TW201202763A - Optical laminate, polarizing plate and display device - Google Patents

Optical laminate, polarizing plate and display device Download PDF

Info

Publication number
TW201202763A
TW201202763A TW100114606A TW100114606A TW201202763A TW 201202763 A TW201202763 A TW 201202763A TW 100114606 A TW100114606 A TW 100114606A TW 100114606 A TW100114606 A TW 100114606A TW 201202763 A TW201202763 A TW 201202763A
Authority
TW
Taiwan
Prior art keywords
optical
functional layer
optical functional
layered body
light
Prior art date
Application number
TW100114606A
Other languages
Chinese (zh)
Inventor
Hideki Moriuchi
Takayuki Nakanishi
Chikara Murata
Original Assignee
Tomoegawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010102707A external-priority patent/JP2011232546A/en
Priority claimed from JP2010127900A external-priority patent/JP5593125B2/en
Priority claimed from JP2010127677A external-priority patent/JP2011253092A/en
Application filed by Tomoegawa Co Ltd filed Critical Tomoegawa Co Ltd
Publication of TW201202763A publication Critical patent/TW201202763A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

The invention provides an optical laminate, a polarizing plate and a display device, all of which uniformly have an excellent anti-glare property, blackness in a bright room anti-glare capabilities, as well as production stability. It is an optical laminate of an optical functional layer on a transparent substrate, wherein at least one surface of the optical functional layer is formed into an undulating shape. The undulating shape of the optical functional surface has an arithmetic average height (Ra) of 0.04 or higher and less than 0.200, and a percentage of distribution of an inclination angle of 0.2 degrees or less to the inclination angles of the undulating surface of the optical functional layer of 30% or higher to 95% or less.

Description

201202763 六、發明說明: 【發明所屬之技術領域】 本發明是有關光學積層體、偏光板及顯示裝置。 本發明的光學積層體可設置在液晶顯示器(LCD)或電 毁顯示器(PDP)、有機電激發光(0LED)等顯示器表面上、或201202763 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an optical laminate, a polarizing plate, and a display device. The optical laminate of the present invention may be disposed on a display surface such as a liquid crystal display (LCD) or an electro-destructive display (PDP), an organic electroluminescence (0LED), or

使用作為顯示器的構成構件,宜使用於用以提高構成〇LED 之有機EL層中產生的光取出有機el外之效率之其觀察面 侧。尤其是有關重視防眩性、亮室下的黑度或暗室對比的 辨視性之光學積層體,例如適用於電視用途的顯示器等之 光學積層體。 【先前技術】 液晶顯示裝置(LCD)或電漿顯示器(PDP)等顯示裝置, 常因日光燈等室内照明、由窗戶人射的陽光、操作者的影 像等映照在顯示骏置表面,而妨礙影像的辨視性。因此, 為提高影像的辨視性,可在此等顯示裝置表面上,將對擴 散表面反射光、抑制外來光的正反射、可防止外部環境的 映照(具有防眩性)之形成有微細凹凸結構的光學積層^等 之功能性薄膜設置於最表面。 此等功能性薄膜,一般所製造販售的是在聚對笨二甲 黾乙二酯(以下簡稱為r pET」。)或三乙醯基纖維素(以下簡 稱為「TAC」。)等透光性基體上,設置形成有微細凹凸結1 的光學功能層者,或是在光擴散層上積層低折射率層者°, 但目前正在開發可藉由組合層組成以提供所期望功能的工 能性薄膜。 此、功 323082 4 201202763 當在顯杀器的最表面使用光學積層 _ 間中使用時,將因光之擴散%、,在明壳的房 便時 Μ使顯不黑的影像反白,而古 對比下降的問題。因此’期盼即使降低防眩性,:= 高對比的光=外亦要求該光學積層體具有高防2 性能(高對比AG)。^卜,在顯示器的最表 體時,尤其是在屋外使用時,將因光Μ 層 楚顯示影像的問題,由於習知的防眩性古夕 1看凊 其最表面的緻密性偏低’未能緩和LC;組二:層:有 顯示影像閃現的問題。因此,在行動電話、PDr= 可携式用途要求亮室下的黑度與_:之 平衡良好4達成已抑·板亮度降低的高暗 學積層體,也要求該光學積層f之先 式之高功能⑹。 防刺眼性能(針對可携 在提高光學積層體的對士夕古4 L 的凹凸形狀最適化之方法。 1舉例如使表面 在光學功能層表面形成凹凸形狀的方法, 述的透光性基體上塗佈已添_粒子㈣ 塗枓,然相紫外線照射該光學功能層形成材料而形成光 學功能層(例如,參照專利文獻1)。 此外,也有使光學功能層含有的微粒子之粒徑與表面 凹凸形狀(傾斜角)最適化後,而兼具防眩性與對比兩者的 方法(例如,參照專利文獻2)。 此外,也有使用複數種樹脂成分形成不含微粒子的表 面凹凸後,藉由利用該樹脂成分之相分離特性形成紐狀結 323082 5 201202763 構,而兼具防眩性與對比兩者的方法(例如,參照專利文獻 ' 3)。 [先前技術文獻] [專利文獻] [專利文獻1]日本特開2002-196117號公報 [專利文獻2]日本特開2008-158536號公報 [專利文獻3]日本特開2008-225195號公報 【發明内容】 (發明所欲解決的問題) 如專利文獻1,使用含有微粒子的光學功能層時,有 防眩I·生與防刺眼的效果。然而,因光學功能層中所含有的 微粒子的界面與以該微粒子的形狀為基礎之光學功能的表 面凹凸°卩份產生光之散射’而有難以達成高對比的問題。 ⑯專利文獻2’即使將微粒子的粒徑及表面凹凸的傾 斜角最適化,亦有對比不足問題。 如專利文獻3,在利用複數種樹脂成分的相分離而在 面上形成紐狀凸部的方法上’亦有製造安定性的問題。 性在,,本發明的第一個目的係提供可平衡兼具防眩 月至下的黑度優異’與防耀眼的機能,且製造安定性 優異的光學積層體、偏歧及顯示器。 、卜在上述防眩性、亮室下的黑度、防刺眼的功能 =並W提供可達成高暗室對比的光學積層體作為附屬 再者,以提供在透光性基體上即使積層i層光學功能 323082 6 201202763 層的構成,也可達成此等功能且經濟性優異的光學積層體 ' 作為附屬課題。 另外,本發明的第二個目的係提供可平衡兼具防眩 性、亮室下的黑度優異,與防閃光的功能之光學積層體、 偏光板及顯示裝置。 此外,在上述防眩性、亮室下的黑度、防刺眼的功能 之外,並以提供可達成高暗室對比的光學積層體作為附屬 課題。 再者,以提供在透光性基體上即使積層1層光學功能 層的構成,也可達成此等功能且經濟性優異的光學積層體 作為附屬課題。 而且,本發明的三個目的係提供可平衡兼具防眩性、 亮室下的黑度優異,與防刺眼的功能之光學積層體、偏光 板及顯示裝置。 此外,在上述防眩性、亮室下的黑度、防刺眼的功能 之外,並以提供可達成高暗室對比的光學積層體作為附屬 課題。 再者,以提供透光性基體上即使積層1層光學功能層 的構成,也可達成此等功能且經濟性優異的光學積層體作 為附屬課題。 (解決問題的方式) 前述第一個目的下,第一發明中,因使光學功能層中 所含的透光性有機微粒子偏在,而可比已往含有較多表面 凹凸中佔有的平滑部份,亦即傾斜角度低的凹凸成分,因 7 323082 201202763 而可形成咼度適度之凸部,進而找出可使防眩性、亮室下 的黑度、防刺眼的全部功能為最適化的區域。 第一發明是由下述的技術組成解決上述課題者。 (1) 一種光學積層體’其特徵是在透光性基體上積層光學功 能層而形之光學積層體,該光學功能層之至少一方之面形 成有凹凸形狀,具有該凹凸形狀的光學功能層面之算術平 均尚度(Ra)為0. 040以上且未達〇· 2〇〇,於具有該凹凸形 狀的光學功能層面的傾斜角度分佈中,〇·2度以下的傾斜 角度分佈之所佔比例為30%以上95%以下。 (2) 如前述(1)中所述之光學積層體,其中,前述光學功能 層係由1層以上之以放射線硬化型樹脂組成物作為主成分 之光學功能層所構成。 (3)如前述⑴中所述之光學積層體,其特徵為前述光學功 能層至少含有放射線硬化型樹脂組成物與透光性微粒子。 ⑷如前述(3)中所述之光學積層體,其特徵騎述二 微粒子之平均粒徑為〇. 3至7. Oym。 ⑸如前述⑴巾所述之光學積層體,師徵騎述光 月b層之膜厚大於前述透光性微粒子之平均粒押 (6) —種偏光板係於構成前述(1)至(5)中任一項 > 學積層體之透光性基體上積層偏光基體而成者。〔之光 (7) —種顯示裝置’其特徵為具備前述(!)至(5)中任 述之光學積層體而成者。 *項所 前述第二個目的下,第二發明中,是在光學功能層的 表面凹凸上所佔簡肖度分佈岐林魏層中所 323082 201202763 含的透祕_練子偏在,找出可顯現防贿效果 刺眼性能不惡化的傾斜角度成分的區域,故可形成 該傾斜角度成麵絲魏層。親,料提供—面 與已往製品同等的防眩性,—面在亮室下的黑度與防刺眼 性能優異的光學積層體。 第二發明是由下述的技術組成解決上述課題者。 (1)一種光學積層體,其特徵是在透光性基體上積層光學功 能層而成之光學積層體,該光學功能層的至少—方之面形 成有凹凸形狀,於從具有該凹凸形狀的光學功能層面之凹 凸形狀測得之全長之傾斜角度分佈中,0.3度以上丨^产 以下之傾斜角度分佈所佔比例為68%以上,3.0度以上之二 斜角度成分所佔比例未達1 %。 (2) 如前述(1)中所述之光學積層體,其中,前述光學功能 層係由1層以上之以放射線硬化型樹脂組成物作為主成八 之光學功能層所構成。 (3) 如前述(1)或(2)中所述之光學積層體,其特徵為前述光 學功能層具有隨機凝聚結構。 (4) 如前述(1)至(3)中任一項所述之光學積層體,其特徵為 前述光學功能層至少含有放射線硬化型樹脂組成物及透光 性微粒子。 (5) 如前述(4)中所述之光學積層體,其特徵為前述透光性 微粒子之平均粒牲為0. 3至7. 〇 V m。 (6) 如前述(4)中所述之光學積層體,其特徵為前述光學功 能層之膜厚大於前述透光性微粒子之平均粒徑。 9 323082 201202763 (7) —種偏光板’其特徵為在構成前述(1)至(6)中任一項所 述之光學積層體之透紐基體上積層偏光基體而成者。 (8) —種顯不裝置,其特徵為具備前述(1)至(6)中任一項所 述之光學積層體而成者。 則述第二個目的下’第三發明中,係藉由使光學功能 層中所含的透光性有機微粒子偏在,由於含有比已往較多 表面凹凸中所佔的平滑部份,亦即傾斜角度低的凹凸成 分,而可形成高度適度之凸部,進而找到使防眩性、亮室 下的黑度、防刺眼的全部功能為最適化的區域。 第三發明是由下述的技術組成解決上述課題者。 (1) 一種光學積層體,其特徵是在透光性基體上積層光學功 能層而成之光學積層體’於該光學功能層的至少一方之面 形成有凹凸形狀’於從具有該凹凸形狀的光學功能層面之 凹凸形狀測得之全長之傾斜角度分佈中,〇. 5度以下之傾 斜角度分佈所佔比例為60%以上且未達80%,0. 6度以上1. 6 度以下之傾斜角度分佈所佔比例為30%以下,3 〇度以上之 傾斜角度成分所佔比例未達1%。 (2) 如前述(1)中所述之光學積層體,其前述光學功能層係 由1層以上之以放射線硬化型樹脂組成物作為主成分之光 學功能層所構成。 (3) 如前述(1)或(2)中所述之光學積層體,其前述光學功能 層之特徵是具有隨機凝聚構造。 (4) 如前述(1)至(3)中任一項所述之光學積層體,其特徵為 前述光學功能層至少含有放射線硬化型樹脂組成物及透光 10 323082 201202763 性微粒子。 ' (5)如前述(4)中所述之光學積層體,其特徵為前述透光性 微粒子之平均粒徑為0. 3至7. Oym。 (6) 如前述(4)或(5)中所述之光學積層體,其特徵為前述光 學功能層之膜厚大於前述透光性微粒子之平均粒徑。 (7) —種偏光板,其特徵是在構成前述(1)至(6)中任一項所 述之光學積層體之透光性基體上積層偏光基體而成者。 (8) —種顯示裝置,其特徵為具備前述(1)至(6)中任一項所 述之光學積層體而成者。 (發明的效果) 根據第一發明,即可提供平衡兼具防眩性、亮室下的 黑度優異,與防刺眼的功能,且製造安定性優異的光學積 層體、偏光板及顯示裝置。 此外,提供上述防眩性、亮室下的黑度、防刺眼的功 能之外,再加上可達成高暗室對比的光學積層體。 再者,可提供即使在透光性基體上積層1層光學功能 層的構造也可達成此等功能,且經濟性優異的光學積層體。 第一發明的光學積層體、偏光板及顯示裝置,可適用 於大型電視的用途上。 根據第二發明,可提供平衡兼具防眩性、亮室下的黑 度優異,與防刺眼的功能之光學積層體、偏光板及顯示裝 置。 此外,提供上述防眩性、亮室下的黑度、防刺眼的功 能之外,再加上可達成高暗室對比的光學積層體。 11 323082 201202763 再者,可提供即使在透光性基體上積層1層光學功能 ' 層的構造也可達成此等功能,且經濟性優異的光學積層體。 本發明的光學積層體、偏光板及顯示裝置,可適用於 大型電視的用途上。 根據第三發明,可提供平衡兼具防眩性、亮室下的黑 度優異,與防刺眼的功能之光學積層體、偏光板及顯示裝 置。 此外,提供上述防眩性、亮室下的黑度、防刺眼的功 能之外,再加上可達成高暗室對比的光學積層體。 再者,可提供即使在透光性基體上積層1層光學功能 層的構造也可達成此等功能,且經濟性優異的光學積層體。 本發明的光學積層體、偏光板及顯示裝置,可適用於 大型電視的用途上。 【實施方式】 以下說明本發明(第一發明至第三發明)。而且,各項 目中的記述,無特別註記時,是關於所有第一發明至第三 發明者。如有特別註記時,是在各項的開頭以「(第*發明)」 標記。 本發明的光學積層體之特徵,是在透光性基體上積層 光學功能層而成,在光學功能層的至少一方之面,形成有 分佈成預定傾斜角的方式的凹凸形狀。該凹凸形狀可形成 在光學功能層的單一面,也可形成在兩面。該凹凸形狀宜 形成在與透光性基體相反侧(以下,有時簡稱為「表面」或 「表面側」)。 12 323082 201202763 本形態的此種光學積層體之基本構造,是在光學功能 ' 層的至少一方之面,形成分佈有預定傾斜角的凹凸形狀。 構成本發明的光學功能層宜具有隨機凝聚構造。因具 有隨機凝聚構造,故容易在光學功能層的至少一方之面形 成分佈有預定傾斜角的凹凸形狀。第1圖係表示光學功能 層的構造之模式圖,(a)及(b)是表示光學功能層的表面構 造之平面圖,(c)及(d)是表示光學積層體之侧剖面構造的 側剖面圖。(a)及(c)是習知的海島構造之光學功能層,(b) 及(d)是具有隨機凝聚構造之光學功能層。 由於具有隨機凝聚構造之光學功能層只要至少具有第 一相與第二相即可,故光學功能層也可具有第三相或第四 相,並無限定構成光學功能層的相數。例如,光學功能層 也可具有積層構造。具體而言,可舉出在第1圖的光學功 能層16之凹凸上,形成其他的相(例如,第三相)。 具有隨機凝聚構造的光學功能層,如第1圖(b)及(d) 所示,是至少具有含有相對較多樹脂成分的第一相1與含 有相對較少該樹脂成分(含有相對較多的無機成分)的第二 相2者。此第二相2是分別以各式各樣的大小及形狀存在。 構成光學功能層的第一相與第二相,是以三維的交雜地存 在。第一相與第二相比較時,是含有相對多的樹脂成分, 第二相與第一相比較時,是含有相對多的無機成分。 此外,在具有隨機凝聚構造的光學功能層16中存在 有微粒子3。此微粒子3的周圍幾乎不存在構成光學功能 層16的第一相1,但存在有第二相2。亦即,第二相2是 13 323082 201202763 偏向存在於構成絲魏们6的微好3 二=向存在於微粒子3之周圍,可藉由使用雷鏡第 EM掃爲電子顯微鏡)、EDS(能量分散型X射線分光器^ 而確認。 〇 V哥· 本發月中的帛二相偏向存在於微粒子的周圍, 依據光學積層㈣光學功能層面所見刺SEM結果而° ,。首先’由該SEM結果選擇任意的1〇〇點的微粒子 者’從各職粒子的巾^,存在於該絲子長徑的10倍大 小之同心圓内的第—相及第二相之中,求得第 比例。接著’計算任意1G點的同.心圓内第二相所佔之 平均值。只要與該平均值比較對照時相對比較高時, 「第二相偏向存在於微粒子的周圍」,只要與該平均值比齡 對照時相對比較低時,即非「第二相偏向存在於微粒子的 周圍」。 比較對照可由上述識結果求得。比較對照是以存在 於第相的10點之某一點為中心,對應上述各別微粒子長 徑的10倍大小之同心圓。但是,1〇點之某一點,是設在 全部該同心11内不含微粒子之處。由此,即可計算出第二 相在10點之某一點的同心圓内所佔比例之平均值。 本發明中’ A學功能射的第一相與第二相是相互交 雜地存在’ 7^使第二相偏向存在於微粒子的周圍而成之特 異構造,所謂的隨機凝聚構造。 以往’如第1 ®所示,光學功能層15是利用微粒子 30、31的形狀 而在透光性基體20上形成表面凹凸。亦 323082 14 201202763 即,因存在微粒子30、31上的樹脂40是依照該微粒子的 形狀而隆起,微粒子30、31不存在的部份樹脂40則不隆 起,因而交錯形成凸部份與凹部份,使光學功能層15的表 面凹凸為傾斜較大者。而且,第1圖(a)、(c)中,即使是 聚集複數個微粒子存在而形成表面凹凸時,該表面凹凸也 是傾斜較大者。 相較於此,由於具有隨機凝聚構造的光學功能層16 係第二相偏向存在於微粒子3的周圍,故比起第1圖(a) 及(c)所示以往的光學功能層,可減少細小的凹凸,而可提 昇高防眩性與亮室下的黑度。此乃因具有隨機凝聚構造的 光學功能層是在第一相上形成比較平的面,因此在該第一 相提高亮室下的黑度,同時達成高暗室對比,由於藉由交 雜在第二相的微粒子而形成凸部份,藉由交雜在第二相的 微粒子而達成防眩作用。亦即,可在光學功能層的至少一 方之面,容易形成分佈有預定傾斜角的凹凸形狀。 而且,若第二相不偏向存在於微粒子的周圍,且微粒 子存在於第一相及第二相時,由於凹凸形成在光學功能層 的各處(凹凸數變多),而使光學功能層變白,故不佳。同 時,不含微粒子的光學功能層,因難以控制表面凹凸的數 量或高度等,而使製造變得困難,故不佳。 構成本發明的光學功能層,較佳係具有隨機凝聚構造 作為主要構造的光學功能層,例如亦可有一部份其他的構 造存在(例如,海島構造)。 在隨機凝聚構造上進行金蒸鍍之後,由電子顯微鏡觀 15 323082 201202763 察時,可知光學功能層中所含的微粒子是形成表面凹凸的 凸部份。 此外,在隨機凝聚構造上進行碳蒸鍍之後,藉由電子 顯微鏡觀察,可大致確認碳蒸鑛面的元素分佈狀況。此乃 因碳蒸鑛面存在複數種元素,例如原子序大者表示為白 色、原子序小者表示為黑色等以顏色區分,可藉由色之濃 淡表示元素的分佈。 並且對於具有隨機凝聚構造的光學功能層,可藉由 EDS進行繪圖(maping),而確認存在於塗膜(光學功能唐) 表面或塗膜(光學功能層)的剖面上的元素。應用此EDS嫁 圖’可以顏色表示出特U素(例如,碳原子、氧原子、贫 原子等)分佈較多。 藉由使用上述電子顯微鏡觀察及EDS的繪圖,即讦確 認隨機凝聚構造的凹凸構造或特定元素的分佈。藉此,例 如可確認在表面凹凸的凸部份,某特定元素分佈較多等。 /利用第2圖、第4圖以具體說明。第2圖及第4圖是 將後述實施例5中作成的光學功能層(具有隨機凝聚構造 的光學功能層)之表面狀態,於同一視野所拍攝之圖,該光 學功能層是由樹脂成分與無機成分所構成。 第2圖疋在光學功能層表面上蒸鍍碳的SEM照片。反 射電子檢测益中顯示的影像,係表示作為光學功能層表面 含有的成分所引起之反射電子之影像b ^射電子是依存原子序者,例如可將原子序大者表示 ”、、、原子序小者表示為黑色等依顏色區分。如第2圖 323082 16 201202763 所示,光學功能層中的各元素並不是均勻存在於表面水平 方向,而是呈現原子序大的元素之含量為相對多的部份與 含量為相對少的部份。 第4圖是表示在光學功能層面藉由EDS的無機成分 (Si)之繪圖結果,以顏色之濃淡表示所含有Si成分的量。 如第4圖所示,在Si成分上也有含量相對多的部份與含量 相對少的部份。而且,第4圖中作為具體的例示係表示矽 (Si)的繪圖結果,但也可表示其他無機成分元素或樹脂(有 機物)成分的測繪結果。在第4圖表示的繪圖結果中,雖然 因檢測條件而異,但只要矽等無機成分為0.2質量%的濃 度,即可檢測。亦即,由第一相及第二相的二相所構成之 光學功能層中,第一相是由90質量%以上的樹脂成分與無 機成分所構成,第二相是由未達99. 8質量%的樹脂成分與 0. 2質量%以上的無機成分所構成。第一相中所含的樹脂成 分宜為95質量%以上,並以99質量%以上為更佳。第二相 中所含的無機成分宜為1質量%以上,並以5質量%以上為 較佳,而以10質量%以上為特佳。第二相中所含的樹脂成 分宜未達99質量%,並以未達95質量%為較佳,而以未達 90質量%為特佳。光學功能層中所含的無機成分的量,是 第二相中多於第一相中。 樹脂成分的含量為相對多的部份(第2圖顏色濃的部 份)5樹脂成分以外的成分之含量成為相對少(第一相)。 另一方面,樹脂成分的含量為相對少的部份(第2圖 顏色淡的部份),樹脂成分以外的成分之含量成為相對多 17 323082 201202763 (第二相)。 亦即’具有隨機凝聚構造的光學功能層,是交雜存在 有第一相與第二相者,係具有一方的成分變少時其他的成 分變多的互補關係者。 而且’在第2圖、第4圖中,雖然是表示在光學功能 層的表面水平方向之各成分的含量,但表示在光學功能層 的垂直方向(厚度方向)之各成分的含量時,也同樣可得表 不互補關係的結果(第3圖)。 <形成隨機凝聚構造的方法〉 隨機凝聚構造,是利用無機成分的凝聚體伴隨溶劑揮 =時的對流而隨機的偏向存在於微粒子之周圍的現象而製 造。★詳言之,是將含有樹脂成分、無機成分、微粒子與溶 (第溶劑與第二溶劑)的溶液塗佈在透光性基體上後, =過Ik著溶劑之揮發而產生對流的乾燥步驟,及使乾燥的 ,臈硬化而形成光學功能層的硬化步驟而製造。更具體而 :,通常可藉由將前述溶液塗佈在透光性基體, 塗佈層蒸發而進行。 則由 雖然未能闡明凝聚與對流之併用的詳細機制,但 如下述。 、 首先是在塗佈後的 U)藉由伴隨溶劑揮發時的對流而凝聚, 塗佈層上產生對流區。 在各㈣對起㈣生域轉之凝聚,雖然凝 =:隨_而逐紅大,在躲區壁凝聚之成長會停 隨者凝聚的產生與時間,使無機成分以微粒子作為核 323082 18 201202763 心而凝聚。 (3 )其結果,是使凝聚體保持適度大小’此等散佈在光學功 能層内而形成隨機凝聚構造。 根據伴隨著隨機凝聚構造的表面凹凸,即可達成同時 兼具以往的海島構造難以達成之防眩性、亮室對比及暗室 對比兩者。 以下,說明可適用於構成本發明的每一層中的材料。 <透光性基體> 至於與本形態相關的透光性基體,只要有透光性則無 特別限定,可使用石英玻璃或納玻璃(soda glass)等玻璃, 也可適用PET、TAC、聚萘二曱酸乙二酯(PEN)、聚曱基丙 烯酸甲酯(P匪A)、聚碳酸酯(PC)、聚醢亞胺(PI)、聚乙烯 (PE)、聚丙烯(PP)、聚乙烯醇(pva)、聚氣乙烯(PVC)、環 稀煙共聚物(C0C)、含原冰片烯(norbornene)樹脂、丙烯酸 樹脂、聚醚*風、玻璃紙(cell〇phane)、芳香族聚酿胺等各 種樹脂薄膜。而且,使用於PDP、LCD時,以使用選自PET 膜、TAC膜及含原冰片烯樹脂薄膜中之一種為佳。 此專透光性基體之透明性是越高越良好,全光線穿透 率(JIS K7105)為80%以上,並以90%以上為佳。此外,就 輕量化而言,透光性基體之厚度以薄者為佳,但在考量其 生產性或使用性時,則適合使用丨至7〇〇Mm之範圍,較佳 為 25 至 250 # m。 由於在透光性基體表面上施以鹼處理、電暈處理、電 漿處理、濺鍍處理等處理;界面活性劑、矽烷耦合劑等底 323082 19 201202763 漆塗佈(primer coating) ; Si蒸鍍等薄膜乾式塗佈等使 提升透光性基體與光學功能層之間的密著性,而可提升該 光學功能層的物理強度、财藥品性。此外,如在透光性基 體與光學功能層之間設置其他的層時,以上述相同的方土 法’使提升各層界面的密著性’而可提升該光學功能層的 物理強度、耐藥品性。 <光學功能層> 光學功能層是含有樹脂成分及無機成分,使該樹脂成 分硬化而形成者。光學功能層是含有微粒子(無機微粒子或 有機微粒子)。 (樹脂成分) 作為構成光學功能層的樹脂成分,只要 皮膜具有充分的強度、具透光性者則無特別限制。作為前 述樹脂成分’可列舉出熱硬化型樹脂、熱可塑型樹脂、電 離放射線硬化型樹脂、二液混合型樹脂等,此等之=,r 可由照射電子束或紫外線而硬化處理,且可以簡易加工操 作而有效硬化之電離放射線硬化型樹脂為理想。 ” 作為電離放射線硬化型樹脂,可單獨使用具有丙烯醯 基、甲基丙烯醢基、丙烯醯基氧基、甲基丙烯醯基氧基等 自由基聚合性官能基、或具有環氧基、乙烯醚基、環&丙 烷(oxetane)基等陽離子聚合性官能基之單體、寡聚物、預 聚物、聚合物,或適宜混合的組成物。單體之例,可列舉 出丙烯酸甲酯、曱基丙烯酸曱酯、曱基丙烯酸甲氧基聚乙 烯酯、曱基丙烯酸環己酯、曱基丙烯酸笨氧基乙酯、乙一 323082 20 201202763 醇二曱基丙烯酸醋、二季戊四醇六丙婦酸酿、三經甲基丙 烧三甲基㈣酸s旨、季戊四醇三丙旨等。作為寡聚物、 預聚物,可列舉出聚醋丙稀酸醋、聚氨酉旨丙缔酸醋、’多官 能氨醋丙稀酸酉旨、環氧丙稀酸醋、聚㈣歸酸醋、醇酸丙 稀酸醋、三聚氰胺丙烯酸醋、石夕s同丙烯酸醋等丙稀賴化 合物;不飽和聚酯、丁二醇二縮水甘油醚、丙二醇二縮水 甘油趟、新戊二醇二縮水甘油趟、雙紛A二縮水甘油鍵或 各種脂環式環氧等環氧系化合物;3_乙基基甲基環氧 丙烷、1,4-雙{[(3-乙基-3-環氧丙基)曱氧基]曱基}苯、二 [1-乙基(3-環氧丙基)]曱醚等環氧丙烷化合物。作為聚合 物’可列舉出聚丙稀酸自旨、聚IU旨丙婦動旨、聚酯丙婦酸 酯等。此等可單獨使用’也可混合複數種使用。 此等電離放射線硬化型樹脂中’官能基數為3個以上 的多官能單體,可提升硬化速度或提高硬化物的硬度。此 外’藉由使用多官能氨酯丙稀酸酯,而賦予硬化物的硬度 或柔軟性等。 可使用電離放射線硬化型氟化丙稀酸酯,作為電離放 射線硬化型樹脂。電離放射線硬化型氟化丙稀酸醋相較於 其他的氟化丙烯酸酯’藉由電離放射線硬化型,可在分子 間產生交聯因而耐藥品性優異,達成即使在皂化處理後亦 表現充分的防污性之效果。作為電離放射線硬化型氟化丙 烯酸酯,可使用例如甲基丙烯酸2-(全氟癸基)乙酯、甲基 丙烯酸2-(全氟-7-甲基辛基)乙酯、曱基丙烯酸3-(全氟 -7-甲基辛基)-2-羥基丙酯、曱基丙烯酸2-(全氟-9-甲基 21 323082 201202763 癸基)乙酯、甲基丙烯酸3-(全氟-8-甲基癸基)-2-羥基丙 酯、丙烯酸3-全氟辛基-2-羥基丙酯、丙烯酸2-(全氟癸基) 乙酯、丙烯酸2-(全氟-9-曱基癸基)乙酯、(曱基)丙烯酸 十五氟辛酯、(曱基)丙烯酸十一氟己酯、(甲基)丙烯酸九 氟戊酯、(甲基)丙烯酸七氟丁酯、(曱基)丙烯酸八氟戊酯、 (曱基)丙烯酸五氟丙酯、三氟(曱基)丙烯酸酯、(曱基)丙 烯酸三氟異丙酯、(甲基)丙烯酸三氟乙酯、下述化合物(i) 至(XXX)等。而且,下述化合物皆表示丙烯酸酯時,式中的 丙烯醯基皆可變換成甲基丙烯釀基。 0) CH2〇COCH2CH2CH2CH2C4P9 H〇ch2 —j—ch2〇coch=ch2 ch2〇coch=ch2 (Π) CHpCOCHaCH^Fty CH3CH2-4-CH2OCOOHeCH2 CH2〇COCH=CH2 m CH2〇COCH2CH2CH2CH2C8F17 HOCH2-|-CH2〇COCH=CH2 ch2〇coch=ch2 o (iv)The constituent member used as the display is preferably used for the observation surface side for improving the efficiency of extracting the organic EL from the light generated in the organic EL layer constituting the 〇LED. In particular, an optical laminate which emphasizes the anti-glare property, the blackness under the bright room, or the contrast of the dark room, for example, an optical laminate for use in a display for television use. [Prior Art] Display devices such as liquid crystal display devices (LCDs) or plasma display devices (PDPs) often obstruct images on indoor display surfaces such as fluorescent lamps, sunlight emitted by windows, and images of operators. Discrimination. Therefore, in order to improve the visibility of the image, fine reflections can be formed on the surface of the display device by reflecting light on the diffusion surface, suppressing the regular reflection of the external light, and preventing the reflection of the external environment (having anti-glare property). The functional film of the optical laminate of the structure is disposed on the outermost surface. These functional films are generally sold in the form of poly(p-ethylene glycol) (hereinafter abbreviated as r pET) or triethylenesulfonyl cellulose (hereinafter referred to as "TAC"). On the optical substrate, if an optical functional layer in which the fine concavo-convex junction 1 is formed is provided, or a low refractive index layer is laminated on the light diffusion layer, a work which can be composed of a combined layer to provide a desired function is currently being developed. Energy film. This, Gong 323082 4 201202763 When using the optical layer _ in the most surface of the killer, it will be due to the diffusion of light, and in the bright shell of the shell, the black image will be reversed. Contrast the problem of decline. Therefore, it is expected that even if the anti-glare property is lowered, the == high contrast light = the outer layer is required to have high anti-2 performance (high contrast AG). ^ Bu, in the most body of the display, especially when used outside the house, the problem of displaying images due to the light layer, due to the conventional anti-glare nature of the ancient eve 1 see the lowest surface of the low density ' Failure to mitigate LC; Group 2: Layer: There is a problem with the display image flashing. Therefore, in the mobile phone, PDr= portable use requires a good balance between the blackness and the _: 4 to achieve a high-dark layered body with reduced brightness of the board, and the optical layer f is also required to be a precursor. High function (6). Anti-glare performance (method for optimizing the concavo-convex shape of the inner layer 4 L that can be used to enhance the optical layered body. 1. For example, a method of forming a surface on the surface of an optical functional layer to form a concavo-convex shape, on the translucent substrate The coating is added to the particles (4), and the optical functional layer forming material is irradiated with ultraviolet rays to form an optical functional layer (for example, see Patent Document 1). Further, the particle size and surface unevenness of the fine particles contained in the optical functional layer are also formed. A method in which both the anti-glare property and the contrast are obtained after the shape (inclination angle) is optimized (for example, refer to Patent Document 2). Further, it is also possible to form a surface unevenness containing no fine particles by using a plurality of resin components. The phase separation property of the resin component forms a knot-like structure 323082 5 201202763, and has both an anti-glare property and a comparison method (for example, refer to Patent Document '3). [Prior Art Document] [Patent Literature] [Patent Literature] [Patent Document 2] Japanese Laid-Open Patent Publication No. 2008-158536 (Patent Document 3) JP-A-2008-225195 (Invention) As described in Patent Document 1, when an optical functional layer containing fine particles is used, there is an anti-glare effect and an anti-glare effect. However, the interface between the microparticles contained in the optical functional layer and the microparticles The shape of the optical function based on the surface of the surface is uneven, and the scattering of light is generated, and it is difficult to achieve high contrast. 16 Patent Document 2' Even if the particle size of the fine particles and the inclination angle of the surface unevenness are optimized, there is a contrast. In the patent document 3, in the method of forming a convex protrusion on the surface by phase separation of a plurality of resin components, there is also a problem of manufacturing stability. The first object of the present invention is It provides an optical laminate, a eccentricity, and a display that can balance the excellent blackness of the anti-glare month to the bottom and the anti-glare function, and has excellent stability. The blackness under the above-mentioned anti-glare and bright room is provided. , anti-glare function = and provide optical laminates that can achieve high darkroom contrast as an accessory to provide even layer of i-layer optical function on the light-transmissive substrate 323082 6 201202763 In addition, the second object of the present invention is to provide a balance between anti-glare property and excellent blackness under a bright room, and an anti-glare property. The optical layered body, the polarizing plate, and the display device of the flash function. In addition to the above-mentioned anti-glare property, blackness under the bright room, and the function of preventing glare, the optical layered body which can achieve high darkroom contrast is attached. In addition, an optical layered body having such a function and excellent economical efficiency can be achieved by providing a structure in which one layer of an optical functional layer is laminated on a light-transmitting substrate, and the three objects of the present invention are also attached. It provides an optical laminate, a polarizing plate, and a display device that can balance the anti-glare property, the blackness under the bright room, and the anti-glare function. Further, in addition to the above-described anti-glare property, blackness under the bright room, and anti-glare function, an optical layered body capable of achieving high darkroom contrast is provided as an auxiliary subject. Further, in order to provide a structure in which one layer of an optical functional layer is laminated on a light-transmitting substrate, an optical layered body having such a function and excellent economical efficiency can be achieved as an auxiliary subject. (Means for Solving the Problem) In the first aspect of the invention, the light transmissive organic fine particles contained in the optical functional layer are biased, and the smooth portion which is contained in many surface irregularities is also used. That is, the uneven component having a low inclination angle can form a convex portion having a moderate degree of irradiance due to 7 323082 201202763, and further find an area in which all functions of anti-glare property, blackness under the bright room, and glare-proof can be optimized. The first invention is composed of the following technical means to solve the above problems. (1) An optical layered body characterized in that an optical layered body is formed by laminating an optical functional layer on a light-transmitting substrate, and at least one surface of the optical functional layer is formed with an uneven shape, and an optical functional layer having the uneven shape The arithmetic mean (Ra) is 0. 040 or more and does not reach 〇·2〇〇, and the proportion of the oblique angle distribution of 〇·2 degrees or less in the oblique angle distribution of the optical functional layer having the uneven shape It is 30% or more and 95% or less. (2) The optical layered body according to the above (1), wherein the optical function layer is composed of one or more optical functional layers having a radiation curable resin composition as a main component. (3) The optical layered body according to the above aspect, wherein the optical function layer contains at least a radiation curable resin composition and light transmissive fine particles. Oym。 The average particle size of the two particles is from 0.3 to 7. Oym. (5) The optical layered body according to the above (1), wherein the film thickness of the layer b of the light-emitting layer is greater than the average grain size of the light-transmitting particles (6) - the polarizing plate is formed in the above (1) to (5) Any one of the above] is a composite of a polarizing substrate on a light-transmitting substrate. [Light (7) - A display device" is characterized in that it is provided with the optical layered body of any of the above (!) to (5). * The second objective of the item is that, in the second invention, the simple convexity distribution on the surface irregularities of the optical functional layer is 323082 201202763. The area in which the anti-bribery effect does not deteriorate the glare performance of the oblique angle component is exhibited, so that the inclined angle can be formed into the facial layer. The pro-materials provide the same anti-glare properties as the previous products, and the optical laminates with excellent blackness and glare resistance under the bright room. The second invention is composed of the following technical means to solve the above problems. (1) An optical layered body comprising an optical layered body in which an optical functional layer is laminated on a light-transmitting substrate, wherein at least a surface of the optical functional layer is formed with an uneven shape, and the concave-convex shape is formed from the surface of the optical functional layer In the tilt angle distribution of the total length measured by the concave-convex shape of the optical function level, the ratio of the inclination angle distribution below 0.3 degrees is less than 68%, and the ratio of the two oblique angle components of 3.0 degrees or more is less than 1%. . (2) The optical layered body according to the above (1), wherein the optical function layer is composed of one or more layers of a radiation-curable resin composition as an optical functional layer of the main assembly. (3) The optical layered body according to the above (1) or (2), wherein the optical functional layer has a random agglomerated structure. The optical layered body according to any one of the above aspects, wherein the optical functional layer contains at least a radiation curable resin composition and light transmissive fine particles. 5至7. 〇 V m. The average particle size of the light-transmitting microparticles is 0.3 to 7. 〇 V m. (6) The optical layered body according to (4) above, wherein the film thickness of the optical function layer is larger than an average particle diameter of the light-transmitting fine particles. (9) A polarizing plate is characterized in that a polarizing substrate is laminated on a transmissive base of the optical layered body according to any one of the above (1) to (6). (8) A display device comprising the optical layered body according to any one of the above (1) to (6). In the third aspect of the present invention, the light transmissive organic fine particles contained in the optical functional layer are biased by a smooth portion which is more than the surface unevenness, which is inclined. The uneven component with a low angle can form a convex portion of a moderate height, and further find an area where the anti-glare property, the blackness under the bright room, and the anti-glare are all optimized. The third invention is composed of the following technical means to solve the above problems. (1) An optical layered product in which an optical layered body in which an optical functional layer is laminated on a light-transmitting substrate is formed on at least one surface of the optical functional layer, and has an uneven shape from the concave-convex shape The tilting angle distribution of the entire length measured by the concave-convex shape of the optical function layer, the inclination angle distribution of less than 5 degrees is 60% or more and less than 80%, and the inclination of 0.6 degrees or more and 1.6 degrees or less The proportion of the angular distribution is less than 30%, and the proportion of the oblique angle components above 3 degrees is less than 1%. (2) The optical layered body according to the above (1), wherein the optical functional layer is composed of one or more optical functional layers having a radiation curable resin composition as a main component. (3) The optical layered body according to the above (1) or (2), wherein the optical functional layer is characterized by having a random agglomerated structure. (4) The optical layered body according to any one of the above aspects, wherein the optical functional layer contains at least a radiation curable resin composition and a light-transmitting 10 323082 201202763 fine particle. Oym。 The average particle size of the light-transmitting microparticles is 0.3 to 7. Oym. (6) The optical layered body according to the above (4) or (5), wherein the optical functional layer has a film thickness larger than an average particle diameter of the light-transmitting fine particles. (7) A polarizing plate characterized in that a polarizing substrate is laminated on a light-transmitting substrate constituting the optical layered body according to any one of the above (1) to (6). (8) A display device comprising the optical layered body according to any one of the above (1) to (6). (Effect of the Invention) According to the first aspect of the invention, it is possible to provide an optical laminate, a polarizing plate, and a display device which have excellent anti-glare properties, excellent blackness under a bright room, and a glare-proof function, and which are excellent in stability. Further, in addition to the above-mentioned anti-glare property, blackness under the bright room, and anti-glare function, an optical laminate which can achieve high darkroom contrast is added. Further, it is possible to provide an optical layered body which is excellent in economical efficiency even if a structure in which one layer of an optical functional layer is laminated on a light-transmitting substrate. The optical laminate, the polarizing plate and the display device of the first invention can be applied to the use of a large-sized television. According to the second aspect of the invention, it is possible to provide an optical laminate, a polarizing plate, and a display device which have an anti-glare property, an excellent blackness under a bright room, and a function of preventing glare. Further, in addition to the above-mentioned anti-glare property, blackness under the bright room, and anti-glare function, an optical laminate which can achieve high darkroom contrast is added. Further, it is possible to provide an optical layered body which is excellent in economical efficiency by providing a structure in which one layer of an optical function layer is laminated on a light-transmitting substrate. The optical laminate, the polarizing plate and the display device of the present invention can be applied to the use of a large-sized television. According to the third aspect of the invention, it is possible to provide an optical laminate, a polarizing plate, and a display device which have an anti-glare property, an excellent blackness under a bright room, and a function of preventing glare. Further, in addition to the above-mentioned anti-glare property, blackness under the bright room, and anti-glare function, an optical laminate which can achieve high darkroom contrast is added. Further, it is possible to provide an optical layered body which is excellent in economical efficiency even if a structure in which one layer of an optical functional layer is laminated on a light-transmitting substrate. The optical laminate, the polarizing plate and the display device of the present invention can be applied to the use of a large-sized television. [Embodiment] Hereinafter, the present invention (first to third inventions) will be described. Further, the descriptions in the respective items are all the first to third inventors when there is no special note. In the case of special notes, it is marked with "(* invention)" at the beginning of each item. The optical layered body of the present invention is characterized in that an optical functional layer is laminated on a light-transmitting substrate, and at least one surface of the optical functional layer is formed with an uneven shape so as to be distributed at a predetermined inclination angle. The uneven shape may be formed on a single side of the optical functional layer or on both sides. The uneven shape is preferably formed on the opposite side to the light-transmitting substrate (hereinafter, simply referred to as "surface" or "surface side"). 12 323082 201202763 The basic structure of such an optical layered body of the present embodiment is a concavo-convex shape in which at least one surface of the optical function layer is distributed with a predetermined inclination angle. The optical functional layer constituting the present invention preferably has a random agglomerated structure. Since it has a random agglomerated structure, it is easy to form an uneven shape having a predetermined inclination angle on at least one surface of the optical functional layer. Fig. 1 is a schematic view showing the structure of an optical functional layer, (a) and (b) are plan views showing the surface structure of the optical functional layer, and (c) and (d) are views showing the side cross-sectional structure of the optical laminated body. Sectional view. (a) and (c) are optical functional layers of a conventional island structure, and (b) and (d) are optical functional layers having a random agglomerated structure. Since the optical functional layer having a random agglomerated structure is only required to have at least the first phase and the second phase, the optical functional layer may have a third phase or a fourth phase, and the number of phases constituting the optical functional layer is not limited. For example, the optical functional layer may also have a laminated structure. Specifically, another phase (for example, a third phase) is formed on the unevenness of the optical function layer 16 of Fig. 1 . The optical functional layer having a random agglomerated structure, as shown in FIGS. 1(b) and (d), has at least a first phase 1 containing a relatively large amount of resin components and a relatively small amount of the resin component (containing relatively more The second phase of the inorganic component). The second phase 2 is present in a variety of sizes and shapes. The first phase and the second phase constituting the optical functional layer are present in three-dimensional intersections. When the first phase is compared with the second phase, it contains a relatively large amount of the resin component, and when the second phase is compared with the first phase, it contains a relatively large amount of the inorganic component. Further, fine particles 3 are present in the optical functional layer 16 having a random agglomerated structure. There is almost no first phase 1 constituting the optical functional layer 16 around the fine particles 3, but the second phase 2 is present. That is, the second phase 2 is 13 323082 201202763. The bias exists in the micro-good 3 constituting the filaments 6 = the presence of the microparticles 3 around the microparticles 3, which can be obtained by using the EM scanning electron microscope), EDS (energy) Decentralized X-ray beam splitter ^ is confirmed. 〇V brother · The 帛 two-phase deflection in the present month exists around the microparticles, according to the SEM results of the optical layer (4) optical functional layer, ° first. A person who selects an arbitrary one-point particle "from the towel of each job particle exists in the first phase and the second phase in the concentric circle of 10 times the long diameter of the wire, and obtains the first ratio. Then 'calculate the average value of the second phase in the same heart circle of any 1G point. As long as it is relatively high when compared with the average value, "the second phase is biased around the particles" as long as the average When the value is relatively low compared with the age control, it is not that "the second phase is biased around the microparticles." The comparison control can be obtained from the above-mentioned findings. The comparison control is centered on a certain point of the 10th point of the phase. Corresponding to the above respective particles A concentric circle of 10 times the length of a long diameter. However, a point of 1〇 is a place where all of the concentric 11 does not contain particles. Thus, the second phase can be calculated at a certain point of 10 o'clock. The average value of the proportions in the concentric circles. In the present invention, the first phase and the second phase of the 'A-scientific function are intertwined with each other'. 7^ The second phase is biased to exist around the microparticles. In the optical function layer 15, the surface of the optical functional layer 15 is formed on the light-transmitting substrate 20 by the shape of the fine particles 30 and 31. 323082 14 201202763 That is, due to the presence of the fine particles 30 The resin 40 on the 31 is raised in accordance with the shape of the fine particles, and the portion of the resin 40 which is not present in the fine particles 30, 31 is not raised, so that the convex portion and the concave portion are alternately formed, so that the surface of the optical functional layer 15 is uneven. In the first drawings (a) and (c), even if a plurality of fine particles are present to form surface irregularities, the surface irregularities are inclined to a larger extent. Constructed optics Since the second layer of the energy layer 16 is present around the fine particles 3, the fine optical unevenness can be reduced compared with the conventional optical functional layer shown in Figs. 1(a) and (c), and the high anti-glare property can be improved. The blackness under the bright room. This is because the optical functional layer with a random cohesive structure forms a relatively flat surface on the first phase, so that the first phase enhances the blackness under the bright room and achieves high darkroom contrast. Since the convex portion is formed by mixing the fine particles in the second phase, the anti-glare effect is achieved by mixing the fine particles in the second phase, that is, the distribution can be easily formed on at least one side of the optical functional layer. The concavo-convex shape having a predetermined inclination angle. Further, if the second phase is not present around the microparticles and the microparticles are present in the first phase and the second phase, the concavities and convexities are formed in the optical functional layer (the number of concavities and convexities is increased) ), and the optical functional layer is whitened, so it is not good. At the same time, the optical functional layer containing no fine particles is difficult to control because it is difficult to control the number or height of surface irregularities, which is not preferable. The optical functional layer constituting the present invention is preferably an optical functional layer having a random agglomerated structure as a main structure, and for example, some other structures may exist (for example, an island structure). After gold vapor deposition on a random agglomerated structure, it was found from the observation of the electron microscope 15 323082 201202763 that the fine particles contained in the optical functional layer were convex portions forming surface irregularities. Further, after carbon deposition on a random agglomerated structure, the element distribution of the carbon noodle surface can be roughly confirmed by observation with an electron microscope. This is because there are a plurality of elements in the carbon-steamed surface, for example, the atomic order is expressed as white, the atomic order is small, and the black is represented by color, and the distribution of the elements can be represented by the shade of the color. Further, for an optical functional layer having a random agglomerated structure, an element existing on a surface of a coating film (optical function) or a coating film (optical functional layer) can be confirmed by mapping by EDS. The application of this EDS marrying image can be expressed in a color distribution with a large distribution of U (e.g., carbon atoms, oxygen atoms, lean atoms, etc.). By using the above-described electron microscope observation and the drawing of EDS, it is confirmed that the uneven structure of the random agglomerated structure or the distribution of specific elements is confirmed. Thereby, for example, it is possible to confirm that the convex portion of the surface is uneven, and the distribution of a specific element is large. / Use the 2nd and 4th drawings to specify. Fig. 2 and Fig. 4 are views showing the surface state of an optical functional layer (optical functional layer having a random agglomerated structure) prepared in Example 5, which will be described later, in the same field of view, wherein the optical functional layer is composed of a resin component and It is composed of inorganic components. Fig. 2 is a SEM photograph of carbon deposited on the surface of the optical functional layer. The image displayed in the reflection electron detection is the image of the reflected electron caused by the component contained on the surface of the optical functional layer. The electron is dependent on the atomic sequence. For example, the atomic order can be expressed as ",,, atom. The small order is represented by black, etc. According to the color diagram of Fig. 2, 323082 16 201202763, the elements in the optical functional layer are not uniformly present in the horizontal direction of the surface, but the content of the element having a large atomic order is relatively large. The portion and the content are relatively small. Fig. 4 is a graph showing the results of the inorganic component (Si) of the EDS on the optical function level, and the amount of the Si component contained in the shade of the color. As shown in the figure, there are also a relatively large portion and a relatively small content of the Si component. Moreover, the specific example in Fig. 4 indicates the drawing result of cerium (Si), but other inorganic component elements may also be indicated. Or the result of the mapping of the resin (organic matter) component. Although the drawing result shown in Fig. 4 differs depending on the detection conditions, it can be detected as long as the inorganic component such as cerium is 0.2% by mass. That is, in the optical functional layer composed of the two phases of the first phase and the second phase, the first phase is composed of 90% by mass or more of a resin component and an inorganic component, and the second phase is less than 99. 8 mass% of the resin component and 0.2% by mass or more of the inorganic component. The resin component contained in the first phase is preferably 95% by mass or more, and more preferably 99% by mass or more. The inorganic component to be contained is preferably 1% by mass or more, more preferably 5% by mass or more, and particularly preferably 10% by mass or more. The resin component contained in the second phase is preferably less than 99% by mass, and is not 95% by mass is preferable, and particularly preferably less than 90% by mass. The amount of the inorganic component contained in the optical functional layer is more than the first phase in the second phase. The content of the resin component is relatively large The content of the component other than the resin component is relatively small (first phase). On the other hand, the content of the resin component is relatively small (the color of the second figure is light) Part)) The content of ingredients other than the resin component becomes relatively large. 17 323082 2012027 63 (second phase). That is, the optical functional layer having a random agglomerated structure is a complementary relationship between the first phase and the second phase in which the first phase and the second phase are present, and when one component is decreased, the other components are increased. In addition, in the second and fourth figures, the content of each component in the horizontal direction of the surface of the optical functional layer is shown, but when the content of each component in the vertical direction (thickness direction) of the optical functional layer is shown, The result of the non-complementary relationship is also obtained (Fig. 3). <Method of forming a random agglomerated structure> The random agglomerated structure is a random bias which is present in the condensate of the inorganic component with the convection of the solvent It is manufactured by the phenomenon around it. ★ In detail, after applying a solution containing a resin component, an inorganic component, fine particles, and a solution (the first solvent and the second solvent) on a light-transmitting substrate, the solvent is over 1k. It is produced by volatilization to produce a convection drying step and a hardening step of drying the crucible to form an optical functional layer. More specifically, it is usually carried out by applying the solution to a light-transmitting substrate and evaporating the coating layer. However, although the detailed mechanism for the combination of cohesion and convection cannot be clarified, it is as follows. First, after coating, U) is agglomerated by convection accompanying evaporation of the solvent, and a convection zone is generated on the coating layer. In each (four) pair (4), the convergence of the birth zone, although the condensation =: with the _ and red, the growth of the condensation in the wall will stop the generation and time of the condensate, so that the inorganic components with the particles as the core 323082 18 201202763 Heart and cohesion. (3) As a result, the aggregates are kept at an appropriate size, and these are dispersed in the optical function layer to form a random agglomerated structure. According to the surface unevenness accompanying the random agglomerated structure, both the anti-glare property, the bright room contrast, and the darkroom contrast which are difficult to achieve in the conventional sea-island structure can be achieved. Hereinafter, materials which can be applied to each layer constituting the present invention will be described. <Translucent Substrate> The translucent substrate according to the present embodiment is not particularly limited as long as it has translucency, and glass such as quartz glass or soda glass may be used, and PET, TAC, or PET may be used. Polyethylene naphthalate (PEN), polymethyl methacrylate (P匪A), polycarbonate (PC), polyimine (PI), polyethylene (PE), polypropylene (PP) , polyvinyl alcohol (pva), polyethylene (PVC), ring-smoke copolymer (C0C), norbornene resin, acrylic resin, polyether * wind, cell paper (phan), aromatic Various resin films such as polyamine. Further, when it is used for a PDP or an LCD, it is preferred to use one selected from the group consisting of a PET film, a TAC film, and a film containing a norbornene resin. The transparency of the specific light-transmitting substrate is preferably as high as possible, and the total light transmittance (JIS K7105) is 80% or more, and preferably 90% or more. Further, in terms of weight reduction, the thickness of the light-transmitting substrate is preferably thin, but in consideration of productivity or usability, it is suitable to use a range of 丨 to 7 〇〇Mm, preferably 25 to 250 # m. Due to alkali treatment, corona treatment, plasma treatment, sputtering treatment, etc. on the surface of the light-transmitting substrate; surfactant, decane coupling agent, etc. 323082 19 201202763 primer coating; Si evaporation The thin film dry coating or the like enhances the adhesion between the light-transmitting substrate and the optical functional layer, thereby improving the physical strength and chemical properties of the optical functional layer. Further, when another layer is provided between the light-transmitting substrate and the optical functional layer, the physical strength and chemical resistance of the optical functional layer can be improved by the same square soil method as described above to improve the adhesion of the interface of the respective layers. Sex. <Optical functional layer> The optical functional layer is formed by containing a resin component and an inorganic component and curing the resin component. The optical functional layer contains fine particles (inorganic fine particles or organic fine particles). (Resin component) The resin component constituting the optical functional layer is not particularly limited as long as it has sufficient strength and light transmittance. Examples of the resin component' include a thermosetting resin, a thermoplastic resin, an ionizing radiation curing resin, and a two-liquid mixing resin. These, r, can be hardened by irradiation with an electron beam or ultraviolet rays, and can be easily used. An ionizing radiation-curable resin which is effectively hardened by a processing operation is preferable. As the ionizing radiation-curable resin, a radical polymerizable functional group such as an acrylonitrile group, a methacryl fluorenyl group, an acryloyloxy group or a methacryloxy group may be used alone, or an epoxy group or an ethylene group may be used. a monomer, an oligomer, a prepolymer, a polymer, or a suitably mixed composition of a cationically polymerizable functional group such as an ether group, a ring, or an oxetane group. Examples of the monomer include methyl acrylate. , decyl methacrylate, methoxy methoxy acrylate, cyclohexyl methacrylate, phenyl hydroxy acrylate, 323082 20 201202763 alcohol dimercapto acrylate, dipentaerythritol hexapropylene Stuffed, trimethyl methacrylate trimethyl (tetra) acid s, pentaerythritol tripropyl, etc. As the oligomer and prepolymer, polyacetal acetoacetate, polyammonium citrate, 'Multifunctional Ammonia Acetate, Ethylene Acetate, Poly(4) Acidic Vinegar, Alkyd Acetate, Melamine Acrylic Acid, Shixi S and Acrylic Vinegar, etc.; Unsaturated Poly Ester, butanediol diglycidyl ether, propylene glycol Glycidyl hydrazine, neopentyl glycol diglycidyl hydrazine, bis-A diglycidyl bond or various epoxy compounds such as alicyclic epoxy; 3_ethylmethyl propylene oxide, 1,4-double { An oxypropylene compound such as [(3-ethyl-3-epoxypropyl)decyloxy]fluorenyl}benzene or bis[1-ethyl(3-epoxypropyl)]decyl ether. Examples thereof include polyacrylic acid, poly IU, and polyester acetoacetate. These may be used alone or in combination. The number of functional groups in these ionizing radiation-curable resins is Three or more polyfunctional monomers can increase the hardening speed or increase the hardness of the cured product. In addition, the hardness or flexibility of the cured product can be imparted by using a polyfunctional urethane acrylate, and ionizing radiation hardening can be used. a type of fluorinated acrylate, which is an ionizing radiation-curable resin. The ionizing radiation-curable fluorinated acrylic acid acrylate has a cross-linking between molecules by ionizing radiation-hardening type compared to other fluorinated acrylates. Excellent chemical resistance, achieving sufficient protection even after saponification As an ionizing radiation-curable fluorinated acrylate, for example, 2-(perfluorodecyl)ethyl methacrylate or 2-(perfluoro-7-methyloctyl)ethyl methacrylate can be used. 3-(perfluoro-7-methyloctyl)-2-hydroxypropyl methacrylate, 2-(perfluoro-9-methyl 21 323082 201202763 fluorenyl) ethyl methacrylate, 3-methacrylic acid (Perfluoro-8-methylindenyl)-2-hydroxypropyl ester, 3-perfluorooctyl-2-hydroxypropyl acrylate, 2-(perfluorodecyl)ethyl acrylate, 2-(perfluoro) acrylate -9-mercaptopurine ethyl ester, pentafluorooctyl (meth) acrylate, eleven fluorohexyl (meth) acrylate, nonafluoropentyl (meth) acrylate, heptafluoro (meth) acrylate Butyl ester, octafluoropentyl (mercapto) acrylate, pentafluoropropyl (mercapto) acrylate, trifluoro(fluorenyl) acrylate, trifluoroisopropyl (meth) acrylate, trifluoro(methyl) acrylate Ethyl ester, the following compounds (i) to (XXX), and the like. Further, when the following compounds all represent an acrylate, the propylene fluorenyl group in the formula can be converted into a methacrylic acid group. 0) CH2〇COCH2CH2CH2CH2C4P9 H〇ch2 —j—ch2〇coch=ch2 ch2〇coch=ch2 (Π) CHpCOCHaCH^Fty CH3CH2-4-CH2OCOOHeCH2 CH2〇COCH=CH2 m CH2〇COCH2CH2CH2CH2C8F17 HOCH2-|-CH2〇COCH=CH2 Ch2〇coch=ch2 o (iv)

-(CH2)rS-CH-C-fCH2^C4F9 --^ococh=ch2)-(CH2)rS-CH-C-fCH2^C4F9 --^ococh=ch2)

CHr CHCHr CH

-C-(CH^—S-CH-C-^CH2)j-C6Fi3 \-C-(CH^-S-CH-C-^CH2)j-C6Fi3 \

0 J _ 0 f CHy 二十OQOCH=CH2) 3 22 323082 (v) 201202763 (νί) (Vii) CH2OCOCH2CH2SCH2CH2C4F9 H〇CH2—-CH2OCOCHaCH2 CH2〇C〇CH=CH2 H2SCH2CH2C4F9 (νίϋ) CH2〇COCH2CH2Sa |-QH2〇COCHsCH2 CH2〇COCHsCH2 CH2〇( +CH ch2o< csh7 2〇COCHsCH2 COCKsCH, CHzOCOCHzCHzSCHzCHzCsF·^ (ix) CH3CH2—I—chzococh=ch2 CH2〇COCHsCH2 ICOCH2CH2SCH2CH2C4F8H CH3CH2—t-CHi〇CPCH=CH2 :h=ch7 (κΐ) CH2OCOCH2CH2SCH2CH2(CF(CF3V〇-CF2)rC2F5 CH3CH2—j-CH2OCOCH=CH2 CH2OCOCHsCH2 CHHOCaH^VOCOCHzCHjSCHiCHaCBFir (xll) CH3CH2—J-CHHOCzH^-OCOCHsC^ CHyiOC^ V°C〇CHssCH2 r + s +1 = 3 (x«0 C2H5OCO-CH2 ococh=ch2 CH2 CH2—<-4A:H2CH2-j-CH2 ch2 ch2—C ^XJCOCzHe OCOCHSCH2 —OCOCH2CH2$CH2CH2C8F17 OCOC2Hs 23 323082 201202763 (xiv) CHr jCHrS;Hr rMr0 J _ 0 f CHy Twenty OQOCH=CH2) 3 22 323082 (v) 201202763 (νί) (Vii) CH2OCOCH2CH2SCH2CH2C4F9 H〇CH2—CH2OCOCHaCH2 CH2〇C〇CH=CH2 H2SCH2CH2C4F9 (νίϋ) CH2〇COCH2CH2Sa |-QH2〇 COCHsCH2 CH2〇COCHsCH2 CH2〇( +CH ch2o< csh7 2〇COCHsCH2 COCKsCH, CHzOCOCHzCHzSCHzCHzCsF·^ (ix) CH3CH2—I—chzococh=ch2 CH2〇COCHsCH2 ICOCH2CH2SCH2CH2C4F8H CH3CH2—t-CHi〇CPCH=CH2 :h=ch7 (κΐ) CH2OCOCH2CH2SCH2CH2(CF(CF3V〇-CF2)rC2F5 CH3CH2—j-CH2OCOCH=CH2 CH2OCOCHsCH2 CHHOCaH^VOCOCHzCHjSCHiCHaCBFir (xll) CH3CH2—J-CHHOCzH^-OCOCHsC^ CHyiOC^ V°C〇CHssCH2 r + s +1 = 3 (x« 0 C2H5OCO-CH2 ococh=ch2 CH2 CH2—<-4A:H2CH2-j-CH2 ch2 ch2—C ^XJCOCzHe OCOCHSCH2 —OCOCH2CH2$CH2CH2C8F17 OCOC2Hs 23 323082 201202763 (xiv) CHr jCHrS;Hr rMr

-^OCOCHsCH^ MzCHsftlCHiCHzCeF^ ^l 1-^OCOCHsCH^ MzCHsftlCHiCHzCeF^ ^l 1

-wvv/vr»evn 2 CHa CHj-OCOCHzCHxSCHzCHjCeFi, (xvi) CH3CH2*+-CH2〇CH2-|--CHiCH5 CH2 CH2一·^-OCOCHsCH2 、〇COCHbCH2 jyCOCHzCHiSCHgCHzCgFu CH2—OCOCHjCHzSCH^HzCqF^ (xvi” CHjCHz-KCTzOCHa-f-CHaCH, CH2 cH2—OCOCH=CH2 >DCOCHsCH2 (xvfii) ^DCOCHzCHaSCHjCHzCeFir CH2 CHj —OCOCHjCI HOCHz-j-CHaOCHa-^-CHa-ocoCHeCI ch2 cHa -ococh=cH2 'bCOCHsCHz COCHjCHzSCHjCHaC^ T |eCHz (XiX) j〇coch=ch2 CH2 C«2-OCOCHiCM2SCH2CH2C6p« HOCH2-}-CH2〇CH2-(-CH2 —OCOCH2CH2SCH2CH2CaF17 CH2 CHj—〇COCHsCH2 '^OCOCHsCHj OCOCH^2 {χχ) CH2 CH2 OCOCHaC^SC^CHjCeFu 1 ; HzCeHCOCO-CH^+CHzOCHrj^^a-OCOCHjCHiSafeCHaC.Piy CHZ CH2-0C0CHeCH2AcOCHiCHzSCHzCHzCeFo (xxl) OCOCHjCHzSCH^CHsCePf/-wvv/vr»evn 2 CHa CHj-OCOCHzCHxSCHzCHjCeFi, (xvi) CH3CH2*+-CH2〇CH2-|--CHiCH5 CH2 CH2~^-OCOCHsCH2, 〇COCHbCH2 jyCOCHzCHiSCHgCHzCgFu CH2—OCOCHjCHzSCH^HzCqF^ (xvi” CHjCHz-KCTzOCHa -f-CHaCH, CH2 cH2—OCOCH=CH2 >DCOCHsCH2 (xvfii) ^DCOCHzCHaSCHjCHzCeFir CH2 CHj —OCOCHjCI HOCHz-j-CHaOCHa-^-CHa-ocoCHeCI ch2 cHa -ococh=cH2 'bCOCHsCHz COCHjCHzSCHjCHaC^ T |eCHz (XiX) J〇coch=ch2 CH2 C«2-OCOCHiCM2SCH2CH2C6p« HOCH2-}-CH2〇CH2-(-CH2—OCOCH2CH2SCH2CH2CaF17 CH2 CHj—〇COCHsCH2 '^OCOCHsCHj OCOCH^2 {χχ) CH2 CH2 OCOCHaC^SC^CHjCeFu 1 ; HzCeHCOCO- CH^+CHzOCHrj^^a-OCOCHjCHiSafeCHaC.Piy CHZ CH2-0C0CHeCH2AcOCHiCHzSCHzCHzCeFo (xxl) OCOCHjCHzSCH^CHsCePf/

HjCsHCOCOOHa—j-CH2〇CH2-|~CH2-〇C〇CHsCH2aw* 〇COCHbCH2OCOCHsCH2 24 323082 201202763 CH2OCOCH2CH2SCH2CH2C4F9 NHCH2O2CH2C-CH2OCOCH2CH2SCH2CH2C4F9 ’ CH2〇COCHsCH2 (xxii) I; (xxii〇 , CH2〇C〇CH2CH2SCH2CH2C4F9 、nhco2ch2c^~ch2ococh2ch2sch2ch2c4f3 <5H2〇COCH®CH2 CH2OCOCH2CH2N(C3H7)CH2C6F13 NHCOzCHzC^-CHzOCOCHzCHzNiCaHrJCHzCeF^ \:H2〇COCH=CH2 NHCOzCH; ch22C^C! CH2< OCOCH2CH2N(C3H7)CH2CeF13 H2OCOCHsCH2 OCOCHbCH2 y pH2OCOCH2CH2$CH2CH2C8Fir NHC〇2CH2C——CH2OCOCH2CH2SCH2CH2CeF17 (xxlv)HjCsHCOCOOHa-j-CH2〇CH2- | ~ CH2-〇C〇CHsCH2aw 〇COCHbCH2OCOCHsCH2 * 24 323082 201202763 CH2OCOCH2CH2SCH2CH2C4F9 NHCH2O2CH2C-CH2OCOCH2CH2SCH2CH2C4F9 'CH2〇COCHsCH2 (xxii) I; (xxii〇, CH2〇C〇CH2CH2SCH2CH2C4F9, nhco2ch2c ^ ~ ch2ococh2ch2sch2ch2c4f3 < 5H2〇COCH®CH2 CH2OCOCH2CH2N (C3H7) CH2C6F13 NHCOzCHzC ^ -CHzOCOCHzCHzNiCaHrJCHzCeF ^ \:! H2〇COCH = CH2 NHCOzCH; ch22C ^ C CH2 < OCOCH2CH2N (C3H7) CH2CeF13 H2OCOCHsCH2 OCOCHbCH2 y pH2OCOCH2CH2 $ CH2CH2C8Fir NHC〇2CH2C - CH2OCOCH2CH2SCH2CH2CeF17 (xxlv )

*-vn2wwwn2v# ^Η2ΟΟΟΟΗ*ΟΗ2 CH2〇C〇CH2CH2SCH2CH2CbF17 MHC02CH2C~-CH2〇C0CHaCH2 ch2ococh=ch2 (XXV)*-vn2wwwn2v# ^Η2ΟΟΟΟΗ*ΟΗ2 CH2〇C〇CH2CH2SCH2CH2CbF17 MHC02CH2C~-CH2〇C0CHaCH2 ch2ococh=ch2 (XXV)

NHC02C CH2OCOCH=CH2 CH2〇C〇CH2CH2SCH2CH2C8F17 Q2CH2CCH2〇CH2CCH2〇C〇CH=CH2 CH20COCH2CH2SCH2CH2C8P17 CH2OCOCHsCH2 CH2〇COCHsCH2 CH2〇C〇CH2CH2SCH2CH2C8F17 NHC〇2CH2CCH2〇CH2CCH2〇COCH=CH2 CH2〇COCH2CH2SCH2CH2C8F17 ch2ococh=ch2 25 323082 201202763 (xxvi) CH2sCHCOzCH2CH2 oNHC02C CH2OCOCH = CH2 = CH2 CH20COCH2CH2SCH2CH2C8P17 CH2OCOCHsCH2 CH2〇C〇CH2CH2SCH2CH2C8F17 Q2CH2CCH2〇CH2CCH2〇C〇CH CH2〇COCHsCH2 CH2〇C〇CH2CH2SCH2CH2C8F17 NHC〇2CH2CCH2〇CH2CCH2〇COCH = CH2 CH2〇COCH2CH2SCH2CH2C8F17 ch2ococh = ch2 25 323082 201202763 (xxvi) CH2sCHCOzCH2CH2 o

H2CH2OCOCH2CH2SCH2CH2CeF13 H2CH2〇C〇CH=CH2H2CH2OCOCH2CH2SCH2CH2CeF13 H2CH2〇C〇CH=CH2

O (xxvii) CH2=CHC〇2CH2CH2 ^CH2CH2pCOCH2CH2SCH2CH2C^:17 ch2ch2ococh=ch2O (xxvii) CH2=CHC〇2CH2CH2 ^CH2CH2pCOCH2CH2SCH2CH2C^:17 ch2ch2ococh=ch2

(xxviH) CH2=CHC〇iCH2CH2、NAN^CH2CH2〇COCH2CH2SCH2CH2C4FeH 〇人Λί iH2CH2〇COCH=CH2 ?H2CH2OCOCH2CH2SCH2CH2C6F 竹 (xxlx) O =P-CH2CH2〇COCHsCH2 CH2CH2〇COCHsCH2 ?H2CH2OCOCH2CH2SCH2CH2i^P17 (XXX) 0=P-CH2CH2〇COCH=CH2 CH2CH2〇C〇CHaCH2 此等化合物可單獨使用,也可混合複數種使用。氟化 丙烯酸酯之中,以硬化物的耐磨耗性與拉伸及柔軟性而 言,以含有具氨酯鍵的氟化烷基之氨酯丙烯酸酯為佳。此 外,在氟化丙烯酸酯之中,宜為多官能氟化丙烯酸酯。而 且’此處所言之多官能氟化丙烯酸酯意指具有2個以上(較 佳為3個以上’更佳為4個以上)的(曱基)丙烯醯基氧基者。 電離放射線硬化型樹脂,雖然可直接藉由照射電子束 而硬化,但以照射紫外線進行硬化時,即有必要添加光聚 合起始劑。而且,作為所使用的放射線,可使用紫外線、 323082 26 201202763 可見光線、紅外線、電子束的任何一種。此外,此等放射 線可以是偏光,也可以是無偏光。 作為光聚合起始劑,可使用苯乙鲖系、二苯甲酮系、 噻吨酮(thioxanthone)系、安息香、安息香曱醚等自由基 聚δ起始劑、芳香族重氮鹽、芳香族錄鹽、芳香族錤鹽、 金屬芳香類化合物(metall〇cene)等陽離子聚合起始劑,此 等聚合起始劑可單獨使用,或適宜組合後使用。 此外,在電離放射線硬化型樹脂中,可含有調平劑、 抗靜電劑等添加劑。調平劑可改善塗膜形成前的缺陷,以 使塗膜表面的張力均勻化。 作為调平劑,可列舉出石,_(;silic〇ne)系調平劑、氣 系調平劑、丙烯酸系調平劑。上述調平劑可單獨使用,亦 可併用2種以上’就光學功能層上形成凹凸構造而言,上 述調平劑之中,宜為石夕_系調平劑、敗系調平劑,並以石夕 嗣系調平劑尤佳。 作為前述石夕綱系調平劑,可列舉例如聚醚改質矽酮、 I g曰改質矽酮、全氟改質石夕酮、反應性石夕酮、聚二甲基石夕 氧烷、聚曱基烷基矽氧烷等。 關於此種石夕嗣系調平劑,市售已有日本Unicar股份 有限公司製的「SILWET系列」、r SUPERSILWET系列」、 「ABNSILWET系列」、信越化學公司製的「KF系列」、「χ_22 系列」、BYK Japan股份有限公司製的「Βγκ_3〇()系列」、共 榮社化學股份有限公司製的「Glan〇1系列」、D〇wC〇rning Toray股份有限公司製的r SH系列」、「ST系列」、r FZ系列」、 27 323082 201202763(xxviH) CH2=CHC〇iCH2CH2, NAN^CH2CH2〇COCH2CH2SCH2CH2C4FeH 〇人Λί iH2CH2〇COCH=CH2 ?H2CH2OCOCH2CH2SCH2CH2C6F Bamboo (xxlx) O =P-CH2CH2〇COCHsCH2 CH2CH2〇COCHsCH2 ?H2CH2OCOCH2CH2SCH2CH2i^P17 (XXX) 0=P-CH2CH2 〇COCH=CH2 CH2CH2〇C〇CHaCH2 These compounds may be used singly or in combination of plural kinds. Among the fluorinated acrylates, a fluorinated alkyl urethane acrylate having a urethane bond is preferred because of the abrasion resistance and stretch and flexibility of the cured product. Further, among the fluorinated acrylates, polyfunctional fluorinated acrylates are preferred. Further, the polyfunctional fluorinated acrylate as used herein means two or more (preferably three or more', more preferably four or more) (fluorenyl) acryloyloxy groups. The ionizing radiation-curable resin can be directly cured by irradiation with an electron beam. However, when it is cured by irradiation with ultraviolet rays, it is necessary to add a photopolymerization initiator. Further, as the radiation to be used, any of ultraviolet rays, 323082 26 201202763 visible light rays, infrared rays, and electron beams can be used. In addition, these radiations may be polarized or unpolarized. As the photopolymerization initiator, a radical poly-δ initiator such as a phenelzine-based, benzophenone-based, thioxanthone-based, benzoin or benzoin ether, an aromatic diazonium salt, or an aromatic compound can be used. A cationic polymerization initiator such as a salt, an aromatic onium salt or a metal aryl compound can be used, and these polymerization initiators can be used singly or in combination as appropriate. Further, the ionizing radiation curable resin may contain an additive such as a leveling agent or an antistatic agent. The leveling agent can improve defects before the formation of the coating film to uniformize the tension on the surface of the coating film. Examples of the leveling agent include stone, _(silic〇ne)-based leveling agent, gas-based leveling agent, and acrylic leveling agent. The leveling agent may be used singly or in combination of two or more types. In the case where the uneven structure is formed on the optical functional layer, the leveling agent is preferably a stone grading agent or a leveling agent. It is especially good to use Shihejing leveling agent. Examples of the above-mentioned Shiki line conditioner include, for example, a polyether modified fluorenone, an Ig oxime modified fluorenone, a perfluoromodified ketene, a reactive lithene ketone, and a polydimethyl oxa oxane. , polydecylalkyl oxane, and the like. "SILWET Series", r SUPERSILWET Series, "ABNSILWET Series", "KF Series" manufactured by Shin-Etsu Chemical Co., Ltd., and "χ_22 Series" manufactured by Unicar Co., Ltd., are commercially available from Japan Unicar Co., Ltd. "Βγκ_3〇() series" by BYK Japan Co., Ltd., "Glan〇1 series" by Kyoeisha Chemical Co., Ltd., and r SH series by D〇wC〇rning Toray Co., Ltd." ST series", r FZ series", 27 323082 201202763

Chisso股份有限公司製的「FM系列」、GE東芝Silicon股 份有限公司製的「TSF系列」(以上商品名)等。 作為氟系調平劑,宜為具有氟烷基之化合物。關於此 種氟系調爭劑,可以是碳數1至20的直鏈或分枝構造、脂 環式構造(宜為5員環或6員環),也可具有醚鍵。上述敦 系調平劑 < 以是聚合物’也可以是寡聚物。 此外,作為氟系調平劑,可列舉出具有疏水基為全氟 碳鍵之調半劑。具體上’可列舉出氟烷基羧酸、Ν-全氟辛 烷磺醯基麩胺酸二納、3_(默烧基氧基)_1_烧基續酸納、 3一(ω_^嫁醢基乙基胺基)-1-丙烧橫酸納、Ν-(3-全氟 辛烧石黃祕胺基)丙基Ν-二曱基-Ν-叛基亞曱基錢甜菜驗、 全H院基緣酸、全氟辛烧磺酸二乙醇醯胺、全氟烧基續酸 鹽、Ν-兩基一羥基乙基)全氟辛烷磺醯胺、全氟烷基磺 酿基胺兩基三曱基銨鹽、全氟烷基-Ν-乙基磺醢基甘胺酸 趟、麟酸雙(Ν_全鼠辛基確酿基-Ν-乙基胺基乙基)專 作為此種氟系調平劑,可列舉例如共榮社化學股份有 限公司製的「Polyflow-600」、大金化學工業股份有限公司 製的「R/2〇2〇、M-2020、R-3833、M-3833」、大日本油墨股 份有限公 I]製的「MegafaceF-171、F-172D、F-179A、F-470、 me k〇8、DefensaMCF-300」(以上商品名)等。"FM Series" manufactured by Chisso Co., Ltd., "TSF Series" (above trade name) manufactured by GE Toshiba Silicon Co., Ltd., etc. As the fluorine-based leveling agent, a compound having a fluoroalkyl group is preferred. The fluorine-based regulator may be a linear or branched structure having a carbon number of 1 to 20, an alicyclic structure (preferably a 5-membered ring or a 6-membered ring), or an ether bond. The above-mentioned leveling agent <is a polymer' may also be an oligomer. Further, examples of the fluorine-based leveling agent include a half-conditioning agent having a hydrophobic group which is a perfluorocarbon bond. Specifically, ' fluoroalkyl carboxylic acid, fluorene-perfluorooctane sulfonyl glutamic acid di-nano, 3 _ (mercaptooxy) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Ethylethylamino)-1-propanone sulphate, bismuth-(3-perfluorooctyl sulphate, sulphate, propyl hydrazide, hydrazine, hydrazine H hospital base acid, perfluorooctane sulfonate diethanol decylamine, perfluoroalkyl phthalate, hydrazine-bis-hydroxy-ethyl ethyl) perfluorooctane sulfonamide, perfluoroalkyl sulfonamide Bis-trimethylammonium ammonium salt, perfluoroalkyl-indole-ethylsulfonylglycinate bismuth, cyanoic acid bis(Ν_全鼠 octyl succinyl-indole-ethylaminoethyl) For example, "Polyflow-600" manufactured by Kyoeisha Chemical Co., Ltd., "R/2〇2〇, M-2020, R-3833 by Daikin Chemical Industry Co., Ltd." "Megaface F-171, F-172D, F-179A, F-470, me k〇8, DefensaMCF-300" (above trade name) manufactured by Dainippon Ink Co., Ltd., and other products.

,也可使用上述化1至化5中所示之 各材料。 作為丙烯酸系調平劑’市售已有東亞合成化學股份有 限公司製的「ARUF0N-UP 1000系列」、「UH-2000系列」、 28 323082 201202763 ' 「UC-3000系列」、共榮社化學股份有限公司製的 「Polyf low-77」(以上商品名)等。 當光學功能層之調平劑的含量過少時,將不易獲得塗 膜的調平效果。當調平劑的含置過多時,將使無機成分難 以形成凝聚體。 由上述觀點,在相對於光學功能層之全部成分(不包 含有機溶劑)為100質量%時’宜使光學功能層中調平劑含 量為0· 05至3質量%的範圍,並以0. 1至2質量%的範圍為 較佳,而以0.2至1質量%的範圍為特佳。 相對於構成光學功能層之樹脂組成物中的固形成分 的全部質量,電離放射線硬化型樹脂等樹脂成分之調配量, 係含有50質量%以上,並以60質量%以上為佳。上限值雖 然並無特別限定,例如為99. 8質量%。如未達5〇質量%時, 將有難以獲得充分的硬度之問題。 而且,電離放射線硬化型樹脂等樹脂成分之固形分 中,是含有後述的無機成分與微粒子以外的全部固形分, 不僅只是電離放射線硬化型樹脂等樹脂成分之固形分,也 可含有其他的任意成分。 (無機成分) 作為本發明中所使用的無機成分,只要是光學功能層 所3有在製膜時凝聚可形成第二相及隨機凝聚構造之 =機成77即可。作為無機成分’可❹無機奈米微粒子。 作為無機奈米微粒子,可列集山 出矽、氧化錫、氧化銦、氧 化銻、軋化鋁、氧化鈦、盡 策虱化鍅等金屬氧化物或金屬等; 323082 29 201202763 矽熔膠、氧化锆熔膠、氧化鈦熔膠、氧化鋁熔膠等金屬氧 化物炫膠’氣相二氧化矽(aerosil)、膨潤性黏土、層狀有 機黏土等。上述無機奈米微粒子,可使用一種,也可使用 複數種。 而且’微粒子與無機成分(無機奈米微粒子)是不同的 粒子,可由粒徑作為區分。 在此等無機奈米微粒子之中,就可形成安定的隨機凝 聚構造的觀點而言,以層狀有機黏土為佳。層狀有機黏土 可形成安定的隨機凝聚構造之理由,可列舉如因層狀有機 黏土與祕月曰成分(有機物成分)的相溶性高、具有凝聚性, 而易使第一相與第二相形成交雜的構造、製臈時容易形成 隨機凝聚構造。本發明中,層狀有機黏土是指在膨潤性黏 土之層間導入有機鏽離子而成者。層狀有機黏土對於特定 溶劑的分散性低,使用層狀有機黏土及具備特定性質之溶 劑作為光學功能層形成用塗料時,可藉由該溶劑的選擇, 而形成具有形成有隨機凝聚構造之表面凹凸的光學功能層。 膨潤性黏土 膨潤性黏土,只要是具有陽離子交換能,將水倒入該 膨潤性黏土之層間而可膨潤的黏土即可,可以是天然物, 也可以疋合成物(包含取代物、衍生物)。此外,也可以是 天然物與合成物的混合物。 作為膨潤性點土,可舉例如雲母、合成雲母、蛭石 (vermiculite)、蒙脫石(montm〇riu〇nite)、鐵蒙脫石、 貝德石(beidellite)、息石(sap〇nite)、水輝石 323082 30 201202763 (hectorite)、矽鎂石(stevensite)、矽鐵石(nontronite)、 水矽鈉石(magadiite)、聚矽酸、水矽佘石(kanemite)、層 狀鈦酸、膨潤石(smectite)、合成膨潤石等。此等膨潤性 黏土可使用一種,也可混合複數種使用。 有機鏽離子 有機鏽離子,只要是利用膨潤性黏土的陽離子交換性 有機化的離子則無限制。 作為有機鏽離子,可使用例如二甲基二硬脂醯基銨鹽 或三曱基硬脂醯基銨鹽等四級銨鹽;或具有苯曱基或聚氧 乙烯基的銨鹽,或使用由鱗鹽或吼啶陽離子或咪唑陽離子 形成之離子。作為鹽,可列舉出與Cr、Br_、N〇3_、〇H_、 CH·等陰離子㈣。作為鹽,以使用四級銨鹽為佳。 2然並未限制有機鑌離子的官能基,但使用含有烷 基、苯曱基、聚氧基伸丙基或苯基之任何一種材料,因易 於發揮防眩性而較佳。 理想的烧基,是碳數在i至3〇的範圍,可舉例如甲 基、乙基、丙基、異丙基、丁基、戊基、己基、庚基、辛 基、壬基、癸基、十一基、十二基、十三基、十四基、十 五基、十六基等。 聚氧基伸丙基[(CH2CH(CH3)〇)nH 或(CH2CH2CH2〇)nH]中 的η之理想範圍是4 50’並以5至5〇為佳,由於其加 成莫耳數越多時,對於有機溶劑的分散性越良好,如超過 多寺#使生成物帶有黏著性,故以對於溶劑的分散性 為重點時,η之數是以20至50為較佳。此外’如η之數 323082 31 201202763 為5至20時,因生成物為非黏著性而粉碎性佳。此外,就 « 分散性與使用性之觀點’宜使四級敍全部的η之總數為5 至50。 作為該四級銨鹽的具體例,可列舉出四烷基氯化銨、 四烷基溴化銨、聚氧丙烯·三烷基氣化銨、聚氧丙烯•三 烷基溴化銨、二(聚氧丙烯)·二烷基氣化銨、二(聚氧丙 烯)·二烷基溴化銨、三(聚氧丙烯)·烷基氣化銨、三(聚 氧丙烯)·烷基溴化銨等。 在通式(I)的四級銨離子中,適宜的Ri是曱基或笨曱 基。適宜的R是碳數1至12的烧基,並以碳數丨至4的 烷基尤佳。適宜的R3是碳數1至25的烷基。適宜的R4是It is also possible to use the materials shown in the above Chemical Formulas 1 to 5. As an acrylic leveling agent, "ARUF0N-UP 1000 Series", "UH-2000 Series", 28 323082 201202763 '"UC-3000 Series", and Kyoeisha Chemical Co., Ltd., which are commercially available from East Asia Synthetic Chemical Co., Ltd. "Polyf low-77" (the above product name) manufactured by the company. When the content of the leveling agent of the optical functional layer is too small, the leveling effect of the coating film is not easily obtained. When the leveling agent is excessively placed, it is difficult to form an agglomerate of the inorganic component. From the above viewpoint, when the total content (excluding the organic solvent) of the optical functional layer is 100% by mass, the content of the leveling agent in the optical functional layer is preferably in the range of 0.05 to 3% by mass, and is 0. A range of 1 to 2% by mass is preferable, and a range of 0.2 to 1% by mass is particularly preferable. The blending amount of the resin component such as the ionizing radiation-curable resin is preferably 50% by mass or more, and preferably 60% by mass or more, based on the total mass of the solid component in the resin composition constituting the optical functional layer. 8质量百分比。 The upper limit is not particularly limited, for example, 99.8 mass%. If it is less than 5% by mass, there will be a problem that it is difficult to obtain sufficient hardness. In addition, the solid component of the resin component such as the ionizing radiation-curable resin contains all the solid components other than the inorganic component and the fine particles described later, and is not only a solid component of a resin component such as an ionizing radiation-curable resin, but may contain other optional components. . (Inorganic component) The inorganic component used in the present invention may be any one of the optical functional layer 3 which is formed by agglomeration at the time of film formation to form a second phase and a random agglomerated structure. As the inorganic component, it is possible to lick inorganic nanoparticle. As inorganic nanoparticles, it is possible to list metal oxides or metals such as bismuth, tin oxide, indium oxide, cerium oxide, aluminum oxide, titanium oxide, and cerium oxide; 323082 29 201202763 矽 melting, oxidation Metal oxides such as zirconium melt, titanium oxide melt, and alumina melt, 'aerosil, swellable clay, layered organic clay, and the like. The above inorganic nanoparticles may be used singly or in combination of plural kinds. Further, the particles are different from the inorganic components (inorganic nanoparticles) and can be distinguished by particle size. Among these inorganic nanoparticles, layered organic clay is preferred from the viewpoint of forming a stable random aggregation structure. The reason why the layered organic clay can form a stable random agglomerate structure, for example, is that the first phase and the second phase are easily formed because of the high compatibility and cohesiveness of the layered organic clay and the secret component (organic component). It is easy to form a random agglomerated structure when the structure of the transaction is complicated. In the present invention, the layered organic clay is one in which organic rust ions are introduced between the layers of the swellable clay. The layered organic clay has low dispersibility for a specific solvent, and when a layered organic clay and a solvent having a specific property are used as a coating for forming an optical functional layer, a surface having a random agglomerated structure can be formed by the selection of the solvent. Concave optical function layer. The swellable clay swellable clay may be a clay having a cation exchange energy and pouring water into the layer of the swellable clay to be swellable, and may be a natural product or a ruthenium composition (including a substitute or a derivative). . In addition, it may be a mixture of natural materials and synthetic materials. Examples of the swelling point soil include mica, synthetic mica, vermiculite, montmorillonite (montm〇riu〇nite), iron montmorillonite, beidelite, and sap〇nite. , hectorite 323082 30 201202763 (hectorite), strontium (stevensite), nontronite, magadiite, polyphthalic acid, kanemite, layered titanic acid, bentonite (smectite), synthetic bentonite, etc. These swellable clays may be used alone or in combination of plural kinds. Organic rust ions Organic rust ions are not limited as long as they are organically exchanged by cation exchange of swellable clay. As the organic rust ion, a quaternary ammonium salt such as dimethyl distearyl ammonium or tridecyl stearyl ammonium salt; or an ammonium salt having a phenyl fluorenyl group or a polyoxyethylene group, or An ion formed from a scale salt or an acridine cation or an imidazolium cation. Examples of the salt include anions (IV) such as Cr, Br_, N〇3_, 〇H_, and CH·. As the salt, it is preferred to use a quaternary ammonium salt. 2 However, the functional group of the organic phosphonium ion is not limited, but any material containing an alkyl group, a phenylhydrazine group, a polyoxypropyl group or a phenyl group is preferred because it is easy to exhibit antiglare properties. The preferred alkyl group is in the range of i to 3 Å, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, and an anthracene group. Base, eleven base, twelve base, thirteen base, fourteen base, fifteen base, sixteen base, and the like. The desirable range of η in the polyoxyl propyl group [(CH2CH(CH3)〇)nH or (CH2CH2CH2〇)nH] is 4 50' and preferably 5 to 5 Å, since the addition of the molar number is more The more the dispersibility of the organic solvent is, the more the adhesive is attached to the product, so that the viscosity of the solvent is preferably 20 to 50. In addition, if the number of η 323082 31 201202763 is 5 to 20, the product is non-adhesive and has good pulverizability. In addition, the term "distribution and usability" should be such that the total number of η in the fourth-order narration is 5 to 50. Specific examples of the quaternary ammonium salt include tetraalkylammonium chloride, tetraalkylammonium bromide, polyoxypropylene·trialkylammonium halide, polyoxypropylene•trialkylammonium bromide, and (polyoxypropylene)·dialkylammonium vapor, di(polyoxypropylene)·dialkylammonium bromide, tris(polyoxypropylene)·alkyl vaporized ammonium, tris(polyoxypropylene)·alkyl bromide Ammonium and the like. Among the quaternary ammonium ions of the formula (I), a suitable Ri is a fluorenyl group or a fluorenyl group. A suitable R is an alkyl group having 1 to 12 carbon atoms, and preferably an alkyl group having a carbon number of 4 to 4. A suitable R3 is an alkyl group having 1 to 25 carbon atoms. The appropriate R4 is

碳數 1 至 25 的烧基、(CH2CH(CH3)0)nH 基或(CH2CH2CH2〇)nH 基。η宜為5至50者。 w1 —A calcining group having 1 to 25 carbon atoms, a (CH2CH(CH3)0)nH group or a (CH2CH2CH2〇)nH group. η is preferably from 5 to 50. W1 —

I R2 — NT -R4 ( i \I R2 — NT -R4 ( i \

I R3_____________ 此外,宜使用氧化I呂炼膠作為無機奈米微粒子,因可 提高光學功能層之表面硬度,亦提高耐擦傷性而較佳。 無機奈米微粒子亦可為改質的無機奈米微粒子。無機 奈米微粒子的改質,可使用矽烷耦合劑。作為矽烷耦合劑, 可使用例如乙烯三曱氧基矽烷、3-縮水甘油基丙基三甲氧 基矽烷、對-苯乙烯基三曱氧基矽烷、3-甲基丙烯醯氧基丙 基三乙氧基矽烷、曱基丙烯醯基氧基丙基三曱氧基矽 32 323082 201202763 烷、丙烯醯基氧基丙基三甲氧基矽烷、曱基丙烯醯 基氧基丙基三乙氧基矽烷、r ~丙烯醯基氧基丙基三乙氧基 石夕烧等。雜Μ合劑亦可具有可與構成樹脂成分的放射線 硬化型樹脂的聚合性雙鍵共聚合的官能基。 無機奈來微粒子的平均粒徑宜為l〇〇nm以下,並以 50nm以下為更佳,而以20nm以下為最佳。無機奈米微粒 子只要具有凝聚性即可,不限定平均粒徑的下限,例如 lnm。若無機奈米微粒子的平均粒徑超過1〇〇11111時,光學積 層體的霧度(Haze)值顯示變高的傾向,除了容易見到白化 等現象之外,也將使對比降低。 相對於樹脂組成物中的固形成分之全部質量,無機成 分的調配量宜含有G. 1至10質量%,並以2至5質量% 為佳。若無機成分的調配量未達〇」質量%時,將不能形成 充足數量的表面凹凸,而有防眩性不足的問題。若無機成 分的調配量超過1()質量科,將使表面凹凸的數量變多, 而有妨礙辨視性的問題。 (溶劑) 為了獲得防眩性而形成表面凹凸之溶劑,宜為含有第 1溶劑(也可稱為「第1溶劑」)及第2溶劑(也可稱為「第 2溶劑」)。 上述本發明的樹餘成物中,因加入第i溶劑及第2 /奋劑可作為本發明的鮮功能層形成用塗料。由於本發 明的光學功能層形成用塗料係含有上述第ι溶劑與第2溶 劑成&即使不添加用以作成以往光學功能層的表面凹 323082 33 201202763 凸形狀而必須考量之微粒子,也可作成光學功能層的表面 « 凹凸形狀。 第1溶劑是指於無機成分中實質上不產生混濁,而可 在具透明性的狀態分散之溶劑。實質上不產生混濁係包含 完全不產生混濁之外,可視同不產生混濁的情形。具體上 作為第1溶劑,相對於無機成分為100質量份時,添加1000 質量份的第1溶劑混合後之混合液之霧度值為10%以下之 溶劑。並以添加第1溶劑混合後之混合液之霧度值為8%以 下為佳,而以6%以下為較佳。而且,並不特別限定混合液 之霧度值的下限值,例如0. 1%。作為第1溶劑,例如可使 用所謂極性小的溶劑(非極性溶劑)。 第2溶劑是指使於無機成分中產生混濁的狀態下分散 之溶劑。具體上作為第2溶劑,相對於無機成分為100質 量份時,添加1000質量份的第2溶劑混合後之混合液之霧 度值為30%以上之溶劑。以添加第2溶劑混合後之混合液 之霧度值為40%以上為佳,而以50%以上為較佳。而且,並 不特別限定混合液之霧度值的上限值,例如為99%。 作為第2溶劑,例如可使用所謂的極性溶劑。 而且,在決定第1溶劑及第2溶劑時所要求之霧度 值,是以JIS K7105為基準測定。 可使用的第1溶劑及第2溶劑,因無機成分的種類而 異。可使用作為第1溶劑及第2溶劑之溶劑,可使用曱醇、 乙醇、卜丙醇、2-丙醇、丁醇、異丙醇(IPA)、異丁醇等醇 類;丙酮、甲基乙基酮(MEK)、環己酮、曱基異丁酮(MIBK) 34 323082 201202763 等酮類;二丙酮醇等酮醇類;苯、曱苯、二曱苯等芳香族 烴類;乙二醇、丙二醇、己二醇等二醇類;乙賽珞蘇(ethyl cel losolve)、丁 赛珞蘇、乙基卡比醇(ethyl carbitol)、 丁基卡比醇、二乙賽珞蘇、二乙基卡比醇、丙二醇單曱醚 等二醇醚類;N-甲基吡咯酮、二曱基曱醯胺、乳酸曱酯、 乳酸乙酯、乙酸曱酯、乙酸乙酯、乙酸戊酯等酯類;二曱 醚、二乙醚等醚類、水等。此等溶劑可以一種作為第1溶 劑或第2溶劑,也可以混合複數種作為第1溶劑或第2溶 劑。 此時,混合第1溶劑及第2溶劑使用時,因易於形成 用以獲得防眩性之表面凹凸而較佳。以質量比作為第1溶 劑與第2溶劑之混合比時,只要在10 : 90至90 : 10的範 圍,因易於形成用以獲得防眩性之表面凹凸而較佳。以質 量比作為第1溶劑與第2溶劑之混合比時,宜在15 : 85 至85: 15的範圍,並以20: 80至80: 20的範圍時為更佳。 若第1溶劑未達10質量份時,因未分散物而產生外觀缺陷 的問題。若第1溶劑超過90質量份時,將有無法獲得充分 防眩性的表面凹凸之問題。 此外,樹脂組成物與溶劑(混合第1溶劑與第1溶劑 者)的調配量為質量比,只要在70 : 30至30 : 70的範圍即 〇 若樹脂組成物未達30質量份時,將因產生乾燥斑紋 等而致外觀惡化,同時因表面凹凸的數量變多,而有妨礙 辨視性的問題。 35 323082 201202763 若樹脂組成物超過70質量份時,因容易妨礙固形成 分的溶解性(分解性),而有無法製膜的問題。 (微粒子) 上述樹脂組成物是含有透光性的微粒子。將在該樹脂 組成物中加入溶劑而成的光學功能層形成用塗料塗佈在透 光性基體上之後’使該光學功能層形成用塗料硬化後,即 可形成光學功能層。藉由在樹脂組成物中添加透光性的微 粒子,而易於調整該光學功能層的表面凹凸的形狀或數量。 作為透光性微粒子,可使用由丙烯酸樹脂、聚苯乙稀 樹脂、苯乙烯-丙烯酸共聚物、聚乙烯樹脂、環氧樹脂、矽 _樹脂、聚偏二氟乙烯(polyvinyhdene fluoride)、聚氟 乙烯(polyethylene fluoride)系樹脂等所形成之有機系 的透光性樹脂微粒子;矽、氧化鋁、氧化鈦、氧化鍅、氧 化鈣、氧化錫、氧化銦、氧化銻等無機系的透光性樹脂微 粒子。透光性樹脂微粒子的折射率宜為1. 40至1. 75,若 折射率未達1. 40或大於L 75時,將使透光性基體子或樹 脂母體的折射率差過大,降低全光線穿透率。此外,透光 性微粒子與樹脂的折射率差宜為〇· 2以下。透光性微粒子 之平均粒徑宜為0.3至7.0/zni的範圍,並以h〇至7 〇 為較佳,而以2 〇至6 ()/Zm為更佳。 . 若粒徑小於0.3ym時,將因防眩性降低而不佳,此 外右粒徑大於7.0 時’將因產生刺眼且表面凹凸的程度 過大而使表面白化,因而不佳。此外,雖然並不特別限定 上述樹脂中所含的透光性微粒子之比例,但相對於樹脂組 323082 36 201202763 成物為100質量份時,宜為〇· 1 价丄此 β始 主別質1份’因可滿足防 眩功此、防舰轉性為佳,且易於控制光學功能層表面 凸:嶋度值。此處的「折射率」是指依照 JIS Κ 7142的測疋值。此外,「平於 十均拉從」是指以電子顯 微鏡實測10 0個粒子的直徑之平均值。 相對於構成光學功能層的樹脂組成物中之固形分份 之全部質量’微粒子的調配量是含有〇. i質量%以上,並以 1.0質量%為適當。並未特別限制其上限值,例如為5.〇質 量I若未達G.1質量科’將有無法獲得充分的防眩性等 問題。 抗靜電劑(導電劑) 本發明的光學功能層也可含有抗靜電劑(導電劑)。藉 由導電劑的添加,可有效防止光學積層體的表面上附著塵 埃。至於抗靜電劑(導電劑)的具體例,可列舉出具有四級 銨鹽、吡啶鏽鹽、第丨至第3胺基等的陽離子性基之各種 陽離子性化合物;具有績酸鹽基、硫酸酯鹽基、填酸酯鹽 基、膦酸鹽基等陰離子性基的陰離子性化合物、胺基酸系、 胺基硫酸酯系等兩性化合物、胺基醇系、甘油系、聚乙二 醇系等非離子性化合物、如錫或鈦之烷氧化合物的有機金 屬化合物及此等之乙醢丙g同酸鹽(acefy lacet〇nate)的金 屬螯合物等’再者可列舉出上述所列舉之化合物經高分子 量化之化合物。此外,具有三級胺基、四級銨基或金屬螯 合部份,且可藉由電離放射線聚合的單體或寡聚物、或如 同具有官能基之耦合劑的有機金屬化合物等聚合性化合 37 323082 201202763 物’也可作為抗靜電劑使用。 此外,作為抗靜電劑,可列舉出導電性微粒子。作為 導電性微粒子之具體例,可列舉出由金屬氧化物所構成 者。作為此種金屬氧化物,可列舉出Zn〇、Ce〇2、Sb2〇2、 Sn〇2、大多簡稱為IT〇之氧化銦錫、in.、Ah〇3、銻摻雜 氧化錫(簡稱為AT0)、鋁摻雜氧化鋅(簡稱為AZ〇)等。導電 性微粒子疋指在1微米町所謂:欠微米大小者,以平均粒 徑在O.lnm至O.iym者為佳 此外,作為抗靜電劑(導電劑)的其他具體例,可列舉 出導電性聚合物。其材料並無特別的限定,可列舉例如選 自由脂肪族共軛系的聚乙炔、聚并苯(p〇lyacene)、聚莫 (polyazulene);芳香族共軛系的聚(伸苯基) (po 1 ypheny 1 ene)、雜環式共軛系的聚吡咯、聚噻吩、聚異 硫茆(polyisothianaphthene);含雜原子共軛系的聚笨 胺、K伸嗟吻基伸乙烯基)(P〇lythienyleneVinylene); 混合型共軛系的聚(伸苯基伸乙烯基)、分子中具有複數個 共輛鍵的共軛系之複鍵共軛系、此等之導電性聚合物之衍 生物,及此等之共軛系高分子鍵接枝或嵌段在飽和高分子 上共聚而成之高分子的導電性複合物所形成群組中的至少 一種。其中以使用聚噻吩、聚苯胺、聚吡咯等有機系抗^ 電劑為佳。由於使用上述有機系抗靜電劑,故可發揮優異 的抗靜電性,同時可提高光學積層體的全光線穿透率與降 低霧度值。此外,也可添加有機磺酸或氣化鐵等陰離子作 為摻雜劑(電子供應劑),以提高導電性或提高抗靜電性。 323082 38 201202763 再加上摻雜劑的添加效果, 丹从聚噻吩可提高透明性、 抗静電!·生而較佳。作為上述聚 哙。卜汁〜n ’亦適合使用聚寡聚嘆 々上述何生物並無特別限定 聚二乙块的烧基取代物等。 _例如^基乙快、 <光學積層體〉 ^透紐紐上㈣含有切構成成分的光學功能 成用塗料之後,以熱或照射電離放射線(例如 電子束或 i外線照射),使該光學功能層形成用塗料硬化而形成光學 功能層,即可獲得本發明的光學積層體。 光學功能層可形成在透光性基體的單一面,也可形成 在雙面。 此外’在光學功能層與透光性基體之間、與光學功能 層的相反面也可具有其他的層,也可在光學功能層上具有 其他的層。此處的其他的層,可列舉例如偏光層、光擴散 層、低反射層、防污層、抗靜電層、紫外線/近紅外線(NIR) 吸收層、濾霓虹光(neon cut)層、電磁波屏蔽層等。 光學功能層的厚度宜為1.0至12. O/zm的範圍,並以 2. 0至11. 0/zm的範圍較佳,而以3. 0至10. 0/zm的範圍 為更佳。若光學功能層的厚度比1. 0/zin還薄時,在紫外線 硬化時將因氧之阻礙而造成硬化不良,而易使光學功能層 的耐磨耗性劣化。若光學功能層的厚度大於12. Oem時, 將因光學功能層的硬化收縮而產生捲曲、產生微裂、與透 光性基之密著性降低,並且造成光穿透性降低。而且,隨 著膜厚的增加也會增加必要的塗料量,而成為成本上昇的 39 323082 201202763 原因。 本發明的光學積層體,影像鮮明性宜為5. 〇至85. 0 的範圍(依照JISK7105,使用0. 5mm光學梳狀濾光鏡測定 之值)’並以20. 0至75. 0為較佳。若影像鮮明性未達5· 0 時’將使對比惡化’若超過85. 0時,將使防眩性惡化,因 此不適合作為顯示器表面使用的光學積層體。 (第一發明) 其次’詳述構成第一發明的光學積層體之光學功能層 的凹凸形狀。 該光學功能層的凹凸形狀,是依照ASME/1995 (American Society 〇f Mechanical Engineers,美國機械 學會規格)求得。在具有凹凸形狀的光學功能層面,於測定 凹凸形狀而得之測定全長之傾斜角度分佈中,〇.2度以下 的傾斜角度分佈之所佔比例為30%以上95%以下的範圍, 故可得平衡兼具防眩性、亮室下的黑度、暗室對比、防刺 眼之光學積層體。 在測定凹凸形狀所得之測定全長之傾斜角度分佈中, 0. 2度以下的傾斜角度分佈之所佔比例,宜為35%以上75% 以下,並以38%以上58%以下為較佳。 (第二發明) 其次,詳述構成第二發明的光學積層體之光學功能層 的凹凸形狀。 該光學功能層的凹凸形狀,是依照ASME/1995 (American Society of Mechanical Engineers,美國機械 40 323082 201202763 干曰規格)求得。在具有凹凸形狀的光學功能層面,於〜 凹凸七狀所得之測定全長之傾斜角度分佈中,0.3度以上 1· 6度以下的傾斜角度分佈之所估比例為 68%以上,3. 〇戶: 以上的傾斜角度成分之比例為未達1%之範圍内,故可得ς 衡兼具防眩性、亮室下的黑度高、防刺眼,再者暗室 優異之光學積層體。 本發明中’必須使光學功能層的至少一方具有預 傾斜角度分佈’形成有凹凸形狀。雖然可在光學功能層的 凹凸面上設置其他的層(例如,高折射率層或低反射層等), 但在以塗工積層其他的層時,容易在光學功能層的凹凸面 之凹部份上存在其他的層,而不易在凸部份上存在其他的 層。因此,雖然其他的層上也形成有凹凸形狀但是形成 相較於光學功能層之凹凸形狀坡度小的傾斜角度分佈(形 成具有較多低傾斜角度者)。 (第二發明) 此外,第二發明的光學積層體,是於測定光學功能層 之凹凸形狀所得之測定全長之傾斜角度分佈中,0.3度以θ 上1.6度以下的傾斜角度分佈之所佔比例為6戕以上並 以該傾斜角度分佈之所佔比例為7〇%以上為較佳,並以該 傾斜角度分佈之所佔比例為72%以上為更佳,而以該傾斜 角度分佈之比例為75%以上為最佳。並未特別限定其上限, 例如可為95%。 由於於測定光學功能層之凹凸形狀所得之測定全長之 傾斜角度分佈中’ 0.3度以上1.6度以下的傾斜角度分佈 323082 41 201202763 之所佔比例在預定的範圍内’故可一面具備高防眩性、賦 予適度的亮室下之黑度,一面防止防刺眼性能之降低。若 該傾斜角度分佈之比例未達68%時,將無法獲得可良好的 平衡兼具防眩性、亮室下之黑度、防刺眼性能的光學功能 層。 (第二發明) 此外’第一發明的光學積詹體’是於測定光學功能層 之凹凸形狀所得之測定全長之傾斜角度分佈中,3· 〇度以 上的傾斜角度分佈之所佔比例未達1%,並以未達〇 5%為較 佳,而以未達0. 1 %為更佳,亦可不含有,亦即可以為〇%。 由於在測定光學功能層之凹凸形狀所得之測定全長之傾斜 角度分佈中,3.0度以上的傾斜角度分佈之所佔比例在預 定的範圍内’故可防止防刺眼性能之降低。若3 〇产以上 的傾斜角度分佈之比例超過1%時,由於光學功能層^表面 緻密性降低,而有損防刺眼性能,再者使表面散射^増加, 而有損亮室下之黑度。 5 (第三發明) 其次,詳述構成第三發明的光學積層體之光學功能層 的凹凸形狀。 9 該光學功能層的凹凸形狀,是依照ASMEM995 (American Society of Mechanical Engineers,美國機械 學會規格)求得。在具有凹凸形狀的光學功能層面,於測定 凹凸形狀所得之測定全長之傾斜角度分佈中,〇. 5度以下 的傾斜角度分佈之所佔比例為60%以上未達8〇%,0.6度以 42 323082 201202763 上1. 6度以下的傾斜角度分佈之比例為30%以下’3. 〇度以 上的傾斜角度成分之比例未達1%的範圍,故可得平衡兼具 適度的防眩性、壳室下的黑度、高防刺眼性能,且暗室對 比優異之光學積層體。 第三發明中,必須使光學功能層的至少一方具有預定 的傾斜角度分佈’形成有凹凸形狀。雖然可在光學功能層 的凹凸面上》又置其他的層(例如,高折射率層或低反射層), 但在以塗卫積層其他的層時,將容易在光學功能層的凹凸 面之凹部份存在其他的層,而不易在凸部份存在其他的 層因此’雖然其他的層上也形成有凹凸形狀,但是形成 相較於光學功能層之凹凸形狀坡度小的傾斜角度分佈(形 成具有較多低傾斜角度者)。 (第三發明) 此外 一 χ明的光學積層體,是於測定光學功能層 =形狀所得之測定全長之傾斜角度分佈中,〇·5度以 65%以hi角度7刀佈之所佔比例為6〇%以上未達80%,並以 。由沐達8〇/°為較佳,並以7〇%以上未達80%為更佳。 之傾斜角:=學二能層的凹凸形狀所得之測定全長 例在預定=_ 所佔比 室下之 ^ 玟』維持適度的高防眩性,也賦予亮 形狀所彳^ π㈣眼性能。若在敎光學功能層之凹凸 敎全長之傾斜角度分佈中,G5度以下的傾 緻密性降低,損防刺眼若=;=:角 323082 43 201202763 度分佈之比例為80%以上時,將使防眩性降低。 " (第三發明) 此外,第三發明的光學積層體,於測定光學功能層之 凹凸形狀所得之測定全長之傾斜角度分佈中,以0. 6度以 上1.6以下的傾斜角度分佈之比例為5%以上30%以下為 佳,並以5%以上25%以下為較佳,並以8%以上23%以下為 更佳,而以10%以上20%以下為最佳。 由於在測定光學功能層之凹凸形狀所得之測定全長之 傾斜角度分佈中,0. 6度以上1. 6度以下的傾斜角度分佈之 比例在預定的範圍内,故可一面賦予適度的防眩性、亮室 下的黑度,一面可防止防刺眼性能之降低。若在測定光學 功能層之凹凸形狀所得之測定全長的傾斜角度分佈中,0. 6 度以上1.6度以下的傾斜角度分佈之比例超過30°/。時,將 因光學功能層的表面緻密性降低,而有損防刺眼性能。 (第三發明) 在測定光學功能層之凹凸形狀所得之測定全長之傾 斜角度分佈中,以1. 7度以上2. 9度以下之比例為35%以 下為佳,並以30°/。以下為較佳,並以25%以下為更佳,而以 20%以下為最佳。若1. 7度以上2. 9度以下的比例增加時, 將有損凹凸形狀的緻密性,雖然可提昇防眩性,但使防刺 眼性能降低。 (第三發明) 此外,第三發明的光學積層體,是在測定光學功能層 的凹凸形狀所得之測定全長的傾斜角度分佈中,3.0度以 44 323082 201202763 上的傾斜角度分佈之比例未達1%,並以未達0. 5%為較佳, 而以未達0. 1%為更佳,亦可不含有,亦即也可以為0%。由 於在測定光學功能層的凹凸形狀所得之測定全長之傾斜角 度分佈中,3. 0度以上的傾斜角度分佈之比例在預定的範 圍内,故可防止防刺眼性能之降低。若3. 0度以上的傾斜 角度分佈之比例超過1 %時,將因光學功能層的表面敏密性 降低,而有損防刺眼性能。再者使表面散射性增加,而有 損亮室下之黑度。 本發明中規定的凹凸形狀之傾斜角的分佈,首先是依 照ASME/1995測定光學功能層之凹凸形狀。接著,計算出 在測定凹凸形狀所得之測定全長中,每0. 5// m測定長度(X) 的凹凸之高度(Y),再由下式計算出局部傾斜(AZi)。 【數1】 Δ Z, = {dYM - 9 X dYi+2 + 45 x dYM - 45 x dY^ + 9 x dY^ - dY^ ) /(60 x dXt) 式中,AZi是指在某任意測定位置dXi的局部傾斜。 接著,由下式計算出傾斜角(0 )。 【數2】 θ-Χ3ίΩΓΧ\^Ζ{\ 由上式求得測定全長的傾斜角(Θ)之後,作成傾斜角 (<9 )0. 1°刻度的度數分佈,求得具有本發明中規定的預定 傾斜角者的比例(%)。 (第一發明) 此外,第一發明的光學積體層,其光學功能層的微細 凹凸形狀之算術平均高度Ra,宜在0.040以上未達0.200 45 323082 201202763 =並以〇. 〇40至未達0. 15〇Am為較佳’而以〇·〇4〇至 達0. lGG/zm為特佳。若算術平均高度^未達Q. __ ^:光學_相_料足。若算術平均高度以 • _以上時,將使光學積體層的黑度惡化。 q予力广層表面的凹凸形狀之平均長度(RSm)為30至 e m的範圍’並以5〇至25〇 _為較佳,而以議至⑽ ^二更佳。*未達30"m時’因將使表面散射變大,而 有使光學積層體的黑度惡化之虞。若超過斷,時,將有 防眩性惡化之虞。 光學功能層表面的凹凸形狀之最大高度(Rz)是在 •300 ^1.200^ni^||ffl , 400 ^1.〇〇〇^^^ 佳而以0. 500至〇· __為更佳。若未達〇 3〇〇^爪時, :有防眩H心化之虞。若超過工.細以瓜時,將有光學積層 體的黑度惡化之虞。 <偏光基體> 本發月中,也可在與光學功能層的相反面之透光性基體 ,積層偏光基體。此處,該偏光基體可使用僅穿透特定偏 光而吸收其他光的光吸收型偏光基體,或僅穿透特定偏光而 反射其他光的光反射型偏光基體。作為光吸收型偏光基 體可使用由聚乙烯醇、聚乙稀(polyvinyl ene)等延伸而 侍的薄膜,可列舉例如吸附碘或染料的聚乙烯醇單軸延伸 而得的聚乙烯醇(PVA)薄膜,作為2色性元件。作為光反射 型偏光基體,可列舉例如將二種延伸時延伸方向的折射率 不同之聚酿樹脂(PEN及PEN共聚物),藉由押出成形技術而 323082 46 201202763 父互積層數百層後延伸而構成的3M公司製之「DBEJ?」、或由 膽固醇型液晶聚合物層與1/4波長板積層而成,將由膽固醇 型液晶聚合物層侧入射之光分離成相互逆向的2種圓偏 光,使一方穿透,另一方反射後,使穿透膽固醇型液晶聚 合物層的圓偏光藉由1/4波長板轉換成直線偏光的日東電 工公司製之「N i pOCS」或Merck公司製的「Transmaks」等。 將偏光基體與光學積層體直接或隔著接著層等而積 層後,可作為偏光板使用。 <顯示裝置> 本發明的光學積層可適用於如液晶顯示裝置(Lcd)、 電漿顯示面板(PDP) '電子發光顯示器(eld)或陰極管顯示 裝置(CRT)、表面電場顯示器(SED)的顯示器上。尤其可適 用於液晶顯示裝置(LCD)上。由於本發明的光學積層體具有 透光性基體’故可將透光性基體側接著在影像顯示裝置的 影像顯示面上而使用。 將本發明的光學積層體使用作為偏光板的表面保護膜 之草侧時’可適合使用於扭轉向列(TN,twisted nematic)、 超級扭轉向列(STN,super twisted nematic)、垂直定向 (VA,vertical al ignment)、平面轉換(ips, in-plane-switching)、光學補償雙折射(〇cb,optical compensated birefrigence)等模式的穿透型、反射型或半 穿透型之液晶顯示裝置上。 <光學積層體之製造方法> 將光學功能層形成用塗料塗佈在透光性基體上的方 47 323082 201202763 式’可使用一般的塗工方式或印刷方式。具體上,可使硐 氣動到刀塗佈(air doctor coating)、棒塗佈、刮刀塗# (blade coating)、刀式塗佈、逆向塗佈、轉印輥塗佈 (transfer roll coating)、凹版輥塗佈、接觸塗佈(kiss coating)、澆鑄塗佈、喷灑塗佈、狹縫孔口塗佈(sl〇t orifice coating)、壓延塗佈、擋塗佈、浸潰塗佈、模廖 塗佈等塗佈’或凹版印刷等凹版印刷、網版印刷等孔版印 刷等印刷法。 以下’利用實施例說明本發明’但本發明並不偈限於 此等中。 [實施例] (第一發明、第三發明) [實施例1] 以分散器攪拌表1所記載之預定的混合物30分鐘後’ 以輥塗方式將所得的光學功能層形成用之塗料塗佈(線速 度:20m/分鐘)在由膜厚6〇em、全光線穿透率92%所構成 的透明基體之TAC(富士軟片公司製;TD60UL)單一面上, 經過在30至50°C預備乾燥20秒之後,在1〇〇它乾燥1分 鐘,然後在氮氣環境(取代成氮氣)中進行紫外線照射(燈: 聚光型高壓水銀燈,照燈輸出:120W/cm,燈數:4,照射 距離:20cm),使塗膜硬化。由此,可得具有厚度4. 1 的光學功能層之實施例1的光學積層體。由SEM、EDS的結 果’可確認構成所得的積層體之光學功能層至少具有第一 相及第二相,且形成有隨機凝聚構造。 48 323082 201202763 亀 (第一發明、第三發明) ' [實施例2] 除了將光學功能層形成用塗料變更為表1所記載之預 定的混合液之外,其餘進行與實施例1相同的操作,可得 具有厚度5. 5#m的光學功能層之實施例2的光學積層體。 由SEM、EDS的結果,可確認構成所得的積層體之光學功能 層至少具有第一相及第二相,且形成有隨機凝聚構造。 (第一發明、第三發明) [實施例3] 除了將光學功能層形成用塗料變更為表1所記載之預 定的混合液之外,其餘進行與實施例1相同的操作,可得 具有厚度5. 5/zm的光學功能層之實施例3的光學積層體。 由SEM、EDS的結果,可確認構成所得的積層體之光學功能 層至少具有第一相及第二相,且形成有隨機凝聚構造。 (第一發明、第三發明) [實施例4] 除了將光學功能層形成用塗料變更為表1所記載之預 定的混合液之外,其餘進行與實施例1相同的操作,可得 具有厚度5.0#πι的光學功能層之實施例4的光學積層體。 由SEM、EDS的結果,可確認構成所得的積層體之光學功能 層至少具有第一相及第二相,且形成有隨機凝聚構造。 (第一發明、第三發明) [實施例5] 除了將光學功能層形成用塗料變更為表1所記載之預 49 323082 201202763 定的混合液之外,其餘進行與實施例i相同的操作,㈣ 具有厚度5.9㈣的光學功能層之實施例5的光學積詹體。 由識、腿的結果,可確認構成所得的積層體之光學功能 層至v具有第相及第—相,且形成有隨機凝聚構造。此 時’是將㈣得的絲積賴學魏層面所觀測到的 SEM結果表不於第2圖,光學積層體的剖面圖之娜結果 表示於第3圖’由絲積層體之料魏層面所觀測到的 EDS結果表示於第4圖。由此等結果,可確認構成所得的 光學積層體之光學魏層至少具有第—相及第二相,且形 成有隨機凝聚構造。 (第一發明、第三發明) [實施例6 ] 除了將光學功能層形成用塗料變更為表i所記載之預 定的混合液之外,其餘進行與實施例丨相同的操作,可得 具有厚度5· 4em的光學功能層之實施例6的光學積層體。 由SEM、EDS的結果,可確認構成所得的積層體之光學功能 層至少具有第一相及第二相,且形成有隨機凝聚構造。 (第一發明、第三發明) [比較例1] 除了將光學功能層形成用塗料變更為表2所記載之預 定的混合液之外,其餘進行與實施例丨相同的操作,可得 具有厚度4. 3 // m的光學功能層之比較例1的光學積層體。 此時’由所得的積層體之SEM、EDS結果,可確認構成所得 的光學積層體之光學功能層並非形成隨機凝聚構造,而是 50 323082 201202763 形成由透紐有機微粒子之凝聚而成之海島構造。 (第一發明、第三發明) [比較例2] 除了將光學功能層形成用塗料變更為表2所記載之 定的混合液之外,其餘進行與實施例丨㈣的操作,可得 具有厚度5.8"的光學功能層之比較例2的光學積層體寸。 此時’由所得的積層體之s E M、E D s結果,可確認構成曰所得 的光學積層體之光學功能層並非形成隨機凝聚構造,而是 形成第一相及第二相分散在膜面整體中的海島構造。 (第一發明、第三發明) [比較例3] . 除了將光學功能層形成用塗料變更為表2所0戴外得 定的混合液之外,其餘進行與實施例1相同的操作’ 0 0 0. 具有厚度6. 6ym的光學功能層之比較例3的光學痹展 此時’由所得的光學積層體之光學功能層面所觀满I列的 希戶/Γ SEM結果表示於第5圖,由光學積層體之光學功能廣 聲 觀測到的EDS結果表示於第6圖。可確認構成所# 積層體之光學功能層,是第一相與第二相相分離,μ 學功能層中不含微粒子,故未形成隨機凝聚構造。 (第一發明、第三發明) [比較例4] ^ 游Α預 除了將光學功能層形成用塗料變更為表2所菰私 定的混合液之外,其餘進行與實施例1相同的操作’ μ。 @ #膠 具有厚度5· 5/zm的光學功能層之比較例4的光學積 51 323〇82 201202763 此時,由所得的光學積層體之SEM、EDS結果,可確認構成 ' 所得的光學積層體之光學功能層並非形成隨機凝聚構造, 而是形成由透光性有機微粒子凝聚而成之海島構造。 (第一發明、第三發明) [比較例5 ] 除了將光學功能層形成用塗料變更為表2所記載之預 定的混合液之外,其餘進行與實施例1相同的操作,可得 具有厚度4.的光學功能層之比較例5的光學積層體。 此時,由所得的光學積層體之光學功能層面所觀測到的 SEM結果表示於第7圖。可確認構成所得的光學積層體之 光學功能層,並非形成隨機凝聚構造,而是形成由透光性 有機微粒子凝聚而成之海島構造。 (第一發明、第三發明) [比較例6 ] 除了將光學功能層形成用塗料變更為表2所記載之預 定的混合液之外,其餘進行與實施例1相同的操作,可得 具有厚度4.0//in的光學功能層之比較例6的光學積層體。 此時,由所得的光學積層體的SEM、EDS結果,可確認構成 所得的光學積層體之光學功能層,並非形成隨機凝聚構造, 而是形成由不定形的矽凝聚而成之海島構造。 (第一發明、第三發明) 將上述實施例中使用的材料整理於表1中,比較例中 使用的材料整理於表2中。 52 323082 201202763 【表1】I R3_____________ In addition, it is preferred to use oxidized I-alloy as the inorganic nano-particles, which is preferable because the surface hardness of the optical functional layer can be improved and the scratch resistance is also improved. The inorganic nanoparticles may also be modified inorganic nanoparticles. For the modification of inorganic nanoparticles, a decane coupling agent can be used. As the decane coupling agent, for example, ethylene trimethoxy decane, 3-glycidylpropyltrimethoxy decane, p-styryl trimethoxy decane, 3-methyl propylene methoxy propyl triethyl group can be used. Oxydecane, mercaptopropenyloxypropyltrimethoxyfluorene 32 323082 201202763 alkane, propylene decyloxypropyl trimethoxy decane, mercapto propylene decyloxypropyl triethoxy decane, r ~ propylene decyloxypropyl triethoxy zebra or the like. The hybrid dopant may also have a functional group copolymerizable with a polymerizable double bond of a radiation curable resin constituting the resin component. The average particle diameter of the inorganic fine particles is preferably 10 nm or less, more preferably 50 nm or less, and most preferably 20 nm or less. The inorganic nanoparticles are not limited to the lower limit of the average particle diameter as long as they have cohesiveness, for example, 1 nm. When the average particle diameter of the inorganic nanoparticles exceeds 1〇〇11111, the haze value of the optical layered body tends to be high, and in addition to the phenomenon that whitening is easily observed, the contrast is also lowered. The amount of the inorganic component is preferably from G to 1 to 10% by mass, and preferably from 2 to 5% by mass, based on the total mass of the solid component in the resin composition. If the amount of the inorganic component is less than 质量% by mass, a sufficient amount of surface irregularities cannot be formed, and there is a problem that the antiglare property is insufficient. If the amount of the inorganic component exceeds 1 (), the number of surface irregularities is increased, and there is a problem that the visibility is hindered. (Solvent) A solvent which forms surface irregularities in order to obtain anti-glare property preferably contains a first solvent (may also be referred to as "first solvent") and a second solvent (also referred to as "second solvent"). In the above-mentioned tree residue of the present invention, the i-th solvent and the second agent can be used as the coating material for forming a fresh functional layer of the present invention. The coating material for forming an optical functional layer of the present invention may be prepared by including the above-mentioned first solvent and the second solvent, and the microparticles which must be considered in order to form the convex shape of the surface concave 323082 33 201202763 of the conventional optical functional layer. The surface of the optical functional layer « Concave shape. The first solvent is a solvent which is substantially turbid in the inorganic component and can be dispersed in a transparent state. Substantially no turbidity is included. In addition to no turbidity at all, it is considered that turbidity does not occur. Specifically, when the amount of the first solvent is 100 parts by mass based on the inorganic component, a solvent having a haze value of 10% or less by adding 1000 parts by mass of the first solvent mixture is added. Further, the haze value of the mixed solution obtained by mixing the first solvent is preferably 8% or less, and more preferably 6% or less. 1%。 The lower limit of the haze value of the mixture is not particularly limited, for example, 0.1%. As the first solvent, for example, a solvent having a small polarity (non-polar solvent) can be used. The second solvent is a solvent which is dispersed in a state in which turbidity occurs in the inorganic component. Specifically, when the amount of the second solvent is 100 parts by mass based on the inorganic component, a solvent having a haze value of 30% or more by adding 1000 parts by mass of the second solvent mixture is added. The mixed solution obtained by mixing the second solvent is preferably a haze value of 40% or more, and more preferably 50% or more. Further, the upper limit value of the haze value of the mixed liquid is not particularly limited, and is, for example, 99%. As the second solvent, for example, a so-called polar solvent can be used. Further, the haze value required for determining the first solvent and the second solvent is measured in accordance with JIS K7105. The first solvent and the second solvent which can be used vary depending on the type of the inorganic component. A solvent which is the first solvent and the second solvent can be used, and an alcohol such as decyl alcohol, ethanol, propanol, 2-propanol, butanol, isopropanol (IPA) or isobutanol; acetone or methyl group can be used. Ethyl ketone (MEK), cyclohexanone, decyl isobutyl ketone (MIBK) 34 323082 201202763 and other ketones; ketone alcohols such as diacetone alcohol; aromatic hydrocarbons such as benzene, toluene, diphenylbenzene; Alcohols, propylene glycol, hexanediol and other glycols; ethyl cel losolve, butyl quercetin, ethyl carbitol, butyl carbitol, dicetaxan, diethyl Glycol ethers such as carbitol and propylene glycol monoterpene ether; esters such as N-methylpyrrolidone, decyl decylamine, decyl lactate, ethyl lactate, decyl acetate, ethyl acetate, and amyl acetate Ethers such as diterpene ether and diethyl ether, water, and the like. These solvents may be used as the first solvent or the second solvent, or a plurality of them may be mixed as the first solvent or the second solvent. In this case, when the first solvent and the second solvent are mixed, it is preferred to form surface irregularities for obtaining anti-glare properties. When the mass ratio is used as the mixing ratio of the first solvent and the second solvent, it is preferably in the range of 10:90 to 90:10 because it is easy to form surface irregularities for obtaining anti-glare properties. When the mass ratio is used as the mixing ratio of the first solvent and the second solvent, it is preferably in the range of 15:85 to 85:15 and more preferably in the range of 20:80 to 80:20. When the first solvent is less than 10 parts by mass, there is a problem of appearance defects due to the undispersed material. When the amount of the first solvent exceeds 90 parts by mass, there is a problem that surface unevenness of sufficient antiglare property cannot be obtained. Further, the blending amount of the resin composition and the solvent (the first solvent and the first solvent are mixed) is a mass ratio, and if the resin composition is less than 30 parts by mass in the range of 70:30 to 30:70, The appearance is deteriorated due to the occurrence of dry streaks and the like, and the number of surface irregularities is increased, which has a problem of hindering the visibility. 35 323082 201202763 When the resin composition exceeds 70 parts by mass, the solubility (decomposability) of the solid component is easily hindered, and there is a problem that film formation cannot be performed. (Microparticles) The above resin composition is a fine particle containing light transmissive. After the coating material for forming an optical functional layer obtained by adding a solvent to the resin composition is applied onto the light-transmitting substrate, the optical functional layer can be formed by curing the coating material for forming the optical functional layer. The shape or the number of surface irregularities of the optical functional layer can be easily adjusted by adding translucent fine particles to the resin composition. As the light-transmitting fine particles, acrylic resin, polystyrene resin, styrene-acrylic copolymer, polyethylene resin, epoxy resin, ruthenium resin, polyvinyhdene fluoride, and polyvinyl fluoride can be used. (Organic light-transmitting resin fine particles formed of a resin such as a polyethylene fluoride; inorganic light-transmitting resin fine particles such as cerium, aluminum oxide, titanium oxide, cerium oxide, calcium oxide, tin oxide, indium oxide or cerium oxide; . The refractive index of the light-transmitting resin microparticles is preferably from 1.40 to 1.75. If the refractive index is less than 1.40 or greater than L 75, the refractive index difference between the light-transmitting substrate or the resin matrix is too large, and the total thickness is lowered. Light penetration rate. Further, the difference in refractive index between the light-transmitting fine particles and the resin is preferably 〇·2 or less. The average particle diameter of the light-transmitting fine particles is preferably in the range of 0.3 to 7.0 / zni, preferably from h 〇 to 7 ,, and more preferably from 2 〇 to 6 () / Zm. When the particle diameter is less than 0.3 μm, the anti-glare property is not preferable, and when the right particle diameter is larger than 7.0, the surface is whitened due to excessive glare and unevenness of the surface, which is not preferable. In addition, although the ratio of the light-transmitting fine particles contained in the above-mentioned resin is not particularly limited, when it is 100 parts by mass with respect to the resin group 323082 36 201202763, it is preferable that the ratio is 〇·1. The part is suitable for anti-glare work and anti-ship rotation, and it is easy to control the surface convexity of the optical functional layer: the value of the twist. The "refractive index" herein refers to the measured value according to JIS Κ 7142. In addition, "flat-to-tenth pull-in" refers to the average of the diameters of 10 particles measured by an electron microscope. The amount of the fine particles in the total amount of the solid content in the resin composition constituting the optical functional layer is more than or equal to 1.0% by mass, and is preferably 1.0% by mass. The upper limit value is not particularly limited, and for example, if the mass I does not reach the G.1 quality section, there will be a problem that sufficient anti-glare property cannot be obtained. Antistatic Agent (Conductive Agent) The optical functional layer of the present invention may also contain an antistatic agent (conductive agent). By the addition of the conductive agent, it is possible to effectively prevent dust from adhering to the surface of the optical layered body. Specific examples of the antistatic agent (conductive agent) include various cationic compounds having a cationic group such as a quaternary ammonium salt, a pyridine rust salt, and a third to third amino group; An anionic compound such as an ester group, a sulphonate group or a phosphonate group; an amphoteric compound such as an amino acid or an amine sulfate; an amino alcohol system, a glycerin system, or a polyethylene glycol system Or a nonionic compound, an organometallic compound such as an alkoxy compound of tin or titanium, or a metal chelate of such an acefy lacet nate, and the like A compound whose compound is polymerized. Further, a polymerizable compound having a tertiary amino group, a quaternary ammonium group or a metal chelating moiety, and which can be polymerized by ionizing radiation, or an organometallic compound such as a coupling agent having a functional group 37 323082 201202763 The object ' can also be used as an antistatic agent. Further, examples of the antistatic agent include conductive fine particles. Specific examples of the conductive fine particles include those composed of metal oxides. Examples of such metal oxides include Zn〇, Ce〇2, Sb2〇2, Sn〇2, indium tin oxide, which is often abbreviated as IT〇, in., Ah〇3, and antimony-doped tin oxide (abbreviated as AT0), aluminum-doped zinc oxide (abbreviated as AZ〇), and the like. The conductive fine particles 所谓 are referred to as 1 micron-sized ones, and those having an average particle diameter of 0.1 nm to O.iym are preferable, and other specific examples of the antistatic agent (conductive agent) include conductive materials. Polymer. The material thereof is not particularly limited, and examples thereof include polyacetylene selected from an aliphatic conjugated system, polypyrrene, polyazulene, and aromatic conjugated poly(phenylene) ( Po 1 ypheny 1 ene), heterocyclic conjugated polypyrrole, polythiophene, polyisothianaphthene; poly-phenylamine containing a hetero atom conjugated system, K-extension-based vinyl group) (P〇 LythienyleneVinylene); a mixed conjugated poly(phenylene vinyl) group, a complex conjugated conjugate system having a plurality of conjugated bonds in a molecule, a derivative of such a conductive polymer, and the like At least one of a group formed by a conductive composite of a conjugated polymer bond or a polymer obtained by copolymerizing a block on a saturated polymer. Among them, an organic antistatic agent such as polythiophene, polyaniline or polypyrrole is preferably used. Since the above-mentioned organic antistatic agent is used, excellent antistatic properties can be exhibited, and the total light transmittance and the haze value of the optical laminate can be improved. Further, an anion such as an organic sulfonic acid or a gasified iron may be added as a dopant (electron supply) to improve conductivity or to improve antistatic property. 323082 38 201202763 In addition to the addition effect of the dopant, Dan can improve transparency and antistatic from polythiophene. As the above poly. Bu juice ~n ' is also suitable for use in poly-olig- sighing. The above-mentioned organisms are not particularly limited. _ For example, ^基乙快, <optical laminate> ^透纽纽(4) After the optical functional coating containing the constituent components, the optics are irradiated with heat or irradiation (for example, electron beam or i-ray irradiation) to make the optics The functional layer forming coating is cured to form an optical functional layer, whereby the optical layered body of the present invention can be obtained. The optical functional layer may be formed on a single side of the light transmissive substrate or on both sides. Further, other layers may be provided between the optical functional layer and the light-transmitting substrate opposite to the optical functional layer, and other layers may be provided on the optical functional layer. Other layers herein include, for example, a polarizing layer, a light diffusing layer, a low reflecting layer, an antifouling layer, an antistatic layer, an ultraviolet/near infrared (NIR) absorbing layer, a neon cut layer, and an electromagnetic wave. Shielding layer, etc. The thickness of the optically functional layer is preferably in the range of from 1.0 to 12. O/zm, and is preferably in the range of from 2.0 to 11.0/zm, and more preferably in the range of from 3.0 to 10.0/zm. When the thickness of the optical functional layer is thinner than 1.0/zin, the ultraviolet light is hardened due to the inhibition of oxygen, and the abrasion resistance of the optical functional layer is easily deteriorated. When the thickness of the optical functional layer is more than 12. Oem, curling occurs due to hardening shrinkage of the optical functional layer, microcracking occurs, adhesion to the light-transmitting group is lowered, and light transmittance is lowered. Moreover, as the film thickness increases, the amount of necessary paint is increased, which becomes the cause of the increase in cost 39 323082 201202763.至为为0. 0至75. 0。 The optical layer of the present invention, the image sharpness is preferably 5. 〇 to 85. 0 range (according to JIS K7105, using a value measured by a 0. 5mm optical comb filter) ' and from 20. 0 to 75. 0 Preferably. If the sharpness of the image is less than 5.00, the contrast will be deteriorated. If it exceeds 85.0, the anti-glare property will be deteriorated, so that it is not suitable as an optical laminate used as the surface of the display. (First invention) Next, the uneven shape of the optical functional layer constituting the optical layered body of the first invention will be described in detail. The uneven shape of the optical functional layer was obtained in accordance with ASME/1995 (American Society 〇f Mechanical Engineers, American Society of Mechanical Engineers). In the optical function layer having the concavo-convex shape, in the inclination angle distribution of the total length measured by measuring the concavo-convex shape, the ratio of the inclination angle distribution of 2 degrees or less is in the range of 30% or more and 95% or less. An optical laminate that combines anti-glare, blackness under bright room, darkroom contrast, and glare-proof. In the oblique angle distribution of the total length of the measurement obtained by measuring the uneven shape, the proportion of the inclination angle distribution of 0.2 or less is preferably 35% or more and 75% or less, and preferably 38% or more and 58% or less. (Second Invention) Next, the uneven shape of the optical functional layer constituting the optical layered body of the second invention will be described in detail. The uneven shape of the optical functional layer was obtained in accordance with ASME/1995 (American Society of Mechanical Engineers, American Society 40 323082 201202763 Cognac Specification). In the optical function layer having the concavo-convex shape, the estimated angle of the inclination angle distribution of 0.3 degrees or more and 1.6 degrees or less is 68% or more in the inclination angle distribution of the total length measured in the shape of the concave and convex shape. 3. Seto: Since the ratio of the above-mentioned inclination angle component is within the range of less than 1%, it is possible to obtain an optical laminate which is excellent in anti-glare property, high in blackness under a bright room, and glare-proof, and which is excellent in a dark room. In the present invention, it is necessary to form at least one of the optical functional layers with a pretilt angle distribution to form an uneven shape. Although another layer (for example, a high refractive index layer or a low reflection layer) may be provided on the uneven surface of the optical functional layer, when the other layer is laminated by coating, it is easy to be in the concave portion of the concave surface of the optical functional layer. There are other layers on the part, and it is not easy to have other layers on the convex part. Therefore, although the other layers are formed with the concavo-convex shape, an oblique angle distribution (having a shape having a large low inclination angle) which is smaller than the slope of the concavo-convex shape of the optical functional layer is formed. (Second invention) The optical layered body according to the second aspect of the invention is a ratio of an inclination angle distribution of 0.3 degrees or less to θ of 1.6 degrees or less in the inclination angle distribution of the total length measured by measuring the uneven shape of the optical functional layer. It is preferable that the ratio of the inclination angle distribution is 6〇% or more, and the ratio of the inclination angle distribution is 72% or more, and the ratio of the inclination angle distribution is More than 75% is the best. The upper limit is not particularly limited, and may be, for example, 95%. In the inclination angle distribution of the total length measured by measuring the uneven shape of the optical functional layer, the inclination angle distribution of 0.3 to 1.6 degrees or less is in a predetermined range, so that high anti-glare property can be provided. Gives a moderate degree of blackness under the bright room while preventing the reduction of glare-proof performance. If the ratio of the oblique angle distribution is less than 68%, an optical functional layer which is excellent in balance and has anti-glare properties, blackness under a bright room, and glare-proof performance cannot be obtained. (Second invention) In the optical product body of the first invention, the inclination angle distribution of the entire length measured by measuring the uneven shape of the optical functional layer is less than the ratio of the inclination angle distribution of 3·〇 or more. 1%, preferably less than 5%, and less than 0.1% is better or not, that is, 〇%. In the inclination angle distribution of the total length measured by measuring the uneven shape of the optical functional layer, the ratio of the inclination angle distribution of 3.0 degrees or more is within a predetermined range, so that the reduction of the glare-proof performance can be prevented. If the ratio of the oblique angle distribution above 3 〇 is more than 1%, the surface density of the optical functional layer is reduced, which impairs the glare-proof performance, and the surface scattering is further increased, thereby impairing the blackness under the bright room. . (Third invention) Next, the uneven shape of the optical functional layer constituting the optical layered body of the third invention will be described in detail. 9 The uneven shape of the optical functional layer was obtained in accordance with ASMEM995 (American Society of Mechanical Engineers, American Society of Mechanical Engineers). In the optical function layer having the concavo-convex shape, in the inclination angle distribution of the total length measured by measuring the concavo-convex shape, the ratio of the inclination angle distribution of 5 degrees or less is 60% or more and less than 8〇%, and 0.6 degrees is 42. 323082 201202763 The ratio of the inclination angle distribution below 1. 6 degrees is 30% or less '3. The ratio of the inclination angle component above the twist is less than 1%, so the balance can be balanced and moderately anti-glare, shell An optical laminate with excellent blackness, high glare resistance, and excellent darkroom contrast. In the third invention, at least one of the optical functional layers must have a predetermined oblique angle distribution 'formed with a concavo-convex shape. Although another layer (for example, a high refractive index layer or a low reflection layer) may be disposed on the uneven surface of the optical functional layer, it is easy to be on the uneven surface of the optical functional layer when coating other layers. There are other layers in the concave portion, and it is not easy to have other layers in the convex portion. Therefore, although the other layers are also formed with uneven shapes, an oblique angle distribution is formed which is smaller than the unevenness of the optical functional layer. Have more low inclination angles). (Third invention) In addition, the optical layered body of the present invention is a tilt angle distribution of the total length of the measurement obtained by measuring the optical functional layer = shape, and the ratio of the knives of the knives of 5 degrees to 6 degrees at the angle of hi is 7 More than 6% of the total is less than 80%. It is preferably from MUD 8 〇 / °, and more preferably 7 % or more and less than 80%. Inclination angle: = The full-length measurement obtained by the concave-convex shape of the second energy layer is maintained at a predetermined ratio of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ In the oblique angle distribution of the total length of the ridges of the optical function layer, the inclination density below G5 degree is lowered, and the damage prevention glare is ==== angle 323082 43 201202763 degree distribution ratio is 80% or more, it will prevent Reduced glare. (Third Aspect) In the optical layered body of the third aspect of the invention, the ratio of the inclination angle distribution of 0.6 to 1.6 or less in the measurement of the inclination angle distribution of the entire length of the optical functional layer is More preferably, it is 5% or more and 30% or less, and more preferably 5% or more and 25% or less, and more preferably 8% or more and 23% or less, and more preferably 10% or more and 20% or less. In the inclination angle distribution of the total length measured by measuring the uneven shape of the optical functional layer, the ratio of the inclination angle distribution of 0.6 degrees or more and 1.6 degrees or less is within a predetermined range, so that an appropriate anti-glare property can be imparted. The blackness under the bright room can prevent the reduction of the anti-glare performance. In the measurement of the inclination angle distribution of the entire measurement length measured by the uneven shape of the optical function layer, the ratio of the inclination angle distribution of 0.6 to 1.6 degrees is more than 30°/. At the time, the surface compactness of the optical functional layer is lowered to impair the glare resistance. (Third invention) The inclination angle distribution of the entire measurement length measured by measuring the uneven shape of the optical functional layer is preferably 1.7 or more and 2.9 or less, more preferably 35% or less, and 30 or less. The following is preferred, and it is preferably 25% or less, and 20% or less. When the ratio of 1. 7 degrees or more and 2.9 degrees or less is increased, the density of the uneven shape is impaired, and although the anti-glare property can be improved, the sting resistance performance is lowered. According to a third aspect of the invention, in the optical layered body of the third aspect of the invention, the inclination angle distribution of the total length measured at the measurement of the uneven shape of the optical functional layer is not more than 1 in the inclination angle distribution at 3.0 323082 201202763. %, and preferably less than 0.5%, and less than 0.1% is better or not, that is, 0%. In the inclination angle distribution of the total length measured by measuring the uneven shape of the optical functional layer, the ratio of the inclination angle distribution of 3.0 degrees or more is within a predetermined range, so that the reduction of the glare-proof performance can be prevented. When the ratio of the inclination angle distribution of 3.00 degrees or more exceeds 1%, the surface sensitivity of the optical functional layer is lowered to impair the glare resistance. Furthermore, the surface scattering property is increased, and the blackness under the bright room is impaired. The distribution of the inclination angle of the uneven shape defined in the present invention is first determined by measuring the uneven shape of the optical functional layer in accordance with ASME/1995. Next, the height (Y) of the unevenness (X) of the length (X) was measured every 0.5 m/m in the total length of the measurement obtained by measuring the uneven shape, and the partial inclination (AZi) was calculated from the following formula. [Number 1] Δ Z, = {dYM - 9 X dYi+2 + 45 x dYM - 45 x dY^ + 9 x dY^ - dY^ ) /(60 x dXt) where AZi means any arbitrary measurement Local tilt of position dXi. Next, the tilt angle (0) is calculated by the following formula. [Number 2] θ-Χ3ίΩΓΧ\^Ζ{\ After determining the full-angle tilt angle (Θ) from the above formula, the degree distribution of the inclination angle (<9) 0.1° scale is obtained, and the present invention is obtained. The ratio (%) of the predetermined predetermined inclination angle. (1st invention) Further, in the optical integrated layer of the first invention, the arithmetic mean height Ra of the fine concavo-convex shape of the optical functional layer is preferably 0.040 or more and less than 0.200 45 323082 201202763 = and 〇 40 未 40 to less than 0 15〇Am is better, and 〇·〇4〇 up to 0. lGG/zm is particularly good. If the arithmetic mean height ^ does not reach Q. __ ^: optical _ phase _ material foot. If the arithmetic mean height is above _, the blackness of the optical integrated layer will be deteriorated. q The average length (RSm) of the concavo-convex shape of the surface of the force-rich layer is in the range of 30 to e m and is preferably from 5 Å to 25 Å, and more preferably from (10) 。. * When the temperature is less than 30"m, the blackness of the optical layered body is deteriorated because the surface scattering is increased. If it exceeds the break, there will be a deterioration in anti-glare properties. The maximum height (Rz) of the concave-convex shape on the surface of the optical functional layer is at +300 ^1.200^ni^||ffl , 400 ^1. 〇〇〇^^^ is better and 0.5 to 〇· __ is better. . If it is not up to 3〇〇^ claws, there is an anti-glare H heart. If it exceeds the workmanship, the blackness of the optical laminate will deteriorate. <Polarizing substrate> In the present month, a polarizing substrate may be laminated on a light-transmitting substrate opposite to the optical functional layer. Here, as the polarizing substrate, a light-absorbing polarizing substrate that absorbs other light only by penetrating a specific polarized light, or a light-reflecting polarizing substrate that reflects only other polarized light and reflects other light may be used. As the light absorbing polarizing substrate, a film which is extended by polyvinyl alcohol, polyvinyl ene or the like can be used, and for example, polyvinyl alcohol (PVA) obtained by uniaxially stretching polyvinyl alcohol adsorbing iodine or a dye can be used. The film is a two-color element. Examples of the light-reflective polarizing substrate include, for example, a poly-resin resin (PEN and PEN copolymer) having different refractive indices in the direction in which the stretching is extended, and by extrusion molding technology, 323082 46 201202763 The "DBEJ?" manufactured by 3M Company, or a layered layer of a cholesteric liquid crystal polymer layer and a quarter-wavelength plate, separates light incident from the side of the cholesteric liquid crystal polymer layer into two types of circularly polarized light which are opposite to each other. After one side is penetrated and the other side is reflected, the circularly polarized light that penetrates the cholesteric liquid crystal polymer layer is converted into a linearly polarized Nippon Electric Co., Ltd. "N i pOCS" or a Merck company by a quarter-wave plate. "Transmaks" and so on. The polarizing substrate and the optical laminate are laminated directly or via an adhesive layer or the like, and can be used as a polarizing plate. <Display Device> The optical laminate of the present invention can be applied to, for example, a liquid crystal display device (Lcd), a plasma display panel (PDP), an electroluminescence display (ELD) or a cathode tube display device (CRT), and a surface electric field display (SED) ) on the display. It is especially suitable for liquid crystal display devices (LCDs). Since the optical layered body of the present invention has a light-transmitting substrate, the light-transmitting substrate can be used next to the image display surface of the image display device. When the optical layered body of the present invention is used as the grass side of the surface protective film of the polarizing plate, it can be suitably used for twisted nematic (TN), super twisted nematic (STN), vertical orientation (VA). , vertical al ignment), plane conversion (ips, in-plane-switching), optically compensated birefringence (〇cb, optically compensated birefrigence) and other modes of transmissive, reflective or semi-transmissive liquid crystal display devices. <Manufacturing method of optical layered body> The method of applying the coating material for forming an optical functional layer on a light-transmitting substrate can be carried out by a general coating method or a printing method. Specifically, it can be used for air doctor coating, bar coating, blade coating, knife coating, reverse coating, transfer roll coating, gravure Roll coating, kiss coating, casting coating, spray coating, slit orifice coating, calender coating, barrier coating, dip coating, mold A printing method such as coating such as coating or gravure printing such as gravure printing or screen printing. Hereinafter, the present invention will be described by way of examples, but the present invention is not limited thereto. [Examples] (First invention and third invention) [Example 1] After the predetermined mixture described in Table 1 was stirred by a disperser for 30 minutes, the obtained coating material for forming an optical functional layer was applied by roll coating. (Linear speed: 20 m/min) Prepared on a single surface of a transparent substrate TAC (made by Fujifilm Co., Ltd.; TD60UL) consisting of a film thickness of 6 〇em and a total light transmittance of 92%, after preparation at 30 to 50 ° C After drying for 20 seconds, it was dried at 1 Torr for 1 minute, and then subjected to ultraviolet irradiation in a nitrogen atmosphere (replaced with nitrogen) (lamp: concentrating high-pressure mercury lamp, lamp output: 120 W/cm, number of lamps: 4, irradiation Distance: 20 cm), hardening the coating film. Thus, an optical layered body of Example 1 having an optical functional layer having a thickness of 4.1 was obtained. From the results of SEM and EDS, it was confirmed that the optical functional layer constituting the obtained laminate had at least the first phase and the second phase, and a random agglomerated structure was formed. 48 323082 201202763 第一 (First Invention, Third Invention) [Example 2] The same operation as in Example 1 was carried out except that the coating material for forming an optical function layer was changed to a predetermined mixed liquid described in Table 1. An optical laminate of Example 2 having an optical functional layer having a thickness of 5. 5 #m was obtained. As a result of SEM and EDS, it was confirmed that the optical functional layer constituting the obtained laminate had at least the first phase and the second phase, and a random agglomerated structure was formed. (First Invention and Third Invention) [Example 3] The same operation as in Example 1 was carried out except that the coating material for forming an optical functional layer was changed to a predetermined mixed liquid described in Table 1, and the thickness was obtained. 5. An optical layered body of Example 3 of an optical functional layer of 5/zm. As a result of SEM and EDS, it was confirmed that the optical functional layer constituting the obtained laminate had at least the first phase and the second phase, and a random agglomerated structure was formed. (First Invention and Third Invention) [Example 4] The same operation as in Example 1 was carried out, except that the coating material for forming an optical functional layer was changed to a predetermined mixed liquid described in Table 1, and the thickness was obtained. The optical layered body of Example 4 of the optical functional layer of 5.0 #πι. As a result of SEM and EDS, it was confirmed that the optical functional layer constituting the obtained laminate had at least the first phase and the second phase, and a random agglomerated structure was formed. (First Invention and Third Invention) [Example 5] The same operation as in Example i was carried out, except that the coating material for forming an optical functional layer was changed to the mixed liquid of the pre-49 323082 201202763 described in Table 1, (iv) An optical product of Example 5 having an optical functional layer having a thickness of 5.9 (d). As a result of the knowledge and the leg, it was confirmed that the optical functional layer to v constituting the obtained laminate had the first phase and the first phase, and a random agglomerated structure was formed. At this time, the SEM results observed by the silk layer of the (4) are not shown in Fig. 2, and the results of the cross-section of the optical layer are shown in Fig. 3 The observed EDS results are shown in Figure 4. As a result of the above, it was confirmed that the optical Wei layer constituting the obtained optical layered body had at least the first phase and the second phase, and a random agglomerated structure was formed. (First Invention and Third Invention) [Example 6] The same operation as in Example , was carried out except that the coating material for forming an optical functional layer was changed to a predetermined mixed liquid described in Table i, and the thickness was obtained. The optical layered body of Example 6 of the optical functional layer of 5·4em. As a result of SEM and EDS, it was confirmed that the optical functional layer constituting the obtained laminate had at least the first phase and the second phase, and a random agglomerated structure was formed. (First Invention and Third Invention) [Comparative Example 1] The same operation as in Example , was carried out except that the coating material for forming an optical functional layer was changed to a predetermined mixed liquid described in Table 2, and the thickness was obtained. 4. The optical layered body of Comparative Example 1 of an optical functional layer of 3 // m. At this time, it was confirmed from the results of SEM and EDS of the obtained laminate that the optical functional layer constituting the obtained optical laminate did not form a random agglomerated structure, but 50 323082 201202763 formed an island structure formed by agglomerating organic fine particles. . (First Invention and Third Invention) [Comparative Example 2] Except that the coating material for forming an optical functional layer was changed to the mixed liquid described in Table 2, the operation of Example (4) was carried out to obtain a thickness. The optical layer of Comparative Example 2 of the optical functional layer of 5.8 " In this case, it was confirmed from the results of s EM and ED s of the obtained laminated body that the optical functional layer of the optical layered body obtained by argon formation did not form a random agglomerated structure, but that the first phase and the second phase were dispersed on the entire film surface. The island structure in the middle. (First invention and third invention) [Comparative Example 3] The same operation as in Example 1 was carried out except that the coating material for forming an optical functional layer was changed to a mixed liquid obtained in Table 2, 0 0. Optical expansion of Comparative Example 3 having an optical functional layer having a thickness of 6.6 μm. At this time, the Greek/Γ SEM results of the optical functional layer of the obtained optical laminate are shown in Fig. 5 The EDS results observed by the optical function of the optical laminate are shown in Fig. 6. It was confirmed that the optical functional layer constituting the layered body was separated from the second phase by the first phase, and the micro-functional layer did not contain fine particles, so that a random agglomerated structure was not formed. (First invention and third invention) [Comparative Example 4] ^ The same operation as in the first embodiment was carried out except that the coating material for forming an optical function layer was changed to a mixed liquid of the private layer of Table 2. μ. The optical product of Comparative Example 4 having an optical functional layer having a thickness of 5·5/zm was used. 51 323 〇 82 201202763 In this case, the SEM and EDS results of the obtained optical layered product confirmed that the obtained optical laminate was formed. The optical functional layer does not form a random agglomerated structure, but forms an island structure in which light-transmitting organic fine particles are aggregated. (First Invention and Third Invention) [Comparative Example 5] The same operation as in Example 1 was carried out except that the coating material for forming an optical functional layer was changed to a predetermined mixed liquid described in Table 2, and the thickness was obtained. 4. The optical layered body of Comparative Example 5 of the optical functional layer. At this time, the SEM results observed from the optical functional layer of the obtained optical layered body are shown in Fig. 7. It was confirmed that the optical functional layer constituting the obtained optical layered body was formed into an island structure in which a light-transmitting organic fine particle was aggregated instead of forming a random agglomerated structure. (First Invention and Third Invention) [Comparative Example 6] The same operation as in Example 1 was carried out except that the coating material for forming an optical function layer was changed to a predetermined mixed liquid described in Table 2, and the thickness was obtained. An optical layered body of Comparative Example 6 of an optical functional layer of 4.0//in. In this case, from the SEM and EDS results of the obtained optical layered product, it was confirmed that the optical functional layer constituting the obtained optical layered body was formed into a sea-island structure in which an amorphous aggregate was formed instead of forming a random agglomerated structure. (First invention and third invention) The materials used in the above examples were arranged in Table 1, and the materials used in the comparative examples were summarized in Table 2. 52 323082 201202763 [Table 1]

No 成分 公司名 製品名 質量份 實施例1 多官能氨酯丙烯酸酯 新中村化學 U-15HA 275 2 B能丙煤酸酯 東亞合成 M-305 120 光眾合起始劑 · Ciba Japan IRGACURE184 20 热機成分 見狀有機黏土,親水性 - 5 f平劑 共榮社化學 LINC-3A 10 达光性有機微粒子 - 折射率:1.53,平均粒徑:3. 0//m — 15 透光性有機微粒子 折射率:1. 59,平均极徑:2_〜/m - - 5 甲醇溶劑) ' — — 一 130 丰(第1 >容劑) — — 30 一甲本(第2溶劑) 一 一 390 實施例2 實施例3 多官能氨酯丙烯酸酯 共榮社化學 UA-306I 260 夕B月&丙缔酸酉旨 共榮社化學 DPE-6A 130 產聚合起始劑 Ciba Japan IRGACURE184 20 無機成分 層狀有機黏土,親水性 一 — 5 調平劑 共榮社化學 No. 77 10 透光性有梃微粒子 ' 折射率:1. 53,平均粒徑:3. 0 /zm - - 15 p醇(第ΪΓ容劑) ~ - - 90 MiBK(第2溶劑) - - 410 —甲笨(第2溶劑) - - 60 多官能丙烯酸酯 共榮社化學 PE-3A 385 立聚合起始劑 Ciba Japan IRGACURE184 20 無機成分 矽熔膠,親水性 - — 20 調平劑 共榮社化學 No. 90 10 透光性有機微粒子 翌身率:1.59,平均粒徑:2. 0“m - - 15 曱醇(第1溶劑) - - 60 一甲琴(第2溶劑) - - 490 實施例4 多官能氨酯丙烯酸酯 共榮社化學 UA-306I 405 光聚合起始杳1丨 Ciba Japan IRGACURE184 20 無機成分 層狀有機黏土,親油性 - - 25 透光性有機微粒子 折射率:1.53,平均粒徑:3.0 wm — - 10 53 323082 201202763 透光性有機微粒子 折射率:1. 54,平均粒徑:2. O/zm - - 10 MIBK(第1溶劑) - 一 100 一甲苯(第2溶劑) 一 - 50 甲醇(第2溶劑) — — 380 實施例5 多官能丙烯酸酯 新中村化學 A-DPH 408 光聚合起始劑 Ciba Japan IRGACURE184 20 無機成分 _層狀有機黏土,親油性 一 - 5 調平劑 共榮社化學 LINC-3A 10 透光性有機微粒子 Μ率:1.52,平均粒徑:2.0/zm — - 2 透光性有機微粒子 楚ϋ: 1.59,平均粒徑:2.0ym - - 5 _T幕(第1溶劑) - - 120 &AC第2溶劑) — - 430 實施例6 氨S旨丙婦酸g旨 新中村化學 U-15HA 290 丙烯酸酯 東亞合成 M-305 120 光聚备起始劑 Ciba Japan IRGACURE184 20 無機成分 親油性 - - 10 碑平劑 BYK BYK-361N 10 遠·光性有機微粒子 : 1.49,平均粒徑:1.5μιη - - 20 ¢5¾差1溶劑) — - 160 2 溶劑) 一 — 370 54 323082 201202763 【表2】No Ingredient company name product name part by weight Example 1 Multifunctional urethane acrylate Xinzhongcun Chemical U-15HA 275 2 B energy propylene sulphate East Asian synthesis M-305 120 Photonic starter · Ciba Japan IRGACURE184 20 Heat engine Ingredients see organic clay, hydrophilic - 5 f flat agent Gongrongshe Chemical LINC-3A 10 Light-sensitive organic microparticles - Refractive index: 1.53, average particle size: 3. 0 / / m - 15 Translucent organic microparticle refraction Rate: 1.59, average polar diameter: 2_~/m - - 5 methanol solvent) '-- one 130 abundance (1st > container) - 30 one-fold (second solvent) one-390 embodiment 2 Example 3 Multifunctional urethane acrylate Kyoeisha Chemical UA-306I 260 BB月 & propyl acrylate 共 荣 荣 荣 荣 D D D D-6-6 130 130 130 130 130 130 130 130 130 130 Clay, hydrophilic one - 5 leveling agent, Kyoeisha Chemical No. 77 10 Transmittance 梃 microparticles 'refractive index: 1. 53, average particle size: 3. 0 /zm - - 15 p alcohol (dimension ~) - 90 MiBK (2nd solvent) - - 410 - A stupid (2nd solvent) - - 60 Multifunctional C Acid Co., Ltd. Chemicals PE-3A 385 Vertical polymerization initiator Ciba Japan IRGACURE184 20 Inorganic ingredients 矽 melt adhesive, hydrophilic - 20 Conditioning agent Kyoeisha Chemical No. 90 10 Transmittance organic microparticles body rate: 1.59, average particle diameter: 2. 0"m - - 15 sterol (1st solvent) - - 60 one cymbal (2nd solvent) - - 490 Example 4 Polyfunctional urethane acrylate Kyoeisha Chemical UA- 306I 405 Photopolymerization start 杳1丨Ciba Japan IRGACURE184 20 Inorganic layered organic clay, lipophilic - 25 Translucent organic microparticles Refractive index: 1.53, average particle size: 3.0 wm — - 10 53 323082 201202763 Transmittance Refractive index of organic microparticles: 1. 54, average particle diameter: 2. O/zm - - 10 MIBK (first solvent) - one 100-toluene (second solvent) - 50 methanol (second solvent) - 380 implementation Example 5 Multifunctional acrylate Xinzhongcun Chemical A-DPH 408 Photopolymerization initiator Ciba Japan IRGACURE184 20 Inorganic ingredients _ layered organic clay, lipophilic one - 5 leveling agent Kyoeisha Chemical LINC-3A 10 Translucent organic Microparticles: 1.52, average particle size: 2.0/zm — — 2 Translucent organic microparticles: 1.59, average particle size: 2.0ym - - 5 _T curtain (first solvent) - - 120 & AC second solvent) — - 430 Example 6 Ammonia S Acid g, New Nakamura Chemical U-15HA 290 Acrylate East Asian Synthesis M-305 120 Light polymerization starter Ciba Japan IRGACURE184 20 Inorganic component lipophilic - - 10 Tablet leveling agent BYK BYK-361N 10 Far · Light organic microparticles: 1.49, average particle size: 1.5μιη - - 20 ¢53⁄4 difference 1 solvent) — — 160 2 Solvents】 一— 370 54 323082 201202763 [Table 2]

No 成分 公司名 製品名 質量份 比較例1 多官能氨酯丙烯酸酯 共榮社化學 UA-306H 175 多官能丙烯酸酯 新中村化學 A-DPH 250 光聚合起始劑 Ciba Japan IRGACURE184 20 調平劑 共榮社化學 LINC-3A 10 透光性有機微粒子 折射率:1. 53,平均粒徑:3. 0"m 一 - 5 透光性有機微粒子 折射率:1. 59,平均粒徑:2. 0"m - - 10 MIBK - - 130 乙醇 - - 400 比較例2 多官能氨酯丙稀酸酯 共榮社化學 UA-306H 150 多官能丙烯酸酯 共榮社化學 TMP-A 250 光聚合起始劑 Ciba Japan IRGACURE184 20 無機成分 層狀有機黏土,親水性 - - 10 調平劑 BYK BYK-354 15 透光性有機微粒子 折射率:1. 53,平均粒徑:3. Ομπι - - 5 透光性有機微粒子 折射率:1. 59,平均粒徑:2. O/zm - - 10 甲醇(第1溶劑) - - 500 水(第1溶劑) - — 40 甲苯(第2溶劑) - - 10 比較例3 多官能氨酯丙烯酸酯 新中村化學 U-6HA 155 多官能丙烯酸酯 新中村化學 A-TMMT-3 300 光聚合起始劑 Ciba Japan IRGACURE184 20 無機成分 層狀有機黏土,親油性 - — 20 調平劑 共榮社化學 LINC-3A 5 甲笨(第1溶劑) - - 250 MEK(第1溶劑) - — 50 乙醇(第2溶劑) - - 200 比較例4 多官能氨酯丙稀酸酯 新中村化學 U-4HA 320 多官能丙稀酸醋 東亞合成 M-305 110 光聚合起始劑 Ciba Japan IRGACURE907 20 增黏劑 Eastman chemical 製 CAP482-20 5 調平劑 BYK BYK-354 15 透光性有機微粒子 折射率:1. 57,平均粒徑:3. 5em - - 30 MIBK 一 - 250 曱苯 - - 250 55 323082 201202763 比較例5 多官能丙烯酸酯 共榮社化學 DPE-6A 410 光聚合起始劑 Ciba Japan IRGACURE907 13 增黏劑 Eastman chemical 製 CAP482-20 15 調平劑 BYK BYK-354 2 透光性有機微粒子 折射率:1.59,平均粒徑:3. 5jam - - 60 ΜΪΒΚ " - - 400 環己酮 - - 100 比較例6 多官能丙烯酸酯 共榮社化學 DPE-6A 435 光聚合起始劑 Ciba Japan IRGACURE907 23 調平劑 BYK BYK-354 2 不定形的矽 平均粒徑:3.1 ;zm - 40 MEK - - 500 以下述條件進行SEM及EDS的拍攝。No Ingredient company name product name quality part Comparative example 1 Multifunctional urethane acrylate Kyoeisha Chemical UA-306H 175 Multifunctional acrylate New Nakamura Chemical A-DPH 250 Photopolymerization initiator Ciba Japan IRGACURE184 20 Leveling agent 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 m - - 10 MIBK - - 130 Ethanol - - 400 Comparative Example 2 Polyfunctional urethane acrylate Emerald Chemical UA-306H 150 Multifunctional acrylate Kyoei Chemical TMP-A 250 Photopolymerization initiator Ciba Japan IRGACURE184 20 Inorganic Layered Organic Clay, Hydrophilic - - 10 Leveling Agent BYK BYK-354 15 Transmittance Organic Particles Refractive Index: 1. 53, Average Particle Size: 3. Ομπι - - 5 Transmittance Organic Particle Refraction Rate: 1.59, average particle diameter: 2. O/zm - - 10 methanol (first solvent) - - 500 water (first solvent) - 40 toluene (second solvent) - - 10 Comparative Example 3 Multifunctional Urethane Acrylate New Nakamura Chemical U-6HA 155 Multifunctional Acrylic Xinzhongcun Chemical A-TMMT-3 300 Photopolymerization initiator Ciba Japan IRGACURE184 20 Inorganic layered organic clay, lipophilic - 20 Conditioning agent Kyoeisha Chemical LINC-3A 5 A stupid (1st solvent) - - 250 MEK (1st Solvent) - 50 Ethanol (Second Solvent) - - 200 Comparative Example 4 Polyfunctional urethane acrylate Lenzium Ueda Chemical U-4HA 320 Polyfunctional acrylate vinegar East Asian synthesis M-305 110 light Polymerization initiator Ciba Japan IRGACURE907 20 Adhesive agent Eastman chemical CAP482-20 5 Leveling agent BYK BYK-354 15 Transmittance organic fine particle refractive index: 1. 57, average particle size: 3. 5em - - 30 MIBK - 250 Benzene - 250 55 323082 201202763 Comparative Example 5 Multifunctional acrylate Kyoei Chemical DPE-6A 410 Photopolymerization initiator Ciba Japan IRGACURE907 13 Tackifier Eastman chemical CAP482-20 15 Leveling agent BYK BYK- 354 2 Transmittance organic fine particle refractive index: 1.59, average particle size: 3. 5jam - - 60 ΜΪΒΚ " - - 400 cyclohexanone - - 100 Comparative Example 6 Multifunctional acrylate Kyoeisha Chemical DPE-6A 435 light Polymerization initiator Ciba Japan IRGA CURE907 23 Leveling agent BYK BYK-354 2 Unshaped 矽 Average particle size: 3.1; zm - 40 MEK - - 500 SEM and EDS were taken under the following conditions.

SEM 藉由SEM觀察實施例、比較例所得的積層體之塗佈層 表面的狀態,及含有元素的資訊。觀察是在塗佈層表面蒸 鍍金或碳時進行。以下,表示SEM觀察的條件。 分析裝置……JSM-6460LV(日本電子公司製) 前處理裝置…C(碳)塗佈:45nmSC-701C(Sanyu電子公司製) •••Au(金)塗佈:10nm SC-701AT 改(Sanyu 電子 社製) SEM條件…加速電壓:20KV或15KV 照射電流:0. 15nA 真空度:高真空 影像檢測器:反射電子檢測器 試料傾斜:0度SEM The state of the surface of the coating layer of the laminate obtained in the examples and the comparative examples and the information on the elements were observed by SEM. The observation was carried out while depositing gold or carbon on the surface of the coating layer. Hereinafter, the conditions of SEM observation are shown. Analytical device...JSM-6460LV (manufactured by JEOL Ltd.) Pretreatment device...C (carbon) coating: 45nmSC-701C (manufactured by Sanyu Electronics Co., Ltd.) •••Au (gold) coating: 10nm SC-701AT (Sanyu SEM conditions... Acceleration voltage: 20KV or 15KV Irradiation current: 0. 15nA Vacuum degree: High vacuum image detector: Reflected electron detector sample tilt: 0 degrees

EDS 56 323082 201202763 藉由EDS觀察實施例、比較例所得的積層體之含有元 素的貝°觀察是在塗佈層表面蒸錢碳之際進行。以下, 表示EDS觀察的條件。 分析裝置......JSM-6460LV(日本電子公司製) 月j處理政置...C(碳)塗佈:45nm SC-701C(Sanyu電子公司製)EDS 56 323082 201202763 The observation of the elements contained in the laminate obtained in the examples and the comparative examples by EDS was carried out while vaporizing carbon on the surface of the coating layer. Hereinafter, the conditions for EDS observation are shown. Analytical device...JSM-6460LV (manufactured by JEOL Ltd.) Monthly j processing policy...C (carbon) coating: 45nm SC-701C (manufactured by Sanyu Electronics Co., Ltd.)

EDS條件......加速電壓:20KVEDS condition... Accelerating voltage: 20KV

照射電流:0. 15nA 真空度:高真空 影像檢測器:反射電子檢測器 MAP解析度:128x96(晝素) 影像解析度:1〇24χ768(晝素) (評估方法) 接著針對實施例及比較例的光學積層體,進行下述項 目的評估。 (膜厚) 使用上述SEM’觀察在液態氮中凍結破裂的光學積層 體之剖面部份,求得膜厚。 (霧度值) 依照JIS K7105,使用霧度計(商品名:_2〇〇〇,日 本電色公司製)測定霧度值(全Hz)。 (表面粗度) 依照JISB06(U-20(U,使用表面粗度測定器(商品名: Surf corderSEl700 α,小坂研究所公司製)測定光學功能層 面的凹凸形狀之算術平均高度Ra、最大高度匕及平均長 323082 57 201202763 度 RSm 〇 光學功能層面的凹凸形狀之傾斜角的分佈是依照以 下的順序計算。 首先,依照ASME/1995,利用表面粗度測定器(商品 名:SurfcorderSE1700 a,小坂研究所公司製)測定在光學 功能層面上形成的凹凸形狀。而且,該測定是將實施例及 比較例的各光學積層體安置在上述SurfcorderSE 1700 α 的預定位置之後,選擇「ASME95」,再選擇「Aa」作為參 數後進行測定。 測定條件如下述。Irradiation current: 0. 15nA Vacuum degree: High vacuum image detector: Reflected electron detector MAP resolution: 128x96 (halogen) Image resolution: 1〇24χ768 (昼素) (Evaluation method) Next, for the examples and comparative examples The optical laminate was evaluated for the following items. (Thickness) The cross-sectional portion of the optical laminate which was freeze-ruptured in liquid nitrogen was observed by the above SEM', and the film thickness was determined. (Haze value) The haze value (full Hz) was measured using a haze meter (trade name: _2, manufactured by Nippon Denshoku Co., Ltd.) in accordance with JIS K7105. (surface roughness) The arithmetic mean height Ra and the maximum height of the uneven shape of the optical functional layer were measured in accordance with JIS B06 (U-20 (U, using a surface roughness measuring instrument (trade name: Surf corder SEl700 α, manufactured by Otaru Research Co., Ltd.) And the average length of 323082 57 201202763 degrees RSm 分布 The distribution of the inclination angle of the concave and convex shape of the optical function layer is calculated according to the following order. First, according to ASME/1995, the surface roughness measuring instrument (trade name: Surfcorder SE1700 a, Otaru Research Institute) In the measurement, the optical laminates of the examples and the comparative examples were placed at predetermined positions of the Surfcorder SE 1700 α, and then "ASME95" was selected, and then "Aa" was selected. The measurement was carried out as a parameter. The measurement conditions are as follows.

•測定長度:4. Omm •濾光片:GAUSS • Ac(粗度截取值):0. 8 • λ f(彎曲截取值):10 λ c •縱倍率:20, 000倍 •橫倍率:500倍 其次,計算出測定凹凸形狀所得之測定全長中每0. 5// m測定長度(X)的凹凸高度(Υ)後,由下式計算出局部傾斜 (△Zi)。 【數3】 AZf =(^+3-9xdYi+2+45xdYM -45x^_, +9xdYi_2 -ί^_3)/(6〇χ^) 式中,ΛΖί是指在某任意測定位置dXi的局部傾斜。 接著,由下式計算出傾斜角(Θ)。 58 323082 201202763 【數4】 ^ = tan_1|AZ/| 由上式求得測定全長的傾斜角(0 )之後,作成傾斜角 (0)0.1°刻度的度數分佈,而求得具有本發明中規定的預 定傾斜角者之比例(%)。 (影像鮮明性) 依照JIS K7105,使用影像清晰度測定器(商品名: ICM-1DP,Suga試驗機公司製),將測定器設定成穿透模 式,以光學梳寬0. 5mm進行測定。 (防眩性) 以定量評估與定性評估的二種方法之數值判定防眩 性。兩評估的判定值之和在5分以上時為◎,在4分時為 〇,在3分以下為X。 (防眩性之定量評估) 影像鮮明性之值在5以上至未達40時為3分、40以 上至未達80時為2分,在80以上時為1分。 (防眩性之定性評估) 在實施例及比較例的光學積層體中,在光學功能層形 成面相反的面上隔著無色透明的黏著劑,貼合黑色壓克力 板(三菱 Rayon 製 Aery 1 ite L502)上,在 400 照度(lux)的 環境照度中,使兩支向外突出狀態的日光燈平行配置之曰 光燈作為光源,以45至60度的角度映照燈光,由正反射 方向以目視觀察其反射像,判定日光燈的映照之程度。越 將兩支日光燈的反射像看成一支,像越是模糊不清時為3 59 323082 201202763 分,雖可辨識兩支日光燈,但日光燈的輪廓模糊時為2分, 兩支日光燈的輪廓不模糊且可清晰看見時為1分。 (黑度) 以定量評估與定性評估的二種方法之數值判定亮室 下的黑度。兩評估的判定值之和在6分時為◎,在5分時 為〇,在4分以下時為X。 (黑度之定量評估) 在實施例及比較例之光學積層體中,在光學功能層形 成面相反的面上隔著無色透明的黏著層貼合在液晶顯示器 (商品名.LC-37GX1W ’ Sharp公司製)的晝面表面,由液晶 顯示器晝面的正面上方60°的方向,以日光燈(商品名: HH4125GL,National公司製)使液晶顯示器表面的照度成 為200照度之後’以色彩亮度計(商品名:BM_5A,T〇pc〇n 公司製)測定液晶顯示器為白顯示及黑顯示時之亮度後,以 下式計算出所得黑顯示時之亮度(cd/m2)與白顯示時之亮 度(cd/m2),將平板偏光板的對比設為1〇〇%,以下式計算 出減少率。如減少率未達5%時為3分,在5%至未達1〇%時 為2分,在10%以上時為1分。 對比=白顯示時之亮度/黑顯示時之亮度 減少率=對比(光學積層體)/對比(平板偏光板) 本發明中平板偏光板,是指於吸附有破或染料的聚乙 稀酵經單軸延伸而得的聚乙㈣(pvA)_n貼合 TAC膜而成的積層體。 (黑度之定性評估) 323082 60 201202763 在實施例及比較例之光學積層體中,在光學功能詹形 成面相反的面隔著無色透明的黏著劑貼合在黑色壓克力板 (三菱Rayon製Acrylite L502)上,在400照度的環境照 度中,以兩支向外突出狀態的日光燈平行配置之日光燈作 為光源,以45至60度的角度映照燈光,由正反射方向以 目視觀察光源的反射像以外的部份之黑度後,與實施例1 所示的薄膜比較,黑度優異的為3分,黑度為相同程度時 為2分,黑度不佳時為1分。 (暗室對比) 暗室對比是在實施例及比較例之光學積層體中,在光 學功能層形成面相反的面隔著無色透明的黏著層貼合在液 晶顯示器(商品名:LC-37GX1W,Sharp公司製)的畫面表 面’於暗室條件下,以色彩亮度計(商品名:BM-5A,Topcon 公司製)測定液晶顯示器為白顯示及黑顯示時之亮度後,以 下式計算出所得黑顯示時之亮度(cd/m2)與白顯示時之亮 度(cd/m2) ’將平板偏光板的對比設為,以下式計算 出減少率。如減少率未達3%時為◎,在3%以上至未達7% 時為〇,在7%以上時為χ。 對比=白顯示時之亮度/黑顯示時之亮度 減少率=對比(光學積層體)/對比(平板偏光板) (刺眼) 刺眼是在各實施例及比較例之光學積層體中,在光學 功能層形成©相反的面隔著無色朗㈣著層分別貼合在 解析度為lOOppi的液晶顯示器(商品名:ll_ti62〇_b, 323082 61 201202763• Measurement length: 4. Omm • Filter: GAUSS • Ac (thickness intercept value): 0. 8 • λ f (bending cutoff value): 10 λ c • Vertical magnification: 20,000 times • Horizontal magnification: 500 Then, the total height (ΥZi) of the length (X) of the measurement length (X) was calculated for each of the measured total lengths obtained by measuring the uneven shape. [Number 3] AZf = (^+3-9xdYi+2+45xdYM -45x^_, +9xdYi_2 -ί^_3)/(6〇χ^) where ΛΖί means the local tilt of dXi at an arbitrary measurement position . Next, the tilt angle (Θ) is calculated by the following formula. 58 323082 201202763 [Number 4] ^ = tan_1|AZ/| After determining the full-angle tilt angle (0) from the above equation, the degree distribution of the tilt angle (0) 0.1° scale is created, and the specification of the present invention is obtained. The proportion (%) of the predetermined inclination angle. 5毫米进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行进行。 (Anti-glare property) The anti-glare property was judged by the numerical values of the two methods of quantitative evaluation and qualitative evaluation. The sum of the judgment values of the two evaluations is ◎ when it is 5 points or more, 〇 when it is 4 points, and X when it is 3 points or less. (Quantitative evaluation of anti-glare property) The value of image sharpness is 3 points from 5 or more to less than 40, 2 points above 40, and 2 points when it is less than 80, and 1 point when it is 80 or more. (Qualitative evaluation of the anti-glare property) In the optical laminate of the examples and the comparative examples, a black acrylic sheet (a Mitsubishi Rayon Aery) was attached to the surface having the opposite surface of the optical functional layer forming surface via a colorless and transparent adhesive. 1 ite L502), in the illuminance of 400 illuminance, the two lamps with the outwardly protruding fluorescent lamps are arranged in parallel as the light source, and the light is reflected at an angle of 45 to 60 degrees, from the direction of the regular reflection. The reflected image was visually observed to determine the degree of reflection of the fluorescent lamp. The more the reflection image of the two fluorescent lamps is seen as one, the more blurred the image is 3 59 323082 201202763 points, although two fluorescent lamps can be identified, but the outline of the fluorescent lamp is 2 points when blurred, the outline of the two fluorescent lamps is not blurred It can be clearly seen as 1 point. (Blackness) Determine the blackness under the bright room by the values of the two methods of quantitative evaluation and qualitative evaluation. The sum of the judgment values of the two evaluations is ◎ at 6 minutes, 〇 at 5 minutes, and X at 4 minutes or less. (Quantitative evaluation of blackness) In the optical laminate of the examples and the comparative examples, a liquid crystal display (trade name: LC-37GX1W 'Sharp) was bonded to the surface on which the optical functional layer was formed on the opposite surface via a colorless transparent adhesive layer. The surface of the surface of the liquid crystal display is 60 degrees in the direction of the front side of the liquid crystal display, and the illumination of the surface of the liquid crystal display is made to be 200 illuminance after the illumination (product name: HH4125GL, manufactured by National Corporation). Name: BM_5A, manufactured by T〇pc〇n.) After measuring the brightness of the liquid crystal display for white display and black display, the following formula calculates the brightness (cd/m2) of the resulting black display and the brightness of the white display (cd/). M2), the contrast of the flat polarizing plate was set to 1%, and the reduction rate was calculated by the following formula. If the reduction rate is less than 5%, it is 3 points, when it is 5% to less than 1%, it is 2 points, and when it is 10% or more, it is 1 point. Contrast = brightness in white display / brightness reduction rate in black display = contrast (optical laminate) / contrast (plate polarizer) In the present invention, a plate polarizing plate refers to a polyethylene glycol which is adsorbed with a broken or dye. A laminated body obtained by laminating a polytetraethyl (tetra) (pvA)_n uniaxially bonded TAC film. (Qualitative evaluation of blackness) 323082 60 201202763 In the optical laminate of the examples and the comparative examples, the surface opposite to the optical function surface was bonded to the black acrylic sheet via a colorless transparent adhesive (manufactured by Mitsubishi Rayon) On the Acrylite L502), in the ambient illumination of 400 illuminance, two fluorescent lamps arranged in parallel with the outwardly protruding fluorescent lamps are used as the light source, and the light is reflected at an angle of 45 to 60 degrees, and the reflected image of the light source is visually observed from the direction of the regular reflection. After the blackness of the other portions, the blackness was 3 points, the blackness was 2 points when the degree of blackness was the same, and the blackness was 1 point. (Dark room comparison) In the optical laminate of the examples and the comparative examples, the opposite surface of the optical functional layer was bonded to the liquid crystal display via a colorless transparent adhesive layer (trade name: LC-37GX1W, Sharp Corporation). The screen surface of the screen is measured under the darkroom conditions by the color brightness meter (product name: BM-5A, manufactured by Topcon Corporation), and the brightness of the liquid crystal display is displayed in white and black. Brightness (cd/m2) and brightness during white display (cd/m2) 'The contrast of the flat polarizer is set, and the reduction rate is calculated by the following formula. If the reduction rate is less than 3%, it is ◎, when it is 3% or more to less than 7%, it is 〇, and when it is 7% or more, it is χ. Contrast = brightness in white display / brightness reduction rate in black display = contrast (optical laminate) / contrast (plate polarizer) (glare) The glare is in the optical layer of each of the examples and comparative examples, in optical function Layer formation © opposite faces are separated by a colorless ray (four) layer respectively attached to a liquid crystal display with a resolution of lOOppi (trade name: ll_ti62〇_b, 323082 61 201202763

Sharp公司製)、解析度為150ppi的液晶顯示器(商品名. nw8240-PM780 ’日本Hewlett-Packard公司製)與解析度為 200ppi的液晶顯示器(商品名:p〇cV50FW,Sharp公司製) 的晝面表面上,於暗室中使液晶顯示器為綠顯示之後,以 解析度200ppi的CCD相機(CV-200C,Keyence公司製)由 各液晶TV的法線方向拍攝之影像中,無法確認亮度雜亂時 的解析度的值為l〇0ppi時為χ,15〇ppi為〇,在2〇〇ppi 時為◎。 刺眼是以該評估結果在150ppi以上為合格,並宜為 2〇〇ppi以上,而以25〇ppi以上為較佳。 所付的結果如表3中所示。 62 323082 201202763 [表3] 软 m 哲 © o ◎ ◎ ◎ @ ◎ ◎ Q X o 〇 ❾ Ο o Ο Ο X X ❾ X «ί Η 〇 o ο o Ο Ο ◎ ◎ X X X X <1 〇 o ο o ο Ο X X ◎ 〇 © ◎ 〇 0 ο 〇 0 0 X X X X X X « 55 Η 〇 CO d 求 to d § ac CO 劣 ο ο 求 Ο) ο g ο* o o ac S 求 S 求 C0 e\i 求 CO 3 毎 蝴 <〇 X 〇 CP eg m s κ «> a> CM «? CO 决 00 〇> ο U) ifi IO 籌 eg φ 琴 S € i ίζ CO esj Φ: 毎 蝴 in 〇 〇 2Λ eo JZ s CD as eg c>i r» aR csi CO a« 卜 d« lt> S S s σ> 00 a« in e>j C9 s in aft CD (D 隹 〇· \ 5 ί CO aR 求 ΙΟ n o c*> CO S ο 荽 CO 浹 CO ae in 严 S C«J •r^ 穿 <§1 a 3 o s CM C>J s «0 α> •τ^ 00 s eo s s CM &1 s 〇 s in d 寸 d CM CO in d ΙΟ o' <〇 g eo s CO 卜 s p eq (O in P CO £1 s o o 5 s o o i ο ο ο S 5 8 d 〇> CM P d 另 o' 5 Csl O) eo d tl 琢 S2 CO 〇> ir> P ir> CD <〇 <〇 in CO ir> Μ ΙΟ (Ο C0 ο <D CM s ir> CO CO CM s *0 P r> Csj CO in 5 Γ> <Ν CM 5 P m ir> C9 CO ? CM od CM ®t Ίε 5 m in U) in S α> ΙΟ 兮 ΙΟ CO 00 in (O cd to u> 00 P i 省 CM 本 CO 5 1« *X 5 ΙΟ 5 (D 本 Η i CM 本 w •Ά 本 40 5 «t a <〇 本 -£ 63 323082 201202763 (第一發明、第三發明) 如上述,根據本發明可達成良好的防眩性、亮室下的 黑度與防刺眼的性能優異,同時高暗室對比,同時可提供 製造安定性優異的光學積層體及該光學積層體的製造方 法。此外,亦可提供具備該光學積層體而成之偏光板及顯 示裝置。 (第二發明) [實施例1] 以分散器攪拌表4所記載之預定的混合物30分鐘後, 以輥塗佈方式將所得的光學功能層形成用之塗料塗佈(線 速度:20m/分鐘)在由膜厚60# m、全光線穿透率92%所構 成的透明基體的TAC(富士 film公司製;TD60UL)單面,經 過在30至50°C的預備乾燥20秒之後,在10(TC乾燥1分 鐘,然後在氮氣環境(取代成氮氣)中進行紫外線照射(燈: 聚光型高壓水銀燈,照燈輸出:120W/cm,燈數:4,照射 距離:20cm),使塗膜硬化。由此,可得具有厚度5. 0/zm 的光學功能層之實施例1的光學積層體。由SEM、EDS的結 果,可確認構成所得的積層體之光學功能層至少具有第一 相及第二相,且形成有隨機凝聚構造。 (第二發明) [實施例2] 除了將光學功能層形成用塗料變更為表4所記載之預 定的混合液之外,其餘進行與實施例1相同的操作,可得 具有厚度5.5 的光學功能層之實施例2的光學積層體。 64 323082 201202763 由SEM、EDS的結果,可確認構成所得的積層體之光學功能 層至少具有第一相及第二相,且形成有隨機凝聚構造。 (第二發明) [實施例3] 除了將光學功能層形成用塗料變更為表4所記載之預 定的混合液之外,其餘進行與實施例1相同的操作,可得 具有厚度4. 1 的光學功能層之實施例3的光學積層體。 由SEM、EDS的結果,可確認構成所得的積層體之光學功能 層至少具有第一相及第二相,且形成有隨機凝聚構造。 (第二發明) [實施例4] 除了將光學功能層形成用塗料變更為表4所記載之預 定的混合液之外,其餘進行與實施例1相同的操作,可得 具有厚度5. 2 的光學功能層之實施例4的光學積層體。 由SEM、EDS的結果,可確認構成所得的積層體之光學功能 層至少具有第一相及第二相,且形成有隨機凝聚構造。 (第二發明) [實施例5] 除了將光學功能層形成用塗料變更為表4所記載之預 定的混合液之外,其餘進行與實施例1相同的操作,可得 具有厚度5. 9 的光學功能層之實施例5的光學積層體。 由SEM、EDS的結果,可確認構成所得的積層體之光學功能 層至少具有第一相及第二相,且形成有隨機凝聚構造。 (第二發明) 65 323082 201202763 [實施例6] 除了將光學功能層形成用塗料變更為表4所記載之預 定的混合液之外,其餘進行與實施例1相同的操作,可得 具有厚度5· 8/im的光學功能層之實施例6的光學積層體。 由SEM、EDS的結果,可確認構成所得的積層體之光學功能 層至少具有第一相及第二相,且形成有隨機凝聚構造。 (第二發明) [比較例1 ] 除了將光學功能層形成用塗料變更為表5所記載之預 定的混合液之外,其餘進行與實施例1相同的操作,可得 具有厚度4· 的光學功能層之比較例1的光學積層體。 此時’由所得的積層體之SEM、EDS結果,可確認構成所得 的光學積層體之光學功能層並未形成隨機凝聚構造,而是 形成由透光性有機微粒子凝聚而成的海島構造。 (第二發明) [比較例2] 除了將光學功能層形成用塗料變更為表5所記載之預 定的混合液之外’其餘進行與實施例1相同的操作,可得 具有厚度5.8的光學功能層之比較例2的光學積層體。 此時’由所得的積層體之SEM、EDS結果,可確認構成所得 的光學積層體之光學功能層並未形成隨機凝聚構造,而是 形成第一相與第二相分散在膜面整體的海島構造。 (第二發明) [比較例3] 66 323082 201202763 &了將光學功能層形成用塗料變更為表5所記載之預 定的此α液之外,其餘進行與實施例1相同的操作,可得 具有厚度6.6/zm的光學功能層之比較例3的光學積層體。 此時’由所知的光學積層體之光學功能層面所觀測到的 SEM、·.σ果如第5圖表示,由光學積層體之光學功能層面所 觀測到的EDS結果如第6圖表*。可確_颜得的光學 積層體之光學功能層是第一相與第二相相分離,因光學功 月b層中不3微粒子’故未形成隨機凝聚構造。 (第二發明) [比較例4 ] 除了將光學功能層形成用塗料變更為表5所記載之預 定的混合液之外,其餘進行與實施例1相同的操作,可得 具有厚度5.8//m的光學功能層之比較例4的光學積層體。 此時’由所得的光學積層體之SEM、EDS結果,可確認構成 所得的光學積層體之光學功能層並未形成隨機凝聚構造, 而是形成由透光性有機微粒子凝聚而成之海島構造。 (第二發明) [比較例5] 除了將光學功能層形成用塗料變更為表5所記載之預 定的混合液之外,其餘進行與實施例丨相同的操作,可得 具有厚度4. 8 // m的光學功能層之比較例5的光學積層體。 此時,由所得的光學積層體之光學功能層面所觀測到的 SEM結果如第7圖表示。可確認構成所得的光學積層體之 光學功此層,並未形成隨機凝聚構造,而是形成由透光性 323082 67 201202763 有機微粒子凝聚而成之海島構造。 (第二發明) [比較例6 ] 除了將光學功能層形成用塗料變更為表5所記載之預 定的混合液之外,其餘進行與實施例1相同的操作,可得 具有厚度4.Ο/zm的光學功能層之比較例6的光學積層體。 此時,由所得的光學積層體之SEM、EDS結果,可確認構成 所得的光學積層體之光學功能層並未形成隨機凝聚構造, 而是形成由不定形的矽凝聚而成之海島構造。 (第二發明) [比較例7 ] 除了將光學功能層形成用塗料變更為表5所記載之預 定的混合液之外,其餘進行與實施例1相同的操作,可得 具有厚度5. 5#m的光學功能層之比較例7的光學積層體。 此時,由所得的光學積層體之SEM、EDS結果,可確認構成 所得的光學積層體之光學功能層並未形成隨機凝聚構造, 而是形成由透光性有機粒子凝聚而成的海島構造。 (第二發明) 將上述實施例中使用的材料整理於表4,比較例中使 用的材料整理於表5。 ,.ι 68 323082 201202763 [表4]A liquid crystal display (product name: nw8240-PM780 'made by Hewlett-Packard Co., Ltd., Japan) with a resolution of 150 ppi and a liquid crystal display (trade name: p〇cV50FW, manufactured by Sharp Corporation) having a resolution of 200 ppi On the surface, after the liquid crystal display is displayed in green in the dark room, the image captured by the CCD camera (CV-200C, manufactured by Keyence) with a resolution of 200 ppi from the normal direction of each liquid crystal TV cannot be analyzed when the brightness is disordered. When the value of degree is l〇0ppi, it is χ, 15〇ppi is 〇, and when it is 2〇〇ppi, it is ◎. The glare is qualified at 150 ppi or more, and is preferably 2 ppi or more, and preferably 25 ppi or more. The results paid are shown in Table 3. 62 323082 201202763 [Table 3] Soft m 哲© o ◎ ◎ ◎ @ ◎ ◎ QX o 〇❾ Ο o Ο XX XX ❾ X «ί Η o ο o Ο Ο ◎ ◎ XXXX <1 〇o ο o ο Ο XX ◎ 〇© ◎ 〇0 ο 〇0 0 XXXXXX « 55 Η 〇CO d seeking to d § ac CO bad ο ο seeking ο g ο* oo ac S seeking S seeking C0 e\i seeking CO 3 毎 butterfly &lt ;〇X 〇CP eg ms κ «>a> CM «? CO 决 00 〇> ο U) ifi IO raise eg φ piano S € i ίζ CO esj Φ: 毎 butterfly in 〇〇2Λ eo JZ s CD as Eg c>ir» aR csi CO a« 卜d« lt> SS s σ> 00 a« in e>j C9 s in aft CD (D 隹〇· \ 5 ί CO aR ΙΟ noc*> CO S ο荽CO 浃CO ae in strict SC«J •r^ wear<§1 a 3 os CM C>J s «0 α> •τ^ 00 s eo ss CM &1 s 〇s in d inch d CM CO In d ΙΟ o' <〇g eo s CO 卜 sp eq (O in P CO £1 soo 5 sooi ο ο ο S 5 8 d 〇> CM P d another o' 5 Csl O) eo d tl 琢S2 CO 〇>ir> P ir> CD <〇<〇in CO ir> Μ ΙΟ (Ο C0 ο <D CM s ir> CO CO CM s *0 P r> Csj CO in 5 Γ><Ν CM 5 P m ir> C9 CO ? CM od CM ®t Ίε 5 m in U) in S α> ΙΟ 兮ΙΟ CO 00 in (O cd To u> 00 P i Provincial CM This CO 5 1« *X 5 ΙΟ 5 (D Η i CM this w • Ά Ben 40 5 «ta <〇本-£63 323082 201202763 (first invention, third invention As described above, according to the present invention, excellent anti-glare property, excellent blackness under the bright room, and anti-glare property can be achieved, and high darkroom contrast can be provided, and at the same time, an optical laminate having excellent stability can be provided and the optical laminate can be provided. Production method. Further, a polarizing plate and a display device including the optical laminate can be provided. (Second Invention) [Example 1] After stirring a predetermined mixture described in Table 4 with a disperser for 30 minutes, the obtained coating material for forming an optical functional layer was applied by a roll coating method (linear speed: 20 m/min). ) TAC (manufactured by Fujifilm Co., Ltd.; TD60UL) of a transparent substrate composed of a film thickness of 60 # m and a total light transmittance of 92%, after a preliminary drying at 30 to 50 ° C for 20 seconds, at 10 (TC was dried for 1 minute, and then irradiated with ultraviolet rays in a nitrogen atmosphere (substituted into nitrogen gas) (lamp: concentrating high-pressure mercury lamp, lamp output: 120 W/cm, number of lamps: 4, irradiation distance: 20 cm), and coating film The optical layered body of Example 1 having an optical functional layer having a thickness of 5.0/zm was obtained. As a result of SEM and EDS, it was confirmed that the optical functional layer constituting the obtained laminated body had at least the first phase. And the second phase, and a random agglomerated structure is formed. (Second invention) [Example 2] Except that the coating material for forming an optical functional layer was changed to a predetermined mixed liquid described in Table 4, the same procedure as in Example 1 was carried out. The same operation, can get optical work with a thickness of 5.5 The layered optical laminate of Example 2. 64 323082 201202763 It was confirmed from the results of SEM and EDS that the optical functional layer constituting the obtained laminate had at least the first phase and the second phase, and a random aggregation structure was formed. 2nd Embodiment) [Example 3] The optical function having a thickness of 4.1 was obtained by performing the same operation as in Example 1 except that the coating material for forming an optical function layer was changed to the predetermined mixed liquid described in Table 4. As a result of SEM and EDS, it was confirmed that the optical functional layer constituting the obtained laminate had at least the first phase and the second phase, and a random aggregation structure was formed. (Second invention) [Example 4] The implementation of the optical functional layer having a thickness of 5.2 was carried out in the same manner as in Example 1 except that the coating material for forming the optical function layer was changed to the predetermined mixed liquid described in Table 4. As a result of SEM and EDS, it was confirmed that the optical functional layer constituting the obtained laminate had at least the first phase and the second phase, and a random aggregation structure was formed. (Second invention) [ Example 5: Example of an optical functional layer having a thickness of 5.9, except that the coating material for forming an optical functional layer was changed to a predetermined mixed liquid as described in Table 4, and the same operation as in Example 1 was carried out. As a result of SEM and EDS, it was confirmed that the optical functional layer constituting the obtained laminated body had at least the first phase and the second phase, and a random agglomerated structure was formed. (Second invention) 65 323082 201202763 [ [Example 6] An optical functional layer having a thickness of 5·8/im was obtained by performing the same operation as in Example 1 except that the coating material for forming an optical functional layer was changed to a predetermined mixed liquid described in Table 4. The optical laminate of Example 6. As a result of SEM and EDS, it was confirmed that the optical functional layer constituting the obtained laminate had at least the first phase and the second phase, and a random agglomerated structure was formed. (Second Invention) [Comparative Example 1] The same operation as in Example 1 was carried out, except that the coating material for forming an optical functional layer was changed to the predetermined mixed liquid described in Table 5, and optical having a thickness of 4· was obtained. The optical layered body of Comparative Example 1 of the functional layer. In the case of the SEM and EDS of the obtained laminate, it was confirmed that the optical functional layer constituting the obtained optical layered product did not form a random agglomerated structure, but formed an island structure in which light-transmitting organic fine particles were aggregated. (Second Invention) [Comparative Example 2] An optical function having a thickness of 5.8 was obtained by performing the same operation as in Example 1 except that the coating material for forming an optical functional layer was changed to a predetermined mixed liquid described in Table 5. The optical laminate of Comparative Example 2 of the layer. In this case, it was confirmed from the results of SEM and EDS of the obtained laminate that the optical functional layer constituting the obtained optical laminate did not form a random agglomerated structure, but formed an island in which the first phase and the second phase were dispersed throughout the membrane surface. structure. (Second Invention) [Comparative Example 3] 66 323082 201202763 & The same operation as in Example 1 was carried out except that the coating material for forming an optical functional layer was changed to the predetermined α liquid described in Table 5 An optical layered body of Comparative Example 3 having an optical functional layer having a thickness of 6.6 / zm. At this time, the SEM and σ results observed by the optical functional layer of the known optical layered body are shown in Fig. 5, and the EDS results observed by the optical functional level of the optical layered body are as shown in Fig. 6*. It can be confirmed that the optical functional layer of the optical layered body is separated from the second phase by the first phase, and the random agglomerated structure is not formed because there are no three microparticles in the b layer of the optical power. (Second Invention) [Comparative Example 4] The same operation as in Example 1 was carried out except that the coating material for forming an optical functional layer was changed to a predetermined mixed liquid described in Table 5, and the thickness was 5.8/m. The optical layered body of Comparative Example 4 of the optical functional layer. In the case of the SEM and EDS of the obtained optical layered product, it was confirmed that the optical functional layer of the obtained optical layered body did not form a random agglomerated structure, but formed an island structure in which light-transmitting organic fine particles were aggregated. (The second invention) [Comparative Example 5] The same operation as in Example , was carried out, except that the coating material for the optical function layer formation was changed to the predetermined mixed liquid described in Table 5, and the thickness was 4. 8 / The optical layered body of Comparative Example 5 of the optical functional layer of /m. At this time, the SEM results observed from the optical functional layer of the obtained optical layered body are shown in Fig. 7. It was confirmed that the optical work layer constituting the obtained optical layered body did not form a random agglomerated structure, but formed an island structure in which the light-transmitting 323082 67 201202763 organic fine particles were aggregated. (Second Invention) [Comparative Example 6] The same operation as in Example 1 was carried out, except that the coating material for forming an optical functional layer was changed to the predetermined mixed liquid described in Table 5, and it was found to have a thickness of 4.Ο/ The optical layered body of Comparative Example 6 of the optical functional layer of zm. In this case, it was confirmed from the SEM and EDS results of the obtained optical layered product that the optical functional layer constituting the obtained optical layered product did not form a random agglomerated structure, but formed an island structure in which an amorphous ytterbium was aggregated. The second embodiment of the present invention has a thickness of 5. 5#. The optical layered body of Comparative Example 7 of the optical functional layer of m. In this case, it was confirmed from the SEM and EDS results of the obtained optical layered product that the optical functional layer of the obtained optical layered product did not form a random agglomerated structure, but formed an island structure in which light-transmitting organic particles were aggregated. (Second invention) The materials used in the above examples were placed in Table 4, and the materials used in the comparative examples were summarized in Table 5. ,.ι 68 323082 201202763 [Table 4]

No 成分 _^官&氨酯丙烯酸醋 "~~ 名 新中村化學 製品名 U-15HA 質量份 275 夕能丙烯酸酯 東亞合成 M-305 120 光聚合起始劑 無機成分 ~' 狀有機黏土,親水性 一 Ciba Japan IRGACURE184 20 - - 5 實施例1 ,平劑 共榮社化學 LINC-3A 10 逯光性有機微粒子 折射率:1. 53,平均粒徑:2. 5 w m - 15 透光性有機微粒子 折射率:1. 57,平均粒徑:2. 0 “ m - - 5 !醇(第1溶劑) 一 __ 130 水(第1溶劑) 一 一 30 —甲苯1第2溶劑) • «_ 390 f官能氨酯丙烯酸酯 ^:~~:--—--- 共榮社化學 UA-306I 245 多苢能丙烯酸酯 共榮社化學 DPE-6A 130 .光聚合起始劑 Ciba Japan IRGACURE184 20 實施例2 热裯珉分 層狀有機黏土,親水性 - - 5 调平劑 共榮社化學 No. 77 10 透光杬有機微粒子 折射率:1.59,平均粒徑:2.7//m - 30 fWWTmo ' - - 90 MIBKU 2 ~ 一 - 410 :第2溶劑) — - 60 多官能丙烯酸酯 共榮社化學 PE-3A 385 在聚合起始劑 Ciba Japan IRGACURE184 20 實施例3 無機成分 ^熔膠,親水性 - - 20 ,平劑 共榮社化學 No. 90 10 透光性有機微粒子 翌:舞率:1. 54,平均粒徑:2. 0 w m - - 15 MC第1溶劑) - - 60 —T苯(第2溶劑) - - 490 實施例4 乏官能氨酯丙烯酸酯 共榮社化學 UA-306I 405 光聚合起始劑 Ciba Japan IRGACURE184 20 無機成分 層狀有機黏土,親油性 - - 25 透光性有機微粒子 赶步率:1.53,平均粒徑:2.3“ m - - 10 边先性有機微粒子 折射率:1.58,平均粒徑:1.7“ m - - 10 —MIBK(第1溶劑) - - 100 69 323082 201202763 二甲笨(第2溶劑) - — 50 甲醇(第2溶劑) - - 380 實施例5 多官能丙烯酸酯 新中村化學 A-DPH 408 光聚合起始劑 Ciba Japan IRGACURE184 20 無機成分 層狀有機黏土,親油性 - - 5 調平劑 共榮社化學 LINC-3A 10 透光性有機微粒子 折射率:1. 52,平均粒徑:2. 0" m - - 2 透光性有機微粒子 折射率:1. 59,平均粒徑:2. 0" m - - 5 曱苯(第1溶劑) - - 120 IPA(第2溶劑) - - 430 實施例6 多官能氨酯丙烯酸酯 新中村化學 U-15HA 303 多官能丙烯酸酯 東亞合成 M-305 120 光聚合起始劑 Ciba Japan IRGACURE184 20 無機成分 層狀有機黏土,親油性 一 - 10 調平劑 共榮社化學 LINC-3A 10 透光性有機微粒子 折射率:1.52,平均粒徑:2. 0"m - - 2 透光性有機微粒子 折射率:1. 59,平均粒徑:2. 0/z m - - 5 MEK(第1溶劑) - - 160 曱醇(第2溶劑) - - 370 70 323082 201202763 [表5]No Ingredients _^官 & urethane acrylate vinegar "~~ 名新中村Chemical name U-15HA质量份275 夕能acrylate East Asia synthesis M-305 120 Photopolymerization initiator inorganic component ~' organic clay, Hydrophilic-Ciba Japan IRGACURE 184 20 - - 5 Example 1 , flat agent Gongrongshe Chemical LINC-3A 10 Photometric organic fine particle refractive index: 1. 53, average particle size: 2. 5 wm - 15 Translucent organic The refractive index of the microparticles: 1.57, the average particle diameter: 2. 0 "m - - 5 ! alcohol (the first solvent) - __ 130 water (the first solvent) - one 30 - toluene 1 second solvent) • «_ 390 f-functional urethane acrylate ^:~~:------ Gongrongshe Chemical UA-306I 245 Multi-functional acrylate Co., Ltd. DPE-6A 130. Photopolymerization initiator Ciba Japan IRGACURE184 20 Implementation Example 2 Hot 裯珉 layered organic clay, hydrophilic - - 5 leveling agent Gongrongshe Chemical No. 77 10 Translucent 杬 organic fine particles refractive index: 1.59, average particle size: 2.7 / / m - 30 fWWTmo ' - - 90 MIBKU 2 ~ I-410: 2nd solvent) — - 60 Multifunctional Acrylate Kyoritsu Chemical PE -3A 385 In the polymerization initiator Ciba Japan IRGACURE 184 20 Example 3 Inorganic ingredients ^ Melt, hydrophilic - - 20, flat agent Gongrongshe Chemical No. 90 10 Translucent organic fine particles: Dance rate: 1. 54 , average particle diameter: 2. 0 wm - - 15 MC first solvent) - - 60 - T benzene (second solvent) - - 490 Example 4 Spent functional urethane acrylate Kyoeisha Chemical UA-306I 405 photopolymerization Starting agent Ciba Japan IRGACURE184 20 Inorganic layered organic clay, lipophilic - 25 Translucent organic microparticles: 1.53, average particle size: 2.3" m - - 10 edge-precursor organic particle refractive index: 1.58, Average particle size: 1.7" m - - 10 - MIBK (first solvent) - - 100 69 323082 201202763 Dimethyl (second solvent) - 50 methanol (second solvent) - - 380 Example 5 Polyfunctional acrylate Xinzhongcun Chemical A-DPH 408 Photopolymerization initiator Ciba Japan IRGACURE184 20 Inorganic layered organic clay, lipophilic - - 5 Leveling agent Kyoeisha Chemical LINC-3A 10 Transmittance organic particle refractive index: 1. 52 , average particle size: 2. 0" m - - 2 light transmission Machine particle refractive index: 1.59, average particle size: 2. 0" m - - 5 benzene (1st solvent) - - 120 IPA (2nd solvent) - - 430 Example 6 Polyfunctional urethane acrylate new Nakamura Chemical U-15HA 303 Multifunctional acrylate East Asian synthesis M-305 120 Photopolymerization initiator Ciba Japan IRGACURE184 20 Inorganic layered organic clay, lipophilic one - 10 leveling agent Kyoeisha Chemical LINC-3A 10 light transmission Refractive index of organic fine particles: 1.52, average particle diameter: 2. 0"m - - 2 Transmittance organic fine particle refractive index: 1. 59, average particle diameter: 2. 0/zm - - 5 MEK (first solvent) - - 160 sterols (second solvent) - - 370 70 323082 201202763 [Table 5]

No 成分 公司名 製品名 質量份 比較例1 多官能氨酯丙烯酸酯 共榮社化學 UA-306H 175 多官能丙烯酸酯 新中村化學 A-DPH 250 光聚合起始劑 Ciba Japan IRGACURE184 20 調平劑 共榮社化學 LINC-3A 10 透光性有機微粒子 折射率:1. 53,平均粒徑:3. 0" m - - 5 透光性有機微粒子 折射率:1. 59,平均粒徑:2. 0/z m - - 10 MIBK - - 130 曱醇 - - 400 比較例2 多官能氨酯丙烯酸酯 共榮社化學 UA-306H 150 多官能丙烯酸酯 共榮社化學 TMP-A 250 光聚合起始劑 Ciba Japan IRGACURE184 20 無機成分 層狀有機黏土,親水性 - - 10 調平劑 BYK BYK-354 15 透光性有機微粒子 折射率:1. 53,平均粒徑:3. Oy m - - 5 透光性有機微粒子 折射率:1. 59,平均粒徑:2. 0y m - - 10 曱醇(第1溶劑) - - 500 水(第1溶劑) - - 40 曱苯(第2溶劑) - - 10 比較例3 多官能氨酯丙烯酸酯 新中村化學 U-6HA 155 多官能丙烯酸酯 新中村化學 A-TMMT-3 300 光聚合起始劑 Ciba Japan IRGACURE184 20 無機成分 層狀有機黏土,親油性 — - 20 調平劑 共榮社化學 LINC-3A 5 曱苯(第1溶劑) — - 250 MEK(第1溶劑) - - 50 乙醇(第2溶劑) - 一 200 比較例4 多官能氨酯丙稀酸酯 新中村化學 U-4HA 320 多官能丙烯酸酯 東亞合成 M-305 110 光聚合起始劑 Ciba Japan IRGACURE907 20 增黏劑 Eastman Chemical 製 CAP482-20 5 調平劑 BYK BYK-354 15 透光性有機微粒子 折射率:1.57,平均粒徑:3. 5 yin — _ 30 MIBK - - 250 甲苯 - _ 250 71 323082 201202763 多官能丙烯酸酯 共榮社化學 DPE-6A 410 光聚合起始劑 Ciba Japan IRGACURE907 13 增黏劑 Eastman Chemical 製 CAP482-20 15 比較例5 調平劑 BYK BYK-354 2 透光性有機微粒子 折射率:1. 59,平均粒徑:3. 5 // m - - 60 MIBK - — 400 環己酮 - - 100 多官能丙烯酸酯 共榮社化學 DPE-6A 435 光聚合起始劑 Ciba Japan IRGACURE907 23 比較例6 調平劑 BYK BYK-354 2 不定形的矽 平均粒子徑:3. lum - - 40 MEK - - 500 多官能丙烯酸酯 共榮社化學 DPE-6A 410 光聚合起始劑 Ciba Japan IRGACURE907 13 增黏劑 Eastman Chemical 製 CAP482-20 14 比較例7 調平劑 BYK BYK-354 2 透光性有機微粒子 折射率:1. 56,平均粒徑:3. 0 v m 一 — 15 MIBK — - 400 環己酮 - - 100 所得的結果如表6中所示。 72 323082 201202763 [表6] Να 鱗 [//m] 霧度值 影料 明性 Rz ["m] RStai 傾斜角度分佈 0.3-l_ 6度成分 傾斜角度分体 3.0度以上成分 隨顧聚 防眩性 黑度 刺眼 睹塞 對良 實施例 1 5.0 2.2 40 0.654 179 70.9« 0.0¾ 〇 ◎ 〇 〇 ◎ 實施例 2 5.5 7.2 46 0.525 203 74.1¾ 0.1¾ 〇 ◎ 〇 ◎ 〇 實施例 3 4.1 1.0 59 0.486 137 71.9« 0.0« 〇 〇 〇 〇 © 實施例 4 5.2 6.1 54 0.582 202 69.5% 0.1% 〇 〇 〇 〇 〇 實施例 5 5.9 5.8 51 0. 599 210 70. 4% 0. 2% 〇 〇 〇 〇 〇 實施例 6 5.8 6.0 44 0.643 179 68.1% 0.0¾ 〇 ◎ 〇 〇 〇 比較例 1 4.3 4.1 91 0.307 378 29. 5% 0.1¾ X X .◎ ◎ 〇 比較例 2 5.8 5.0 95 0.380 87 54. 2% 0. 0¾ X X ◎ ◎ 〇 比較例 3 6.6 1.5 26 0. 731 140 71.0¾ 4.1¾ X 〇 X 〇 X 比較例 4 5.8 21.2 41 0.689 81 64. 0% 3.0¾ X ◎ X 〇 _ —·· X 比較例 5 4.8 41.3 24 1.347 103 54.1% 12.3¾ X ◎ X ◎ X 比較例 6 4.0 28.2 2 3.056 112 31.0¾ 43. 3¾ X ◎ X X ---- 〇 比較例 7 5.5 11.5 55 0.723 133 63.4% 1.4¾ X 〇 X 〇 — X ---^ (第二發明) 如上述’根據本發明可提供良好的防眩性、亮室下的 黑度與防刺眼的性能及高暗室對比的優異光學積層體及該 光學積層體的製造方法。此外,可提供具備該光學積層體 而成之偏光板及顯示裝置。 【圖式簡單說明】 第1圖係表示光學功能層的結構之模式圖,(a)海島 結構之平面圖、(b)隨機凝聚結構之平面圖、(c)海島結構 之剖面侧面圖、(d)隨機凝聚結構之剖面側面圖。 第2圖係將實_ 5巾光學雜層表面之結構蒸鑛碳 後拍攝的SEM照片(具有隨機凝聚結構之光學功能層表面 323082 73 201202763 的結構蒸鍍碳後拍攝之SEM照片)。 第3圖係將實施例5中光學積層體之剖面蒸鍍碳後拍 攝的SEM照片(具有隨機凝聚結構之光學積層體的剖面蒸 鍍碳後拍攝的SEM照片)。 第4圖係將實施例5中光學功能層之結構以無機成分 (Si)進行EDS遮罩的照片(具有隨機凝聚結構之光學積層 體表面的結構無機成分(Si)進行EDS遮罩的照片)。 第5圖係將比較例3中光學機層表面之結構蒸鍍碳後 拍攝的SEM照片。 第6圖係將比較例3中光學功能層之結構以無機成分 (Si)進行EDS遮罩後的照片。 第7圖係將比較例5中的光學功能層表面之海島結構 蒸鍍碳後攝影的SEM照片。 【主要元件符號說明】 1 第一相 2 第二相 3 微粒子 15、16 光學功能層 20 透光性基體 30、31 微粒子 40 樹脂 74 323082No Ingredient company name product name quality part Comparative example 1 Multifunctional urethane acrylate Kyoeisha Chemical UA-306H 175 Multifunctional acrylate New Nakamura Chemical A-DPH 250 Photopolymerization initiator Ciba Japan IRGACURE184 20 Leveling agent 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Zm - - 10 MIBK - - 130 sterol - - 400 Comparative Example 2 Polyfunctional urethane acrylate Kyoei Chemical UA-306H 150 Multifunctional acrylate Kyoei Chemical TMP-A 250 Photopolymerization initiator Ciba Japan IRGACURE184 20 Inorganic layered organic clay, hydrophilic - - 10 Leveling agent BYK BYK-354 15 Transmittance organic particle refractive index: 1. 53, average particle size: 3. Oy m - - 5 Translucent organic particle refraction Rate: 1.59, average particle diameter: 2. 0y m - - 10 decyl alcohol (first solvent) - - 500 water (first solvent) - - 40 benzene (second solvent) - - 10 Comparative Example 3 Functional urethane acrylate Xinzhongcun Chemical U-6HA 155 Multifunctional acrylate Xinzhongcun A-TMMT-3 300 Photopolymerization initiator Ciba Japan IRGACURE184 20 Inorganic layered organic clay, lipophilic - 20 Conditioning agent Kyoeisha Chemical LINC-3A 5 Toluene (1st solvent) — - 250 MEK (1st Solvent) - - 50 Ethanol (Second Solvent) - 200 Comparative Example 4 Polyfunctional urethane acrylate Lenzium Chemical U-4HA 320 Multifunctional acrylate East Asian synthesis M-305 110 Photopolymerization initiator Ciba Japan IRGACURE907 20 Tackifier Eastman Chemical CAP482-20 5 Leveling agent BYK BYK-354 15 Transmittance organic particle refractive index: 1.57, average particle size: 3.5 yin — _ 30 MIBK - - 250 Toluene - _ 250 71 323082 201202763 Multifunctional acrylate Kyoeisha Chemical DPE-6A 410 Photopolymerization initiator Ciba Japan IRGACURE907 13 Tackifier Eastman Chemical CAP482-20 15 Comparative Example 5 Leveling agent BYK BYK-354 2 Translucent organic Refractive index of microparticles: 1.59, average particle diameter: 3. 5 // m - - 60 MIBK - 400 cyclohexanone - - 100 multifunctional acrylate Kyoei Chemical DPE-6A 435 photopolymerization initiator Ciba Japan IRGACURE907 23 Compare 6 Leveling agent BYK BYK-354 2 Amorphous 矽 average particle diameter: 3. lum - - 40 MEK - - 500 Multifunctional acrylate Kyoei Chemical DPE-6A 410 Photopolymerization initiator Ciba Japan IRGACURE907 13 Viscosity Agent Eastman Chemical CAP482-20 14 Comparative Example 7 Leveling agent BYK BYK-354 2 Transmittance organic fine particle refractive index: 1.56, average particle size: 3. 0 vm -15 MIBK — - 400 cyclohexanone- - 100 The results obtained are shown in Table 6. 72 323082 201202763 [Table 6] Να scale [//m] haze value shadow material Rz ["m] RStai tilt angle distribution 0.3-l_ 6 degree component tilt angle split 3.0 degrees or more components with anti-glare Sexual blackness glare plugging Example 1 5.0 2.2 40 0.654 179 70.9 « 0.03⁄4 〇 ◎ 〇〇 ◎ Example 2 5.5 7.2 46 0.525 203 74.13⁄4 0.13⁄4 〇 ◎ 〇 ◎ 〇 Example 3 4.1 1.0 59 0.486 137 71.9 « 0.0 « 〇〇〇〇© Example 4 5.2 6.1 54 0.582 202 69.5% 0.1% 〇〇〇〇〇 Example 5 5.9 5.8 51 0. 599 210 70. 4% 0. 2% 〇〇〇〇〇Implementation Example 6 5.8 6.0 44 0.643 179 68.1% 0.03⁄4 〇 ◎ 〇〇〇 Comparative Example 1 4.3 4.1 91 0.307 378 29. 5% 0.13⁄4 XX . ◎ ◎ 〇 Comparative Example 2 5.8 5.0 95 0.380 87 54. 2% 0. 03⁄4 XX ◎ ◎ 〇 Comparative Example 3 6.6 1.5 26 0. 731 140 71.03⁄4 4.13⁄4 X 〇X 〇X Comparative Example 4 5.8 21.2 41 0.689 81 64. 0% 3.03⁄4 X ◎ X 〇 _ —·· X Comparative Example 5 4.8 41.3 24 1.347 103 54.1% 12.33⁄4 X ◎ X ◎ X Comparative Example 6 4.0 28.2 2 3.056 112 31.03⁄4 43. 33⁄4 X ◎ XX ---- 〇 Comparative Example 7 5.5 11.5 55 0.723 133 63.4% 1.43⁄4 X 〇X 〇—X ---^ (Second invention) As described above, according to the present invention, good anti-glare property, blackness under bright room and anti-glare can be provided. An excellent optical laminate of the performance and high darkroom contrast and a method of manufacturing the optical laminate. Further, a polarizing plate and a display device including the optical laminate can be provided. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of an optical functional layer, (a) a plan view of a sea-island structure, (b) a plan view of a random agglomerated structure, (c) a cross-sectional side view of the island structure, and (d) A side view of a section of a random agglomerated structure. Fig. 2 is a SEM photograph of the structure of the surface of the optical layer of the _ 5 towel (the SEM photograph of the surface of the optical functional layer having a random agglomerated structure 323082 73 201202763 after vapor deposition of carbon). Fig. 3 is a SEM photograph of a cross section of the optical layered body of Example 5 after carbon deposition, and an SEM photograph of a cross section of the optical layered product having a random agglomerated structure after carbon deposition. 4 is a photograph in which the structure of the optical functional layer in Example 5 is EDS masked with an inorganic component (Si) (photograph of the structural inorganic component (Si) having the surface of the optical layered body having a random agglomerated structure is subjected to an EDS mask) . Fig. 5 is a SEM photograph of a structure obtained by vapor-depositing carbon on the surface of the optical layer in Comparative Example 3. Fig. 6 is a photograph showing the structure of the optical functional layer in Comparative Example 3 after EDS masking with an inorganic component (Si). Fig. 7 is a SEM photograph of a sea-shell structure in which the surface of the optical functional layer in Comparative Example 5 was vapor-deposited. [Description of main components] 1 First phase 2 Second phase 3 Microparticles 15, 16 Optical functional layer 20 Translucent substrate 30, 31 Microparticles 40 Resin 74 323082

Claims (1)

201202763 七、申請專利範圍: 1· 一種光學積層體’係於透光性基體上積層光學功能層而 成之光學積層體’該光學功能層之至少一方之面形成有 凹凸形狀’具有該凹凸形狀的光學功能層面之算術平均 高度(Ra)為〇· 〇4〇以上且未達0. 2〇〇,於具有該凹凸形 狀的光學功能層面之傾斜角度分佈中,〇. 2度以下之傾 斜角度分佈之所佔比例為30%以上95%以下。 2.如申請專利範圍第1項所述之光學積層體,其中,前述 光學功能層係由1層以上之以放射線硬化型樹脂組成 物作為主成分之光學功能層所構成。 3·如申請專利範圍第1項所述之光學積層體,其中,前述 光學功能層至少含有放射線硬化型樹脂組成物與透光 性微粒子。 4. 如申請專利範圍第3項所述之光學積層體,其中,前述 透光性微粒子之平均粒徑為〇. 3至7. 0//m。 5. 如申請專利範圍第1項所述之光學積層體,其中,前述 光學功能層之膜厚大於前述透光性微粒子之平均粒徑。 6. —種偏光板,係於構成申請專利範圍第1至5項中任一 項中所述之光學積層體之透光性基體上積層偏光基體 而成者。 7. —種顯示裝置,係具備申請專利範圍第1至5項中任一 項所述之光學積層體而成者。 8. —種光學積層體,係於透光性基體上積層光學功能層而 成之光學積層體,該光學功能層之至少一方之面形成有 323082 1 201202763 凹凸形狀,於從具有該凹凸形狀的光學功能層面之凹凸 形狀測得之全長之傾斜角度分佈中,〇· 3度以上1. 6度 以下之傾斜角度分佈所佔比例為68%以上,3 〇度以上 之傾斜角度成分所佔比例未達丨%。 9. 如申請專利範圍第8項所述之光學積層體,其中,前述 光學功能層係由1層以上之以放射線硬化型樹脂組成 物作為主成分之光學功能層所構成。 10. 如申請專利範圍第8項所述之光學積層體,其 述光學功能層具有隨機凝聚構造。 * 、'則 u.如申料利範圍.第8項所述之光學積層體, 光 3::層至少含有放射線硬化型樹脂組成物及Γ H如申請專利範圍第丨丨項所述之光學積層體, 述透光性微粒子之平均粒徑為〇. 3至7. 〇从m。,月 請專利範圍第11項所述之光學積層體,其中 =光學魏層之_大於前述透紐微粒子之平均^前 14.—種偏光板,係於構成申請專利範㈣8至】 ::述之光學積層體之透光性基體上積層偏光項基中: 15·-種顯4置,係具備申請專利範圍第8至 16項所述之光學積層體而成者。 項中任 6.:種光學積層體,躲透紐絲上積 成之光學積層體,於該光學功能層之至少一 ^途層而 之面形成 323082 2 201202763 有凹凸形狀,於從具有該凹凸形狀的光學功能層面之凹 凸形狀測得之全長之傾斜角度分佈中,0. 5度以下之傾 斜角度分佈所佔比例為60%以上且未達80%,0.6度 以上1. 6度以下之傾斜角度分佈所佔比例為3〇%以 下’ 3. 0度以上之傾斜角度成分所佔比例未達1%。 17. 如申請專利範圍第16項所述之光學積層體,其中,前 述光學功能層係由1層以上之以放射線硬化型樹脂組 成物作為主成分之光學功能層所構成。 18. 如申請專利範圍第16項所述之光學積層體,其中,前 述光學功能層具有隨機凝聚構造。 19. 如申請專利範圍第16項所述之光學積層體,其中,前 述光學功能層至少含有放射線硬化型樹脂組成物及透 光性微粒子。 20. 如申請專利範圍第19項所述之光學積層體,其中,前 述透光性微粒子之平均粒徑為〇. 3至7. 0 y m。 21. 如申請專利範圍第19項所述之光學積層體,其中,前 述光學功能層之膜厚大於前述透光性微粒子之平均粒 徑。 22· —種偏光板’係於構成申請專利範圍第16至21項中任 一項所述之光學積層體之透光性基體上積層偏光基體 而成者。 23·—種顯示裝置,係具備申請專利範圍第16至21項中任 一項所述之光學積層體而成者。 3 323082201202763 VII. Patent application scope: 1. An optical layered body is an optical layered body in which an optical functional layer is laminated on a light-transmitting substrate. At least one surface of the optical functional layer is formed with a concave-convex shape having the concave-convex shape The arithmetic mean height (Ra) of the optical functional layer is 〇· 〇4〇 or more and less than 0.2 〇〇, in the oblique angle distribution of the optical functional layer having the concave-convex shape, 倾斜. The proportion of the distribution is 30% or more and 95% or less. 2. The optical layered body according to the first aspect of the invention, wherein the optical functional layer is composed of one or more optical functional layers having a radiation curable resin composition as a main component. The optical layered body according to claim 1, wherein the optical functional layer contains at least a radiation curable resin composition and light transmissive fine particles. 4. The average particle size of the above-mentioned light-transmitting fine particles is 〇. 3 to 7. 0 / / m. 5. The optical layered body according to claim 1, wherein the optical functional layer has a film thickness larger than an average particle diameter of the light-transmitting fine particles. A polarizing plate obtained by laminating a polarizing substrate on a light-transmitting substrate constituting the optical layered body according to any one of claims 1 to 5. A display device comprising the optical layered body according to any one of claims 1 to 5. 8. An optical layered body in which an optical layer is formed by laminating an optical functional layer on a light-transmitting substrate, and at least one surface of the optical functional layer is formed with a concave-convex shape of 323082 1 201202763, and has a concave-convex shape from the concave-convex shape In the tilt angle distribution of the total length measured by the concave-convex shape of the optical function level, the ratio of the inclination angle distribution of 〇·3 degrees or more and 1.6 degrees or less is 68% or more, and the proportion of the inclination angle component of 3 degrees or more is not丨%. 9. The optical layered body according to claim 8, wherein the optical functional layer is composed of one or more optical functional layers having a radiation curable resin composition as a main component. 10. The optical layered body according to claim 8, wherein the optical functional layer has a random agglomerated structure. *, 'Yu. For example, the optical laminate according to item 8. The light 3:: layer contains at least a radiation-curable resin composition and ΓH as described in the scope of the patent application. The average particle diameter of the light-transmitting fine particles is 〇. 3 to 7. 〇 from m. The optical laminate according to item 11 of the patent scope, wherein = the optical layer is larger than the average of the aforementioned particles, and the polarizing plate is formed in the patent application (4) 8 to :: In the light-transmitting substrate of the optical layered body, the layered polarizing substrate is: 15·- 4, which is the optical layered body described in claim 8 to 16. In the item: 6. An optical layered body, which obscures the optical layered body formed on the wire, and forms at least one surface of the optical functional layer to form a 323082 2 201202763 having a concave-convex shape, and having the concave-convex shape The inclination angle distribution of the entire length measured by the concave-convex shape of the shape of the optical function is 0.5% or less and the inclination angle distribution is 60% or more and less than 80%, and the inclination of 0.6 degrees or more and 1.6 degrees or less The proportion of the angular distribution is less than or equal to 3%. 3. The proportion of the oblique angle component above 0 degrees is less than 1%. The optical layered body according to the above aspect of the invention, wherein the optical functional layer is composed of one or more optical functional layers having a radiation curable resin composition as a main component. 18. The optical laminate according to claim 16, wherein the optical functional layer has a random agglomerated structure. 19. The optical layered body according to claim 16, wherein the optical functional layer contains at least a radiation curable resin composition and light transmissive fine particles. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。. The optical layered body according to claim 19, wherein the film thickness of the optical functional layer is larger than the average particle size of the light-transmitting fine particles. A polarizing plate is formed by laminating a polarizing substrate on a light-transmitting substrate constituting the optical layered body according to any one of claims 16 to 21. A display device comprising the optical layered body according to any one of claims 16 to 21. 3 323082
TW100114606A 2010-04-27 2011-04-27 Optical laminate, polarizing plate and display device TW201202763A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010102707A JP2011232546A (en) 2010-04-27 2010-04-27 Optical laminate, polarizing plate and display device
JP2010127900A JP5593125B2 (en) 2010-06-03 2010-06-03 Optical laminate, polarizing plate and display device
JP2010127677A JP2011253092A (en) 2010-06-03 2010-06-03 Optical laminate, polarizer and display device

Publications (1)

Publication Number Publication Date
TW201202763A true TW201202763A (en) 2012-01-16

Family

ID=44861175

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100114606A TW201202763A (en) 2010-04-27 2011-04-27 Optical laminate, polarizing plate and display device

Country Status (4)

Country Link
KR (1) KR101567630B1 (en)
CN (1) CN102859399B (en)
TW (1) TW201202763A (en)
WO (1) WO2011135853A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623797B (en) * 2016-02-16 2018-05-11 Toppan Tomoegawa Optical Films Co Ltd Optical laminated body, polarizing plate and display device
TWI650234B (en) * 2014-12-26 2019-02-11 凸版巴川光學薄膜股份有限公司 Optical laminate, polarizing plate and display device
US10539720B2 (en) 2016-02-10 2020-01-21 Toppan Tomoegawa Optical Films Co., Ltd. Optical laminate, polarizer, and display apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072413A (en) * 2013-10-04 2015-04-16 住友化学株式会社 Antiglare film
JP2015072414A (en) * 2013-10-04 2015-04-16 住友化学株式会社 Antiglare film
JP2015072412A (en) * 2013-10-04 2015-04-16 住友化学株式会社 Antiglare film
JP2015152657A (en) * 2014-02-12 2015-08-24 住友化学株式会社 Antiglare film
JP2015152660A (en) * 2014-02-12 2015-08-24 住友化学株式会社 Antiglare film
JP2015152659A (en) * 2014-02-12 2015-08-24 住友化学株式会社 Antiglare film
JP7121479B2 (en) * 2017-11-14 2022-08-18 株式会社トッパンTomoegawaオプティカルフィルム Optical laminate, polarizing plate and display device
WO2020066131A1 (en) * 2018-09-28 2020-04-02 富士フイルム株式会社 Transfer film, method for producing laminate, laminate, capacitive input device, and image display apparatus
CN113614585A (en) * 2019-03-29 2021-11-05 三菱瓦斯化学株式会社 Anti-glare laminate

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056104A (en) * 1998-08-04 2000-02-25 Nitto Denko Corp Light diffusing layer, optical device and liquid crystal display device
JP4641829B2 (en) * 2004-03-29 2011-03-02 大日本印刷株式会社 Antiglare laminate
JP2007322779A (en) * 2006-06-01 2007-12-13 Nitto Denko Corp Glare-proof hard coating film, polarizing plate and liquid display using them
JP4155337B1 (en) * 2007-02-21 2008-09-24 ソニー株式会社 Anti-glare film, method for producing the same, and display device
JP2008287072A (en) * 2007-05-18 2008-11-27 Fujifilm Corp Anti-glare film and anti-reflection film using the same
JP2008304638A (en) * 2007-06-06 2008-12-18 Sony Corp Anti-glare film and manufacturing method thereof, polarizer and display device
JP5216501B2 (en) * 2007-09-28 2013-06-19 富士フイルム株式会社 Optical film, polarizing plate, and image display device
JP5232448B2 (en) * 2007-11-19 2013-07-10 株式会社巴川製紙所 Anti-glare material
JP5408991B2 (en) * 2007-12-26 2014-02-05 富士フイルム株式会社 Optical film, polarizing plate, and image display device
JP5175672B2 (en) * 2008-09-26 2013-04-03 富士フイルム株式会社 Antiglare film, antireflection film, polarizing plate and image display device
JP5380029B2 (en) * 2008-09-29 2014-01-08 富士フイルム株式会社 Liquid crystal display

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI650234B (en) * 2014-12-26 2019-02-11 凸版巴川光學薄膜股份有限公司 Optical laminate, polarizing plate and display device
US10539720B2 (en) 2016-02-10 2020-01-21 Toppan Tomoegawa Optical Films Co., Ltd. Optical laminate, polarizer, and display apparatus
TWI623797B (en) * 2016-02-16 2018-05-11 Toppan Tomoegawa Optical Films Co Ltd Optical laminated body, polarizing plate and display device
US10591644B2 (en) 2016-02-16 2020-03-17 Toppan Tomoegawa Optical Films Co., Ltd. Optical laminate, polarizer, and display apparatus

Also Published As

Publication number Publication date
KR101567630B1 (en) 2015-11-09
CN102859399B (en) 2016-04-06
CN102859399A (en) 2013-01-02
WO2011135853A1 (en) 2011-11-03
KR20130021391A (en) 2013-03-05

Similar Documents

Publication Publication Date Title
TW201202763A (en) Optical laminate, polarizing plate and display device
TWI454753B (en) Optical laminate, polarizing plate, display device, and method for making an optical laminate
TWI452328B (en) An optical laminate, a polarizing plate, a manufacturing method of a polarizing plate, an image display device, a manufacturing method of an image display device, and a method of improving the visibility of an image display device
JP5593125B2 (en) Optical laminate, polarizing plate and display device
TWI429942B (en) Hard-coated antiglare film, and polarizing plate and image display including the same
TWI565964B (en) Antiglare film, polarizing plate, image display, and method for producing antiglare film
TWI267651B (en) High refraction film, high refraction film-forming coating composition, anti-reflection film, protective film for polarizing plate, polarizing plate and image display device
CN104335078B (en) Nanostructured material and its manufacture method
TW201222024A (en) Laminate, optical film and fabricating methods therefor, and polarizer, image display apparatus and 3D-image display system
TWI379770B (en)
TW201213132A (en) Optical laminate, polarizer and display device
TW200922782A (en) Optical film, polarizing plate, and liquid-crystal display device
JP2013101386A (en) Antiglare film and display device using the same
CN103119479A (en) Light-diffusing element and polarizing plate provided therewith
TW201127627A (en) Curable composition, conductive laminate, method of manufacturing the same, and touch panel
JP2005248173A (en) Coating material, preparation of optical film, optical film, polarizing plate and image display device
WO2019177271A1 (en) Anti-reflective film, polarizing plate, and display apparatus
CN103582829A (en) Antiglare film, method for producing same, polarizing plate, image display device, member for touch panel
TW201137383A (en) Optical film, method of producting optical film, polarizer, display panel, and display
TW202023827A (en) Anti-reflective film, polarizing plate, and display apparatus
TW201542384A (en) Laminate, transparent conductive laminate, and touch panel
JP2013246976A (en) Supporting material for conductive optical member, conductive optical member including the same, and electronic device including conductive optical member
TW200916837A (en) Optical laminate
TW201128239A (en) Optical laminate and manufacturing method thereof as well as polarizing plate and display device using the same
JP2011253092A (en) Optical laminate, polarizer and display device