JP2006339012A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2006339012A
JP2006339012A JP2005161742A JP2005161742A JP2006339012A JP 2006339012 A JP2006339012 A JP 2006339012A JP 2005161742 A JP2005161742 A JP 2005161742A JP 2005161742 A JP2005161742 A JP 2005161742A JP 2006339012 A JP2006339012 A JP 2006339012A
Authority
JP
Japan
Prior art keywords
electrode
electron emission
gate electrode
cathode
emission source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005161742A
Other languages
Japanese (ja)
Other versions
JP4387988B2 (en
Inventor
Hisaya Takahashi
久也 高橋
Atsushi Nanba
篤史 難波
Fujio Matsui
富士夫 松井
Miyuki Kobayashi
美由紀 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2005161742A priority Critical patent/JP4387988B2/en
Publication of JP2006339012A publication Critical patent/JP2006339012A/en
Application granted granted Critical
Publication of JP4387988B2 publication Critical patent/JP4387988B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent positive ions beaten out by plunges of electrons into a phosphor and electrons emitted from cold-cathode electron emission sources from plunging into a gate electrode without needing a complicated structure; and to positively prevent damage of the cold-cathode electron emission sources. <P>SOLUTION: Openings 11 each having a size equal to or slightly larger than that of each electron emission area of the cold-cathode electron emission sources 6 are formed in the gate electrode 10, and an ion capture electrode 12, a gate plate 13 and the gate electrode 10 are sequentially stacked from the side of an anode electrode 15. Thereby, almost all the electrons emitted from the cold-cathode electron emission sources 6 are made to pass through the openings 11 and to reach the phosphor 16; the positive ions beaten out of the phosphor 16 can efficiently be captured by the ion capture electrode 12; discharge due to local degradation of the degree of vacuum caused by metal spatters and generation of gas can be avoided; and the damage of the the cold-cathode electron emission sources 6 can be prevented. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷陰極電子放出源から電界放出された電子によって蛍光体を励起発光させる発光装置に関する。   The present invention relates to a light emitting device that excites a phosphor with light emitted from a cold cathode electron emission source.

近年、白熱電球や蛍光灯といった従来の発光装置に対し、真空中で冷陰極電子放出源から電界放出させた電子を高速で蛍光体に衝突させることにより、蛍光体を励起発光させる冷陰極電界放出型の発光装置が開発されており、電界放出型照明ランプ(Field Emission Lamp:FEL)や電界放出型表示装置(Field Emission Display:FED)としての用途が見込まれている。   In recent years, in contrast to conventional light emitting devices such as incandescent bulbs and fluorescent lamps, cold cathode field emission that causes phosphors to emit light by colliding the electrons emitted from the cold cathode electron emission source in vacuum with the phosphors at high speed. Type light-emitting devices have been developed and are expected to be used as field emission lamps (FEL) and field emission display devices (FED).

この種の発光装置は、カソード電極に対して正の電位を与えたゲート電極によって電子を引き出し、更に正の高電圧を与えた蛍光板電極に電子を衝突させて蛍光発光させるものであるが、平面に冷陰極電子源を成膜したカソード電極に対向してゲート電極を配置する場合、カソード電極とゲート電極との間の電界によって引き出された電子は、一部は蛍光体に到達して発光に寄与するが、他はゲート電極に飛び込んで無駄に電力を損失したり、金属スパッタを発生させて冷陰極電子放出源を損傷すると言った問題がある。   This type of light-emitting device is one in which electrons are extracted by a gate electrode applied with a positive potential with respect to a cathode electrode, and are further made to emit fluorescent light by colliding electrons with a fluorescent plate electrode applied with a positive high voltage. When the gate electrode is placed opposite to the cathode electrode on which the cold cathode electron source is formed, some of the electrons extracted by the electric field between the cathode electrode and the gate electrode reach the phosphor and emit light. Although contributing, there are other problems such as jumping into the gate electrode and losing power unnecessarily, or causing metal spatter to damage the cold cathode electron emission source.

このような問題に対処するため、特許文献1には、FELに関連して、カソード電極表面と略平行な略平板に孔を設け、この孔端をカソード電極側に突き出した構造のグリッド電極(ゲート電極)とする技術が開示されている。特許文献1の技術によれば、略平板領域における電界よりも孔端における電界を高くすることにより、カソード電極からグリッド電極に飛び込む無効電子を抑制することができる。   In order to cope with such a problem, in Patent Document 1, a grid electrode (structure) in which a hole is formed in a substantially flat plate substantially parallel to the surface of the cathode electrode and the end of the hole protrudes toward the cathode electrode is related to FEL. A technique for forming a gate electrode) is disclosed. According to the technique of Patent Document 1, invalid electrons jumping from the cathode electrode to the grid electrode can be suppressed by making the electric field at the hole end higher than the electric field in the substantially flat plate region.

また、特許文献2には、同様にFELに関連して、部分的に開口を備えた半円筒状のグリッド電極が直方体形状カソード電極に対して間隙を持って囲む技術が開示されている。特許文献2の技術は、電子が蛍光板電極に突入したことによって叩き出された正イオンがカソード電極に突入することを抑制し、放電破壊を防止するものであるが、電子放出の軌跡を予め算出設計して開口を設けることにより、放出電子がグリッド電極に飛び込まずに開口を通り抜けて蛍光体に突入する確率を向上することができる。   Similarly, Patent Document 2 discloses a technique related to FEL in which a semicylindrical grid electrode partially having an opening surrounds a rectangular parallelepiped cathode electrode with a gap. The technique of Patent Document 2 is to prevent positive ions struck by the entry of electrons into the fluorescent plate electrode and prevent the discharge breakdown, but the trajectory of electron emission is calculated in advance. By designing and providing an opening, it is possible to improve the probability that emitted electrons pass through the opening without entering the grid electrode and enter the phosphor.

更に、FED等においては、フォトリソグラフィー技術等により、カソード電極とゲート電極とを極めて近い距離で配置し、ゲート電極に電子が吸収されないように工夫している。図5は、FEDにおけるカソード側の代表的な構造を示すものであり、カソード電極100上に、電子放出源101及び絶縁層102を成膜し、絶縁層102の上層に金属材からなるゲート電極103を成膜している。絶縁層102の厚さAは、例えば20μm以下であり、ゲート電極103の開口寸法Bは、例えば、数μ〜数十μm程度である。
特開2004−207066号公報 特開2004−220896号公報
Further, in the FED or the like, the cathode electrode and the gate electrode are arranged at a very close distance by photolithography technology or the like so that electrons are not absorbed by the gate electrode. FIG. 5 shows a typical structure of the cathode side in the FED. An electron emission source 101 and an insulating layer 102 are formed on the cathode electrode 100, and a gate electrode made of a metal material is formed on the insulating layer 102. 103 is formed. The thickness A of the insulating layer 102 is, for example, 20 μm or less, and the opening dimension B of the gate electrode 103 is, for example, about several μ to several tens of μm.
JP 2004-207066 A JP 2004-220896 A

しかしながら、特許文献1の技術において、グリッド電極の孔端の加工精度を維持することは必ずしも容易でなく、コストアップの要因となる虞がある。同様に、特許文献2の技術においても、グリッド電極の形状が若干特殊なものとなり、加工精度、製造工程の面で不利であるばかりでなく、グリッド電極の開口設計により放出電子が蛍光体に突入する確率を均一化することは、必ずしも容易ではない。   However, in the technique of Patent Document 1, it is not always easy to maintain the processing accuracy of the hole end of the grid electrode, which may cause a cost increase. Similarly, in the technique of Patent Document 2, the shape of the grid electrode becomes slightly special, which is not only disadvantageous in terms of processing accuracy and manufacturing process, but also the emitted electrons enter the phosphor due to the opening design of the grid electrode. It is not always easy to equalize the probability of performing.

また、FED等におけるフォトリソグラフィー技術は、設備と生産プロセスの費用が高額であることから、製品価格が安価なFELの製造工程には適合が困難である。更に、カソード電極とゲート電極とを極めて近い距離に配置することは、真空容器内で高速移動しているイオンがゲート電極に衝突して金属スパッタが発生し易いという欠点につながり、この金属スパッタによって冷陰極電子放出源が損傷したり、冷陰極電子放出源に正イオンが衝突して損傷を招く虞がある。   In addition, the photolithographic technique in FED and the like is expensive to install and manufacture, and therefore, it is difficult to adapt to the FEL manufacturing process with a low product price. Furthermore, disposing the cathode electrode and the gate electrode at an extremely close distance leads to a drawback that ions moving at high speed in the vacuum vessel collide with the gate electrode and metal spatter is likely to occur. The cold cathode electron emission source may be damaged, or positive ions may collide with the cold cathode electron emission source and cause damage.

本発明は上記事情に鑑みてなされたもので、複雑な構成を要することなく、蛍光体に電子が突入して叩き出される正イオンや冷陰極電子放出源から放出された電子のゲート電極への突入を防止し、冷陰極電子放出源の損傷を確実に防止することのできる発光装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and without requiring a complicated configuration, positive ions from which electrons enter and strike the phosphor and electrons emitted from a cold cathode electron emission source to the gate electrode. An object of the present invention is to provide a light emitting device capable of preventing entry and reliably preventing damage to a cold cathode electron emission source.

上記目的を達成するため、本発明による発光装置は、冷陰極電子放出源を有するカソード電極と、上記カソード電極との間の真空中で上記冷陰極電子放出源から電界放出された電子により励起されて発光する蛍光体を有するアノード電極と、上記カソード電極と上記アノード電極との間で上記カソード電極に対向する面が真空中に露呈され、上記冷陰極電子放出源から放出された電子を通過させる開口部を有するゲート電極と、上記ゲート電極の上記アノード電極側に配置され、上記蛍光体から放出される正イオンを捕獲するイオン捕獲電極とを備えたことを特徴とする。   In order to achieve the above object, a light emitting device according to the present invention is excited by electrons emitted from the cold cathode electron emission source in a vacuum between the cathode electrode having the cold cathode electron emission source and the cathode electrode. A surface facing the cathode electrode between the cathode electrode and the anode electrode, which is exposed to the vacuum, and allows electrons emitted from the cold cathode electron emission source to pass through. A gate electrode having an opening, and an ion trapping electrode that is disposed on the anode electrode side of the gate electrode and captures positive ions emitted from the phosphor.

その際、ゲート電極は、アノード電極側から順に、イオン捕獲電極、絶縁性を有するゲート板、ゲート電極を積層した積層構造で形成することが望ましい。また、ゲート電極の開口部は、冷陰極電子放出源の電子放出領域以上の大きさとし、更には、この電子放出領域の周囲に、カソード電極を覆う導電性のカソードマスクを配置することが望ましい。   At that time, the gate electrode is preferably formed in a laminated structure in which an ion trapping electrode, an insulating gate plate, and a gate electrode are laminated in order from the anode electrode side. The opening of the gate electrode is preferably larger than the electron emission region of the cold cathode electron emission source, and further, a conductive cathode mask covering the cathode electrode is preferably disposed around the electron emission region.

本発明による発光装置は、複雑な構成を要することなく、蛍光体に電子が突入して叩き出される正イオンや冷陰極電子放出源から放出された電子のゲート電極への突入を防止し、冷陰極電子放出源の損傷を確実に防止することができる。   The light emitting device according to the present invention prevents the entry of positive ions emitted from electrons into the phosphor and knocked out from the phosphor or electrons emitted from the cold cathode electron emission source into the gate electrode without requiring a complicated configuration. Damage to the cathode electron emission source can be reliably prevented.

以下、図面を参照して本発明の実施の形態を説明する。図1〜図4は本発明の実施の一形態に係り、図1は発光装置の基本構成図、図2はゲート極のカソード電極側を示す平面図、図3はゲート極のアノード電極側を示す平面図、図4はゲート電極とカソード電極と冷陰極電子放出源との関係を示す説明図である。   Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 relate to an embodiment of the present invention, FIG. 1 is a basic configuration diagram of a light emitting device, FIG. 2 is a plan view showing a cathode electrode side of a gate electrode, and FIG. FIG. 4 is an explanatory view showing the relationship among a gate electrode, a cathode electrode, and a cold cathode electron emission source.

図1に示すように、本実施の形態における発光装置1は、例えば平面状の電界放出型照明ランプとして用いられる発光装置であり、所定間隔で対向配置されたガラス基板2,3の内部を真空状態に維持し、この真空状態下で、カソード電極5、ゲート電極10、アノード電極15を基底面側から投光面側に向かって順に配置した基本構成を有している。   As shown in FIG. 1, a light-emitting device 1 according to the present embodiment is a light-emitting device used as, for example, a planar field emission illumination lamp, and the inside of glass substrates 2 and 3 arranged to face each other at a predetermined interval is evacuated. In this vacuum state, the cathode electrode 5, the gate electrode 10, and the anode electrode 15 are arranged in this order from the base surface side to the light projecting surface side.

カソード電極5は、基底面となるガラス基板2上に形成された導電材からなり、例えば、アルミニウムやニッケル等の金属を蒸着やスパッタ法等によって堆積したり、銀ペースト材を塗布して乾燥・焼成する等して形成される。このカソード電極5の表面には、カーボンナノチューブ、カーボンナノウォール、スピント型マイクロコーン、金属酸化物ウィスカー等のエミッタ材料が膜状に塗布され、冷陰極電子放出源6が形成されている。   The cathode electrode 5 is made of a conductive material formed on the glass substrate 2 serving as the base surface. For example, a metal such as aluminum or nickel is deposited by vapor deposition or sputtering, or a silver paste material is applied and dried. It is formed by firing. On the surface of the cathode electrode 5, an emitter material such as a carbon nanotube, a carbon nanowall, a spint type micro cone, a metal oxide whisker or the like is applied in a film shape to form a cold cathode electron emission source 6.

本形態においては、冷陰極電子放出源6は、所定の領域毎にパターン化され、パターン化された領域(電子放出領域)の周囲に、カソード電極5を覆うカソードマスク7が配置されている。カソードマスク7については、後述する。   In this embodiment, the cold cathode electron emission source 6 is patterned for each predetermined region, and a cathode mask 7 covering the cathode electrode 5 is arranged around the patterned region (electron emission region). The cathode mask 7 will be described later.

アノード電極15は、投光面となるガラス基板3の裏面側に配置された透明導電膜(例えば、ITO膜)からなり、ゲート電極10(カソード電極5)に対向する面に、冷陰極電子放出源6から放出された電子によって励起発光される蛍光体16が成膜されている。蛍光体16は、例えば、スクリーン印刷法、インクジェット法、フォトグラフィ法、沈殿法、電着法等により、アノード電極15上に成膜されている。   The anode electrode 15 is made of a transparent conductive film (for example, ITO film) disposed on the back surface side of the glass substrate 3 serving as a light projecting surface, and cold cathode electron emission is performed on the surface facing the gate electrode 10 (cathode electrode 5). A phosphor 16 that is excited and emitted by electrons emitted from the source 6 is formed. The phosphor 16 is formed on the anode electrode 15 by, for example, a screen printing method, an ink jet method, a photography method, a precipitation method, an electrodeposition method, or the like.

一方、カソード電極5とアノード電極15との間の真空の空間内に配置されるゲート電極10は、冷陰極電子放出源6のパターン領域から放出された電子を通過させる開口部11を有する平板状に形成されている。このゲート電極10の一方の面は、カソード電極5に対向して真空中に露呈され、他方の面側に、蛍光体16への電子の衝突によって放出される正イオンを捕獲するためのイオン捕獲電極12が配置されている。   On the other hand, the gate electrode 10 disposed in the vacuum space between the cathode electrode 5 and the anode electrode 15 has a flat plate shape having an opening 11 through which electrons emitted from the pattern region of the cold cathode electron emission source 6 pass. Is formed. One surface of the gate electrode 10 is exposed in a vacuum facing the cathode electrode 5, and the other surface side captures positive ions emitted by collision of electrons with the phosphor 16. An electrode 12 is disposed.

本形態においては、ゲート電極10とイオン捕獲電極12との間に絶縁性を有するゲート板13を介在させ、アノード電極15側から順に、イオン捕獲電極12、ゲート板13、ゲート電極10を一体的に積層した積層構造のゲート極として形成している。このゲート極は、所定位置に配置された図示しないサポータを介してカソード電極5上に支持されている。   In this embodiment, an insulating gate plate 13 is interposed between the gate electrode 10 and the ion trap electrode 12, and the ion trap electrode 12, the gate plate 13, and the gate electrode 10 are integrally formed in order from the anode electrode 15 side. It is formed as a gate electrode having a laminated structure. This gate electrode is supported on the cathode electrode 5 via a supporter (not shown) arranged at a predetermined position.

ゲート電極10は、ニッケル材、ステンレス材、アンバー材等の導電性金属材料を用い、単純な機械加工、エッチング、スクリーン印刷等により、例えば厚さ1mm以下の電極としてゲート板13上に形成され、図2に示すように、カソード電極5側が真空中に露呈されてゲート極のカソード電極5側の表層を形成している。ゲート板13は、セラミックやマイカ等の絶縁材料により、或いは金属板に絶縁被膜をコーティングして形成されている。   The gate electrode 10 is formed on the gate plate 13 as an electrode having a thickness of 1 mm or less, for example, by simple machining, etching, screen printing, or the like, using a conductive metal material such as nickel material, stainless steel material, amber material, As shown in FIG. 2, the cathode electrode 5 side is exposed in a vacuum to form a surface layer of the gate electrode on the cathode electrode 5 side. The gate plate 13 is formed of an insulating material such as ceramic or mica or by coating an insulating film on a metal plate.

また、イオン捕獲電極12は、例えば、厚さ1mm以下のニクロム板に、チタン、ジルコニウム、バナジウム、鉄、アルミニウム等のイオンゲッター材をコーティングして形成されている。図3に示すように、イオン捕獲電極12は、アノード電極15側において、ゲート電極10の開口部11以外の非開口領域を覆うように配置され、ゲート極のアノード電極15側の表層を形成している。   Moreover, the ion capture electrode 12 is formed by coating an ion getter material such as titanium, zirconium, vanadium, iron, or aluminum on a nichrome plate having a thickness of 1 mm or less, for example. As shown in FIG. 3, the ion capture electrode 12 is arranged on the anode electrode 15 side so as to cover a non-opening region other than the opening 11 of the gate electrode 10, and forms a surface layer on the anode electrode 15 side of the gate electrode. ing.

尚、ゲート板13は、必ずしも必要ではなく、ゲート電極10とイオン捕獲電極12との絶縁を必要としない場合等には、省略することができ、例えば、ゲート電極10とイオン捕獲電極12とを僅かに離間させて配置することにより、ゲート板13を用いることことなく、ゲート電極10とイオン捕獲電極12とを絶縁しても良い。また、ゲート電極10のアノード電極15側の面にイオンゲッターをコーティングする等して、ゲート電極10の一部をイオン捕獲電極として機能させるようにしても良い。   Note that the gate plate 13 is not always necessary, and can be omitted when the gate electrode 10 and the ion trap electrode 12 are not insulated. For example, the gate electrode 10 and the ion trap electrode 12 can be omitted. The gate electrode 10 and the ion trapping electrode 12 may be insulated without using the gate plate 13 by disposing them slightly apart. Alternatively, a part of the gate electrode 10 may function as an ion trapping electrode by coating an ion getter on the surface of the gate electrode 10 on the anode electrode 15 side.

ゲート電極10の開口部11は、本形態においては、図2及び図3に示すように、ランド状に形成された冷陰極電子放出源6のパターン領域と同じか若干大きく形成された円孔として形成されている。これにより、冷陰極電子放出源6から放出される略全ての電子を通過させて発光に寄与する有効電子とすることができ、ゲート電極10での電力損失を低減し、無損失ゲートの実現を可能としている。   In this embodiment, as shown in FIGS. 2 and 3, the opening 11 of the gate electrode 10 is a circular hole formed as the same or slightly larger than the pattern region of the cold cathode electron emission source 6 formed in a land shape. Is formed. As a result, almost all electrons emitted from the cold cathode electron emission source 6 can be passed to be effective electrons contributing to light emission, reducing power loss at the gate electrode 10 and realizing a lossless gate. It is possible.

この無損失ゲートを有効に実現するには、図4に示すゲート電極10とカソード電極5との対向距離H、及び冷陰極電子放出源6のパターン領域の寸法D1、ゲート電極10の開口部11の開口寸法D2の関係を適切に設定する必要がある。   In order to effectively realize this lossless gate, the facing distance H between the gate electrode 10 and the cathode electrode 5 shown in FIG. 4, the dimension D1 of the pattern region of the cold cathode electron emission source 6, and the opening 11 of the gate electrode 10 are shown. It is necessary to appropriately set the relationship of the opening dimension D2.

先ず、ゲート電極10とカソード電極5との対向距離Hは、規定の下限値以上に設定される。この下限値は、ゲート電極10からカソード電極5への有害な金属スパッタの発生を防止可能な距離であると同時に、ゲート電極10とカソード電極5との距離が近すぎて電界が有効に発生せず冷陰極電子放出源6から放出される電子が極端に少なくなることを避けるための距離であり、例えば、H=0.1mm〜5mmに設定される。   First, the facing distance H between the gate electrode 10 and the cathode electrode 5 is set to a specified lower limit value or more. This lower limit is a distance that can prevent the occurrence of harmful metal sputtering from the gate electrode 10 to the cathode electrode 5, and at the same time, the distance between the gate electrode 10 and the cathode electrode 5 is too short to effectively generate an electric field. This is a distance for avoiding that the number of electrons emitted from the cold cathode electron emission source 6 becomes extremely small, and is set to H = 0.1 mm to 5 mm, for example.

また、冷陰極電子放出源6のパターン領域の寸法D1とゲート電極10の開口部11の開口寸法D2との関係は、蛍光体16の発光に要する電界強度やゲート電極10とカソード電極5とのアライメント誤差等を考慮して設定される。例えば、冷陰極電子放出源6のパターン領域の寸法D1をD1=0.1mm〜5mmとした場合、ゲート電極10の開口部11の開口寸法D2は、D2=D1〜D1+1mmの範囲に設定される。   Further, the relationship between the dimension D1 of the pattern region of the cold cathode electron emission source 6 and the opening dimension D2 of the opening 11 of the gate electrode 10 depends on the electric field intensity required for light emission of the phosphor 16 and the gate electrode 10 and the cathode electrode 5. It is set in consideration of alignment error and the like. For example, when the dimension D1 of the pattern area of the cold cathode electron emission source 6 is set to D1 = 0.1 mm to 5 mm, the opening dimension D2 of the opening 11 of the gate electrode 10 is set in a range of D2 = D1 to D1 + 1 mm. .

この場合、ゲート電極10の開口部11と冷陰極電子放出源6のパターン領域(電子放出領域)とは、円形の形状に限らず矩形状等の他の形状でも良く、互いに相似形状であれば良い。上述した寸法D1,D2の関係は、ゲート電極10側と冷陰極電子放出源6側とで互いに相似となる開口部の面積が同じかゲート電極10側が若干大きい関係にあれば良いことを意味している。   In this case, the opening portion 11 of the gate electrode 10 and the pattern region (electron emission region) of the cold cathode electron emission source 6 are not limited to a circular shape, and may be other shapes such as a rectangular shape. good. The relationship between the dimensions D1 and D2 described above means that the gate electrode 10 side and the cold cathode electron emission source 6 side need only have a relationship in which the areas of the openings that are similar to each other are the same or slightly larger on the gate electrode 10 side. ing.

更に、無損失ゲートの実現に際しては、冷陰極電子放出源6のパターン領域の周囲に配置されるカソードマスク7が有効に作用する。このカソードマスク7は、ゲート電極10と同様の導電性の部材で形成され、冷陰極電子放出源6のパターン領域周縁への電界の集中を防止するものである。このカソードマスク7を用いることにより、冷陰極電子放出源6から放出された電子のゲート電極10への突入を防止して金属スパッタの発生を確実に防止すると共に、冷陰極電子放出源6から放出される略全ての電子をゲート電極10の開口部を通過させてアノード電極15に到達させ、発光に寄与する有効電子としてゲート電極10での電力損失を効果的に低減することができる。   Further, in realizing the lossless gate, the cathode mask 7 disposed around the pattern region of the cold cathode electron emission source 6 works effectively. The cathode mask 7 is formed of a conductive member similar to the gate electrode 10 and prevents concentration of the electric field on the periphery of the pattern region of the cold cathode electron emission source 6. By using the cathode mask 7, the electrons emitted from the cold cathode electron emission source 6 are prevented from entering the gate electrode 10 to reliably prevent the occurrence of metal sputtering, and are emitted from the cold cathode electron emission source 6. Almost all of the electrons that have passed through the opening of the gate electrode 10 reach the anode electrode 15, and the power loss at the gate electrode 10 can be effectively reduced as effective electrons contributing to light emission.

尚、冷陰極電子放出源6をパターン化することなく、カソード電極5上に冷陰極電子放出源6を一様に成膜し、この一様に成膜した冷陰極電子放出源6上に、ゲート電極10の開口部11と相似形状で開口部11の面積以下の開口部を備えたカソードマスクを配置するようにしても良い。   Note that the cold cathode electron emission source 6 is uniformly formed on the cathode electrode 5 without patterning the cold cathode electron emission source 6, and the uniformly formed cold cathode electron emission source 6 is You may make it arrange | position the cathode mask provided with the opening part 11 of the shape similar to the opening part 11 of the gate electrode 10, and the area of the opening part 11 or less.

以上の発光装置1においては、カソード電極5に対して、アノード電極15を正の高電位に維持し、ゲート電極10からカソード電極5へ所定のゲート電圧を印加すると共に、イオン捕獲電極12をゲート電圧に近い電位に保持する。これにより、冷陰極電子放出源6から真空中に電子が放出され、この電界放出した電子がアノード電極15に向って加速され、図1に示すように、ゲート電極10の開口部11を通過した電子線20が蛍光体16に衝突し、蛍光体16を励起して発光させる。   In the light emitting device 1 described above, the anode electrode 15 is maintained at a positive high potential with respect to the cathode electrode 5, a predetermined gate voltage is applied from the gate electrode 10 to the cathode electrode 5, and the ion trapping electrode 12 is gated. Hold at a potential close to the voltage. As a result, electrons are emitted from the cold cathode electron emission source 6 into the vacuum, and the field-emission electrons are accelerated toward the anode electrode 15 and pass through the opening 11 of the gate electrode 10 as shown in FIG. The electron beam 20 collides with the phosphor 16 and excites the phosphor 16 to emit light.

このとき、ゲート電極10の開口部11を冷陰極電子放出源6の電子放出領域と同じか若干大きく形成していることから、冷陰極電子放出源6から放出された略全ての電子を開口部11を通過させて蛍光体16に到達させることができる。しかも、冷陰極電子放出源6の電子放出領域の周囲にカソード電極5を覆うカソードマスク7を配置しているため、ゲート電極10からの有害な金属スパッタやガスの発生を防止することができ、無効電子による無駄な電力消費を効果的に防止することができる。更には、ゲート電極10をカソード電極5から適切な距離に離間させて配置しているため、ゲート電極10に印加する電圧が必要以上に高電圧化することもない。   At this time, since the opening 11 of the gate electrode 10 is formed to be the same as or slightly larger than the electron emission region of the cold cathode electron emission source 6, almost all electrons emitted from the cold cathode electron emission source 6 are opened. 11 can pass through and reach the phosphor 16. Moreover, since the cathode mask 7 covering the cathode electrode 5 is arranged around the electron emission region of the cold cathode electron emission source 6, it is possible to prevent harmful metal sputtering and gas generation from the gate electrode 10, Wasteful power consumption due to invalid electrons can be effectively prevented. Furthermore, since the gate electrode 10 is arranged at an appropriate distance from the cathode electrode 5, the voltage applied to the gate electrode 10 does not become higher than necessary.

また、蛍光体16に電子が突入して正のイオン21が叩き出されても、このイオン21がカソード電極5側に向かう途中で、アノード電極15に対向して配置されたイオン捕獲電極12によって効率的に捕獲することができる。これにより、イオン21のゲート電極10及び冷陰極電子放出源6への突入を回避し、ゲート電極10からの金属スパッタや、ガスの発生による局部的な真空度の劣化による放電を回避し、冷陰極電子放出源6の損傷を防止することができる。   Even when electrons enter the phosphor 16 and positive ions 21 are knocked out, the ions 21 are moved toward the cathode electrode 5 by the ion trapping electrode 12 disposed so as to face the anode electrode 15. It can be captured efficiently. Thereby, the entry of the ions 21 into the gate electrode 10 and the cold cathode electron emission source 6 is avoided, the metal sputter from the gate electrode 10 and the discharge due to local deterioration of the vacuum due to the generation of gas are avoided, and Damage to the cathode electron emission source 6 can be prevented.

特に、発光面積の大きい照明用として考慮した場合、冷陰極電子放出源から放出された電子や蛍光体からの正イオンがゲート電極へ突入する確率が大きいことから、簡素な構成でありながら冷陰極電子放出源の損傷を効果的に防止することのできる本発明の発光装置は有用であり、装置の安定化と信頼性向上に寄与することができる。   In particular, when considered for illumination with a large light emitting area, there is a high probability that electrons emitted from the cold cathode electron emission source and positive ions from the phosphor will enter the gate electrode, so the cold cathode is simple in structure. The light emitting device of the present invention that can effectively prevent damage to the electron emission source is useful, and can contribute to stabilization of the device and improvement of reliability.

発光装置の基本構成図Basic configuration diagram of light emitting device ゲート極のカソード電極側を示す平面図Plan view showing the cathode electrode side of the gate electrode ゲート極のアノード電極側を示す平面図Plan view showing the anode electrode side of the gate electrode ゲート電極とカソード電極と冷陰極電子放出源との関係を示す説明図Explanatory drawing which shows the relationship between a gate electrode, a cathode electrode, and a cold cathode electron emission source. 従来の電界放出型表示装置におけるカソード側の代表的な構造を示す説明図Explanatory drawing which shows the typical structure of the cathode side in the conventional field emission display

符号の説明Explanation of symbols

1 発光装置
5 カソード電極
6 冷陰極電子放出源
7 カソードマスク
10 ゲート電極
11 開口部
12 イオン捕獲電極
13 ゲート板
15 アノード電極
16 蛍光体
DESCRIPTION OF SYMBOLS 1 Light-emitting device 5 Cathode electrode 6 Cold cathode electron emission source 7 Cathode mask 10 Gate electrode 11 Opening part 12 Ion capture electrode 13 Gate plate 15 Anode electrode 16 Phosphor

Claims (4)

冷陰極電子放出源を有するカソード電極と、
上記カソード電極との間の真空中で上記冷陰極電子放出源から電界放出された電子により励起されて発光する蛍光体を有するアノード電極と、
上記カソード電極と上記アノード電極との間で上記カソード電極に対向する面が真空中に露呈され、上記冷陰極電子放出源から放出された電子を通過させる開口部を有するゲート電極と、
上記ゲート電極の上記アノード電極側に配置され、上記蛍光体から放出される正イオンを捕獲するイオン捕獲電極とを備えたことを特徴とする発光装置。
A cathode electrode having a cold cathode electron emission source;
An anode having a phosphor that emits light when excited by electrons emitted from the cold cathode electron emission source in a vacuum with the cathode; and
A gate electrode having an opening through which electrons emitted from the cold cathode electron emission source are exposed in a vacuum between a surface facing the cathode electrode between the cathode electrode and the anode electrode;
A light emitting device, comprising: an ion capture electrode disposed on the anode electrode side of the gate electrode and capturing positive ions emitted from the phosphor.
上記ゲート電極を、上記アノード電極側から順に、上記イオン捕獲電極、絶縁性を有するゲート板、上記ゲート電極を積層した積層構造で形成することを特徴とする請求項1記載の発光装置。   2. The light emitting device according to claim 1, wherein the gate electrode is formed in a laminated structure in which the ion trapping electrode, an insulating gate plate, and the gate electrode are laminated in order from the anode electrode side. 上記ゲート電極の開口部を、上記冷陰極電子放出源の電子放出領域以上の大きさとしたことを特徴とする請求項1又は2記載の発光装置。   3. The light emitting device according to claim 1, wherein the opening of the gate electrode has a size larger than that of the electron emission region of the cold cathode electron emission source. 上記冷陰極電子放出源の電子放出領域の周囲に、上記カソード電極を覆う導電性のカソードマスクを配置したことを特徴とする請求項3記載の発光装置。   4. The light emitting device according to claim 3, wherein a conductive cathode mask covering the cathode electrode is disposed around an electron emission region of the cold cathode electron emission source.
JP2005161742A 2005-06-01 2005-06-01 Light emitting device Expired - Fee Related JP4387988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005161742A JP4387988B2 (en) 2005-06-01 2005-06-01 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161742A JP4387988B2 (en) 2005-06-01 2005-06-01 Light emitting device

Publications (2)

Publication Number Publication Date
JP2006339012A true JP2006339012A (en) 2006-12-14
JP4387988B2 JP4387988B2 (en) 2009-12-24

Family

ID=37559395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161742A Expired - Fee Related JP4387988B2 (en) 2005-06-01 2005-06-01 Light emitting device

Country Status (1)

Country Link
JP (1) JP4387988B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2012343A2 (en) 2007-07-03 2009-01-07 Fuji Jukogyo Kabushiki Kaisha Light-emitting apparatus
EP2051284A2 (en) 2007-10-16 2009-04-22 Fuji Jukogyo Kabushiki Kaisha Light-emitting apparatus
JP2010515217A (en) * 2006-12-29 2010-05-06 セレックス システミ インテグラティ エッセ. ピ. ア. High frequency, cold cathode, triode type, field emitter vacuum tube and manufacturing method thereof
JP2011077042A (en) * 2009-09-30 2011-04-14 Qinghua Univ Field emission cathode element, and field emission display device
JP2011090875A (en) * 2009-10-22 2011-05-06 Toppan Printing Co Ltd Light-emitting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010515217A (en) * 2006-12-29 2010-05-06 セレックス システミ インテグラティ エッセ. ピ. ア. High frequency, cold cathode, triode type, field emitter vacuum tube and manufacturing method thereof
EP2012343A2 (en) 2007-07-03 2009-01-07 Fuji Jukogyo Kabushiki Kaisha Light-emitting apparatus
EP2051284A2 (en) 2007-10-16 2009-04-22 Fuji Jukogyo Kabushiki Kaisha Light-emitting apparatus
US8142054B2 (en) 2007-10-16 2012-03-27 Fuji Jukogyo Kabushiki Kaisha Light-emitting apparatus having a heat-resistant glass substrate separated through a vacuum layer from a glass substrate used as the light projection plane
JP2011077042A (en) * 2009-09-30 2011-04-14 Qinghua Univ Field emission cathode element, and field emission display device
JP2011090875A (en) * 2009-10-22 2011-05-06 Toppan Printing Co Ltd Light-emitting device

Also Published As

Publication number Publication date
JP4387988B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP4880568B2 (en) Surface conduction electron-emitting device and electron source using the electron-emitting device
JP3171785B2 (en) Thin display device and method of manufacturing field emission cathode used therefor
JP2008130573A (en) Method of manufacturing surface conduction electron emitting element
JP4387988B2 (en) Light emitting device
JP2004228084A (en) Field emission element
US7348720B2 (en) Electron emission device and electron emission display including the same
JP2008091279A (en) Light emitting device
CN110832616B (en) Field emission cathode structure for field emission device
JP2011108563A (en) Lighting system
JP2006286567A (en) Light emitting device
TWI407477B (en) Field emission device
JP3101044B2 (en) Light emitting element
JP2004207066A (en) Light emitting device and its manufacturing method
JP2010182585A (en) Electron emission element, and image display using the same
TWI407478B (en) Method for making field emission device
KR101048954B1 (en) Getter integrated conductive mesh and electron emission display device having the same
JP5602209B2 (en) Light emitting device
KR101064437B1 (en) Anode substrate for electron emission display device
TWI407476B (en) Ion source
TWI435359B (en) Field emission display device
KR101064451B1 (en) Electron emission display device having getter integrated conductive mesh
JP2010067351A (en) Flat surface type display device and manufacturing method for flat surface type display device
JP2007317369A (en) Field emission lamp
KR20060095717A (en) Field emission device
JP2005327504A (en) Manufacturing method of field electron emission element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090312

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees