201201378 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種太陽能電池技術,尤其涉及一種可撓性 太陽能電池裝置。 【先前技術】 [0002] 太陽能電池單元結構主要包括透光基板、設於透光基板 的P型半導體材料層及N型半導體材料層。太陽能電池單 元主要應用光電轉換原理,將太陽的輻射能光子藉由半 導體物質轉變為電能。具體地,當太陽光照射至半導體 ,一部分光子被表面反射掉,其餘部分光子被半導體吸 收或透過。被吸收的光子,一部分變成熱能,另一部分 光子則同組成半導體的原子價電子碰撞,產生電子-空穴 對。如此,光能就以產生電子-空穴對的形式轉變為電能 ,並於P型及N型交界面兩邊形成勢壘電場,將電子驅向 N區,空六·驅向P區’從而使得N區有過剩電子’ P區有 過剩空穴,在P -N結附近形成與勢壘電場方向相反的光 生電場。光生電場的一部分除抵消勢壘電場外,還使P 型層帶正電,N型半導體層帶負電,在N區與P區之間的薄 層產生所謂光生伏打電動勢。若分別自P型層及N型半導 體層焊接金屬引線,接通負載,則外電路便有電流通過 〇 [0003] 可撓性太陽能電池一般是使用染料感光太陽電池、有機 化合物太陽能電池或高分子聚合物太陽能電池。惟,由 於有機或高分子化合物染料容易因為高溫或因為曰光照 射使其材料裂化而使得壽命變短,且這些材料的光電轉 099120038 表單編號A0101 第4頁/共20頁 0992035419-0 201201378 換效率不高。 [0004] [0005] ❹ [0006] 〇 [0007] 先前的技術,使用半導體材料增加可撓性太陽能電池的 壽命,惟,由於半導體材料吸收頻讀的特性或厚度造成 了無法透光及可撓性差,如:不能隨意將太陽能電池貼附 於玻璃窗等處’同時還保持透光性,導致該太陽能電池 在使用的過程中受到限制。 【發明内容】 有鑒於此,有必要提供—種具有良好的可撓性且在使用 過程中不受限制的可撓性太陽能電池裝置。 一種可撓性太陽能電池裝置,其包括透光基板、與該透 光基板平行且相對設置的透光面板、複數第一太陽能電 池單元、複數第二太陽能電池卑元及具有透光性的絕緣 間隔體。該第一太陽能電池單元與該第二太陽能電池單 元沿該透光面板的延伸方向交替間隔夾設於該透光基板 與透光面板之間。該第一太陽能電池單元與相鄰的第二 太陽能電池單元由該絕緣間隔體隔開。該第一太陽能電 池單元及該第二太陽能電池單元的厚度小於或等於5〇微 米。 與先前技術相比,本發明實施例的可撓性太陽能裝置中 的每個第一太陽能電池單元及每個第二太陽能電池單元 的厚度小於或等於50微米,可保證良好的可撓性,且每 個第一太陽能電池單元與相鄰的第二太陽能電池單元由 具有透光性的絕緣間隔體隔開,如此’可以保持部分透 光使其可以隨意貼附於玻璃窗等處,應用不受限制。 099120038 表單編號Α0101 第5頁/共20頁 0992035419-0 201201378 【實施方式】 [0008] 為了對本發明的可撓性太陽能電池裝置做進一步的說明 ,舉以下實施方式並配合附圖進行詳細說明。 [⑽9] 參見圖1,本技術方案一實施方式提供的可撓性太陽能電 池裝置100包括透光基板10、第一電路層20、複數第一太 陽能電池單元30、複數第二太陽能電池單元70、絕緣間 隔體40、第二電路層50及與該透光基板10平行且相對設 置的透光面板60。 [0010] 該透光基板10具有高導熱性。該透光基板10可為聚合物 薄片。聚合物的材料可為聚對苯二甲酸乙二醇酯、聚碳 酸酯、聚曱基丙烯酸甲酯等。 [0011] 該第一電路層20固定於該透光基板10。該第二電路層50 固定於該透光面板60。該第一電路層20及該第二電路層 50均為透明電極。該第一電路層20及該第二電路層50可 分別藉由喷射法直接將導電材料喷射於該透光基板10及 該透光面板60直至形成所需圖案,或預先利用導電板材 由蝕刻法製成所需層狀圖案,後分別固定於該透光基板 10及該透光面板60。 [0012] 該複數第一太陽能電池單元30及該複數第二太陽能電池 單元70呈陣列地固定於該第一電路層20與該第二電路層 50之間,且每個第一太陽能電池單元30與一個第二太陽 能電池單元70沿該透光面板60的延伸方向交替排列。每 個第一太陽能電池單元30與相鄰的第二太陽能電池單元 70之間距大於或等於0. 5毫米,藉由該絕緣間隔體40隔開 。該絕緣間隔體40為柔性透光材料,如聚甲基丙烯酸甲 099120038 表單編號 A0101 第 6 頁/共 20 頁 0992035419-0 201201378 [0013] .、。。,每個第一太陽能電池單元30及每個第二太陽能電 單义7〇的厚度小於或等於5〇微米。該可撓性太陽 池穿窨1 电 。、直1〇〇的整體厚度小於或等於5〇〇微米,優選地,該 可撓陡太陽能電池裝置丨00的整體厚度小於或等於100微 ^每個第一太陽能電池單元30及每個第二太陽能電池 單疋7〇的面積小於或等於丨平方毫米。如此,可以增加該 可撓性太陽能電池裝置100的可撓性。 Λ Ο [0014] 上' 及陽能I池單兀30包括一設置於該第一電路層2〇 '第〜背電極31 ’依次層叠於第-背電極31的?型半導 體層32,Ρ_Ν過渡層33,Ν型半導體層.34及第-前電極35 。每個第一背電極31設於該第—電路層2〇。 [0015] ❹ [0016] 板里半導體層31的材質可為結合性較好的⑴_ ν族化合 、族化合物、IHVI族化合物,或1¥族持: 化錫、銅㈣、石夕、錯等材料,如P型非晶石夕#料 ’特別為”含氳非晶赠料,氮仙鎵或料化嫁。 半導體層31的材料為p型非晶碎材料。非晶 =材料料的纽性崎晶叫料,故在對光 子吸收量要求相同的情況下,非在對先 芦的;1 日功从W 日日矽材料製成的半導體 :的厚度遠小於結4材料製戍的半導體層的厚度’且 非晶外料對衫基__要錢低。故採用:曰石夕 材料不僅可β節省大量的材料,亦使 日日 能電池單元成為可能。 使氣作大面積的太陽 [0017]201201378 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a solar cell technology, and more particularly to a flexible solar cell device. [Prior Art] [0002] The solar cell structure mainly includes a light-transmitting substrate, a P-type semiconductor material layer and an N-type semiconductor material layer provided on the light-transmitting substrate. The solar cell unit mainly uses the principle of photoelectric conversion to convert the radiant energy photons of the sun into electrical energy by means of semiconductor materials. Specifically, when sunlight is irradiated to the semiconductor, a part of the photons are reflected off the surface, and the remaining photons are absorbed or transmitted by the semiconductor. The absorbed photons, part of which becomes thermal energy, and the other part of the photons collide with the valence electrons that make up the semiconductor, producing electron-hole pairs. In this way, the light energy is converted into electric energy in the form of electron-hole pairs, and a barrier electric field is formed on both sides of the P-type and N-type interfaces, driving the electrons to the N region, and driving the air to the P region. The N region has excess electrons, and the P region has excess holes, and a photo-generated electric field opposite to the electric field of the barrier is formed in the vicinity of the P-N junction. In addition to offsetting the barrier electric field, a portion of the photogenerated electric field also positively charges the P-type layer, and the N-type semiconductor layer is negatively charged, and a thin layer between the N region and the P region produces a so-called photovoltaic electromotive force. If the metal leads are soldered from the P-type layer and the N-type semiconductor layer respectively, and the load is turned on, the external circuit has a current passing through it. [0003] Flexible solar cells are generally dye-sensing solar cells, organic compound solar cells or polymers. Polymer solar cells. However, since organic or high molecular compound dyes are prone to shorten the life due to high temperature or cracking of materials due to calendering, and the photoelectric conversion of these materials is 099120038 Form No. A0101 Page 4 / Total 20 Page 0992035419-0 201201378 Efficiency not tall. [0004] [0007] Prior art, the use of semiconductor materials to increase the life of flexible solar cells, but due to the absorption characteristics or thickness of semiconductor materials caused by the inability to transmit light and flexible Poor properties, such as: can not arbitrarily attach the solar cell to the glass window, etc. 'while still maintaining light transmission, resulting in the solar cell is limited in the process of use. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide a flexible solar cell device which has good flexibility and is not limited in use. A flexible solar cell device comprising a light transmissive substrate, a translucent panel disposed parallel to and opposite to the translucent substrate, a plurality of first solar cells, a plurality of second solar cells, and an insulating spacer having light transmissivity body. The first solar battery unit and the second solar battery unit are alternately spaced between the light-transmitting substrate and the light-transmitting panel along the extending direction of the light-transmitting panel. The first solar cell unit is separated from the adjacent second solar cell by the insulating spacer. The first solar cell unit and the second solar cell unit have a thickness of less than or equal to 5 micrometers. Compared with the prior art, each of the first solar battery cells and each of the second solar battery cells in the flexible solar device of the embodiment of the present invention has a thickness of less than or equal to 50 micrometers, which can ensure good flexibility, and Each of the first solar cells is separated from the adjacent second solar cells by a light-transmissive insulating spacer, so that a portion of the light-transmissive spacer can be kept so that it can be attached to the glass window or the like at will, and the application is not affected. limit. 099120038 Form No. Α0101 Page 5 of 20 0992035419-0 201201378 [Embodiment] [0008] In order to further explain the flexible solar cell device of the present invention, the following embodiments will be described in detail with reference to the accompanying drawings. [10] 9] The flexible solar cell device 100 according to an embodiment of the present invention includes a transparent substrate 10, a first circuit layer 20, a plurality of first solar cells 30, and a plurality of second solar cells 70. The insulating spacer 40, the second circuit layer 50, and the light transmissive panel 60 disposed in parallel with and opposite to the transparent substrate 10. [0010] The light transmissive substrate 10 has high thermal conductivity. The light transmissive substrate 10 can be a polymer sheet. The material of the polymer may be polyethylene terephthalate, polycarbonate, polymethyl methacrylate or the like. [0011] The first circuit layer 20 is fixed to the transparent substrate 10. The second circuit layer 50 is fixed to the light transmissive panel 60. The first circuit layer 20 and the second circuit layer 50 are both transparent electrodes. The first circuit layer 20 and the second circuit layer 50 can directly spray a conductive material on the transparent substrate 10 and the light transmissive panel 60 by a spraying method until a desired pattern is formed, or an etching method is used in advance by using a conductive plate. The desired layered pattern is formed and then fixed to the transparent substrate 10 and the light transmissive panel 60, respectively. [0012] The plurality of first solar cells 30 and the plurality of second solar cells 70 are arrayed between the first circuit layer 20 and the second circuit layer 50, and each of the first solar cells 30 The second solar battery cells 70 are alternately arranged along the extending direction of the light transmissive panel 60. The distance between each of the first solar cells 30 and the adjacent second solar cells 70 is greater than or equal to 0.5 mm, separated by the insulating spacers 40. The insulating spacer 40 is a flexible light transmissive material such as polymethyl methacrylate 099120038 Form No. A0101 Page 6 of 20 0992035419-0 201201378 [0013] . . The thickness of each of the first solar cells 30 and each of the second solar cells is less than or equal to 5 microns. The flexible solar cell passes through 1 electric. The overall thickness of the straight 〇〇 is less than or equal to 5 〇〇 micrometers. Preferably, the overall thickness of the flexible steep solar cell device 丨00 is less than or equal to 100 micrometers per first solar cell unit 30 and each second The area of the solar cell unit is less than or equal to 丨 square mm. Thus, the flexibility of the flexible solar cell device 100 can be increased.上 Ο [0014] The upper and the erector I pool unit 30 includes a first circuit layer 2 ′′ and a back electrode 31 ′ which are sequentially stacked on the first-back electrode 31. The type semiconductor layer 32, the Ρ-Ν transition layer 33, the Ν-type semiconductor layer .34 and the first-front electrode 35. Each of the first back electrodes 31 is disposed on the first circuit layer 2A. [0015] [0016] The material of the semiconductor layer 31 in the board may be a combination of (1) _ ν group compound, a group compound, an IHVI group compound, or a 1 family holding: tin, copper (four), Shi Xi, wrong, etc. Materials, such as P-type amorphous stone # 料 料 料 特别 特别 特别 特别 特别 特别 特别 特别 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲 氲Sexual crystals are called materials, so in the case of the same requirements for photon absorption, non-in the first reed; 1 day work from the W-day niobium material semiconductor: the thickness is much smaller than the junction 4 material made of semiconductor The thickness of the layer 'and the amorphous material to the shirt base __ low money. Therefore: the use of 曰石夕material not only can save a lot of materials, but also make the solar cell unit possible. [0017]
該Ρ - Ν過渡層3 3的材質可為結合性較好的I工I 族化合物 099120038 表單編號A0101 第7頁/共20 頁 0992035419-0 201201378 MI—VI族化合物 '卜⑴,族化合物,或㈣材料, 如碲化搞、鋼銦石西、石夕、鍺等材料。該ρ_Ν過渡層^的材 料亦可為鋼銦鎵晒。該Ρ — Ν過渡層33用於將光子轉換成電 子一孔穴對並形成勢憂電場。該Ρ'Ν過渡層33有助於提汽 太陽能電池單元30的穩紐以及光電轉換效率。财, 渡層33可藉由化學氣相沈積法或_法形成。 [0018] [0019] [0020] 該Ν型半導體層34的材質可為㈣非晶石夕材料,特別物 含氫非晶發材料。該Ν型半導體層34的材質還可為結合性 較好的III-V族化合物、U_VI族化合物、卜丨^丨族 化合物,或IV族材料,如碲化鎘、鋼銦硒、矽鍺等材 料。 該第一前電極35形成於Ν型半導體結構層34,並固定於該 第二電路層5G。為便於透過大部分太陽光進人_型半導 體層34,提高光轉化效率,該第一前電極35優選為透明 電極,其與該N型半導體層34形成歐姆接觸。該第一前電 極35為可撓性透光材料,如鋼錫氣化物等。該第—背電 極31及該第—前電極35分別與一,電力儲存裝置(圖未示 )的正負極相連,由此儲存光電轉換後的電能。 該第二太陽能電池單元70包括一設置於該第一電路層2〇 上的第二前電極75,依次層疊於該第二前電極75的N型半 導體層74、P-N過渡層73、P型半導體層72,及第二背電 極71 〇 該第一太陽能電池單元30的p型半導體層32藉由該第一背 電極31連接至該第一電路層20,該第二太陽能電池單元 099120038 表單編號A0101 第8頁/共20頁 0992035419-0 [0021] 201201378 70的Ν型半導體層74藉由該第二前電極75連接至該第一電 路層20。可以理解,此時,該第一太陽能電池單元30的Ν 型半導體層34藉由第一前電極35連接至該第二電路層50 ,該第二太陽能電池單元70的Ρ型半導體層72藉由該第二 背電極71連接至該第二電路層50,由此該複數個第一太 陽能電池單元30及該複數第二太陽能電池單元70相互串 聯。 [0022] Ο [0023] 該透光面板60為可撓性透光材料,如聚對苯二甲酸乙二 醇酯、聚甲基丙烯酸曱酯等。 ο 於封裝該可撓性太陽能電池裝置100時,需將該複數第一 太陽能電池單元30及該複數第二太陽能電池單元70交替 地焊接於固定有第一電路層20的該透光基板10,並使每 個第一太陽能電池單元30與相鄰的第二太陽能電池單元 70的間距大於1毫米,向間距内填滿該絕緣間隔體40。再 後,將固定有第二電路層50的透光面板60完全遮蓋所有 第一太陽能電池單元30、所有第二太陽能電池單元70及 絕緣間隔體40,並使每個第一太陽能電池單元30的第一 前電極35及每個第二太陽能電池單元70的第二背電極71 均與該第二電路層50相連。當然,亦可於該透光基板10 上層疊該第一電路層20、該複數第一太陽能電池單元30 、該複數第二太陽能電池單元70、該第二電路層50及該 透光面板6 0。 相較於先前技術,本實施方式提供的可撓性太陽能電池 裝置100擯棄導線,藉由分別設於該透光基板10及該透光 面板60的第一電路層20及第二電路層50來電導通所有太 099120038 表單編號Α0101 第9頁/共20頁 0992035419-0 [0024] 201201378 陽能電池單元。相較於導線,該第一電路層20及該第二 電路層50呈層狀,兩者由該複數第一太陽能電池單元30 及該第二太陽能電池單元70隔開,難以相接觸,由此避 免短路。 [0025] 可以理解,該第一太陽能電池單元30及該第二太陽能電 池單元70可為其他結構,如本領域常見的PIN結構,其中 ,I層可為DH雙異質結構、MQD多重量子井結構或MQD多 重量子點結構。此時,該I層需臨近該透光面板6 0。該第 一太陽能電池單元30及該第二太陽能電池單元70還可為 本領域常見的多接面太陽能電池單元。此時,該第一太 陽能電池單元30及該第二太陽能電池單元70的高能帶層 需臨近該透光面板60,能帶越低層離該透光面板60越遠 〇 [0026] 請參見圖2,與第一實施方式相比,本技術方案第二實施 方式提供的可撓性太陽能電池裝置200具有相似結構,包 括透光基板210、第一電路層22 0、複數第一太陽能電池 單元230、複數第二太陽能電池單元270、絕緣間隔體 240、第二電路層250及透光面板260。其中,該透光基 板210及該透光面板260可用聚對苯二曱酸乙二醇酯材料 製成。 [0027] 該第一太陽能電池單元230包括一設置於該第一電路層 220的第一背電極231,依次層疊於第一背電極231的P型 半導體層232,P-N過渡層233,N型半導體層234及第一 前電極235。P型半導體層232比N型半導體層234薄。該 第二太陽能電池單元270包括一設置於該第一電路層220 099120038 表單編號A0101 第10頁/共20頁 0992035419-0 201201378 的第二背電極271、依次層疊於第二背電極271的P型半導 體層272,P-N過渡層273,N型半導體層274及第二前電 極275。 [0028]The material of the Ρ-Ν transition layer 3 3 can be a well-bonded I-I compound 099120038 Form No. A0101 Page 7 / Total 20 Page 0992035419-0 201201378 MI-VI compound 'Bu (1), a compound, or (4) Materials, such as sputum, steel indium, west, stone eve, scorpion and other materials. The material of the ρ_Ν transition layer can also be made of steel indium gallium. The Ρ-Ν transition layer 33 is used to convert photons into electron-hole pairs and form a potential electric field. The Ρ'Ν transition layer 33 contributes to the stabilization of the solar cell unit 30 and the photoelectric conversion efficiency. The ferry layer 33 can be formed by chemical vapor deposition or _ method. [0020] [0020] The material of the germanium-type semiconductor layer 34 may be (iv) an amorphous material, and a hydrogen-containing amorphous material. The material of the germanium-type semiconductor layer 34 may also be a group III-V compound, a U_VI compound, a germanium compound, or a group IV material, such as cadmium telluride, steel indium selenium, tellurium, etc. material. The first front electrode 35 is formed on the Ν-type semiconductor structure layer 34 and is fixed to the second circuit layer 5G. In order to facilitate the conversion of most of the sunlight into the _-type semiconductor layer 34 to improve the light conversion efficiency, the first front electrode 35 is preferably a transparent electrode which forms an ohmic contact with the N-type semiconductor layer 34. The first front electrode 35 is a flexible light transmissive material such as steel tin vapor. The first back electrode 31 and the first front electrode 35 are respectively connected to a positive and negative poles of a power storage device (not shown), thereby storing the photoelectrically converted electric energy. The second solar cell unit 70 includes a second front electrode 75 disposed on the first circuit layer 2, and an N-type semiconductor layer 74, a PN transition layer 73, and a P-type semiconductor which are sequentially stacked on the second front electrode 75. The layer 72 and the second back electrode 71 are connected to the first circuit layer 20 by the first back electrode 31, the second solar cell unit 099120038 Form No. A0101 Page 8 of 20 0992035419-0 [0021] The 半导体-type semiconductor layer 74 of 201201378 70 is connected to the first circuit layer 20 by the second front electrode 75. It can be understood that, at this time, the 半导体-type semiconductor layer 34 of the first solar cell unit 30 is connected to the second circuit layer 50 by the first front electrode 35, and the 半导体-type semiconductor layer 72 of the second solar cell unit 70 is The second back electrode 71 is connected to the second circuit layer 50, whereby the plurality of first solar cells 30 and the plurality of second solar cells 70 are connected in series. [0023] The light transmissive panel 60 is a flexible light transmissive material such as polyethylene terephthalate, polymethyl methacrylate or the like. When the flexible solar cell device 100 is packaged, the plurality of first solar cells 30 and the plurality of second solar cells 70 are alternately soldered to the transparent substrate 10 to which the first circuit layer 20 is fixed. The spacing between each of the first solar cells 30 and the adjacent second solar cells 70 is greater than 1 mm, and the insulating spacers 40 are filled into the spaces. Then, the light transmissive panel 60 to which the second circuit layer 50 is fixed completely covers all the first solar cells 30, all the second solar cells 70, and the insulating spacers 40, and makes each of the first solar cells 30 The first front electrode 35 and the second back electrode 71 of each of the second solar cells 70 are connected to the second circuit layer 50. Of course, the first circuit layer 20, the plurality of first solar cells 30, the plurality of second solar cells 70, the second circuit layer 50, and the light transmissive panel 60 may be stacked on the transparent substrate 10. . Compared with the prior art, the flexible solar cell device 100 provided by the present embodiment discards the wires, and is provided by the first circuit layer 20 and the second circuit layer 50 respectively disposed on the transparent substrate 10 and the transparent panel 60. Turn on all too 099120038 Form number Α 0101 Page 9 / Total 20 pages 0992035419-0 [0024] 201201378 Solar battery unit. The first circuit layer 20 and the second circuit layer 50 are layered compared to the wires, and the two are separated by the plurality of first solar cells 30 and the second solar cells 70, and are difficult to contact. Avoid short circuits. [0025] It can be understood that the first solar cell unit 30 and the second solar cell unit 70 can be other structures, such as a PIN structure commonly used in the art, wherein the I layer can be a DH double heterostructure, an MQD multiple quantum well structure. Or MQD multiple quantum dot structure. At this time, the I layer needs to be adjacent to the light transmissive panel 60. The first solar cell unit 30 and the second solar cell unit 70 can also be multi-junction solar cells as are common in the art. At this time, the high energy band layer of the first solar cell unit 30 and the second solar cell unit 70 is adjacent to the light transmissive panel 60, and the lower the energy band is, the further away from the translucent panel 60 is [0026]. Compared with the first embodiment, the flexible solar cell device 200 provided by the second embodiment of the present invention has a similar structure, including the transparent substrate 210, the first circuit layer 22, the plurality of first solar cells 230, The second solar cell unit 270, the insulating spacer 240, the second circuit layer 250, and the light transmissive panel 260. The light-transmitting substrate 210 and the light-transmitting panel 260 can be made of a polyethylene terephthalate material. [0027] The first solar cell unit 230 includes a first back electrode 231 disposed on the first circuit layer 220, a P-type semiconductor layer 232 sequentially stacked on the first back electrode 231, a PN transition layer 233, and an N-type semiconductor. Layer 234 and first front electrode 235. The P-type semiconductor layer 232 is thinner than the N-type semiconductor layer 234. The second solar cell unit 270 includes a second back electrode 271 disposed on the first circuit layer 220 099120038, form number A0101, page 10/20 pages 0992035419-0 201201378, and a P-type layer sequentially stacked on the second back electrode 271. The semiconductor layer 272, the PN transition layer 273, the N-type semiconductor layer 274, and the second front electrode 275. [0028]
[0029] ❸ [0030] 第一電路層220覆蓋整個透光基板210,第二電路層250 覆蓋整個透光面板260。該第一太陽能電池單元230的P型 半導體層232藉由該第一背電極231連接至該第一電路層 220,該第二太陽能電池單元270的P型半導體層272藉由 第二背電極271連接至該第一電路層220,該第一太陽能 電池單元230的第一前電極235及#第二太陽能電池單元 270的第二前電極275均與第二電路層250相連,由此, 所有太陽能電池單元相互並聯,能夠提供較大電流。 參見圖3,與第一實施方式松比,本技術方案第三實施方 式提供的可撓性太陽能電池裝置300具有類似結構,包括 透光基板310、第一電路層320、複數第一太陽能電池單 元330、複數第二太陽能電池單元370、絕緣間隔體340 、第二電路層350、透光面板360及緝緣層380。其中, ,, 該透光基板310及嫌透光面板360可用聚對苯二甲酸乙二 醇S旨材料製成。 絕緣層380及第一電路層320依次層疊於透光基板310。 該複數第一太陽能電池單元330及複數第二太陽能電池單 元370藉由第一電路層320及第二電路層350相串聯。如 此,能夠提供較大的工作電壓。 透光面板360的透光面361表面設有複數與每個太陽能電 池單元--對應的突起362。每個突起362呈柱形,具有 099120038 表單編號A0101 第11頁/共20頁 0992035419-0 [0031] 201201378 [0032] [0033] [0034] [0035] [0036] 戴面呈弧形的聚光面363。特別地,該聚光面36 3可呈半 球面型。如此,可利用該複數突起362進一步聚光,提高 光電轉化率。 參見圖4冑’與第一實施方式相比,本技術方案第四實施方 式提供的可撓性太陽能電池裝置4〇〇具有類似結構,包括 透光基板410、第一電路層420、複數第一太陽能電池單 元430、複數第二太陽能電池單元470、絕緣間隔體44〇 、第二電路層450及透光面板460。其中,該透光基板 410及該透光面板460可用聚對苯二甲酸乙二醇酯材料製 成。 透光面板460的透光面461表面設有複數與所有太陽能電 池單元--對應的突起462。每個突起462包括複數陣列 排佈的錐形凸起’每個凸起的周面464與該透光面461形 成45度至70度夾角。如此,可避免因光線入射角度的變 化而導致光電轉換率顯著降低, 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,自不能以此限制本案之申請專利範圍。舉凡熟悉本 案技藝之人士援依本發明之精神所作之等效修飾或變化 ’皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本發明第-實施方式提供的可撓性太陽能電池裝置 的示意圖。 圖2為本發明第二實施方式提供的可撓性太陽能電池裝置 099120038 表單編號A0101 第12頁/共20頁 0992035419-0 201201378 [0037] 的示意圖。 圖3為本發明第三實施方式提供的可撓性太陽能電池裝置 的示意圖。 [0038] 圖4為本發明第四實施方式提供的可撓性太陽能電池裝置 的示意圖。 [0039] 【主要元件符號說明】 可撓性太陽能電池裝置:100、200、300、400 [0040] ❹ [0041] 透光基板:10、210、310、410 第一電路層:20、220、320、420 [0042] 第一太陽能電池單元:30、230、330、430 ' [0043] 第二太陽能電池單元:70、270、370、470 [0044] 絕緣間隔體:40、240、340、440 [0045] 第二電路層:50、250、350、450 [0046] ❹ 透光面板:60、260、360、460 [0047] 第一背電極:31、231 [0048] P型半導體層:32、72、232、272 [0049] P-N型半導體層:33、73、233、273 [0050] N型半導體層:34、74、234、274 [0051] 第一前電極:35、235 [0052] 第二背電極:71、271 099120038 表單編號A0101 第13頁/共20頁 0992035419-0 201201378 [0053] 第二前電極:75、275 [0054] 絕緣層:380 [0055] 透光面:3 61、4 6 1 [0056] 突起:362、462 [0057] 聚光面:363 [0058] 周面:464 0992035419-0 099120038 表單編號A0101 第14頁/共20頁[0029] The first circuit layer 220 covers the entire transparent substrate 210, and the second circuit layer 250 covers the entire transparent panel 260. The P-type semiconductor layer 232 of the first solar cell unit 230 is connected to the first circuit layer 220 by the first back electrode 231, and the P-type semiconductor layer 272 of the second solar cell unit 270 is provided by the second back electrode 271. Connected to the first circuit layer 220, the first front electrode 235 of the first solar cell unit 230 and the second front electrode 275 of the #2 second solar cell unit 270 are both connected to the second circuit layer 250, thereby all solar energy The battery cells are connected in parallel to each other to provide a large current. Referring to FIG. 3, in comparison with the first embodiment, the flexible solar cell device 300 provided by the third embodiment of the present invention has a similar structure, including a transparent substrate 310, a first circuit layer 320, and a plurality of first solar cells. 330. A plurality of second solar cells 370, an insulating spacer 340, a second circuit layer 350, a light transmissive panel 360, and a rim layer 380. Wherein, the transparent substrate 310 and the light transmissive panel 360 can be made of a material of polyethylene terephthalate S. The insulating layer 380 and the first circuit layer 320 are sequentially stacked on the transparent substrate 310. The plurality of first solar cells 330 and the plurality of second solar cells 370 are connected in series by the first circuit layer 320 and the second circuit layer 350. As such, a larger operating voltage can be provided. The surface of the light transmissive surface 361 of the light transmissive panel 360 is provided with a plurality of protrusions 362 corresponding to each of the solar cell units. Each of the protrusions 362 has a cylindrical shape with 099120038 Form No. A0101 Page 11 / Total 20 Page 0992035419-0 [0031] [0036] [0036] [0036] The surface is curved and concentrated Face 363. In particular, the concentrating surface 36 3 may be in the form of a hemisphere. Thus, the plurality of protrusions 362 can be further condensed to increase the photoelectric conversion rate. Referring to FIG. 4A, the flexible solar cell device 4A provided by the fourth embodiment of the present invention has a similar structure, including the transparent substrate 410, the first circuit layer 420, and the first plurality. The solar battery unit 430, the plurality of second solar battery units 470, the insulating spacer 44, the second circuit layer 450, and the light transmissive panel 460. The transparent substrate 410 and the transparent panel 460 can be made of a polyethylene terephthalate material. The surface of the light transmissive surface 461 of the light transmissive panel 460 is provided with a plurality of protrusions 462 corresponding to all of the solar cell units. Each of the projections 462 includes a plurality of arrays of tapered projections. Each of the convex circumferential surfaces 464 forms an angle of 45 to 70 degrees with the light transmissive surface 461. In this way, the photoelectric conversion rate can be significantly reduced due to the change of the incident angle of the light. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the present invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view of a flexible solar cell device according to a first embodiment of the present invention. 2 is a schematic diagram of a flexible solar cell device according to a second embodiment of the present invention. 099120038 Form No. A0101 Page 12 of 20 0992035419-0 201201378 [0037] Fig. 3 is a schematic view of a flexible solar cell device according to a third embodiment of the present invention. 4 is a schematic view of a flexible solar cell device according to a fourth embodiment of the present invention. [Explanation of main component symbols] Flexible solar cell device: 100, 200, 300, 400 [0040] Translucent substrate: 10, 210, 310, 410 First circuit layer: 20, 220, 320, 420 [0042] First solar cell unit: 30, 230, 330, 430 '[0043] Second solar cell unit: 70, 270, 370, 470 [0044] Insulation spacer: 40, 240, 340, 440 [0045] Second circuit layer: 50, 250, 350, 450 [0046] 透光 Light transmissive panel: 60, 260, 360, 460 [0047] First back electrode: 31, 231 [0048] P-type semiconductor layer: 32 , 72, 232, 272 [0049] PN type semiconductor layer: 33, 73, 233, 273 [0050] N type semiconductor layer: 34, 74, 234, 274 [0051] First front electrode: 35, 235 [0052] Second back electrode: 71, 271 099120038 Form number A0101 Page 13 / Total 20 page 0992035419-0 201201378 [0053] Second front electrode: 75, 275 [0054] Insulation: 380 [0055] Translucent surface: 3 61 4 6 1 [0056] Protrusions: 362, 462 [0057] Converging surface: 363 [0058] Peripheral: 464 0992035419-0 099120038 Form number A0101 Page 14 of 20