TW201200485A - Fluorophosphate near-infrared absorbing filter - Google Patents

Fluorophosphate near-infrared absorbing filter Download PDF

Info

Publication number
TW201200485A
TW201200485A TW99121408A TW99121408A TW201200485A TW 201200485 A TW201200485 A TW 201200485A TW 99121408 A TW99121408 A TW 99121408A TW 99121408 A TW99121408 A TW 99121408A TW 201200485 A TW201200485 A TW 201200485A
Authority
TW
Taiwan
Prior art keywords
glass
fluorophosphate
infrared
wavelength
absorption type
Prior art date
Application number
TW99121408A
Other languages
Chinese (zh)
Inventor
Chung-Han Lu
Original Assignee
Platinum Optics Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Platinum Optics Technology Inc filed Critical Platinum Optics Technology Inc
Priority to TW99121408A priority Critical patent/TW201200485A/en
Publication of TW201200485A publication Critical patent/TW201200485A/en

Links

Abstract

The present invention relates to a fluorophosphate-based near-infrared absorbing filter comprising fluorophosphate as base material, and light controlled additives mixed within the base material. The Near-IR filter is applied to image capture devices. The following describes the characteristics of the Near-IR filter, including: having thickness of 1.0 to 1.2 mm, with more than 85% of visible light transmittance, Central Wavelength (T50%) between 600nm to 630nm, and Infrared transmittance less than 5%. An uncoated Near-IR filter can stablely work in the harsh environment (60 DEG C, 90% RH) for 1000 hours.

Description

201200485 六、發明說明: 【發明所屬之技術領域】 本發明與玻璃技術領域有關,更詳而言之,係—種吸收式近紅外線遽 光玻璃,該濾光玻璃是以氟磷酸鹽系組成物為基礎,添加光能控制添加物 所製成。該玻璃主要應用於成像及其相關領域。 【先前技術】 數位影像產品中影像模組所使用的影像感測元件對光波的感應範圍為 ^ 波長400nm〜1100nrr>,含括了可見光至近紅外線(ii〇〇nm) ^因此,為獲得 近似人眼可見光靈敏性的色像及色補正機能,使用近紅外線濾光玻璃是必 要的。傳統的影像感測元件採用了反射式近紅外線渡光玻璃,濾除波長為 700〜11〇〇nm的近紅外線’可避免影像感測元件發生色偏、雜訊及發熱的 現象。然而,隨著數位影像產品輕薄短小化的趨勢,影像模組高度必須不 斷降低,影像感測器或光學系統接收大角度的入射光源時,反射式近紅外 線濾光玻璃的中心波長將產生大的偏移量,超出影像感測器的白平衡極 φ 線,以致發生色偏問題。而控制近紅外線濾光玻璃中心波長偏移量可以解 決此一問題’當光源入射角介於0~30。之間,T50%偏移量需小於5nm。 但此光學要求已超過了反射式;慮光玻璃的物理極限。 吸收式近紅外線濾光玻璃可以解決上述的問題,相關技術如中華民國 發明專利公開第200920709案(以下簡稱709案)所揭露的。709案與本案 為相同申請人及發明人。709案的玻璃基材原料組成物包括40〜75 & P2〇5,10〜28 wt%之AI2〇3,以及3〜8.5wt%之CuO。組成物更進一步包 含氧化物群組,如 Si02、MgO、Ca〇 ' K2〇、BaO、Li20、Nb205、Zn〇。 201200485 709案之光譜特性為,在0.4〜〇 2晒的厚度限制下波長4〇〇~5〇〇nm可 見光之穿透率可達80〜90%以上,中讀長(T5Q%)控制在6QQ〜65〇nm間 之任何波段,750〜11〇〇nm的紅外線平均穿透率小於3%。在财候性測試 月'J ’先在渡光玻璃兩面鐘上抗反射膜後放置在指定的溫濕度條件(85〇c, 85/〇RH)下,連續測試5〇〇小時,玻璃表面無粗縫化或霧化現象。 然而’數位影像產品之品質和使用時效不斷的被提昇,在高階化或可 在惡劣環射制的產品更_耐雛及使轉命,耐候性測試所設定的 環境條件_賴苛卿,嶋RH,雜職麵辦)。就玻璃的訂 購廠商基触胁群檢驗就_光學娜之需求,約錢光玻璃的製 造業者需提交未鍍抗反射之玻璃裸片至公證檢辭位進行_性測試。已 知,wsm光玻摘能表現的最佳耐雖,是建立在兩職抗反射膜 的基礎上,裸片無法通過嚴苛環境之測試條件。 有鑑於此’本案提出一種在未錢上抗反射膜時就具有極佳耐讎的氟 鱗酸«近紅外練收式渡光賴,此_級璃可長咖_以及應用 於上述高階域惡劣環境中的數位影像產品,其極地耐候特性與使用時效 之表現可與預期目標匹配。 【發明内容】 本發明之主要目的係在提供—種氟魏鹽彡魏式近紅外線渡光玻 璃,該濾光玻璃是以氣魏鹽系組成物為基,添加光能控制添加物所製成。 玻璃厚度1.0〜1.2mm ’波長·〜5(K)nm可見光之穿透率可達85%以上, 中心波長(T50%)控制在_〜63〇nm間之任何波段,7〇〇〜11〇〇咖的紅外 線平均穿透率小於5%。t光源人㈣介於〇〜3()。之間,私外線渡光玻璃 201200485 之中‘。波長(T50%)偏移量小於5nm。且本案玻璃以裸片進行财候性測試, 於60 C、90%RH恆溫怪濕的環境條件下進行連續測試具有長達至少1〇〇〇 hrs之光譜穩定性’因此本案更適驗成像及其相關領域中之高階化、輕 薄化、長時間使用或極地應用之產品。 本發明達成上述目的之主要技術包括:藉由熔融一原料組成物以及冷 卻該溶融後之原料組成物而形成一玻璃塊,經過切割、研磨、拋光、等冷 加工後形成玻璃裸片;該原料組成物主要包括p2〇5' A|F3、Cu〇、以及金 φ 屬氟化物。Ρ2〇5、AIF:3、Cu0三者的總含量為42wt%〜75 wt% ,較佳的是 Ρ2〇5 為 40 wt %〜60 Wt % ; aif3 為 1 wt 0 wt % ; Cu〇為,^ %〜5 ^ %。金屬敗化物(R+F+ R2+ F)之總含量為30wt%〜60wt%。金屬敗化物中 R+ F包含NaF、LiF、及KF之擇-或混合,較佳的重量配比⑽匕為3 ^ %〜10 wt %、LiF 為 〇 wt %〜5 wt %、KF 為 0 wt %〜1 〇 wt %。金屬—匕物 中R2+ F包含MgF2、CaF2、SrF2、BaF2、及ZnF2之擇一或混合,較佳的 重量配比 MgF2 為 1 wt %〜5 wt %、CaF2 為 5 wt %〜10 wt %、SrF2 為 5 輭 φ %〜10 Μ %、BaF2 為 1〇 wt %〜15 wt %、ZnF2 為 〇 wt %〜5wt %。 【實施方式】 本案氟填酸鹽系吸收式近紅外線濾光玻璃係藉由炼融—原料組成物以 及冷卻該熔融後之原料組成物而形成一玻璃塊,經過切割'研磨、拋光、 等冷加工後形成玻璃裸片。該原料組成物主要包括P2〇5、AIF3、CU〇、以 及金屬氟化物。P2〇5、AIF3、CuO三者的總含量為42wt%〜75 wt%為最佳。 金屬氟化物之總含量R+ F + R2+ F為30wt%〜60wt%比為最佳。 更詳而言之’組成物之個別添加量:p2〇5為4〇 ^ %〜6〇 ^ % ; A|fr , 3 201200485 為1 wt 〇/〇, wt 〇/〇 ; Cu〇為! Wt 〇/〇〜5 wt 〇/。。金屬氟化物在本案實施例 中’ R+ F包含NaF 3 wt %~10 wt %、LiF、KF'可視情況添加於組成物中。 各別的添加量LiF為〇 wt 〇/〇〜5 wt %、KF為0 wt %〜1〇 wt %。金屬敦化物 在本案實施例中R2+ F包含MgF2為1 wt %~5 wt %、CaF2為5 wt %〜1〇 wt 〇/〇、S「F25 wt %〜1〇 wt %、BaF210 wt。/。〜15 wt %以及 ZnF2 為 〇 赠 %〜5wt 0/〇。 在上述組成物中,P2〇5為本案氟磷酸鹽玻璃網目結構鏈的主要成份, 其具有降低玻璃折射率、低色散率之功能。在本案實施例中亦與Cu〇作為 近紅外線吸收劑。依據實驗結果,P2〇5總含量若低於4〇wt%將無法與Cu〇 達到良好的近紅外線吸收效果,且玻璃的液相溫度將增高。但P2〇5總含量 亦不能高於60 wt 〇/〇,將會使玻璃的耐候性降低,耐失透性惡化。因此在 本案中’ P2〇5總含量4〇wt%〜60wt%是較佳的範圍。 AIF3在本案實施财作為_酸鹽玻雜升耐失透性及提升玻璃黏度 的主要成h ’ AIF3總含量若低於彳將會使賴齡麟低,玻璃的析 晶速率增加,而增加玻魏溶成型時的困難。济3總含量若高於1〇 _ % 將會使玻璃的财失透性惡化,玻魏溶困難。因此在本案中,Ah總含量 1wt%〜1〇wt%是較佳的範圍。201200485 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to the field of glass technology, and more specifically, to an absorption type near-infrared ray-glass, which is a fluorophosphate-based composition Based on the addition of light energy control additives. This glass is mainly used in imaging and related fields. [Prior Art] The image sensing element used in the image module of the digital image product has a sensing range of light waves of 400 nm to 1100 nrr, including visible light to near infrared light (ii 〇〇 nm). It is necessary to use near-infrared filter glass for the visible light sensitivity and color correction function of the eye. The conventional image sensing device uses a reflective near-infrared irradiance glass to filter out near-infrared rays having a wavelength of 700 to 11 〇〇 nm to avoid color shift, noise, and heat generation of the image sensing element. However, with the trend of thin and light digital imaging products, the height of the image module must be continuously reduced. When the image sensor or optical system receives a large angle of incident light source, the center wavelength of the reflective near-infrared filter glass will be large. The offset exceeds the white balance φ line of the image sensor, causing a color shift problem. Controlling the center wavelength shift of the near-infrared filter glass can solve this problem' when the incident angle of the light source is between 0 and 30. The T50% offset needs to be less than 5 nm. But this optical requirement has exceeded the reflective; the physical limit of the glass. The absorption near-infrared filter glass can solve the above problems, and the related art is disclosed in the Republic of China Invention Patent Publication No. 200920709 (hereinafter referred to as the 709 case). Case 709 is the same applicant and inventor as this case. The glass substrate raw material composition of the 709 case includes 40 to 75 & P2 〇 5, 10 to 28 wt% of AI2 〇 3, and 3 to 8.5 wt% of CuO. The composition further comprises an oxide group such as SiO 2 , MgO, Ca 〇 ' K 2 〇, BaO, Li 20 , Nb 205, Zn 〇. The spectral characteristics of the 201200485 709 case are: under the thickness limit of 0.4~〇2, the transmittance of visible light of 4〇〇~5〇〇nm can reach 80~90% or more, and the medium read length (T5Q%) is controlled at 6QQ. In any band between ~65〇nm, the average infrared transmittance of 750~11〇〇nm is less than 3%. In the fiscal test month 'J' first placed on the two sides of the light glass on the anti-reflection film and placed under the specified temperature and humidity conditions (85〇c, 85/〇RH), continuous testing for 5 hours, no glass surface Rough or atomized. However, the quality and aging of digital imaging products are constantly being improved. In high-order or products that can be produced in harsh loops, the environmental conditions set by the weather resistance test are _ 赖 harsh, 嶋RH, miscellaneous office). In view of the demand for optical glass manufacturers, the manufacturer of the company should submit uncoated anti-reflective glass dies to the notarized test position for _ sex testing. It is known that the best resistance of wsm light glass picking performance is based on the two-part anti-reflection film, and the bare film cannot pass the test conditions of harsh environment. In view of this, the present case proposes a kind of fluorinated acid that has excellent resistance to anti-reflection film. The near-infrared ray-receiving type of light-receiving ray can be used in the above-mentioned high-order fields. Digital imaging products in the environment, whose polar weathering characteristics and aging performance can match the expected goals. SUMMARY OF THE INVENTION The main object of the present invention is to provide a fluorine-like salt 彡 Wei-type near-infrared light-emitting glass, which is made of a gas-wet salt-based composition and added with a light energy control additive. . Glass thickness 1.0~1.2mm 'wavelength·~5(K)nm visible light penetration rate can reach more than 85%, center wavelength (T50%) is controlled in any band between _~63〇nm, 7〇〇~11〇 The average infrared transmittance of the coffee is less than 5%. The t-light source (four) is between 〇~3(). Between, private outside the line of light glass 201200485 ‘. The wavelength (T50%) offset is less than 5 nm. And the glass in this case is tested for the financial performance by bare chip, and the continuous test under 60 C, 90% RH constant temperature environment has a spectral stability of at least 1 hrs. Therefore, the case is more suitable for imaging and High-grade, light-thin, long-term or polar applications in its related fields. The main technique for achieving the above object of the present invention comprises: forming a glass block by melting a raw material composition and cooling the molten raw material composition, and forming a glass bare piece after cutting, grinding, polishing, and the like, and forming a glass bare piece; The substance mainly includes p2〇5' A|F3, Cu〇, and gold φ is a fluoride. The total content of Ρ2〇5, AIF:3, Cu0 is 42wt%~75 wt%, preferably Ρ2〇5 is 40 wt%~60 Wt%; aif3 is 1 wt 0 wt%; Cu〇 is, ^ %~5 ^ %. The total content of the metal ruin (R+F+R2+F) is from 30% by weight to 60% by weight. In the metal ruthenium, R + F comprises the selection or mixing of NaF, LiF, and KF. The preferred weight ratio (10) 匕 is 3 ^ % to 10 wt %, LiF is 〇 wt % 〜 5 wt %, and KF is 0 wt. %~1 〇wt %. The metal-ruthenium R2+F comprises an alternative or a mixture of MgF2, CaF2, SrF2, BaF2, and ZnF2, preferably a weight ratio of MgF2 of 1 wt% to 5 wt%, and a CaF2 of 5 wt% to 10 wt%. SrF2 is 5 輭φ %~10 Μ %, BaF2 is 1〇wt %~15 wt %, and ZnF2 is 〇wt %~5wt %. [Embodiment] The fluorine-filled acid-based absorption type near-infrared filter glass is formed by melting a raw material composition and cooling the melted raw material composition to form a glass block, which is subjected to cutting, grinding, polishing, and the like. After the formation of the glass die. The raw material composition mainly includes P2〇5, AIF3, CU〇, and metal fluoride. The total content of P2〇5, AIF3, and CuO is preferably from 42% by weight to 755% by weight. The total content of metal fluorides R + F + R2 + F is preferably from 30% by weight to 60% by weight. More specifically, the individual addition amount of the composition: p2〇5 is 4〇^%~6〇^%; A|fr , 3 201200485 is 1 wt 〇/〇, wt 〇/〇; Cu〇 is! Wt 〇 / 〇 ~ 5 wt 〇 /. . The metal fluoride in the present embodiment 'R+F contains NaF 3 wt % to 10 wt %, LiF, KF' may optionally be added to the composition. The respective addition amounts of LiF are 〇 wt 〇 / 〇 ~ 5 wt %, and KF is 0 wt % ~ 1 〇 wt %. In the present embodiment, R2+F comprises MgF2 of 1 wt% to 5 wt%, CaF2 of 5 wt%~1〇wt 〇/〇, S "F25 wt%~1〇wt%, BaF210 wt. ~15 wt% and ZnF2 are 〜%~5wt 0/〇. In the above composition, P2〇5 is the main component of the fluorophosphate glass mesh structure chain, which has the function of lowering the refractive index and low dispersion rate of the glass. In the present embodiment, Cu is also used as a near-infrared absorbing agent. According to the experimental results, if the total content of P2〇5 is less than 4〇wt%, it will not achieve good near-infrared absorption effect with Cu〇, and the liquid phase of the glass. The temperature will increase. However, the total content of P2〇5 cannot be higher than 60 wt〇/〇, which will reduce the weather resistance of the glass and deteriorate the resistance to devitrification. Therefore, in this case, the total content of 'P2〇5 is 4〇wt%~ 60wt% is the preferred range. AIF3 in the case of the implementation of the _ acid glass swell resistance to devitrification and increase the glass viscosity of the main h 'AIF3 total content if less than 彳 will make Lai Linglin low, glass The rate of crystallization is increased, and the difficulty in forming the glass is increased. If the total content of the metal is higher than 1〇_%, the glass will be Choi devitrification is deteriorated, Wei glass melting difficult. Therefore, in the present case, the total content of Ah 1wt% ~1〇wt% range is preferred.

CuO具者色劑之侧。在本案實施例中作為近紅外線吸㈣,也是近 紅外線渡光玻璃科或缺的氧化物,肖叫結合可以使近紅外線 700 110Qnm具有吸收的效果,亦使本案麵裸#目視色澤為藍 總含量若低於1 wt %將會使麵在厚度彳Q〜彳2麵時·〜誦㈣無法 達到近、.工外線吸收的效果而影響影像感測元件對7㈤〜”咖^光波的感應 201200485 波長,CuQ齡量若冑於5 - % 敬啤的耐失透性惡化,400〜500nm 的可見光穿透也會隨著降低,導致_ϋ 〜像感.件對4GG〜6GGnm可見光的 透過的感應里不足而影響色補正趟At 機月b,因此在本案中,cu〇總含量 1wt%〜5wt%是較佳的範圍。 金缝化物R+ F為澄清劑之作用,可使玻璃失透性降低,降低玻璃的 熔溶溫度以及降低玻璃的液相溫度。Nap總含量若低於,對於玻璃 的澄清劑侧及降低賴失透性、溶溶溫度、液相溫度的效果不佳;㈣ φ總含量若高於1Gwt%’對於麵的耐雛及加工性能會產生惡化的現象。 因此在本案中,NaF總含量3 wt %〜1〇 wt %是較佳的範圍。UF、KF、可 視情況添加於組成物中其作用與NaF相同。LiF、KF添加量的較佳範圍分 別是 LiF 為 〇 wt %〜5 wt %,KF 為 〇 wt %〜1〇 wt %。 金屬il化物R F為氟磷酸鹽玻璃的加工穩定性、提升耐候性、以及化 學抗性非常有效的成份’其最佳範圍包含MgF21wt%〜5wt%、CaF2 5wt %〜10 wt %、S「F25 wt %〜10 wt %、BaF210 wt %〜15 wt 〇/〇以及 ZnF2 為 φ 0 wt %〜5wt %。其中金屬氟化物之總含量R+ F + R2+ F為30wt〇/〇〜60wt% 為最佳,總含量若低於30wt%則玻璃的加工穩定性 '耐候性 '以及化學抗 性將會產生惡化現象,總含量若高於60wt%則玻璃的失透性及液相溫度增 高’使得玻璃的熔溶變的困難。 201200485 以下’表一為上述組合物配比之實驗例。其中,A〜U描述了不门的近 紅外線吸收劑、著色劑、金屬氟化物的配比。CuO has the side of the toner. In the embodiment of the present invention, as a near-infrared absorption (four), it is also an oxide of the near-infrared ray-illuminating glass family, and the combination of the singularity of the ray can make the near-infrared ray 700 110Qnm have an absorption effect, and also makes the surface naked color of the present case blue total content. If it is less than 1 wt%, it will make the surface thickness 彳Q~彳2 surface·~诵(4) can not reach the near, the outer line absorption effect and affect the image sensing element to 7 (5) ~ "Caf ^ light wave induction 201200485 wavelength If the amount of CuQ is less than 5 - %, the resistance to devitrification of the beer is deteriorated, and the visible light penetration of 400~500nm will also decrease, resulting in the reflection of the visible light of 4GG~6GGnm. Insufficient and affecting the color compensation 趟At machine month b, so in the present case, the total content of cu〇 1wt%~5wt% is a preferred range. The gold sulphide R+ F acts as a clarifying agent, which can reduce the devitrification of the glass. Decrease the melting temperature of the glass and lower the liquidus temperature of the glass. If the total content of Nap is lower, the effect on the clarifier side of the glass and the reduction of the devitrification, the dissolution temperature and the liquidus temperature are not good; (4) If the total content of φ is Above 1Gwt%' The performance may be deteriorated. Therefore, in the present case, the total content of NaF is 3 wt%~1〇wt%, which is a preferred range. UF, KF, as the case may be added to the composition, has the same effect as NaF. LiF, KF addition The preferred ranges are LiF 〇wt %~5 wt %, KF 〇wt %~1〇wt %. Metal ilide RF is the processing stability, weather resistance, and chemical resistance of fluorophosphate glass. The most effective component's optimum range includes MgF21wt%~5wt%, CaF2 5wt%~10 wt%, S"F25 wt%~10 wt%, BaF210 wt%~15 wt 〇/〇, and ZnF2 φ 0 wt % 〜5wt%, wherein the total content of metal fluoride R+F + R2+ F is 30wt〇/〇~60wt%, and if the total content is less than 30wt%, the processing stability of the glass 'weatherability' and chemical resistance will be If the total content is more than 60% by weight, the devitrification of the glass and the increase in the liquidus temperature make it difficult to melt the glass. 201200485 The following Table 1 is an experimental example of the composition ratio of the above composition. A~U describes the ratio of near-infrared absorbers, colorants, and metal fluorides.

----------一 | 1乂厶/ 1 198 將上述各實施例之組成物,依照組成秤重混合後放 的實驗杯中,並將實驗杯放人已設定好83Qt>85Gt度的實驗爐溶解。此 時為了控制"氟"(F)成分的揮發,所以在85〇t所融解的時間是需要控制的。 在實驗例(S)的過程中發現溶解30分鐘攪拌然後降溫至8ι〇^靜置澄清3〇 分鐘是最恰當的。若時間停㈣久會使玻璃陳成分揮發而造成玻璃光譜 改變。'然後注入-只用鑄鐵或石墨所製作的成型盒中,放入娜c的回火 爐徐冷消除應力,經過24小時後取出玻璃,再經過切割及精密的雙面_ 8 201200485 拋光後產生尺寸29*27.3mm厚度i.〇mm兩面鏡面的玻璃,用光譜儀量測 光譜’並將試驗片放入以設定好6〇。〇 9〇%RH的恆溫恆湮機中進行環境測 試,經過1000小時後取出觀察玻璃表面是否霧化釋酸。 表2-1及表2-2為實施例A〜U製成1mm玻璃裸片之光穿透率特性。 表2-1----------1| 1乂厶/ 1 198 The composition of each of the above examples was placed in the experimental cup after the weight of the composition was mixed, and the experimental cup was set to 83Qt> The 85Gt experimental furnace was dissolved. At this time, in order to control the volatilization of the "fluorine" (F) component, the time of melting at 85 〇t is controlled. During the course of the experimental example (S), it was found that the dissolution was carried out for 30 minutes and then the temperature was lowered to 8 〇 〇 and the clarification was carried out for 3 minutes. If the time is stopped (four) for a long time, the glass component will volatilize and the glass spectrum will change. 'And then inject - only in the molded box made of cast iron or graphite, put in the tempering furnace of Na C to eliminate stress, after 24 hours, take out the glass, and then cut and precision double sided _ 8 201200485 Polished to produce size 29*27.3mm thickness i.〇mm Two-sided mirror glass, measure the spectrum with a spectrometer' and put the test piece to set 6〇.环境 9〇%RH in a constant temperature constant temperature machine for environmental testing, after 1000 hours, remove and observe whether the glass surface is atomized to release acid. Table 2-1 and Table 2-2 show the light transmittance characteristics of the 1 mm glass dies made in Examples A to U. table 2-1

穿透率特性 度 =1.0rmi 玻璃厚度=】.〇mm穿透率 A50W3iRR(nm) 藤400nm iiSft5(X)nni 艱700nm 酿750nm 賴800nm ifeR850nm 穿雜(%) mm(%) 穿顯%) 窠_(%) 穿麟(%) 穿(%) A 593 89.821 90.336 2.468 0.443 0.133 0.088 B 603 88.776 89.956 5.272 1.299 0.48 0.331 C 619 88.808 90.35 10.507 3.453 1.584 1.189 D 614 86.135 89.248 7.765 2.247 1.015 0.831 E 599 84.486 88.457 3.609 0.755 0.258 0 176 F 617 88.441 90.012 9.692 3.082 1.386 1.034 G 614 ^ 88.493 ^ 89.832 8.895 2.777 1.223 0 899 Η 601 82.083 86.559 5.624 1.667 0.777 〇 647 I 610 85.732 87.833 8.005 2.544 1.215 0.986 實 J 609 85.087 87.771 7.424 2.267 1.052 0.847 施 κ 620 87.939 89.211 9.999 3.279 1.631 1.393 例 L 619 86.898 88.576 9.845 3.206 1.586 1 356 Μ 612 85.047 86.856 8.114 2.598 1.308 1.153 N 613 85.686 - . 87.776 8.32 2.701 1.378 1.222 0 616 83.77 87.529 10.012 3.654~~ 2.007 1.802 P 619 85.892 87.894 10.275 3.533 1.807 1.606 Q 612 85.332 88.349 8.308 2.753 1.412 1.241 R 591 82.343 86.71 1.277 0.148 0.034 0.021 S 611 82.899 87.688 8.323 2.894 1.574 1 444 T 618 85.673 88.44 10.175 3.579 1.898 1 675 u 613 86.082 88.39 7.996 2.48 1.212 1.044 201200485 表2-2 穿透率特性 A50%&5^^{nm) 玻璃厚度=1.〇mm穿透率 r^S900nm 穿纖拗 &K950nm ftglOOOnm 賴1050nm 穿翻%) 波S1100nm 1%) 700~11〇〇nm T%Ave.Transmittance characteristic degree = 1.0rmi Glass thickness =]. 〇mm penetration rate A50W3iRR(nm) Rattan 400nm iiSft5(X)nni Hard 700nm Brewing 750nm Lai 800nm ifeR850nm Wear (%) mm(%) Wear %) 窠_(%) 穿麟(%) 穿穿(%) A 593 89.821 90.336 2.468 0.443 0.133 0.088 B 603 88.776 89.956 5.272 1.299 0.48 0.331 C 619 88.808 90.35 10.507 3.453 1.584 1.189 D 614 86.135 89.248 7.765 2.247 1.015 0.831 E 599 84.486 88.457 3.609 0.755 0.258 0 176 F 617 88.441 90.012 9.692 3.082 1.386 1.034 G 614 ^ 88.493 ^ 89.832 8.895 2.777 1.223 0 899 Η 601 82.083 86.559 5.624 1.667 0.777 〇647 I 610 85.732 87.833 8.005 2.544 1.215 0.986 Real J 609 85.087 87.771 7.424 2.267 1.052 0.847 κ 620 87.939 89.211 9.999 3.279 1.631 1.393 Example L 619 86.898 88.576 9.845 3.206 1.586 1 356 Μ 612 85.047 86.856 8.114 2.598 1.308 1.153 N 613 85.686 - . 87.776 8.32 2.701 1.378 1.222 0 616 83.77 87.529 10.012 3.654~~ 2.007 1.802 P 619 85.892 87.894 10.275 3.533 1.807 1.606 Q 612 85.332 88.349 8.308 2.753 1.412 1.2 41 R 591 82.343 86.71 1.277 0.148 0.034 0.021 S 611 82.899 87.688 8.323 2.894 1.574 1 444 T 618 85.673 88.44 10.175 3.579 1.898 1 675 u 613 86.082 88.39 7.996 2.48 1.212 1.044 201200485 Table 2-2 Transmittance characteristics A50%&5^ ^{nm) Glass thickness=1.〇mm transmittance r^S900nm 穿 拗&K950nm ftglOOOnm 赖1050nm 翻翻%) Wave S1100nm 1%) 700~11〇〇nm T%Ave.

由表2 1 2-2可知,在玻璃厚度1mm的條件下,該玻璃在波長 400〜5_m可見光之平均穿透率可達85%以上,7〇卜1彻⑽的近紅外 線平均穿透率小於5%,ψ、、.士且CGn 办— 中“波長590〜620nm。各貫施例光譜圖如第—圖 所示。 表3為貫施例A (J貫現為1mm玻璃片(裸片)進行耐候性測試之結果, 耐候性測試之條件為6Qt、9Q%RH、連續測試_心,以玻璃表面是 10 201200485 否出現霧化釋酸現象為判斷基礎。 表3 耐候性測試 60°C 90%RH 1000 小時 A 1000小時以上 B 1000小時以下 C 1000小時以上 D 1000小時以下 E 1000小時以下 F 1000小時以上 G 1000小時以下 ~~ ~~' Η 1000小時以下 1000小時以下 實施例 J 1000小時以下 K 1000小時以下 L 1000小時以下 ~~ Μ 1000小時以下 Ν 1000小時以下 0 1000小時以下 Ρ 1000小時以下 Q 1000小時以下 R 1〇〇〇小時以' S ~" 1000小時以 τ 1000小時以下 υ 1000小時设〒' 'It can be seen from Table 2 1 2-2 that under the condition of glass thickness of 1 mm, the average transmittance of the glass at a wavelength of 400~5_m visible light can reach more than 85%, and the average transmittance of near-infrared rays of 7 〇1 (10) is less than 5%, ψ, 、士, and CGn - "wavelength 590 ~ 620nm. The spectrum of each example is shown in the figure - Figure 3. Table 3 is the example A (J is 1mm glass piece (die) The results of the weather resistance test, the conditions of the weather resistance test are 6Qt, 9Q% RH, continuous test _ heart, based on the glass surface is 10 201200485 whether the occurrence of atomized acid release phenomenon is judged. Table 3 Weather resistance test 60 ° C 90% RH 1000 hours A 1000 hours or more B 1000 hours or less C 1000 hours or more D 1000 hours or less E 1000 hours or less F 1000 hours or more G 1000 hours or less ~~ ~~' Η 1000 hours or less 1000 hours or less Example J 1000 hours Below K 1000 hours or less L 1000 hours or less ~~ Μ 1000 hours or less Ν 1000 hours or less 0 1000 hours or less Ρ 1000 hours or less Q 1000 hours or less R 1 〇〇〇 hours to 'S ~" 1000 hours to τ 1000 hours下 1000 hours set to ' '

實施例A、C、F、R、S耐候性測試達侧小時以上,表面未出現粗 霧化釋酸情形’並維持預期的光譜特Ί據此,實施例A、C、F、rS 的組成物_如表二)錢透絲表現㈣三)在本針具有嫌生及代 表性的意義。制是實施例S所製成的光學麵裸丨,經由日沉論ics Testing Center (簡稱ETC)檢測單位進行耐候性測試(如附件一),條件為 靴、9〇%RH、連續測試1000 h「s,該光學玻璃裸片表面未出現霧化釋酸 現象,因此實施例S之組成物及配比可做為本案最佳實施例之代表 201200485 在本案玻璃最終產品與空氣接觸的表面鍍抗反射膜或在與水晶貼合的 貼合面不鍍抗反射膜,用以將玻璃最終產品的反射率降至最低,以有效控 制可見光之最大穿透率。鍍膜前及鍍膜後的玻璃最終產品於波長 350nm〜11〇〇nm之中心波長(T50%)如表4所示。其範例光譜圖如第二圖, 波長400~500nm可見光之穿透率可達8090。/。以上,700〜1100nm的近红 外線平均穿透率小於5%。 表4 麵光譜 门m 鍍膜前 T% 鍍膜後 T% nm 鍍膜前 T% 鍍膜後 T% nm 鍍膜前 T% 鍍膜後 T% nm 鍍膜前 T% 鍍膜後 T% 350 38.049 1.899 360 57.686 Γ 9.316 370 70.427 29.214 380 77.209 5^359 390 80.89 81.326 400 82.899 90.073 410 83.986 91.662 420 84.702 92.151— 430 85.309 92.981 440 85.851 93.907 450 86.344 94.597 460 86.796 94.982 470 87.18 95.11 480 87.478 95.108 490 87.658 95.078 500 87.688 95.031 510 87.458 94.842 520 86.913 94.45 530 85.916 93.608 540 84.31 92.079 550 81.935 89.629 560 78.723 86.163 570 74.664 81.672 580 69.669 76.098 590 63.842 69.61 600 57.48 62.567 610 50.851 55.291 620 44.065 47¾ 630 37.431 40.717 640 31.277 34.091 650 25.768 28.162 660 20.88 22.89 670 16.699 18.368 680 13.275 14.64 690 10.53 11.624 700 8.323 9.179 710 6.591 7.245 720 5.282 5.769 730 4.259 4,606 740 3.485 3721 750 2.894 3.04 760 2.456 2.528 770 2.13 2.141 780 1.883 1.842 790 1.701 1.615 800 1.574 1.446 810 1.488 1.325 820 1.435 1-239 830 1.413 1.177 840 1.417 1.139 850 1.444 1.12 860 1.494 1.1ΐΓ 870 1.566 1.133 880 1.657 1.155 890 1.768 1.195 900 1.901 '249— 910 2.056 1.315 920 2.231 1.392 930 2.428 1.48 940 2.652 1.583 950 2.901 1.698 960 3.172 1.826 970 3.47 1.969 980 3.8 2.129 990 4.16 2.305 1000 4.545 2.496 1010 4.962 2.706 1020 5.417 2.938 1030 5.904 3.191 1040 6.417 3.461 1050 6.966 3.756 1060 7.56 4.08Γ 1070 8.188 4.433 1080 8.842 4.807 1090 9.536 5.213 1100 10.103 5.547 12 201200485 在本文之先前技術一襴中揭露,因應數位影像產品輕薄短小化之趨 勢,以致影像模組必須不斷的降低高度來配合,當光源入射角介於〇〜处 之間’ 丁5〇。/。偏移量需小於Snm,方可避免影像感測器因超過其白平衡 極限而發生色偏财。表五,細核最佳實關s為例,綱本案氣鱗 酸鹽系濾光玻璃於光源入射角介於0~30。之間T50%偏移量及光穿透率之 特性。從表5-1、5-2及第三圖可知,光源入射角介於〇〜3〇。,丁 5〇%的波 長控制在609〜611nm之間,符合上述Τ5〇%偏移量小於5nm之光學要求, _ 因此本案可避免影像❹jH因超過自平衡極限而發生色偏的問題。此外, 可見光(400〜500nm)的平均穿透率介於8〇%〜89%之間,近紅外線 (700〜1100nm)的平均穿透率小於5%。 表5-1 玻璃厚度 玻璃厚度=1.0mm 0。~ 30。穿透率特性 λ50%的波長(nm) 波長4〇〇nm 穿透率(%) 波長500nm 穿透率(%) 波長700nm 穿透率(%) 波長750nm 穿透率(%) 波長800nm 穿透率(%) 波長850nm 穿透率(%) 0° 611 82.942 87.731 8.373 2.917 1.586 1.454 5。 611 82.929 """ 87.792 8.354 2.909 1.582 1.451 實 10° 611 82.781 88.129 8.285 2.873 1.558 1.429 施 例 (S) 15。 611 82.54 87.815 8.132 2.801 1.512 1.386 20° 610 82.173 87.826 7.94 2.707 1.451 1.33 25° 610 81.663 87.79 7.696 2.59 1.376 1.264 30° 609 80.977 87.721 7.413 2.46 1.297 1.191 13 201200485 玻璃厚度=1 .〇mm λ50%的波長(nm) 表5-2 玻璃厚度0°〜30。穿透率特性_ 波長900nm 穿透率(%) 波長950nm 穿透率(%) 波長1000nm 穿透率(%> 波長1〇5〇nm 穿透率(%) 波長1100nm 穿透率(%)The weathering test of Examples A, C, F, R, and S reached the side of the hour, and there was no rough atomization and acid release on the surface' and maintained the expected spectral characteristics. According to the composition of Examples A, C, F, and rS Things _ as shown in Table 2) Qiansuo silk performance (four) three) in the needle has a sense of suspicion and representative. The system is an optical surface naked enamel made in Example S, and is tested by the ICE Testing Center (ETC) for weather resistance test (such as Annex 1). The condition is boots, 9〇% RH, continuous test 1000 h. "s, there is no atomization and acid release on the surface of the optical glass die. Therefore, the composition and ratio of the embodiment S can be regarded as the representative of the preferred embodiment of the present invention. 201200485 The surface of the glass final product is in contact with air. The reflective film or the bonding surface to the crystal is not coated with an anti-reflection film to minimize the reflectivity of the glass final product to effectively control the maximum transmittance of visible light. The glass final product before and after coating The center wavelength (T50%) at a wavelength of 350 nm to 11 〇〇 nm is shown in Table 4. The example spectrum is as shown in the second figure, and the transmittance of visible light having a wavelength of 400 to 500 nm can reach 8090% or more, 700 to 1100 nm. The average near-infrared transmittance is less than 5%. Table 4 Surface spectral gates m T before coating T% after coating T% before coating T% after coating T% before coating T% after coating T% before coating T% after coating T% 350 38.049 1.899 360 57.686 Γ 9.316 370 70.427 29.214 380 77.209 5^359 390 80.89 81.326 400 82.899 90.073 410 83.986 91.662 420 84.702 92.151 — 430 85.309 92.981 440 85.851 93.907 450 86.344 94.597 460 86.796 94.982 470 87.18 95.11 480 87.478 95.108 490 87.658 95.078 500 87.688 95.031 510 87.458 94.842 520 86.913 94.45 530 85.916 93.608 540 84.31 92.079 550 81.935 89.629 560 78.723 86.163 570 74.664 81.672 580 69.669 76.098 590 63.842 69.61 600 57.48 62.567 610 50.851 55.291 620 44.065 473⁄4 630 37.431 40.717 640 31.277 34.091 650 25.768 28.162 660 20.88 22.89 670 16.699 18.368 680 13.275 14.64 690 10.53 11.624 。 。 。 。 。 。 。 。 。 。 。 860 1.494 1.1ΐΓ 870 1.566 1.133 880 1.657 1.155 890 1.768 1.195 900 1.901 '249-910 2.056 1.315 920 2.231 1.392 930 2.428 1.48 940 2.652 1.583 950 2.901 1.6 98 960 3.172 1.826 970 3.47 1.969 980 3.8 2.129 990 4.16 2.305 1000 4.545 2.496 1010 4.962 2.706 1020 5.417 2.938 1030 5.904 3.191 1040 6.417 3.461 1050 6.966 3.756 1060 7.56 4.08Γ 1070 8.188 4.433 1080 8.842 4.807 1090 9.536 5.213 1100 10.103 5.547 12 201200485 In the prior art of this paper, the trend of digital image products is light and thin, so that the image module must continuously reduce the height to match when the incident angle of the light source is between 〇~. /. The offset needs to be less than Snm to prevent the image sensor from being out of color due to exceeding its white balance limit. Table 5 shows the fine-grained best-off s. For example, the gas sulphate filter glass has an incident angle of 0 to 30. The relationship between T50% offset and light transmittance. As can be seen from Tables 5-1, 5-2 and 3, the incident angle of the light source is between 〇3 and 3〇. The wavelength of 〇5〇% is controlled between 609 and 611nm, which meets the optical requirement that the above Τ5〇% offset is less than 5nm. _ Therefore, the problem of color shift of the image ❹jH due to exceeding the self-balancing limit can be avoided. Further, the average transmittance of visible light (400 to 500 nm) is between 8% and 89%, and the average transmittance of near-infrared rays (700 to 1100 nm) is less than 5%. Table 5-1 Glass thickness Glass thickness = 1.0 mm 0. ~ 30. Transmittance characteristic λ50% wavelength (nm) Wavelength 4〇〇nm Transmittance (%) Wavelength 500nm Transmittance (%) Wavelength 700nm Transmissibility (%) Wavelength 750nm Transmittance (%) Wavelength 800nm Penetration Rate (%) Wavelength 850 nm Transmittance (%) 0° 611 82.942 87.731 8.373 2.917 1.586 1.454 5. 611 82.929 """ 87.792 8.354 2.909 1.582 1.451 Real 10° 611 82.781 88.129 8.285 2.873 1.558 1.429 Example (S) 15. 611 82.54 87.815 8.132 2.801 1.512 1.386 20° 610 82.173 87.826 7.94 2.707 1.451 1.33 25° 610 81.663 87.79 7.696 2.59 1.376 1.264 30° 609 80.977 87.721 7.413 2.46 1.297 1.191 13 201200485 Glass thickness=1.〇mm λ50% wavelength (nm) Table 5-2 Glass thickness 0 ° ~ 30. Transmittance characteristics _ Wavelength 900nm Transmittance (%) Wavelength 950nm Transmittance (%) Wavelength 1000nm Transmittance (%> Wavelength 1〇5〇nm Transmittance (%) Wavelength 1100nm Transmittance (%)

【圖式簡單說明】 第一圖為實施例A〜U之光譜圖。 第二圖為本案玻璃鍍膜前後之光譜圖》 第三圖為本案實施例S於光源入射角度為0〜30。之間中心偏移量之光谱圖。 附件:Electronics Testing Center (簡稱ETC)檢測單位對本案實施例S裸 片進行耐候性測試之結果報告。 【主要元件符號說明】 益 14BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a spectrum diagram of Examples A to U. The second figure is the spectrum diagram before and after the glass coating of the present case. The third figure is the incident angle of the light source of the embodiment S in the case of 0~30. A spectral map of the center offset between. Attachment: The results of the weather resistance test conducted by the Electronics Testing Center (ETC) testing unit on the bare die of the example S in this case. [Main component symbol description] Benefit 14

Claims (1)

201200485 七、申請專利範圍: 1. -種Μ酸«、吸收式近紅外_、光玻璃,_姆融—補組成物以 及冷部該溶融後之原料組成物而形成一玻璃塊,再經過切割、研磨、抛 光、等冷加工後形成一玻璃裸片;該原料組成物主要包括: Ρ2〇5、AIF3、Cuo、以及金屬氟化物; P2O5、AIF3、CuO三者的總含量為42wt%〜75 Wt% ; 金屬氟化物之總含量為3〇wt%〜60wt% ; 該玻璃裸片厚度,波長400〜500nm可見光之穿透率 達85%以上’中心波長(T50%)控制在600〜630nm間之任何波段,波 長700〜11〇〇nm的紅外線平均穿透率小於5% ; 該玻璃裸片於60°C、90%RH恆溫恆濕環境下進行連續财候性測 試’具有長達至少1〇〇〇 hrs以上之光譜穩定性。 2_如申請專利範圍第1項所述氟磷酸鹽系吸收式近紅外線濾光玻璃,其 中,P2O5 為 40 wt %〜60 wt % ; AIF3 為 1 wt %〜10 wt % ; CuO 為 1 赠 % 〜5 wt %。 3_如申請專利範圍第1項所述氟磷酸鹽系吸收式近紅外線濾光玻璃,其 中,金屬氟化物包含NaF、MgF2、CaF2、SrF2、以及BaF2。 4.如申請專利範圍第3項所述氟磷酸鹽系吸收式近紅外線濾光玻璃,其 中 ’ NaF 為 3 wt %〜wt 〇/〇、MgS 為 1 wt %〜5 wt %、CaF2 為 5 wt 〇/〇〜10 wt %、SrF2 為 5 wt %〜1〇 Μ %、BaF2 為 10 wt %〜15 wt %。 5_如申請專利範圍第3項所述氟磷酸鹽系吸收式近紅外線濾光玻璃,其 中’該金屬氟化物更包括UF、KF及ZnF2之擇一或組合。 15 201200485 6. 如申凊專利範園第5項所述氟磷酸鹽系吸收式近紅外線濾光玻璃,其 中 ’ LlF 為 0 wt 〇/〇〜5 wt %、KF 為 〇 Μ %〜1 〇 wt %、ZnF2 為 0 wt %〜5 wt %。 7. 如申請專利範圍第1項所述氟磷酸鹽系吸收式近紅外線濾光玻璃,其 中,該濾光玻璃的目視色澤為藍色。 8_如申請專利範圍第1項所述氟磷酸鹽系吸收式近紅外線濾光玻璃,其 中,《玄玻璃裸片接收入射角度為〇~30之光源時,其中心波長(丁 5〇〇/〇) 偏移ιέ小於5nm。 9· -種氟碟酸鹽系吸收式近紅外線就《’係、藉蛾融—原料組成物以 及冷卻該熔融後之原料組成物所製成;該原料組成物主要包括: 50.4 wt% P2〇5 ; 2.8 wt% AIF3 ; 5 wt% LiF ; 2.4 wt% NaF ; 3.6 wt% MgF2 ; 7.1 wt% CaF2; 9.9 wt% SrF2 ; 11.4 wt% BaF2 ; 5.9 wt% ZnF2 ;以及 1.1 wt% CuO。 讥-種氣__系吸收式近紅外線渡光玻璃,係藉由炫融一原料組成物以 及冷卻該溶融後之原料組成物而形成一玻璃塊,再經過切割 '研磨、抛 201200485 光等冷加工後形成-玻璃裸片;該原料組成物主要包括: P2〇5、CuO、以及金屬氟化物; P2〇5、CuO 二者的總含量為 4_。/。〜65 wt0/〇 ; 金屬氟化物之總含量為3〇wt%〜6〇wt% ; 該玻璃裸片厚度,波長400〜500nm可見光之穿透率 達85%以上,中心波長(T5〇%)控制在6〇〇〜63〇nm間之任何波段,波 長700〜1l〇〇nm的紅外線平均穿透率小於5〇/〇 ; ^ Λ玻璃裸片於60 C、90%RH ‘|·亙溫恒濕環境下進行連續耐候性測 試’具有長達至少1000 hrs以上之光譜穩定性。 17201200485 VII, the scope of application for patents: 1. - a kind of tannic acid «, absorption type near infrared _, light glass, _ _ melt - make up the composition and the cold part of the molten raw material composition to form a glass block, and then cut After grinding, polishing, and the like, forming a glass die; the raw material composition mainly includes: Ρ2〇5, AIF3, Cuo, and metal fluoride; the total content of P2O5, AIF3, CuO is 42wt%~75 Wt The total content of metal fluoride is 3〇wt%~60wt%; the thickness of the glass die, the transmittance of visible light with a wavelength of 400~500nm is more than 85%, and the center wavelength (T50%) is controlled between 600~630nm. In any band, the average infrared transmittance of the wavelength of 700~11〇〇nm is less than 5%; the glass die is subjected to continuous fiscal test at 60°C and 90% RH constant temperature and humidity environment. The spectral stability above 〇〇hrs. 2_ fluorophosphate-based absorption type near-infrared filter glass according to claim 1, wherein P2O5 is 40 wt% to 60 wt%; AIF3 is 1 wt% to 10 wt%; CuO is 1% by weight. ~5 wt%. The fluorophosphate-based absorption type near-infrared filter glass according to the first aspect of the invention, wherein the metal fluoride comprises NaF, MgF2, CaF2, SrF2, and BaF2. 4. The fluorophosphate-based absorption type near-infrared filter glass according to claim 3, wherein 'NaF is 3 wt%~wt 〇/〇, MgS is 1 wt%~5 wt%, and CaF2 is 5 wt. 〇/〇~10 wt%, SrF2 is 5 wt%~1〇Μ%, and BaF2 is 10 wt%~15 wt%. The fluorophosphate-based absorption type near-infrared filter glass according to the third aspect of the invention, wherein the metal fluoride further comprises an alternative or a combination of UF, KF and ZnF2. 15 201200485 6. For example, the fluorophosphate-based absorption type near-infrared filter glass according to item 5 of the application patent garden, wherein 'LlF is 0 wt 〇 / 〇 ~ 5 wt %, KF is 〇Μ % ~ 1 〇 wt %, ZnF2 is 0 wt % ~ 5 wt %. 7. The fluorophosphate-based absorption type near-infrared ray filter glass according to the first aspect of the invention, wherein the filter glass has a blue color. 8_ For example, the fluorophosphate-based absorption type near-infrared filter glass according to Item 1 of the patent application scope, wherein "the sinus glass die receives the light source having an incident angle of 〇~30, the center wavelength thereof (Ding 5〇〇/ 〇) Offset ιέ is less than 5nm. 9·----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 5; 2.8 wt% AIF3; 5 wt% LiF; 2.4 wt% NaF; 3.6 wt% MgF2; 7.1 wt% CaF2; 9.9 wt% SrF2; 11.4 wt% BaF2; 5.9 wt% ZnF2; and 1.1 wt% CuO.讥-cultivation __ is an absorption type near-infrared light-emitting glass, which is formed by smelting a raw material composition and cooling the molten raw material composition to form a glass block, and then cutting, grinding, throwing 201200485 light and other cold working After forming a glass die; the raw material composition mainly comprises: P2〇5, CuO, and metal fluoride; the total content of both P2〇5 and CuO is 4_. /. ~65 wt0 / 〇; the total content of metal fluoride is 3 〇 wt% ~ 6 〇 wt%; the thickness of the glass die, the wavelength of 400 ~ 500nm visible light penetration rate of more than 85%, the center wavelength (T5 〇%) Control any wavelength between 6〇〇~63〇nm, the average infrared transmittance of the wavelength of 700~1l〇〇nm is less than 5〇/〇; ^ Λ glass die at 60 C, 90% RH '|·亘温Continuous weatherability test in a constant humidity environment 'has a spectral stability of at least 1000 hrs or longer. 17
TW99121408A 2010-06-30 2010-06-30 Fluorophosphate near-infrared absorbing filter TW201200485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99121408A TW201200485A (en) 2010-06-30 2010-06-30 Fluorophosphate near-infrared absorbing filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99121408A TW201200485A (en) 2010-06-30 2010-06-30 Fluorophosphate near-infrared absorbing filter

Publications (1)

Publication Number Publication Date
TW201200485A true TW201200485A (en) 2012-01-01

Family

ID=46755432

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99121408A TW201200485A (en) 2010-06-30 2010-06-30 Fluorophosphate near-infrared absorbing filter

Country Status (1)

Country Link
TW (1) TW201200485A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10184827B2 (en) 2016-05-04 2019-01-22 Platinum Optics Technology Inc. Near-infrared absorbing filter and image sensor
CN110806612A (en) * 2018-08-06 2020-02-18 张家港康得新光电材料有限公司 Optical filter and image sensor with same
TWI754100B (en) * 2017-10-03 2022-02-01 日商日本板硝子股份有限公司 Filters and Cameras

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10184827B2 (en) 2016-05-04 2019-01-22 Platinum Optics Technology Inc. Near-infrared absorbing filter and image sensor
TWI754100B (en) * 2017-10-03 2022-02-01 日商日本板硝子股份有限公司 Filters and Cameras
CN110806612A (en) * 2018-08-06 2020-02-18 张家港康得新光电材料有限公司 Optical filter and image sensor with same

Similar Documents

Publication Publication Date Title
CN103508670B (en) Coloured glass
CN108793739B (en) Filter glass
EP1382582B1 (en) An optical glass
CN107445475B (en) Optical glass, optical preform and optical element
KR101128395B1 (en) Optical glass
EP2167438B1 (en) Glass composition and optical member and optical instrument using the same
CN104936914B (en) β-ceramics quartz glass with controlled transmittance graph and high oxidation iron and oxidation Theil indices;Include the product of the glass ceramics, glass precursor
US8476177B2 (en) Highly refractive and highly transparent optical glass
TWI789340B (en) Optical glass, preforms and optical components
TW201245088A (en) Optical glass, optical element and preform
JP6047227B2 (en) Near infrared light absorbing glass, near infrared light absorbing element, and near infrared light absorbing optical filter
CN109562981A (en) Optical glass and near infrared cut-off filters
CN102557434B (en) Near-infrared absorbing glass, element and light filter
TW201200485A (en) Fluorophosphate near-infrared absorbing filter
CN107140829A (en) Near-infrared absorption glass, element and filter
CN107540214B (en) Optical glass, optical preform and optical element
KR20160108321A (en) Spectacle lens
US10336647B2 (en) Holmium-based contrast enhancing UV blocking glass compositions
JP2023133230A (en) filter glass
CN105906204A (en) Near-infrared absorption glass, element and light filter
WO2013120420A1 (en) Near infrared light absorbing glass, element and filter
TWI388529B (en) Near-infrared absorbing filter
CN113880425A (en) Near-infrared light absorbing glass, element and optical filter
JP2021178771A (en) Optical glass with low density
TW201249769A (en) Optical glass, preform and optical element