TW201200491A - Alumnium nitride ceramic heat dissipation plate and method for manufacturing the same - Google Patents

Alumnium nitride ceramic heat dissipation plate and method for manufacturing the same Download PDF

Info

Publication number
TW201200491A
TW201200491A TW99119951A TW99119951A TW201200491A TW 201200491 A TW201200491 A TW 201200491A TW 99119951 A TW99119951 A TW 99119951A TW 99119951 A TW99119951 A TW 99119951A TW 201200491 A TW201200491 A TW 201200491A
Authority
TW
Taiwan
Prior art keywords
mixture
aluminum nitride
heat sink
weight ratio
average particle
Prior art date
Application number
TW99119951A
Other languages
Chinese (zh)
Other versions
TWI404698B (en
Inventor
Chen-Hsin Lai
Fang-Nan Chen
Original Assignee
Taiyen Biotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyen Biotech Co Ltd filed Critical Taiyen Biotech Co Ltd
Priority to TW99119951A priority Critical patent/TWI404698B/en
Publication of TW201200491A publication Critical patent/TW201200491A/en
Application granted granted Critical
Publication of TWI404698B publication Critical patent/TWI404698B/en

Links

Abstract

An AlN ceramic heat dissipation plate and its manufacturing method are provided. The manufacturing method is mainly to use AlN powders or AlN composites with greater particle sizes to fabricate a heat dissipation plate, thereby obtaining an AlN ceramic heat dissipation plate having a greater thickness and a lower contraction ratio. The heat dissipation plate thus obtained has a specific gravity ranging substantially between 1.4 and 2.2, and the shape thereof can be such as a fin shape or flat plate, and the average thickness thereof is substantially between 1 mm and 2cm.

Description

201200491 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種氮化鋁(A1N)陶瓷散熱片與其製 造方法。特別是有關於一種高厚度的氮化鋁陶瓷散熱片與 其製造方法。 【先前技術】 隨著科技的曰新月異’電子與光電產品均朝輕、薄、 # 短、小與高功率的趨勢發展。如此的發展將使得電子與光 電產品的發熱密度隨之提高,因而電子與光電產品對於散 熱的需求也大幅增加。例如:發光二極體(Light Emitting Diode’LED)發光時所產生的熱能若無法導出,將會使lED 結面溫度過高,進而影響產品生命週期、發光效率、穩定 性,而LED結面溫度、發光效率及壽命之間的關係。因此, 必須加裝散熱片裝置至電子與光電產品,以改善散熱的問 題。 • 散熱片的種類主要有金屬散熱片和陶竞散熱片兩類。 金屬散熱片係以銘或銅為材料,而陶竞散熱片係使用氧化 銘、碳化石夕(SiC)、氮化铭等材料。應用金屬散熱片時尚需 絕緣層的處理,而陶竟散熱片本身是絕緣體,故不需絕緣 層的處理。此外,陶究散熱片的熱膨脹系數匹配性佳,可 減少熱應力及熱變形產生也是其優點之一 • 纟於氮化銘具有獨特的物理特性,例如:接近於金屬 =倍於氧化铭的高熱導性;可與砂和碳化石夕相比擬的低 ‘,,、;脹係數與南電絕緣性;優良的抗熱震性 ;與氧化鋁陶 201200491 曼材料相胃的機械強度;優良的抗腐触性,故氣化!呂已成 為用以製作陶瓷散熱片之相當重要的散熱材料。然而’習 知之氮化铭陶:是散熱片係使用粒徑小於2微米之粉末,其 比重為3.26,而收縮率大於1〇〇/。。由於習知之說化紹陶究 散熱片的收縮率太大’製作厚度較大的散熱片時,容易發 生翹曲的現象’因而造成良率太低的問題。此外,習知技 術通H製作*厚度為1公釐(mm)以下的氮減陶竞散 &片’已無法滿足日趨複雜與多樣化之電子與光電產品的 _ 散熱需求。 有鑑於此’目前亟需一種可製造出高厚度且低收縮率 之氮化鋁陶瓷散熱片的方法。 【發明内容】 本,明之樣就是在提供氮化銘陶兗散熱片的製造 方法藉以製造出南厚度且低收縮率的氮化銘陶竞散熱片。 ,根據本發明之上述目的,提出—種氮化紹陶竞散熱片 籲的製造方法。在此氮化銘陶曼散熱片的製造方法中,首先 裝備I 3有燒、、.σ助劑之氮化銘複合物,其中燒結助劑於氛 ,紹複合物中的重量比值係實質介於2%至9%之間。接 著,過濾此氣化紹複合物,以分別筛出具有第一平均粒徑 之第-氮化銘複合物、具有第二平均粒徑之第二氮化銘複 合物、及具有第三平均粒徑之第三氮化铭複合物,其中第 -平均粒徑係實質介;^ 3Q微米至8()微米之間,第一氮化 銘複合物於氮化銘複合物中的重量比值係實質介於5〇%至 75/〇之間’第一平均粒徑係實質介於1〇微米至微米之 201200491 間,第二氮化鋁複合物於該氮化鋁複合物中的重量比值係 實質介於10%至30%之間;第三平均粒徑係實質介於3微 米至9微米之間,第三氮化鋁複合物於氮化鋁複合物中的 重量比值係實質介於10%至20%之間。然後,將第一氮化 鋁複合物、第二氮化鋁複合物、第三氮化鋁複合物、可塑 劑和黏結劑混合在一起攪拌而獲得一混合物,其中第一氮 化鋁複合物、第二氮化鋁複合物和第三氮化鋁複合物之總 和於混合物中的重量比值係實質介於73%至90%之間;可 塑劑於混合物中的重量比值係實質介於3%至12%之間;黏 結劑於混合物中的重量比值係實質介於5%至15%之間。接 著’使用具預設網目數(Mesh)之篩網過篩此混合物,而獲 得通過此篩網之顆粒混合物,其中預設網目數係實質介於 20mesh至120mesh之間。然後,將顆粒混合物壓模、射出 或押出成型成一散熱片生胚,再於一燒結溫度持續燒結散 熱片生胚經一預設時間,而獲得一散熱片。 依據本發明之又一實施例,在一種氮化鋁陶瓷散熱片 的製造方法中,首先將具有第一平均粒徑之第一氮化鋁 粉、具有第二平均粒徑之第二氮化鋁粉、及具有第三平均 粒徑之第三氮化鋁粉混合成氮化鋁粉混合物,其中第一平 均粒徑係實質介於30微米至80微米之間,第一氮化鋁粉 於氮化鋁粉混合物中的重量比值係實質介於50%至75%之 間;第二平均粒徑係實質介於10微米至29微米之間,第 二氮化紹粉於II化紹粉混合物中的重量比值係實質介於 10%至30%之間;第三平均粒徑係實質介於3微米至9微 米之間’第三氮化鋁粉於該氮化鋁粉混合物中的重量比值 201200491 係實質介於10%至20%之間。然後,添加燒結助劑至氮化 鋁粉混合物中而獲得第一混合物,其中燒結助劑於第一混 合物中的重量比值係實質介於2%至9%之間。接著,將第 一混合物、可塑劑和黏結劑混合在一起攪拌而獲得第二混 合物,其中第一混合物於第二混合物中的重量比值係實質 介於73%至90%之間;可塑劑於第二混合物中的重量比值 係實質介於3%至12%之間;黏結劑於第二混合物中的重量 比值係實質介於5%至15%之間。然後,使用具預設網目數 之篩網過筛第二混合物,而獲得通過f帛網之顆粒混合物, 其中預設網目數係實質介於20mesh至lOOmesh之間。接 著’將顆粒混合物壓模、射出或押出成型成一散熱片生胚, 再於一燒結溫度持續燒結散熱片生胚經一預設時間,而獲 得一散熱片。 依據本發明之上述實施例所製得之散熱片的比重係實 質介於1.4至2.2之間,其形狀為例如鰭型或平板,平均厚 度係實質介於1公釐至2公分之間。 因此’藉由本發明之實施例之氮化鋁陶瓷散熱片的製 造方法,可提供高厚度且低收縮率的氮化鋁陶瓷散熱片, 並具有優良的良率。 【實施方式】 本發明之實施例主要是使用粒徑較大之氮化鋁粉或氮 化鋁複合物來製作散熱片,藉以製造出高厚度且低收縮率 的氮化鋁陶瓷散熱片。所謂「氮化鋁複合物」係將鋁粉、 氮化鋁、及例如氧化纪之燒結助劑均勻混合後,再經例如 201200491 燃燒合成反應製成。製造氮化純合物的方法與裝置可參 見中華民國專利前案第1297672冑「氮化銘與其複合物的 合成方法」’但本發明之實施例並不在此限。至於本發明之 實施中所使用的裝置,例如:授伴機、筛網、成型機 結爐等,皆為習知裝置,故不在此贅述。 實施例1.使用氮化鋁複合物、可塑劑和黏結劑。 «月參…、第1圖,其繪示依據本發明之一實施例之氮化 銘陶曼散熱片製造方法的流程示意圖。首先,製備包含有 鲁燒結助劑之氮化紹複合物(步驟1〇〇),其中燒結助劑於氮化 鋁複合物中的重量比值係實質介於2%至9%之間,且可為 例如二氧化釔、氧化鈣、氧化鎂、氧化鋰、氧化鋁、氧化 ,、氧化鈥、氧化釤、氧化鏑、碳酸鈣、碳酸鎂、碳酸鋰或 氣化約以及其混合物所組成之一族群。接著,使用例如不 同網目數之篩網來過濾此氮化鋁複合物(步驟11〇),以分別 篩出具有第一平均粒徑之第一氮化鋁複合物、具有第二平 均粒徑之第二氮化紹複合物、及具有第三平均粒徑之第三 鲁氮化鋁複合物,其中第一平均粒徑係實質介於30微米至 80微米之間,第一氮化鋁複合物於氮化鋁複合物中的重量 比值係實質介於50%至75%之間;第二平均粒徑係實質介 於10微米至29微米之間,第二氮化鋁複合物於該氮化鋁 複合物中的重量比值係實質介於10%至30%之間;第三平 均粒徑係實質介於3微米至9微米之間,第三氮化鋁複合 物於氮化鋁複合物中的重量比值係實質介於1〇%至20%之 • 間。然後,將第一氮化鋁複合物、第二氮化鋁複合物、第 三氮化鋁複合物、可塑劑和黏結劑混合在一起攪拌(步驟 201200491 120),而獲得一混合物,其中第一氮化鋁複合物、第二氮 化鋁複合物和第三氮化鋁複合物之總和於混合物中的重量 比值係實質介於73%至90%之間;可塑劑於混合物中的重 量比值係實質介於3%至12%之間;黏結劑於混合物中的重 量比值係實質介於5%至15%之間。可塑劑可為例如:石夕 油、己二酸酯、苯二酸酯、石躐或白腊油,黏結劑可為例 如.木質纖維素、乙稀纖維素、聚乙烯醇缩丁酸(p〇lyvinyl Butyral)、聚乙烯、聚丙稀、壓克力或樹脂。201200491 VI. Description of the Invention: [Technical Field] The present invention relates to an aluminum nitride (A1N) ceramic heat sink and a method of manufacturing the same. In particular, there is a high-thickness aluminum nitride ceramic heat sink and a method of manufacturing the same. [Prior Art] With the rapid development of technology, both electronic and optoelectronic products are developing towards light, thin, short, small and high power. Such development will increase the heat generation density of electronic and photovoltaic products, and the demand for heat dissipation in electronic and optoelectronic products will also increase significantly. For example, if the thermal energy generated by the light emitting diode (LED) is not exported, the lED junction temperature will be too high, which will affect the product life cycle, luminous efficiency and stability, and the LED junction temperature. , the relationship between luminous efficiency and longevity. Therefore, heat sink devices must be added to electronic and optoelectronic products to improve heat dissipation. • The types of heat sinks are mainly metal heat sinks and Tao Jing heat sinks. Metal heat sinks are made of Ming or copper, while Tao Jing heat sinks are made of oxidized Ming, carbonized stone (SiC), and nitrided. The application of the metal heat sink fashion requires the treatment of the insulating layer, and the ceramic heat sink itself is an insulator, so no insulation layer treatment is required. In addition, ceramic heat sinks have good thermal expansion coefficient matching, which can reduce thermal stress and thermal deformation. It is also one of its advantages. • Niobium has unique physical properties, such as: close to metal = high heat of oxidation Conductivity; low compared with sand and carbon carbide, ',,; expansion coefficient and Nandian insulation; excellent thermal shock resistance; mechanical strength with alumina ceramic 201200491 mannite material; excellent resistance Corrosive, so gasification! Lu has become a very important heat sink material for making ceramic heat sinks. However, the conventional nitrided ceramics are those in which the heat sink is made of a powder having a particle diameter of less than 2 μm and having a specific gravity of 3.26 and a shrinkage ratio of more than 1 〇〇/. . Since it is known that the shrinkage rate of the heat sink is too large, when a heat sink having a large thickness is produced, a warp phenomenon tends to occur, which causes a problem that the yield is too low. In addition, the conventional technology of making nitrogen with a thickness of less than 1 mm is not sufficient for the increasingly complex and diverse electronic and optoelectronic products. In view of the above, there is a need for a method for producing a high-thickness and low-shrinkage aluminum nitride ceramic heat sink. SUMMARY OF THE INVENTION The present invention is to provide a nitriding Ming Tao competition heat sink with a south thickness and a low shrinkage rate in the production method of providing a nitrided heat sink. According to the above object of the present invention, a method for manufacturing a nitriding Shao Taojing heat sink is proposed. In the manufacturing method of the nitrided terracotta heat sink, firstly, I 3 is equipped with a nitriding composite of I 3 and σ auxiliaries, wherein the weight ratio of the sintering aid in the atmosphere and the composite is substantially Between 2% and 9%. Next, the gasification composite is filtered to separately sieve a first-nitride composite having a first average particle diameter, a second nitride composite having a second average particle diameter, and having a third average particle The third nitriding composite of the diameter, wherein the first-average particle size is substantially intervened; ^ 3Q micron to 8 () micron, the weight ratio of the first nitriding complex in the nitriding composite is the essence Between 5〇% and 75/〇, the first average particle size is substantially between 1〇μm and micron 201200491, and the weight ratio of the second aluminum nitride composite to the aluminum nitride composite is Between 10% and 30%; the third average particle size is substantially between 3 microns and 9 microns, and the weight ratio of the third aluminum nitride composite to the aluminum nitride composite is substantially 10% Between 20%. Then, the first aluminum nitride composite, the second aluminum nitride composite, the third aluminum nitride composite, the plasticizer and the binder are mixed and stirred to obtain a mixture, wherein the first aluminum nitride composite, The weight ratio of the sum of the second aluminum nitride composite and the third aluminum nitride composite in the mixture is substantially between 73% and 90%; the weight ratio of the plasticizer to the mixture is substantially 3% to Between 12%; the weight ratio of the binder to the mixture is substantially between 5% and 15%. The mixture is then screened using a screen having a predetermined number of meshes to obtain a mixture of particles passing through the screen, wherein the predetermined number of meshes is substantially between 20 mesh and 120 mesh. Then, the pellet mixture is compression molded, shot or extruded into a heat sink green sheet, and the heat sink sheet is continuously sintered at a sintering temperature for a predetermined time to obtain a heat sink. According to still another embodiment of the present invention, in an aluminum nitride ceramic heat sink manufacturing method, first, a first aluminum nitride powder having a first average particle diameter and a second aluminum nitride having a second average particle diameter are provided. And a third aluminum nitride powder having a third average particle diameter is mixed into an aluminum nitride powder mixture, wherein the first average particle diameter is substantially between 30 micrometers and 80 micrometers, and the first aluminum nitride powder is nitrogen The weight ratio of the aluminum powder mixture is substantially between 50% and 75%; the second average particle size is substantially between 10 microns and 29 microns, and the second nitrided powder is in the mixture of II. The weight ratio is substantially between 10% and 30%; the third average particle size is substantially between 3 microns and 9 microns. 'The weight ratio of the third aluminum nitride powder to the aluminum nitride powder mixture 201200491 The essence is between 10% and 20%. Then, a sintering aid is added to the aluminum nitride powder mixture to obtain a first mixture, wherein the weight ratio of the sintering aid to the first mixture is substantially between 2% and 9%. Next, the first mixture, the plasticizer and the binder are mixed together to obtain a second mixture, wherein the weight ratio of the first mixture to the second mixture is substantially between 73% and 90%; the plasticizer is in the first The weight ratio in the two mixtures is substantially between 3% and 12%; the weight ratio of the binder in the second mixture is substantially between 5% and 15%. The second mixture is then screened using a screen having a predetermined number of meshes to obtain a mixture of particles passing through the mesh, wherein the predetermined number of meshes is substantially between 20 mesh and 100 mesh. Next, the pellet mixture is compression molded, shot or extruded into a heat sink green sheet, and the heat sink is continuously sintered at a sintering temperature for a predetermined period of time to obtain a heat sink. The heat sink according to the above embodiment of the present invention has a specific gravity of between 1.4 and 2.2, and is shaped, for example, as a fin or a flat plate, and the average thickness is substantially between 1 mm and 2 cm. Therefore, the aluminum nitride ceramic heat sink of the embodiment of the present invention can provide a high-thickness and low shrinkage aluminum nitride ceramic heat sink with excellent yield. [Embodiment] The embodiment of the present invention mainly uses a large-diameter aluminum nitride powder or an aluminum nitride composite to form a heat sink, thereby producing a high-thickness and low-shrinkage aluminum nitride ceramic heat sink. The "aluminum nitride composite" is obtained by uniformly mixing aluminum powder, aluminum nitride, and a sintering aid such as an Oxide group, and then performing a combustion synthesis reaction, for example, 201200491. A method and apparatus for producing a nitriding pure compound can be found in the Republic of China Patent No. 1297672, "Synthesis Method of Nitrile and Its Composite", but the embodiment of the present invention is not limited thereto. The apparatus used in the practice of the present invention, for example, a companion machine, a screen, a forming machine, and the like, are conventional devices and will not be described herein. Example 1. Use of an aluminum nitride composite, a plasticizer, and a binder. «月参..., FIG. 1 is a flow chart showing a method for manufacturing a nitrided Ming Tauman heat sink according to an embodiment of the present invention. First, preparing a nitrided composite containing a sintering aid (step 1), wherein the weight ratio of the sintering aid to the aluminum nitride composite is substantially between 2% and 9%, and For example, a group consisting of cerium oxide, calcium oxide, magnesium oxide, lithium oxide, aluminum oxide, oxidation, cerium oxide, cerium oxide, cerium oxide, calcium carbonate, magnesium carbonate, lithium carbonate or gasification, and a mixture thereof . Next, the aluminum nitride composite is filtered using, for example, a screen having a different number of meshes (step 11A) to separately sieve the first aluminum nitride composite having a first average particle diameter and having a second average particle diameter. a second nitrided composite, and a third aluminum nitride composite having a third average particle diameter, wherein the first average particle diameter is substantially between 30 micrometers and 80 micrometers, and the first aluminum nitride composite The weight ratio in the aluminum nitride composite is substantially between 50% and 75%; the second average particle size is substantially between 10 microns and 29 microns, and the second aluminum nitride composite is in the nitriding The weight ratio in the aluminum composite is substantially between 10% and 30%; the third average particle diameter is substantially between 3 microns and 9 microns, and the third aluminum nitride composite is in the aluminum nitride composite. The weight ratio is substantially between 1% and 20%. Then, the first aluminum nitride composite, the second aluminum nitride composite, the third aluminum nitride composite, the plasticizer and the binder are mixed and stirred together (step 201200491 120) to obtain a mixture, wherein the first The weight ratio of the sum of the aluminum nitride composite, the second aluminum nitride composite and the third aluminum nitride composite in the mixture is substantially between 73% and 90%; the weight ratio of the plasticizer to the mixture is The substantial difference is between 3% and 12%; the weight ratio of the binder to the mixture is substantially between 5% and 15%. The plasticizer may be, for example, a Litaba oil, an adipate, a phthalate, a sarcophagus or a white wax oil, and the binder may be, for example, lignocellulose, ethylene cellulose, polyvinyl butyric acid (p) 〇 lyvinyl Butyral), polyethylene, polypropylene, acrylic or resin.

接著,使用具預設網目數之篩網過篩此混合物(步驟 130),而獲得通過此篩網之顆粒混合物,其中預設網目數 係實質介於20mesh至12〇mesh之間。然後,將顆粒混合 物壓模、射出或押出成型成一散熱片生胚(步驟14〇),再於 具-燒結溫度之燒結爐中,持續燒結散熱片生胚經一段預 叹時間(步驟150) ’而獲得一散熱片,其中預設時間係實質 介於1.5 λ(、時至3小時之間,燒結溫度係實質介於·。c 至195(TC之間。在進行步驟15〇前,燒結爐的升溫曲線可 為例如:先以每 鐘升溫2〜代的速率由常溫升至屬 t ;再以每分鐘H 。⑶速㈣12 介於i公餐至2公分之間。值得一:二+均厚度係實質 _幾何形狀:為長方體、圓柱體、 體’但本發明之實施例|不在此限。% _狀的角柱 201200491 以下以應用例1至4來說明本實施例。請參照表一, 表一為應用例1至4所使用之材料與製程條件,用以分別 進行上述之步驟100至160。 應用例1 應用例2 應用例3 應用例4 包含有燒結 助劑之氮化 銘複合物重 量(g) 250 250 250 250 燒結助劑名 稱/ 重量比 υ2ο3+αι2ο3/ 9% Y203+Ca0/ 5.5% Y203+Ca0/ 6°/〇 Υ2〇3+Α1203/ 6% 第一氮化鋁 複合物平均 粒徑/重量 比(相對氮 化i呂複合 物) 40 β m/50% 30/zm/68% 30 μ m/68% 30 β m/68% 第二氮化鋁 複合物平均 粒徑/重量 比(相對氮 化i呂複合 物) 20 β m/30% 20 β m/22% 20 β m/22% 20 ji m/22% 第三氮化鋁 複合物平均 粒徑/重量 比(相對氮 化士呂複合 4勿) 8 β m/20% 5//m/5% 5 ^m/5% 5/^m/5% 混合物重量 (R) 295 295 295 295 可塑劑名稱 /重量比(相 對混合物) 矽油/6.78% 矽油/6.78% 矽油/6.78% 矽油/6.78% 黏結劑名稱 /重量比(相 對混合物) 木質纖維素 /8.44% 木質纖維素 /8.44% 木質纖維素 /8.44% 木質纖維素 /8.44% 篩網之預設 60 40 40 40 201200491 網目數 (Mesh) 燒結溫度/ 時間條件 1850 °c /1.5Hr 1850〇C/3Hr 1850〇C/3Hr 1850°C/3Hr 表一 應用例1 應用例2 應用例3 應用例4 比較例(碳 化石夕被熱 片) 散熱片生 胚形狀/ 尺寸 鰭片型/ 40mmx 40mmx 4mm 鰭片型/ 40mmx 40rmnx 3mm 鰭片型/ 40mmx 40mmx 3mm 鰭片型/ 40mmx 40mmx 3mm 鰭片型 散熱片尺 寸/ 總厚度 38mmx 38mmx 3.8mm /3.8mm 38mmx 38mmx 2.85mm /2.85mm 38mmx 38mmx 2.85mm /2.85mm 38mmx 38mmx 2.85mm /2.85mm 38mmx 38mmx 4mm /4mm 散熱片比 重 1.64 1.69 1.71 1.62 \ &amp;7°C 27〇C 27〇C 27〇C 3)試時間 2Hr 2Hr 2Hr 2Hr 散熱片底 部與CPU 蓬®溫度 60°C 61°C 59〇C 63〇C 散熱片頂 麵度 56〇C 58〇C 55〇C \ 56〇C 率 5.12% ------ 5.15% 5.13% 有 有 有 有 ----- -3— _ 表二 二清參照表二’表二為應用例1至4所製成之氮化鋁陶 究散熱片與碳化矽散熱片之比較例於一藍光DVd主機中 的測試結果’其中散熱片的底部係與中央處理H(CPU)相接 觸’以將cpu所產生的熱帶走。當散熱片底部與CPU相 接觸的溫度愈低時,代表散熱片的散熱能力愈好;當散熱 201200491 片頂部溫度愈低時’代表散熱片底部至頂部的溫差愈小, 散熱片的散熱係數愈大。由表二可知,應用例丨至3所製 成之氮化銘陶瓷散熱片的散熱能力與散熱係數均比習知之 碳化矽散熱片佳。此外,應用例丨至4所製成之氮化鋁陶 瓷散熱片的厚度為3.8mm和2.85mm,遠大於習知之氮化 紹散熱片之1mm的厚度。應用例1至3所製成之氮化鋁陶 瓷散熱片的收縮率分別為5 12%、5丨5%和5.13%,遠低於 習知之氮化鋁散熱片之10%以上的收縮率。應用例丨至4 所製成之氮化銘陶瓷散熱片的比重分別為1.64、1 69、1.71 和1. 72,遠低於習知之氮化鋁散熱片之3 %的比重。 實施例2 .使用氮化紹粉混合物、燒結助劑、可塑劑和黏 結劑。 在本實施例,首先將具有第一平均粒徑之第一氮化鋁 粉' 具有第二平均粒徑之第二氮化鋁粉、及具有第三平均 粒徑之第二氮化銘粉混合成氮化铭粉混合物(步驟2〇〇),其 中第一平均粒徑係實質介於30微米至8〇微米之間,第一 氮化銘粉於氣化铭粉混合物中的重量比值係實質介於5〇% 至75%之間;第二平均粒徑係實質介於1〇微米至29微米 之間,第二氮化鋁粉於氮化鋁粉混合物中的重量比值係實 質介於10%至30%之間;第三平均粒徑係實質介於3微米 至9微米之間,第三氮化鋁粉於該氮化鋁粉混合物中的重 量比值係實質介於10%至20%之間。然後,添加燒結助劑 至氮化鋁粉混合物中而獲得第一混合物(步驟21〇),其中燒 結助劑於第一混合物中的重量比值係實質介於3%至之 間。接著,將第一混合物、可塑劑和黏結劑混合在一起攪 [S] 12 201200491 拌而獲得第二混合物(步驟220),其中第一混合物於第二混 ' 合物中的重量比值係實質介於73%至90%之間;可塑劑於 第二混合物中的重量比值係實質介於3%至12%之間;黏結 劑於第二混合物中的重量比值係實質介於5%至15%之 間。可塑劑可為例如:矽油、己二酸酯、苯二酸酯、石蠟 或白腊油,黏結劑可為例如:木質纖維素、乙烯纖維素、 聚乙烯醇缩丁醛、聚乙烯、聚丙烯、壓克力或樹脂。 然後,使用具預設網目數之篩網過篩第二混合物(步驟 230),而獲得通過篩網之顆粒混合物,其中預設網目數係 • 實質介於20mesh至lOOmesh之間。接著,將顆粒混合物 壓模、射出或押出成型成一散熱片生胚(步驟240),再於一 燒結溫度持續燒結散熱片生胚經一預設時間(步驟250),而 獲得一散熱片,其中預設時間係實質介於1.5小時至3小 時之間,燒結溫度係實質介於1750°C至1950°C之間。在進 行步驟250前,燒結爐的升溫曲線可為例如:先以每分鐘 升溫2〜4°C的速率由常溫升至1200°C ;再以每分鐘升溫1 〜3°C的速率由1200°C升至1850°C。然後,進行步驟250, • 以維持1850°C的溫度經1.5小時〜3小時。接著,將散熱 片自然降溫或持續降溫至常溫(步驟260)。依據本實施例所 製得之散熱片的比重係實質介於1.4至2.2之間,其形狀為 例如鰭型或平板,平均厚度係實質介於1公釐至2公分之 間。應用例5、6所製成之氮化鋁陶瓷散熱片的比重分別為 1.64和1.67,遠低於習知之氮化I呂散熱片之3.26的比重。 以下以應用例5至7來說明本實施例。請參照表三, 表三為應用例5至7所使用之材料與製程條件,用以分別 201200491 進行上述之步驟200至260。 應用例5 應用例6 應用例7 應用例8 氮化鋁粉混合 物重量(£〇 250 250 250 250 第一氮化銘粉 平均粒徑/重 量比(相對氮 化鋁粉混合 物) 40 β m/50% 40 β m/50% 70 β m/50% 30^ m/68% 第二氮化鋁粉 平均粒徑/重 量t(l(相對氮 化鋁粉混合 物) 20 β m/30% 20^ m/30% 20/z m/30% 20 β mill% 第三氮化鋁粉 平均粒徑/重 量比(相對氮 化鋁粉混合 物) 8 β m/20% 8 β m/20% 8 β m/20% 5 β m/5% 燒結助劑名稱 /重量比 Y2〇3/ 4.07% Y2O3+AI2O3/ 7.09% Y203+CaC03/ 5.7% Y2〇3+CaC03/ 5.7% 第一混合物重 量⑷ 262.5 272.5 265 265 可塑劑名稱/ 重量比(相對 第一混合物) 石夕油/6.5% 石夕油/6.3% 石夕油/6.5% 石夕油/6.5% 黏結劑名稱/ 重量比(相對 第一混合物) 木質纖維素 /8.1% 木質纖維素/ 1.9% 木質纖維素 /8.1% 木質纖維素 /8.1% 第二混合物重 量(g) 307.5 317.5 310 310 篩網之預設網 目數(Mesh) 60 60 60 40 燒結溫度/時 間條件 1850°C/3Hr 1850〇C/3Hr 1850〇C/3Hr 1850〇C/1.5Hr __表三___ i用例5 應用例6I比較例(碳化矽散 熱片) - m 201200491 散熱片生 胚形狀/ 尺寸 鰭片型/ 40mmx40mmx 4mm 鰭片型/ 40mmx40mmx 4mm 鰭片型 散熱片尺 38mmx38mmx 38mmx38mmx 3 8mmx3 8mmx4mm 寸/ 3.8mm 3.8mm /4mm 總厚度 /3.8mm /3.8mm 散熱片比 重 1.64 1.67 室溫 27〇C 27〇C 27〇C 測試時間 2Hr 2Hr 散熱片底 部與CPU 接觸溫度 59〇C 63〇C 散熱片頂 部溫度 55〇C 56〇C 收縮率 5.15% 5.13% 風扇運轉 ^^ 有 有 表四 請參照表四’表四為應用例5、6所製成之氮化紹陶兗 散熱片與碳化矽散熱片之比較例於一藍光DVD主機中的 測試結果。由表四可知,應用例5所製成之氮化鋁陶瓷散 熱片的散熱能力與散熱係數均比習知之石炭化石夕散熱片佳。 • 此外’應用例5、6所製成之氮化鋁陶瓷散熱片的厚度為 3.8mm,遠大於習知之氮化鋁散熱片之lmm的厚度。應用 例5、6所製成之氮化鋁陶瓷散熱片的收縮率分別為5.15% 和5.13%,遠低於習知之氮化鋁散熱片之1〇%以上的收縮 率。應用例5、6所製成之氮化鋁陶瓷散熱片的比重分別為 1.64和1.67,遠低於習知之氮化鋁散熱片之3 26的比重。 由上述實施方式可知,本發明之優點就是可提供高厚 度且低收縮率的氮化鋁陶瓷散熱片,並具有優良的良率。 雖然本發明已以實施方式揭露如上,然其並非用以限 201200491 定本發明,任何在此技術領域中具有通常知識者,在不脫 離本發明之精神和範圍内,當可作各種之更動與潤飾,因 此本發明之保護範圍當視後附之申請專利範圍所界定者為 準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之說明如下: 第1圖係繪示依據本發明之一實施例之氮化鋁陶瓷散 熱片製造方法的流程示意圖。 第2圖係繪示依據本發明之又一實施例之氮化鋁陶瓷 散熱片製造方法的流程示意圖。 【主要元件符號說明】 201200491 100:製備包含有燒結助劑之氮化鋁複合物 110 :過濾氮化鋁複合物以分別篩出第一、第二、第三氮化 紹複合物 120 :混合第一、第二、第三氮化鋁複合物、可塑劑和黏結 劑成混合物 130 :過筛混合物而獲得顆粒混合物 140 :將顆粒混合物壓模、射出或押出成型成散熱片生胚 150 :持續燒結散熱片生胚而獲得散熱片 160 :將散熱片自然降溫或持續降溫至常溫 ® 200 :混合第一、第二、第三氮化鋁粉成氮化鋁粉混合物 210 :添加燒結助劑至氮化鋁粉混合物中而獲得第一混合物 220 :混合第一混合物、可塑劑和黏結劑成第二混合物 230 :過筛第二混合物而獲得顆粒混合物 240 :將顆粒混合物壓模、射出或押出成型成散熱片生胚 250 :持續燒結散熱片生胚而獲得散熱片 260 :將散熱片自然降溫或持續降溫至常溫Next, the mixture is screened using a screen having a predetermined number of meshes (step 130) to obtain a mixture of particles passing through the screen, wherein the predetermined number of meshes is substantially between 20 mesh and 12 inches. Then, the granule mixture is compression molded, shot or extruded into a heat sink green sheet (step 14 〇), and then sintered in a sintering furnace having a sintering temperature for a period of pre-sighing time (step 150). And obtaining a heat sink, wherein the preset time is substantially between 1.5 λ (, and between 3 hours), and the sintering temperature is substantially between · c and 195 (between TC. Before performing step 15 ,, the sintering furnace The temperature rise curve can be, for example, firstly raised from room temperature to t at a rate of 2 to 2 generations per hour; then H per minute (3) (4) 12 between i and 2 cm. Worth one: two + The thickness is substantially _ geometry: a rectangular parallelepiped, a cylinder, and a body 'but the embodiment of the present invention is not limited thereto. % _ shaped corner post 201200491 This embodiment will be described below with reference to the application examples 1 to 4. Table 1 shows the materials and process conditions used in Application Examples 1 to 4 to perform the above steps 100 to 160, respectively. Application Example 1 Application Example 2 Application Example 3 Application Example 4 Nitride Ming Complex Containing Sintering Aid Weight (g) 250 250 250 250 Sintering additive name / weight ratio Υ2ο3+αι2ο3/ 9% Y203+Ca0/ 5.5% Y203+Ca0/ 6°/〇Υ2〇3+Α1203/ 6% First aluminum nitride composite average particle size/weight ratio (relative to nitrided ru complex) 40 β m/50% 30/zm/68% 30 μ m/68% 30 β m/68% Average particle size/weight ratio of the second aluminum nitride composite (relative to the nitrided composite) 20 β m/ 30% 20 β m/22% 20 β m/22% 20 ji m/22% The average particle size/weight ratio of the third aluminum nitride composite (relative to the nitrided alloy 4) 8 β m/20% 5 //m/5% 5 ^m/5% 5/^m/5% Mixture weight (R) 295 295 295 295 Plasticizer name/weight ratio (relative mixture) Emu oil/6.78% Emu oil/6.78% Oyster sauce/6.78% Emu oil / 6.78% Adhesive name / weight ratio (relative mixture) Lignocellulose / 8.44% Lignocellulose / 8.44% Lignocellulose / 8.44% Lignocellulose / 8.44% Screen preset 60 40 40 40 201200491 Number of meshes (Mesh) Sintering temperature/time condition 1850 °c /1.5Hr 1850〇C/3Hr 1850〇C/3Hr 1850°C/3Hr Table 1 Application Example 1 Application Example 2 Application Example 4 Application Example 4 Comparative Example (Carbide Heat film) Heat sink green embryo shape / size fin type / 40mmx 40mmx 4mm Fin Type / 40mmx 40rmnx 3mm Fin Type / 40mmx 40mmx 3mm Fin Type / 40mmx 40mmx 3mm Fin Type Heat Sink Size / Total Thickness 38mmx 38mmx 3.8mm /3.8mm 38mmx 38mmx 2.85mm /2.85mm 38mmx 38mmx 2.85 Mm /2.85mm 38mmx 38mmx 2.85mm /2.85mm 38mmx 38mmx 4mm /4mm Heat sink specific gravity 1.64 1.69 1.71 1.62 \ &amp;7°C 27〇C 27〇C 27〇C 3) Test time 2Hr 2Hr 2Hr 2Hr Heat sink bottom and CPU Punch® Temperature 60°C 61°C 59〇C 63〇C Heatsink Top Surface 56〇C 58〇C 55〇C \ 56〇C Rate 5.12% ------ 5.15% 5.13% There is ----- 2 - _ Table 2 2 clear reference table 2 'Table 2 is the comparison example of the aluminum nitride ceramic heat sink and the silicon carbide heat sink made by the application examples 1 to 4 in a blue light DVd host The test result 'where the bottom of the heat sink is in contact with the central processing H (CPU)' to move the tropical generated by the cpu. When the temperature of the bottom of the heat sink is in contact with the CPU, the heat dissipation capability of the heat sink is better. When the temperature of the top of the heat sink 201200491 is lower, the temperature difference from the bottom to the top of the heat sink is smaller, and the heat dissipation coefficient of the heat sink is higher. Big. It can be seen from Table 2 that the heat dissipation capability and heat dissipation coefficient of the nitrided ceramic heat sink made by the application examples to 3 are better than those of the conventional carbonized heat sink. Further, the thickness of the aluminum nitride ceramic fins produced by the application examples 4 to 3.8 mm and 2.85 mm is much larger than the thickness of the conventional nitrided fins of 1 mm. The shrinkage ratios of the aluminum nitride ceramic fins produced in Application Examples 1 to 3 were 5 12%, 5丨5%, and 5.13%, respectively, which were far lower than the shrinkage ratio of 10% or more of the conventional aluminum nitride fins. The specific gravity of the nitrided ceramic heat sink made by the application example to 4 is 1.64, 169, 1.71 and 1.72, respectively, which is much lower than the 3% specific gravity of the conventional aluminum nitride heat sink. Example 2. A nitrided powder mixture, a sintering aid, a plasticizer and a binder were used. In this embodiment, first, the first aluminum nitride powder having the first average particle diameter has a second aluminum nitride powder having a second average particle diameter, and the second nitride powder having a third average particle diameter is mixed. a mixture of nitriding powders (step 2〇〇), wherein the first average particle size is substantially between 30 micrometers and 8 micrometers, and the weight ratio of the first nitrided powder to the gasification powder mixture is Between 5〇% and 75%; the second average particle size is substantially between 1μm and 29μm, and the weight ratio of the second aluminum nitride powder to the aluminum nitride powder mixture is substantially 10 Between 10% and 30%; the third average particle size is substantially between 3 microns and 9 microns, and the weight ratio of the third aluminum nitride powder to the aluminum nitride powder mixture is substantially between 10% and 20%. between. Then, a sintering aid is added to the aluminum nitride powder mixture to obtain a first mixture (step 21A), wherein the weight ratio of the sintering aid in the first mixture is substantially between 3% and 10,000 Å. Next, the first mixture, the plasticizer and the binder are mixed together and stirred [S] 12 201200491 to obtain a second mixture (step 220), wherein the weight ratio of the first mixture to the second mixture is substantially Between 73% and 90%; the weight ratio of the plasticizer to the second mixture is substantially between 3% and 12%; the weight ratio of the binder to the second mixture is substantially between 5% and 15% between. The plasticizer may be, for example, an eucalyptus oil, an adipate, a phthalate, a paraffin wax or a white wax oil, and the binder may be, for example, lignocellulose, ethylene cellulose, polyvinyl butyral, polyethylene, polypropylene. , acrylic or resin. The second mixture is then screened using a screen having a predetermined number of meshes (step 230) to obtain a mixture of particles passing through the screen, wherein the predetermined number of meshes is substantially between 20 mesh and 100 mesh. Next, the particle mixture is compression molded, shot or extruded into a heat sink green sheet (step 240), and the heat sink growth embryo is continuously sintered at a sintering temperature for a predetermined time (step 250) to obtain a heat sink. The preset time is substantially between 1.5 hours and 3 hours, and the sintering temperature is substantially between 1750 ° C and 1950 ° C. Before the step 250 is performed, the temperature rising curve of the sintering furnace may be, for example, first rising from a normal temperature to 1200 ° C at a temperature of 2 to 4 ° C per minute; and then heating at a rate of 1 to 3 ° C per minute from 1200 °. C rose to 1850 ° C. Then, step 250 is performed, to maintain the temperature of 1850 ° C for 1.5 hours to 3 hours. Next, the heat sink is naturally cooled or continuously cooled to normal temperature (step 260). The heat sink prepared according to this embodiment has a specific gravity of between 1.4 and 2.2, and is shaped, for example, as a fin or a flat plate, and the average thickness is substantially between 1 mm and 2 cm. The specific gravity of the aluminum nitride ceramic heat sink made by using Examples 5 and 6 is 1.64 and 1.67, respectively, which is much lower than the specific gravity of 3.26 of the conventional nitrided Ilu heat sink. The present embodiment will be described below with application examples 5 to 7. Please refer to Table 3, Table 3 for the materials and process conditions used in Application Examples 5 to 7, to perform steps 200 to 260 above in 201200491, respectively. Application Example 5 Application Example 6 Application Example 7 Application Example 8 Aluminum nitride powder mixture weight (£ 250 250 250 250 First nitride powder Average particle diameter / weight ratio (relative to aluminum nitride powder mixture) 40 β m / 50 % 40 β m/50% 70 β m/50% 30^ m/68% Second aluminum nitride powder Average particle size/weight t (l (relative to aluminum nitride powder mixture) 20 β m/30% 20^ m /30% 20/zm/30% 20 β mill% Average particle size/weight ratio of third aluminum nitride powder (relative to aluminum nitride powder mixture) 8 β m/20% 8 β m/20% 8 β m/20 % 5 β m/5% sintering aid name/weight ratio Y2〇3/ 4.07% Y2O3+AI2O3/ 7.09% Y203+CaC03/ 5.7% Y2〇3+CaC03/ 5.7% First mixture weight (4) 262.5 272.5 265 265 Plastic Agent name / weight ratio (relative to the first mixture) Shi Xi oil / 6.5% Shi Xi oil / 6.3% Shi Xi oil / 6.5% Shi Xi oil / 6.5% binder name / weight ratio (relative to the first mixture) lignocellulose /8.1% lignocellulose / 1.9% lignocellulose / 8.1% lignocellulose / 8.1% second mixture weight (g) 307.5 317.5 310 310 mesh preset mesh number (Mesh) 60 60 60 40 sintering temperature / time Condition 1850 ° C / 3Hr 1850 〇C/3Hr 1850〇C/3Hr 1850〇C/1.5Hr __Table 3___ i Use Case 5 Application Example 6I Comparative Example (Carbide Tantalum Heat Sink) - m 201200491 Heat sink green embryo shape / size fin type / 40mmx40mmx 4mm fin type / 40mmx40mmx 4mm fin type heat sink tape 38mmx38mmx 38mmx38mmx 3 8mmx3 8mmx4mm inch / 3.8mm 3.8mm /4mm total thickness / 3.8mm /3.8mm heat sink specific gravity 1.64 1.67 room temperature 27〇C 27〇C 27〇C Test time 2Hr 2Hr Heat sink bottom and CPU contact temperature 59〇C 63〇C Heat sink top temperature 55〇C 56〇C Shrinkage 5.15% 5.13% Fan operation ^^ There are Table 4 please refer to Table 4 'Table 4 for application The comparison results of the nitriding ceramsite fins and the niobium carbide fins prepared in Examples 5 and 6 are tested in a Blu-ray DVD host. As can be seen from Table 4, the heat dissipation capability and heat dissipation coefficient of the aluminum nitride ceramic heat spreader produced in Application Example 5 are better than those of the conventional carbon stone fossil heat sink. • In addition, the thickness of the aluminum nitride ceramic heat sink made in Application Examples 5 and 6 is 3.8 mm, which is much larger than the thickness of 1 mm of the conventional aluminum nitride heat sink. The shrinkage ratios of the aluminum nitride ceramic fins produced in Examples 5 and 6 were 5.15% and 5.13%, respectively, which were much lower than the shrinkage ratio of more than 1% of the conventional aluminum nitride fins. The specific gravity of the aluminum nitride ceramic fins produced in Examples 5 and 6 were 1.64 and 1.67, respectively, which was much lower than the specific gravity of the conventional aluminum nitride fins of 3 26 . As is apparent from the above embodiments, the present invention has an advantage of providing a high-thickness and low-shrinkage aluminum nitride ceramic heat sink with excellent yield. While the invention has been described above by way of example only, the invention is not intended to be limited to the scope of the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; Schematic diagram of a method for manufacturing an aluminum nitride ceramic heat sink. Fig. 2 is a flow chart showing a method of manufacturing an aluminum nitride ceramic heat sink according to still another embodiment of the present invention. [Description of main component symbols] 201200491 100: Preparation of aluminum nitride composite 110 containing sintering aid: filtering aluminum nitride composite to sieve first, second, and third nitrided composites 120 respectively: mixing First, second, third aluminum nitride composite, plasticizer and binder into a mixture 130: sieving the mixture to obtain a mixture of particles 140: molding, ejecting or extruding the mixture of particles into a heat sink green embryo 150: continuous sintering Heat sink flakes to obtain heat sink 160: Naturally cool or continuously cool the heat sink to room temperature® 200: Mix first, second, and third aluminum nitride powder into aluminum nitride powder mixture 210: Add sintering aid to nitrogen The first mixture 220 is obtained by mixing the first mixture, the plasticizer and the binder into a second mixture 230: sieving the second mixture to obtain a mixture of particles 240: molding, ejecting or extruding the mixture of particles into Heat sink blank 250: Continue to sinter the heat sink and obtain the heat sink 260: Cool the heat sink naturally or continue to cool to room temperature

[S] 17[S] 17

Claims (1)

201200491 七、申請專利範圍: L 一種氮化鋁陶瓷散熱片的製造方法,包含: 製備包含有一燒結助劑之一氮化紹複合物,其中該燒 結助劑於該氮化鋁複合物中的重量比值係實質介於2%至 9%之間; 過濾該氮化鋁複合物,以分別篩出具有一第一平均粒 役之一第一氮化I呂複合物、具有一第二平均粒徑之一第二 氮化鋁複合物、及具有一第三平均粒徑之一第三氮化鋁複 合物’其中該第一平均粒徑係實質介於30微米至80微米 之間’该第一氮化紹複合物於該氮化|g複合物十的重量比 值係實質介於50%至75%之間;該第二平均粒徑係實質介 於1〇微米至29微米之間,該第二氮化鋁複合物於該氮化 銘複合物中的重量比值係實質介於10%至3〇0/〇之間;該第 三平均粒徑係實質介於3微米至9微米之間,該第三氮化 紹複合物於該氮化鋁複合物中的重量比值係實質介於丨〇〇/〇 至20%之間; 將該第一氮化紹複合物、該第二氮化|呂複合物、該第 二氮化紹複合物、一可塑劑和一黏結劑混合在一起擾拌而 獲付一混合物,其中該第一氣化銘複合物、該第二氮化銘 複合物和該第三氮化紹複合物之總和於該混合物中的重量 比值係實質介於73%至90%之間;該可塑劑於該混合物中 的重量比值係實質介於3%至12〇/〇之間;該黏結劑於該混合 物中的重量比值係實質介於5%至15%之間; 使用具一預設網目數(Mesh)之一篩網過篩該混合物, 而獲得通過該篩網之一顆粒混合物,其中該預設網目數係 201200491 實質介於20mesh至12〇mesh之間; 將該顆粒混合物壓模、射出或押出成型成一散熱片生 胚;以及 在一燒結溫度持續燒結該散熱片生胚經一預設時間, 而獲得一散熱片。 2. 如請求項1所述之氮化鋁陶瓷散熱片的製造方法, 其中該預設時間係實質介於1.5小時至3小時之間,該燒 結溫度係實質介於1750°C至1950¾之間。 3. 如請求項1所述之氮化鋁陶瓷散熱片的製造方法, 更包含: 將該散熱片自然降溫或持續降溫至常溫。 4. 如請求項1所述之氮化熱片的製造方法, 其令該燒結助劑為氧化釔、氧化鈣、氧化鎂 化铭、氧化鈦、氧化斂、氧化釤、氧化鏑、碳 氧 石^酸鐘或氣蝴以及其混合物所組成之—族群,劑 為木質纖維素、乙烯纖料、,該黏結劑 一、聚乙稀、㈣、壓克 =。丁-。丨一丨 5. 一種氮化銘喊散熱片的製造方法,包含. 將具有-第-平均粒徑之一第一氮化紹粉、具有一第 19 [S3 201200491 二平均粒徑之一第二氮化鋁粉、及具有一第三平均粒徑之 一第三氮化鋁粉混合成一氮化鋁粉混合物,其中該第一平 均粒徑係實質介於30微米至80微米之間,該第一氮化鋁 粉於該氮化鋁粉混合物中的重量比值係實質介於50%至 75%之間;該第二平均粒徑係實質介於10微米至29微米 之間,該第二氮化鋁粉於該氮化鋁粉混合物中的重量比值 係實質介於10%至30%之間;該第三平均粒徑係實質介於 3微米至9微米之間,該第三氮化鋁粉於該氮化鋁粉混合 物中的重量比值係實質介於10%至20%之間; B 添加一燒結助劑至該氮化鋁粉混合物中而獲得一第一 混合物,其中該燒結助劑於該第一混合物中的重量比值係 實質介於3%至9%之間; 將該第一混合物、一可塑劑和一黏結劑混合在一起擾 拌而獲得一第二混合物,其中該第一混合物於該第二混合 物中的重量比值係實質介於73%至90%之間;該可塑劑於 該第二混合物中的重量比值係實質介於3%至12%之間;該 黏結劑於該第二混合物中的重量比值係實質介於5%至 _ 15%之間; 使用具一預設網目數之一篩網過篩該第二混合物,而 獲得通過該篩網之一顆粒混合物,其中該預設網目數係實 質介於20mesh至lOOmesh之間; 將該顆粒混合物壓模、射出或押出成型成一散熱片生 胚;以及 在一燒結溫度持續燒結該散熱片生胚經一預設時間, 而獲得一散熱片。 [S] 20 201200491 6·如請求項5 將該散熱片自 所述之散熱片的製造方法,包含: 然降溫或持續降溫至常溫。 時間係實質介^ 散熱4的製造方法,其中該預設 質介於1750。(:至195(Γ(:Β之至門3小時之間,該燒結溫度係實 助劑為氧化之的㈣料’其中該燒結 鈦、氧化鉉、氧化釤、氧化鐘、氧化紹、氧化 氣化辦以她昆合物馳成之、=酸鎂、碳酸鐘或 己二酸酿或笨二酸酿,該點该可塑劑為石夕油、 素、聚乙烯醇缩丁醛 婦° ^木質纖維素、乙烯纖維 ^乙烯、聚丙烯、壓克力或樹脂。 熱片,其中該^/&quot;項1或5之散熱片的製造方法製得之散 ',、、片的比重係實質介於1.4至2.2之間。 為鰭片型9所述之散熱片’其中該散熱片的形狀 其令該散熱片的平均 厚度::實===201200491 VII. Patent application scope: L A method for manufacturing an aluminum nitride ceramic heat sink, comprising: preparing a nitrided composite comprising a sintering aid, wherein the sintering aid has a weight in the aluminum nitride composite The ratio is substantially between 2% and 9%; filtering the aluminum nitride composite to separately sieve a first nitrided composite having a first average granulation, having a second average particle size a second aluminum nitride composite, and a third aluminum nitride composite having a third average particle diameter, wherein the first average particle diameter is substantially between 30 micrometers and 80 micrometers. The weight ratio of the nitrided composite to the nitrided-g composite is substantially between 50% and 75%; the second average particle diameter is substantially between 1 and 19 microns, the first The weight ratio of the aluminum nitride composite in the nitrided composite is substantially between 10% and 3〇0/〇; the third average particle diameter is substantially between 3 and 9 microns. The weight ratio of the third nitrided composite in the aluminum nitride composite is substantially between 丨〇〇/〇 Between 20%; the first nitriding compound, the second nitriding compound, the second nitriding compound, a plasticizer and a binder are mixed and scrambled and paid a mixture wherein the sum of the first gasification composition, the second nitride compound, and the third nitride compound in the mixture is substantially between 73% and 90% The weight ratio of the plasticizer to the mixture is substantially between 3% and 12 Å/〇; the weight ratio of the binder to the mixture is substantially between 5% and 15%; Screening the mixture by one of a preset number of meshes (Mesh) to obtain a mixture of particles passing through the screen, wherein the predetermined number of meshes is 201200491 substantially between 20mesh and 12〇mesh; Stamping, ejecting or extruding into a heat sink green sheet; and continuously sintering the heat sink green sheet at a sintering temperature for a predetermined time to obtain a heat sink. 2. The method of manufacturing an aluminum nitride ceramic heat sink according to claim 1, wherein the predetermined time is substantially between 1.5 hours and 3 hours, and the sintering temperature is substantially between 1750 ° C and 19503⁄4. . 3. The method for manufacturing an aluminum nitride ceramic heat sink according to claim 1, further comprising: cooling the heat sink naturally or continuously to a normal temperature. 4. The method for producing a heat-nitreasing sheet according to claim 1, wherein the sintering aid is cerium oxide, calcium oxide, magnesia, titanium oxide, oxidized, cerium oxide, cerium oxide, carbon oxyfluoride. ^Acid clock or gas butterfly and its mixture - the group, the agent is lignocellulose, ethylene fiber, the binder, polyethylene, (four), pressure =. Ding-.丨一丨5. A method for manufacturing a nitriding heat sink, comprising: a first nitrided powder having a -first-average particle diameter, having a 19th [S3 201200491 two average particle size second Aluminum nitride powder, and a third aluminum nitride powder having a third average particle diameter mixed into an aluminum nitride powder mixture, wherein the first average particle diameter is substantially between 30 micrometers and 80 micrometers, the first The weight ratio of the aluminum nitride powder to the aluminum nitride powder mixture is substantially between 50% and 75%; the second average particle size is substantially between 10 microns and 29 microns, the second nitrogen The weight ratio of the aluminum powder to the aluminum nitride powder mixture is substantially between 10% and 30%; the third average particle size is substantially between 3 and 9 microns, and the third aluminum nitride The weight ratio of the powder in the aluminum nitride powder mixture is substantially between 10% and 20%; B adding a sintering aid to the aluminum nitride powder mixture to obtain a first mixture, wherein the sintering aid The weight ratio in the first mixture is substantially between 3% and 9%; the first mixture, one And a binder mixed together to obtain a second mixture, wherein the weight ratio of the first mixture to the second mixture is substantially between 73% and 90%; the plasticizer is in the second The weight ratio in the mixture is substantially between 3% and 12%; the weight ratio of the binder in the second mixture is substantially between 5% and -155%; using a predetermined number of meshes Screening the second mixture through a screen to obtain a particle mixture passing through the screen, wherein the predetermined mesh number is substantially between 20mesh and 100mesh; molding, ejecting or extruding the particle mixture into a heat dissipation a sheet of embryo; and a heat sink is continuously sintered at a sintering temperature for a predetermined period of time to obtain a heat sink. [S] 20 201200491 6. The method for manufacturing the heat sink according to claim 5, comprising: cooling or continuously cooling to a normal temperature. The time is the manufacturing method of the heat dissipation 4, wherein the preset quality is between 1750. (: to 195 (Γ(: Β Β 至 至 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 The chemical is made by her glutinous compound, = magnesium acid, carbonic acid clock or adipic acid or stearic acid. The plasticizer is Shixia oil, vegetarian, polyvinyl butyral. Cellulose, ethylene fiber, ethylene, polypropylene, acrylic or resin. The hot film, wherein the heat sink of the item 1 or 5 is made by the method of manufacturing the heat sink, and the specific gravity of the sheet is substantially Between 1.4 and 2.2. The heat sink of fin type 9 wherein the shape of the heat sink is such that the average thickness of the heat sink:: real ===
TW99119951A 2010-06-18 2010-06-18 Alumnium nitride ceramic heat dissipation plate and method for manufacturing the same TWI404698B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99119951A TWI404698B (en) 2010-06-18 2010-06-18 Alumnium nitride ceramic heat dissipation plate and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99119951A TWI404698B (en) 2010-06-18 2010-06-18 Alumnium nitride ceramic heat dissipation plate and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201200491A true TW201200491A (en) 2012-01-01
TWI404698B TWI404698B (en) 2013-08-11

Family

ID=46755437

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99119951A TWI404698B (en) 2010-06-18 2010-06-18 Alumnium nitride ceramic heat dissipation plate and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI404698B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI769913B (en) * 2021-08-24 2022-07-01 財團法人工業技術研究院 Ceramic composite and method of preparing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI769913B (en) * 2021-08-24 2022-07-01 財團法人工業技術研究院 Ceramic composite and method of preparing the same
US11691922B2 (en) 2021-08-24 2023-07-04 Industrial Technology Research Institute Ceramic composite and method of preparing the same

Also Published As

Publication number Publication date
TWI404698B (en) 2013-08-11

Similar Documents

Publication Publication Date Title
JP5121268B2 (en) Aluminum nitride sintered body and member for semiconductor manufacturing apparatus
CN104955769B (en) Aluminium nitride powder
CN102344286B (en) Aluminum nitride ceramic radiating fin and manufacturing method thereof
CN108275969A (en) It is a kind of to utilize the mullite silicon carbide whisker composite ceramic material and preparation method thereof that natural minerals are raw material
TW201120394A (en) Radiating panel including silicon carbide and method of manufacturing the same
JP2014019642A (en) Composition for manufacturing artificial graphite member, powder material and method for manufacturing the member
TW201200491A (en) Alumnium nitride ceramic heat dissipation plate and method for manufacturing the same
CN1844042A (en) Method for preparing ceramic material of zirconium phosphate
CN116283213B (en) Cordierite and preparation method thereof
JP4740002B2 (en) Aluminum nitride sintered body, member for semiconductor manufacturing apparatus, and method for manufacturing aluminum nitride sintered body
JP4806952B2 (en) Translucent ceramics
CN110072826B (en) Transparent AlN sintered body and process for producing the same
KR20160102799A (en) Alumina ceramics composition having low sintering temperature and manufacturing process thereof
JP2005119934A (en) Silicon nitride porous body and method of manufacturing the same
JP5901190B2 (en) Method for producing aluminum nitride sintered granules
WO2010023813A1 (en) Method for manufacturing silicon nitride-bonded sic refractory material
JP6524012B2 (en) Method of producing a degreased molded body of ceramics
JPH0977559A (en) Aluminum nitride sintered compact and its production
KR102316043B1 (en) Manufacturing Method of Nano Copper-Ceramic Composite Fabricated by Hot-Pressing
JP2018172541A (en) Magnesium oxide powder and composite material
RU2818556C1 (en) Method of producing luminescent oxide composition for radiation converter in white light sources
JPH0510297B2 (en)
JP5698568B2 (en) Aluminum oxide sintered body and method for producing the same
JP2003201179A (en) Aluminum nitride sintered compact and production method therefor
JP6524013B2 (en) Method of producing a degreased molded body of ceramics

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees