TW201201366A - Image sensor and related fabricating method thereof - Google Patents

Image sensor and related fabricating method thereof Download PDF

Info

Publication number
TW201201366A
TW201201366A TW99121381A TW99121381A TW201201366A TW 201201366 A TW201201366 A TW 201201366A TW 99121381 A TW99121381 A TW 99121381A TW 99121381 A TW99121381 A TW 99121381A TW 201201366 A TW201201366 A TW 201201366A
Authority
TW
Taiwan
Prior art keywords
image sensor
microlens
filling material
filling
filter
Prior art date
Application number
TW99121381A
Other languages
Chinese (zh)
Other versions
TWI407559B (en
Inventor
Yu-Ping Hu
Chih-Wei Hsiung
Fang-Ming Huang
Chia-Chi Huang
Chung-Wei Chang
Original Assignee
Himax Imagimg Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Himax Imagimg Inc filed Critical Himax Imagimg Inc
Priority to TW99121381A priority Critical patent/TWI407559B/en
Publication of TW201201366A publication Critical patent/TW201201366A/en
Application granted granted Critical
Publication of TWI407559B publication Critical patent/TWI407559B/en

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

A fabricating method of an image sensor includes the steps of: providing a substrate; forming sensing elements on the substrate; forming microlenses on the sensing elements; filling a stuffed material on the microlenses, and air regions are formed in the stuffed material; and forming optical filters on the stuffed material.

Description

201201366 六、發明說明: 【發明所屬之技術領域】 本發明係與影像感測器有關’尤指一種互補金氧半導體(CM〇S) 影像感測器(以下簡稱為CMOS影像感測器)及其相關製造方法。 【先前技術】 _ 數位相機為現今所廣泛使用的電子產品,而在數位相機内具有 用以將光線轉換為電荷的影像感測器。影像感測器可依據其採用的 原理而區分為電荷搞合裝置(Charge-Coupled Device)影像感測器(亦 即俗稱CCD影像感測器)以及互補金氧半導體影像感測器(亦即俗 稱CMOS影像感測器),其中CM〇s影像感測器即基於互補金氧半 導體技術而製造。 由於CMOS影像感測器是採用傳統的CMOS電路製程製作,因 •此可將影像感測器以及其所需要之週邊電路製作在一起,從而使其 製造成本比CCD影像感測器更為低廉。除了較低廉的成本之外, CMOS影像感測器尚具有體積小以及低消耗功率等優勢。 請參照第1圖,第1圖係為傳統的CMOS影像感測器100之示 意圖° CM0S影像感測器100包含有一基板110以及複數個像素, 且5亥複數個像素係設置在基板110之中,其中每一個像素包含有一 感測7°件160、一濾光片120以及一微鏡片130。微鏡片Π0係用來 201201366 聚集一入射光150,而濾光片120係設置在基板no與微鏡片13〇 之間’用來過滤入射光150。如第1圖所示,入射光15〇需逐一穿 透微鏡片130以及濾光片120才能達到感測元件160。也就是說, 傳統的CMOS影像感測器1〇〇的結構會造成入射光15〇在到達感測 元件160的過程中有極大的損失,因而僅有部分的入射光15〇得以 順利到達感測元件160。另外,傳統的CMOS影像感測器1〇〇亦面 臨到低量子效率(quantumefficiency)以及嚴重的交插干擾(cross talk)的問題。 因此,亟需提出新的CMOS影像感測器,以提供更佳的效能並 解決習知技術所存在的問題。 【發明内容】 本發明主要目的之一在於提供一種影像感測器及其製造方 法,以解決先前技術中之問題。 根據本發明之-實施例,揭露了一種影像感測器之製造方 法’包含有下列步驟:提供-基板;在該絲上形成-感測 兀件,在該感測元件上形成一微鏡片;在該微鏡片上填補一填 充物質,以形成至少一空氣區域在該填充物質之中;以及形成 一濾光片在該填充物質之上。 根據本發明之另—實施例,揭露了—種影像感測器,包含 201201366 •有一基板、一感測元件、一微鏡片、一填充物質以及一濾光片。 該感測元件係形成在該基板之上。該微鏡片係形成在該感測元 件之上。該填充物質係填補在該微鏡片之上,其中該填充物質 之中形成至少一空氣區域。該濾光片係形成在該填充物質之上。 【實施方式】 在說明書及後續的申請專利範圍當中使用了某些詞彙來指稱特 _ 定的元件。所屬領域中具有通常知識者應可理解,硬體製造商可能 會用不同的名詞來稱呼同一個元件。本說明書及後續的申請專利範 圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上 的差異來作為區分的準則。在通篇說明書及後續的請求項當中所提 及的「包含」係為一開放式的用語,故應解釋成「包含但不限定於」。 以外,「搞接」一詞在此係包含任何直接及間接的電氣連接手段。因 此’若文中描述一第一裝置搞接於一第二裝置,則代表該第一裝置 可:i接電氣連接於該第二裝置’或透過其他裝置或連接手段間接地 • 電氣連接至該第二裝置。 請參照第2圖’第2圖為本發明影像感測器2〇〇之第一實施例 的示意圖。如第2圖所示,影像感測器2〇〇包含有(但不侷限於) 一基板210以及複數個像素,且該複數個係設置在基板21〇之中, 其中每一個像素包含有一感測元件260、一濾光片22〇、一微鏡片 230以及一填充物質270。濾光片220是用來過濾一入射光25〇以產 生過濾後之入射光25〇f;微鏡片230則是形成在感測元件260之上, 201201366 並設置於基板210與濾光片220之間,用以聚集過濾後之入射光250f 至感測元件260。值得注意的是,填充物質270係填補在微鏡片230 之上’也就是說,填充物質270係填充在微鏡片230上以形成一平 面層,來讓濾光片220能夠形成在填充物質270之上。此外,在填 充物質270之中會形成至少一空氣區域280,以用來提供一折射路 徑給過濾後之入射光250f。 請注意’本發明所揭露之影像感測器2〇〇的主要優點之一在於 影像感測器200的微鏡片230係設置於基板210與濾光片220之間, 因而有效縮短了入射光聚光之後到達像素區域所需的光源路徑,故 可大幅減少入射光在到達像素區域前的光損失,藉此提升CMOS影 像感測器的效能。此外,本發明另一優點在於將濾光片22〇設置在 微鏡片230的上方,如此一來,相較於習知影像感測器,由於濾光 片220的高度可以降低,因此得以降低生產成本。 在本發明另一實施例中,可以利用沈積製程、濺鍍製程或其他 製程來將填充物質270填補在微鏡片260之上,但這並非本發明之 限制條件。在將填充物質270填補在微鏡片260的過程中,會在填 充物質270之中形成至少一空氣區域280,另外,可透過調整填充 物質270在進行填補時的處理速度,來決定空氣區域28〇的特性, 例如調整空氣區域280的大小或形狀。請注意,為了讓過濾後之入 射光250f能夠有效地進入微鏡片23〇來聚光,因此,填充物質27〇 之折射係數可以選擇不同於濾光片220以及微鏡片230之折射係 201201366 數。此外,本發明另-個主要優點在於可以選用具有折射係數介於 濾光片220之折射係數以及微鏡片23〇之折射係數之間的填充物質 270,如此一來,可以增加微鏡片230的聚光效果。 此外,由於空氡的折射係數係等於1,所以在填充物質270之中 所形成的空軋區域280可以提供過濾後之入射光25〇f更佳的折射路 徑。很明顯地,熟知此項技藝人士應可很輕易瞭解,在不違背本發 明之精神之下,在填充物質270之中形成空氣區域28〇的其他製程 籲的方式皆是可行的。 請參照第3圖,第3圖係為本發明影像感測器3⑻之第二實施 例的示意圖。如第3圖所示,影像感測器3〇〇包含有(但不侷限於) 一基板210以及複數個像素,且該複數個像素係設置在基板21〇之 中,其中每一個像素包含有一感測元件26〇、一濾光片22〇、一微鏡 片230、一填充物質270、至少一空氣區域280以及一遮蔽物340。 φ 由於影像感測器300中之基板210、感測元件260、濾光片220、微 鏡片230、填充物質270以及空氣區域280之操作原理與影像感測 器200中相對應的元件相同,為簡潔起見,在此便不再贅述。影像 感測器300以及影像感測器200主要的差異在於影像感測器3〇〇另 包含遮蔽物340 ’設置於微鏡片230之週遭,用來防止感測元件260 受雜光影響,並將入射至遮蔽物340之入射光250反射至微鏡片230。 請注意,遮蔽物340係由一可反射材質所製成,例如一金屬物 201201366 質。然而此並非本發明之限制條件,其他任何可以達到相同目的之 材質皆可用來作為遮蔽物340。此外,為了讓微鏡片23〇可以更有 效地不文雜光影像,遮蔽物之高度可以設計成不低於微鏡片23〇 之高度’但本發明並不侷限於此。 請同時參照第i圖以及第3圖,相較於第1圖中的習知影像感 測器100,本發明影像感測器3〇〇的主要優點之一在於影像感測器 300中採用較尚的遮蔽物34〇,如此一來,會更有效地降低影像感測 器與鄰近像素之間的交叉干擾(cr〇sstalk),並進而提升量子效率 (quantum efficiency )。 首先,為了更清楚瞭解遮蔽物340的構造,請參照第4圖,第4 圖係為分別對應複數個像素之複數個影像感測器3〇〇的俯視圖。如 第4圖所示,遮蔽物34〇係設置在各像素區域26〇的週遭,用來降 低影像感測器與鄰近像素之間的交叉干擾,經由上述的說明,熟知 此項技藝的人士輕易瞭解遮蔽物34〇的特徵,在此便不詳細說明之。 請參照第5圖,第5圖係為本發明影像感測器5〇〇之第三實施 例的示意圖。如第5圖所示,影像感測器5〇〇之結構與影像感測器 300相似,為簡潔起見,相同部份於此便不再贅述。影像感測器5〇〇 以及影像感測器300的主要差異在於影像感測器5〇〇之填充物質570 (包含一第一部份570A以及一第二部分570B),另用來填補在遮蔽 物340以及濾'光片220之間。換句話說,在本實施例中,填充物質 201201366 570除了會被填補在微鏡片230以及濾光片220之間的空間中(亦 即,第一部份570A),另會被填補在遮蔽物340以及濾光片220之 間的空間中(亦即,第二部分570B)。 請注意,上述實施例中’影像感測器2〇〇/3〇〇/5〇〇係以一 CM〇s 影像感測器來實做,此外,影像感測器200/300/500係可採用一背面 照度(Back Side Illumination,BSI)技術,但這並非本發明之限制條 ^ 件,凡疋符合本發明之精神的變化,皆屬於本發明的保護範疇。 請參考第6圖,第6圖為依據本發明一種影像感測器之製 造方法之一操作範例的流程圖’其包含(但不偏限於)以下步 驟(請注意,假若可獲得實質上相同的結果,則這些步驟並不一 定要遵照第6圖所示的執行次序來執行): 步驟600 :開始。 φ 步驟<510:提供一基板。 步驟620 :在該基板上形成一感測元件。 步驟630 :在該感測元件上形成一微鏡片。 步驟640 :在該微鏡片上填補一填充物質,以形成至少一空氣 區域在該填充物質之中。 步驟650 :形成一濾光片在該填充物質之上。 請搭配第6圖所示之各步驟以及第2圖(或第3圖、第5圖)所 201201366 示之各元件即可各元件如何運作,為簡潔起見,故於此不再贅述。 上述各流程之步驟僅為本發明所舉可行的實施例,並非限制本發明 的限制條件,且在不違背本發明之精神的情況下,該方法可另包含 其他的中間步驟或者可將幾個步驟合併成單—步驟,以做適當之變 化。 以上所述的實施例僅用來說明本發明之技術特徵,並非用來侷 限本發明之範嘴。很明顯地,熟知此項技藝人士應可很輕易瞭解, 其他用來實現影像感測器的設計皆是可行的。 總而言之,本發明實施例中提供一種影像感測器及其相關製造 方法,透過將纖設置在基板以及獻狀間,賴有效地縮短 入射光到達像素區域所需的絲路徑。軌,本發明之影像感測器 的架構能夠提供較好光源傳輸效率來改善量子效率,更值得注意的 是填補在微鏡片上的填充物質,也就是說,填補在微鏡片以及滤光 片之間的填充物質巾所形成空氣區域,可以提供顧後之入射光更 佳的折射路徑。此外,設置於微刻之週遭_蔽物或填充於 遮蔽物340以及濾光片220之間的填充物質,都可更有效地改善影 像感測器鄰近像素之間的交叉干擾。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍 所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 201201366 【圖式簡單說明】 第1圖為傳統的CMOS影像感測器之示意圖。 第2圖為本發明影像感測器之第一實施例的示意圖。 第3圖為本發明影像感測器之第二實施例的示意圖。 第4圖為分別對應複數個像素之複數個影像感測器的俯視圖。 第5圖為本發明影像感測器之第三實施例的示意圖。 第6圖為依據本發明一種影像感測器之製造方法之一操作範例的流 程圖。 【主要元件符號說明】 100、200、300、500 影像感測器 110 、 210 基板 120 、 220 濾光片 130 、 230 微鏡片 340 遮蔽物 270、570、570A、570B 填充物質 116 、 216 像素區域 115 ' 212 感測元件 150 ' 250 入射光 250f 過濾後之入射光201201366 VI. Description of the Invention: [Technical Field] The present invention relates to an image sensor, in particular, a complementary metal oxide semiconductor (CM〇S) image sensor (hereinafter referred to as a CMOS image sensor) and Its related manufacturing methods. [Prior Art] _ Digital cameras are electronic products widely used today, and digital cameras have image sensors for converting light into electric charges. The image sensor can be divided into a Charge-Coupled Device image sensor (also known as a CCD image sensor) and a complementary MOS image sensor according to the principle adopted by the image sensor (also known as a CMOS image sensor). CMOS image sensor), wherein the CM〇s image sensor is fabricated based on complementary metal oxide semiconductor technology. Since the CMOS image sensor is fabricated using a conventional CMOS circuit process, the image sensor and its required peripheral circuits can be fabricated together, making the manufacturing cost lower than that of the CCD image sensor. In addition to lower cost, CMOS image sensors have the advantages of small size and low power consumption. Please refer to FIG. 1 . FIG. 1 is a schematic diagram of a conventional CMOS image sensor 100. The CM0S image sensor 100 includes a substrate 110 and a plurality of pixels, and a plurality of pixels are disposed in the substrate 110. Each of the pixels includes a sensing 7° member 160, a filter 120, and a microlens 130. The microlens Π 0 is used to collect an incident light 150 at 201201366, and the filter 120 is disposed between the substrate no and the microlens 13 ’ to filter the incident light 150. As shown in Fig. 1, the incident light 15 needs to be penetrated through the microlens 130 and the filter 120 one by one to reach the sensing element 160. That is to say, the structure of the conventional CMOS image sensor 1 会 causes the entrance light 15 有 to have a great loss in the process of reaching the sensing element 160, so that only part of the incident light 15 顺利 can smoothly reach the sensing. Element 160. In addition, the conventional CMOS image sensor 1 also faces the problem of low quantum efficiency and serious cross talk. Therefore, there is an urgent need to propose new CMOS image sensors to provide better performance and solve the problems of the prior art. SUMMARY OF THE INVENTION One of the main objects of the present invention is to provide an image sensor and a method of manufacturing the same to solve the problems in the prior art. According to an embodiment of the present invention, a method of fabricating an image sensor includes the steps of: providing a substrate; forming a sensing element on the wire, and forming a microlens on the sensing element; Filling a filling material on the microlens to form at least one air region in the filling material; and forming a filter on the filling material. According to another embodiment of the present invention, an image sensor is disclosed, comprising 201201366. • A substrate, a sensing element, a microlens, a filling material, and a filter. The sensing element is formed over the substrate. The microlens is formed over the sensing element. The filling material is filled over the microlens, wherein at least one air region is formed in the filling material. The filter is formed on the filling material. [Embodiment] Some terms are used in the specification and the following claims to refer to the specific elements. Those of ordinary skill in the art should understand that a hardware manufacturer may refer to the same component by a different noun. This specification and the subsequent patent application do not use the difference in name as the means of distinguishing the elements, but the difference in function of the elements as the criterion for distinguishing. The word "comprising" as used throughout the specification and subsequent claims is an open term and should be interpreted as "including but not limited to". In addition, the term "engaged" includes any direct and indirect electrical connection means. Therefore, if a first device is described as being connected to a second device, it means that the first device can be electrically connected to the second device or indirectly through other devices or connection means. Two devices. Referring to Fig. 2, Fig. 2 is a schematic view showing a first embodiment of the image sensor 2 of the present invention. As shown in FIG. 2, the image sensor 2 includes, but is not limited to, a substrate 210 and a plurality of pixels, and the plurality of pixels are disposed in the substrate 21, wherein each pixel includes a sense The measuring element 260, a filter 22, a microlens 230 and a filling substance 270. The filter 220 is used to filter an incident light 25〇 to generate filtered incident light 25〇f; the microlens 230 is formed on the sensing element 260, 201201366 and disposed on the substrate 210 and the filter 220. For collecting the filtered incident light 250f to the sensing element 260. It should be noted that the filling material 270 is filled on the microlens 230. That is, the filling material 270 is filled on the microlens 230 to form a planar layer, so that the filter 220 can be formed on the filling material 270. on. Additionally, at least one air region 280 is formed in the fill material 270 for providing a refractive path to the filtered incident light 250f. Please note that one of the main advantages of the image sensor 2 disclosed in the present invention is that the microlens 230 of the image sensor 200 is disposed between the substrate 210 and the filter 220, thereby effectively shortening the incident light. After the light reaches the light source path required by the pixel area, the light loss of the incident light before reaching the pixel area can be greatly reduced, thereby improving the performance of the CMOS image sensor. In addition, another advantage of the present invention is that the filter 22 is disposed above the microlens 230, so that the height of the filter 220 can be reduced compared to the conventional image sensor, thereby reducing production. cost. In another embodiment of the invention, a fill process 270 can be filled over the microlens 260 using a deposition process, a sputtering process, or other process, but this is not a limitation of the present invention. In the process of filling the filling material 270 in the microlens 260, at least one air region 280 is formed in the filling material 270, and the air region 28 is determined by adjusting the processing speed at which the filling material 270 is filled. Characteristics such as adjusting the size or shape of the air region 280. Note that in order to allow the filtered incident light 250f to efficiently enter the microlens 23 to condense, the refractive index of the filling material 27〇 can be selected to be different from the refractive index of the filter 220 and the microlens 230 201201366. In addition, another main advantage of the present invention is that a filler 270 having a refractive index between the refractive index of the filter 220 and the refractive index of the microlens 23 可以 can be selected, so that the aggregation of the microlenses 230 can be increased. Light effect. Further, since the refractive index of the open space is equal to 1, the empty rolled region 280 formed in the filling material 270 can provide a better refractive path of the filtered incident light 25 〇 f. It will be apparent to those skilled in the art that it will be readily appreciated that other methods of forming an air zone 28 in the fill material 270 are possible without departing from the spirit of the invention. Please refer to Fig. 3, which is a schematic view showing a second embodiment of the image sensor 3 (8) of the present invention. As shown in FIG. 3, the image sensor 3 includes, but is not limited to, a substrate 210 and a plurality of pixels, and the plurality of pixels are disposed in the substrate 21, wherein each pixel includes one The sensing element 26A, a filter 22A, a microlens 230, a fill material 270, at least one air region 280, and a shield 340. The operation principle of the substrate 210, the sensing element 260, the filter 220, the microlens 230, the filling material 270, and the air region 280 in the image sensor 300 is the same as that in the image sensor 200. For the sake of brevity, we will not repeat them here. The main difference between the image sensor 300 and the image sensor 200 is that the image sensor 3 〇〇 further includes a shield 340 ′ disposed around the microlens 230 for preventing the sensing element 260 from being affected by stray light and Incident light 250 incident on the shield 340 is reflected to the microlens 230. Please note that the shield 340 is made of a reflective material such as a metal 201201366. However, this is not a limitation of the present invention, and any other material that can achieve the same purpose can be used as the shield 340. Further, in order to make the microlens 23 〇 more effective in the stray light image, the height of the mask can be designed to be not lower than the height of the microlens 23 但 but the present invention is not limited thereto. Referring to FIG. 1 and FIG. 3 simultaneously, one of the main advantages of the image sensor 3 of the present invention is that the image sensor 300 is used in comparison with the conventional image sensor 100 in FIG. 1 . The remaining shields 34〇, in this way, will more effectively reduce the cross-interference (cr〇sstalk) between the image sensor and adjacent pixels, and thus improve the quantum efficiency. First, in order to more clearly understand the structure of the shield 340, refer to FIG. 4, which is a plan view of a plurality of image sensors 3A corresponding to a plurality of pixels, respectively. As shown in FIG. 4, the mask 34 is disposed around each pixel region 26〇 to reduce cross interference between the image sensor and adjacent pixels. Through the above description, those skilled in the art are easily Knowing the characteristics of the shield 34〇 will not be described in detail here. Please refer to Fig. 5, which is a schematic view showing a third embodiment of the image sensor 5 of the present invention. As shown in FIG. 5, the structure of the image sensor 5 is similar to that of the image sensor 300. For the sake of brevity, the same portions will not be described herein. The main difference between the image sensor 5A and the image sensor 300 is that the image sensor 5 is filled with a substance 570 (including a first portion 570A and a second portion 570B), and is used to fill the shadow. Between the object 340 and the filter 'light sheet 220. In other words, in this embodiment, the filling material 201201366 570 will be filled in the space between the microlens 230 and the filter 220 (ie, the first portion 570A), and will be filled in the shelter. 340 and the space between the filters 220 (ie, the second portion 570B). Please note that in the above embodiment, the image sensor 2〇〇/3〇〇/5〇〇 is implemented by a CM〇s image sensor. In addition, the image sensor 200/300/500 system can be used. A Back Side Illumination (BSI) technique is employed, but this is not a limitation of the present invention, and variations that conform to the spirit of the present invention are within the scope of the present invention. Please refer to FIG. 6. FIG. 6 is a flow chart showing an operation example of an image sensor manufacturing method according to the present invention, which includes (but is not limited to) the following steps (note that if substantially the same result is obtained) , these steps are not necessarily performed in accordance with the execution order shown in Figure 6: Step 600: Start. φ Step < 510: Providing a substrate. Step 620: Form a sensing element on the substrate. Step 630: Form a microlens on the sensing element. Step 640: Filling a filling material on the microlens to form at least one air region in the filling material. Step 650: Form a filter on the filling material. Please refer to the steps shown in Figure 6 and the components shown in Figure 2 (or Figure 3, Figure 5) for the operation of each component. For the sake of brevity, it will not be repeated here. The steps of the above-mentioned various processes are only the embodiments of the present invention, and are not intended to limit the present invention, and the method may further include other intermediate steps or may be several without departing from the spirit of the present invention. The steps are combined into a single-step to make the appropriate changes. The embodiments described above are only intended to illustrate the technical features of the present invention and are not intended to limit the scope of the present invention. Obviously, those skilled in the art should be able to easily understand that other designs for implementing image sensors are feasible. In summary, an embodiment of the present invention provides an image sensor and related manufacturing method for effectively reducing a wire path required for incident light to reach a pixel region by disposing the fiber between the substrate and the presentation. Rail, the architecture of the image sensor of the present invention can provide better light source transmission efficiency to improve quantum efficiency, more notably filling the filling material on the microlens, that is, filling in the microlens and the filter The area of the air formed by the interstitial material can provide a better refraction path for the incident light. In addition, the surrounding material disposed between the micro-etched or filled material between the shield 340 and the filter 220 can more effectively improve cross-interference between adjacent pixels of the image sensor. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should fall within the scope of the present invention. 201201366 [Simple description of the diagram] Figure 1 is a schematic diagram of a conventional CMOS image sensor. 2 is a schematic view of a first embodiment of an image sensor of the present invention. Figure 3 is a schematic view of a second embodiment of the image sensor of the present invention. Figure 4 is a top plan view of a plurality of image sensors respectively corresponding to a plurality of pixels. Fig. 5 is a schematic view showing a third embodiment of the image sensor of the present invention. Fig. 6 is a flow chart showing an operation example of a method of manufacturing an image sensor according to the present invention. [Main component symbol description] 100, 200, 300, 500 image sensor 110, 210 substrate 120, 220 filter 130, 230 microlens 340 mask 270, 570, 570A, 570B filling material 116, 216 pixel area 115 ' 212 sensing element 150 ' 250 incident light 250f filtered incident light

Claims (1)

201201366 七、申請專利範圍: 1. 一種影像感測器之製造方法,包含有: 提供一基板(substrate); 在該基板上形成一感測元件; 在該感測元件上形成一微鏡片; 在該微鏡片上填補一填充物質,以形成至少一空氣區域在該填充 物質之中;以及 形成一濾光片在該填充物質之上。 ® 2. 如申請專利範圍第1項所述之製造方法,其中在該微鏡片上填補 該填充物質的步驟包含有: 利用一化學氣相沉積(Chemical Vapor Deposition,CVD )製程來 在該微鏡片上填補該填充物質。 3. 如申請專利範圍第1項所述之製造方法,另包含有: 鲁 在該微鏡片之週遭設置一遮蔽物。 4. 如申請專利範圍第3項所述之製造方法,其中在該微鏡片上填補 該填充物質的步驟包含有: 在該濾光片以及該遮蔽物之間填補該填充物質。 5. 如申請專利範圍第3項所述之製造方法,其中該遮蔽物係由一金 12 201201366 屬材質所製成。 6. 如申請專利範圍第3項所述之製造方法,其中該遮蔽物之高度不 低於該微鏡片之高度。 7. 如申請專利範圍第1項所述之製造方法,其中該影像感測器係採 用一背面照度(Back Side Illumination,BSI)技術。 鲁8.如申請專利範圍第1項所述之製造方法,其中該影像感測器係為 一互補金氧半導體(CMOS)影像感測器。 9. 一種影像感測器,包含有: 一基板; 一感測元件,形成在該基板之上; 一微鏡片’形成在該感測元件之上; φ 一填充物質’填補在該微鏡片之上,其中該填充物質之中形成至 少一空氣區域;以及 一渡光片’形成在該填充物質之上。 10. 如申請專利範圍第9項所述之影像感測器’其另包含有: 一遮蔽物,設置於該微鏡片之週遭。 11.如申請專利範圍第1〇項所述之影像感測器’其中該填充物質另 201201366 填補在該濾光片以及該遮蔽物之間。 12. 如申請專利範圍第10項所述之影像感測器,其中該遮蔽物係由 一金屬材質所製成。 13. 如申請專利範圍第10項所述之影像感測器,其中該遮蔽物之高 度不低於該微鏡片之高度。 14. 如申請專利範圍第9項所述之影像感測器,其中該影像感測器 ® 係採用一背面照度技術。 15. 如申請專利範圍第9項所述之影像感測器,其中該影像感測器 係為一 CMOS影像感測器。 16. 如申請專利範圍第9項所述之影像感測器,其中該填充物質係 形成一平面層,以讓該濾光片形成在該填充物質之上。 φ 、圖式: 14201201366 VII. Patent application scope: 1. A method for manufacturing an image sensor, comprising: providing a substrate; forming a sensing element on the substrate; forming a microlens on the sensing element; The microlens is filled with a filling material to form at least one air region in the filling material; and a filter is formed on the filling material. 2. The manufacturing method of claim 1, wherein the step of filling the filling material on the microlens comprises: using a chemical vapor deposition (CVD) process in the microlens Fill the filling material on it. 3. The manufacturing method of claim 1, further comprising: arranging a covering around the microlens. 4. The manufacturing method of claim 3, wherein the filling the filling material on the microlens comprises: filling the filling material between the filter and the shielding. 5. The method of manufacturing of claim 3, wherein the mask is made of a material of the genus 12 201201366. 6. The method of manufacture of claim 3, wherein the height of the mask is not less than the height of the microlens. 7. The manufacturing method of claim 1, wherein the image sensor employs a Back Side Illumination (BSI) technique. The manufacturing method of claim 1, wherein the image sensor is a complementary metal oxide semiconductor (CMOS) image sensor. 9. An image sensor comprising: a substrate; a sensing element formed on the substrate; a microlens ' formed on the sensing element; φ a filling substance filled in the microlens And wherein at least one air region is formed in the filling material; and a light-passing sheet is formed on the filling material. 10. The image sensor of claim 9 further comprising: a mask disposed around the microlens. 11. The image sensor of claim 1, wherein the filling material is further filled between the filter and the mask. 12. The image sensor of claim 10, wherein the mask is made of a metal material. 13. The image sensor of claim 10, wherein the height of the mask is not lower than the height of the microlens. 14. The image sensor of claim 9, wherein the image sensor is a back illumination technique. 15. The image sensor of claim 9, wherein the image sensor is a CMOS image sensor. 16. The image sensor of claim 9, wherein the filling material forms a planar layer such that the filter is formed over the filling material. φ, pattern: 14
TW99121381A 2010-06-29 2010-06-29 Image sensor and related fabricating method thereof TWI407559B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99121381A TWI407559B (en) 2010-06-29 2010-06-29 Image sensor and related fabricating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99121381A TWI407559B (en) 2010-06-29 2010-06-29 Image sensor and related fabricating method thereof

Publications (2)

Publication Number Publication Date
TW201201366A true TW201201366A (en) 2012-01-01
TWI407559B TWI407559B (en) 2013-09-01

Family

ID=46755772

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99121381A TWI407559B (en) 2010-06-29 2010-06-29 Image sensor and related fabricating method thereof

Country Status (1)

Country Link
TW (1) TWI407559B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317859A (en) * 2006-05-25 2007-12-06 Toshiba Corp Solid state imaging device and its manufacturing method
US7816641B2 (en) * 2007-12-28 2010-10-19 Candela Microsystems (S) Pte. Ltd. Light guide array for an image sensor

Also Published As

Publication number Publication date
TWI407559B (en) 2013-09-01

Similar Documents

Publication Publication Date Title
TWI566389B (en) Solid-state imaging devices and methods of fabricating the same
US7279354B2 (en) Microlens of CMOS image sensor and method of manufacturing the same
JP2012169530A (en) Solid state image sensor, manufacturing method therefor, and electronic apparatus
US20200411575A1 (en) Image sensor
CN101404289B (en) Image sensor and method of fabricating the same
JP2014086551A (en) Imaging apparatus and camera
TW201628171A (en) Solid-state imaging devices
JP2009182223A (en) Back-surface irradiation solid-state imaging element
US20160181294A1 (en) Backside illuminated image sensor and manufacturing method therefor
JP2007150087A (en) Solid-state imaging element and its manufacturing method
JPWO2012073402A1 (en) Solid-state imaging device and manufacturing method thereof
JP2016018859A (en) Solid state image pickup device and method for manufacturing the same
JP2013251292A (en) Solid-state image pickup device and manufacturing method thereof
CN1822381A (en) CMOS image sensor and method for fabricating the same
KR20200091252A (en) Backside illuminated image sensor and method of manufacturing the same
CN103337508A (en) Backside illuminated CMOS image sensor and manufacturing method thereof
WO2014086074A1 (en) Method of fabricating cmos image sensor
US20110304000A1 (en) Solid-state image pickup device and method for manufacturing same, and image pickup apparatus
JP2007201047A (en) Solid-state image pickup device and manufacturing method thereof
US20220271071A1 (en) Method of forming backside illuminated image sensor device with shielding layer
US20120261731A1 (en) Image sensor
TW201201366A (en) Image sensor and related fabricating method thereof
TWI773209B (en) Solid-state image sensor
KR100878697B1 (en) Image sensor and method for manufacturing thereof
CN103337502A (en) Layout structure, and dark pixel structure and formation method thereof