TW201144632A - Deflectively engaging type gear device - Google Patents

Deflectively engaging type gear device Download PDF

Info

Publication number
TW201144632A
TW201144632A TW100103415A TW100103415A TW201144632A TW 201144632 A TW201144632 A TW 201144632A TW 100103415 A TW100103415 A TW 100103415A TW 100103415 A TW100103415 A TW 100103415A TW 201144632 A TW201144632 A TW 201144632A
Authority
TW
Taiwan
Prior art keywords
oscillating body
gear
roller
teeth
external
Prior art date
Application number
TW100103415A
Other languages
Chinese (zh)
Other versions
TWI425156B (en
Inventor
Shinji Yoshida
Fumito Tanaka
Masaaki Shiba
Manabu Andoh
Original Assignee
Sumitomo Heavy Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries filed Critical Sumitomo Heavy Industries
Publication of TW201144632A publication Critical patent/TW201144632A/en
Application granted granted Critical
Publication of TWI425156B publication Critical patent/TWI425156B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Provided is a flexible engagement gear device wherein the transmission torque is large, and the life of an oscillator bearing can be increased. A flexible engagement gear device (100) has an oscillator (104), external gears (120A, 120B) which are disposed on the outer periphery of the oscillator (104), and can flexibly change shape, internal gears (130A, 130B) which have stiffness sufficient to internally engage the external gears (120A, 120B) with the internal gears, and oscillator bearings (110A, 110B) disposed between the oscillator (104) and the external gears (120A, 120B). The oscillator bearings (110A, 110B) are provided with rollers (116A, 116B), and retainers (114A, 114B) for retaining the rollers (116A, 116B). A load reduction region (LA) in which a radial gap (Gr) for reducing the load applied from the oscillator (104) and the external gears (120A, 120B) to the rollers (116A, 116B) is formed, is provided in an non-engagement range (SA) of the oscillator (104).

Description

201144632 六、發明說明: 【發明所屬之技術領域】 本發明是關於一種撓性咬合式齒輪裝置。 【先前技術】 如專利文獻1表示,先行的撓性咬合式齒輪裝置中, 震盪體的震盪體軸承使用球軸承。在專利文獻1中,當設 置於震盪體軸承的保持器的凹處位於長軸方向位置時,使 凹處具有大致以保持於凹處的滾珠中心爲中心的圓弧狀面 〔先前技術文獻〕 〔專利文獻1〕日本特開昭62-72946號公報 【發明內容】 〔發明所欲解決的課題〕 但是,如專利文獻1表示,先前的撓性咬合式齒輪裝 置中,由於使用球軸承,所以震盪體軸承的壽命變短。 爲了延長震盪體軸承的壽命,有效方法是從球軸承變 更爲滾子軸承。但是,即使單純使用滾子來取代滾珠,也 會留有發生偏斜的問題之虞。藉由發生偏斜,即便使用滾 子軸承,也會導致傳遞扭矩的降低、震盪體軸承的短壽命 化。 因此,本發明是爲了解決前述問題點所硏創而成,其 -5- 201144632 課題在於提供一種提高傳遞扭矩且可使震盪體軸承長壽命 化的撓性咬合式齒輪裝置。 〔解決課題的手段〕 本發明係藉以下解決前述課題,即撓性咬合式齒輪裝 置,具有:震盪體;外齒輪,配置在該震盪體的外圍,具 有藉由該震盪體的旋轉而撓性變形的可撓性;內齒輪,具 有內咬合該外齒輪的剛性;及震盪體軸承,配置於前述震 盪體與前述外齒輪之間,前述震盪體軸承具備作爲滾動體 的滾子和保持該滾子的保持器,在前述震盪體的短軸附近 的特定範圍內,設置減少前述滾子從該震盪體及前述外齒 輪所承受負荷的負荷減少區域。 本發明中,作爲滾動體未使用滾珠而是將滾子用於震 盪體軸承。因此,可提高傳遞扭矩,並且能使震盪體軸承 長壽命化。 並且,針對使用滾子而有可能發生的偏斜,著眼於II 盪體的短軸附近特定範圍內的外齒輪與內齒輪的關係來防 止。亦即,由於在該特定範圍內的外齒輪與內齒輪並不咬 合,所以在其範圍(非咬合範圍)內設置有減少滾子從震 還體及外齒輪所承受負荷的負荷減少區域。藉此,能夠大 致排除實際上從震盪體及外齒輪承受之震盪體朝滾子的半 徑方向的負荷,作爲滾動體的滾子於其負荷減少區域中從 保持器以外成爲大致自由的狀態,並且大體上只進行公轉 。即’即使滾子在繞震盪體外圍公轉時傾斜,當移動至該 -6- 201144632 負荷區域時亦可通過保持器排列滾子並消除其傾斜。 因此’即使本發明中使用滾子作爲滾動體,也能夠防 止以偏斜爲原因的震盪體軸承從震盪體推出、或者滾動阻 力增大 '或者扭矩傳遞效率下降、或者壽命的下降等。 〔發明效果〕 根據本發明’可提高傳遞扭矩且能夠使震盪體軸承長 壽命化。 【實施方式】 以下’參照附圖詳細說明本發明的實施形態的一例。 第1圖是表示本發明的第1實施形態的撓性咬合式齒輪 裝置的整體結構之一例的剖視圖,第2圖、第3圖是表示該 裝置的震盪體的圖,第4圖是組合該裝置的震盪體和震盪 體軸承的槪略圖,第5圖是表示該裝置的震盪體軸承的滾 子與保持器的關係圖,第6圖是該裝置的內齒輪與假想外 齒輪的咬合槪念圖,第7圖是該裝置的外齒輪與內齒輪的 咬合圖’第8圖是表示本發明的第2實施形態的震盪體的形 狀的圖。 最初’主要利用第1圖和第2圖對本實施形態的整體結 構進行槪略說明。 撓性咬合式齒輪裝置100,具有:震盪體1〇4;外齒輪 120A、120B,配置在震盪體104的外圍,並具有藉由震盪 體1〇4的旋轉而撓性變形的可撓性;減速用內齒輪130八和 201144632 輸出用內齒輪130B,具有外齒輪120A、120B分別內咬合 的剛性;震盪體軸承1 10A、1 10B,配置在震盪體1 04與外 齒輪1 2 0 A、1 2 0 B之間。 以下,對各構成元件進行詳細說明。 如第2圖(A)、第2圖(B)表示,震盪體104爲柱狀, 中央形成有插入未圖示的輸入軸的輸入軸孔106。在輸入 軸孔1 06中設置有鍵槽1 08,以使輸入軸插入並旋轉時使得 震盪體104和輸入軸一體旋轉。 如第2圖、第3圖表示,震盪體104以將2個圓弧部(第 1圓弧部FA、第2圓弧部SA)連接在一起的形狀構成。第1 圓弧部FA的曲率半徑爲R1,構成用於使外齒輪120A和減 速用內齒輪13 0A咬合的圓弧部份(亦稱爲咬合範圍)。第 2圓弧部SA的曲率半徑爲R2,構成外齒輪12 0A和減速用內 齒輪130A不咬合範圍的圓弧部份(亦稱爲非咬合範圍)。 第1圓弧部FA的長度由角度Θ來決定。 此時’如第3圖表示,若將震盪體1〇4的長軸方向X的 半徑設爲R,則將偏心量設爲L,以式(1 )表示第1圓弧部 FA的曲率半徑R1 ^ R1=R-L ( 1 ) 並且,如第3圖表示,在第1圓弧部FA與第2圓弧部SA 的連接部份A共用切線T。因此,震盪體1 04的曲率半徑R2 與曲率半徑R1共同具有角度Θ處的第1圓弧部FA與第2圓弧 部S A的連接部份A至點B,並且以從點B延長的Y軸(震擬 體1 〇4的短軸方向)的交點C爲止的長度規定。亦即,以式 201144632 (2)表示第2圓弧部SA的曲率半徑R2。 R2 = R-L + L/cos0 ( 2 ) 在此’將曲率半徑R1的通過第1圓弧部FA撓性變形的 外齒輪1 2 0 A的曲率半徑設爲假想外齒輪丨2 〇 C的曲率半徑。 假想外齒輪1 20C是爲了使外齒輪! 20A與減速用內齒輪 130A理想地咬合而作爲以第6圖表示的基本形狀爲圓形且 具有剛性的齒輪臨時假設的齒輪。藉由假設該種假想外齒 輪12〇(:’能夠容易決定震盪體1〇4的角度0與偏心量1^。 震盪體軸承110A爲配置於震盪體1〇4的外側(外圍) 與外齒輪1 2 〇 A的內側之間的軸承,如第1圖表示,包括內 圈112、保持器114A、作爲滾動體的滾子116A及外圈118A 。內圈112的內側與震盪體104抵接,而內圈112與震盪體 104—體旋轉。 如第4圖表示,保持器1 14A爲設置有凹處1 14AA和支 柱1 14AB的圓形構件。凹處1 14AA是爲了沿著內圏1 12的外 圍可旋轉地保持滾子1 1 6 A而在外圍方向上以一定間隔設置 的孔。支柱1 14AB在外圍方向上劃分其凹處1 14AA並將保 持器1 14A設爲圓形。滾子1 16A爲圓柱形(包含滾針)^ 因此,與滾動體爲滾珠時比較,使滾子11 6A與內圈112及 外圈U8A接觸的部份增加。亦即,藉由使用滾子1 16A, 可以使震盪體軸承1 10A的傳遞扭矩增大,並使其長壽命化 〇 外圈118A配置於滾子116A的外側。外圈118A與配置 於其外側的外齒輪120A—同通過震盪體104的旋轉撓性變 201144632 形。 在此,不改變外圈1 1 8 A的外徑(直徑)Doo,而僅使 其內徑(直徑)Doi比平常更大(亦即,使外圈U8A的半 徑方向的厚度To減薄)。這樣在震盪體104裝配震盪體軸 承110A時(在震盪體104的外圍配置震盪體軸承1 1〇A時) ,能夠在作爲震盪體104的短軸附近的特定範圍的非咬合 範圍SA設置使滾子116A從ϋ盪體1〇4及外齒輪120A承受的 負荷減少的負荷減少區域LA。具體而言,如第4圖表示, 在其非咬合範圍SA中,藉由在滾子116Α與外圈118Α的內 周面(稱爲外圈軌道面)1 1 8 A Α之間設置徑向間隙〇 r,能 夠排除滾子1 16A所承受的震盪體104半徑方向的負荷。亦 即,此處的“減少負荷”是指,排除(或消除)滾子1 16A來 自震盪體104及外齒輪120A承受的震盪體1〇4的半徑方向負 荷。並且’負荷減少區域LA是指處於非咬合範圍SA且包 含相對滾子116A排除震盪體104的半徑方向的負荷角度的 角度範圍。在本實施形態中,如第4圖表示,負荷減少區 域LA成爲與非咬合範圍SA相同程度或比非咬合範圍Sa狹 窄的角度範圍。 在此,對第5圖表示的滾子1 16A和保持器1 14a的運動 進行說明。從咬合端部位置P1進入非咬合範圍SA內的滾子 116A在形成有徑向間隙Gr的區域(負荷減少區域La)中 立刻失速而成爲自由狀態。並且,短軸方向Y位置P2附近 ,滾子116A在外圍方向上被保持器114A的支柱114AB濟壓 而排列。而且,滾子1 1 6 A以被排列的狀態在咬合端部的位 -10- 201144632 置P3進入咬合範圍FA,自行自轉和公轉。 如第1圖表示,外齒輪120 A與減速用內齒輪130A內咬 合。外齒輪12 0A包括基礎構件122和外齒12 4A。基礎構件 122爲支承外齒124A且具有可撓性的筒狀構件,配置於震 盪體軸承1 10A的外側。外齒124A由圓柱形的銷構成,並 由環形構件126A保持在基礎構件122上。 如第1圖表示,外齒輪12 0B與輸出用內齒輪13 OB內咬 合。並且,外齒輪120B與外齒輪120A相同,包括基礎構件 122和外齒124B。外齒124B的數量與外齒124A相同,且由 相同的圓柱形的銷構成,並由環形構件126B保持在基礎構 件122上。在此,基礎構件122與外齒124A—起共同支承外 齒124B。因此,震盪體104的偏心量L以同相位傳遞至外齒 124A和外齒124B。 如第1圖表示,減速用內齒輪1 3 0 A由具有剛性的構件 構成。減速用內齒輪130A具備比外齒輪120A的外齒124A 的齒數多i(i爲2以上)個的齒數。減速用內齒輪13 0A上 透過螺栓孔132A固定未圖示的外殼。而且,減速用內齒輪 130 A藉由與外齒輪120A咬合來減速震盪體104的旋轉。 另一方面,輸出用內齒輪130B與減速用內齒輪130A相 同,也由具有剛性的構件形成。輸出用內齒輪130B具備與 外齒輪120B的外齒124B的齒數相同的內齒128B的齒數。 另外,在輸出用內齒輪130B中,透過螺栓孔132B安裝未圖 示的輸出軸,與外齒輪120B的自轉相同的旋轉被輸出至外 部。 -11 - 201144632 在此,爲了決定所咬合的齒形,而決定第6圖表示的 假想外齒輪120C。使減速用內齒輪130A的內齒128A的齒 數(102)相對於外齒輪120A的外齒124A的齒數(100) 多2齒。亦即,齒數差爲i = 2。因此,假設比減速用內齒輪 130A的齒數(102 )例如少4齒(j=4,j > i )的假想外齒輪 1 2 0C,以其齒形爲基準。在本實施形態中,由於外齒輪 120A使用圓柱形的銷作爲外齒124A,所以其齒形成圓弧 齒形。亦即,假想外齒輪120C爲基準的齒形成爲基於外齒 124A的圓弧齒形。因此,爲了實現外齒124A與內齒128A 的完全理論咬合,決定以次擺線齒形作爲內齒1 28 A。 在決定假想外齒輪120C,則能夠求出震盪體104的外 圍形狀。另外,針對與外齒124B咬合的內齒128B的齒形可 適用次擺線齒形,亦可適用其他齒形。 接著,主要利用第1圖對撓性咬合式齒輪裝置1〇〇的動 作進行說明。 若震盪體104通過未圖示的輸入軸旋轉而旋轉,則外 齒輪12〇Α透過震盪體軸承110A根據其旋轉狀態撓性變形 。另外,此時外齒輪120B也透過震盪體軸承110B以與外齒 輪1 20A相同的相位撓性變形。 外齒輪120A、120B的撓性變形是根據震盪體104的長 軸方向X的曲率半徑R1的形狀所形成。亦即,第4圖表示的 震盪體104外圍的曲率半徑R1的第1圓弧部FA部份中的位 置處,由於曲率爲一定,所以撓性應力成爲一定。第1圆 弧部FA與第20弧部SA的連接部份A中的位置處,由於切 -12- 201144632 線T相同,所以能防止連接部份處急劇的撓性變形。同時 ,連接部份Α中,由於沒有滾子1 16Α、1 16Β急劇的位置變 動,所以滾子1 16A、1 16B的滑動少,扭矩的傳遞損失少。 外齒輪120A、120B是由震盪體104撓性變形,藉此第1 圓弧部(咬合範圍)FA的部份中,通過震盪體軸承11 〇A 、110B的內圈112的外圍面(內圈軌道面)與滾子116A、 116B的接觸,藉此透過內圈112從震盪體104向滾子116A、 116B傳遞向半徑方向外側的撓性負荷。同時,通過滾子 116A、116B與震盪體軸承110A、110B的外圈118A、118B 的內周面(外圈軌道面)118AA、118BA的接觸,從滾子 116A、116B朝震盪體軸承110A' 110B的外圈118A、118B 傳遞向半徑方向外側的撓性負荷。藉由傳遞至外圈1 1 8 A的 撓性負荷,外齒1 24 A向半徑方向外側移動(AQo )而咬合 於減速用內齒輪130A的內齒128A。同樣,藉由傳遞至外 圈118B的撓性負荷,外齒12 4B咬合於輸出用內齒輪130B 的內齒128B。在此,第7圖(A)中表示減速用內齒輪 13 0A與外齒輪12〇Α咬合的樣子,第7圖(B)中表示輸出 用內齒輪130B與外齒輪120B咬合的樣子。咬合時,由於外 齒124A、124B爲可旋轉的銷,所以可降低由咬合引起的傳 遞扭矩的損失。另外,由於是以和外齒124A完全理論咬合 的方式形成內齒128A的齒形,而以多個齒同時咬合。因此 ’分散施加於齒面的面壓而能夠傳遞大扭矩。 另外,由於滾子1 16A、1 16B爲圓柱形狀,所以耐負荷 大,能夠使震盪體軸承1 10A、1 10B長壽命化以及提高傳遞 -13- 201144632 扭矩。同時,圓柱形狀的滾子116A、116B使外齒輪120A 、120B的基礎構件122朝著軸向〇平行地撓性變形。因此, 可延長外齒124A、124B與內齒128A、128B的壽命,並且 維持高的扭矩傳遞。 另外’外齒124 A、124B是在軸向〇上分割成減速用內 齒輪130A所咬合的部份和輸出用內齒輪130B所咬合部份。 因此,當外齒輪120A與減速用內齒輪130A咬合時,外齒 124A和內齒128A不會受外齒124B的影響在軸向〇上以原本 就應咬合的咬合面稂咬合。同樣,當外齒輪12 0B與輸出用 內齒輪1 30B咬合時,外齒1 24B與內齒1 28B不會受外齒 124A的影啓在軸向Ο上以原本就應咬合的咬合面積咬合。 亦即,藉由分割外齒124A、124B,能夠保持旋轉精度,並 能夠防止傳遞扭矩的下降。 | 通過撓性變形,在位於第2圓弧部(非咬合範圍)S A 的震盪體104的短軸方向Y的位置中,震盪體軸承110A、 1 1 0B向半徑方向內側(AQi )撓性變形。此時,由於使外 圈1 18A、1 18B的內徑Doi增大,所以在外圈1 18A、1 18B的 內周面(外圏軌道面)118AA、118BA與滾子116A、116B 之間形成徑向間隙Gr而成爲非接觸。亦即,在短軸附近的 特定範圍(非咬合範圍SA)內形成有徑向間隙Gr的區域( 負荷減少區域LA)中,震盪體104的半徑方向的負荷未施 加於滾子1 1 6A、1 1 6B而成爲大致自由的狀態。因此,即使 滾子1 16A、1 16B在咬合範圍FA內成爲傾斜狀態,在非咬 合範圍SA的負荷減少區域LA中也不會有保持滾子11 6A、 -14- 201144632 1 16B的傾斜狀態的震盪體104的半徑方向的力。因此,藉 由在外圍方向上被保持器114A、114B擠壓,使滾子U6A 、1 1 6B恢復到(被排列成)沒有傾斜的狀態。 外齒輪120A與減速用內齒輪130A的咬合位置隨著震 盪體104的長軸方向X的移動而旋轉移動。在此,若震盪體 1 〇4旋轉1圈,則外齒輪1 2 0 A的旋轉相位僅變慢與減速用內 齒輪130A的齒數差對應的量。亦即,基於減速用內齒輪 1 3 0 A的減速比能夠以((外齒輪1 2 0 A的齒數-減速用內齒 輪130A的齒數)/外齒輪120A的齒數)求出。基於具體數 値的減速比成爲((1 〇 〇 -1 0 2 )/1 〇 〇 = - 1 / 5 0 )。在此,“” 表示輸入輸出成爲反轉的關係。 由於外齒輪120B與輸出用內齒輪130B的齒數均相同, 所以外齒輪12 0B與輸出用內齒輪13 0B彼此咬合的部份不會 移動,而是以相同的齒彼此相咬合。因此,從輸出用內齒 輪130B輸出與外齒輪120B的自轉相同的旋轉。其結果,能 夠從輸出用內齒輪13 0B取出將震盪體104的旋轉減速至 (-1/50 )的輸出。 對試製本實施形態的撓性咬合式齒輪裝置1 〇〇的結果 進行說明。試製中,將震盪體軸承110A、110B的外圈 118A、118B 的外徑 Doo = 49.41mm 時的外圈 Π8Α、118B 的 內徑Doi設爲比平常更大的値(47mm->47.01mm)。裝配 後就可以在短軸方向Y的位置(一側)設置徑向間隙Gr ( 6.5 μιη以上)。因此能夠確認使滾動阻力R t比平常更低( 76.8mNm-»36.4mNm )。亦即,如本實施形態表不,藉由 -15- 201144632 使外圈I 1 8A、1 1 8B的外徑Doo保持原來的狀態而擴大內徑 Doi’即可有效降低滾子Π6Α的滾動阻力Rt。亦即,由於 能夠排除施加於滾子1 1 6 A、1 1 6 B半徑方向的負荷,能夠有 效地防止滾子116A、116B偏斜》 在本實施形態中,不使用滾珠作爲滾動體,而是將滾 子116A、116B用於震盪體軸承llOA、110B。因此,能夠 提高傳遞扭矩,並且能夠使震盪體軸承1 10A、1 10B長壽命 化。 並且,在非咬合範圍SA內以包含震盪體104的短軸方 向Y的方式設置使滾子11 6A、11 6B從震盪體104及外齒輪 120A、120B承受的負荷減少的負荷減少區域LA。具體而 言,在其負荷減少區域LA中,在滾子116A、116B與震盪 體軸承110A、110B的外圈軌道面118AA、118BA之間設置 徑向間隙Gr。由於徑向間隙Gr設置成不會使震盪體1 04變 形’所以不會降低震盪體1 04的剛性。並且,大致可排除 事實上從震盪體104及外齒輪120A、120B承受之震盪體104 朝著滾子1 16A、1 16B半徑方向的負荷。因此,滾子1 16A 、Π6Β在其負荷減少區域LA中從保持器114A、114B以外 成爲大致自由的狀態,並且大體上只進行公轉。亦即,即 使滾子1 16A、1 16B在繞震盪體1〇4的外圍公轉時傾斜,當 移動至負荷減少區域LA時亦可通過在外圍方向上被保持器 114A' 114B擠壓來排列滾子116A、116B並消除其傾斜狀 態。 因此,本發明中即使使用滾子116A、116B作爲滾動體 -16 - 201144632 ’也能夠防止因偏斜引起的震盪體軸承110A、110B從震盪 體1〇4的推出、或者滾動阻力增大、或者扭矩傳遞效率下 降、或者壽命下降等。亦即,藉由本發明,能夠提高傳遞 扭矩,並能夠使震盪體軸承110A、110B長壽命化。 對本發明舉出第1實施形態已進行說明,但是本發明 並不限於第1實施形態。亦即,在不脫離本發明的要旨範 圍內’可進行改良及設計變更,這是不言而喻。 例如在第1實施形態中,震盪體1 04形狀爲組合2個圓 弧的形狀,但本發明並不限於此。例如,如第8圖表示的 第2實施形態表示’可藉由只將規定咬合範圍的第1圓弧部 FA部份形成於震盪體304,而對非咬合範圍,通過咬合端 部之間或比其更狹窄的範圍直線(包括接近直線的曲線等 )成形來設置負荷減少區域LA。此時,能夠在震盪體304 的外圍面3 04A直接形成震盪體軸承的內圈軌道面。如此即 能夠將負荷減少區域L A中的徑向間隙G r設置在滾子與震盪 體軸承的內圈軌道面之間,亦即,滾子與震盪體304之間 ,並能夠獲得與第1實施形態相同的效果。此時,與第1實 施形態中表示的震盪體的情況比較,由於無需內圈,並且 無需使外圏減薄,所以能夠更完全地實現內圈與外圈的咬 合範圍FA中的理論咬合。 另外’亦可對於震盪體3 04使用具備內圈的震盪體軸 承。此時’負荷減少區域L A中的徑向間隙Gr設置於震盪體 軸承的內圈與震盪體304的外圍面304A之間,亦即,此時 亦設置於滾子與震盪體3 〇4之間。此時,也可對應排除從 -17- 201144632 震盪體304施加於滾子的半徑方向的負荷,所以能夠獲得 與第1實施形態相同的效果。 另外,當爲第1實施形態表示的震盪體1 04的形狀時, 也可藉由不使震盪體軸承內圏的內徑改變而縮小外徑,在 滾子與震盪體軸承的內圈之間設置負荷減少區域LA中的徑 向間隙Gr。 另外,在上述K施形態中,負荷減少區域LA包含短軸 方向Y,但本發明並不限於此,例如亦可不包含短軸方向 Y而將其兩側作爲負荷減少區域LA。 另外,在第1贲施形態中,由圓柱形的銷構成外齒 124A、124B ’但本發明並不限於此。例如,可在基礎構件 122上直接形成124A、124B。亦即,外齒無需爲圓弧齒形 ,可用次擺線齒形,也可用其他齒形。此時,也可將與外 齒對應的齒形作爲內齒使用》 另外,在第1實施形態中,從輸出用內齒輪130B取出 被減速的輸出,但本發明並不限於此。例如,也可應用在 不使用輸出用內齒輪,而只使用所謂杯型撓性變形的外齒 輪而從該外齒輪只取出其自轉成份的撓性咬合式齒輪裝置 。此時,在軸向上也會產生外齒輪的撓性變形,考慮該點 ,可採用軸承帶錐度的滾子,亦可使外齒輪或震盪體軸承 的軸向形狀預先具有撓性變形量的傾斜。 另外,在第1實施形態中,將內齒輪1 3 0 A的內齒1 2 8 A 的齒數與外齒輪120A的外齒124 A的齒數差i設定爲2,但本 發明的該齒數差i並不限於2。例如,只要是2以上的偶數2i -18- 201144632 ,即可爲適當的數。另外,如果假想外齒輪HOC齒數也少 於外齒輪120A的外齒124A的實際齒數,則爲適當的數即 可’未必一定需假設假想外齒輪丨2 〇c。 【圖式簡單說明】 第1〇爲表不本發明的第1實施形態的撓性咬合式齒輪 裝置的整體結構之—例的剖視圖。 第2圖是表示該裝置的震盪體的圖。 第3圖是表示該裝置的震盪體的圖。 第4圖爲組合該裝置的震盪體和震盪體軸承的槪略圖。 第5圖是表示該裝置的震盪體軸承的滾子和保持器的 關係圖。 第ό圖爲該裝置的內齒輪與假想外齒輪的咬合槪念圖。 第7圖爲該裝置的外齒輪與內齒輪的咬合圖。 第8圖是表示本發明的第2實施形態的震盪體形狀的圖 【主要元件符號說明】 1〇〇:撓性咬合式齒輪裝置 04、3 04 :震盪體 1 1 0Α、1 1 0Β :震盪體軸承 1 12 :內圈 1 14Α、1 14Β :保持器 Π4ΑΑ、114ΒΑ:保持器的凹處 -19 * 201144632 1 1 4AB、1 1 4BB :保持器的支柱 116A 、 116B :滾子 118 A > 118B:外圈 118AA、118BA:外圈軌道面 120A、120B:外齒輪 122 :基礎構件 124A ' 124B:外齒 126A、126B:環形構件 128 A、128B :內齒 130A:減速用內齒輪(內齒輪) 130B :輸出用內齒輪 132A、132B:螺栓孔 3 04A :震盪體的外圍面 〇 :軸向 X:震盪體的長軸方向 Y:震盪體的短軸方向 FA:第1圓弧部(咬合範圍) SA :第2圓弧部·(非咬合範圍) LA :負荷減少區域201144632 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a flexible snap-in gear device. [Prior Art] As disclosed in Patent Document 1, in the prior art flexible snap gear device, the spherical body bearing of the vibrating body uses a ball bearing. In Patent Document 1, when the recess of the retainer provided in the vibrating body bearing is located in the longitudinal direction, the recess has an arcuate surface substantially centered on the center of the ball held in the recess [Prior Art Document] [Problem to be Solved by the Invention] However, as disclosed in Patent Document 1, in the conventional flexible snap gear device, since a ball bearing is used, The life of the oscillating body bearing is shortened. In order to extend the life of the oscillating body bearing, an effective method is to change the ball bearing from a ball bearing. However, even if a roller is used instead of a ball, there is a problem of skewing. By the deflection, even if a roller bearing is used, the transmission torque is reduced and the shock bearing is shortened. Accordingly, the present invention has been made in order to solve the above-mentioned problems, and a problem of the present invention is to provide a flexible snap-in type gear device which can increase the transmission torque and can extend the life of the oscillating body bearing. [Means for Solving the Problems] The present invention solves the above-mentioned problems, that is, a flexible snap-in type gear device having an oscillating body, and an external gear disposed at a periphery of the oscillating body and having flexibility by rotation of the oscillating body a deformable flexible; an internal gear having rigidity to engage the external gear; and a slewing body bearing disposed between the oscillating body and the external gear, the oscillating body bearing having a roller as a rolling element and holding the roller The sub-retainer is provided with a load reduction region that reduces the load that the roller receives from the oscillating body and the external gear in a specific range in the vicinity of the short axis of the oscillating body. In the present invention, the roller is used as the rolling element, and the roller is used for the oscillating body bearing. Therefore, the transmission torque can be increased and the life of the oscillating body bearing can be extended. Further, the deflection which may occur by using the roller is prevented by focusing on the relationship between the external gear and the internal gear in a specific range near the short axis of the II body. That is, since the external gear and the internal gear are not engaged in the specific range, a load reducing region for reducing the load of the roller from the seismic body and the external gear is provided in the range (non-engaging range). With this, it is possible to substantially eliminate the load in the radial direction of the oscillating body that is actually received from the oscillating body and the external gear, and the roller as the rolling element is substantially free from the outside of the retainer in the load reducing region, and In general, only the revolution is carried out. That is, even if the roller is tilted while revolving around the periphery of the shock body, the roller can be arranged by the retainer and the tilt can be eliminated when moving to the load area of the -6-201144632. Therefore, even if the roller is used as the rolling element in the present invention, it is possible to prevent the oscillation bearing from being pushed out from the oscillating body due to the deflection, or the rolling resistance is increased, or the torque transmission efficiency is lowered, or the life is lowered. [Effect of the Invention] According to the present invention, the transmission torque can be increased and the life of the oscillating body bearing can be extended. [Embodiment] Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings. 1 is a cross-sectional view showing an example of an overall configuration of a flexible snap gear device according to a first embodiment of the present invention. FIGS. 2 and 3 are views showing a vibrating body of the device, and FIG. 4 is a view showing the combination. The schematic diagram of the oscillating body and the oscillating body bearing of the device, Fig. 5 is a diagram showing the relationship between the roller and the retainer of the oscillating body bearing of the device, and Fig. 6 is the occlusion of the internal gear of the device and the imaginary external gear. Fig. 7 is a view showing the engagement between the external gear and the internal gear of the device. Fig. 8 is a view showing the shape of the oscillating body according to the second embodiment of the present invention. First, the overall structure of the present embodiment will be briefly described by using Fig. 1 and Fig. 2 mainly. The flexible snap-in gear device 100 has: an oscillating body 1 〇 4; the external gears 120A, 120B are disposed at the periphery of the oscillating body 104, and have flexibility for being flexibly deformed by the rotation of the oscillating body 1 〇 4; The internal gear 130 for deceleration and the internal gear 130B for output of 201144632 have the rigidity of the internal gears 120A and 120B respectively; the oscillating body bearings 1 10A and 1 10B are disposed in the oscillating body 104 and the external gear 1 2 0 A, 1 Between 2 0 B. Hereinafter, each constituent element will be described in detail. As shown in Fig. 2(A) and Fig. 2(B), the oscillating body 104 has a columnar shape, and an input shaft hole 106 into which an input shaft (not shown) is inserted is formed at the center. A keyway 108 is provided in the input shaft hole 106 to allow the oscillator 104 to rotate integrally with the input shaft when the input shaft is inserted and rotated. As shown in FIGS. 2 and 3, the vibrating body 104 is configured to connect two arc portions (the first arc portion FA and the second arc portion SA). The radius of curvature of the first circular arc portion FA is R1, and constitutes an arc portion (also referred to as a nip range) for engaging the external gear 120A and the deceleration internal gear 130A. The radius of curvature of the second arc portion SA is R2, and constitutes a circular arc portion (also referred to as a non-engagement range) in which the external gear 120A and the reduction internal gear 130A do not engage. The length of the first arc portion FA is determined by the angle Θ. In this case, as shown in Fig. 3, when the radius of the major axis direction X of the vibrating body 1〇4 is R, the eccentric amount is L, and the radius of curvature of the first circular arc portion FA is expressed by the formula (1). R1 ^ R1 = RL ( 1 ) Further, as shown in Fig. 3, the tangent line T is shared by the connection portion A of the first circular arc portion FA and the second circular arc portion SA. Therefore, the radius of curvature R2 of the oscillating body 104 and the radius of curvature R1 have the connection portion A to the point B of the first circular arc portion FA and the second circular arc portion SA at the angle Θ, and are extended by the point B from the point B. The length of the axis (the short axis direction of the vibrating body 1 〇 4) is defined as the length C. That is, the radius of curvature R2 of the second circular arc portion SA is expressed by the formula 201144632 (2). R2 = RL + L/cos0 ( 2 ) Here, the radius of curvature of the external gear 1 2 0 A which is flexibly deformed by the first circular arc portion FA of the curvature radius R1 is set as the radius of curvature of the virtual external gear 丨2 〇C . The imaginary external gear 1 20C is for the external gear! The 20A and the decelerating internal gear 130A are ideally engaged as a gear which is assumed to be a circular shape and has a rigid gear as assumed in Fig. 6 . By assuming that the imaginary external gear 12 〇 (: ' can easily determine the angle 0 of the oscillating body 1 〇 4 and the eccentric amount 1 ^. The oscillating body bearing 110A is disposed on the outer side (peripheral) of the oscillating body 1 〇 4 and the external gear The bearing between the inner sides of the 〇A, as shown in Fig. 1, includes an inner ring 112, a retainer 114A, a roller 116A as a rolling element, and an outer ring 118A. The inner side of the inner ring 112 abuts against the oscillating body 104. The inner ring 112 is rotated integrally with the oscillating body 104. As shown in Fig. 4, the retainer 1 14A is a circular member provided with a recess 1 14AA and a struts 1 14AB. The recess 1 14AA is for the inner raft 1 12 The periphery of the rotatably holds the rollers 1 16 A and the holes arranged at intervals in the peripheral direction. The struts 1 14AB divide the recesses 1 14AA in the peripheral direction and set the holder 1 14A to a circular shape. 1 16A is cylindrical (including needle roller). Therefore, the portion where the roller 11 6A is in contact with the inner ring 112 and the outer ring U8A is increased as compared with when the rolling element is a ball. That is, by using the roller 1 16A , the transmission torque of the oscillating body bearing 1 10A can be increased, and the life of the oscillating body bearing 10A can be increased. The outer ring 118A is formed in the same manner as the outer gear 120A disposed on the outer side of the outer ring 118A through the rotation of the vibrating body 104. Here, the outer diameter (diameter) Doo of the outer ring 1 18 A is not changed. Only the inner diameter (diameter) Doi is made larger than usual (that is, the thickness To in the radial direction of the outer ring U8A is thinned.) Thus, when the oscillating body bearing 110A is assembled to the oscillating body 104 (the periphery of the oscillating body 104 is disposed) When the oscillating body bearing 1 1〇A), the load that reduces the load on the roller 116A from the swaying body 1〇4 and the external gear 120A can be set in the non-seaming range SA which is a specific range in the vicinity of the short axis of the oscillating body 104. The area LA is reduced. Specifically, as shown in Fig. 4, in the non-biting range SA, the inner peripheral surface (referred to as the outer ring track surface) of the roller 116 Α and the outer ring 118 1 1 1 8 A The radial clearance 〇r is provided to eliminate the load in the radial direction of the oscillating body 104 that the roller 1 16A is subjected to. That is, the “reduced load” here means that the roller 1 16A is excluded (or eliminated) from the oscillating body. The radial load of the oscillating body 1〇4 received by the 104 and the external gear 120A Further, the 'load reduction area LA' is an angular range including a load angle in the radial direction with respect to the roller 116A in the radial direction of the non-engagement range SA. In the present embodiment, as shown in Fig. 4, the load reduction area LA becomes The angular range which is the same as the non-engaging range SA or narrower than the non-engaging range Sa. Here, the movement of the roller 1 16A and the retainer 1 14a shown in Fig. 5 will be described. The roller 116A that has entered the non-engaging range SA from the nip end position P1 immediately stalls in a region (load reduction region La) in which the radial gap Gr is formed, and becomes a free state. Further, in the vicinity of the short-axis direction Y position P2, the rollers 116A are arranged in the peripheral direction by the pillars 114AB of the holder 114A. Further, the roller 1 16 6 is placed in the occluded end position -10- 201144632 to enter the nip range FA, and self-rotates and revolves. As shown in Fig. 1, the external gear 120 A is engaged with the internal gear 130A for reduction. The outer gear 120A includes a base member 122 and an outer tooth 12 4A. The base member 122 is a cylindrical member that supports the external teeth 124A and has flexibility, and is disposed outside the oscillating body bearing 1 10A. The outer teeth 124A are formed of cylindrical pins and are held by the annular member 126A on the base member 122. As shown in Fig. 1, the external gear 120B is engaged with the inner gear 13 OB for output. Also, the external gear 120B is identical to the external gear 120A and includes a base member 122 and external teeth 124B. The outer teeth 124B are identical in number to the outer teeth 124A and are formed of the same cylindrical pin and are retained by the annular member 126B on the base member 122. Here, the base member 122 and the external teeth 124A together support the external teeth 124B. Therefore, the eccentric amount L of the oscillating body 104 is transmitted to the outer teeth 124A and the outer teeth 124B in the same phase. As shown in Fig. 1, the internal gear for deceleration 1300A is composed of a member having rigidity. The decelerating internal gear 130A has a larger number of teeth i (i is 2 or more) than the number of teeth of the external teeth 124A of the external gear 120A. The outer casing (13A) for deceleration is fixed to a casing (not shown) through a bolt hole 132A. Further, the internal gear 130A for deceleration is engaged with the external gear 120A to decelerate the rotation of the vibrating body 104. On the other hand, the output internal gear 130B is the same as the reduction internal gear 130A, and is also formed of a member having rigidity. The output internal gear 130B includes the number of teeth of the internal teeth 128B having the same number of teeth as the external teeth 124B of the external gear 120B. Further, in the output internal gear 130B, an output shaft (not shown) is attached through the bolt hole 132B, and the same rotation as that of the external gear 120B is output to the outside. -11 - 201144632 Here, in order to determine the tooth shape to be engaged, the virtual external gear 120C shown in Fig. 6 is determined. The number of teeth (102) of the internal teeth 128A of the internal gear 130A for deceleration is made 2 more than the number of teeth (100) of the external teeth 124A of the external gear 120A. That is, the difference in the number of teeth is i = 2. Therefore, it is assumed that the virtual external gear 1 2 0C having 4 teeth (j = 4, j > i ) smaller than the number of teeth (102) of the internal gear 130A for deceleration is based on the tooth profile. In the present embodiment, since the outer gear 120A uses the cylindrical pin as the outer teeth 124A, the teeth thereof form a circular arc tooth shape. That is, the teeth on which the virtual external gear 120C is the reference are formed in a circular arc shape based on the external teeth 124A. Therefore, in order to achieve a complete theoretical engagement of the external teeth 124A and the internal teeth 128A, the trochoidal tooth profile is determined as the internal teeth 1 28 A. When the virtual external gear 120C is determined, the outer shape of the vibrating body 104 can be obtained. Further, the tooth shape of the internal teeth 128B engaged with the external teeth 124B may be applied to the trochoidal tooth shape, and other tooth shapes may be applied. Next, the operation of the flexible snap gear device 1A will be mainly described with reference to Fig. 1. When the oscillating body 104 is rotated by the input shaft (not shown), the external gear 12 〇Α is flexibly deformed by the oscillating body bearing 110A in accordance with the rotational state thereof. Further, at this time, the external gear 120B is also transmitted through the vibrating body bearing 110B to be flexibly deformed in the same phase as the external gear 1 20A. The flexible deformation of the outer gears 120A, 120B is formed according to the shape of the radius of curvature R1 of the major axis direction X of the vibrating body 104. In other words, in the position of the first arc portion FA portion of the curvature radius R1 around the oscillation body 104 shown in Fig. 4, since the curvature is constant, the flexibility stress is constant. At the position in the connecting portion A of the first circular arc portion FA and the 20th arc portion SA, since the line T of the cut -12-201144632 is the same, it is possible to prevent a sharp flexible deformation at the joint portion. At the same time, in the connecting portion, since there is no sharp position change of the rollers 1 16 Α and 1 16 ,, the sliding of the rollers 1 16A and 1 16B is small, and the torque transmission loss is small. The outer gears 120A and 120B are flexibly deformed by the oscillating body 104, whereby the outer peripheral portion (the inner ring of the inner ring 112 of the oscillating body bearing 11 〇A, 110B passes through the portion of the first circular arc portion (the nip range) FA. The orbital surface is in contact with the rollers 116A and 116B, whereby the inner ring 112 transmits the flexible load on the outer side in the radial direction from the vibrating body 104 to the rollers 116A and 116B. At the same time, the rollers 116A, 116B are in contact with the inner peripheral faces (outer raceway faces) 118AA, 118BA of the outer rings 118A, 118B of the oscillating body bearings 110A, 110B, from the rollers 116A, 116B toward the oscillating body bearing 110A' 110B. The outer rings 118A, 118B transmit a flexible load to the outside in the radial direction. The external teeth 1 24 A are moved outward in the radial direction (AQo) by the flexible load transmitted to the outer ring 1 18 A, and are engaged with the internal teeth 128A of the internal gear 130A for deceleration. Similarly, the external teeth 12 4B are engaged with the internal teeth 128B of the output internal gear 130B by the flexible load transmitted to the outer ring 118B. Here, Fig. 7(A) shows a state in which the reduction internal gear 130A and the external gear 12 are engaged, and Fig. 7(B) shows a state in which the output internal gear 130B and the external gear 120B are engaged. At the time of the occlusion, since the external teeth 124A, 124B are rotatable pins, the loss of the transmission torque caused by the occlusion can be reduced. Further, since the tooth shape of the internal teeth 128A is formed in a completely theoretical engagement with the external teeth 124A, the plurality of teeth are simultaneously engaged. Therefore, a large torque can be transmitted by dispersing the surface pressure applied to the tooth surface. Further, since the rollers 1 16A and 1 16B have a cylindrical shape, the load resistance is large, and the life of the slewing body bearings 1 10A and 1 10B can be extended and the torque of -13 - 201144632 can be increased. At the same time, the cylindrical-shaped rollers 116A, 116B flexibly deform the base member 122 of the external gears 120A, 120B in parallel with the axial direction. Therefore, the life of the external teeth 124A, 124B and the internal teeth 128A, 128B can be extended, and high torque transmission can be maintained. Further, the outer teeth 124 A and 124B are divided into a portion where the inner gear 130A is engaged in the axial direction and a portion where the output inner gear 130B is engaged. Therefore, when the external gear 120A is engaged with the internal gear 130A for deceleration, the external teeth 124A and the internal teeth 128A are not occluded by the occlusal surface which is supposed to be engaged in the axial direction by the influence of the external teeth 124B. Similarly, when the external gear 120B is engaged with the output internal gear 1 30B, the external teeth 1 24B and the internal teeth 1 28B are not engaged by the external teeth 124A in the axial direction to engage with the occlusal area which should be engaged. In other words, by dividing the external teeth 124A and 124B, the rotation accuracy can be maintained, and the reduction in the transmission torque can be prevented. | By the flexible deformation, the vibrating body bearings 110A and 110B are flexibly deformed in the radial direction inner side (AQi) in the position of the short-axis direction Y of the vibrating body 104 located in the second arc portion (non-engagement range) SA. . At this time, since the inner diameter Doi of the outer rings 1 18A and 1 18B is increased, a diameter is formed between the inner circumferential faces (outer raceway faces) 118AA, 118BA of the outer rings 1 18A and 1 18B and the rollers 116A, 116B. It becomes non-contact to the gap Gr. In other words, in the region (load reduction region LA) in which the radial gap Gr is formed in the specific range (non-engagement range SA) in the vicinity of the short axis, the radial load of the oscillating body 104 is not applied to the roller 1 16A, 1 1 6B becomes a state of general freedom. Therefore, even if the rollers 1 16A and 1 16B are inclined in the nip range FA, there is no inclination state in which the rollers 11 6A, -14- 201144632 1 16B are held in the load reduction region LA of the non-engagement range SA. The force in the radial direction of the vibrating body 104. Therefore, by being pressed by the holders 114A, 114B in the peripheral direction, the rollers U6A, 1 16B are restored (arranged) to a state where they are not inclined. The meshing position of the outer gear 120A and the reduction internal gear 130A is rotationally moved in accordance with the movement of the long axis direction X of the vibrating body 104. Here, when the oscillating body 1 〇4 is rotated once, the rotational phase of the external gear 1 2 0 A is only slowed by the amount corresponding to the difference in the number of teeth of the internal gear 130A for deceleration. In other words, the reduction ratio based on the internal gear 1 3 0 A for deceleration can be obtained ((the number of teeth of the external gear 1 2 0 A - the number of teeth of the reduction internal gear 130A) / the number of teeth of the external gear 120A). The reduction ratio based on the specific number 成为 becomes ((1 〇 〇 -1 0 2 )/1 〇 〇 = - 1 / 5 0 ). Here, "" indicates that the input and output are reversed. Since the number of teeth of the external gear 120B and the output internal gear 130B are the same, the portions where the external gear 120B and the output internal gear 130B are engaged with each other do not move, but the same teeth are engaged with each other. Therefore, the same rotation as the rotation of the external gear 120B is output from the output internal gear 130B. As a result, it is possible to take out the output that decelerates the rotation of the vibrating body 104 to (-1/50) from the output internal gear 130B. The result of trial production of the flexible snap gear device 1 of the present embodiment will be described. In the trial production, the outer diameters Doi of the outer rings Π8Α and 118B when the outer diameters 118A and 118B of the outer rings 118A and 118B of the slewing body bearings 110A and 110B are Doo = 49.41 mm are set to be larger than usual (47 mm->47.01 mm). . After assembly, the radial clearance Gr (6.5 μm or more) can be set at the position (one side) of the short-axis direction Y. Therefore, it was confirmed that the rolling resistance R t was lower than usual (76.8 mNm - »36.4 mNm). In other words, if the outer diameter Doo of the outer rings I 1 8A and 1 18B is maintained in the original state and the inner diameter Doi' is enlarged by -15-201144632, the rolling resistance of the roller Π6Α can be effectively reduced. Rt. In other words, since the load applied to the radial direction of the rollers 1 16 A and 1 16 B can be eliminated, the rollers 116A and 116B can be effectively prevented from being deflected. In the present embodiment, the balls are not used as the rolling elements. The rollers 116A and 116B are used for the oscillating body bearings llOA and 110B. Therefore, the transmission torque can be increased, and the slewing body bearings 1 10A and 1 10B can be extended in life. Further, in the non-engagement range SA, the load reduction region LA for reducing the load received by the rollers 11 6A and 1 16B from the vibrating body 104 and the external gears 120A and 120B is provided so as to include the short-axis direction Y of the vibrating body 104. Specifically, in the load reducing area LA, a radial gap Gr is provided between the rollers 116A, 116B and the outer ring race faces 118AA, 118BA of the oscillating body bearings 110A, 110B. Since the radial gap Gr is set so as not to deform the oscillating body 104, the rigidity of the oscillating body 104 is not lowered. Further, it is possible to substantially eliminate the load in the radial direction of the slewing body 104 from the oscillating body 104 and the external gears 120A and 120B toward the rollers 1 16A and 16B. Therefore, the rollers 1 16A and Π6 成为 are substantially free from the holders 114A and 114B in the load reduction area LA, and generally only revolve. That is, even if the rollers 1 16A, 1 16B are inclined when revolving around the periphery of the oscillating body 1 〇 4, when moving to the load reducing area LA, they can also be arranged by being pressed by the holder 114A' 114B in the peripheral direction. The sub-116A, 116B eliminates its tilted state. Therefore, in the present invention, even if the rollers 116A and 116B are used as the rolling elements-16 - 201144632 ', it is possible to prevent the ejection of the oscillating body bearings 110A, 110B from the oscillating body 1 〇 4 due to the deflection, or the rolling resistance is increased, or The torque transmission efficiency is lowered, or the life is lowered. That is, according to the present invention, the transmission torque can be increased, and the oscillation bearings 110A and 110B can be extended in life. Although the first embodiment of the present invention has been described, the present invention is not limited to the first embodiment. That is, it is self-evident that improvements and design changes can be made without departing from the gist of the invention. For example, in the first embodiment, the shape of the oscillating body 104 is a shape in which two circular arcs are combined, but the present invention is not limited thereto. For example, in the second embodiment shown in Fig. 8, it is shown that only the first arc portion FA portion of the predetermined nip range can be formed in the oscillating body 304, and the non-bite range can be passed between the nip ends or A load narrowing area LA is formed by forming a narrower straight line (including a curve close to a straight line, etc.). At this time, the inner raceway surface of the vibrating body bearing can be directly formed on the outer peripheral surface 304A of the vibrating body 304. In this way, the radial gap G r in the load reduction region LA can be set between the roller and the inner raceway surface of the oscillating body bearing, that is, between the roller and the oscillating body 304, and can be obtained with the first implementation. The same effect. At this time, compared with the case of the oscillating body shown in the first embodiment, since the inner ring is not required and the outer rim is not required to be thinned, the theoretical occlusion in the nip range FA of the inner ring and the outer ring can be more completely achieved. In addition, it is also possible to use a vibrating body bearing having an inner ring for the vibrating body 3 04. At this time, the radial gap Gr in the load reduction area LA is disposed between the inner ring of the oscillating body bearing and the outer surface 304A of the oscillating body 304, that is, between the roller and the oscillating body 3 〇4. . At this time, the load applied to the radial direction of the roller from the -17-201144632 oscillating body 304 can be excluded, so that the same effects as those of the first embodiment can be obtained. Further, in the case of the shape of the vibrating body 104 shown in the first embodiment, the outer diameter can be reduced without changing the inner diameter of the inner bore of the vibrating body bearing, and between the roller and the inner ring of the vibrating body bearing. The radial gap Gr in the load reduction area LA is set. Further, in the above-described K embodiment, the load reduction area LA includes the short-axis direction Y. However, the present invention is not limited thereto, and for example, the short-axis direction Y may not be included, and both sides thereof may be referred to as the load reduction area LA. Further, in the first embodiment, the outer teeth 124A, 124B' are constituted by cylindrical pins, but the present invention is not limited thereto. For example, 124A, 124B can be formed directly on the base member 122. That is, the external teeth need not be arc-shaped, and the secondary cycloidal tooth shape can be used, and other tooth shapes can also be used. In this case, the tooth profile corresponding to the external tooth may be used as the internal tooth. Further, in the first embodiment, the decelerated output is taken out from the output internal gear 130B. However, the present invention is not limited thereto. For example, it is also applicable to a flexible snap-in gear device that uses only an outer gear for output, and uses only an outer gear that is so-called cup-type flexible deformation, and only extracts its rotation component from the outer gear. At this time, the elastic deformation of the external gear is also generated in the axial direction. In consideration of this point, the tapered roller of the bearing may be used, or the axial shape of the external gear or the oscillating body bearing may be inclined in advance with a flexible deformation amount. . Further, in the first embodiment, the difference in the number of teeth of the internal teeth 1 2 8 A of the internal gear 1 3 0 A and the external teeth 124 A of the external gear 120A is set to 2, but the tooth difference i of the present invention is Not limited to 2. For example, as long as it is an even number 2i -18-201144632 of 2 or more, it may be an appropriate number. Further, if the number of teeth of the imaginary external gear HOC is also smaller than the actual number of teeth of the outer teeth 124A of the external gear 120A, an appropriate number is not required. It is not necessary to assume the imaginary external gear 丨2 〇c. [Brief Description of the Drawings] The first embodiment is a cross-sectional view showing an example of the overall configuration of the flexible snap gear device according to the first embodiment of the present invention. Fig. 2 is a view showing a vibrating body of the apparatus. Fig. 3 is a view showing a vibrating body of the apparatus. Figure 4 is a schematic diagram of the combination of the oscillating body and the oscillating body bearing of the device. Fig. 5 is a view showing the relationship between the roller and the retainer of the oscillating body bearing of the apparatus. The figure is the occlusion diagram of the internal gear of the device and the imaginary external gear. Figure 7 is a snap-in view of the external gear and the internal gear of the device. Fig. 8 is a view showing the shape of a vibrating body according to a second embodiment of the present invention. [Description of main components and symbols] 1〇〇: Flexible snap-in gear device 04, 3 04: Oscillating body 1 1 0 Α, 1 1 0 Β : Concussion Body bearing 1 12 : Inner ring 1 14 Α, 1 14 Β : Retainer Π 4 ΑΑ, 114 ΒΑ: Retainer of the holder -19 * 201144632 1 1 4AB, 1 1 4BB: Retainer struts 116A, 116B: Roller 118 A > 118B: outer ring 118AA, 118BA: outer ring raceway surface 120A, 120B: outer gear 122: base member 124A '124B: outer teeth 126A, 126B: annular member 128 A, 128B: internal tooth 130A: internal gear for deceleration (internal gear 130B : Output internal gear 132A, 132B: Bolt hole 3 04A : Peripheral surface of the oscillating body 轴向: Axial X: Long axis direction of the oscillating body Y: Short axis direction of the oscillating body FA: 1st circular arc (biting) Range) SA : 2nd arc portion · (non-bite range) LA : Load reduction area

Gr :徑向間隙 R:震盪體的長軸半徑 R1:震盪體的第1圓弧部的曲率半徑 R2:震盪體的第2圓弧部的曲率半徑 -20-Gr : radial clearance R: radius of the long axis of the oscillating body R1: radius of curvature of the first circular arc portion of the oscillating body R2: radius of curvature of the second circular arc portion of the oscillating body -20-

Claims (1)

201144632 七、申請專利範圍: 1. 一種撓性咬合式齒輪裝置’具有:震盪體;外齒輪 ,配置於該震盪體的外圍,並具有藉由該震盪體的旋轉而 撓性變形的可撓性;內齒輪,具有該外齒輪內咬合的剛性 ;及震盪體軸承,配置於前述震盪體與前述外齒輪之間’ 其特徵爲: 前述震盪體軸承,具備:作爲滾動體的滾子,及保持 該滾子的保持器, 在前述震盪體的短軸附近的特定範圍內設置減少前述 滾子從該震盪體及前述外齒輪承受負荷的負荷減少區域。 2. 如申請專利範圍第1項記載的撓性咬合式齒輪裝置 ,其中,在前述負荷減少區域中,於前述震盪體軸承的外 圈與前述滚子之間或該震盪體與該滾子之間形成徑向間隙 〇 3 ·如申請專利範圍第1項記載的撓性咬合式齒輪裝置 ,其中,在前述負荷減少區域中,於前述震盪體軸承的外 圈與前述滾子之間或該震盪體軸承的內圈與該滾子之間形 成徑向間隙。 -21 -201144632 VII. Patent application scope: 1. A flexible snap-in gear device has: an oscillating body; an external gear disposed at the periphery of the oscillating body and having flexibility for being flexibly deformed by the rotation of the oscillating body The internal gear has rigidity rigidly engaged in the external gear; and the oscillating body bearing is disposed between the oscillating body and the external gear ′, wherein the oscillating body bearing includes: a roller as a rolling element, and a retaining body The retainer for the roller is provided with a load reducing region for reducing the load of the roller from the oscillating body and the external gear in a specific range in the vicinity of the short axis of the oscillating body. 2. The flexible snap gear device according to claim 1, wherein in the load reduction region, between the outer ring of the oscillating body bearing and the roller or the oscillating body and the roller The flexible snap-in gear device according to the first aspect of the invention, wherein the load reduction region is between the outer ring of the oscillating body bearing and the roller or the oscillating A radial gap is formed between the inner ring of the body bearing and the roller. -twenty one -
TW100103415A 2010-02-03 2011-01-28 Flexible snap gear device TWI425156B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010022503A JP5312364B2 (en) 2010-02-03 2010-02-03 Bending gear system

Publications (2)

Publication Number Publication Date
TW201144632A true TW201144632A (en) 2011-12-16
TWI425156B TWI425156B (en) 2014-02-01

Family

ID=44355345

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100103415A TWI425156B (en) 2010-02-03 2011-01-28 Flexible snap gear device

Country Status (6)

Country Link
JP (1) JP5312364B2 (en)
KR (1) KR101324498B1 (en)
CN (1) CN102741586B (en)
DE (1) DE112011100426B4 (en)
TW (1) TWI425156B (en)
WO (1) WO2011096347A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI614427B (en) * 2014-02-21 2018-02-11 Sumitomo Heavy Industries Flexing meshing gear device

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245709A (en) * 2012-05-23 2013-12-09 Sumitomo Heavy Ind Ltd Retainer of bearing and deflective meshing gear device including bearing having the retainer
JP5939955B2 (en) * 2012-10-05 2016-06-29 住友重機械工業株式会社 Gear device
JP2014081017A (en) * 2012-10-15 2014-05-08 Sumitomo Heavy Ind Ltd Gear device
KR101280291B1 (en) * 2012-10-31 2013-07-01 이윤규 Flexspline with toothed gear connected elastic body and fin, and harmonic drive having the same
JP6031397B2 (en) * 2013-03-29 2016-11-24 住友重機械工業株式会社 Bending gear system
JP6173232B2 (en) * 2014-02-07 2017-08-02 住友重機械工業株式会社 Flexure meshing gear device and method for correcting tooth profile of flexure meshing gear device
KR101827257B1 (en) * 2014-03-11 2018-02-08 가부시키가이샤 하모닉 드라이브 시스템즈 Wave generator and strain wave gear device
JP6432337B2 (en) 2014-12-24 2018-12-05 株式会社ジェイテクト Ball bearing for wave reducer
JP6338538B2 (en) * 2015-02-03 2018-06-06 住友重機械工業株式会社 Bending gear system
JP2017096478A (en) * 2015-11-27 2017-06-01 住友重機械工業株式会社 Flexible engagement type gear device and process of manufacture of its exciter
WO2018025296A1 (en) * 2016-07-30 2018-02-08 株式会社ハーモニック・ドライブ・システムズ Wave generator, and wave gear device
JP6736222B2 (en) * 2017-01-16 2020-08-05 住友重機械工業株式会社 Speed reducer and heat treatment method for rotating body
US10844944B2 (en) * 2017-08-25 2020-11-24 Hamilton Sunstrand Corporation Inverted harmonic gear actuator
JP7145601B2 (en) * 2017-10-23 2022-10-03 住友重機械工業株式会社 flexure meshing gearbox
JP6858690B2 (en) * 2017-11-08 2021-04-14 住友重機械工業株式会社 Deflection meshing gear device
JP7034026B2 (en) * 2018-07-25 2022-03-11 住友重機械工業株式会社 Flexion meshing gear device
JP7088790B2 (en) * 2018-09-04 2022-06-21 住友重機械工業株式会社 Flexion meshing gear device
JP7319822B2 (en) * 2019-05-10 2023-08-02 ナブテスコ株式会社 Strain wave gearing
CN116992702B (en) * 2023-09-29 2023-12-22 季华实验室 Method, device, equipment and medium for determining tooth back side meshing stiffness of internal gear pair

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103060B2 (en) 1985-09-26 1994-12-14 株式会社東芝 Elliptical orbit rolling bearing
DD251596A1 (en) 1986-07-31 1987-11-18 Robotron Bueromasch DEVICE FOR GENERATING WAVY FORMAL MOVEMENTS
CN2058219U (en) * 1989-06-27 1990-06-13 陈凌峰 Wave differential gear transmission mechanism
JPH0579089U (en) * 1992-03-31 1993-10-26 北海道水道機材株式会社 Harmonic drive reducer
JP4484741B2 (en) * 2005-03-24 2010-06-16 住友重機械工業株式会社 Power transmission device and power transmission device for driving robot wrist
US7553249B2 (en) * 2005-09-26 2009-06-30 Nabtesco Corporation Speed reducer, production method for speed reducer, roller bearing, crankshaft and production method for crank shaft
JP2009236193A (en) * 2008-03-26 2009-10-15 Thk Co Ltd Rotary drive device, joint structure of robot, and robot arm
JP4942706B2 (en) * 2008-06-12 2012-05-30 住友重機械工業株式会社 Bending gear system
JP4942705B2 (en) * 2008-06-12 2012-05-30 住友重機械工業株式会社 Bending gear system
JP4890511B2 (en) 2008-07-17 2012-03-07 タイヨーエレック株式会社 Bullet ball machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI614427B (en) * 2014-02-21 2018-02-11 Sumitomo Heavy Industries Flexing meshing gear device

Also Published As

Publication number Publication date
TWI425156B (en) 2014-02-01
CN102741586B (en) 2015-03-25
KR101324498B1 (en) 2013-11-01
JP5312364B2 (en) 2013-10-09
KR20120117909A (en) 2012-10-24
WO2011096347A1 (en) 2011-08-11
DE112011100426T5 (en) 2012-12-06
CN102741586A (en) 2012-10-17
JP2011158072A (en) 2011-08-18
DE112011100426B4 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
TW201144632A (en) Deflectively engaging type gear device
JP5256249B2 (en) Bending gear system
JP5812897B2 (en) Bending gear system
JP4942705B2 (en) Bending gear system
JP4942706B2 (en) Bending gear system
JP5950649B2 (en) Wave gear device
KR20140044857A (en) Internally-toothed gear unit with composite roller bearing, and wave gear device
TWI658221B (en) Harmonic generator and harmonic gear device
JP6031397B2 (en) Bending gear system
JP2010091073A (en) Eccentric oscillation type gear device
JP2010156430A (en) Deceleration device
TW201804097A (en) Harmonic wave generator and harmonic gear device characterized by preventing the increase of the rotational torque and the damage of the ball, caused by the contact with each other of the balls in the tight state
TW201804098A (en) Harmonic wave generator and harmonic gear device characterized by reducing the hardnesses of the hollow rollers, the inner ring raceway surface, and the outer ring raceway surface
JP2020153412A (en) Cycloid reduction gear and motor unit
JP2014081017A (en) Gear device
US11982343B2 (en) Strain wave gearing having roller-bearing-type wave generator
JP2017025971A (en) Reduction gear
JP6723652B2 (en) Gear device
JP2017082896A (en) Planetary gear device
JP2014177971A (en) Flexible engagement type gear device
CN105822750B (en) Eccentric oscillating gear device
JP2014152784A (en) Flexible meshing type gear device and method of manufacturing the same
JP5939955B2 (en) Gear device
JP2013245709A (en) Retainer of bearing and deflective meshing gear device including bearing having the retainer
JP2004232726A (en) Retainer for needle roller bearing and needle roller bearing