TW201145971A - Multi-lensed image sensing module - Google Patents

Multi-lensed image sensing module Download PDF

Info

Publication number
TW201145971A
TW201145971A TW99118375A TW99118375A TW201145971A TW 201145971 A TW201145971 A TW 201145971A TW 99118375 A TW99118375 A TW 99118375A TW 99118375 A TW99118375 A TW 99118375A TW 201145971 A TW201145971 A TW 201145971A
Authority
TW
Taiwan
Prior art keywords
image sensing
image
lens
document
tested
Prior art date
Application number
TW99118375A
Other languages
Chinese (zh)
Inventor
Pen-Jung Lee
Original Assignee
Creative Sensor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creative Sensor Inc filed Critical Creative Sensor Inc
Priority to TW99118375A priority Critical patent/TW201145971A/en
Publication of TW201145971A publication Critical patent/TW201145971A/en

Links

Landscapes

  • Image Input (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Facsimile Heads (AREA)

Abstract

A multi-lensed image sensing module is disclosed for scanning image from a document while moving along a first direction of the document. The multi-lensed image sensing module includes a circuit board, a plurality of image sensing chips, and a plurality of non-spherical lenses. The image sensing chips are used for receiving images, and the image sensing chips are spacely arranged on the circuit board along a second direction perpendicular to the first direction. The non-spherical lenses are respectively positioned in front of the image sensing chips. Each of the image sensing chips projects a part of a line-shaped image from the document along the second direction to the image sensing chips.

Description

201145971 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明有關一種影像掃描模組,尤其有關於—種多鏡頭 影像感測模組。 [0002] • * 〇 【先前技術】 常見於掃瞄器或多功能事務機中的的影像掃描模组包括 有電荷耦合元件式(CCDM)以及接觸影像感應式(CISM)兩 種形式。這兩種影像掃瞄模組皆可用以對—待測文件進 行影像掃瞄,以取得待測文件上的文字或圖像的影像。 ~ [0003] 〇 第一圖為傳統CCDM的一示意圖’其包含一設置在電路板 10上的感測晶片11、一透鏡12,以及複數値長條狀的反 射鏡13。透鏡12的一端面朝向感測晶片11 »另—端面則 朝向其中一反射鏡13。藉由該些反射鏡13取得待測文件 14的線狀影像並傳送至透鏡12後,藉透鏡12將影像縮小 並投射至感測晶片11上。第二圖為CCDM的一光學架構圖 ,由於透鏡12之物距m遠大於像距n,也使得ccDM在待測 文件14上可具有鲁大的聚焦深度(D0F> 1關),使得在 實際進行影像感測時’待測文件14與透鏡12之間的相對 距離的可容許較大的變化,因此在CCDM之組裝公差較大 或待測文件14不平整時,感測晶片11仍可清晰的取得待 測文件14的影像》 [0004] 然而’ CCDM有以下幾個缺點:由於為了要使CCDM厚度較 薄,勢必利用多個反射鏡13來調整光路,也因此使得光 線的反射次數增多,導致光線能量損耗,並且,眾多的 光學元件也導致成本增加以及模組尺寸較大。此外,透 099118375 表單編號A0101 第3頁/共23頁 0992032566-0 201145971 鏡12與反射鏡13之間需配合做前後焦調整,亦使得組裝 成本較高。再者,由於僅有一個感測晶片u,感測晶片 之解析度需求較高,以致感測晶片】】之各畫素尺寸較 小,相對的各畫素的感光度較差,在實際拍攝時需要補 以較而照度之光源以取得清晰影像,也因此光源的耗電 量較高。 [0005] 第三圖為CISM的 [0006] 099118375 3 —玟在電路板20上的 感測晶片陣列21,以及一位於感測晶片陣列21上方的柱 狀透鏡陣列(Rod lens 3ι·ι·^)22 ,藉由桎狀透鏡陣列 22使待測文件23直接成像在感測晶片陣列以上。如第四 圖所示之CISM的-光學架構圖,由於柱狀透鏡陣列2 = 物距m等於像距!^,可讀取之待測文件23的長度與所需的 感應晶片陣列21長度大致相等,意謂著感測晶片陣二 需要由多顆感測晶片21〇來組成,因此在安裝感測晶片 2^10時,需考量任二感測晶片叫之間的間隙問題 =所有感測晶片21G所需的打線接合(wirebGndi = -人數,並使得電路㈣之尺切易縮小 擾較大,製作成本也較高。也因此電磁干 IS體= C/SM沒有額外的光學鏡片,也因此使得整體 模、,且體積較小,但由於柱狀透 于整體 ⑽,、),當⑽之組裝公差二聚焦^ 不平整時,易造出板 A差較大或待測文件23 函數(MTF)不—致,':寺待測文件23各部位之調制轉換 域之影像則否。 致’使得有些區域之影像較為清楚有些[ 較複雜且成C由於柱狀透鏡陣列22之製作程序 表單蝙號Αοιοι 景/ a 了 CISM的 區 第4頁/共23頁 °"2〇32566- 201145971 [0007] [0008] Ο [0009]201145971 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to an image scanning module, and more particularly to a multi-lens image sensing module. [0002] • * 〇 [Prior Art] Image scanning modules commonly used in scanners or multifunction printers include both charge coupled device (CCDM) and contact image sensing (CISM). Both of the image scanning modules can be used to perform image scanning on the file to be tested to obtain images of text or images on the document to be tested. [0003] The first figure is a schematic view of a conventional CCDM' which includes a sensing wafer 11, a lens 12, and a plurality of strip-shaped reflecting mirrors 13 disposed on the circuit board 10. One end face of the lens 12 faces the sensing wafer 11 and the other end faces toward one of the mirrors 13. After the linear image of the document 14 to be tested is taken by the mirrors 13 and transmitted to the lens 12, the image is reduced by the lens 12 and projected onto the sensing wafer 11. The second figure is an optical architecture diagram of the CCDM. Since the object distance m of the lens 12 is much larger than the image distance n, the ccDM can have a large depth of focus (D0F> 1 off) on the file 14 to be tested, so that the actual When the image sensing is performed, the relative distance between the document 14 to be tested and the lens 12 can be greatly changed, so that the sensing wafer 11 can still be clear when the assembly tolerance of the CCDM is large or the document 14 to be tested is not flat. Obtaining the image of the file to be tested 14 [0004] However, CCDM has several disadvantages: since the thickness of the CCDM is to be thin, it is necessary to use a plurality of mirrors 13 to adjust the optical path, thereby increasing the number of times of reflection of light. This leads to loss of light energy, and numerous optical components also result in increased costs and larger module sizes. In addition, through 099118375 Form No. A0101 Page 3 of 23 0992032566-0 201145971 Mirror 12 and mirror 13 need to cooperate with the front and rear focus adjustment, which also makes the assembly cost higher. Moreover, since there is only one sensing chip u, the resolution requirement of the sensing chip is high, so that the size of each pixel of the sensing chip is small, and the sensitivity of the opposite pixels is poor, in actual shooting. It is necessary to supplement the light source with a relatively illuminating light to obtain a clear image, and thus the power consumption of the light source is high. [0005] The third figure shows the sensing wafer array 21 on the circuit board 20 of CISM [0006] 099118375 3, and a lenticular lens array above the sensing wafer array 21 (Rod lens 3ι·ι·^) 22, the file to be tested 23 is directly imaged by the dome lens array 22 above the sensing wafer array. As shown in the fourth figure, the CISM-optical architecture diagram, since the lenticular lens array 2 = the object distance m is equal to the image distance!, the length of the readable document 23 to be read is approximately the length of the desired sensing wafer array 21. Equal, meaning that the sensing wafer array 2 needs to be composed of a plurality of sensing wafers 21, so when installing the sensing wafer 2, 10, it is necessary to consider the gap between any two sensing wafers = all sensing The wire bonding required for the wafer 21G (wirebGndi = - the number of people, and the circuit (4) is easy to reduce the distortion, and the manufacturing cost is also high. Therefore, the electromagnetic dry IS body = C / SM has no additional optical lens, and therefore Make the overall mold, and the volume is small, but because the column is transparent to the whole (10), ), when the assembly tolerance of (10) is two focuss, the difference between the board A is large or the file to be tested 23 function (MTF) ) No--, ': The image of the modulation conversion domain of each part of the file to be tested 23 is not. To the 'make some areas of the image more clear some [more complicated and into C due to the cylindrical lens array 22 production program form bat Α ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο 201145971 [0007] [0008] Ο [0009]

市場普及率。 【發明内容】 有鑑於此,本發明之目的在於提出一種多鏡頭影像感測 模組,可具有較高之聚焦深度,並採用數量較少的感測 晶片。 為達上述目的,本發明之多鏡頭影像感測模組,用以相 對一待測文件沿一第一方向移動以掃描該待測文件之影 像,該多鏡頭影像感測模組包含一電路板、複數影像感 測晶片,以及複數非球面透鏡。該等影像感測晶片用以 接收影像,且間隔感設置於該電路板上且沿一第二方向 間隔排列,且該第二方向係正.交於讀第一方向。該等非 球面透鏡分別對應地設置於各該感測晶片前方,各該非 球面透鏡將該待測文件沿該第二方向延伸之一線狀影像 的一部分成像於對應之感測晶片上’並由各該感測晶片 接收。 此外,本發明之另一種多鏡頭影像感_模組,用以相對 一待測文件沿一第一 f向移動以掃描該待測文件之影像 ,該多鏡頭影像感測模組包含一電路板、複數影像感測 晶片,以及一鏡片陣列。該等影像感測晶片用以接收影 像,且間隔地設置於該電路板上且沿一第二方向間隔排 列,且該第二方向係正交於該第一方向。該鏡片陣列具 有一體成型之一基板以及複數形成於該基板上的非球面 透鏡部’該等非球面透鏡部分別對應地設置於各該感測 晶片前方,各該非球面透鏡部將該待測文件沿該第二方 向延伸之一線狀影像的一部分成像於對應之感測晶片上 099118375 表單編號A0101 第5頁/共23頁 0992032566-0 201145971 ,並由各該感測晶片接收。 【實施方式】 [0010] 有關本發明之技術内容、詳細說明,以及功效,現配合 圖式說明如下:· [0011] 如第五圖所示’為本發明之一種多鏡頭影像感測模組的 一較佳實施例的光學架構圖。該多鏡頭影像感測模組主 要包含有一電路板3 〇、複數影像感測晶片31、複數非球 面透鏡32,以及複數反射鏡33,用以對一待測文件35進 行掃描。 [〇〇12]具體來說’如第六圖所示’該多鏡頭影像感測模組更包 含一透光板34,用以供該待測文件35孫平貼地設置於其 上表面,此外,更包含一線狀光源36,用以透過該透光 板34照明該待測文件35。多鏡頭影像感測模組可相對該 待測文件3 5沿一第一方向X移動以掃描該待測文件3 5之影 像。此待測文件35以一長方形文件(丨如A4尺寸)為例’該 第一方向X可為長方形文件(如A 4尺寸)的長軸方向或短軸 方向。 [0013] 該電路板30可為一印刷電路板或一軟性電路板’且不以 此限。該等影像感測晶片31間隔地設置於該電路板30上 ,分別用以接收外界影像並將影像轉為電訊號。該等影 像感測晶片31沿一正交於該第一方向X的第二方向Y間隔 地排列於該電路板30上。該等影像感測晶片31可為CMOS 感測晶片或CCD感測晶片,且不以此限。 [0014] 該等非球面透鏡3 2分別對應地設置於各該影像感測晶片 099118375 表單編號A0101 第6頁/共23頁 0992032566-0 201145971 31前方。各該反射鏡33係呈長條狀,對應用來取得待挪 文件35上的線狀影像。各該非球面透鏡32係經由各該反 射鏡33及該透光板34將該待測文件35沿該第二方向γ延伸 之一線狀影像的一部分成像於對應之影像感測晶片31上 ,並由各該影像感測晶片31接收。 [⑻ 15] Ο 如第五圖所示,由於採用非球面透鏡32,使得多鏡頭影 像感測模組之物距m可大於像距η。在待測文件35上,本 發明使任一影像感測晶片31接收之影像係至少部分地重 疊於鄰近之影像感測晶片31接收之影像,並藉軟體或石更 體對所有影像感測晶片3〗,所=接收的影像進.行處理以疊入 成為一完整的影像,藉此,由於物距m可大於像距η,單 顆影像感測晶片31所對應接收的影像面積可較大,因此 可使用數量較少的影像感測晶片31以降低成本。 [0016] 如第七圖所示’為本發明之多鏡頭影像感測模組的另— 實施例,該多鏡頭影像感測模組大致與赛六圖之影像感 G [0017] 測模組相同,不同之處在於該等非球面透鏡32係以一鏡 片陣列40代替。 / 099118375 該鏡片陣列40具有一體成型之一基板41以及複數形成於 該基板41上的非球面透鏡部42。該等非球面透鏡部42分 別對應地設置於各該影像感測晶片31前方,各該非球面 透鏡部42係經由各該反射鏡33及該透光板34將該待測文 件35沿該第二方向Y延伸之一線狀影像的一部分成像於對 應之影像感測晶片31上,並由各該影像感測晶片31接收 。該鏡片陣列40可利用塑膠等透明材質進行射出成型或 模造成型而製得,由於該鏡片陣列4〇為單一元件,相較 表單編號A0101 第7頁/共23頁 0992032566-0 201145971 於第/、圖之多鏡頭影像感測模組需對多個透鏡32進行安 裝而言,顯然可有效簡化模組的組裝步驟及成本。此外 ,如第八圖所示,更可使用—長條狀反射鏡37來代替第 圖中的夕個反射鏡3 3,各§亥非球面透鏡部4 2係經由該 長條狀反射鏡37及該透光板34將該待測文件35沿該第二 方向Y延伸之一線狀影像的一部分成像於對應之影像感測 晶片31上’並由各該影像感測晶片31接收。 [0018] [0019] [0020] 如第九圖所示,為本發明之多鏡頭影像感測模組的另一 實施例,該多鏡頭影像感測摸組大致與第六圖之影像感 測模組相同,不同之處在於省去了該等反射鏡33,各該 非球面透鏡32係經由各該反射鏡33及該透光板34將該待 測文件3 5之一線狀影像的一部分直接成像於對應之影像 感測晶片31上,並由各該影像感測晶片31接收。 此外,如第十圖所示,為本發明之多鏡頭影像感測模組 的另一實施例’該多鏡頭影暴感測模組大致與第九圖之 影像感測模組相同,不同之處在於該等非球面透鏡32係 以〆鏡片陣列50代替。 該鏡片陣列50具有一體成型之一基板51以及複數形成於 該基板51上的非球面透鏡部52。該等非球面透鏡部52分 別對應地設置於各該影像感測晶片31前方,各該非球面 透鏡部5 2係經由該透光板3 4將該待測文件3 5沿該第二方 向Y延伸之一線狀影像的一部分成像於對應之影像感測晶 片31上,並由各該影像感測晶片31接收。該鏡片陣列5 〇 可利用塑膠等透明材質進行射出成型或模造成型而製得 ,由於該鏡片陣列50為單一元件,相較於第九圖之多鏡 099118375 表單編號A0101 第8頁/共23頁 0992032566-0 201145971 頭影像感測模組需對多個透鏡3 2進行安裝而言,顯然可 有效簡化模組的組裝步驟及成本。 [0021] [0022] Ο [0023] Ο [0024] [0025] [0026] [0027] 因此,本發明之多鏡頭影像感測模組利用非球面透鏡32 以及反射鏡33來調整光路,可有效提高聚焦深度(DOF >〇. 8mm) ’當模組組裝公差較大或待測文件35不平整時 ’也不易造成掃描時待測文件3 5各部位之調制轉換函數 (MTF)不一致。 並且,相較於CCDM來說,由於各該影像感測晶片31僅需 搭配一對應之反射鏡33,因此使得光線的反射次數減少 ’可減低光線能量損耗。並且,較少的光學元件也可使 成本降低以及模組尺寸縮小1另一方面,相較於CISM來 說’由於影像感測晶片31之數量減少亦可有效降低成本 ’影像感測晶片31之解析度需求亦較低。此外,由於不 具有柱狀透鏡陣列,不僅可有效降低成本,也減少了零 件取得的困難度。 惟以上所述者僅為本發明之較佳實施例,並非用以限定 本發明之實施範圍。凡依本發明申請專利範圍所作之等 效變化與修飾,皆仍屬本發明專利所涵蓋範圍之内。 【圖式簡單說明】 第—圖為習知CCDM影像感測模組之示意圖; 第二圖為CCDM影像感測模組之光學架構圖; 第三圖為習知CISM影像感測模組之示意圖; 第四圖為CISM影像感測模組之光學架構圖; 099118375 表單編號A0101 第9頁/共23頁 0992032566-0 201145971 [0028] 第五圖為多鏡頭影像感測模組之另一實施方式之光學架 構圖; [0029] 第六圖為多鏡頭影像感測模組之另一實施方式之示意圖 [0030] 第七圖為多鏡頭影像感測模組之另一實施方式之示意圖 9 [0031] 第八圖為多鏡頭影像感測模組之另一實施方式之示意圖 , [0032] 第九圖為多鏡頭影像感測模组之另一實施方式之示意圖 ;以及 [0033] 第十圖為多鏡頭影像感測模組之另一實施方式之示意圖 〇 【主要元件符號說明】 [0034] 電路板30 [0035] 影像感測晶片31 [0036] 非球面透鏡32 [0037] 反射鏡3 3 [0038] 透光板34 [0039] 待測文件3 5 [0040] 線狀光源36 [0041] 反射鏡3 7 099118375 表單編號A0101 第10頁/共23頁 0992032566-0 201145971 [0042] [0043] [0044] [0045] [0046] [0047] [0048]Market penetration rate. SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a multi-lens image sensing module that can have a higher depth of focus and employ a smaller number of sensing wafers. In order to achieve the above objective, the multi-lens image sensing module of the present invention is configured to move in a first direction relative to a document to be tested to scan an image of the file to be tested, the multi-lens image sensing module comprising a circuit board , a plurality of image sensing wafers, and a plurality of aspherical lenses. The image sensing wafers are configured to receive images, and the sense of spacing is disposed on the circuit board and spaced along a second direction, and the second direction is positively intersected with the first direction of reading. The aspherical lenses are respectively disposed in front of each of the sensing wafers, and each of the aspherical lenses images a portion of the linear image extending along the second direction of the document to be tested on the corresponding sensing wafer. The sensing wafer is received. In addition, another multi-lens image sensing module of the present invention is configured to move a first f direction relative to a file to be scanned to scan an image of the file to be tested, and the multi-lens image sensing module includes a circuit board. , a plurality of image sensing wafers, and an array of lenses. The image sensing wafers are configured to receive images and are spaced apart from the circuit board and spaced apart along a second direction, and the second direction is orthogonal to the first direction. The lens array has a substrate integrally formed and a plurality of aspherical lens portions formed on the substrate. The aspherical lens portions are respectively disposed in front of the sensing wafers, and the aspherical lens portions respectively determine the document to be tested. A portion of the line image extending in the second direction is imaged on the corresponding sensing wafer 099118375 Form No. A0101 Page 5 / Total 23 Page 0992032566-0 201145971 and received by each of the sensing wafers. [Embodiment] [0010] The technical content, detailed description, and efficacy of the present invention will now be described as follows: [0011] As shown in FIG. 5, a multi-lens image sensing module of the present invention An optical architecture diagram of a preferred embodiment. The multi-lens image sensing module mainly includes a circuit board 3 〇, a plurality of image sensing chips 31, a plurality of aspherical lenses 32, and a plurality of mirrors 33 for scanning a document 35 to be tested. [〇〇12] Specifically, as shown in the sixth figure, the multi-lens image sensing module further includes a light-transmitting plate 34 for the document to be tested 35 to be placed on the upper surface thereof. In addition, a linear light source 36 is further included for illuminating the document 35 to be tested through the light transmissive plate 34. The multi-lens image sensing module is movable in a first direction X relative to the file to be tested 35 to scan the image of the file to be tested 35. The document 35 to be tested is exemplified by a rectangular document (e.g., A4 size). The first direction X may be a long axis direction or a short axis direction of a rectangular document (e.g., A 4 size). [0013] The circuit board 30 can be a printed circuit board or a flexible circuit board' and is not limited thereto. The image sensing chips 31 are spaced apart from the circuit board 30 for receiving external images and converting the images into electrical signals. The image sensing wafers 31 are arranged on the circuit board 30 at intervals in a second direction Y orthogonal to the first direction X. The image sensing wafers 31 can be CMOS sensing wafers or CCD sensing wafers, and are not limited thereto. [0014] The aspherical lenses 32 are respectively disposed in front of each of the image sensing wafers 099118375, Form No. A0101, Page 6 of 23, 0992032566-0 201145971 31. Each of the mirrors 33 has an elongated shape corresponding to a line image for acquiring the document 35 to be moved. Each of the aspherical lenses 32 is formed on the corresponding image sensing wafer 31 by a portion of the linear image extending along the second direction γ via the mirror 33 and the transparent plate 34. Each of the image sensing wafers 31 is received. [(8) 15] Ο As shown in the fifth figure, since the aspherical lens 32 is used, the object distance m of the multi-lens image sensing module can be made larger than the image distance η. On the file to be tested 35, the present invention causes the image received by any image sensing chip 31 to at least partially overlap the image received by the adjacent image sensing chip 31, and the image sensing chip is applied to all the images by software or stone. 3], the received image is processed to be superimposed into a complete image, whereby since the object distance m can be larger than the image distance η, the image area corresponding to the single image sensing wafer 31 can be larger. Therefore, the wafer 31 can be sensed using a smaller number of images to reduce the cost. [0016] As shown in the seventh figure, as another embodiment of the multi-lens image sensing module of the present invention, the multi-lens image sensing module is substantially similar to the image sensing G of the Sai Liutu [0017] The same is true, except that the aspherical lenses 32 are replaced by a lens array 40. / 099118375 The lens array 40 has a single substrate 41 integrally formed and a plurality of aspherical lens portions 42 formed on the substrate 41. The aspherical lens portions 42 are respectively disposed in front of the image sensing wafers 31, and each of the aspherical lens portions 42 passes the to-be-tested document 35 along the second through the mirrors 33 and the light-transmitting plate 34. A portion of the linear image extending in the direction Y is imaged on the corresponding image sensing wafer 31 and received by each of the image sensing wafers 31. The lens array 40 can be produced by injection molding or molding using a transparent material such as plastic, since the lens array 4 is a single component, compared to the form number A0101, page 7 / 23 pages 0992032566-0 201145971 at the / The multi-lens image sensing module of the figure needs to be installed on a plurality of lenses 32, which obviously simplifies the assembly steps and costs of the module. Further, as shown in the eighth figure, instead of the evening mirror 33 in the figure, a strip mirror 37 can be used, and each of the aspherical lens portions 42 passes through the strip mirror 37. The light transmissive plate 34 images a portion of the linear image extending along the second direction Y on the corresponding image sensing wafer 31 and is received by each of the image sensing wafers 31. [0020] As shown in FIG. 9 , in another embodiment of the multi-lens image sensing module of the present invention, the multi-lens image sensing touch panel is substantially the same as the image sensing of the sixth image. The modules are the same, except that the mirrors 33 are omitted, and each of the aspherical lenses 32 directly images a portion of the linear image of the document to be tested 35 via each of the mirrors 33 and the light-transmitting plate 34. The corresponding image sensing wafer 31 is received by each of the image sensing wafers 31. In addition, as shown in FIG. 10, another embodiment of the multi-lens image sensing module of the present invention is substantially the same as the image sensing module of the ninth figure. The aspherical lens 32 is replaced by a 〆 lens array 50. The lens array 50 has a single substrate 51 integrally formed and a plurality of aspherical lens portions 52 formed on the substrate 51. The aspherical lens portions 52 are respectively disposed in front of the respective image sensing wafers 31, and each of the aspherical lens portions 52 extends the document to be tested 35 in the second direction Y via the transparent plate 34. A portion of one of the line images is imaged on the corresponding image sensing wafer 31 and received by each of the image sensing wafers 31. The lens array 5 can be produced by injection molding or molding using a transparent material such as plastic, since the lens array 50 is a single component, compared with the mirror of the ninth figure 099118375 Form No. A0101 Page 8 of 23 0992032566-0 201145971 The head image sensing module needs to be installed on multiple lenses 32, which obviously simplifies the assembly steps and costs of the module. [0022] Therefore, the multi-lens image sensing module of the present invention utilizes an aspherical lens 32 and a mirror 33 to adjust the optical path, which is effective. Increasing the depth of focus (DOF > 〇. 8mm) 'When the module assembly tolerance is large or the document 35 to be tested is not flat, it is not easy to cause the modulation conversion function (MTF) of each part of the file to be tested at the time of scanning to be inconsistent. Moreover, compared with the CCDM, since each of the image sensing wafers 31 only needs to be matched with a corresponding mirror 33, the number of reflections of the light is reduced to reduce the light energy loss. Moreover, fewer optical components can also reduce cost and reduce the size of the module. On the other hand, compared with CISM, 'the number of image sensing wafers 31 can be reduced, and the cost can be effectively reduced. The resolution requirements are also low. In addition, since there is no cylindrical lens array, not only the cost can be effectively reduced, but also the difficulty in obtaining parts can be reduced. The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. All the equivalent changes and modifications made by the scope of the present invention remain within the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS The figure is a schematic diagram of a conventional CCDM image sensing module; the second figure is an optical architecture diagram of a CCDM image sensing module; and the third figure is a schematic diagram of a conventional CISM image sensing module. The fourth picture shows the optical architecture of the CISM image sensing module; 099118375 Form No. A0101 Page 9 of 23 0992032566-0 201145971 [0028] The fifth figure is another embodiment of the multi-lens image sensing module [0029] FIG. 6 is a schematic diagram of another embodiment of a multi-lens image sensing module [0030] FIG. 7 is a schematic diagram of another embodiment of a multi-lens image sensing module [0031] 8 is a schematic diagram of another embodiment of a multi-lens image sensing module, [0032] FIG. 9 is a schematic diagram of another embodiment of a multi-lens image sensing module; and [0033] FIG. Schematic diagram of another embodiment of multi-lens image sensing module 〇 [Main component symbol description] [0034] Circuit board 30 [0035] Image sensing wafer 31 [0036] Aspheric lens 32 [0037] Mirror 3 3 [ 0038] light transmissive plate 34 [0039] file to be tested 3 5 [0040] line Light source 36 [0041] Mirror 3 7 099118375 Form No. A0101 Page 10 / Total 23 0992032566-0 201145971 [0042] [0044] [0048] [0048] [0048]

[0050] [0051] 第一方向X 第二方向Y 物距m 像距η 鏡片陣列40 基板41 非球面透鏡部42 鏡片陣列50 基板51 非球面透鏡部5 2 099118375 表單編號Α0101 第11頁/共23頁 0992032566-0[0051] First direction X Second direction Y Object distance m Image distance η Lens array 40 Substrate 41 Aspherical lens portion 42 Lens array 50 Substrate 51 Aspheric lens portion 5 2 099118375 Form number Α 0101 Page 11 / Total 23 pages 0992032566-0

Claims (1)

201145971 七、申請專利範圍: 1 . 一種多鏡頭影像感測模組,用以相對一待測文件沿一第一 方向移動以掃描該待測文件之影像’該多鏡頭影像感測模 組包含: 一電路板; 複數影像感測晶片,用以接收影像,且間隔地設置於該電 路板上且沿一第二方向間隔排列,且該第二方向係正交於 該第一方向;以及 複數非球面透鏡,分別對應地設置於各該影像感測晶片前 方,各該非球面透鏡將該待測文件沿該第二方向延伸之一 線狀影像的一部分成像於對應之影像感測晶片上,並由各 該影像感測晶片接收。 2 .如申請專利範圍第1項所述之多鏡頭影像感測模組,更包 含至少一反射鏡,各該非球面透鏡係經由該反射鏡將該線 狀影像的一部分成像於對應之影像感測晶片上。 3 .如申請專利範圍第2項所述之多鏡頭影像感測模組,其中 該反射鏡係呈長條狀。 4 .如申請專利範圍第1項所述之多鏡頭影像感測模組,其中 任一影像感測晶片接收之影像係至少部分地重疊於鄰近之 影像感測晶片接收之影像。 5 .如申請專利範圍第1項所述之多鏡頭影像感測模組,更包 含一供該待測文件設置於其上之透光板,且各該非球面透 鏡係經由該透光板將該待測文件沿該第二方向延伸之一線 狀影像的一部分成像於對應之影像感測晶片上。 6 .如申請專利範圍第5項所述之多鏡頭影像感測模組,更包 099118375 表單編號A0101 第12頁/共23頁 0992032566-0 201145971 含一用以透過該透光板照明該待測文件的線狀光源。 一種多鏡頭彩像感測模組,用以相對一待測文件沿一第一 方向移動以掃描該待測文件之影像,該多鏡頭影像感測模 組包含: Ο 8 . Ο ίο . 一電路板; 複數影像感測晶片,用以接收影像,且間隔地設置於該電 路板上且沿〆第二方向間隔排列,且該第二方向係正交於 該第一方向;以及 一鏡片陣列,具有一體成型之一基板以及複數形成於該基 板上的非球面透鏡°;卩該等非球面.透鏡部分別對應地設置 於各該影像感測晶片前方,各該非球面透鏡部將該待測文 件沿該第二方向延伸之—線狀影像的一部分成像於對應之 影像感測晶片上’並由各該影像感測晶片..接收。 如申請專利範圍第7項所述之多鏡頭影像威測模組,更包 含至少一反射鏡’各該非球面透鏡部係經由該反射鏡將該 線狀影像的一部分成像於對應之影像感測晶片上。 如申請專利範圍第8項所述之多鏡頭影#感測模組,其中 該反射鏡係呈長條狀。 如申請專利範圍第7項所述之多鏡頭影像感測模組’其中 任一影像感測晶片接收之影像係至少部分地重疊於鄰近之 11 . 影像感測晶片接收之影像。 如申請專利範圍第7項所述之多鏡頭影像感測模組’更包 含一供該待測文件設置於其上之透光板’且各該非球面透 鏡部係經由該透光板將該待測文件沿該第一方向延伸之一 線狀影像的一部分成像於對應之影像感測晶片上。 如申請專職®第11項所述之多鏡_减測模組’更包 099118375 表單編號Α0101 第13頁/共23頁 0992032566-0 12 . 201145971 含一用以透過該透光板照明該待測文件的線狀光源。 099118375 表單編號A0101 第14頁/共23頁 0992032566-0201145971 VII. Patent application scope: 1. A multi-lens image sensing module for moving a document to be tested in a first direction to scan an image of the document to be tested. The multi-lens image sensing module comprises: a plurality of image sensing chips for receiving images, spaced apart from the circuit board and spaced apart along a second direction, wherein the second direction is orthogonal to the first direction; and a plurality of non- Spherical lenses are respectively disposed in front of each of the image sensing wafers, and each of the aspherical lenses images a portion of the linear image extending along the second direction of the document to be tested on the corresponding image sensing wafer, and each The image sensing wafer is received. 2. The multi-lens image sensing module of claim 1, further comprising at least one mirror, each of the aspherical lenses imaging a portion of the line image to a corresponding image sensing On the wafer. 3. The multi-lens image sensing module of claim 2, wherein the mirror is elongated. 4. The multi-lens image sensing module of claim 1, wherein the image received by any of the image sensing wafers at least partially overlaps the image received by the adjacent image sensing wafer. 5. The multi-lens image sensing module of claim 1, further comprising a light-transmitting plate on which the document to be tested is disposed, and each of the aspherical lenses passes the light-transmitting plate A portion of the linear image extending along the second direction of the document to be tested is imaged on the corresponding image sensing wafer. 6. The multi-lens image sensing module described in claim 5, further comprising 099118375, form number A0101, page 12, total 23, 0992032566-0, 201145971, including one for illuminating the test through the light-transmitting plate The linear light source of the document. A multi-lens image sensing module is configured to move a first object in a first direction relative to a document to be tested to scan an image of the file to be tested, the multi-lens image sensing module comprising: Ο 8 . Ο ίο . a plurality of image sensing wafers for receiving images, spaced apart on the circuit board and spaced apart in a second direction, and the second direction is orthogonal to the first direction; and a lens array, And an aspherical lens formed integrally on the substrate; the aspherical lens portions are respectively disposed in front of each of the image sensing wafers, and each of the aspherical lens portions is to be tested A portion of the line image extending along the second direction is imaged on the corresponding image sensing wafer and received by each of the image sensing wafers. The multi-lens image metrology module according to claim 7, further comprising at least one mirror, wherein each of the aspherical lens portions images a portion of the linear image on the corresponding image sensing wafer on. The multi-lens shadow sensing module of claim 8, wherein the mirror is elongated. The image received by any of the image sensing wafers of the multi-lens image sensing module of claim 7 is at least partially overlapped with an image received by the adjacent image sensing chip. The multi-lens image sensing module as described in claim 7 further includes a light-transmitting plate on which the document to be tested is disposed, and each of the aspherical lens portions is to be treated via the light-transmitting plate A portion of the linear image of the document extending along the first direction is imaged on the corresponding image sensing wafer. For example, apply for the full-time® multi-mirror_subtraction module described in item 11 and include 099118375 Form No. 1010101 Page 13 of 23 0992032566-0 12 . 201145971 Contains one to illuminate the test through the translucent panel The linear light source of the document. 099118375 Form No. A0101 Page 14 of 23 0992032566-0
TW99118375A 2010-06-07 2010-06-07 Multi-lensed image sensing module TW201145971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99118375A TW201145971A (en) 2010-06-07 2010-06-07 Multi-lensed image sensing module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99118375A TW201145971A (en) 2010-06-07 2010-06-07 Multi-lensed image sensing module

Publications (1)

Publication Number Publication Date
TW201145971A true TW201145971A (en) 2011-12-16

Family

ID=46766055

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99118375A TW201145971A (en) 2010-06-07 2010-06-07 Multi-lensed image sensing module

Country Status (1)

Country Link
TW (1) TW201145971A (en)

Similar Documents

Publication Publication Date Title
CN1838049B (en) Compact and low profile optical navigation device and its usage method
US20080212825A1 (en) System and method for electronically combining images taken by two or more adjacent image sensors
TW297203B (en)
US20070221825A1 (en) Imaging apparatus with resolution adjustability
TW201145971A (en) Multi-lensed image sensing module
TWI411289B (en) U-shape optical path image scanning method and scanning module thereof
US8018627B2 (en) Shared image scanning method and picture scanner thereof
US20070013971A1 (en) Imaging System Utilizing Illumination and Optical Modules Contained within Rotating Optical Platens
JP2013197606A (en) Image reading apparatus
US7208719B2 (en) Compact integrated optical imaging assembly
TW201039614A (en) Penta-mirror multi-reflection scanning module
CN100361491C (en) Contact type image scanner with multi-focus and multi resolution ratio
TW496073B (en) Linear image scanning device
TWI451128B (en) Scanning system
CN100461816C (en) Contact image scanner with multi focallength and multi resolution
TWI240556B (en) Contact image scanner with multiple focal distances and multiple resolutions
TWM349150U (en) Picture scanner
TW201250331A (en) Optic mechanism of scanning device
TWM555478U (en) Imaging module and image capture apparatus
TWI665610B (en) Scan device
US20110019247A1 (en) Imaging system and method
CN100461817C (en) Contact image scanner with multi focal length and multi resolution
JPH06217083A (en) Original reader
US20040227059A1 (en) Compact integrated optical imaging assembly
TWI405453B (en) Contact image sense chip and module having the same