該電子引出電極間隔設 置,所述電子引出電極設置於陰極電極與絕緣基底之間 ,該陰極電極具有一表面至少部分與該電子引出電極面 對設置,該陰極電極具有一第一開口,該第一開口定義 一電子出射部;一電子發射層,該電子發射層設置於陰 極電極面對該電子引出電極設置的至少部分表面;以及 一柵極電極,該柵極電極與陰極電極絕緣設置,且所述 陰極電極設置於電子引出極與柵極電極之間。 [0007] Ο 一種離子源,其包括:一真空容器,該真空容器具有一 氣體入口,一電子注入孔以及一離子出射孔;一陽極電 極,該陽極電極設置於所述真空容器内;以及一場發射 電子源設置於所述電子注入孔附近。該場發射電子源包 括:一絕緣基底;一電子引出電極,該電子引出電極設 置於該絕緣基底的一表面;一二次電子發射層,該二次 電子發射層設置於該電子引出電極的表面;一陰極電極 ,該陰極電極通過一第一絕緣隔離層與該電子引出電極 間隔設置,所述電子引出電極設置於陰極電極與絕緣基 底之間,該陰極電極具有一表面至少部分與該電子引出 099123357 表單編號Α0101 第5頁/共45頁 0992041144-0 201203305 電極面對設置,該陰極電極具有一第一開口,該第一開 口定義一電子出射部,且該電子出射部與電子注入孔對 準;以及一電子發射層,該電子發射層設置於陰極電極 面對該電子引出電極設置的至少部分表面。 [0008] 一種離子源,其包括:一絕緣基底;一電子引出電極, 該電子引出電極設置於該絕緣基底的一表面;一二次電 子發射層,該二次電子發射層設置於該電子引出電極的 表面;一陰極電極,該陰極電極通過一第一絕緣隔離層 與該電子引出電極間隔設置,所述電子引出電極設置於 陰極電極與絕緣基底之間,該陰極電極具有一表面至少 部分與該電子引出電極面對設置,該陰極電極具有一第 一開口,該第一開口定義一電子出射部;一電子發射層 ,該電子發射層設置於陰極電極面對該電子引出電極設 置的至少部分表面;一柵極電極,該栅極電極與陰極電 極絕緣設置,且所述陰極電極設置於電子引出極與柵極 電極之間;一第四絕緣層設置於所述柵極電極遠離絕緣 基底的表面,所述第四絕緣層具有一與電子出射部相對 的第五開口以定義一真空空間,且所述第四絕緣層的側 壁上具有一氣體入口;以及一離子電極,該離子電極設 置於第四絕緣層遠離柵極電極的表面。 [0009] 與先前技術相比,由於電子出射部形成於陰極電極上, 電子發射體的電子發射端不會通過電子出射部暴露,故 ,當電子發射體發射的電子與真空中游離的氣體分子碰 撞產生離子向電子引出電極方向運動時,該離子不會轟 擊到該電子發射體,從而使該電子發射體具有較長壽命 099123357 表單編號A0101 第6頁/共45頁 0992041144-0 201203305 [0010] 〇 【實施方式】 以下將結合附圖詳細說明本發明實施例提供的離子源。 由於場發射電子源為離子源提供電子以轟擊工作氣體, 使工作氣體電離產生離子。所述本發明首先介紹幾種用 於離子源的場發射電子源。該場發射電子源可以包括一 * 個或複數個單元。本發明實施例僅以一個單元為例說明 〇 〇 _] 請參閱圖1至圖3,本發明第一實施例提供一種場發射電 子源100,其包括一絕緣基底110,一第一絕緣隔離層 112,一陰極電極114,一電子發射層116,一電子引出 電極118,一二次電子發射層120,一第二絕緣隔離層 121以及一拇極電極122。 [0012] 〇 所述絕緣基底110具有一表面,且所述電子引出電極118 設置於該絕緣基底110的表面。所述二次電子發射層120 設置於所述電子引出電極118遠離絕緣基底110的表面。 所述陰極電極114通過一第一絕緣隔離層112與該電子引 出電極118間隔設置,且所述電子引出電極118設置於陰 極電極114與絕緣基底110之間。所述陰極電極114定義 一第一開口 1140作為電子出射部。所述陰極電極114的第 一開口 1140與所述電子引出電極118面對設置,即電子出 射部與所述電子引出電極118相對設置。所述陰極電極 114具有一表面,且該表面的至少部分與該電子引出電極 118面對設置。所述電子發射層116設置於陰極電極114 與該電子引出電極118面對設置的部分表面。優選地,所 099123357 表單編號A0101 第7頁/共45頁 0992041144-0 201203305 述電子發射層Π6設置於陰極電極1〗4表面靠近電子出射 部的位置。所述栅極電極122通過所述第二絕緣隔離層 121與所述陰極電極間隔設置。所述電子發射層Η6 發射的電子轟擊所述二次電子發射層120產生二次電子。 所述二次電子發射層12〇發射的二次電子在柵極電極122 作用下通過電子出射部射出。 [0013] [0014] [0015] 099123357 所述絕緣基底11 〇的材料可以為石夕、玻璃、陶瓷、塑膠或 聚合物。所述絕緣基底11〇的形狀與厚度不限’可以根據 實際需要選擇。優選地所述絕緣基底丨丨〇的形狀為圓形 、正方形或矩形。本實施例中,所述絕緣基底110為一邊 長為10毫米,厚度為1毫米的正方形玻璃板。 所述電子引出電極118為—導電層,且其厚度和大小可以 根據實際需要選擇。所述電子引出電極118的材料可以為 純金屬、合金、氧化銦錫或導電漿料等。可以理解,當 絕緣基底110為矽片時,該;電子引出電根u 8可以為一矽 推雜層。本實施例中,所述電子引出電極U8為一厚度為 2〇微米的圓形鋁膜。該鋁膜通過磁:控濺射法沈積於絕緣 基底110表面。 所述二次電子發射層120的材料包括氧化鎂(MgO)、氧 化皱(BeO)、氟化鎂(MgF2)、氟化鈹(BeF2)、氧 化绝(CsO)、氧化鋇(BaO)、銀氧铯 '銻铯、銀鎂合 金、组鎂合金、錄鈹合金、銅皱合金以及GaP (Cs)中的 —種或幾種,其厚度和大小可以根據實際需要選擇。所 述二次電子發射層120可以通過塗敷、電子束蒸發、熱蒸 發或磁控濺射等方法形成於電子引出電極118的表面。可 表單編號A0101 第8頁/共45頁 0992041144-0 201203305 以理解,所述二次電子發射層120的表面還可以形成有凹 凸結構以增加二次電子發射層120的面積,可提高二次電 子發射效率。本實施例中,所述二次電子發射層120為— 厚度為20微米的圓形氧化鋇層。 [0016] Ο 所述陰極電極114可以為一導電層或導電基板,其材料可 以為金屬、合金、氧化銦錫(I TO)或導電漿料等。所述 陰極電極114的厚度和大小可以根據實際需要選擇。所述 陰極電極114的至少部分表面與所述二次電子發射層丨2〇 面對設置。所述陰極電極114辱有一第一開口 1140作為電 子出射部。具體地’所述陰極電極114可以為一具有通孔 的層狀結構或複數個相隔一定距離設置的條狀結構。所 述第一開口 1140可以為所述陰極電極114的通孔或相隔一 定距離設置的條狀結構之間的間隔。本實施例中,所述 陰極電極114為一圓環形鋁導電層,且其申心具有一通孔 作為電子出射部。BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an ion source, and more particularly to an ion source based on a field emission electron source. [Prior Art] The field emission electron source is an important component of the ion source, which supplies electrons to the ion source to bombard the working gas, and ionizes the working gas to generate ions. The field emission electron source of the prior art generally comprises an insulating substrate; a cathode electrode disposed on the insulating substrate; a plurality of electron emitters disposed on the cathode electrode; and a first insulating spacer disposed on the insulating substrate The first insulating isolation layer has a through hole through which the electron emitter is exposed so that electrons emitted from the electron emitter are emitted through the through hole; and a gate electrode, the gate electrode and the cathode Electrode spacing setting. When the field emission electron source is operating, a high potential is applied to the peach (four) pole and a low potential is applied to the cathode electrode. Therefore, electrons emitted from the electron emitter are emitted through the through hole. However, electrons emitted by the electron emitter collide with free gas molecules in the vacuum, thereby ionizing the gas molecules to generate ions. Moreover, the ions move toward the cathode electrode at a low potential. Since the electron emitter of the field emission electron source is exposed through the through hole, the electron emitter is easily bombarded by the ion, resulting in damage of the electron emitter. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide an ion source that can effectively prevent ion bombardment of an electron emitter. Form Compilation A0101 Page 4 / Total 45 Page 0992041144-0 201203305 [0006] An ion source comprising: a vacuum vessel having a gas inlet and an ion exit aperture; an ion electrode, the ion electrode Provided at an ion exit hole of the vacuum vessel; and a field of emission electrons disposed in the vacuum vessel. The field emission electron source comprises: an insulating substrate; an electron extraction electrode disposed on a surface of the insulating substrate; a secondary electron emission layer disposed on the surface of the electron extraction electrode a cathode electrode, the cathode electrode is spaced apart from the electron extraction electrode by a first insulating isolation layer disposed between the cathode electrode and the insulating substrate, the cathode electrode having a surface at least partially with the electron extraction The electrode surface is disposed, the cathode electrode has a first opening, the first opening defines an electron emitting portion, and an electron emitting layer disposed on at least a portion of the surface of the cathode electrode facing the electron extracting electrode; A gate electrode is insulated from the cathode electrode, and the cathode electrode is disposed between the electron extraction electrode and the gate electrode. [0007] 离子 an ion source comprising: a vacuum vessel having a gas inlet, an electron injection hole and an ion exit hole; an anode electrode, the anode electrode being disposed in the vacuum vessel; and a field An electron emission source is disposed adjacent to the electron injection hole. The field emission electron source comprises: an insulating substrate; an electron extraction electrode disposed on a surface of the insulating substrate; a secondary electron emission layer disposed on the surface of the electron extraction electrode a cathode electrode, the cathode electrode is spaced apart from the electron extraction electrode by a first insulating isolation layer disposed between the cathode electrode and the insulating substrate, the cathode electrode having a surface at least partially with the electron extraction 099123357 Form No. 1010101 Page 5 / Total 45 Page 0992041144-0 201203305 The electrode is disposed, the cathode electrode has a first opening, the first opening defines an electron emitting portion, and the electron emitting portion is aligned with the electron injection hole And an electron emission layer disposed on at least a portion of the surface of the cathode electrode facing the electron extraction electrode. An ion source comprising: an insulating substrate; an electron extraction electrode disposed on a surface of the insulating substrate; a secondary electron emission layer disposed on the electron extraction layer a surface of the electrode; a cathode electrode disposed at a distance from the electron extraction electrode through a first insulating isolation layer, the electron extraction electrode being disposed between the cathode electrode and the insulating substrate, the cathode electrode having a surface at least partially The electron extraction electrode is disposed facing, the cathode electrode has a first opening, the first opening defines an electron emission portion, and an electron emission layer disposed on the cathode electrode facing at least a portion of the electron extraction electrode a gate electrode, the gate electrode is insulated from the cathode electrode, and the cathode electrode is disposed between the electron collector and the gate electrode; a fourth insulating layer is disposed on the gate electrode away from the insulating substrate a surface, the fourth insulating layer has a fifth opening opposite to the electron exit portion to define a vacuum space, The fourth side wall insulating layer having a gas inlet; and a plasma electrode, the ion electrode is placed on the surface of the fourth insulating layer disposed away from the gate electrode. [0009] Compared with the prior art, since the electron emission portion is formed on the cathode electrode, the electron emission end of the electron emitter is not exposed through the electron emission portion, so when the electron emission from the electron emitter and the free gas molecule in the vacuum When the collision generates ions to move toward the electron extraction electrode, the ions do not bombard the electron emitter, so that the electron emitter has a long life. 099123357 Form No. A0101 Page 6 / Total 45 Page 0992041144-0 201203305 [0010] [Embodiment] Hereinafter, an ion source provided by an embodiment of the present invention will be described in detail with reference to the accompanying drawings. Since the field emission electron source supplies electrons to the ion source to bombard the working gas, the working gas is ionized to generate ions. The invention first describes several field emission electron sources for ion sources. The field emission electron source may comprise one or more cells. The embodiment of the present invention is described by using only one unit as an example. Referring to FIG. 1 to FIG. 3, a first embodiment of the present invention provides a field emission electron source 100 including an insulating substrate 110 and a first insulating isolation layer. 112, a cathode electrode 114, an electron emission layer 116, an electron extraction electrode 118, a secondary electron emission layer 120, a second insulation isolation layer 121, and a thumb electrode 122. [0012] The insulating substrate 110 has a surface, and the electron extraction electrode 118 is disposed on a surface of the insulating substrate 110. The secondary electron emission layer 120 is disposed on a surface of the electron extraction electrode 118 away from the insulation substrate 110. The cathode electrode 114 is spaced apart from the electron extraction electrode 118 by a first insulating spacer 112, and the electron extraction electrode 118 is disposed between the cathode electrode 114 and the insulating substrate 110. The cathode electrode 114 defines a first opening 1140 as an electron emitting portion. The first opening 1140 of the cathode electrode 114 is disposed to face the electron extraction electrode 118, that is, the electron emission portion is disposed opposite to the electron extraction electrode 118. The cathode electrode 114 has a surface, and at least a portion of the surface faces the electron extraction electrode 118. The electron emission layer 116 is disposed on a surface of the cathode electrode 114 that faces the electron extraction electrode 118. Preferably, 099123357 Form No. A0101 Page 7 of 45 0992041144-0 201203305 The electron emission layer Π6 is disposed at a position where the surface of the cathode electrode 1 is close to the electron emission portion. The gate electrode 122 is spaced apart from the cathode electrode by the second insulating isolation layer 121. The electrons emitted from the electron emission layer Η6 bombard the secondary electron emission layer 120 to generate secondary electrons. The secondary electrons emitted from the secondary electron emission layer 12 are emitted by the electron emission portion by the gate electrode 122. [0015] [0015] 099123357 The material of the insulating substrate 11 可以 may be a stone, glass, ceramic, plastic or polymer. The shape and thickness of the insulating substrate 11'' are not limited' and may be selected according to actual needs. Preferably, the insulating substrate has a circular shape, a square shape or a rectangular shape. In this embodiment, the insulating substrate 110 is a square glass plate having a length of 10 mm and a thickness of 1 mm. The electron extraction electrode 118 is a conductive layer, and its thickness and size can be selected according to actual needs. The material of the electron extraction electrode 118 may be a pure metal, an alloy, an indium tin oxide or a conductive paste or the like. It can be understood that when the insulating substrate 110 is a cymbal, the electron extraction root u 8 can be a 推 推 layer. In this embodiment, the electron extraction electrode U8 is a circular aluminum film having a thickness of 2 μm. The aluminum film is deposited on the surface of the insulating substrate 110 by magnetic: controlled sputtering. The material of the secondary electron emission layer 120 includes magnesium oxide (MgO), oxidized wrinkle (BeO), magnesium fluoride (MgF2), bismuth fluoride (BeF2), oxidized (CsO), cerium oxide (BaO), silver. Oxonium strontium, silver-magnesium alloy, group magnesium alloy, strontium alloy, copper crepe alloy, and GaP (Cs), the thickness and size can be selected according to actual needs. The secondary electron emission layer 120 may be formed on the surface of the electron extraction electrode 118 by coating, electron beam evaporation, thermal evaporation, or magnetron sputtering. Form No. A0101 Page 8 of 45 0992041144-0 201203305 It is understood that the surface of the secondary electron emission layer 120 may also be formed with a concavo-convex structure to increase the area of the secondary electron emission layer 120, and the secondary electrons may be improved. Emission efficiency. In this embodiment, the secondary electron emission layer 120 is a circular yttrium oxide layer having a thickness of 20 μm. [0016] The cathode electrode 114 may be a conductive layer or a conductive substrate, and the material thereof may be metal, alloy, indium tin oxide (ITO) or conductive paste. The thickness and size of the cathode electrode 114 can be selected according to actual needs. At least a portion of the surface of the cathode electrode 114 is disposed to face the secondary electron emission layer 丨2〇. The cathode electrode 114 has a first opening 1140 as an electron emitting portion. Specifically, the cathode electrode 114 may be a layered structure having through holes or a plurality of strip structures disposed at a distance. The first opening 1140 may be a space between the through holes of the cathode electrode 114 or a strip structure disposed at a certain distance. In this embodiment, the cathode electrode 114 is a circular aluminum conductive layer, and its center has a through hole as an electron emitting portion.

[0017] G 所述第一絕緣隔離層112設置於所述陰極電極與電子引出 電極之間,用於使所述陰極電極與電子引出電極之間絕 緣。所述第一絕緣隔離層U2的材料可以為樹脂、厚膜曝 光膠、玻璃、陶瓷、金屬氧化物中的一種或機種。所述 氧化物包括二氧化石夕、三氧化二鋁、氧化鉍等,其厚度 和形狀可以根據實際需要選擇。所述第一絕緣隔離層Π2 可以直接設置於絕緣基底11〇表面,也可設置於電子引出 電極118表面。所述第一絕緣隔離層112具有一第二開口 112 0。具體地,所述第一絕緣隔離層112可以為一具有通 孔的層狀結構,所述通孔為第二開口 1120,暴露出二次 099123357 表單編號A0101 第9頁/共45頁 0992041144-0 201203305 電子發射層120。所述第一絕緣隔離層112也可為複數個 相隔一疋距離設置的條狀結構,且所述相隔一定距離設 置的條狀結構之間的間隔為第二開口112〇。所述陰極電 極114的至少部分對應設置於所述第一絕緣隔離層112的 第二開口 11 20處,並通過該第一絕緣隔離層1丨2的第二開 口 1120暴露出部分表面面對所述二次電子發射層設置 。所述陰極電極114的第一開口 1140與所述第一絕緣隔離 層的第一開口 1120至少部分交疊設置。所述第一開口 114 0與所述第二開口 112 0交疊的部分作為電子出射部。 優選地,所述第一開口 114〇完全設置於第二開口 112〇範 圍内,所述第一開口 1140作為電子出射部。本實施例中 ,所述第一絕緣隔離層112為一厚度為100微米的圓環形 SU-8光刻膠設置於玻璃板表面,且其定義有一圓形通孔 ,所述陰極電極114的部分表面通過該圓形通孔與二次電 子發射層120面對設置,所述陰極電極i14的通孔設置於 第一絕緣隔離層112的圓形:¾礼的範圍内> 作為電子出射 部。 [0018]所述栅極電極1 22可以為金屬柵網、金屬片、氧化銦錫薄 膜或導電漿料層等。所述柵極電極122設置於第二絕緣隔 離層121與陰極電極114相對的另一表面,即第二絕緣隔 離層121設置於栅極電極122與陰極電極114之間。具體 地,所述柵極電極122可設置於第二絕緣隔離層121的上 表面靠近電子出射部的位置。當所述柵極電極122為柵網 時,可覆蓋所述電子出射部設置。所述柵極電極122可以 通過絲網列印、電鍍、化學氣相沈積、磁控濺射、熱沈 099123357 表單編號A0101 第10頁/共45頁 0992041144-0 201203305 積等方法製備’也可以將提前製備好的金屬柵網直接設 置於第二絕緣隔離層121上。本實施例中,所述辆極電極 122為金屬柵網’且該柵極電極122從第二絕緣隔離層 的表面延伸至電子出射部上方該金属栅網覆蓋所 述電子出射σρ。可以理解,所述金屬栅網上還可以塗敷 一 ··人電子發射材料,以進一步增強場發射電子源的場 發射電流密度。 []力述第—絕緣隔離層121的材料和形成方法與第一絕緣隔 0 離層112的材料和形成方法相同。所述H緣隔離層 121的作用為使陰極電極114與柵極電極絕緣。所述陰極 電極114設置於第二絕緣隔離層121靠近電子引出電極 118的表面。所述第二絕緣隔離層121為一層狀結構,其 形狀和大小與陰極電極Π4相對應。所藥第二絕緣隔離層 121具有一與電子出射部對應的第三開货12丨2。所述第三 開口 1212與第一開口 114〇及第‘開口 112〇至少部分交疊 設置,所述第三開口 1212與第一開口 1140及所述第二開 Q 口 1120交疊的部分作為電子'出射部。本實施例中,所述 第二絕緣隔離層121具有一與電子出射部相對應的通孔。 所述第二絕緣隔離層121在第三開口 1212的内壁上可以進 一步設置有二次電子發射材料。即,所述第二絕緣隔離 層121靠近電子出射部的表面可以設置二次電子發射材料 。此時’所述第二絕緣隔離層121的厚度可以做的較大, 如500微米〜1〇〇〇微米,以提高二次電子發射材料的面積 。進一步’所述第二絕緣隔離層121在第三開口 1212的内 壁上可以形成複數個凹凸結構,以增加二次電子發射材 099123357 表單編號A0101 第11頁/共45頁 0992041144-0 201203305 料的面積。 [0020] 所述電子發射層116設置於陰極電極114面對二次電子發 射層120的部分表面,所述電子發射層116面對所述二次 電子發射層120設置。優選地,所述電子發射層11 6設置 於陰極電極114的表面靠近電子出射部的位置。所述電子 發射層116包括複數個電子發射體1162,如奈米碳管、奈 米碳纖維、或矽奈米線等。所述每個電子發射體1162具 有一電子發射端1164,且該電子發射端1164指向所述二 次電子發射層120設置。所述電子發射層11 6的厚度和大 小可以根據實際需要選擇。進一步,所述電子發射層116 的表面開可以設置一層抗離子轟擊材料以提高其穩定性 和壽命。所述抗離子轟擊材料包括碳化錄、碳化給、六 硼化鑭等中的一種或複數種。本實施例中,所述電子發 射層11 6為一環形奈米碳管漿料層。所述奈米碳管漿料包 括奈米碳管、低熔點玻璃粉以及有機載體。其中,有機 載體在烘烤過程中蒸發,低熔點玻璃粉在烘烤過程中熔 化並將奈米碳管固定於陰極電極114表面◊所述環形電子 發射層11 6的外徑小於或等於二次電子發射層120的半徑 ,且内徑等於電子出射部的半徑。 [0021] 所述電子發射層116的電子發射體11 62的電子發射端 1164與二次電子發射層120相對於電子發射端11 64的表 面的距離小於電子與氣體分子的平均自由程,以減少離 子對電子發射體1162的轟擊。一方面,由於電子發射端 1164與二次電子發射層120相對於電子發射端11 64的表 面的距離小於電子與氣體分子的平均自由程,故,電子 099123357 表單編號A0101 第12頁/共45頁 0992041144-0 201203305 發射體1162發射的電子在與氣體分子(指電子發射端 1164與二次電子發射層120之間的氣體分子)碰撞之前會 先轟擊二次電子發射層120,從而提高的電子發射體1162 發射的電子轟擊二次電子發射層120幾率。另一方面,由 於電子發射體1162發射的電子與氣體分子碰撞的幾率減 小,即氣體分子被電離的產生離子的幾率也減小,故, 電子發射端1164與二次電子發射層120之間產生離子的幾 率也減小,從而使電子發射端1164被離子正面轟擊的幾 率減小。[0017] G The first insulating isolation layer 112 is disposed between the cathode electrode and the electron extraction electrode for insulating the cathode electrode and the electron extraction electrode. The material of the first insulating isolation layer U2 may be one of a resin, a thick film exposure adhesive, a glass, a ceramic, and a metal oxide. The oxide includes cerium oxide, aluminum oxide, cerium oxide, etc., and its thickness and shape can be selected according to actual needs. The first insulating spacer layer 2 may be disposed directly on the surface of the insulating substrate 11 or on the surface of the electron extraction electrode 118. The first insulating isolation layer 112 has a second opening 112 0 . Specifically, the first insulating isolation layer 112 may be a layered structure having a through hole, and the through hole is a second opening 1120, exposing a secondary 099123357 Form No. A0101 Page 9 / Total 45 Page 0992041144-0 201203305 Electron emission layer 120. The first insulating isolation layer 112 may also be a plurality of strip structures disposed at a distance apart, and the interval between the strip structures disposed at a certain distance is the second opening 112〇. At least a portion of the cathode electrode 114 is disposed at the second opening 11 20 of the first insulating isolation layer 112, and the second opening 1120 of the first insulating isolation layer 1 暴露 2 exposes a portion of the surface facing the surface The secondary electron emission layer is set. The first opening 1140 of the cathode electrode 114 is at least partially overlapped with the first opening 1120 of the first insulating spacer. A portion of the first opening 114 0 overlapping the second opening 112 0 serves as an electron emitting portion. Preferably, the first opening 114 is completely disposed in the second opening 112, and the first opening 1140 serves as an electron emitting portion. In this embodiment, the first insulating isolation layer 112 is a circular SU-8 photoresist with a thickness of 100 micrometers disposed on the surface of the glass plate, and defines a circular through hole, and the cathode electrode 114 A part of the surface is disposed facing the secondary electron emission layer 120 through the circular through hole, and the through hole of the cathode electrode i14 is disposed in a circular shape of the first insulating isolation layer 112: within a range of 3⁄4 礼< as an electron emission portion . The gate electrode 1 22 may be a metal grid, a metal piece, an indium tin oxide film or a conductive paste layer or the like. The gate electrode 122 is disposed on the other surface of the second insulating isolation layer 121 opposite to the cathode electrode 114, that is, the second insulating isolation layer 121 is disposed between the gate electrode 122 and the cathode electrode 114. Specifically, the gate electrode 122 may be disposed at a position where the upper surface of the second insulating isolation layer 121 is close to the electron emission portion. When the gate electrode 122 is a grid, the electron exit portion arrangement may be covered. The gate electrode 122 can be prepared by screen printing, electroplating, chemical vapor deposition, magnetron sputtering, heat sink 099123357 Form No. A0101, page 10/45 pages 0992041144-0 201203305, etc. The metal grid prepared in advance is directly disposed on the second insulating isolation layer 121. In this embodiment, the electrode electrode 122 is a metal grid ' and the gate electrode 122 extends from the surface of the second insulating spacer to the electron emitting portion. The metal grid covers the electron emission σρ. It will be appreciated that the metal grid may also be coated with a human electron emissive material to further enhance the field emission current density of the field emission electron source. The material and formation method of the insulating spacer layer 121 are the same as those of the first insulating spacer 112. The H-edge isolation layer 121 functions to insulate the cathode electrode 114 from the gate electrode. The cathode electrode 114 is disposed on a surface of the second insulating isolation layer 121 near the electron extraction electrode 118. The second insulating spacer 121 is a layered structure having a shape and size corresponding to the cathode electrode Π4. The second insulating spacer 121 of the drug has a third opening 12丨2 corresponding to the electron emitting portion. The third opening 1212 is at least partially overlapped with the first opening 114 〇 and the first opening 112 ,, and the portion of the third opening 1212 overlapping the first opening 1140 and the second opening Q 1120 is used as an electron. 'Exporting department. In this embodiment, the second insulating isolation layer 121 has a through hole corresponding to the electron emission portion. The second insulating spacer 121 may further be provided with a secondary electron emission material on the inner wall of the third opening 1212. That is, the second insulating spacer 121 may be provided with a secondary electron-emitting material near the surface of the electron-emitting portion. At this time, the thickness of the second insulating spacer 121 may be made larger, such as 500 μm to 1 μm, to increase the area of the secondary electron-emitting material. Further, the second insulating isolation layer 121 may form a plurality of concave and convex structures on the inner wall of the third opening 1212 to increase the area of the secondary electron emission material 099123357 Form No. A0101 Page 11 / Total 45 Page 0992041144-0 201203305 . [0020] The electron emission layer 116 is disposed on a portion of the surface of the cathode electrode 114 facing the secondary electron emission layer 120, and the electron emission layer 116 is disposed facing the secondary electron emission layer 120. Preferably, the electron emission layer 116 is disposed at a position where the surface of the cathode electrode 114 is close to the electron emission portion. The electron emission layer 116 includes a plurality of electron emitters 1162, such as carbon nanotubes, carbon nanotubes, or nanowires. Each of the electron emitters 1162 has an electron emission end 1164, and the electron emission end 1164 is disposed toward the second electron emission layer 120. The thickness and size of the electron-emitting layer 116 can be selected according to actual needs. Further, the surface of the electron emission layer 116 may be provided with an anti-ion bombardment material to improve its stability and life. The ion bombardment material includes one or more of carbonization, carbonization, lanthanum hexaboride, and the like. In this embodiment, the electron emission layer 116 is a circular carbon nanotube slurry layer. The carbon nanotube slurry comprises a carbon nanotube, a low melting glass powder, and an organic vehicle. Wherein, the organic carrier evaporates during the baking process, the low-melting glass frit melts during the baking process, and the carbon nanotubes are fixed on the surface of the cathode electrode 114. The outer diameter of the annular electron-emitting layer 116 is less than or equal to twice. The radius of the electron emission layer 120, and the inner diameter is equal to the radius of the electron exit portion. [0021] The distance between the electron emission end 1164 of the electron emitter 11 62 of the electron emission layer 116 and the surface of the secondary electron emission layer 120 with respect to the surface of the electron emission end 11 64 is smaller than the mean free path of electrons and gas molecules to reduce The ion bombardment of the electron emitter 1162. On the one hand, since the distance between the electron-emitting end 1164 and the surface of the secondary electron-emitting layer 120 with respect to the surface of the electron-emitting end 11 64 is smaller than the mean free path of electrons and gas molecules, the electrons 099123357 Form No. A0101 Page 12 of 45 0992041144-0 201203305 The electrons emitted by the emitter 1162 will first bombard the secondary electron emission layer 120 before colliding with the gas molecules (the gas molecules between the electron emission end 1164 and the secondary electron emission layer 120), thereby increasing the electron emission. The electrons emitted by the body 1162 bombard the secondary electron emission layer 120. On the other hand, since the probability of electrons emitted by the electron emitter 1162 colliding with the gas molecules is reduced, that is, the probability that the gas molecules are ionized to generate ions is also reduced, so that between the electron emission end 1164 and the secondary electron emission layer 120 The probability of generating ions is also reduced, thereby reducing the probability that the electron-emitting end 1164 is bombarded by the front side of the ions.

[0022] 根據氣體分子運動論,在一定壓強下,氣體分子之間的 平均自由程以及自由電子與氣體分子之間的平均自由程 分別由公式(1)和(2 )所示, [0023][0022] According to the theory of gas molecular motion, the mean free path between gas molecules and the mean free path between free electrons and gas molecules are shown by equations (1) and (2), respectively, under a certain pressure, [0023]

kT (1)kT (1)

[0024][0024]

[0025] 其中,k=l. 38xlO_23J/K為波爾茲曼常數;T為絕對溫度 ;d為氣體分子的有效直徑;P為氣體壓強。以溫度為 300K的氮氣為例,在氣體壓強為ITorr的真空度下,空 氣分子的平均自由程約為50微米,而自由電子與氣體分 099123357 表單編號A0101 第13頁/共45頁 0992041144-0 201203305 子的平均自由程為283微米。故,如果所述電子發射端 11 64與二次電子發射層120表面的距離足夠小的情況下, 所述場發射電子源100就可以在低真空狀態工作而不會引 起電子發射體1162的損壞。 [0026] 本實施例中,所述電子發射端1164與二次電子發射層120 相對於電子發射端1164的表面的距離為10微米~30微米 。相應地,所述場發射電子源1 0 0可以在9 T 〇 r r ~ 2 7 T 〇 r r 的低真空的條件下工作也不至於導致發射體的損壞。在 更好的真空如壓強降低1個量級至ITorr左右下工作,電 子在發射間隙與氣體分子的碰撞就可以忽略至不計,因 而發射體由於離子轟擊造成的破壞也就可以忽略不計。 可以理解,所述場發射電子源100也可以在高真空環境或 惰性氣體環境中工作,會有更穩定的性能。 [0027] 具體地,本實施例所述場發射電子源100的具體結構如下 。所述第一絕緣隔離層112設置於所述絕緣基底110的一 表面,且該第一絕緣隔離層112定義一第二開口 1120以使 絕緣基底110的表面通過該第二開口 1120暴露。所述電子 引出電極118設置於所述絕緣基底110通過該第二開口 1120暴露的表面,且所述電子引出電極118的厚度小於第 一絕緣隔離層11 2的厚度。所述二次電子發射層1 20設置 於所述電子引出電極118的表面,且與電子引出電極118 電連接。所述陰極電極114設置於所述第一絕緣隔離層 112的表面,且延伸至所述二次電子發射層120的上方。 所述陰極電極114定義一第一開口 1140作為電子出射部。 所述電子發射層116設置於所述陰極電極114面向二次電 099123357 表單編號A0101 第14頁/共45頁 0992041144-0 201203305 子發射層120的表面,且與陰極電極114電連接β所述電 子發射層11 6與二次電子發射層120相對且間隔設置。所 述第二絕緣隔離層121設置於所述陰極電極114遠離二次 電子發射層120的表面,且該第二絕緣隔離層121的第三 開口 1212與電子出射部對應設置。所述栅極電極丨22設置 於第二絕緣隔離層121的表面,且從第二絕緣隔離層121 的表面延伸至電子出射部的上方以將電子出射部覆蓋。 [0028] Ο 所述場發射電子源100工作時,電子引出電極U8的電位 高於陰極電極114的電位’栅極電極122的電位高於電子 引出電極11 8的電位。本實施例中’所遠陰極電極1 j 4保 持零電位,電子引出電極118上施加一 1〇〇伏特的電壓, 柵極電極122上施加一500伏特的電壓。所述電子發射體 1162在電子引出電極Π8電壓作用下發射電子,且該電子 轟擊一次電子發射層120以使二次電子發射層12〇發射二 次電子。所述二次電子發射層120發射的+次電子在柵極 電極122電壓作用下從電子出射部射出。 ❹ _ 所述場發射電子源1_真有以下優點:由於電子出射部形 成於陰極電極114上,電子發射體1162的電子發 1164不會通過電子出射部暴露,故,當電子發射體1162 發射的電子與真空中游離的氣體分子碰揸產生離子向電 子引出電極118方向運動時.,該離子不會轟擊到該電子發 射體1162,從而使該電子發射體1162具有較長壽命。由 於電子發射層116上形成抗離子義擊材料可以提高其穩定 性和壽命。同時,由於採用了二次電子發射層丨2〇 ,可以 在較低的發射電壓情況下得到較大的發射電流。 099123357 表單編號A0101 第15頁/共45頁 0992041144-0 201203305 [0030] 請參閱圖4,本發明第一實施例提供一種場發射電子源 100的製備方法,其包括以下步驟: [0031] 步驟一,提供一絕緣基底1 10。 [0032] 本實施例中,所述絕緣基底110為一方形玻璃板。 [0033] 步驟二,在絕緣基底110的一表面形成一電子引出電極 118 ° [0034] 所述電子引出電極11 8可以通過絲網列印、電鍍、化學氣 相沈積、磁控濺射或熱沈積等方法製備。本實施例中, 通過磁控滅射法在絕緣基底110表面沈積一銘層作為電子 引出電極118。 [0035] 步驟三,在電子引出電極118的表面形成一二次電子發射 層 1 2 0。 [0036] 所述二次電子發射層1 2 0可以通過絲網列印、電鍍、化學 氣相沈積、磁控濺射或熱沈積等方法製備。本實施例中 ,通過表面塗覆在電子引出電極118表面形成一層氧化鋇 作為二次電子發射層1 2 0。 [0037] 步驟四,在絕緣基底110表面形成一第一絕緣隔離層112 ,該第一絕緣隔離層112具有一第二開口 11 20以使得二次 電子發射層120的表面通過該第二開口 1120暴露。 [0038] 所述第一絕緣隔離層112可以通過絲網列印、甩膠、塗敷 或厚膜工藝等方法製備。本實施例中,通過絲網列印法 在陰極電極114表面直接形成一具有圓形通孔的第一絕緣 隔離層112,從而使得二次電子發射層120的表面通過該 099123357 表單編號A0101 第16頁/共45頁 0992041144-0 201203305 圓形通孔暴露。 _9] #驟五,提供—陰極電極板(圖未標),該陰極電極板具 有一第一開口 114〇,並在該陰極電極板的部分表面形成 一電子發射層11 6。 [_]所述陰極電極板可以為—導電基板或形成有導電層的絕 緣基板。 [0041] 本實施例中,所述陰極電極板的製備方法包括以下步驟 [0042] 首先,提供一第二絕緣隔_層121。 [0043] 所述第二絕緣隔離層121可以為具有通孔的基板或條狀體 。本實施例中,所述第二絕緣隔離層12丨為一圓環形玻璃 板’且所述第二絕緣隔離層121具有一第三開口丨212。 [0044] 然後,在所述第二絕緣隔離層121的表面靠近第彡開口 121 2的位置形成一陰極電極114。 [0045] 所述陰極電極114可以通過綵網列印,真空鑛嫉等方法製 備,也可以將一金屬片直接設置於第 二 絕緣隔離層121表 面。本實施例中,通過磁控濺射法在第二絕緣隔離層121 的表面沈積一圓環形鋁層作為陰極電極114,真所述陰極 電棰114形成有與第三開口 1212對應的第—開口 II40 ’ 作為電子出射部。 [0046]所述電子發射層11 6可以通過列印漿料或化學氣相沈積法 等方法製備。本實施例中,先通過絲網列印在陰棰電極 ll4表面形成一環形奈米碳管漿料層,再對該奈米破管漿 099123357 表箪戚號Α0101 第17頁/共45頁 0992041144-0 201203305 料層進行烘烤。所述奈米碳管漿料包括奈米碳管、低熔 點玻璃粉以及有機載體。其中,有機載體在烘烤過程中 蒸發,低熔點玻璃粉在烘烤過程中熔化並將奈米碳管固 定於陰極電極Π4表面。進—步,還可以採用膠帶黏結剝 離等方式對奈米碳管電子發射層116進行表面處理,^使 得更多的奈米碳管暴露。可以理解,採用膠帶黏結剝離 奈米碳管電子發射層116可以使得奈米碳管暴露的同時登 立以與二次電子發射層120表面垂直。 [0047] [0048] [0049] [0050] 進一步,可在此電子發射層116上形成抗離子轟擊材料如 碳化锆、碳化姶、六硼化鏰等,以提高其穩定性和壽命 。本實施例中,採用磁控濺射的方法在奈米碳管表面形 成一碳化銓的薄膜。 步驟六’將陰極電極板組裝於第一絕緣隔離層112相對於 絕緣基底110的另一表面,使第一開口 114〇與第二開口 1120至少部分交疊設置以寒義一電子出射部,並使得電 子發射層116至少部分設置在第一絕緣崎離層112的第二 開口 112〇處並面對電子引φ電極118設置。 將陰極電極114的第-開口1140對應於第一絕緣隔離層 112的第二開口 1120設置,並使得第一開口 114〇與第二 開口 1120至少部分重疊以定義一電子出射部。 本實施例中,將所述圓環形陰極電極板直接設置於第一 絕緣隔離層112的表面,使得第一開口 完全設置在第 二開口 1120的範圍内,並使得電子發射層116至少部分面 對電子引出電極118設置。可以理解,當陰極電極板為條 099123357 表單編號A0101 第18頁/共45頁 0992041144-0 201203305 [0051] [0052] Ο [0053] [0054] ❹ [0055] [0056] [0057] 狀體時,可以將至少兩個陰極電極板平行間隔設置於第 一絕緣隔離層112的表面。間隔設置的陰極電極板之間定 義一第一開口 1140以作為電子出射部。 步驟七,在第二絕緣隔離層121遠離電子引出電極118的 表面設置一桃極電極122。 所述栅極電極122可以通過絲網列印、電鍍、化學氣相沈 積、磁控濺射或熱沈積等方法製備,也可以將提前製備 好的金屬柵網直接設置於第二絕緣隔離層121上。本實施 例中,將一金屬柵網直接設置並固定於第二絕緣隔離層 121表面。可以理解,該步驟為可選步驟。 可以理解,上述場發射電子源100的製備方法的步驟不限 於上述順序,本領域技術人員可以根據實際需要進行調 整。例如,上述場發射電子源100的製備方法可以包括以 下步驟: 步驟一,提供一陰極電極板,該陰極電極板具有一第一 開口 1140,並在該陰極電極板的部分表面形成一電子發 射層11 6。 步驟二,在陰極電極板表面形成一第一絕緣隔離層112, 該第一絕緣隔離層11 2具有第二開口 11 20以使得電子發射 層116通過該第二開口 1120暴露。 步驟三,提供一絕緣基底110。 步驟四,在絕緣基底110表面依次形成一電子引出電極 118和一二次電子發射層120。 099123357 表單編號Α0101 第19頁/共45頁 0992041144-0 201203305 [画]步驟五,將該絕緣基底110組裝於第一絕緣隔離層U2相 對於絕緣基底110的另一的表面,使第一開口 1140與第二 開口 1120至少部分交疊設置以定義一電子出射部,並使 得使得電子發射層116至少部分設置在第一絕緣隔離層 112的第二開口 1120處並面對電子引出電極118設置。 [0059] 請參閱圖5,本發明第二實施例提供一種場發射電子源 ,其包括一絕緣基底210 ’ 一第一絕緣隔離層2i2 , 一陰極電極214,一電子發射層216,一電子引出電極 218 ’ 一二次電子發射層220,一第二絕緣隔離層221以 及一柵極電極222。本發明第二實施例提供的場發射電子 源2 0 0的結構與本發明第一實施例提供的場發射電子源 100的結構基本相同,其區別在於所述二次電子發射層 220表面與第一開口 2140相對的位置具有至少一第_突起 2202,所述陰極電極214與二次電子發射層220相對的表 面具有至少一第二突起2142。所述電子發射層216設置於 該至少一第二突起2142的表面,且所遂電子發射體2162 的電子發射端2164指向至少一I 一突起2202的表面。 [0060] 所述第一突起2202和第二突起2142的形狀和大小不限, 可以根據實際需要選擇。可以理解,當所述陰極電極214 為一具有通孔的層狀結構時,所述第一突起2202可以為 —錐形,所述第二突起2142為一圍繞第一突起2202的環 形突起;當所述陰極電極214為複數個間隔設置的條狀結 構時,所述第一突起2202與第二突起2142可以為一沿著 條狀結構延伸的棱錐體◊本實施例中,所述第一突起 2202為一指向第一開口 2140的圓錐體。所述第二突起 099123357 表單編號A0101 第20頁/共45頁 0992041144-0 201203305 [0061] Ο Ο 2142與第-突起腫相對的側面與第—突起2如的表面 平行。所述電子發射層216的電子發射體2162向第――起 2202的表面垂直延伸◊可以理解,所诚 义电子發射體2162 發射的電子轟擊第-突起2202的表面激發的二次電子更 容易在柵極電極222作用下從電子出射部射出。 請參閱圖6,本發明第三實施例提供一種場發射電子源 3〇〇,其包括-絕緣基底310,_第一絕緣隔離層312'、, 一陰極電極314,一電子發射層316 電子引出電極 318,-二次電子發射層32G,_第二絕緣隔離層3以 及一柵極電極322。本發明第三實施例提供的場發射電子 源3 0 0的結構與本發明第一實施例提供的場發射電子源 100的結構基本相同’其區別在於所述第二絕緣隔離声 321的厚度大於500微米,所述第二絕緣隔離層321具有 一第三開口3212,所述第三開口321 2的内壁,即第二絕 緣隔離層321靠近電子出射部的表面進一步設置有二次電 子發射材料,且第三開口 3212的大小沿著遠離電子引出 電極318的方向.琳祙小,以使得二次電子發射層32〇發 射的電子更容易轟擊到第三開口 3212内壁的二次電子發 射材料。所述柵極電極322為一圓環形導電層。所述拇極 電極322可以對二次電子發射層320發射的電子起到聚焦 作用。 [0062] 請參閱圖7,本發明第四實施例提供一種場發射電子源 400,其包括一絕緣基底410 ’ 一第一絕緣隔離層412, 一陰極電極414,一電子發射層416,一電子引出電極 418,一二次電子發射層420,一第二絕緣隔離層421, 099123357 表單編號Α0101 第21買/共45頁 0992041144-0 201203305 一二次電子倍增極424,一第三絕緣隔離層426,以及一 柵極電極422。本發明第四實施例提供的場發射電子源 400的結構與本發明第一實施例提供的場發射電子源丨 的結構基本相同,其區別在於所述第二絕緣隔離層^以與 柵極電極422之間進一步包括一二次電子倍增極424以及 第二絕緣隔離層426。所述栅極電極422與二次電子倍 增極424之間通過該第三絕緣隔離層426絕緣。所述柵極 電極422為一金屬柵網。 [0063] 所述二次電子倍增極424為一導電層,其厚度大於5〇〇微 米,且其具有一與第一間/口 4140'對應的第·四開口 4240。 該第四開口 4240的内壁,即二次電子倍增極4 24靠近電子 出射部的表面’塗敷有二次電子發射材料4242,以進一 步增強場發射電子源400的場發射電流密度。進一步,所 述第四開口 4240的内壁還可以形成複數個凹凸結構以增 加塗敷二次電子發射材料4242的面積。所述場發射電子 -.. .. 源400工作時,電子引出電襄418的電位高於陰極電極 414的電位’二次電子倍增極424的電位高於電子引出電 極518的電位’栅極電極422的電位高於二次電子倍增極 424的電位。可以理解,所述二次電子發射層42〇發射的 電子在二次電子倍增極424的作用下可以更有力的轟擊二 次電子倍增極424表面的二次電子發射材料4242,以激發 更多的二次電子。 請參閲圖8,本發明第五實施例提供一種採用該場發射電 子源100的離子源1〇,其包括一真空容器12,一場發射電 子源100以及一離子電極14。 099123357 表單編號A0101 第22頁/共45頁 0992041144-0 [0064] 201203305 [0065] Ο [0066]Wherein k=l. 38xlO_23J/K is a Boltzmann constant; T is an absolute temperature; d is an effective diameter of a gas molecule; and P is a gas pressure. Taking a nitrogen gas of 300K as an example, the average free path of air molecules is about 50 microns under a vacuum of ITorr gas pressure, and free electrons and gases are 099123357 Form No. A0101 Page 13 of 45 0992041144-0 The mean free path of the 201203305 sub is 283 microns. Therefore, if the distance between the electron emitting end 11 64 and the surface of the secondary electron emission layer 120 is sufficiently small, the field emission electron source 100 can operate in a low vacuum state without causing damage to the electron emitter 1162. . In this embodiment, the distance between the electron emission end 1164 and the surface of the secondary electron emission layer 120 with respect to the surface of the electron emission end 1164 is 10 micrometers to 30 micrometers. Accordingly, the field emission electron source 100 can operate under low vacuum conditions of 9 T 〇 r r ~ 2 7 T 〇 r r without causing damage to the emitter. In the case of a better vacuum, such as a pressure drop of one order to about 1 Torr, the collision of electrons with the gas molecules in the emission gap can be neglected, so that the damage caused by the ion bombardment of the emitter can be neglected. It will be appreciated that the field emission electron source 100 can also operate in a high vacuum or inert gas environment with more stable performance. [0027] Specifically, the specific structure of the field emission electron source 100 of this embodiment is as follows. The first insulating isolation layer 112 is disposed on a surface of the insulating substrate 110, and the first insulating isolation layer 112 defines a second opening 1120 to expose a surface of the insulating substrate 110 through the second opening 1120. The electron extraction electrode 118 is disposed on a surface of the insulating substrate 110 exposed through the second opening 1120, and the thickness of the electron extraction electrode 118 is smaller than the thickness of the first insulating isolation layer 112. The secondary electron emission layer 120 is disposed on a surface of the electron extraction electrode 118 and is electrically connected to the electron extraction electrode 118. The cathode electrode 114 is disposed on a surface of the first insulating isolation layer 112 and extends above the secondary electron emission layer 120. The cathode electrode 114 defines a first opening 1140 as an electron emitting portion. The electron emission layer 116 is disposed on the surface of the cathode electrode 114 facing the secondary power 099123357 Form No. A0101, page 14 / page 45 0992041144-0 201203305 sub-emissive layer 120, and is electrically connected to the cathode electrode 114. The emission layer 116 is opposed to and spaced apart from the secondary electron emission layer 120. The second insulating isolation layer 121 is disposed on a surface of the cathode electrode 114 away from the secondary electron emission layer 120, and the third opening 1212 of the second insulating isolation layer 121 is disposed corresponding to the electron emission portion. The gate electrode 22 is disposed on a surface of the second insulating spacer 121 and extends from a surface of the second insulating spacer 121 to an upper portion of the electron emitting portion to cover the electron emitting portion. [0028] When the field emission electron source 100 is in operation, the potential of the electron extraction electrode U8 is higher than the potential of the cathode electrode 114. The potential of the gate electrode 122 is higher than the potential of the electron extraction electrode 11 8 . In the present embodiment, the far cathode electrode 1 j 4 is maintained at a zero potential, a voltage of 1 volt is applied to the electron extraction electrode 118, and a voltage of 500 volts is applied to the gate electrode 122. The electron emitter 1162 emits electrons under the action of the voltage of the electron extraction electrode Π8, and the electrons bombard the electron emission layer 120 once to cause the secondary electron emission layer 12 to emit secondary electrons. The +-order electrons emitted from the secondary electron-emitting layer 120 are emitted from the electron-emitting portion by the voltage of the gate electrode 122. The field emission electron source 1_ has the following advantages: since the electron emission portion is formed on the cathode electrode 114, the electron emission 1164 of the electron emitter 1162 is not exposed through the electron emission portion, so when the electron emitter 1162 emits When electrons collide with free gas molecules in the vacuum to generate ions moving toward the electron extraction electrode 118, the ions do not bombard the electron emitter 1162, thereby giving the electron emitter 1162 a longer life. Since the ion-resistant material is formed on the electron-emitting layer 116, the stability and life can be improved. At the same time, due to the use of the secondary electron emission layer 丨2〇, a larger emission current can be obtained at a lower emission voltage. 099123357 Form No. A0101 Page 15 of 45 0992041144-0 201203305 [0030] Referring to FIG. 4, a first embodiment of the present invention provides a method for fabricating a field emission electron source 100, which includes the following steps: [0031] Step 1 An insulating substrate 1 10 is provided. [0032] In this embodiment, the insulating substrate 110 is a square glass plate. [0033] Step 2, forming an electron extraction electrode 118 on one surface of the insulating substrate 110. [0034] The electron extraction electrode 11 8 may be screen printed, electroplated, chemical vapor deposited, magnetron sputtering or hot. Prepared by methods such as deposition. In the present embodiment, a layer of a layer is deposited as an electron extraction electrode 118 on the surface of the insulating substrate 110 by a magnetron emission killing method. [0035] Step 3, forming a secondary electron emission layer 120 on the surface of the electron extraction electrode 118. [0036] The secondary electron emission layer 120 may be prepared by screen printing, electroplating, chemical vapor deposition, magnetron sputtering, or thermal deposition. In the present embodiment, a layer of ruthenium oxide is formed on the surface of the electron extraction electrode 118 by surface coating as a secondary electron emission layer 120. [0037] Step 4, forming a first insulating isolation layer 112 on the surface of the insulating substrate 110, the first insulating isolation layer 112 having a second opening 11 20 such that the surface of the secondary electron emission layer 120 passes through the second opening 1120. Exposed. [0038] The first insulating isolation layer 112 may be prepared by a method such as screen printing, silicone coating, coating or thick film process. In this embodiment, a first insulating isolation layer 112 having a circular via hole is directly formed on the surface of the cathode electrode 114 by a screen printing method, so that the surface of the secondary electron emission layer 120 passes through the 099123357 form number A0101. Page / Total 45 pages 0992041144-0 201203305 Round through holes exposed. _9] #5, providing a cathode electrode plate (not shown) having a first opening 114A and forming an electron-emitting layer 116 on a portion of the surface of the cathode electrode plate. [_] The cathode electrode plate may be a conductive substrate or an insulating substrate formed with a conductive layer. [0041] In this embodiment, the method for preparing the cathode electrode plate includes the following steps. [0042] First, a second insulating spacer layer 121 is provided. [0043] The second insulating isolation layer 121 may be a substrate or a strip having a through hole. In this embodiment, the second insulating spacer 12 is an annular glass plate and the second insulating spacer 121 has a third opening 212. [0044] Then, a cathode electrode 114 is formed at a position of the surface of the second insulating isolation layer 121 near the second opening 121 2 . [0045] The cathode electrode 114 may be prepared by a method of printing a color grid, vacuum ore, or the like, or a metal piece may be directly disposed on the surface of the second insulating isolation layer 121. In this embodiment, a circular aluminum layer is deposited as a cathode electrode 114 on the surface of the second insulating isolation layer 121 by a magnetron sputtering method. The cathode electrode 114 is formed with a first portion corresponding to the third opening 1212. The opening II40' serves as an electron emitting portion. The electron emission layer 116 can be prepared by a method such as printing paste or chemical vapor deposition. In this embodiment, a ring-shaped carbon nanotube slurry layer is formed on the surface of the cathode electrode 114 by screen printing, and then the nano-barrel slurry is 099123357. 箪戚0101 Page 17 of 45 page 0992041144 -0 201203305 The layer is baked. The carbon nanotube slurry includes a carbon nanotube, a low melting point glass frit, and an organic vehicle. Among them, the organic carrier evaporates during the baking process, and the low-melting glass frit melts during the baking process and fixes the carbon nanotubes on the surface of the cathode electrode Π4. Further, the carbon nanotube electron-emitting layer 116 may be surface-treated by means of tape bonding and peeling, so that more carbon nanotubes are exposed. It is understood that the carbon nanotube electron-emitting layer 116 is peeled off by tape bonding so that the carbon nanotubes are exposed while being perpendicular to the surface of the secondary electron-emitting layer 120. [0050] Further, an ion bombarding material such as zirconium carbide, tantalum carbide, lanthanum hexaboride or the like may be formed on the electron emission layer 116 to improve stability and life. In this embodiment, a film of tantalum carbide is formed on the surface of a carbon nanotube by magnetron sputtering. Step 6 'assembling the cathode electrode plate on the other surface of the first insulating isolation layer 112 with respect to the insulating substrate 110, so that the first opening 114 〇 and the second opening 1120 are at least partially overlapped to form a cold-electron-emitting portion, and The electron emission layer 116 is at least partially disposed at the second opening 112A of the first insulating sacrificial layer 112 and disposed facing the electron guiding φ electrode 118. The first opening 1140 of the cathode electrode 114 is disposed corresponding to the second opening 1120 of the first insulating spacer 112, and the first opening 114'' is at least partially overlapped with the second opening 1120 to define an electron emitting portion. In this embodiment, the annular cathode electrode plate is directly disposed on the surface of the first insulating isolation layer 112 such that the first opening is completely disposed within the range of the second opening 1120, and the electron emission layer 116 is at least partially surfaced. The electron extraction electrode 118 is provided. It can be understood that when the cathode electrode plate is a strip 099123357 Form No. A0101 Page 18 / Total 45 Page 0992041144-0 201203305 [0052] [0054] [0055] [0056] [0057] At least two cathode electrode plates may be disposed in parallel to the surface of the first insulating isolation layer 112. A first opening 1140 is defined between the spaced apart cathode electrode plates as an electron emitting portion. In step seven, a peach electrode 122 is disposed on the surface of the second insulating isolation layer 121 away from the electron extraction electrode 118. The gate electrode 122 may be prepared by screen printing, electroplating, chemical vapor deposition, magnetron sputtering or thermal deposition, or the metal grid prepared in advance may be directly disposed on the second insulating isolation layer 121. on. In this embodiment, a metal grid is directly disposed and fixed to the surface of the second insulating spacer 121. It can be understood that this step is an optional step. It can be understood that the steps of the method for preparing the field emission electron source 100 are not limited to the above sequence, and those skilled in the art can adjust according to actual needs. For example, the method for preparing the field emission electron source 100 may include the following steps: Step 1: providing a cathode electrode plate having a first opening 1140 and forming an electron emission layer on a portion of the surface of the cathode electrode plate. 11 6. Step 2, forming a first insulating isolation layer 112 on the surface of the cathode electrode plate, the first insulating isolation layer 11 2 having a second opening 11 20 such that the electron emission layer 116 is exposed through the second opening 1120. In step three, an insulating substrate 110 is provided. In step four, an electron extraction electrode 118 and a secondary electron emission layer 120 are sequentially formed on the surface of the insulating substrate 110. 099123357 Form No. 101 0101 Page 19 / Total 45 Page 0992041144-0 201203305 [Drawing] Step 5, the insulating substrate 110 is assembled on the other surface of the first insulating isolation layer U2 with respect to the insulating substrate 110, so that the first opening 1140 The second opening 1120 is at least partially overlapped to define an electron emitting portion, and such that the electron emission layer 116 is at least partially disposed at the second opening 1120 of the first insulating isolation layer 112 and disposed facing the electron extraction electrode 118. [0059] Referring to FIG. 5, a second embodiment of the present invention provides a field emission electron source including an insulating substrate 210', a first insulating isolation layer 2i2, a cathode electrode 214, an electron emission layer 216, and an electron extraction. The electrode 218' has a secondary electron emission layer 220, a second insulating isolation layer 221, and a gate electrode 222. The structure of the field emission electron source 200 provided by the second embodiment of the present invention is substantially the same as that of the field emission electron source 100 provided by the first embodiment of the present invention, and the difference is that the surface of the secondary electron emission layer 220 and the second The opposite end of the opening 2140 has at least one first protrusion 2202, and the surface of the cathode electrode 214 opposite to the secondary electron emission layer 220 has at least one second protrusion 2142. The electron emission layer 216 is disposed on a surface of the at least one second protrusion 2142, and the electron emission end 2164 of the electron emitter 2162 is directed to a surface of the at least one I protrusion 2202. [0060] The shape and size of the first protrusions 2202 and the second protrusions 2142 are not limited, and may be selected according to actual needs. It can be understood that when the cathode electrode 214 is a layered structure having a through hole, the first protrusion 2202 may be a taper, and the second protrusion 2142 is an annular protrusion surrounding the first protrusion 2202; When the cathode electrode 214 is a plurality of spaced strip structures, the first protrusions 2202 and the second protrusions 2142 may be a pyramid extending along a strip structure. In the present embodiment, the first protrusions 2202 is a cone pointing to the first opening 2140. The second protrusion 099123357 Form No. A0101 Page 20 of 45 0992041144-0 201203305 [0061] The side of the Ο Ο 2142 opposite to the first protrusion is parallel to the surface of the first protrusion 2. The electron emitter 2162 of the electron emission layer 216 extends perpendicularly to the surface of the second surface 2202. It can be understood that the electrons emitted by the electron emitter 2162 of the true electron emitter 2162 are more likely to be excited by the secondary electrons excited by the surface of the first protrusion 2202. The gate electrode 222 is emitted from the electron emission portion by the action of the gate electrode 222. Referring to FIG. 6, a third embodiment of the present invention provides a field emission electron source 3A including an insulating substrate 310, a first insulating isolation layer 312', a cathode electrode 314, and an electron emission layer 316. The electrode 318, the secondary electron emission layer 32G, the second insulating isolation layer 3, and a gate electrode 322. The structure of the field emission electron source 300 provided by the third embodiment of the present invention is substantially the same as that of the field emission electron source 100 provided by the first embodiment of the present invention. The difference is that the thickness of the second insulating isolation sound 321 is greater than 500 μm, the second insulating isolation layer 321 has a third opening 3212, and the inner wall of the third opening 3212, that is, the surface of the second insulating isolation layer 321 near the electron emitting portion is further provided with a secondary electron emission material. And the size of the third opening 3212 is small in a direction away from the electron extraction electrode 318, so that electrons emitted from the secondary electron emission layer 32 are more likely to bombard the secondary electron emission material to the inner wall of the third opening 3212. The gate electrode 322 is a circular conductive layer. The thumb electrode 322 can focus on electrons emitted from the secondary electron emission layer 320. Referring to FIG. 7, a fourth embodiment of the present invention provides a field emission electron source 400 including an insulating substrate 410', a first insulating isolation layer 412, a cathode electrode 414, an electron emission layer 416, and an electron. The extraction electrode 418, a secondary electron emission layer 420, a second insulation isolation layer 421, 099123357 Form No. 1010101 21st buy/total 45 pages 0992041144-0 201203305 A secondary electron dynode 424, a third insulating isolation layer 426 And a gate electrode 422. The structure of the field emission electron source 400 provided by the fourth embodiment of the present invention is basically the same as that of the field emission electron source 提供 provided by the first embodiment of the present invention, and the difference is that the second insulating isolation layer and the gate electrode Between 422 further includes a secondary electron dynode 424 and a second insulating isolation layer 426. The gate electrode 422 and the secondary electron multiplying pole 424 are insulated by the third insulating spacer 426. The gate electrode 422 is a metal grid. [0063] The secondary electron dynode 424 is a conductive layer having a thickness greater than 5 μm and having a fourth opening 4240 corresponding to the first gap/port 4140'. The inner wall of the fourth opening 4240, i.e., the surface of the secondary electron dynode 4 24 near the electron-emitting portion, is coated with a secondary electron-emitting material 4242 to further enhance the field emission current density of the field-emitting electron source 400. Further, the inner wall of the fourth opening 4240 may further form a plurality of concavo-convex structures to increase the area of the coated secondary electron-emitting material 4242. When the field emission electrons. . . . source 400 operates, the potential of the electron extraction electrode 418 is higher than the potential of the cathode electrode 414. The potential of the secondary electron dynode 424 is higher than the potential of the electron extraction electrode 518. The potential of 422 is higher than the potential of the secondary electron dynode 424. It can be understood that the electrons emitted by the secondary electron emission layer 42 可以 can bombard the secondary electron emission material 4242 on the surface of the secondary electron dynode 424 more strongly under the action of the secondary electron dynode 424 to excite more electrons. Secondary electrons. Referring to FIG. 8, a fifth embodiment of the present invention provides an ion source 1 using the field emission electron source 100, which includes a vacuum vessel 12, a field emission electron source 100, and an ion electrode 14. 099123357 Form No. A0101 Page 22 of 45 0992041144-0 [0064] 201203305 [0065] Ο [0066]

[0067] 所述真空容器12具有一氣體入口 16以及一離子出射孔18 。所述場發射電子源100設置於該真空容器12中。所述場 發射電子源100的絕緣基底110設置在真空容器12内遠離 離子出射孔18的一側,所述電子發射層11 6位於離子出射 孔18與絕緣基底110之間,從而使所述場發射電子源100 的電子出射部相對於離子出射孔18設置。所述離子電極 14設置於離子出射孔18處,且與真空容器12之間通過一 絕緣層13電絕緣。可以理解,所述離子源10也可以採用 本發明第二實施例、第三實施例或第四實施例提供的場 發射電子源200,300,400。 所述真空容器12的材料不限,其大小和形狀不限,可以 根據實際需要選擇。可以理解,當所述真空容器12採用 絕緣材料或半導體材料製備時,真空容器12内需要設置 一導電層。本實施例中,所述真空容器12為一邊長為15 毫米的正方體金屬殼。可以理解,所述離子源10需在一 真空環境下工作,以確保真空容器12内具有一定的真空 度。 所述氣體入口 16的大小可以根據實際需要選擇。所述氣 體入口 16位於真空容器12的側面,以使需要電離的工作 氣體由該氣體入口 16進入真空容器12内。該工作氣體一 般為惰性氣體,如氬氣(Ar)、氫氣(Η2)、氦氣(He)、氙 氣(Xe)或者其中幾種的混合氣體。 所述離子出射孔18設置於真空容器12的一表面,其大小 可以根據實際需要選擇。本實施例中,所述真空容器12 的一面敞開以作為離子出射孔18。所述離子電極14為一 099123357 表單編號A0101 第23頁/共45頁 0992041144-0 [0068] 201203305 金屬網。所述離子源1 0工作時,離子電極14上施加一負 電壓。 [0069] 所述離子源10工作時,場發射電子源100產生電子從電子 出射部射出,電子經過柵極電極122加速後進入真空容器 12内,撞擊工作氣體使其電離產生離子,離子在離子電 極14作用下由離子出射孔18射出。 [0070] 請參閱圖9,本發明第六實施例提供一種採用該場發射電 子源100的離子源20,其包括一真空容器22,一陽極電極 24以及一場發射電子源100。 [0071] 所述真空容器22具有一氣體入口 26,一電子注入孔27以 及一離子出射孔28。所述陽極電極24設置於真空容器22 内部。所述場發射電子源10 0設置於真空容器22的電子注 入孔27附近,且場發射電子源100的電子出射部與真空容 器22的電子注入孔27對準,以使場發射電子源100發射的 電子可以由電子注入孔27進入真空容器22内部。具體地 ,所述場發射電子源100的第二絕緣隔離層121靠近電子 注入孔27設置,且第三開口 1212正對電子注入孔27。所 述場發射電子源100的陰極電極114與真空容器22電連接 。可以理解,所述離子源20也可以採用本發明第二實施 例、第三實施例或第四實施例提供的場發射電子源200, 300 , 400 ° [0072] 所述真空容器22為圓筒形,其可由鉬、鋼或鈦等金屬製 成。所述真空容器22的直徑和長度可以根據實際需要選 擇。優選底,所述真空容器22的直徑為18毫米、長度為 099123357 表單編號Α0101 第24頁/共45頁 0992041144-0 201203305 36毫米。使用時容所述真空容器22需接地,以防止電子 被所述真空容器22截獲。可以理解,所述離子源20需在 一真空環境下工作,以確保真空容器22内具有一定的真 空度。本實施例的離子源20採用圓筒形真空容器22,可 以形成一離子槍。 [0073] Ο 所述離子出射孔28位於真空容器22的一端,且與真空容 器22同軸設置,所述離子出射孔28的直徑可以根據實際 需要選擇。所述電子注入孔27位於真空容器22與離子出 射孔28相對的另一端。所述電子注入孔27的直徑可以根 據實際需要選擇。優選地,所述電子注入孔27位於真空 容器22軸線的一側,這樣可減少真空容器22内部的電子 回到電子注入孔27的幾率。本實施例中,所述離子出射 孔28的直徑為1毫米,所述電子注入孔27的直徑為4毫米 〇 [0074] Ο 所述陽極電極24為一金屬環,優選該金屬環的直徑可以 根據實際需要選擇。所述陽極電極24與真空容器22同軸 設置且垂直於真空容器22的軸線,並且陽極電極24位於 真空容器22的中間位置。當陽極電極24施加一電壓後, 真空容器22内形成一馬鞍型靜電場。由於該陽極電極24 僅為一結構簡單的金屬環,故,電子在真空容器22中的 運動執跡長,離子的產額率高。本實施例中,所述金屬 環的直徑為0. 2毫米。 所述氣體入口 26的大小可以根據實際需要選擇。所述氣 體入口 26位於真空容器22的側面,以使需要電離的工作 氣體由該氣體入口 26進入真空容器22内。該工作氣體一 099123357 表單編號Α0101 第25頁/共45頁 0992041144-0 [0075] 201203305 般為惰性氣體,如氬氣(Ar)、氫氣(H2)、氣氣(He)、氣 氣(Xe)或者其中幾種的混合氣體。該氣體入口 26靠近電 子注入孔27所在的一端。 [0076] 進一步,所述離子源20還可以包括一設置於離子出射孔 28處的聚焦裝置29。所述聚焦裝置29包括三個平行設置 的第一電極21、第二電極23及第三電極25。所述第一電 極21具有一第一通孔211,所述第二電極23具有一第二通 孔231,所述第三電極25具有一第三通孔251。所述第一 通孔211,第二通孔231以及第三通孔251同軸設置且依 次增大。該三個平行設置電極組成的三膜孔透鏡。當第 一電極21、第二電極23及第三電極25加上電壓時,離子 從離子出射孔28出射經過聚焦裝置29時,其運動軌跡就 會被彙聚,生成預定大小及能量的離子束。 [0077] 所述離子源20工作時,首先場發射電子源300產生電子, 電子經過柵極電極222加速後通過電子注入孔27進入真空 容器22内,在真空容器22内的靜電場中多次振盪,撞擊 工作氣體使其電離產生離子,離子由離子出射孔28射出 ,經過聚焦裝置29後形成預定的離子束。 [0078] 請參閱圖10,本發明第六實施例提供一種採用該場發射 電子源100的離子源30,其包括一場發射電子源100,一 第四絕緣層128及一離子電極130。 [0079] 所述第四絕緣層128設置於栅極電極122遠離絕緣基底 110的表面。所述第四絕緣層128具有一與電子出射部相 對的第五開口 1 280以定義一真空空間。所述第五開口 099123357 表單編號A0101 第26頁/共45頁 0992041144-0 201203305 〇 1 280的面積大於第三開口 121 2的面積。本實施例中,所 述第五開口 1280的面積等於第二開口 1120的面積。所述 第四絕緣層128的侧壁上具有一氣體入口 1282,以使工作 氣體進入所述真空空間内。所述離子電極130為一金屬柵 網,其設置於第四絕緣層128遠離柵極電極122的表面, 且從第四絕緣層128的表面延伸以將第五開口 1280覆蓋。 所述離子源30工作時需要一真空環境,且離子電極130上 施加一負電壓。可以理解’所述離子源30也可以採用本 發明第二實施例、第三實施例或第四實施例提供的場發 射電子源200,300,400。由於本實施例直接在柵極電 極122上製備第四絕緣層1 28和離子電極Γ30以形成離子 源30,使得離子源30的結構更簡單。所述離子源3〇工作 時,場發射電子源100發射的電子由電子出射部進入第五 開口 1 280定義的真空空間,並在該真空空間轟擊由氣體 入口 1282通入的工作氣體,以使工作氣體電離。所述工 作氣體電離產生的離子在離子電極130作用下射出。 [0080] 〇 綜上所述’本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍》舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 [0081] 【圖式簡單說明】 圖1為本發明第一實施例提供的場發射電子源的結構示意 圖。 [0082] 圖2為圖1的場發射電子源沿π_π線剖開後的俯視圖。 099123357 表單蝙號A0101 第27頁/共45頁 0992041144-0 201203305 [0083] 圖3為圖1的場發射電子源沿I Π - I I I線剖開後的仰視圖 ο [0084] 圖4為本發明第一實施例提供的場發射電子源的製備方法 工藝流程圖。 [0085] 圖5為本發明第二實施例提供的場發射電子源的結構示意 圖。 [0086] 圖6為本發明第三實施例提供的場發射電子源的結構示意 圖。 [0087] 圖7為本發明第四實施例提供的場發射電子源的結構示意 圖。 [0088] 圖8為本發明第五實施例提供的離子源的結構示意圖。 [0089] 圖9為本發明第六實施例提供的離子源的結構示意圖。 [0090] 圖10為本發明第七實施例提供的離子源的結構示意圖。 【主要元件符號說明】 [0091] 離子源:10,20,30 [0092] 真空容器:12, 22 [0093] 絕緣層:13 [0094] 離子電極:14 [0095] 氣體入口 : 16,26 [0096] 離子出射孔:18, 28 [0097] 第一電極:21 099123357 表單編號Α0101 第28頁/共45頁 0992041144-0 201203305 Ο Ο [0098] 第一通孔: 211 [0099] 第二電極: 23 [0100] 第二通孔: 231 [0101] 陽極電極: 24 [0102] 第三電極: 25 [0103] 第三通孔: 251 [0104] 電子注入孔 :27 [0105] 聚焦裝置: 29 [0106] 場發射電子源:100,200,300,400 [0107] 絕緣基底: 110, 210, 310, 410 [0108] 第一絕緣隔離層:112,212,312, 412 [0109] 第二開口: 1120 . …:- .· [0110] 陰極電極: 114, 214, 314, 414 [0111] 第一開口: 1140, 2140, 4140 [0112] 電子發射層 :116, 216, 316, 416 [0113] 電子發射體 :1162, 2162 [0114] 電子發射端 :1164, 2164 [0115] 電子引出電極:118,218,318,418 [0116] 二次電子發射層:120,220,320, 420 表單編號Α0101 第29頁/共45頁 099123357 0992041144-0 201203305 [0117] 第二絕緣隔離層:121,221,321, 421 [0118] 第三開口 : 1212,3212 [0119] 柵極電極:1 22, 222,322,422 [0120] 第二突起:2142 [0121] 第一突起:2202 [0122] 二次電子倍增極:424 [0123] 第四開口 : 4240 [0124] 二次電子發射材料:4242 [0125] 第三絕緣隔離層:42 6 0992041144-0 099123357 表單編號A0101 第30頁/共45頁[0067] The vacuum vessel 12 has a gas inlet 16 and an ion exit aperture 18. The field emission electron source 100 is disposed in the vacuum vessel 12. The insulating substrate 110 of the field emission electron source 100 is disposed on a side of the vacuum vessel 12 away from the ion exit hole 18, and the electron emission layer 116 is located between the ion exit hole 18 and the insulating substrate 110, thereby making the field The electron emission portion of the emission electron source 100 is disposed with respect to the ion exit hole 18. The ion electrode 14 is disposed at the ion exit hole 18 and electrically insulated from the vacuum vessel 12 by an insulating layer 13. It will be understood that the ion source 10 can also employ the field emission electron source 200, 300, 400 provided by the second, third or fourth embodiment of the invention. The material of the vacuum container 12 is not limited, and its size and shape are not limited, and may be selected according to actual needs. It will be appreciated that when the vacuum vessel 12 is fabricated from an insulating material or a semiconductor material, a conductive layer needs to be disposed within the vacuum vessel 12. In the present embodiment, the vacuum vessel 12 is a square metal shell having a side length of 15 mm. It will be appreciated that the ion source 10 is required to operate in a vacuum environment to ensure a certain degree of vacuum within the vacuum vessel 12. The size of the gas inlet 16 can be selected according to actual needs. The gas inlet 16 is located on the side of the vacuum vessel 12 such that the working gas requiring ionization enters the vacuum vessel 12 from the gas inlet 16. The working gas is generally an inert gas such as argon (Ar), hydrogen (?2), helium (He), xenon (Xe) or a mixed gas of several of them. The ion exit hole 18 is disposed on a surface of the vacuum vessel 12, and its size can be selected according to actual needs. In the present embodiment, one side of the vacuum vessel 12 is opened to serve as an ion exit hole 18. The ion electrode 14 is a 099123357 Form No. A0101 Page 23 of 45 0992041144-0 [0068] 201203305 Metal mesh. When the ion source 10 is in operation, a negative voltage is applied to the ion electrode 14. [0069] When the ion source 10 is in operation, the field emission electron source 100 generates electrons to be emitted from the electron emission portion, and the electrons are accelerated by the gate electrode 122 to enter the vacuum container 12, and the working gas is ionized to generate ions, and the ions are ionized. The electrode 14 is emitted from the ion exit hole 18 by the action of the electrode 14. Referring to FIG. 9, a sixth embodiment of the present invention provides an ion source 20 employing the field emission electron source 100, which includes a vacuum vessel 22, an anode electrode 24, and a field emission electron source 100. [0071] The vacuum vessel 22 has a gas inlet 26, an electron injection hole 27, and an ion exit hole 28. The anode electrode 24 is disposed inside the vacuum vessel 22. The field emission electron source 100 is disposed near the electron injection hole 27 of the vacuum vessel 22, and the electron emission portion of the field emission electron source 100 is aligned with the electron injection hole 27 of the vacuum vessel 22 to cause the field emission electron source 100 to emit. The electrons can enter the inside of the vacuum vessel 22 from the electron injection hole 27. Specifically, the second insulating isolation layer 121 of the field emission electron source 100 is disposed adjacent to the electron injection hole 27, and the third opening 1212 faces the electron injection hole 27. The cathode electrode 114 of the field emission electron source 100 is electrically connected to the vacuum vessel 22. It can be understood that the ion source 20 can also adopt the field emission electron source 200, 300, 400 ° provided by the second embodiment, the third embodiment or the fourth embodiment of the present invention. [0072] The vacuum container 22 is a cylinder Shape, which can be made of metal such as molybdenum, steel or titanium. The diameter and length of the vacuum vessel 22 can be selected according to actual needs. Preferably, the vacuum vessel 22 has a diameter of 18 mm and a length of 099123357. Form number Α 0101 page 24 / total 45 pages 0992041144-0 201203305 36 mm. The vacuum container 22 needs to be grounded during use to prevent electrons from being intercepted by the vacuum container 22. It will be appreciated that the ion source 20 is operated in a vacuum environment to ensure a certain degree of vacuum within the vacuum vessel 22. The ion source 20 of this embodiment employs a cylindrical vacuum vessel 22 to form an ion gun. [0073] The ion exit hole 28 is located at one end of the vacuum vessel 22 and is disposed coaxially with the vacuum container 22. The diameter of the ion exit hole 28 can be selected according to actual needs. The electron injection hole 27 is located at the other end of the vacuum vessel 22 opposite to the ion exit hole 28. The diameter of the electron injection hole 27 can be selected according to actual needs. Preferably, the electron injection hole 27 is located on one side of the axis of the vacuum vessel 22, which reduces the probability of electrons inside the vacuum vessel 22 returning to the electron injection hole 27. In this embodiment, the diameter of the ion exit hole 28 is 1 mm, and the diameter of the electron injection hole 27 is 4 mm. [0074] The anode electrode 24 is a metal ring, and preferably the diameter of the metal ring can be Choose according to actual needs. The anode electrode 24 is disposed coaxially with the vacuum vessel 22 and perpendicular to the axis of the vacuum vessel 22, and the anode electrode 24 is located at an intermediate position of the vacuum vessel 22. When a voltage is applied to the anode electrode 24, a saddle-type electrostatic field is formed in the vacuum vessel 22. Since the anode electrode 24 is only a metal ring having a simple structure, the movement of electrons in the vacuum vessel 22 is long, and the yield of ions is high. 2毫米。 The diameter of the metal ring is 0. 2 mm. The size of the gas inlet 26 can be selected according to actual needs. The gas inlet 26 is located on the side of the vacuum vessel 22 such that the working gas requiring ionization enters the vacuum vessel 22 from the gas inlet 26. The working gas is 099123357 Form No. 1010101 Page 25 / Total 45 Page 0992041144-0 [0075] 201203305 Generally inert gas, such as argon (Ar), hydrogen (H2), gas (He), gas (Xe) Or a mixture of several of them. The gas inlet 26 is near the end where the electron injection hole 27 is located. Further, the ion source 20 may further include a focusing device 29 disposed at the ion exit hole 28. The focusing device 29 includes three first electrodes 21, a second electrode 23, and a third electrode 25 which are disposed in parallel. The first electrode 21 has a first through hole 211, the second electrode 23 has a second through hole 231, and the third electrode 25 has a third through hole 251. The first through hole 211, the second through hole 231, and the third through hole 251 are coaxially disposed and sequentially increased. The three parallel-arranged electrodes constitute a three-film aperture lens. When a voltage is applied to the first electrode 21, the second electrode 23, and the third electrode 25, when ions are emitted from the ion exit hole 28 through the focusing means 29, the trajectories of the ions are concentrated to generate an ion beam of a predetermined size and energy. [0077] When the ion source 20 is in operation, first, the field emission electron source 300 generates electrons, and the electrons are accelerated by the gate electrode 222 and then enter the vacuum container 22 through the electron injection hole 27, and are repeatedly in the electrostatic field in the vacuum container 22. Oscillation, impacting the working gas to ionize it to generate ions, the ions are emitted from the ion exit hole 28, and after passing through the focusing device 29, a predetermined ion beam is formed. Referring to FIG. 10, a sixth embodiment of the present invention provides an ion source 30 using the field emission electron source 100, which includes a field emission electron source 100, a fourth insulating layer 128, and an ion electrode 130. [0079] The fourth insulating layer 128 is disposed on a surface of the gate electrode 122 away from the insulating substrate 110. The fourth insulating layer 128 has a fifth opening 1 280 opposite the electron exit portion to define a vacuum space. The fifth opening 099123357 Form No. A0101 Page 26 of 45 0992041144-0 201203305 The area of the 〇 1 280 is larger than the area of the third opening 121 2 . In this embodiment, the area of the fifth opening 1280 is equal to the area of the second opening 1120. The side wall of the fourth insulating layer 128 has a gas inlet 1282 for allowing working gas to enter the vacuum space. The ion electrode 130 is a metal grid disposed on a surface of the fourth insulating layer 128 away from the gate electrode 122 and extending from a surface of the fourth insulating layer 128 to cover the fifth opening 1280. The ion source 30 requires a vacuum environment during operation and a negative voltage is applied to the ion electrode 130. It will be understood that the ion source 30 can also employ the field emission electron source 200, 300, 400 provided by the second, third or fourth embodiment of the invention. Since the fourth insulating layer 128 and the ion electrode 30 are directly formed on the gate electrode 122 to form the ion source 30, the structure of the ion source 30 is made simpler. When the ion source 3 is operated, electrons emitted from the field emission electron source 100 enter the vacuum space defined by the fifth opening 1 280 from the electron exit portion, and bombard the working gas introduced by the gas inlet 1282 in the vacuum space, so that Working gas ionization. The ions generated by the ionization of the working gas are emitted by the ion electrode 130. [0080] 综 In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only the preferred embodiment of the present invention, and the scope of the patent application is not limited thereto. All equivalent modifications or changes made by those skilled in the art to the spirit of the present invention should be covered. It is within the scope of the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of a field emission electron source according to a first embodiment of the present invention. 2 is a plan view of the field emission electron source of FIG. 1 taken along the π_π line. [0082] FIG. 099123357 Form bat number A0101 Page 27 / Total 45 page 0992041144-0 201203305 [0083] FIG. 3 is a bottom view of the field emission electron source of FIG. 1 taken along line I Π - III. [0084] FIG. 4 is a view of the present invention A flow chart of a method for preparing a field emission electron source provided by the first embodiment. 5 is a schematic structural view of a field emission electron source according to a second embodiment of the present invention. 6 is a schematic structural view of a field emission electron source according to a third embodiment of the present invention. 7 is a schematic structural view of a field emission electron source according to a fourth embodiment of the present invention. 8 is a schematic structural view of an ion source according to a fifth embodiment of the present invention. 9 is a schematic structural diagram of an ion source according to a sixth embodiment of the present invention. 10 is a schematic structural diagram of an ion source according to a seventh embodiment of the present invention. [Description of main component symbols] [0091] Ion source: 10, 20, 30 [0092] Vacuum vessel: 12, 22 [0093] Insulation: 13 [0094] Ion electrode: 14 [0095] Gas inlet: 16, 26 [ 0096] Ion exit hole: 18, 28 [0097] First electrode: 21 099123357 Form number Α 0101 Page 28 / Total 45 page 0992041144-0 201203305 Ο Ο [0098] First through hole: 211 [0099] Second electrode: 23 [0100] Second via: 231 [0101] Anode electrode: 24 [0102] Third electrode: 25 [0103] Third via: 251 [0104] Electron injection hole: 27 [0105] Focusing device: 29 [ 0106] Field emission electron source: 100, 200, 300, 400 [0107] Insulation substrate: 110, 210, 310, 410 [0108] First insulating isolation layer: 112, 212, 312, 412 [0109] Second opening: 1120 . ...:- .. [0110] Cathode electrode: 114, 214, 314, 414 [0111] First opening: 1140, 2140, 4140 [0112] Electron emitting layer: 116, 216, 316, 416 [0113] Emitter: 1162, 2162 [0114] Electron emission terminal: 1164, 2164 [0115] Electron extraction electrode: 118, 218, 318, 418 [0116] Electron emission layer: 120, 220, 320, 420 Form number Α 0101 Page 29 / Total 45 page 099123357 0992041144-0 201203305 [0117] Second insulating isolation layer: 121, 221, 321, 421 [0118] Third opening: 1212 , 3212 [0119] Gate electrode: 1 22, 222, 322, 422 [0120] Second protrusion: 2142 [0121] First protrusion: 2202 [0122] Secondary electron dynode: 424 [0123] Fourth opening: 4240 [0124] Secondary electron emission material: 4242 [0125] Third insulating isolation layer: 42 6 0992041144-0 099123357 Form number A0101 Page 30 of 45

Claims (1)

201203305 七、申請專利範圍: 1 . 一種離子源,其包括: 一真空容器,該真空容器具有一氣體入口以及一離子出射 孔; 一離子電極,該離子電.極設置於所述真空容器的離子出射 孔處;以及 一場發射電子源設置於所述真空容器中,該場發射電子源 包括: 一絕緣基底; ❹ 一電子引出電極,該電子引出電極設置於該絕緣基底的一 表面; 一二次電子發射層,該二次電子發射層設置於該電子引出 電極的表面; 一陰極電極,該陰極電極通過一第一絕緣隔離層與該電子 引出電極間隔設置,所述電子引出電極設置在陰極電極與 絕緣基底之間,該陰極電極具有一表面至少部分與該電子 引出電極面對設置,該陰極電極具有一第一開口,該第一 開口定義一電子出射部; 一電子發射層,該電子發射層設置在陰極電極面對該電子 引出電極設置的至少部分表面; 一柵極電極,該柵極電極與陰極電極絕緣設置,且所述陰 極電極設置在電子引出極與柵極電極之間。 2 .如申請專利範圍第1項所述的離子源,其中,所述第一絕 緣隔離層具有一第二開口對應於所述陰極電極的第一開口 設置,所述陰極電極的第一開口與第一絕緣隔離層的第二 099123357 表單編號A0101 第31頁/共45頁 0992041144-0 201203305 開口部分交疊設置,交疊部分定義為電子出射部。 如申請專利範圍第i項所述_子源,其中,所述電子發 射層包括複數個電子發射體,所述電子發射體具有—電子 發射知D玄電子發射端指向所述二次電子發射層;所述 二次電子發射層表面與電子出射部相對的位置具有至少〆 第大起’所述陰極電極與二次電子發射層相對的表面臭 有至y第一犬起,所述電子發射層設置於該至少一第二 犬起的表面,且所述電子發射體的電子發射端指向該至少 一第一突起的表面。 4 .如申明專利範圍第1項所述的離子源,其中,所逑栅極電 極設置於陰極電極遠離電子引出電極的一側,且與陰極電 極之間通過一第一絕緣隔離層絕緣間隔設置,所述栅極電 極為一金屬栅網’且柵極電極覆蓋所述電子出射部設置, 且所述該金屬栅網上塗敷有二次電子發射材料。 5 .如申請專利範圍第4項所述的離子源,其中,所迷第二絕 緣隔離層具有一第三開口與所述陰極電極的第一開口對應 設置,所述第三開口的内壁設_有二次電子發射材料。 6 .如申請專利範圍第5項所述的離夺源,其中’所述第一絕 緣隔離層具有一第二開口,所述第二絕緣隔離層具有一第 三開口’所述第一開口、第二開口與第三開口部分交疊設 置,交疊部分定義為電子出射部。 7 .如申請專利範圍第4項所述的離子源,其中,所述第二絕 緣隔離層的厚度大於500微米’所述第三開口的大小沿著 遠離電子引出電極的方向逐漸減小。 8 如申請專利範圍第4項所述的離子源,其中’進~步包括 一二次電子倍增極,該二次電子倍增極設置於所述柵極電 099123357 表單編號A0101 第32頁/共45買 0992041144-0 201203305 ίο Ο. 11 Ο 極與第二絕緣隔離層之間,談_ a μ—-人電子倍增極與柵極電極 之間通過-第三絕緣隔離層絕緣間隔設置,所述二次電子 倍增極具有一第四開口與所述陰極電極的第-開口對岸設 置,所述第四開口的内壁設置有二次電子發射材料。 如申請專利範圍第!項所述的離子源,其t,所述真空容 器為-金狀’所述場發㈣子_陰極電轉真空容器 電連接,且使用時所述真空容器接地。 如申請專利範圍第9項所述的離子源,其中,所述場發射 電子源的電子出射部與離子出射孔相對設置。 一種離子源,其包括: 一真空容器,該真空容器具有一氣體入口,一電子注入孔 以及一離子出射孔; β 承-所述真空容器内;以及 一1%極電極’該陽極電極設裏; 乂漆入孔附近’該場發射電 一場發射電子源設置於所述電十 子源包括: 一絕緣基底; 一電子引出電極,該電子引出 表面; 一二次電子發射層,該二次電 電極的表面; 托„ 第〆絕緣隔離層與該電子 一陰極電極,該陰極電極通過/ 2丨七電極設置在陰極電極與 引出電極間隔設置’所述電孑⑴ 七/表面玄少部分與該電子 絕緣基底之間,該陰極電極具項 有一第一開口,該第 引出電極面對設置’該陰極電移^ 斤畲孑出射部與電子注入孔 口定義一電子出射部,真該 電換諛置於該絕緣基底的一 孑發射層設置於該電子引出 一開 對準; 表單编號A0101 0992041144-0 099123357 第33頁/共45真 201203305 一電子發射層,該電子發射層設置在陰極電極面對該電子 引出電極設置的至少部分表面。 12 .如申請專利範圍第11項所述的離子源,其中,所述真空容 器為一金屬圓筒,所述陽極電極為一金屬環。 13 .如申請專利範圍第12項所述的離子源,其中,進一步包括 一設置於離子出射孔處的聚焦裝置。 14 . 一種離子源,其包括: 一絕緣基底; 一電子引出電極,該電子引出電極設置於該絕緣基底的一 表面; 一二次電子發射層,該二次電子發射層設置於該電子引出 電極的表面, 一陰極電極,該陰極電極通過一第一絕緣隔離層與該電子 引出電極間隔設置,所述電子引出電極設置在陰極電極與 絕緣基底之間,該陰極電極具有一表面至少部分與該電子 引出電極面對設置,該陰極電極具有一第一開口,該第一 開口定義一電子出射部; 一電子發射廣,該電子發射層設置在陰極電極面對該電子 引出電極設置的至少部分表面; 一柵極電極,該柵極電極與陰極電極絕緣設置,且所述陰 極電極設置在電子引出極與柵極電極之間; 一第四絕緣層設置於所述柵極電極遠離絕緣基底的表面, 所述第四絕緣層具有一與電子出射部相對的第五開口以定 義一真空空間,且所述第四絕緣層的側壁上具有一氣體入 口;以及 一離子電極,該離子電極設置於第四絕緣層遠離栅極電極 099123357 表單編號A0101 第34頁/共45頁 0992041144-0 201203305 的表面。 15 .如申請專利範圍第14項所述的離子源,其中,所述離子電 極為一金屬栅網,且該金屬柵網從第四絕緣層的表面延伸 以將第五開口覆蓋。 099123357 表單编號A0101 第35頁/共45頁 0992041144-0201203305 VII. Patent application scope: 1. An ion source, comprising: a vacuum container having a gas inlet and an ion exit hole; an ion electrode, the ion electrode is disposed in the vacuum container a discharge hole; and a field emission electron source disposed in the vacuum container, the field emission electron source comprises: an insulating substrate; ❹ an electron extraction electrode, the electron extraction electrode is disposed on a surface of the insulation substrate; An electron emission layer disposed on a surface of the electron extraction electrode; a cathode electrode disposed at a distance from the electron extraction electrode through a first insulating isolation layer, the electron extraction electrode being disposed on the cathode electrode Between the insulating substrate and the insulating substrate, the cathode electrode has a surface at least partially disposed opposite the electron extraction electrode, the cathode electrode having a first opening defining an electron emission portion; an electron emission layer, the electron emission a layer disposed at least a portion of the cathode electrode facing the electron extraction electrode a gate electrode, the gate electrode is insulated from the cathode electrode, and the cathode electrode is disposed between the electron extraction electrode and the gate electrode. The ion source of claim 1, wherein the first insulating spacer has a second opening corresponding to the first opening of the cathode electrode, and the first opening of the cathode electrode The second insulating layer of the first insulating layer 099123357 Form No. A0101 Page 31 / Total 45 page 0992041144-0 201203305 The opening portions are overlapped, and the overlapping portion is defined as an electron emitting portion. The _ sub source of claim i, wherein the electron emission layer comprises a plurality of electron emitters, and the electron emitter has an electron emission known D-electron emission end pointing to the secondary electron emission layer a position of the surface of the secondary electron emission layer opposite to the electron emission portion having a surface odor of at least 〆large from the cathode electrode and the secondary electron emission layer, to the first dog, the electron emission layer And disposed on the surface of the at least one second dog, and the electron emitting end of the electron emitter is directed to the surface of the at least one first protrusion. 4. The ion source according to claim 1, wherein the gate electrode is disposed on a side of the cathode electrode remote from the electron extraction electrode, and is insulated from the cathode electrode by a first insulating isolation layer. The gate electrode is a metal grid 'and the gate electrode is disposed to cover the electron emission portion, and the metal grid is coated with a secondary electron emission material. 5. The ion source of claim 4, wherein the second insulating spacer has a third opening corresponding to the first opening of the cathode electrode, and the inner wall of the third opening is configured to be _ There are secondary electron emission materials. 6. The source of claim 5, wherein the first insulating isolation layer has a second opening, the second insulating isolation layer has a third opening, the first opening, The second opening is overlapped with the third opening portion, and the overlapping portion is defined as an electron emitting portion. 7. The ion source of claim 4, wherein the second insulating spacer layer has a thickness greater than 500 microns. The size of the third opening gradually decreases in a direction away from the electron extraction electrode. 8. The ion source of claim 4, wherein the step comprises a secondary electron dynode, the secondary electron dynode being disposed at the gate electrode 099123357 Form No. A0101 Page 32 of 45 Buy 0992041144-0 201203305 ίο Ο. 11 Ο Between the pole and the second insulating isolation layer, talk about _ a μ - the human electron dynode and the gate electrode are separated by a third insulating isolation layer insulation interval, the second The secondary electron dynode has a fourth opening disposed opposite the first opening of the cathode electrode, and an inner wall of the fourth opening is provided with a secondary electron emission material. Such as the scope of patent application! The ion source of the item, t, the vacuum container is - gold. The field (four) sub-cathode electro-vacuum vessel is electrically connected, and the vacuum vessel is grounded in use. The ion source of claim 9, wherein the electron emission portion of the field emission electron source is disposed opposite to the ion exit hole. An ion source comprising: a vacuum vessel having a gas inlet, an electron injection hole and an ion exit hole; a beta bearing - the vacuum vessel; and a 1% pole electrode 'the anode electrode set The enamel is adjacent to the hole. The field emission electron source is disposed in the electric source. The source includes: an insulating substrate; an electron extraction electrode, the electron extraction surface; a secondary electron emission layer, the secondary electricity a surface of the electrode; a second insulating layer and the electron-cathode electrode, the cathode electrode is disposed at a distance between the cathode electrode and the extraction electrode through the /2丨7 electrode, and the electromagnet (1) Between the electronically insulating substrates, the cathode electrode has a first opening, and the first extraction electrode faces the setting of the cathode electric displacement emitting portion and the electron injection opening to define an electron emitting portion. An emission layer disposed on the insulating substrate is disposed at the electronic lead-out alignment; Form No. A0101 0992041144-0 099123357 Page 33 / Total 45 True 201203305 An electron-emitting layer is disposed on at least a portion of the surface of the cathode electrode facing the electron-extracting electrode. The ion source of claim 11, wherein the vacuum container is a metal cylinder. The anodic electrode is a metal ring. The ion source of claim 12, further comprising a focusing device disposed at the ion exit hole. 14. An ion source comprising: an insulating a substrate; an electron extraction electrode disposed on a surface of the insulating substrate; a secondary electron emission layer disposed on a surface of the electron extraction electrode, a cathode electrode, the cathode electrode passing a first insulating isolation layer is disposed apart from the electron extraction electrode, and the electron extraction electrode is disposed between the cathode electrode and the insulating substrate, the cathode electrode having a surface at least partially disposed opposite the electron extraction electrode, the cathode electrode having a first opening defining an electron exit portion; an electron emission broad, the electron emission Providing at least part of a surface of the cathode electrode facing the electron extraction electrode; a gate electrode, the gate electrode is insulated from the cathode electrode, and the cathode electrode is disposed between the electron extraction electrode and the gate electrode; The fourth insulating layer is disposed on the surface of the gate electrode away from the insulating substrate, the fourth insulating layer has a fifth opening opposite to the electron emitting portion to define a vacuum space, and the sidewall of the fourth insulating layer has a gas inlet; and an ion electrode disposed on the surface of the fourth insulating layer away from the gate electrode 099123357 Form No. A0101, page 34 / total 45 pages 0992041144-0 201203305. The ion source of claim 14, wherein the ion is electrically connected to a metal grid, and the metal grid extends from a surface of the fourth insulating layer to cover the fifth opening. 099123357 Form No. A0101 Page 35 of 45 0992041144-0
TW99123357A 2010-07-15 2010-07-15 Ion source TWI407476B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99123357A TWI407476B (en) 2010-07-15 2010-07-15 Ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99123357A TWI407476B (en) 2010-07-15 2010-07-15 Ion source

Publications (2)

Publication Number Publication Date
TW201203305A true TW201203305A (en) 2012-01-16
TWI407476B TWI407476B (en) 2013-09-01

Family

ID=46756361

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99123357A TWI407476B (en) 2010-07-15 2010-07-15 Ion source

Country Status (1)

Country Link
TW (1) TWI407476B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6553096B1 (en) * 2000-10-06 2003-04-22 The University Of North Carolina Chapel Hill X-ray generating mechanism using electron field emission cathode
US7129513B2 (en) * 2004-06-02 2006-10-31 Xintek, Inc. Field emission ion source based on nanostructure-containing material
US20080187093A1 (en) * 2007-02-06 2008-08-07 John Scott Price X-ray generation using secondary emission electron source

Also Published As

Publication number Publication date
TWI407476B (en) 2013-09-01

Similar Documents

Publication Publication Date Title
CN101894725B (en) Ion source
US7755363B2 (en) Ionization vacuum gauge
US20030143356A1 (en) Carbon nanotube for electron emission source and manufacturing method therefor
US8237347B2 (en) Field emission device having secondary electron enhancing electrode
JP4417945B2 (en) Ion generator
CN108428610B (en) Small ion source and preparation method thereof
CN111146049A (en) Small ion source of carbon nano tube field emission cathode
JP2006339012A (en) Light emitting device
TW201203305A (en) Ion source
CN112599397B (en) Storage type ion source
US8246413B2 (en) Method for making field emission device
TWI407477B (en) Field emission device
TWI407478B (en) Method for making field emission device
WO2019009785A1 (en) A field emission cathode structure for a field emission arrangement
JP2020173984A (en) Ion source, ion implanter, and magnesium ion generation method
US20060163996A1 (en) Field emitters and devices
US20070063629A1 (en) Field emitters and devices
TW564453B (en) Method of fabricating cathode substrate of field-emission display
Yang et al. Architecture of field emission display based on a gate electrode of diabolo mode
CN114975045A (en) X-ray source and horizontal field emission structure thereof
TW200847218A (en) Ion source module
JP2006144034A (en) Etched product
KR20010095774A (en) Carbon nano tube field emission device and Method for manufacturing thereof
JP2010092756A (en) Electron emitting device