TW201202038A - Applying optical energy to nanoparticles to produce a specified nanostructure - Google Patents

Applying optical energy to nanoparticles to produce a specified nanostructure Download PDF

Info

Publication number
TW201202038A
TW201202038A TW100118708A TW100118708A TW201202038A TW 201202038 A TW201202038 A TW 201202038A TW 100118708 A TW100118708 A TW 100118708A TW 100118708 A TW100118708 A TW 100118708A TW 201202038 A TW201202038 A TW 201202038A
Authority
TW
Taiwan
Prior art keywords
nano
layer
granulated
copper
substrate
Prior art date
Application number
TW100118708A
Other languages
Chinese (zh)
Inventor
Zvi Yaniv
Nan Jiang
James P Novak
Richard L Fink
Original Assignee
Applied Nanotech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/836,547 external-priority patent/US8422197B2/en
Application filed by Applied Nanotech Inc filed Critical Applied Nanotech Inc
Publication of TW201202038A publication Critical patent/TW201202038A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Powder Metallurgy (AREA)

Abstract

The instant article of manufacture is made by applying optical energy to one or more layers of nanoparticulate materials under predetermined conditions to produce a nanostructure. The nanostructure has layers of optically fused nanoparticles including a predetermined pore density, a predetermined pore size, or both. The predetermined conditions for applying the optical energy may include a predetermined voltage, a predetermined duration, a predetermined power density, or combinations thereof.

Description

201202038 六、發明說明: 本申請案係依據35 U.S.C. 119(e)(1)主張2009年7月 15曰於美國提申之第61/225797號臨時申請案的優先權, 該專利參考文獻係引用作為本說明書的揭示内容。 美國政府擁有本發明之賣斷性權利金且具有在有限 範圍内要求專利權人依據美國國防部之契約編號 W911-QX-10-C-0044以合理條件授權於第三方。 【發明所屬之技術領域】 本發明係關於一種製造一特定奈米結構的方法。 【先前技術】 本發明係關於一種藉由施加光能至奈米粒子以製造 一特定奈米結構的方法。 【發明内容】 本發明之產品係可藉由下述方法進行,其包括下列步 驟:在預設條件下施加光能至一或多層未熔融的奈米粒化 材料以製造一具有特定特性及特徵之奈米結構。例如,該 奈米結構可包含具有預設之孔隙密度、預設之孔徑大小或 兩者兼具之複數層。一用於施加該光能之預設條件可包括 一預設電壓、一預設持續時間、一預設功率密度,或其組 合。 該一或多層未溶融的奈米粒化材料可包含至少一層 配置於一聚醯胺基材上之奈米粒化銅。該至少一層奈米粒 化銅之至少一部份的銅奈米粒子可光學地熔融而在該基 材上形成一連續膜。該至少一層奈米粒化銅可作為一墨水 201202038 調配物塗敷至該基材且經由一印刷製程配置於該基材 上,例如一滴落式印刷製程或一網版印刷製程。 該一或多層未炫融的奈米粒子材料亦可包含至少一 層奈米粒化矽,其係配置於一或多層之奈米粒化銅上。該 至少一層奈米粒化碎之至少一部份的石夕奈米粒子可光學 地溶融,因此該至少一層奈米粒化石夕具有一預設之孔隙密 度、一預設之孔徑大小或兩者兼具。該至少一奈米粒化矽 層可作為一墨水調配物塗敷至該一或多層奈米粒化銅並 經由一印刷製程配置於該該一或多層奈米粒化銅上。 進一步,該一或多層未熔融之奈米粒化材料可包含至 少一層於其中配置有奈米粒化氧化錳添加物之奈米粒化 銅。一銅氧化層可由該至少一層包含該奈米粒化氧化錳添 加物之奈米粒化銅形成。 該奈米結構之特性及特徵可基於該奈米結構的一特 定應用而被預設。例如,該奈米結構可備用於形成一鋰離 子電池之矽陽極。因此,該光能係被施加至數層未熔融之 奈米粒化材料,以製得一奈米結構,該奈米結構係具有在 作為一鋰離子電池之矽陽極時可發揮最佳作用之特徵。 在另一實施例中,該奈米結構可用於形成一超級電容 器。據此,該光能係被施加於數層未熔融之奈米粒化材料 而製得一奈米結構,該奈米結構係具有以發揮超級電容器 功效為目的之特徵與特性。 【實施方式】 以下將參照相關圖式說明本發明,其中,各參照符號 201202038 最左邊的數字係對應至各圖式之圖號,且相同的元件將以 相同的參照符號加以說明。 圖1表不將光源施加至奈米粒子以製得一具有特定特 性及特彳政的奈米結構。特別是’圖1顯示一光能來源1〇2 - 施加光能至奈米粒子104。該光能來源102可為一高強度、 寬頻譜的燈,其具有一約106w之光學功率,且可在一介 於100微秒與1毫秒之持續時間内施加光能。 當光能施加至該奈米粒子104,該奈米粒子1〇4可光 學熔融而形成一奈米結構106-110。該光能來源1〇2之預 設的製程條件可根據施加至該奈米粒子1〇4之光能的量來 控制遠奈米結構1〇6_11〇的特徵及特性。例如,可改變電 壓、牯間、功率密度或其組合來製造該奈米結構106、108 或 110。 特別是,該奈米粒子1〇4經光學熔融在一起到何種程 度或等級可取決於光能來源102對奈米粒子1〇4所施加的 電壓、時間(即持續時間)及功率密度。因此,該光能來 源104之預設且特定範圍内的電壓、時間及功率密度可產 ' 纟》等不同的奈米結構。在某些情況下,被施加 而特疋奈米結構之該光能來源104之預設的電壓、 時間及功率密度係依據奈米粒? 1 〇4之化學屬性(chemical ―办)及組成而定°為了詳細說明,本發明使用該光能 來源102之數組條件分別施加於銅奈米粒子來對應製造該 等奈米結構1〇6-110其中一。此外,本發明使用光能來源 201202038 應製造該等奈 102之數組條件分別施加於秒奈米粒子來對 米結構106-11 〇其中一。 該奈米結構1〇6-11〇之特徵在於當光能施加於該夺米 粒子104時該奈米粒子104熔融在一起的程度。換言之, 光學溶融的等級係被量化以表㈣奈米結構的特性。例 如’該光能來源102之預設電壓、日㈣(即持續時間)及 /或功率密度設定可製造具有奈米粒子經溶融至一第一程 度或等級之一奈米結構,例如該奈米結構1〇6。 在另一實施例中’該光能來源1〇4之不同的 續時間及/或功率密技定產生具有奈練子經熔融至— 第一程度或等級之一奈米結構,例如該奈米結構⑽。在 :進-步的實施例中’光能來源1G6之另—種電壓、持續 4間及/或功率密度設定可製造由經熔融之奈米粒子(例如 該奈米結構110)所形成的連續膜。 «亥不米粒子104熔融在一起之等級或程度可以孔隙率 的方式來麵。特収,光學㈣的等級―該奈米結構 1〇6]10、中广孔隙大小、該奈米結構106-110之孔隙數目 <(即孔隙氆度),或兩者而判斷,其數值係取決於將光能 來源施加至5亥奈米粒子1〇4時所使用之預設製程條件。該 奈米粒子104炫融在一起的程度可另外地,或替代地,以 該經光學制之奈米粒子的粒子大小來表示。 特別疋,该奈米結構1〇6_11〇之孔隙率係由該奈米結 構106至6亥奈米結構n〇漸減。因此,該奈米結構⑽的 201202038 孔隙密度係大於該奈米結構108的孔隙密度。該奈米結構 108的孔隙密度係大於該奈米結構110的孔隙密度。此外, 該經光學熔融之奈米粒子的空隙大小係從該奈米結構106 至該奈米結構110漸增。因此,該奈米結構106之該經光 學熔融之奈米粒子的孔徑大小係小於該奈米結構108之該 經光學熔融之奈米粒子的孔徑大小,且該奈米結構108之 該經光學熔融之奈米粒子的孔徑大小係小於該奈米結構 110之該經光學熔融之奈米粒子的孔徑大小 藉由區別該施加光能至該奈米結構104時所預設之製 程條件,該奈米結構106-110之特徵可針對不同應用來進 行設計。例如,某些應用可能需要一特定組成物之經熔融 的奈米粒子之具有一特定之預設孔隙大小及/或孔隙密度 的奈米結構。因此,該光能來源104之設定可以一預設的 方式來控制,以產生一具有適合預期應用之特徵的奈米結 構0 圖2表示一例示製程,係施加光能至未溶融之奈米粒 子以製造一特定奈米結構者。特別是,圖2顯示一基材 202。該基材202可為一聚合材料。在某些情況下,該聚 合材料可為一聚醯胺,例如KAPTON®。該基材202亦可 調配成包含配置於或另外包含於其中之金屬成分。 一或多未熔融之奈米粒化層可塗敷至基材202上,例 如一層未溶融之奈米粒化銅204及一或多層之未炫融之奈 米粒化石夕206。該一或多層之奈米粒子可經由一印刷製程 201202038 塗敷至基材202。例如,該一或多層之奈米粒化銅204可 藉由一傳統的洩降印刷法塗敷至基材2〇2。此外,該一或 多層之奈米粒化石夕206可經由一傳統的洩降印刷法塗敷至 該一或多層之銅204。該用於塗敷該一或多奈米粒化層 204、206至該基材202之印刷製程亦可包含一已知的傳統 網版印刷製程。該一或多奈米粒化層202、204亦可經由 一已知的墨水沈積(ink deposition)製程來塗敷至該基材 202。此外,該一或多奈米粒化層2〇4、206可塗敷至該基 材202形成一圖案,例如一網格圖案’或例如一連續層。 該奈米粒化銅204之一或多未熔融的層及/或該奈米 粒化矽206之一或多未熔融的層可為包含銅及/或奈米粒 化矽的墨水調配物。該奈米粒化銅及該奈米粒化石夕之墨水 調配物可依據美國專利號碼7,514,369及7,531,155中所描 述的技術來製備;上述所列的專利參考文獻全體皆引用作 為本說明書的揭示内容。在一特定實施例中’該奈米粒化 矽之墨水調配物可由購自廠商之石夕奈米粒子而來’經機械 研磨成奈米尺寸粒子之晶體矽粉末、濕式酸蝕矽奈米粒 子,或其組合。該奈米粒子之尺寸可小於l〇〇nm。此外, 該矽奈米粒子可包含p型矽奈米粒子、η型矽奈米粒子, 或其等之混合物。 在一描述例中,微米尺寸的石夕粉末或碎片係依序經球 磨、化學蝕刻,及矽奈米粒子的粒度分級,以製備一含有 奈米粒化矽之墨水組成物。該矽奈米粒子接著將被轉移至 201202038 一惰性氣體手套無菌箱,例如一 VACCUM ATMOSPHERES NEXUS⑧手套無菌箱,且與一低沸點溶 诏(例如T醇及刀政劑)—同被調配。亦可力口入以凡 珠粒用於進-步的音波震動處理。該混合物接著被轉移至 一玻璃瓶中’密封並保持在—惰性氮氣環境中。所合成之 奈米粒子I體係在-超音波處理槽(ultrasGnieati〇n bath) 中音波處理至少30分鐘,並接著使用一滾筒拋光機(r〇tary tumbler machine)進行球磨。該义办彳珠粒係經由離心被 移除’且懸洋液中所殘留的粒子可被輕輕倒出以獲得該含 有奈米粒化矽的墨水調配物。含有奈米粒化矽之墨水調配 物的體積可使用一功能化溶劑來調整,以獲得目標矽載 量° 在每次將個別的奈米粒化層塗敷至基材2〇2後,可烘 烤該層。例如’在一或多層之矽2〇6塗敷至該基材202後, 可在一約100°C之溫度持續烘烤該奈米粒化矽206之層約 10分鐘。 光能208係被施加至該一或多層之奈米粒子,例如該 層204及206 ’及該基材202。該光能208可源自一高強 度、寬頻譜之光源,例如一氙氣燈,該光能208可依該一 或多層204、206個別的一需求量、熔融等級、孔隙大小, 及/或孔隙密度,以一預設時間及一預設電壓/或預設功率 密度來施加。在一特定例中,該光能來源之該功率密度係 在5.50kW/cm2至6.50 kW/cm2的範圍内。在該例中,該光 201202038 能208可以一在1075V至1175V範圍之電壓來施加,且該 光能208可施加800微秒。該光能208亦可在空氣及/<約 25°C下施加。 被該層204、206之奈米粒子所吸收之光能2〇8係被 轉換成熱能且增加該奈米粒子的溫度。既然奈米粒子相車交 於其所對應之塊材(bulk material)傾向在較低溫融化,該 層204、206之奈米粒子可熔融至某種程度。來自該奈米 粒子的一些熱能逸散進入該基材202及周遭的空氣中。由 於該光能係以一較快的持續時間被施加,該基材2〇2之該 溫度係少於100°C ’而有利地防止或縮小對該基材202之 熱損害。 在施加該光能208後,可形成一傳導性之經光學熔融 的銅層210。此外,亦可形成一經光學熔融之矽奈米粒化 結構212。該傳導性銅層210及/或該矽奈米粒化結構212 之特性及特徵可藉由施加該光能208時所使用之一光能來 源的設定來控制或者預設。在某些情況下,該奈米粒化矽 層206之石夕奈米粒子可被光學溶融在一起以形成經光學熔 融的奈米粒化石夕球粒214(即粒料)。該經光學溶融的奈米粒 化矽球粒214之大小及/或密度係藉由該光能2〇8被施加至 »亥石夕奈米粒子204之溶融層時的條件來控制或者預設之。 除了將該一或多層204、206之光學粒子熔融之外,亦可 將該一或多層204、206之光學粒子硬化。在硬化時,該 一或多層之奈米粒化銅204可具有一大於約1〇5s/cm之傳 201202038 導性。可將其他元素的奈米粒子層塗敷至該基材202,例 如 Li、B、Zn、Ag、Al、Ni、Pd、Sn、Ga 或類似者。除 此之外’亦可將奈米粒化合金配置於該基材202,例如 Cu-Zn、Al-Zn、Li-Pd、Al-Mg、Mg-Al-Zn,或類似者。進 一步,可將奈米粒化化合物配置於該基材202,例如ITO、 Sn〇2、NaCl、MgO、Si]N4、GaN、ZnO、ZnS,或類似者。 在一描述性實施例中,該奈米粒化結構212、該傳導 性銅層210,及該基材202可被使用來建構一電池的陽極, 例如一經離子電池陽極。特別是,石夕可成為一用作為一具 有4200mAh/g之理論放電容量之鋰離子電池之陽極的候 選。然而,許多矽陽極的電容量會在循環下逐漸衰落。例 如,矽可依據下述方程式與鋰形成一介金屬合金 (intermetallic alloy ) · 44 Li + 10 Si = 10Li4.4Si (方程式 1) 由於鋰的原子半徑大於矽的(裡約2.05埃,對比矽約 1.46埃),故可能發生矽晶格的體積膨脹。該矽晶格的體 積膨脹可能造成矽晶格的内部壓力’而導致矽粒子的内部 粉碎及破裂。因此,鋰離子擴散途徑破壞而困住了該鋰離 子。該鋰擴散途徑的破壞係隨著/鋰離子電池循環的進行 或者增加而造成了電流的損失龙導致電容量衰落。 在某些情況下,以意圖改善用於鐘離子電池之石夕陽極 的循環性能之方式來設計非晶矽、矽複合體、矽合金及奈 米化之矽。然而,在某些情況下,例如就奈米尺寸的矽粉 12 201202038 末而言’該矽可能在循環時聚集而限制了該鋰傳導途徑。 在其他情況下,例如非晶石夕及石夕合金’則可改善由該等材 料所形成之矽陽極的性能。進一步而言,在使用一金晶種 催化劑(gold seed catalyst)於不鏽鋼基材上形成矽奈米線 的情況中’其應用係受限於該催化劑的成本及該製程複雜 的特性。 因此’ It由施加光能至一或多層奈米粒化石夕來將奈米 粒化石夕溶融在一起以形成該經光學熔融之奈米粒化結構 212 ’將有利地提高該奈米粒化結構212的機械強度並維 持或者改善鋰傳導途徑。此外,本發明之光熔融製程的簡 易程度及成本功效給習知的矽電池陽極製造製程提供一 卓越的替代選擇。 圖3 A係奈米粒化銅溶融至一第一程度之掃瞒電子顯 微鏡(SEM)影像。該SEM影像可使用一 je〇L 35CF掃 描電子顯微鏡或一 JEOL 0330F場放射掃描電子顯微鏡來 獲得。 圖3B係奈米粒化銅熔融至一第二程度之SEM影像。 圖4 A係購自廠商,例如西克瑪艾爾迪希(sigma Aldrich)’之奈米粒化矽的一 SEM影像,其具有3〇nm之 平均粒徑、以重量計為9%之承載濃度(l〇ading concentration),及在10rpm下約為5卬的黏度。 圖4B係經研磨之奈米粒化矽的—SEM影像,其係具 有一約lOOnm之平均粒徑、一以重量計為約2%之承载濃 13 201202038 度,及在10 rpm下約為3 cp的黏度。 圖4C係經濕式蝕刻之奈米粒化矽的一 SEM影像,其 係具有一約15nm之平均粒徑、一以重量計為約8%之承載 濃度,及在1 〇 rpm下約為5cp的黏度。 圖4A-4C的奈米粒化矽可包含圖1之該奈米粒子104 及/或可塗敷至一基材,例如圖2之該基材202。 圖5A係印刷在一層奈米粒化銅上之奈米粒化矽的一 低倍率SEM影像。圖5B係印刷在一層奈米粒化銅上之奈 米粒化矽的一高倍率SEM影像。圖5A及5B之奈米粒化 矽可使用矽塊體或粉末原材料來製造。該矽塊體或粉末材 料可經球磨、化學蝕刻,及粒度分級來製得圖5A及5B的 奈米粒化矽。圖5A及5B的該奈米粒化矽可包含圖1之該 奈米粒子104及/或可塗敷至一基材,例如圖2之該基材 202。 圖6A係一低倍率SEM影像,顯示配置於一層經光學 溶融之奈米粒化銅上的經光學溶融之奈米粒化石夕,以及一 基材;該基材係在約1000V之電壓下暴露於一具有約 4.69kW/cm2之功率密度的光能長達一 800微秒之持續時 間。圖6B係一高倍率SEM影像,顯示配置於一層經光學 炫融之奈米粒化銅上的經光學溶融之奈米粒化石夕,以及一 基材;該基材係在約1000V之電壓下暴露於一具有約 4.69kW/cm2之功率密度的光能長達一 800微秒之持續時 間。圖6 A及6B顯示缺乏經溶融之奈米粒化石夕。 14 201202038 圖7A係一低倍率SEm影像,顯示配置於一層經光學 熔融之奈米粒化銅上的經光學熔融之奈米粒化矽,以及一 基材,遠基材係在約115 0V之電壓下暴露於一具有約 6.20kW/cm之功率密度的光能長達一 8〇〇微秒之持續時 間。圖7B係一高倍率SEM影像,顯示配置於一層經光學 溶融之奈米粒化銅上的經光學熔融之奈米粒化石夕,以及一 基材,該基材係在約Π 50V之電壓下暴露於一具有約 6.20kW/cm2之功率密度的光能長達一 8〇〇微秒之持續時 間。圖7A及7B顯示經熔融之奈米粒化矽的形成。 圖8A係一能量色散X射線光譜(EDS)圖,其係顯示 在施加一預設等級及持續時間之光能之前的熔融奈米粒 化矽。圖8B係圖8A之奈米粒化矽在一約1150V之電壓 下暴露於一具有約6.20kW/cm2之功率密度的光能長達一 800微秒之持續時間。圖8A及8B之EDS光譜圖的峰值顯 示在施加該光能後有矽及一未知量之氧氣的存在。 圖9係一 TEM影像,顯示配置於一層經光學溶融之 奈米粒化銅上的經光學熔融之奈米粒化矽,及一基材;該 基材係在一約1100V之電壓下暴露於一具有約 5.67kW/cm2之功率密度的光能長達一 8〇〇微秒之持續時 間。該TEM影像可利用一飛利浦cM-200 TEM獲得。 圖10係另一影像,顯示塗敷於一層經光學熔融之奈 米粒化銅上的經光學熔融之奈米粒化矽,及一 KAPTON® 基材;該KAPTON®基材係暴露於一預設等級及持續時間 15 201202038 的光能。 圖11表示-製程,係施加光能至1含有配置於其 中之奈米粒化氧化盆添加物的奈米粒化銅,並氧化一妹光 學熔融之含有配置於其中之氧化猛添加物的奈㈣化 銅’以製得-具有預設特性及特徵之特定奈米結構。特別 是,圖u顯示一基材·。該基材1102可為—聚合材料。 在某些情況下,該聚合材料可為—聚醯胺,例如 ΚΑΡΤΟΝ®。該基材i i 02亦可調配成包括酉己置於其中或以 其他方式包含於其中之金屬成分。 可將-或多未溶融的奈米粒化層塗敷至基材i ι〇2,例 如一或多層未溶融之奈米粒化銅聰。該—或多層未炫融 之奈米粒子可經由-印刷製程塗敷至該基材ιι〇2。例如, 該一或多層未炫融之奈米粒化銅11〇4可藉由一已知且傳 統的茂降印刷法。此外,該被使用來塗敷該一或多層至該 基材1102的印刷製程亦可包含一已知的傳統網版^ 私。該-或多層未溶融之奈米粒子亦可經由一墨 程塗敷至該基材1102。 该層未熔融之奈米粒化銅1104可為一包含奈米粒化 銅之墨水調配物。該墨水調配物亦可包含配置於其中之添 加物,例如奈米粒化氧化錳添加物1106。一包含奈米粒2 銅及奈米粒化氧化猛添加物的墨水調配物可依據在美國 專利號碼7,514,369、7,531,155及7,244,513中所描述的技 術來製備;上述所列的專利參考文獻全體皆引用作為本說 16 201202038 明書的揭示内容。在一特定實施例中,奈米粒化銅及奈米 粒化氧化錳可在一由NETZSCH®所產之MicroCer球磨機 中以介於2000-2500rpm間之攪拌速率結合,並經由一持續 時間約30分鐘的音波震動被碾磨。該包含奈米粒化鋼及 奈米粒化氧化猛添加物的墨水調配物具有一介於5cp至15 cp之黏度’ 一介於20mN/m及30mN/m之表面張力,及— 小於約100nm之平均粒徑。此外,該奈米粒化氧化錳添加 物的載量以重量計可介於10%至40%之間。 將光能1108施加至一或多層未熔融之奈米粒子,例 如該層1104,及該基材11〇2。該光能1108可源自一高強 度、寬頻譜之光源。特別是’該光能來源可為一氙氣燈。 該光能1108可以一預設時間及一預設電壓及/或預設功率 街度來施加,已達到該一或多層11〇4個別的一預設量、 孔隙大小’及/或孔隙密度。在一介於0.2毫秒至1.0毫秒 之持續時間内,施加至該一或多層奈米粒化銅1104及該 基材1102之總能量密度可高達約uj/cm2。 在施加該光能1108後,可形成一經光學溶融之傳導 性銅層1110。該經光學熔融之傳導性銅層的特性及特徵可 藉由用來施加該光能1108之一光能來源的設定來控制或 者預設該經光學熔融之傳導性銅層1110可具有一小於 ΙΩ/cm2之電阻。 進一步而言,一銅氧化層1H2可形成於該經光學熔融 之傳導性銅層1110。例如,該經光學熔融之傳導性銅層 17 201202038 1110可在空氣中或一 02環境中以一介於200°c及300°c之 溫度及一介於3分鐘至5分鐘的持續時間被加熱。 在一描述例中,一奈米結構包括該基材1102,及該經 光學熔融之傳導性銅層1110,且該銅氧化層1112可被用 作一超級電容器的一電極。特別是,同氧化物電極可經由 下述方程式來儲能:201202038 VI. INSTRUCTIONS: This application is based on 35 USC 119(e)(1) claiming priority to the provisional application No. 61/225797, filed on Jul. 15, 2009, which is incorporated by reference. As a disclosure of this specification. The U.S. Government has the sell-out royalties of the present invention and has, to a limited extent, required the patentee to authorize third parties under reasonable conditions in accordance with the U.S. Department of Defense's contract number W911-QX-10-C-0044. TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of manufacturing a specific nanostructure. [Prior Art] The present invention relates to a method of producing a specific nanostructure by applying light energy to nanoparticle. SUMMARY OF THE INVENTION The product of the present invention can be carried out by the following method comprising the steps of applying light energy to one or more layers of unmelted nanogranular material under predetermined conditions to produce a specific characteristic and characteristic. Nano structure. For example, the nanostructures can comprise a plurality of layers having a predetermined pore density, a predetermined pore size, or both. A predetermined condition for applying the light energy may include a predetermined voltage, a predetermined duration, a predetermined power density, or a combination thereof. The one or more layers of unmelted nanogranular material may comprise at least one layer of nanoparticulated copper disposed on a polyamide substrate. At least a portion of the copper nanoparticles of at least one layer of nano-sized copper can be optically melted to form a continuous film on the substrate. The at least one layer of nano-sized copper can be applied to the substrate as an ink 201202038 formulation and disposed on the substrate via a printing process, such as a drop printing process or a screen printing process. The one or more layers of non-glazed nanoparticle material may also comprise at least one layer of nanoparticulate granules disposed on one or more layers of nano granulated copper. At least a portion of the nano-sized granules of the granules are optically meltable, such that the at least one layer of nano-sized fossils has a predetermined pore density, a predetermined pore size, or both . The at least one nano granulated layer may be applied as an ink formulation to the one or more layers of nano granulated copper and disposed on the one or more layers of nano granulated copper via a printing process. Further, the one or more layers of unmelted nano granulated material may comprise at least one layer of nano granulated copper in which a nano granulated manganese oxide additive is disposed. A copper oxide layer may be formed from the at least one layer of nano-granulated copper comprising the nano-granulated manganese oxide additive. The characteristics and characteristics of the nanostructure can be preset based on a particular application of the nanostructure. For example, the nanostructure can be used to form a tantalum anode of a lithium ion battery. Therefore, the light energy is applied to a plurality of layers of unmelted nano granulated material to produce a nanostructure having a characteristic that can function optimally as a tantalum anode of a lithium ion battery. . In another embodiment, the nanostructure can be used to form a supercapacitor. Accordingly, the light energy is applied to a plurality of layers of unmelted nano granulated material to obtain a nanostructure having characteristics and characteristics for the purpose of exerting the function of the supercapacitor. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the accompanying drawings, in which the like FIGS. Figure 1 shows that a light source is not applied to the nanoparticle to produce a nanostructure having specific characteristics and special features. In particular, 'Fig. 1 shows a source of light energy 1 〇 2 - applying light energy to the nanoparticles 104. The source of optical energy 102 can be a high intensity, wide spectrum lamp having an optical power of about 106 watts and capable of applying light energy for a duration of between 100 microseconds and 1 millisecond. When light energy is applied to the nanoparticle 104, the nanoparticle 1〇4 can be optically melted to form a nanostructure 106-110. The predetermined process conditions of the light energy source 1〇2 can control the characteristics and characteristics of the far nanostructure 1〇6_11〇 according to the amount of light energy applied to the nanoparticles 1〇4. For example, the nanostructures 106, 108 or 110 can be fabricated by varying the voltage, the turn, the power density, or a combination thereof. In particular, the extent to which the nanoparticle 1〇4 is optically fused together may depend on the voltage, time (i.e., duration) and power density applied by the source 102 of light to the nanoparticle 1〇4. Therefore, the preset voltage of the optical energy source 104 and the voltage, time and power density within a specific range can produce different nano structures such as '纟》. In some cases, the preset voltage, time, and power density of the source of light energy 104 applied to the special nanostructure is based on nanoparticle. 1 〇 4 chemical properties (chemical - do) and composition depends on the detailed description, the present invention uses the array of light energy source 102 conditions applied to the copper nanoparticles to correspondingly manufacture the nanostructures 1 〇 6- One of 110. In addition, the present invention uses a source of light energy 201202038 to produce an array of such naphthalenes 102 respectively applied to the second nanoparticle to one of the meters 106-11. The nanostructure 1〇6-11〇 is characterized by the extent to which the nanoparticles 104 are fused together when light energy is applied to the rice capture particles 104. In other words, the grade of optical melting is quantified to the characteristics of the (iv) nanostructure. For example, 'the preset voltage, day (four) (ie duration) and/or power density setting of the source of light energy 102 can be made to have a nanostructure in which the nanoparticles are melted to a first degree or grade, such as the nanometer. Structure 1〇6. In another embodiment, the different continuation time and/or power stimuli of the source of light energy 1-4 are generated to have a nanostructure that has been melted to a first degree or grade, such as the nanometer. Structure (10). In the embodiment of the further step, the voltage of the light source 1G6, the duration of 4 and/or the power density setting can produce a continuous shape formed by the molten nanoparticle (for example, the nanostructure 110). membrane. «The level or degree of melting of the Haibei particles 104 can be achieved in the form of porosity. Special collection, the level of optical (four) - the nanostructure 1 〇 6] 10, the size of the medium and wide pores, the number of pores of the nanostructure 106-110 < (ie pore porosity), or both, the value It depends on the preset process conditions used when applying the source of light energy to the 5 Henna particle 1〇4. The extent to which the nanoparticles 104 are fused together may additionally or alternatively be represented by the particle size of the optically prepared nanoparticle. In particular, the porosity of the nanostructure 1〇6_11〇 is gradually reduced by the structure of the honeycomb structure 106 to 6H. Therefore, the 201202038 pore density of the nanostructure (10) is greater than the pore density of the nanostructure 108. The nanostructure 108 has a pore density greater than the pore density of the nanostructure 110. Furthermore, the void size of the optically fused nanoparticles increases from the nanostructures 106 to the nanostructures 110. Therefore, the pore size of the optically fused nanoparticle of the nanostructure 106 is smaller than the pore size of the optically fused nanoparticle of the nanostructure 108, and the optical structure of the nanostructure 108 is optically fused. The pore size of the nanoparticle is smaller than the pore size of the optically molten nanoparticle of the nanostructure 110 by distinguishing the process conditions predetermined by the application of light energy to the nanostructure 104, the nanometer The features of structures 106-110 can be designed for different applications. For example, some applications may require a nanostructure of molten nanoparticle of a particular composition having a particular predetermined pore size and/or pore density. Thus, the setting of the source of light energy 104 can be controlled in a predetermined manner to produce a nanostructure having characteristics suitable for the intended application. FIG. 2 shows an exemplary process for applying light energy to unmelted nanoparticles. To make a specific nanostructure. In particular, Figure 2 shows a substrate 202. The substrate 202 can be a polymeric material. In some cases, the polymeric material can be a polyamine, such as KAPTON®. The substrate 202 can also be formulated to include a metal component disposed therein or otherwise included. One or more unmelted nanogranules may be applied to substrate 202, such as a layer of unmelted nanogranular copper 204 and one or more layers of unglazed nanograin fossil 206. The one or more layers of nanoparticle can be applied to substrate 202 via a printing process 201202038. For example, the one or more layers of nano granulated copper 204 can be applied to the substrate 2〇2 by a conventional venting printing process. Additionally, the one or more layers of nanograin fossil 206 can be applied to the one or more layers of copper 204 via a conventional venting process. The printing process for applying the one or more nano granules 204, 206 to the substrate 202 can also comprise a known conventional screen printing process. The one or more nano granulation layers 202, 204 can also be applied to the substrate 202 via a known ink deposition process. Additionally, the one or more nano granulation layers 2, 4, 206 may be applied to the substrate 202 to form a pattern, such as a grid pattern ' or, for example, a continuous layer. One or more unmelted layers of the nanogranulated copper 204 and/or one or more unmelted layers of the nanoparticulate crucible 206 may be an ink formulation comprising copper and/or nano granules. The nano granulated copper and the nano granulated fossil ink formulation can be prepared according to the techniques described in U.S. Patent Nos. 7,514,369 and 7,531, 155; the entire disclosures of each of which is incorporated herein by reference. In a specific embodiment, the ink formulation of the nano granulated ruthenium can be mechanically ground into a nano sized particle crystal yttrium powder, wet etched ruthenium nanoparticles by a manufacturer's sapphire nanoparticles. , or a combination thereof. The nanoparticle may have a size less than 10 nm. Further, the 矽 nanoparticles may comprise p-type 矽 nanoparticles, η-type 矽 nanoparticles, or a mixture thereof. In one illustrative example, the micron-sized Shishi powder or chips are sequentially subjected to ball milling, chemical etching, and particle size fractionation of the nanoparticle to prepare an ink composition containing nanograin. The glutinous nanoparticles will then be transferred to a 201202038 inert gas glove aseptic box, such as a VACCUM ATMOSPHERES NEXUS8 glove aseptic box, and dispensed with a low boiling point sol (e.g., T alcohol and knife). It is also possible to use the beads for the step-by-step sonic vibration treatment. The mixture is then transferred to a glass vial' sealed and maintained in an inert nitrogen atmosphere. The synthesized nanoparticle I system was sonicated in an ultrasonic treatment bath (ultrasGnieati〇n bath) for at least 30 minutes, and then ball milled using a roller treader machine. The bead beads are removed by centrifugation' and the particles remaining in the suspension can be decanted to obtain the ink formulation containing the enamel granules. The volume of the ink formulation containing the nano granulated cerium can be adjusted using a functionalizing solvent to obtain the target enthalpy load. ° After each individual granulated layer is applied to the substrate 2 〇 2, it can be baked. This layer. For example, after one or more layers of ruthenium 2〇6 are applied to the substrate 202, the layer of the nanogranules 206 can be continuously baked at a temperature of about 100 ° C for about 10 minutes. Light energy 208 is applied to the one or more layers of nanoparticle, such as layers 204 and 206' and the substrate 202. The light energy 208 can be derived from a high intensity, wide spectrum light source, such as a xenon lamp, which can be individually depending on the demand, melting level, pore size, and/or porosity of the one or more layers 204, 206. Density is applied at a preset time and a preset voltage / or a preset power density. In a specific example, the power density of the source of light energy is in the range of 5.50 kW/cm2 to 6.50 kW/cm2. In this example, the light 201202038 energy 208 can be applied at a voltage in the range of 1075V to 1175V, and the light energy 208 can be applied for 800 microseconds. The light energy 208 can also be applied in air and / < about 25 °C. The light energy 2 〇 8 absorbed by the nanoparticles of the layers 204, 206 is converted into thermal energy and increases the temperature of the nanoparticles. Since the nanoparticle phase car is in contact with its corresponding bulk material which tends to melt at a lower temperature, the nanoparticles of the layers 204, 206 can be melted to some extent. Some of the thermal energy from the nanoparticles escapes into the substrate 202 and the surrounding air. Since the light energy is applied for a relatively fast duration, the temperature of the substrate 2 〇 2 is less than 100 ° C ' advantageously to prevent or reduce thermal damage to the substrate 202. After application of the light energy 208, a conductive, optically fused copper layer 210 can be formed. Alternatively, an optically melted nanoparticle granulation structure 212 can be formed. The characteristics and characteristics of the conductive copper layer 210 and/or the nano-grained structure 212 can be controlled or preset by the setting of one of the sources of light energy used when the light energy 208 is applied. In some cases, the nanoparticles of the nanograined layer 206 can be optically melted together to form optically melted nanoparticulate fossil pellets 214 (i.e., pellets). The size and/or density of the optically melted nano-sized spheroidized spherulites 214 is controlled or pre-determined by the conditions under which the light energy 2〇8 is applied to the molten layer of the ohmite particles 204. . In addition to melting the optical particles of the one or more layers 204, 206, the optical particles of the one or more layers 204, 206 may be cured. The one or more layers of nanoparticulate copper 204 may have a conductivity of greater than about 1 〇 5 s/cm during hardening. A layer of nanoparticle of other elements may be applied to the substrate 202, such as Li, B, Zn, Ag, Al, Ni, Pd, Sn, Ga or the like. Alternatively, a nano granulated alloy may be disposed on the substrate 202, such as Cu-Zn, Al-Zn, Li-Pd, Al-Mg, Mg-Al-Zn, or the like. Further, a nanogranular compound may be disposed on the substrate 202, such as ITO, Sn?2, NaCl, MgO, Si]N4, GaN, ZnO, ZnS, or the like. In an illustrative embodiment, the nanogranulation structure 212, the conductive copper layer 210, and the substrate 202 can be used to construct an anode of a battery, such as an ion battery anode. In particular, Shi Xi can be used as a candidate for an anode of a lithium ion battery having a theoretical discharge capacity of 4200 mAh/g. However, the capacitance of many tantalum anodes gradually declines under circulation. For example, 矽 can form an intermetallic alloy with lithium according to the following equation: 44 Li + 10 Si = 10Li4.4Si (Equation 1) Since the atomic radius of lithium is larger than 矽 (about 2.05 angstroms, the contrast is about 1.46). Å), so the volume expansion of the 矽 lattice may occur. The volume expansion of the germanium lattice may cause the internal pressure of the germanium lattice to cause internal cracking and cracking of the germanium particles. Therefore, the lithium ion diffusion path is broken to trap the lithium ion. The destruction of the lithium diffusion pathway causes a loss of current due to the progress or increase of the lithium ion battery cycle, which leads to capacitance fading. In some cases, amorphous tantalum, niobium composites, tantalum alloys, and nanocrystallization are designed in a manner intended to improve the cycle performance of the stone sunset poles used in the clock ion battery. However, in some cases, for example, in the case of nanometer-sized tantalum powder 12 201202038, the tantalum may accumulate during cycling, limiting the lithium conduction pathway. In other cases, such as amorphous stone and alloys, the properties of the tantalum anode formed from the materials can be improved. Further, in the case where a gold seed catalyst is used to form a ruthenium nanowire on a stainless steel substrate, its application is limited by the cost of the catalyst and the complicated characteristics of the process. Thus 'It will advantageously increase the mechanical strength of the nanogranulated structure 212 by applying light energy to one or more layers of nanoparticulate fossils to melt the nanocrystalline fossils to form the optically melted nanogranular structure 212'. And maintain or improve the lithium conduction pathway. In addition, the ease and cost effectiveness of the photomelting process of the present invention provides an excellent alternative to the conventional tantalum cell anode fabrication process. Figure 3 A-line nano-granulated copper is melted to a first degree of broom electron microscopy (SEM) image. The SEM image can be obtained using a je〇L 35CF scanning electron microscope or a JEOL 0330F field emission scanning electron microscope. Figure 3B is a SEM image of a nano-sized granulated copper melted to a second degree. Figure 4A is an SEM image of a nanoparticle granule obtained from a manufacturer, such as sigma Aldrich, having an average particle size of 3 〇 nm and a loading concentration of 9% by weight. (l〇ading concentration), and a viscosity of about 5 在 at 10 rpm. Figure 4B is an SEM image of a milled nano-sized granulated ruthenium having an average particle size of about 100 nm, a load of about 2% by weight of 13 201202038 degrees, and about 3 cp at 10 rpm. Viscosity. 4C is an SEM image of a wet etched nano granulated ruthenium having an average particle size of about 15 nm, a loading concentration of about 8% by weight, and about 5 cp at 1 rpm. Viscosity. The nanogranules of Figures 4A-4C may comprise the nanoparticle 104 of Figure 1 and/or may be applied to a substrate, such as the substrate 202 of Figure 2. Figure 5A is a low-magnification SEM image of nanograined ruthenium printed on a layer of nano-sized copper. Figure 5B is a high magnification SEM image of a nanograined crucible printed on a layer of nano-sized copper. The nanoparticulates of Figures 5A and 5B can be made using tantalum blocks or powdered raw materials. The niobium block or powder material can be subjected to ball milling, chemical etching, and particle size fractionation to obtain the nanoparticulate crucible of Figs. 5A and 5B. The nanoparticulate crucible of Figures 5A and 5B can comprise the nanoparticle 104 of Figure 1 and/or can be applied to a substrate, such as the substrate 202 of Figure 2. Figure 6A is a low-magnification SEM image showing an optically-dissolved nano-sized fossil disposed on a layer of optically melted nano-granulated copper, and a substrate; the substrate is exposed to a voltage of about 1000 V Light energy with a power density of about 4.69 kW/cm2 is up to a duration of 800 microseconds. Figure 6B is a high magnification SEM image showing an optically fused nanoparticle fossil disposed on a layer of optically smoked nanogranular copper, and a substrate; the substrate is exposed to a voltage of about 1000V A light energy having a power density of about 4.69 kW/cm2 is for a duration of 800 microseconds. Figures 6A and 6B show the lack of melted nanograin fossils. 14 201202038 Figure 7A is a low-magnification SEm image showing an optically molten nano-sized yttrium disposed on a layer of optically molten nano-granulated copper, and a substrate having a far substrate at a voltage of about 115 0V Exposure to a light energy having a power density of about 6.20 kW/cm for a duration of up to 8 〇〇 microseconds. Figure 7B is a high-magnification SEM image showing an optically molten nano-sized fossil disposed on a layer of optically melted nano-granulated copper, and a substrate exposed to a voltage of about 50 V A light energy having a power density of about 6.20 kW/cm 2 is as long as a duration of 8 〇〇 microseconds. 7A and 7B show the formation of ruthenium ruin by molten rice. Figure 8A is an energy dispersive X-ray spectroscopy (EDS) image showing molten nanogranules prior to application of a predetermined level and duration of light energy. Figure 8B is a graph showing the duration of exposure of a nano-sized cerium lanthanum of Figure 8A to a light having a power density of about 6.20 kW/cm 2 for a period of 800 microseconds at a voltage of about 1150 volts. The peaks of the EDS spectra of Figures 8A and 8B show the presence of an unknown amount of oxygen after application of the light energy. Figure 9 is a TEM image showing an optically molten nanograined ruthenium disposed on a layer of optically melted nano-granulated copper, and a substrate; the substrate is exposed to a voltage of about 1100 V The light energy at a power density of about 5.67 kW/cm2 is as long as 8 〇〇 microseconds. The TEM image can be obtained using a Philips cM-200 TEM. Figure 10 is another image showing an optically molten nanograined ruthenium coated on a layer of optically molten nano-granulated copper, and a KAPTON® substrate; the KAPTON® substrate is exposed to a predetermined level And the light energy of duration 15 201202038. Fig. 11 is a view showing a process of applying light energy to a nano granulated copper containing a nano granulated oxidation basin additive disposed therein, and oxidizing a sister's optically melted neats containing the oxidized stimuli disposed therein. Copper 'made' - a specific nanostructure with preset characteristics and characteristics. In particular, Figure u shows a substrate. The substrate 1102 can be a polymeric material. In some cases, the polymeric material can be a polyamine, such as hydrazine®. The substrate i i 02 can also be formulated to include a metal component in which it has been or otherwise contained. The granulated layer of - or more unmelted nanoparticle may be applied to the substrate i ι 2, such as one or more layers of unmelted nano granulated copper. The—or multiple layers of unblown nanoparticle can be applied to the substrate ιι 2 via a printing process. For example, the one or more layers of unblown nano-sized granulated copper 11 〇 4 can be formed by a known and conventional hopping printing process. Additionally, the printing process used to apply the one or more layers to the substrate 1102 can also comprise a known conventional screen. The one or more layers of unmelted nanoparticle may also be applied to the substrate 1102 via an ink process. The layer of unmelted nano-granulated copper 1104 can be an ink formulation comprising nano-granulated copper. The ink formulation can also include an additive disposed therein, such as nano granulated manganese oxide additive 1106. An ink formulation comprising a nanoparticle 2 copper and a nanogranulated oxidative stimuli additive can be prepared according to the techniques described in U.S. Patent Nos. 7,514,369, 7,531,155 and 7,244,513; This is the disclosure of 16 201202038. In a particular embodiment, the nano-granulated copper and the nano-granulated manganese oxide can be combined in a MicroCer ball mill manufactured by NETZSCH® at a stirring rate between 2000 and 2500 rpm and for a duration of about 30 minutes. The sonic vibration is milled. The ink formulation comprising nano granulated steel and nano granulated oxidative stimuli has a viscosity of between 5 cp and 15 cp', a surface tension of between 20 mN/m and 30 mN/m, and an average particle size of less than about 100 nm. . Further, the loading of the nano granulated manganese oxide additive may be between 10% and 40% by weight. Light energy 1108 is applied to one or more layers of unmelted nanoparticle, such as layer 1104, and the substrate 11〇2. The light energy 1108 can be derived from a high intensity, wide spectrum light source. In particular, the source of light energy can be a xenon lamp. The light energy 1108 can be applied for a predetermined time and a predetermined voltage and/or a preset power street degree to a predetermined amount, pore size &/or pore density of the one or more layers 11 . The total energy density applied to the one or more layers of nanogranulated copper 1104 and the substrate 1102 can be as high as about uj/cm2 for a duration of between 0.2 milliseconds and 1.0 milliseconds. After application of the light energy 1108, an optically molten conductive copper layer 1110 can be formed. The characteristics and characteristics of the optically fused conductive copper layer can be controlled or preset by the setting of the source of light energy used to apply the light energy 1108. The optically fused conductive copper layer 1110 can have a less than ΙΩ. /cm2 resistance. Further, a copper oxide layer 1H2 may be formed on the optically-fused conductive copper layer 1110. For example, the optically fused conductive copper layer 17 201202038 1110 can be heated in air or in a temperature of between 200 ° C and 300 ° C and for a duration of between 3 minutes and 5 minutes. In one illustrative embodiment, a nanostructure includes the substrate 1102, and the optically fused conductive copper layer 1110, and the copper oxide layer 1112 can be used as an electrode of a supercapacitor. In particular, the same oxide electrode can be stored via the following equation:

Cu2+ + e.㈠ Cu. (-0.08V/SCE) (Eq.2) 超級電容器可應用於無線零件及可攜式設備中,例如 PCMCIA卡、CF記憶卡、行動電話、智慧型手機、PDA、 數位相機、筆記型電腦、數位媒體播放器、玩具、電子書 閱覽器等。超級電容器的優點包括:快速充電/放電速率、 長週期生命、高週期效率及廣範圍的操作溫度。然而,超 級電容器可能具有一低的比能量密度。 特別是,包括該基材1102之該奈米結構、該經光學 熔融之銅層1110及該銅氧化層1112可用來建構一假性電 容器。假性電容器同時表現電化學雙層電容器及電池的特 徵,例如電子轉移反應與本體及界面程序(bulk and interfacial processes )。假性電容器儲能在表面及/或次表面 (subsurface )。因此,具有較大表面積之假性電容器便具 有較高的功率密度。由於圖11之該奈米結構的孔隙度, 該奈米結構擁有一較高的表面積,且該表面積具有大於 20 Wh/kg之能量密度及一大於1 kW/kg之比功率密度。 圖12係描述一製程1200之流程圖,該製程係用以製 18 201202038 ° '丁'米、、、°構,s玄奈米結構係由具有預設特性及特徵之經 光學熔融的奈米粒子構成。在步驟1202中,設定了一^ 米構所欲之特徵與特性。例如,該奈米結構的特徵與特 性可依該奈米結構之應用來設定。特別是,某些應用會使 用具有—第一孔隙密度及孔隙大小之奈米結構,而其:應 用則會使用具有—第二孔隙密度及孔隙大小的奈米結 構。在某些情況下,所指定的孔隙大小可為一平均孔隙大 °該奈米結構的其他特質亦可預設例如—或多層之該奈 f結構的一導電度,-或多層該奈米結構之熱“度i 等。 “步驟12G4係預設能來源之設定以製造該具有該 ,叹特徵之奈米結構。例如,與—光能來源之操作相關之 一電Μ、-持續時間’及/或一功率密度可被預設,因此當 施加遠光能來源至至—奈米起始材料時,將製得—具有該 預設特徵之奈米結構。 該一或多 預設量之該奈米 在步驟1206中,-或多層之未溶融的奈米粒子係被 塗敷至-基材。該等層之未炫融的奈米粒子的組成係由所 產生之奈米結構的預設特徵及特性決定。例如 層之未溶融奈米粒子的組成可取決於一 f構的電阻。在另—個例子中,該—或多層之塗敷至該基 材的未熔融的奈米粒子之組成可取決於該奈米結構之一 預設的機械穩定性。在更進—步的例子中,該=多層塗 敷至該基材之未熔㈣奈米粒子可取決於該奈米結構之 19 201202038 一預設的熱傳導度。在某些情況下,該一或多層之奈米粒 子的組成可包括元素奈米粒子,例如奈米粒化銅或奈米粒 化矽,元素奈米粒子包含配置於其中之奈米粒化添加物、 奈米粒化化合物、奈米粒化合金,或其組合。 步驟1208係施加光能至該一或多層之未熔融之塗敷 至該基材的奈米粒子。該光能係在該預設之持續時間、電 壓,及/或功率密度的設定下施加,以製造具有該預設特徵 之奈米結構。在步驟1210中,該奈米結構可進一步加工。 例如,一或多層之該奈米結構可被加熱固化。在其他例子 中,可對一或多層之該奈米結構施加一氧化製程。 在步驟1212中,該奈米結構係被使用於一特定的應 用中。為了描述,該奈米結構可被使用作為一電池的陽 極,例如裡離子電池的陽極。在其他情況下,該奈米結構. 可被使用作為一超級電容器。 儘管該步驟1202-1212係以一特定順序被描述,然而 該步驟1202-1212的所被描述的順序並非意圖用來當作一 種限制,且上述任一編號之步驟皆可以任意順序與步驟 1200結合及/或與步驟1200平行進行。 貫驗例 實驗例1 將光能施加於一具有一層奈米粒化銅及一層奈米粒 化矽之KAPTON®基材。該奈米粒化矽層係由一矽墨水調 20 201202038 配物所構成,該墨水調配物係由購自廠商之矽奈米粒子所 製備,該石夕奈米粒子具有在1 〇rpm下為5cp之黏度及9重 量°/〇之承載濃度。該光能係在約800V之電壓下以—約 3.00kW/cm2之功率密度持續施加達約800微秒之持續時 間。該奈米粒化矽層並未被固化且奈米粒化矽極少有熔融 的情形。此外,該奈米粒化銅層未被固化。 實驗例2 將光能施加於一具有一層奈米粒化銅及一層奈米粒 化矽之KAPTON®基材。該奈米粒化矽層係由一矽墨水調 配物所構成,該墨水調配物係由購自廠商之矽奈米粒子所 製備,該石夕奈米粒子具有在1 Orpm下為5cp之黏度及9重 量%之承載濃度。該光能係在約1000V之電壓下以一約 4.69kW/cm2之功率密度持續施加達約800微秒之持續時 間。該奈米粒化矽層並未被固化且奈米粒化矽極少有熔融 的情形。此外,該奈米粒化銅層係被固化且具有傳導性。 實驗例3 將光能施加於一具有一層奈米粒化銅及一層奈米粒 化矽之KAPTON®基材。該奈米粒化矽層係由一矽墨水調 配物所構成,該墨水調配物係由購自廠商之矽奈米粒子所 製備,該石夕奈米粒子具有在lOrpm下為5cp之黏度及9重 量%之承載濃度。該光能係在約110V之電壓下以一約 5.67kW/cm2之功率密度持續施加達約800微秒之持續時 間。該奈米粒化矽層係被固化且奈米粒化矽有熔融的情 21 201202038 形。此外,該奈米粒化銅層係被固化且具有傳導性。 貫驗例4 將光能施加於一具有一層奈米粒化銅及一層奈米粒 化矽之KAPTON®基材。該奈米粒化矽層係由一矽墨水調 配物所構成,該墨水調配物係由購自廠商之矽奈米粒子所 製備,該矽奈米粒子具有在lOrpm下為5cp之黏度及9重 量%之承載濃度。該光能係在約1150V之電壓下以一約 6.20kW/cm2之功率密度持續施加達約800微秒之持續時 間。該奈米粒化矽層係被固化且奈米粒化矽有熔融的情 形。此外,該奈米粒化銅層係被固化且具有傳導性。 實驗例5 將光能施加於一具有一層奈米粒化銅及一層奈米粒 化矽之KAPTON®基材。該奈米粒化矽層係由一矽墨水調 配物所構成,該墨水調配物係由購自廠商之矽奈米粒子所 製備,該矽奈米粒子具有在lOrpm下為5cp之黏度及9重 量%之承載濃度。該光能係在約1200V之電壓下以一約 6.75kW/cm2之功率密度持續施加達約800微秒之持續時 間。該奈米粒化矽層係部分地自該奈米粒化銅層脫離。此 外,該奈米粒化銅層係被固化且具有傳導性。 實驗例6 將光能施加於一具有一層奈米粒化銅及一層奈米粒 化矽之KAPTON®基材。該奈米粒化矽層係由一矽墨水調 22 201202038 配物所構成,該墨水調配物係由購自廠商之矽奈米粒子所 製備,該矽奈米粒子具有在lOrpm下為5cp之黏度及9重 量%之承載濃度。該光能係在約1600V之電壓下以一約 19.20kW/cm2之功率密度持續施加達約500微秒之持續時 間。該奈米粒化矽層係自該奈米粒化銅層脫離。此外,該 奈米粒化銅層係部分地自該基材脫離。 實驗例7 將光能施加於一具有一層奈米粒化銅及一層奈米粒 化矽之KAPTON®基材。該奈米粒化矽層係由一矽墨水調 配物所構成,該墨水調配物係由購自廠商之矽奈米粒子所 製備,該矽奈米粒子具有在lOrpm下為5cp之黏度及9重 量%之承載濃度。該光能係在約2000V之電壓下以一約 5.OOkW/cm2之功率密度持續施加達約200微秒之持續時 間。該奈米粒化矽層係被固化且部分奈米粒化矽有熔融的 情形,但奈米粒化矽之該固化與熔融的情形並不均勻。此 外,該奈米粒化銅層係被固化且具有傳導性。 實驗例8 在一樣本石夕陽極之電化學分析中,使用一普林斯頓應 用研究VMP3-CHAS 16通道分析儀來測定實驗例3之最終 產物的比電容。該測試條件為. 半電池 工作電極:矽基薄膜 23 201202038 蒼考電極·链 對電極:鋰 電解質:FC-130 隔板·聚丙卸 電壓窗 0.02V - 1.5V 電流:100 mA/g 用於該第一循環的比電容係6000 mA/g且該第二循環 的比電容係1700 mA/g 【圖式簡單說明】 圖1表示一製程,係將光源施加至奈米粒子以製得一 具有預設且特定之特徵及特性的奈米結構。 圖2表示施加光能至一或多層的奈米粒化銅及一或多 層之奈米粒化矽以製得一奈米結構,該奈米結構包含一層 矽奈米粒化結構,係在銅傳導層上且具有預設特性及特徵 者。 圖3A係奈米粒化銅熔融至一第一程度之掃瞄電子顯 微鏡(SEM)影像。 圖3B係奈米粒化銅熔融至一第二程度之SEM影像。 圖4A-4C係在施加光能前之奈米粒化矽的各例。 圖5A係印刷在一層奈米粒化銅上之奈米粒化矽的一 低倍率SEM影像。 24 201202038 圖5B係印刷在一層奈米粒化銅上之奈米粒化矽的一 高倍率SEM影像。 圖6 A係一低倍率SEM影像,顯示配置於一層經光學 熔融之奈米粒化銅上的經光學熔融之奈米粒化矽,以及一 基材;該基材係在一第一組預設條件下暴露於一預設等級 及持續時間的光能。 圖6B係一高倍率SEM影像,顯示配置於一層經光學 熔融之奈米粒化銅上的經光學熔融之奈米粒化矽,以及一 基材;該基材係在該第一組預設條件下暴露於一預設等級 及持續時間的光能。 圖7 A係一低倍率SEM影像,顯示配置於一層經光學 熔融之奈米粒化銅上的經光學熔融之奈米粒化矽,以及一 基材;該基材係在一第二組預設條件下暴露於一預設等級 及持續時間的光能。 圖7B係一高倍率SEM影像,顯示配置於一層經光學 熔融之奈米粒化銅上的經光學熔融之奈米粒化矽,以及一 基材;該基材係在該第一組預設條件下暴露於一預設等級 及持續時間的光能。 圖8A係一能量色散X射線光譜(EDS)圖,其係顯示 在施加一預設等級及持續時間之光能之前的熔融奈米粒 化石夕。 圖8B係圖8A之奈米粒化矽在暴露於該預設等級及持 25 201202038 續時間之光能後的EDS圖,其中該奈米粒化矽係經光學熔 融。 圖9係一 TEM影像,顯示配置於一層經光學熔融之 奈米粒化銅上的經光學熔融之奈米粒化石夕,及一基材;該 基材係暴露於一預設等級及持續時間的光能。 圖10係一 SEM影像,顯示配置於一層經光學熔融之 奈米粒化銅上的經光學熔融之奈米粒化矽,及一 KAPTON®基材;該KAPTON®基材係暴露於一預設等級 及持續時間的光能。 圖11表示一製程,係施加光能至一層含有配置於其 中之奈米粒化氧化錳添加物的奈米粒化銅,並氧化該經光 學熔融之含有配置於其中之氧化錳添加物的奈米粒化 銅,以製得一具有預設特性及特徵之特定奈米結構。 圖12係描述一製程之流程圖,該製程係用以製造一 具有預設特性及特徵之特定奈米結構。 【主要元件符號說明】 102 :光能來源 104 :奈米粒子 106-110 :奈米結構 202、1102 :基材 204、1104 :未熔融之奈米粒化銅層 206 :未溶融之奈米粒化石夕層 208、1108 :光能 26 201202038 210 : 212 : 214 : 1106 1110 1112 傳導性銅層 矽奈米粒化結構 奈米粒化矽球粒 :奈米粒化氧化锰添加物 :經光學熔融之傳導性銅層 :銅氧化層 27Cu2+ + e. (1) Cu. (-0.08V/SCE) (Eq.2) Supercapacitors can be used in wireless parts and portable devices, such as PCMCIA cards, CF memory cards, mobile phones, smart phones, PDAs, Digital cameras, notebook computers, digital media players, toys, e-book readers, etc. Advantages of supercapacitors include: fast charge/discharge rates, long cycle life, high cycle efficiency, and a wide range of operating temperatures. However, supercapacitors may have a low specific energy density. In particular, the nanostructure including the substrate 1102, the optically molten copper layer 1110, and the copper oxide layer 1112 can be used to construct a dummy capacitor. Pseudocapacitors simultaneously characterize electrochemical double-layer capacitors and batteries, such as electron transfer reactions and bulk and interfacial processes. The dummy capacitor stores energy on the surface and/or subsurface. Therefore, a dummy capacitor having a large surface area has a higher power density. Due to the porosity of the nanostructure of Figure 11, the nanostructure has a relatively high surface area and the surface area has an energy density greater than 20 Wh/kg and a specific power density greater than 1 kW/kg. Figure 12 is a flow chart depicting a process 1200 for making 18 201202038 ° 'Ding' meters, and structures, and the S-nano structure is an optically melted nanometer having predetermined characteristics and characteristics. Particle composition. In step 1202, a desired feature and characteristics are set. For example, the characteristics and characteristics of the nanostructure can be set depending on the application of the nanostructure. In particular, some applications use nanostructures with a first pore density and pore size, while: applications use a nanostructure with a second pore density and pore size. In some cases, the specified pore size may be an average pore size. Other characteristics of the nanostructure may also pre-set, for example, or a plurality of layers of the conductivity of the nanostructure, or - a plurality of layers of the nanostructure. The heat "degree i, etc." "Step 12G4 is a preset energy source setting to make the nanostructure having the sigh characteristic. For example, an electrical enthalpy, a duration, and/or a power density associated with the operation of the source of light energy can be predetermined, so that when a source of high beam energy is applied to the nano-starting material, a - a nanostructure having the predetermined feature. The one or more predetermined amounts of the nanoparticle in step 1206, or - multiple layers of unmelted nanoparticle particles are applied to the -substrate. The composition of the unglazed nanoparticles of the layers is determined by the predetermined characteristics and characteristics of the resulting nanostructure. For example, the composition of the unsmelted nanoparticle of the layer may depend on the electrical resistance of the f structure. In another example, the composition of the one or more layers of unmelted nanoparticles applied to the substrate may depend on the predetermined mechanical stability of one of the nanostructures. In a further advanced example, the = unfused (tetra) nanoparticle coated to the substrate may depend on a predetermined thermal conductivity of the nanostructure of 19 201202038. In some cases, the composition of the one or more layers of nanoparticle may include elemental nanoparticles, such as nano-granulated copper or nano-sized cerium, the elemental nano-particles comprising a nano-granulation additive disposed therein, Rice granulated compound, nano granulated alloy, or a combination thereof. Step 1208 is the application of light energy to the one or more layers of unmelted nanoparticles coated to the substrate. The light energy is applied at the preset duration, voltage, and/or power density setting to produce a nanostructure having the predetermined features. In step 1210, the nanostructure can be further processed. For example, one or more of the nanostructures can be cured by heat. In other examples, an oxidation process can be applied to one or more of the nanostructures. In step 1212, the nanostructure is used in a particular application. For purposes of description, the nanostructure can be used as an anode for a battery, such as the anode of a ionic battery. In other cases, the nanostructure can be used as a supercapacitor. Although the steps 1202-1212 are described in a particular order, the described order of steps 1202-1212 is not intended to be taken as a limitation, and any of the above numbered steps may be combined with step 1200 in any order. And/or in parallel with step 1200. Test Example Experimental Example 1 Light energy was applied to a KAPTON® substrate having a layer of nano-granulated copper and a layer of nano-sized cerium. The nano granulated ruthenium layer is composed of a ruthenium ink 20 201202038 compound prepared by a nanometer particle purchased from a manufacturer having a 5 cp at 1 rpm. The viscosity and the load concentration of 9 weight ° / 〇. The light energy is continuously applied at a power density of about 800 V at a power density of about 3.00 kW/cm 2 for a duration of about 800 microseconds. The nano granulated ruthenium layer was not cured and the granulated ruthenium ruthenium was rarely melted. Furthermore, the nano-granulated copper layer is not cured. Experimental Example 2 Light energy was applied to a KAPTON® substrate having a layer of nano-sized copper and a layer of nano-sized cerium. The nano granulated ruthenium layer is composed of a ruthenium ink preparation prepared by a nanoparticle obtained from a manufacturer having a viscosity of 5 cp at 10 rpm and 9 The weight concentration of the carrier. The light energy is continuously applied for a duration of about 800 microseconds at a power density of about 4.69 kW/cm2 at a voltage of about 1000V. The nano granulated ruthenium layer was not cured and the granulated ruthenium ruthenium was rarely melted. Furthermore, the nano-granulated copper layer is cured and conductive. Experimental Example 3 Light energy was applied to a KAPTON® substrate having a layer of nano-granulated copper and a layer of nano-sized cerium. The nano granulated ruthenium layer is composed of a ruthenium ink preparation prepared from a glutinous rice particle commercially available from a manufacturer having a viscosity of 5 cp at 10 rpm and a weight of 9 liters. The carrying concentration of %. The light energy is continuously applied for a duration of about 800 microseconds at a power density of about 5.67 kW/cm 2 at a voltage of about 110 volts. The nano granulated ruthenium layer is solidified and the nano granulated ruthenium has a melting shape. Furthermore, the nano-granulated copper layer is cured and conductive. Test Example 4 Light energy was applied to a KAPTON® substrate having a layer of nano-granulated copper and a layer of nano-sized cerium. The nano granulated ruthenium layer is composed of a ruthenium ink preparation prepared from glutinous nanoparticles obtained from a manufacturer having a viscosity of 5 cp at 10 rpm and 9 wt%. The carrying concentration. The light energy is continuously applied for a duration of about 800 microseconds at a power density of about 6.20 kW/cm 2 at a voltage of about 1150 volts. The nano granulated ruthenium layer was solidified and the granulated ruthenium was melted. Furthermore, the nano-granulated copper layer is cured and conductive. Experimental Example 5 Light energy was applied to a KAPTON® substrate having a layer of nano-granulated copper and a layer of nano-sized cerium. The nano granulated ruthenium layer is composed of a ruthenium ink preparation prepared from glutinous nanoparticles obtained from a manufacturer having a viscosity of 5 cp at 10 rpm and 9 wt%. The carrying concentration. The light energy is continuously applied for a duration of about 800 microseconds at a power density of about 6.75 kW/cm 2 at a voltage of about 1200 volts. The nano granulated ruthenium layer is partially detached from the nano granulated copper layer. In addition, the nano-granulated copper layer is cured and conductive. Experimental Example 6 Light energy was applied to a KAPTON® substrate having a layer of nano-granulated copper and a layer of nano-sized cerium. The nano granulated ruthenium layer is composed of a ruthenium ink 22 201202038, which is prepared from 矽 nano particles purchased from a manufacturer having a viscosity of 5 cp at 10 rpm and 9 wt% of the loading concentration. The light energy is continuously applied for a duration of about 500 microseconds at a power density of about 19.20 kW/cm 2 at a voltage of about 1600 volts. The nano granulated ruthenium layer is detached from the nano granulated copper layer. Further, the nano-granulated copper layer is partially detached from the substrate. Experimental Example 7 Light energy was applied to a KAPTON® substrate having a layer of nano-granulated copper and a layer of nano-sized cerium. The nano granulated ruthenium layer is composed of a ruthenium ink preparation prepared from glutinous nanoparticles obtained from a manufacturer having a viscosity of 5 cp at 10 rpm and 9 wt%. The carrying concentration. The light energy is continuously applied for a duration of about 200 microseconds at a power density of about 5,000 kW/cm2 at a voltage of about 2000 volts. The nano granulated ruthenium layer was solidified and a part of the granulated ruthenium was melted, but the solidification and melting of the granulated ruthenium were not uniform. In addition, the nano-granulated copper layer is cured and conductive. Experimental Example 8 In the same electrochemical analysis of the present day, a Princeton application VMP3-CHAS 16-channel analyzer was used to determine the specific capacitance of the final product of Experimental Example 3. The test conditions are: Half-cell working electrode: ruthenium-based film 23 201202038 苍 test electrode · chain-to-electrode: lithium electrolyte: FC-130 separator · polypropylene discharge voltage window 0.02V - 1.5V current: 100 mA / g for this The specific capacitance of the first cycle is 6000 mA/g and the specific capacitance of the second cycle is 1700 mA/g. [Simplified Schematic] FIG. 1 shows a process for applying a light source to nano particles to prepare a pre-process. A nanostructure with specific features and characteristics. Figure 2 shows the application of light energy to one or more layers of nano-granulated copper and one or more layers of nano-sized granules to produce a nanostructure comprising a layer of nano-grained structure on a copper conductive layer. And have preset characteristics and characteristics. Figure 3A is a scanning electron microscopy (SEM) image of a nano-sized granulated copper melted to a first degree. Figure 3B is a SEM image of a nano-sized granulated copper melted to a second degree. 4A-4C are examples of nanoparticle granules prior to application of light energy. Figure 5A is a low-magnification SEM image of nanograined ruthenium printed on a layer of nano-sized copper. 24 201202038 Figure 5B is a high-magnification SEM image of nanograined enamel printed on a layer of nano-sized copper. Figure 6A is a low-magnification SEM image showing optically fused nanograin enthalpy disposed on a layer of optically molten nano-granulated copper, and a substrate; the substrate is in a first set of predetermined conditions Light energy that is exposed to a predetermined level and duration. Figure 6B is a high-magnification SEM image showing optically fused nanograined ruthenium disposed on a layer of optically molten nano-granulated copper, and a substrate; the substrate is under the first set of predetermined conditions Exposure to a predetermined level and duration of light energy. Figure 7A is a low-magnification SEM image showing optically fused nanograined ruthenium disposed on a layer of optically fused nano-granulated copper, and a substrate; the substrate is in a second set of predetermined conditions Light energy that is exposed to a predetermined level and duration. Figure 7B is a high-magnification SEM image showing optically fused nanograined ruthenium disposed on a layer of optically molten nano-granulated copper, and a substrate; the substrate is under the first set of predetermined conditions Exposure to a predetermined level and duration of light energy. Figure 8A is an energy dispersive X-ray spectroscopy (EDS) image showing molten nanocrystalline fossils prior to application of a predetermined level and duration of light energy. Figure 8B is an EDS diagram of the nanograined ruthenium of Figure 8A after exposure to the predetermined level and light energy for the duration of 25 201202038, wherein the nanogranulated lanthanide is optically fused. Figure 9 is a TEM image showing an optically molten nanoparticle fossil disposed on a layer of optically molten nano-granulated copper, and a substrate; the substrate is exposed to a predetermined level and duration of light can. Figure 10 is an SEM image showing optically fused nanograined ruthenium disposed on a layer of optically molten nano-granulated copper, and a KAPTON® substrate; the KAPTON® substrate is exposed to a predetermined level and The light energy of duration. Figure 11 shows a process for applying light energy to a layer of nano-granulated copper containing a nano-sized granulated manganese oxide additive disposed therein, and oxidizing the optically melted nano-granules containing the manganese oxide additive disposed therein. Copper to produce a specific nanostructure with predetermined characteristics and characteristics. Figure 12 is a flow diagram depicting a process for fabricating a particular nanostructure having predetermined characteristics and characteristics. [Description of main component symbols] 102: Light energy source 104: Nanoparticles 106-110: Nanostructures 202, 1102: Substrate 204, 1104: Unmelted nanogranularized copper layer 206: Unmelted nanogranular fossils Layer 208, 1108: Light energy 26 201202038 210 : 212 : 214 : 1106 1110 1112 Conductive copper layer 矽 nano grain granulation structure Nano granulated cerium particles: nano granulated manganese oxide additive: optically fused conductive copper layer : Copper Oxide 27

Claims (1)

201202038 七、申請專利範圍: 1、-種用於製造-產品的方法,包含:在預定條件下 施加光能至一或多層奈米材料,以製造一具有經光 學炫融之-或多層的奈㈣構’其巾該奈米結構包 括一預设的孔隙密度、—預設的孔隙大小,或兩者 兼具。 2、 如中請專利範圍第!項之方法,其中該—或多層奈 米粒化材料包含至少一層奈米粒化銅。 3、 如申請專利範圍第2項之方法,其中該至少一層奈 米粒化銅係配置於一聚醯胺基材。 4、 如申請專利範圍第3項之方法,其中該至少一層奈 米粒化銅係藉由在該聚醯胺基材上印刷該至少一 層奈米粒化銅而配置於該聚醯胺基材。 5、 如申請專利範圍第4項之方法,其中該至少一層奈 米粒化銅係藉由一滴落式印刷製程、一網版印刷製 程,或其組合印刷至該聚醯胺基材。 6、 如申請專利範圍第1項之方法,其中該一或多層之 奈米粒化材料包含至少一層奈米粒化矽。 7、 如申請專利範圍第6項之方法,其中該至少一層奈 米粒化矽係配置於該至少一層奈米粒化銅上。 如申明專利範圍第7項之方法,其中該至少一層奈 米粒化矽係藉由一滴落式印刷製程、一網版印刷製 程,或其組合而印刷至該聚醯胺基材。 如申明專利範圍第1項之方法,其中該預設條件包 28 201202038 括—預設電屢、一預設持續時間、-預設功率密 度’或其組合。 ίο 11 12 13、 14、 15、 16、 17、 々申明專利In®第9項之方法,其中該光能係經 由具有—1〇6W之光能功率的光能來源來施加。 如申叫專利範圍第!項之方法,其中該光能係以 〇·2至1.〇毫秒之持續時間來施加。 如^請專·項之方法,其中該光能係以 一高達12J/cm2之能量密度來施加。 鋰離子電池之一矽陽極,係藉由如申請專利範 圍第1項之方法製得者。 太如中請專利範圍第1項之方法,其中該-或多層 奈米粒化材料包含至少一層奈米粒化銅,其含有配 置於其中之奈米粒化氧化錳添加物。 如申請專利範圍第14項之方法,更包含以下述 方式形成一銅氧化層:以一介於之⑼它至30(rc& I於3刀在里至5分|里的持續時間施加熱至包含配 置於其中的氧化錳添加物之該至少一層奈米粒化 鋼。 —超級電容器,係以如申請專利範圍第15項之 方法製得。 —種產品,包含: 一基材; 至夕一層配置於該基材之奈米粒化銅,其中該 至少—層奈米粒化銅之至少一部份的銅粒子係 29 201202038 光學炫融在—起而形成-連續膜;以及 至少一層配置於該至少一層奈米粒化銅上之奈 米粒化矽,其中該至少一層奈米粒化矽之至少一 部份的矽粒子係光學熔融在一起,且該至少一層 奈米粒化矽具有一預設之孔隙密度、一預設之孔 隙大小,或兩者兼具。 18、 一種方法,係用於製造如申請專利範圍第17項 之產品者,包含: 經由一印刷製程將該至少一層奈米粒化銅配置 於該基材; 經由另一印刷製程將該至少一層奈米粒化矽配 置於該至少一層奈米粒化銅;以及 轭加光能至該基材、該至少一層奈米粒化銅、及 該至少一層奈米粒化矽。 19、 如申請專利範圍第18項之方法,更包含在ι〇5〇ν 至1175V之電壓下以一介於5.50kw/cm2至6.50 kW/cm2之功率密度持續施加該光能達8〇〇微秒之 持續時間。 2〇、如申請專利範圍第18項之方法,更包含: 提供一包含奈米粒化銅之墨水調配物,其中經由 一印刷製程將該至少一層奈米粒化銅配置於該基 材係包含將s亥含有奈米粒化銅之墨水調配物經由 該印刷製程塗敷至該基材;以及 提供另一包含奈米粒化矽的墨水調配物,其中經 30 201202038 由另—印刷製程將該至少 。亥至少—層奈米粒化銅係 石夕之墨水調配物經由該另 材。 —層奈米粒化矽配置於 包含將該含有奈米粒化 一印刷製程塗敷至該基 21 如申請專利範圍第18項之方法,其中該光能係 經由一氣氣燈來施加。 31201202038 VII. Patent application scope: 1. A method for manufacturing-products, comprising: applying light energy to one or more layers of nanomaterial under predetermined conditions to produce a nevus having optically fused or multi-layered (d) The structure of the napkin comprises a predetermined pore density, a predetermined pore size, or both. 2. For example, please ask for the scope of patents! The method of the present invention, wherein the one or more layers of the nanogranulated material comprise at least one layer of nanoparticulated copper. 3. The method of claim 2, wherein the at least one layer of nano-granulated copper is disposed on a polyamide substrate. 4. The method of claim 3, wherein the at least one layer of nano granulated copper is disposed on the polyamide substrate by printing the at least one layer of nano granulated copper on the polyamide substrate. 5. The method of claim 4, wherein the at least one layer of nano granulated copper is printed onto the polyamide substrate by a drop printing process, a screen printing process, or a combination thereof. 6. The method of claim 1, wherein the one or more layers of nanoparticulate material comprise at least one layer of nanoparticulate mash. 7. The method of claim 6, wherein the at least one layer of nano granulated lanthanide is disposed on the at least one layer of nano granulated copper. The method of claim 7, wherein the at least one layer of nanoparticulate lanthanum is printed onto the polyamide substrate by a drop printing process, a screen printing process, or a combination thereof. The method of claim 1, wherein the preset condition package 28 201202038 includes a preset power, a preset duration, a preset power density, or a combination thereof. Ίο 11 12 13, 14, 15, 16, 17, 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Such as the scope of the patent application! The method of claim wherein the light energy is applied for a duration of from 至2 to 1.〇 milliseconds. For example, the method of the item is applied, wherein the light energy is applied at an energy density of up to 12 J/cm 2 . One of the lithium ion batteries, the anode, is obtained by the method of claim 1 of the patent application. The method of claim 1, wherein the or multi-layered nanoparticulate material comprises at least one layer of nano-granulated copper comprising a nano-granulated manganese oxide additive disposed therein. The method of claim 14, further comprising forming a copper oxide layer in the following manner: applying heat to the inclusion of a period of time between (9) and 30 (rc & I in 3 knives to 5 minutes | The at least one layer of nano-granulated steel of the manganese oxide additive disposed therein - the supercapacitor is obtained by the method of claim 15 of the patent application. - a product comprising: a substrate; a nano-granulated copper of the substrate, wherein at least a portion of the copper particles of the at least one layer of nano-granulated copper is 29 201202038 optically fused to form a continuous film; and at least one layer is disposed in the at least one layer a nanocrystalline granule on a rice granulated copper, wherein at least a portion of the cerium particles of the at least one layer of nano granulated cerium are optically fused together, and the at least one layer of nano granulated cerium has a predetermined pore density, a pre- The pore size, or both. 18. A method for manufacturing a product according to claim 17 of the patent application, comprising: the at least one layer of nano-sized copper by a printing process And placing the at least one layer of nano granulated ruthenium on the at least one layer of nano granulated copper; and conjugate adding light energy to the substrate, the at least one layer of nano granulated copper, and the at least one printing process A layer of nano granules. 19. The method of claim 18, further comprising continuously applying the light at a power density between 5.50 kW/cm2 and 6.50 kW/cm2 at a voltage of 〇5〇ν to 1175V. The method of claim 18, wherein the method of claim 18, further comprising: providing an ink formulation comprising nano granulated copper, wherein the at least one layer of nano granules is provided via a printing process Disposing the copper on the substrate comprises applying an ink formulation containing nano-granulated copper to the substrate via the printing process; and providing another ink formulation comprising nano-sized cerium, wherein 30 201202038 The at least one-layer nano-granulated copper-based stone ink composition is passed through the other material by a separate printing process. The layered nano-granulated ruthenium is disposed in the granule-containing printing system. The method of applying the method to the substrate of claim 18, wherein the light energy is applied via a gas lamp.
TW100118708A 2010-07-14 2011-05-27 Applying optical energy to nanoparticles to produce a specified nanostructure TW201202038A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/836,547 US8422197B2 (en) 2009-07-15 2010-07-14 Applying optical energy to nanoparticles to produce a specified nanostructure

Publications (1)

Publication Number Publication Date
TW201202038A true TW201202038A (en) 2012-01-16

Family

ID=46756018

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100118708A TW201202038A (en) 2010-07-14 2011-05-27 Applying optical energy to nanoparticles to produce a specified nanostructure

Country Status (1)

Country Link
TW (1) TW201202038A (en)

Similar Documents

Publication Publication Date Title
TWI625885B (en) Combined electrochemical and chemical etching processes for generation of porous silicon particulates
US8422197B2 (en) Applying optical energy to nanoparticles to produce a specified nanostructure
JP6574008B2 (en) Functionalized IVA group particles and methods of use thereof
Zhu et al. Plasma-introduced oxygen defects confined in Li4Ti5O12 nanosheets for boosting lithium-ion diffusion
Cui et al. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries
KR100661402B1 (en) Electrode material for rechargeable lithium battery, electrode structural body comprising said electrode material, rechargeable lithium battery having said electrode structural body, process for the production of said electrode structural body, and process for the production of said rechargeable lithium battery
KR101252904B1 (en) Method for producing lithium ion storage/release material, lithium ion storage/release material, electrode structure using the material, and electricity storage device
JP4552085B2 (en) Method for producing nano-sized metal oxide electrode
TWI649208B (en) Energy storage device, film of energy storage device and ink for printing film
EP1207572A1 (en) Mesoporous electrodes for electrochemical cells and their production method
US20140050910A1 (en) Rapid macro-scale synthesis of free-standing graphene, high performance, binder-free graphene anode material, and methods of synthesizing the anode material
TWI712206B (en) Energy storage device, electrode of the same and frustule
JP2016207644A (en) Electrode material, secondary batteries including the same, and manufacturing methods thereof
CN108463578A (en) The electrochemical stripping of 2D materials
US20170365845A1 (en) Method for preparing silicon nanocomposite dispersion using plasma, and anode active material and lithium secondary battery using same
JP2013546144A (en) Method for producing silicon-based nanocomposite cathode active material for lithium secondary battery and lithium secondary battery using the same
Bhanvase et al. Nanomaterials for green energy
Ma et al. Synthesis and applications of one-dimensional porous nanowire arrays: a review
CA3175516A1 (en) Method for manufacturing an assembly consisting of a separator and porous electrode, an assembly consisting of a separator and porous electrode, and microbattery containing such an assembl
Sun Morphosynthesis of SnO2 nanocrystal networks as high-capacity anodes for lithium ion batteries
JP2001229917A (en) Method of producing negative electrode
KR20170032905A (en) Carbon nanotube-based lithium ion battery
TW201202038A (en) Applying optical energy to nanoparticles to produce a specified nanostructure
CN113555555B (en) Negative electrode material, preparation method thereof and lithium ion battery
KR102510192B1 (en) Carbonized matrix-particle composite and manufacturing method thereof