TW201144224A - Quality control process for UMG-Si feedstock - Google Patents

Quality control process for UMG-Si feedstock Download PDF

Info

Publication number
TW201144224A
TW201144224A TW100114831A TW100114831A TW201144224A TW 201144224 A TW201144224 A TW 201144224A TW 100114831 A TW100114831 A TW 100114831A TW 100114831 A TW100114831 A TW 100114831A TW 201144224 A TW201144224 A TW 201144224A
Authority
TW
Taiwan
Prior art keywords
umg
ingot
test
resistivity
ingots
Prior art date
Application number
TW100114831A
Other languages
Chinese (zh)
Inventor
Kamel Ounadjela
Marcin Walerysiak
Anis Jouini
Matthias Heuer
Omar Sidelkheir
Alain Blosse
Fritz Kirscht
Original Assignee
Calisolar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/770,688 external-priority patent/US8547121B2/en
Application filed by Calisolar Inc filed Critical Calisolar Inc
Publication of TW201144224A publication Critical patent/TW201144224A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)

Abstract

A quality control process for determining the concentrations of boron and phosphorous in a UMG-Si feedstock batch is provided. A silicon test ingot is formed by the directional solidification of molten UMG-Si from a UMG-Si feedstock batch. The resistivity of the silicon test ingot is measured from top to bottom. Then, the resistivity profile of the silicon test ingot is mapped. From the resistivity profile of the silicon test ingot, the concentrations of boron and phosphorous of the UMG-Si silicon feedstock batch are calculated. Additionally, multiple test ingots may be grown simultaneously, with each test ingot corresponding to a UMG-Si feedstock batch, in a multi-crucible crystal grower.

Description

201144224 六、發明說明: 【發明所屬之技彳軒領域】 發明領域 本發明廣泛關於-種石夕加工領域,更特別關於升級冶 金等級矽之純化。 t先前技術】 發明背景 光生伏打i業(pv)正在快速發展,而且是㈣消耗量 增加超過更傳統使用作為積體電路(IC)應用之原由。至今, 太陽能電池工業的矽需求開始與IC工業的矽需求競爭。現 存的製造技術’積體電路(IC)及太陽能電池工業二者皆需要 - 一再装滿、經純化的矽原料作為起始材料。 . 太陽能電池的材料代用品範圍從單晶、電子等級(EG) 矽至相對髒的冶金等級(MG)矽。EG矽產生具有效率接近理 論極限的太陽能電池,但是其價格過高。另一方面, 典型無法製造出可作用的太陽能電池。早期使用的多晶矽 太陽能電池則達成非常低大約6%之效率。在此上下文中, 效率係一種入射在電池上的能量,其被收集及轉換成電流 的分量之度量法。但是’能有其它對太陽能電池製造可有 用的半導體材料。但是,實務上,幾乎9〇%的商業太陽能 電池係由結晶矽製得。 至今可商業購得、效率在24%之電池可由較高純度的 材料及經改良的加工技術製得。這些工程發展已幫助工業 接近單接面矽太陽能電池效率的理論極限31〇/〇。 201144224 因為獲得及使用高純矽原料之高成本及複雜的加工需 求與來自ic工業的競爭需求,可使用於太陽能電池的石夕需 求無法由EG、MG或其它矽製造者使用已知的加工技術滿 足。只要此令人不滿意的狀況持續,就無法達到用於大規 模電能生產的經濟性太陽能電池。 數種因素可決定對太陽能電池製造有用的原始矽材料 之品質。矽原料品質經常依存在於材料中的雜質量而變 動。主要需控制及移除以便改善矽原料品質的元素係硼 (B)、磷(P)及鋁(A1),因為它們明顯影響矽的電阻率。以升 級冶金級(UM)矽為基礎之原料矽材料經常包括類似的硼及 鱗里。雖然可使用化學分析來測量某些元素的濃度,此方 法需要太小的樣品尺寸(幾克)且經常提供可變的結果,例 如’所存在的硼量可從每百萬重量份〇 5份(ppmw)變化至1 ppmw。再者,在不同批料上之化學分析已提供一致的硼及 磷濃度,但是其在電參數中具有極端的變化。這些不可信 賴的結果可由於該大影響相對較少的雜質而產生。 電阻率係使用來製造太陽能電池的♦ (Si)之最重要性 質之一。此係因為太陽能電池效率敏感地與電阻率相依。 太陽能電池技術的技術現況典型需要電阻率值在範圍〇 5 歐姆公分至5,〇歐姆公分間。現在製造之以um矽為基礎的 原料材料經常達到基礎電阻率低於〇·5歐姆公分(其典型由 太陽能電池製造商詳細指明)之最小電卩且率8對此有簡單的 理由:對升級UM-Si來說,昂貴的製程係主要關於取出非金 屬(包括摻雜原子B及P)。為了減低成本,有清楚減少此加 201144224 工的趨勢’即,UM-Si典型仍然包含高摻雜原子濃度。 在該製程中經常使用在方向性凝固期間偏析來純化, 以獲得升級冶金級矽。雜質移除方法包括方向性凝固,其 在所產生的矽鑄塊之最後部分(經常為該鑄塊的頂端)中濃 縮雜質(諸如B、P、A卜C及過渡金屬)以結晶。在完美的情 況下’於方向性凝固過程期間的結晶度將從頂端至底部一 致’且固體-液體界面將遍及該整體鑄塊呈平面。此將造成 遍及該鑄塊從頂端至底部一致的雜質濃度曲線圖,允許在 鑄塊中的雜質根據一次性橫越鑄塊的平面切割(其移除鑄 塊的頂端部分)被移除。 但是’在方向性凝固過程期間控制熱場困難且經常造 - 成、结晶在矽鑄塊中不均勻生長。此造成頂端至底部的雜質 . 濃度曲線圖遍及該鑄塊(即,從鑄塊的一端至另一端)不均 勻。此效應在大量石夕的大量製造中被進一步放大。因為鑄 塊的不同區域具有不同的雜質曲線圖,因此不同的電阻率 曲線圖’橫越鑄塊的平面切割無法最大化該可使用的矽產 率’同時仍然移除大部分濃縮的雜質。 再者,在進料UMG-Si原料品質中之變化性需要一控制 方法來測試及分析UMG-Si材料品質。典型來說,諸如硼(B) 及碟(P)之元素可降低Si原料品質。若其不控制在某些濃度 極限内時,它們會在鑄塊電阻率上產生相當大的變化。其 匕疋素(諸如(但不限於)碳、氧、氮)、具有這些元素的化合 物(特別是Sic)亦會降倾塊品質。 由於這些及類似雜質的大效應,應該分析及測試原料 201144224 材料以保證適當的品質,料間在進料原料之雜晰 率上的變化影響鑷塊之底部至頂端電阻率^及電陡 對P型部分)。 ;(n型部分 UMG-Si原料的供應者不會對將運輸至買主 確地建立品質控制。典型的化學分析經常產生料精 果’此係因為該大影響相對較少的雜質而產生。可^賴結 應者經常測試太小的樣品尺寸,此與在原料抵料中者供 磷濃度的變化性有關。額外的是,疊加的測量誤差:硼及 結果不確定。這些測量誤差發生—種跡象,_ 量 …、任不同桃 料上之化學分析產生相同的硼及磷含量,然而在電參數上 有變化。對依靠複數個UM G - S i原料批料來鑄造矽鑄塊的八 司來說,在批料當中的這些變化會無法接受。 【明内】 發明概要 因此,已對用於UMG-Si原料材料以便提供可信賴的雜 質資料/測量之品質控制方法提高需求。該方法必需準確且 對原料批料提供來自樣品測試鑄塊的雜質資料。對更準確 地鑑定原料材料批料中之雜質濃度曲線圖存在 進步需求’以便供應者可更信賴地製造出符合想要的雜 質濃度閾之UMG-Si ’及太陽能電池製造商可改良矽晶圆產 率。 對使用簡單的方法來測量以UMG為基礎之多晶矽材料 (其產生具有好的鑄塊產率及經改善的機械與電性質之材 料’後者與太陽能電池品質有關)的雜質濃度存在進一步需 201144224 求。此方法應該容易地可轉移至較高等級之非1;1^(}原料石夕 (其部分或專門使用於結晶單晶矽材料’例如藉由施加cz 技術或FZ技術)° 根據所揭示的主題事件’提供一種用來測量在批料 UMG-Si原料中的硼及填濃度之方法’其實質上消除或減少 與先前發展的UMG-Si雜質濃度測量方法相關之缺點及問 題。 本揭示提供一種用來測量在批料UMG_Si原料中的棚 及璘濃度之方法。藉由方向性凝固來自UMG_Sl原料批料的 熔融UMG- S i而形成矽測試鑄塊。從頂端至底部測量矽測試 鑄塊的電阻率。然後’繪製矽測試鑄塊之電阻率曲線圖。 從矽測試缚塊的電阻率曲線圖來計算該UMG-Si矽原料批 料之硼及磷濃度。 根據所揭示的主題事件之一個觀點’從不同的UMG-Si 原料批料同時生長複數個矽測試鑄塊。 本揭示之工藝優點包括更準確的矽雜質濃度資料,此 允許獲得較高可使用的石夕產率、改良UMG-Si製程控制、及 改善UMG-Si製造效率與成本。根據測試鑄塊的電阻率曲線 圖來計算UM G - S i原料批料之雜質濃度的進一步工藝優點 包括更一致及準確的雜質濃度測量。 將從本文所提供的說明明瞭所揭示之主題事件和額外 的新穎特徵。此概述的目的非為所主張的主題事件之综八 説明,而是提供主題事件的某些功能性之簡短综述。於此 所提供的其它系統、方法、特徵及優點將由熟知技藝之人 201144224 士在檢驗下列圖形及詳細說明後變明瞭。想要包含在此說 明中的此額外系統、方法、特徵及優點全部在伴隨的申請 專利範圍内。 圖式簡單說明 為了更完整了解所揭示的主題事件及其優點,現在參 考下列描述與相關連的伴隨圖形,其中類似的參考數字指 示出類似的特徵及其中: 第1圖(先述技藝)係一用來減少在矽中的硼、磷及鋁含 量之製程流程; 第2圖顯示出不同UMG原料批料之實際測量的雜質之 曲線圖; 第3圖係一曲線圖,其顯示出在11]^(3_以鑄塊申的雜質 硼及磷之濃度曲線圖; 第4圖係一曲線圖,其顯示出在第3圖中所測量的 UMG-Si鑄塊之電阻率曲線圖(計算對測量的電阻率); 第5圖顯示出UMG-Si·塊在方向性凝固後之截面影 像; 第6圖係UMG-Si鑄塊在方向性凝固後之截面影像與根 據所揭示的主題事件所產生之裁切線; 第7圖係矽鑄塊的3D凝固界面之圖解說明; 第8圖係一曲線圖,其顯示出在UMG-Si鑄塊中的雜質 硼、磷及鋁之濃度曲線圖; 第9圖係在第8圖中所描述的UMG-Si鑄塊之鋁濃度的 截面影像; 8 201144224 第10圖係在第8圖中所描述的UMg 截面影像; -Sl鑄塊之碟濃度的201144224 VI. Description of the Invention: [Technical Fields of the Invention] Field of the Invention The present invention is broadly related to the field of the processing of the stone processing, and more particularly to the purification of the upgraded metallurgical grade. t Prior Art Background of the Invention Photovoltaic i industry (pv) is rapidly evolving, and is (4) an increase in consumption over the more traditional use as an integrated circuit (IC) application. To date, the demand for solar cells has begun to compete with the demand for the IC industry. Existing manufacturing technologies, both integrated circuits (ICs) and the solar cell industry, require repeated and purified germanium materials as starting materials. The material substitutes for solar cells range from single crystal, electronic grade (EG) to relatively dirty metallurgical grade (MG). EG矽 produces solar cells that are close to the theoretical limit of efficiency, but their price is too high. On the other hand, it is typical that a solar cell that does not work can be produced. Early use of polycrystalline silicon solar cells achieved a very low efficiency of about 6%. In this context, efficiency is a measure of the amount of energy incident on a battery that is collected and converted into a component of current. However, there are other semiconductor materials that can be used in the manufacture of solar cells. However, in practice, almost 9% of commercial solar cells are made from crystalline germanium. Bacies commercially available to date with 24% efficiency can be made from higher purity materials and improved processing techniques. These engineering developments have helped the industry approach the theoretical limit of single-junction solar cell efficiency by 31〇/〇. 201144224 Because of the high cost and complex processing requirements for obtaining and using high-purity tantalum raw materials and the competitive demand from the ic industry, the demand for solar cells cannot be used by EG, MG or other niobium manufacturers using known processing techniques. Satisfy. As long as this unsatisfactory condition persists, economical solar cells for large-scale power production cannot be achieved. Several factors determine the quality of the raw tantalum material that is useful for solar cell manufacturing. The quality of the raw materials often varies depending on the amount of impurities present in the material. The main elements that need to be controlled and removed to improve the quality of the tantalum material are boron (B), phosphorus (P) and aluminum (A1) because they significantly affect the resistivity of tantalum. Raw materials based on graded metallurgical grade (UM) crucibles often include similar boron and scales. Although chemical analysis can be used to measure the concentration of certain elements, this method requires too small a sample size (several grams) and often provides variable results, such as 'the amount of boron present can be from 5 parts per million parts by weight. (ppmw) changes to 1 ppmw. Furthermore, chemical analysis on different batches has provided consistent boron and phosphorus concentrations, but it has extreme variations in electrical parameters. These unreliable results can result from this relatively large amount of impurities. Resistivity is one of the most important qualities of ♦ (Si) used to make solar cells. This is because the solar cell efficiency is sensitive to resistivity. The current state of the art of solar cell technology typically requires a resistivity value in the range 〇 5 ohm centimeters to 5, 〇 ohm cm. The um矽-based raw materials currently manufactured often reach a minimum electrical conductivity of less than 〇·5 ohm centimeters (typically specified by the solar cell manufacturer) and the rate 8 has a simple reason for this: For UM-Si, expensive processes are primarily concerned with the removal of non-metals (including dopant atoms B and P). In order to reduce costs, there is a clear reduction in the trend of this addition. That is, UM-Si typically still contains high doping atomic concentrations. Segregation during directional solidification is often used in this process to purify to achieve upgraded metallurgical grades. The impurity removal method includes directional solidification which concentrates impurities (such as B, P, A, C, and transition metal) in the final portion of the resulting ingot ingot (often the top end of the ingot) to crystallize. In the perfect case, the crystallinity during the directional solidification process will be consistent from the top to the bottom and the solid-liquid interface will be planar throughout the monolith. This will result in a consistent impurity concentration profile throughout the ingot from top to bottom, allowing impurities in the ingot to be removed in accordance with a planar cut across the ingot (which removes the top portion of the ingot). However, it is difficult to control the thermal field during the directional solidification process and it is often formed and crystallized unevenly in the ingot ingot. This causes impurities from the top to the bottom. The concentration profile is uneven across the ingot (i.e., from one end of the ingot to the other). This effect is further amplified in the mass production of a large number of Shi Xi. Because different regions of the ingot have different impurity profiles, different resistivity plots 'planar cuts across the ingot cannot maximize the usable yield' while still removing most of the concentrated impurities. Furthermore, the variability in the quality of the feed UMG-Si feedstock requires a controlled method to test and analyze the UMG-Si material quality. Typically, elements such as boron (B) and dish (P) can reduce the quality of the Si material. If they are not controlled within certain concentration limits, they will produce considerable changes in the ingot resistivity. Its halogens (such as, but not limited to, carbon, oxygen, nitrogen), compounds with these elements (especially Sic) also degrade the quality of the cake. Due to the large effects of these and similar impurities, the raw materials 201144224 should be analyzed and tested to ensure proper quality. The variation in the feed rate of the feedstock between the feedstock affects the bottom to the top resistivity of the crucible and the electrical steepness. Type part). (The supplier of the n-type UMG-Si raw material does not establish quality control for transport to the buyer. Typical chemical analysis often produces fine fruit. This is due to the relatively small amount of impurities.) ^Lie responders often test too small sample sizes, which is related to the variability of the phosphorus supply concentration in the raw material. In addition, the superimposed measurement error: boron and the result are uncertain. These measurement errors occur. Signs, _ quantity..., chemical analysis on different peaches produces the same boron and phosphorus content, but there are variations in electrical parameters. Eight slabs of bismuth ingots are cast on a batch of UM G - S i raw materials. In the meantime, these changes in the batch are unacceptable. [In the Ming] Summary of the Invention Therefore, there is an increasing demand for quality control methods for UMG-Si raw material materials to provide reliable impurity data/measurement. Accurate and accurate provision of raw material batches from the sample test ingots. There is an increasing demand for more accurate identification of impurity concentration profiles in batches of raw materials' so that suppliers can be more convinced UMG-Si' and solar cell manufacturers that manufacture the desired impurity concentration threshold can improve the wafer yield. A simple method is used to measure UMG-based polysilicon materials (which produce good ingots) The impurity concentration of the yield and the improved mechanical and electrical properties of the material 'the latter is related to the quality of the solar cell' is further required by 201144224. This method should be easily transferable to a higher grade of non-1; Evening (partially or exclusively for crystalline single crystal germanium materials 'for example by applying cz technology or FZ technology) ° provides a measure for boron and fill concentration in batch UMG-Si materials according to the disclosed subject matter The method 'which substantially eliminates or reduces the disadvantages and problems associated with previously developed UMG-Si impurity concentration measurement methods. The present disclosure provides a method for measuring the concentration of shed and helium in a batch of UMG_Si material. The solidification is derived from the molten UMG-S i of the UMG_Sl raw material batch to form the niobium test ingot. The resistivity of the ingot is measured from the top to the bottom. Resistivity plot. Calculate the boron and phosphorus concentrations of the UMG-Si® raw material batch from the resistivity plot of the test block. According to one of the disclosed subject matter, 'from different UMG-Si raw materials Simultaneous growth of a plurality of niobium test ingots. The process advantages of the present disclosure include more accurate niobium impurity concentration data, which allows for higher usable Shih's yield, improved UMG-Si process control, and improved UMG-Si fabrication. Efficiency and cost. Further process advantages of calculating the impurity concentration of the UM G - S i raw material batch based on the resistivity plot of the tested ingot include a more consistent and accurate impurity concentration measurement. It will be apparent from the description provided herein. Theme events and additional novel features. The purpose of this overview is not a comprehensive description of the claimed subject matter, but rather a brief overview of some of the functional aspects of the subject matter. Other systems, methods, features, and advantages will be apparent from the following figures and detailed descriptions. This additional system, method, features, and advantages are intended to be included within the scope of the accompanying claims. BRIEF DESCRIPTION OF THE DRAWINGS For a more complete understanding of the disclosed subject matter and its advantages, reference is now made to the accompanying description of the accompanying drawings, in which The process flow for reducing the boron, phosphorus and aluminum contents in the crucible; Figure 2 shows the actual measured impurity profile of the different UMG raw material batches; Figure 3 is a graph showing the 11] ^(3_The concentration curve of the impurity boron and phosphorus in the ingot; Fig. 4 is a graph showing the resistivity curve of the UMG-Si ingot measured in Fig. 3 (calculation pair) The measured resistivity); Figure 5 shows the cross-sectional image of the UMG-Si block after directional solidification; Figure 6 shows the cross-sectional image of the UMG-Si ingot after directional solidification and according to the disclosed subject matter The resulting cutting line; Figure 7 is a graphical illustration of the 3D solidification interface of the ingot casting block; Figure 8 is a graph showing the concentration profiles of the impurities boron, phosphorus and aluminum in the UMG-Si ingot; Figure 9 is a UMG-Si ingot as described in Figure 8. Concentration of cross sectional images; 8201144224 Figure 10 a cross-sectional image based UMg in FIG. 8 as described; Singles -Sl concentration of ingot

第11圖係在第8圖中所描述的UIyIG 截面影像; •Si鑄塊之硼濃度的 其顯示出在雙方向性凝固爐中 第12圖係一製程流程,其顯示 凝固的矽材料之側視圖; 第13圖係一製程流程, 凝固的矽材料之上俯視圖; 其顯示出在雙方向性凝固爐中 第14圖為在雙方向性凝固爐中所產生的傾塊之犯凝 固界面的圖解說明; 第15圖係一曲線圖, 其顯示出多種雜質濃度的電阻率 曲線圖及裁切線; 第16-18圖係-曲線圖’其闡明在料塊之電阻率曲線 圖與雜質濃度曲線圖間的關係; 第19圖係一曲線圖,其顯示出在第16_18圖+的石夕鑄塊 之電阻率曲線圖(以歐姆-公分對凝固分量); 第20圖呈現出在第19圖中的電阻率曲線圖之相應的雜 質濃度曲線圖; 第21圖顯示出先述技藝用來減少硼、磷及鋁的製程流 程之圖解說明; 第22及23圖係一曲線圖,其顯示出不同UMG_Si原料批 料之實際測量的電阻率; 第24圖顯示出同步進行方向性凝固的範例測試鑄塊之 B及P的ICPMS資料; 201144224 第25圖係一曲線圖,其顯示出在第24圖中的批料1之測 量的電阻率資料; 第26圖係一曲線圖,其顯示出在第24圖中的批料2之測 量的電阻率資料; 第27圖係一曲線圖,其顯示出在第24圖中的批料3之測 量的電阻率資料; 第28圖係一曲線圖,其顯示出在第24圖中的批料4之測 量的電阻率資料; 第29圖係所鑄造的鑄塊之相片; 第30圖繪圖地描出根據所揭示的主題事件之結晶生長 器坩堝組態的具體實例; 第31圖係一相片表示,其顯示出一修改,每輪熱組態 單坩堝熱組態至四(4)坩堝; 第32圖係一相片實施例,其顯示出在實際UMG-Si鑄塊 中實測到的雜質;及 第33圖係一製程流程,其顯示出所揭示的UMG-Si控制 方法之一個具體實例的主要步驟。 I:實施方式3 較佳實施例之詳細說明 下列說明不欲採用來限制觀念,而是用於描述本揭示 的共通原理之目的。本揭示的範圍應該參照申請專利範圍 而決定。雖然參照富含鋁的UMG矽之純化來描述,熟知此 技藝者可將於本文中所討論的原理應用至任何升級冶金等 級材料。 10 201144224 在圖形中闡明所揭示的主題事件之較佳具體實例,使 用類似的數字來指出不同圖形之類似及相應部份。 第1圖顯示出先述技藝用來減少在石夕中的棚、填及銘含 量之製程流程。在步驟2中,選擇純的原料(諸如’石英及 煤)來製造含有低硼含量的MG-Si。然後,步驟4透過MG-Si 精製進一步減少鋁含量。額外的是,硼含量可進一步減少 (例如,在含有氧燃料燃燒器的爐中),最後導致UMG-Si。 然後,為了進一步減少雜質(諸如硼、磷及鋁)’ UMG-Si經 常透過方向性凝固系統加工,直到準備好釋放出矽原料(典 型為當硼濃度已經減低至低於詳細指明的閾濃度時)。在第 一DSS通過6及第二DSS通過8二者中,切掉具有最高雜質濃 度的鑄塊部分(通常為頂端部分),產生較純的矽。第一DSS 通過8可產生具有雜質的矽(例如,大於所需求的每百萬重 量份0.5份)及第二DSS通過10可產生具有雜質少於所需求 的每百萬重量份0.5份之矽。 需要更有效的雜質控制來提供較純的矽,同時減少浪 費。在第一DSS通過8後及在裁切以移除雜質前,於矽鑄塊 上進行電阻率測量將實質上改善矽產率。同樣地,在第二 DSS通過10後及在第二裁切以移除雜質前,於矽鑄塊上進 行電阻率測量將實質上改善最後矽產物的矽產率。 第2圖係一曲線圖,其顯示出在不同的UMG原料批料 中’所選擇的元素之實際測量的濃度,以每百萬重量份計。 注意,貫穿不同的原料批料在元素濃度上有大的變化。此 變化性主要由UMG-Si原料的來源材料(諸如,石英及煤)造 201144224 成。在雜質濃度上的小變化可明顯影響每批料之鑄塊底部 至頂端電阻率的變化性和鑄塊產率(n部分對p部分)。鋁4〇、 石朋42及麟44係欲控制的主要元素,因為它們明顯影響材料 的電阻率。 第3圖係一曲線圖,其顯示出在UMG-Si鑄塊中的摻雜 物石朋50及罐52之濃度曲線圖(以每立方公分的原子數對凝 固分量)。在第3圖中’硼50的初始濃度為每百萬重量份〇 48 份及填52的初始濃度為每百萬重量份15份。硼及磷沿著凝 固分里(或鑄塊兩度)的濃度變化反映出在由元素特定的偏 析行為所造成之方向性凝固期間不均勻偏析。在鑄塊中的 硼及磷之不均勻偏析在約80%鑄塊高度處造成導電度型式 改變(從P型(硼’鋁)變成!!型(磷))^此在導電度型式上的改 變由B/P比率54顯示出(在第3圖上,以B_P差異的絕對值顯 示出)。因此,B/P比率(諸如B/P比率54)限制p型材料的產 率。在UMG原料材料具有相對高鋁濃度的情況中,鋁亦可 藉由偏移各別的電阻率曲線圖衝擊產率。 第4圖係一曲線圖’其顯示出顯現在第3圖中的卩“^^ ( 鑄塊之電阻率曲線圖(計算的電阻率62及測量的電阻. 60)。電阻率以歐姆-公分來度量,及鑷塊高度以底部對頂》 百分比來度量(轉變成凝固分量克)。電阻率係從材料的、爭^ 雜(其係硼及磷濃度的絕對差異(在第3圖中以abs^p)54i 示出))測量。注意,電阻率曲線圖反映出由硼及碟的偏析 徵在鑄塊中於約80%鑄塊高度處造成導電度型式改 第3圖中如為25。 12 5 > 201144224 第5圖顯示出UMG-Si鑄塊在方向性凝固後之截面影 像。雜質線70反映出在以富含A1的UMG-Si原料為基礎之典 型鑄塊中,所測量的導電度型式改變。在此鑄塊的截面影 像中’可觀察到鑄塊產率線的強烈變化(如由雜質線7〇顯示 出)’其指示出在左鑄塊邊72上鑄塊產率接近90%及在右鑄 塊邊74上鑄塊產率接近60%。穿越鑄塊的大產率變化反映 出在凝固期間穿越鑄塊不均勻的熱狀態,此導致摻雜元素 B、P及A1不均勻偏析狀態。 方向性凝固典型將雜質濃縮在鑄塊頂端處,然後,移 除具有大部分雜質的頂端層而遺留較純的底部層用於進一 步加工。如顯示在第5圖中,層78具有比層77少的雜質。但 是,UMG-Si鑄塊在方向性凝固後很少具有平坦、平面的雜 質曲線圖。平坦裁切線76顯示出典型將使用來移除濃縮在 鑄塊頂端中的雜質之平坦切除線。但是,平坦切割不利用 該雜質在材料中不均勻及不一致的分佈(由雜質線7〇顯示 出)’因此導致效能差及浪費的UMG-Si加工。 第6圖顯示出UMG-Si铸塊在方向性凝固後之戴面影 像,其具有根據所揭示的主題事件產生之裁切線。雜質(諸 如硼、磷及鋁)在矽中具摻雜活性及影響鑄塊磚的電阻率。 電阻率測量提供從何處移除鑄塊的污染部分之準確測量, 以減少在鑄塊整體中的摻雜物及金屬雜質之絕對濃度。 最低的雜質濃度係在冷區域80(首先凝固的區域)中發 現。最高的雜質濃度係在熱區域82(最後凝固的區域)中發 現。雜質之偏析係在方向性凝固期間從熔融狀態凝固的鑄 13 201144224 塊之最後°卩77巾濃縮。此造成在鑄塊中的雜質曲線圖逐區 域不同。ί主意’在鳞塊磚妨及触碑94中的雜質程度不同。 鑄塊已經切割成碑,以藉由客製化每塊磚的裁切線來控制 雜質移除。已經在方向性凝固後切割出矯塊磚86、88、9〇、 92及94。切割_4反映出在影像上㈣分界線。 在已經切割出碑後,藉由測量鑄塊從底部至頂端的電 阻率並繪⑽些計算值,在曲線圖或3D電阻率地圖上產生 鑄塊的電阻率曲線圖。對频的電轉測量亦可發生在該 禱塊已經被_成磚前。再者,該磚尺切根據許多因素 來製訂,包括(但不限於辦鑄塊的尺寸、料塊的雜質濃 度、獲得準確㈣㈣曲_所需要的尺寸及製造效率需 求。 在第6圖中’雜質線反映出在鑄塊中於閾需求程度處之 雜質濃度。標準切龍4平坦裁切線,其試圖平衡雜質 移除與矽材料產率。經控制的切割顯示出根據該磚的電阻 率曲線圖對每塊磚製訂裁切線。經控制的切割線係根據蹲 的電阻率曲線㈣每塊各料定義出經計算的裁切線,因 此僅移除包含濃縮_質之㈣部份,同時保树材料產 率。此允許最理想地移除雜質而沒有犧牲可利用的石夕。此 切割係藉由測量每塊磚從頂端至底部的電阻率來計算。 傳統的標準切割沒有進行根據所揭示的方法之經控制 的切割,其會在鑄塊中(諸如在磚94的鑄塊區域中)遺留許多 雜質,使得其需要進行另-:欠方向性凝固以進-步純化起 源於此鑄塊的材料。 14 201144224 第7圖係矽鑄塊的3D凝固界面之圖解說明。因為難以控 制凝固,在鑄塊結晶期間的固體_液體界面非為平面及產生 不均勻的偏析層,如顯示在第7圖中。在方向性凝固後雜 質在鑄塊頂端中濃縮。但是,凝固層90、92及94明顯不均 勻此思明著5亥凝固層非為平面而是在鑄塊中垂直地向上 及向下變化,且遍及鑄塊具有不同厚度。此造成雜質曲線 圖在鑄塊中逐區域不同,此產生不均勻賴塊雜質曲線 圖此不均勻凝固層讓其難以容易及有效率地移除濃縮雜 質而沒有犧牲高產率矽或在鑄塊中遺留太多雜質。 第8圖係一曲線圖’其顯示出在UMG材料鑄塊中之摻雜 物硼100、磷102及鋁106的濃度曲線圖(每立方公分的原子 數對轉變成凝固分量克的鑄塊高度百分比”在第8圖中, 硼的初始濃度係0.411 ppmw、磷的初始濃度係1.3 ppmw及 #呂的初始濃度係23_08 ppmw。由於在方向性凝固期間石朋、 磷及鋁的不同偏析係數,在大約87°/。鑄塊高度處有導電度 型式改變。此改變係由硼及磷的絕對濃度加上鋁的濃度 (abs(B-P+Al),在第8圖上以1〇4顯示出)反映出’及其定義 出P型材料產率的極限。 第9圖係在第8圖中描述的UMG-Si鑄塊之鋁濃度曲線 圖的截面影像。再次,由於難以在方向性凝固製程期間控 制熱場,結晶層變成不均勻,產生不均勻的雜質濃度曲線 圖。鋁濃度在鑄塊頂端處增加且遍及鑄塊截面變動,如由 雜質線110顯示出。此使得難以穿越全體鑄塊有效率地移除 鋁及其它雜質。 15 201144224 第10圖係描述在第8圖中的UMG-Si鑄塊之填濃度曲線 圖的截面影像。鱗濃度在鎮塊頂端處增加且遍及禱塊截面 變動,如由雜負線112顯示出。麟濃度在禱塊的某些部分中 明顯較南,使仔難以沿著整體鎮塊由一條平坦裁切線最理 想地移除磷雜質。 第11圖係描述在第8圖中的UMG-Si鑄塊之硼濃度曲線 圖的截面影像。$朋濃度在鱗塊頂端處增加且遍及鑄塊截面 變動,如由雜質線114顯示出。爛濃度在鑄塊的某些部分中 明顯較南’使付難以沿著整體禱塊由一條平坦裁切線最理 想地移除鱗雜質。 第12圖係一製程流程,其顯示出在雙方向性凝固爐中 的矽材料凝固之側視圖。雙方向性凝固爐係—種包含頂端 及側邊加熱器的凝固爐’經常安排一加熱器加熱铸塊頂端 及多個加熱器加熱鑄塊側邊,其在所產生的矽鑄塊之頂端 及一邊處濃縮雜質。第12圖的雙方向性凝固系統使用頂端 加熱器122及邊加熱器120及124,以在鑄塊大約頂端加熱器 122的頂端處及在放置邊加熱器120的鑄塊邊處二者濃縮雜 質。液體矽包含濃縮的雜質及亦已知為污染區域。在爐溫 度1500°C下’妙為完全液體。在步驟126中,爐溫降低至145〇 t,及熔财部分凝固,在鑄塊底部低於魏融處形成一 矽凝固層。最近頂端加熱器122的矽仍然熔融,同時遠離頂 端加熱器122的矽結晶及雜質濃縮在熔融矽中。在步驟以^ 期間,邊加熱器120及邊加熱器124設定在—致的溫度,及 凝固时形成垂直梯度同_的水平凝固梯度健二致。 16 201144224 在步驟128中,於爐溫1420°C下矽大部分結晶,且僅有 最近頂端加熱器122及邊加熱器120的區域熔融,剩餘的砂 已結晶。邊加熱器124及頂端加熱器122已冷卻,其允許最 近邊加熱器124及頂端加熱器122的矽結晶,及熔融的矽移 動最接近邊加熱器120。雜質濃縮在剩餘的液體矽中,在禱 塊最近熱的邊加熱器120之頂端角落中。因此,雜質濃縮在 最接近頂端加熱器122及邊加熱器120的熔融區域中。此為 將被移除的區域,以純化完全結晶的矽鑄塊。雙方向性凝 固爐可在頂端上配備有五個孔洞(一個在中心及四個在角 洛)’以控制及測量凝固的矽部分之高度(經常使用簡單的石 英棒)。在步驟130中,於爐溫140(TC下,冷卻邊加熱器12〇 及矽鑄塊完全凝固。雜質濃縮在最接近頂端加熱器122及邊 加熱器120的結晶區域中。現在,準備好將該鑄塊分成碑及 移除雜質。雙方向性凝固爐使用接近加熱器的熱區域來濃 縮雜質,以便在矽已完全結晶後有效率地移除。 在製程中,當熔融的矽在鑄塊中開始凝固時,產生垂 直的石夕凝©職。切在鑄職部巾冷㈣,其凝固及雜 負(蝴、填及!g)移動進人剩餘的炫融♦巾^在固體/液體界 面到達過度改變導電度型式的區域(通常在8〇%鎮塊凝固的 圍内:M'j ’ S周整邊加熱器的溫度以產生水平的石夕凝固梯 度,其將剩餘的炫融料向鑄塊的—邊(最近較熱的邊加熱 器之邊)。 第13圖係製程流程,其顯示出石夕材料在雙方向性凝 固爐(無顯示頂端加熱器)中凝固之上俯視圖。一起調整邊加 17 201144224 熱器132及邊加熱器丨34以產生水平矽凝固梯度及最近邊 加熱器132濃縮雜質。最初,在爐溫15〇〇β(:下,於坩堝中的 全部矽皆熔融。在步驟丨36中,將爐溫調整至145〇〇c及熔融 的矽在坩堝底部處開始凝固(參見第12圖,在雙方向性凝固 爐中的矽凝固之側視圖)’同時熔融的矽移動至最近的頂端 加熱器。 在步驟138中,於爐溫1420°C下,邊加熱器132加熱及 邊加熱器134冷卻,此產生水平的矽凝固梯度。當最近邊加 熱器134的矽冷卻及凝固時,熔融的矽移動至最近邊加熱器 132。雜質收集在最近邊加熱器132的熔融石夕中。當爐溫在 步驟140中降低至1400°C時,剩餘的熔融矽(與濃縮的雜質 程度)凝固’及雜質被捕獲在最近邊加熱器132的鑄塊區域 中。 第14圖係在雙方向性凝固爐中產生的石夕鑄塊之3d凝固 界面的圖解說明。所顯示出者,固體-液體界面在鑄塊結晶 期間實質上保持平面,造成實質上平坦及平面的凝固層。 因此,從頂端至底部的雜質曲線圖對矽鑄塊的任何區域實 質上相同。凝固層150、152及154遍及鑄塊係平面,不像在 第7圖中的層90、92及94。再者,如從上俯視圖顯示出,污 染的凝固層已經透過使用雙方向性凝固爐(諸如顯示在第 13圖中者)進一步濃縮在邊156上。此形成准許雜質濃縮在 可容易地根據所揭示的方法裁切之區域中。該雙方向性凝 固爐使用具有矩形、非二次截面的坩堝運轉為較佳,藉此 較小的财禍邊面對該邊加熱器° 18 201144224 第15圖係一曲線圖,其顯示出多種雜質濃度的電阻率 曲線圖(以歐姆-公分對凝固分量克圖形化)及裁切線。電阻 率曲線圖強烈與雜質濃度相依。此允許決定在電阻率曲線 圖上的每個點處之雜質濃度。裁切線166、168及170與铸塊 的電阻率曲線圖相依。裁切線可根據最後產物允許的閣石夕 雜質濃度決定。 禱塊電阻率曲線圖160具有棚濃度〇·45 ppmw、碟濃产 1.59 ppmw及鋁濃度0.087 ppmw。裁切線166與電阻率曲線 圖160相應及係對電阻率曲線圖160產生校正雜質濃度閣量 之經控制的切割線。 鑄塊電阻率曲線圖162具有棚濃度0.45 ppmw、碟濃度 1.45 ppmw及鋁濃度〇_〇79 ppmw。裁切線168與電阻率曲線 圖162相應及係對電阻率曲線圖162產生校正雜質遭度間量 之經控制的切割線。 鑄塊電阻率曲線圖164具有硼濃度0.45 ppmw、碟濃度 1.59 ppmw及鋁濃度〇.119 ppmw。裁切線17〇與電阻率曲線 圖164相應及係對電阻率曲線圖164產生校玉雜質濃度闊量 之經控制的切割線。 第16-18圖係一曲線圖’其顯示出在鱗塊的電阻率曲線 圖與相同鑄塊的雜質濃度曲線圖間之關係。經控制的裁切 線可依想要的特別雜質之閾濃度而計算。第16-18圖顯示出 以鋁濃度0.5 ppmw為基礎的裁切線’但是該裁切線可以一 >^數量的不同雜質(諸如’删或填)在任何濃度下為基礎。 第16圖闡明來自相同石夕鑄塊的電阻率曲線圖及雜質濃 19 201144224 度曲線圖之裁切線的計算。上曲線圖顯示出具有硼濃度 〇_45 Ppmw、鱗濃度I·45 ppmw及鋁濃度〇.〇79 ppmw的石夕铸 塊之電阻率曲線圖18 2 (以歐姆-公分對凝固分量百分比)。下 曲線圖顯示出相同鑄塊的硼186、磷184及鋁188之濃度曲線 圖(以每立方公分的原子數對凝固分量百分比)。裁切線180 已經在鱗塊高度84.5%下對鋁濃度〇.5 ppmw計算。其意謂著 乂禱塊低於裁切線180時具有紹濃度低於0.5 ppmw,及該鑄 塊在裁切線180上具有鋁濃度高於0.5 ppmw 〇 第17圖闡明來自相同矽鑄塊的電阻率曲線圖及雜質濃 度曲線圖之裁切線的計算。上曲線圖顯示出具有硼濃度 〇·45 PPmw、磷濃度1.45 ppmw及鋁濃度0.117 ppmw的矽鑄 塊之電阻率曲線圖2〇2(以歐姆-公分對凝固分量百分比)。下 曲線圖顯示出相同鑄塊的硼2〇8、磷204及鋁206之濃度曲線 圖(以每立方公分的原子數對凝固分量百分比)。裁切線2〇〇 已經在鑄塊高度77%下對銘濃度〇.5 ppmw計算。其意謂著 3玄鎮塊低於裁切線200時具有紹濃度低於0.5 ppmw及該鑄 塊在裁切線200上具有紹濃度高於〇.5 ppmw。 第18圖闡明來自相同石夕鑄塊的電阻率曲線圖及雜質濃 度曲線圖之裁切線的計算。上曲線圖顯示出具有硼濃度 0.45 ppmw、填濃度1.8 ppmw及鋁濃度0_079 ppmw的矽铸塊 之電阻率曲線圖224(以歐姆-公分對凝固分量百分比)。下曲 線圖顯示出相同鑄塊的硼228、磷226及鋁230之濃度曲線圖 (以每立方公分的原子數對凝固分量百分比)。裁切線222已 經在鎮塊高度84.5%下對紹濃度〇·5 ppmw計算。其意謂著該 20 201144224 鑄塊低於裁切線222時具有鋁濃度低於0.5 ppmw及該鑄塊 在裁切線222上具有紹濃度高於〇·5 ppmw。裁切線220已亦 在鑄塊高度83%處,從電阻率曲線圖在p/N改變(其中鑄塊從 P型移動至η型)處計算。此裁切線反映出最理想的切割線’ 以從鑄塊中保存最高的ρ型矽材料產率。 第19圖係一曲線圖,其顯示出在第16-18圖中的矽鑄塊 之電阻率曲線圖(以歐姆-公分對凝固分量百分比)。電阻率 曲線圖182顯示出在第16圖中的鑄塊之電阻率,及對鋁濃度 0.5 ppmw在鑄塊高度84·5%處計算出裁切線180。電阻率曲 線圖102顯示出在第17圖中的鑄塊之電阻率,及對鋁濃度 0.5 ppmw在鑄塊高度77%處計算出裁切線2〇(^電阻率曲線 圖224顯示出在第18圖中的鑄塊之電阻率及在鑄塊高度 83.5%處於P/N轉換處計算出的裁切線220。 第20圖顯現出在第19圖中的電阻率曲線圖182、202及 224的硼、填及鋁之相應濃度曲線圖。 第21至33圖係針對一控制製程及用來評估UMG-Si原 料品質的方法。藉由分析從多重UMG-Si原料批料製得之結 晶的鑄塊測試樣品之電阻率曲線圖,可決定那些批料的硼 及磷含量(因此決定UMG-Si原料可製得的品質)。再者,亦 可偵測其它雜質’諸如(但不限於)SiC内含物。 第21圖顯示出先述技藝製程流程’根據誘導耦合電漿 質譜儀(ICPMS)方法來減少在矽中的硼、填及鋁含量之圖解 說明。在步驟210中,選擇純原料(諸如石英及煤)來製造具 有低硼含量的MG-Si。然後,步驟212透過河^以精製進一 21 201144224 步減少鋁含量。額外地,可例如在含有氧燃料燃燒器的爐 中減少進一步硼含量,最終導致UMG-Si。然後,為了進— 步減少雜質(諸如硼、磷及鋁),施加ICPMS進行UMG-Si的 化學分析(顯示出如為步驟214)。若分析提供硼濃度少於詳 細指明的閾濃度(顯示出如為1 ppmw)時,該原料視為準備 好用來結晶及將裝運用於鑄造鑄塊’顯示出如為最後 UMG-Si產物216。但是,若硼濃度經測量大於詳細指明的 閾濃度(顯示出如為1 ppmw)時,然後可重覆精製方法直到 該材料係符合最小硼閾濃度程度之適合的UMG-Si產物。重 要的是,對硼可使用其它雜質(諸如磷)的其它閾濃度程度。 需要更有效的雜質控制以提供較純的石夕,同時減少浪 費。所揭示的主題事件對上述化學分析(ICPMS)提供替代 物,且可取代地引進另一種用來控制1;]^(3_以原料品質的製 程及方法。所揭示的控制方法分析11]^(3_&的測試鑄塊在原 料釋放出前之電阻率曲線圖。此控制方法使用合理大的測 51鑄塊(其從欲控制的原料批料製得)之電資料。特別是,從 、鑄鬼的底。卩至頂端之電阻率曲線圖的測量係釋放出 UMG_Si原料批料作為產物的準則。 至於所揭不的方法之部>,提供同時測試複數個 鑄塊的方法,估α 部加熱、歡計具有純域(其可&括頂端及底Figure 11 is a UIyIG cross-sectional image depicted in Figure 8; • The boron concentration of the Si ingot is shown in Figure 12 of the bidirectional solidification oven, a process flow showing the side of the solidified tantalum material Figure 13 is a top view of the process of solidification of the crucible material; it shows that in the bidirectional solidification furnace, Figure 14 is a diagram showing the solidification interface of the dumping block generated in the bidirectional solidification furnace. Explanation: Fig. 15 is a graph showing resistivity curves and cutting lines of various impurity concentrations; Figure 16-18 is a graph-curve graph illustrating the resistivity curve and impurity concentration curve in the block Figure 19 is a graph showing the resistivity curve of the Shixi ingot in Figure 16_18 (in ohm-cm to solidification); Figure 20 is shown in Figure 19. Corresponding impurity concentration graph of the resistivity graph; Figure 21 shows a schematic diagram of the process flow for reducing boron, phosphorus and aluminum in the prior art; Figures 22 and 23 are graphs showing different UMG_Si Actual measurement of raw material batch Resistivity; Figure 24 shows ICPMS data for B and P of an example test ingot for simultaneous directional solidification; 201144224 Figure 25 is a graph showing the measurement of Batch 1 in Figure 24 Resistivity data; Figure 26 is a graph showing the measured resistivity data for Batch 2 in Figure 24; Figure 27 is a graph showing the batch in Figure 24. 3 measured resistivity data; Fig. 28 is a graph showing the measured resistivity data of batch 4 in Fig. 24; Fig. 29 is a photograph of the cast ingot being cast; Fig. 30 A specific example of a crystallizer configuration based on the disclosed subject matter is depicted graphically; Figure 31 is a photo representation showing a modification, each configuration of a thermal configuration of a single thermal configuration to four (4) Figure 32 is a photographic embodiment showing impurities actually detected in an actual UMG-Si ingot; and Figure 33 is a process flow showing a specific example of the disclosed UMG-Si control method The main steps. I. Embodiment 3 Detailed Description of the Preferred Embodiments The following description is not intended to limit the concept, but is used for the purpose of describing the common principles of the present disclosure. The scope of the disclosure should be determined with reference to the scope of the patent application. While described with reference to the purification of aluminum-rich UMG(R), it is well known to those skilled in the art that the principles discussed herein can be applied to any upgraded metallurgical grade material. 10 201144224 A preferred embodiment of the disclosed subject matter is illustrated in the figures, using similar numbers to indicate similar and corresponding portions of the different figures. Figure 1 shows the process flow used to reduce the shed, fill and inscriptions in Shi Xi. In step 2, pure raw materials such as 'quartz and coal are selected to produce MG-Si containing a low boron content. Then, step 4 further reduces the aluminum content by MG-Si refining. Additionally, the boron content can be further reduced (e.g., in a furnace containing an oxy-fuel burner), ultimately resulting in UMG-Si. Then, in order to further reduce impurities (such as boron, phosphorus and aluminum), UMG-Si is often processed through a directional solidification system until it is ready to release the tantalum material (typically when the boron concentration has been reduced below the specified threshold concentration). ). In both the first DSS pass 6 and the second DSS pass 8, the portion of the ingot (usually the tip portion) having the highest impurity concentration is cut to produce a relatively pure ruthenium. The first DSS can produce helium with impurities (eg, greater than 0.5 parts per million by weight required) and the second DSS pass 10 can produce less than 0.5 parts per million by weight of impurities. . More effective impurity control is required to provide a more pure enthalpy while reducing waste. Conductivity measurements on the tantalum ingot after the first DSS passes 8 and before cutting to remove impurities will substantially improve the tantalum yield. Similarly, resistivity measurements on the tantalum ingot after the second DSS passes 10 and before the second cut to remove impurities will substantially improve the tantalum yield of the final tantalum product. Figure 2 is a graph showing the actual measured concentration of 'selected elements' in different UMG stock batches, per million parts by weight. Note that there is a large change in elemental concentration throughout the different raw material batches. This variability is mainly made from the source material of UMG-Si raw materials (such as quartz and coal) 201144224. Small changes in impurity concentration can significantly affect the variability in the bottom to top resistivity of the ingot of each batch and the ingot yield (n part versus p part). Aluminum 4〇, Shipeng 42 and Lin 44 are the main elements to be controlled because they significantly affect the resistivity of the material. Fig. 3 is a graph showing the concentration profiles of the dopants Si Peng 50 and the can 52 in the UMG-Si ingot (in terms of the number of atoms per cubic centimeter of the solidification component). In Fig. 3, the initial concentration of boron 50 is 48 parts per million parts by weight and the initial concentration of filling 52 is 15 parts per million parts by weight. The change in concentration of boron and phosphorus along the solidification (or two degrees of ingot) reflects uneven segregation during directional solidification caused by element-specific segregation behavior. The uneven segregation of boron and phosphorus in the ingot causes a change in conductivity type at a height of about 80% of the ingot (from P type (boron 'aluminum) to !! type (phosphorus)). This is on the conductivity type. The change is shown by the B/P ratio 54 (in Figure 3, it is shown as the absolute value of the B_P difference). Therefore, the B/P ratio (such as B/P ratio 54) limits the yield of p-type materials. In the case where the UMG feedstock material has a relatively high aluminum concentration, the aluminum can also impact the yield by shifting the respective resistivity plots. Figure 4 is a graph 'which shows the 卩"^^ (the resistivity curve of the ingot (calculated resistivity 62 and measured resistance. 60).) The resistivity is in ohm-cm. To measure, and the height of the block is measured as a percentage of the bottom to the top (converted to a solidified component of grams). The resistivity is derived from the material, which is the absolute difference between the boron and phosphorus concentrations (in Figure 3 Abs^p) 54i shows)) measurement. Note that the resistivity graph reflects the conductivity pattern of boron and disc segregation in the ingot at about 80% of the ingot height. Figure 3 is 25 12 5 > 201144224 Figure 5 shows a cross-sectional image of the UMG-Si ingot after directional solidification. The impurity line 70 reflects the measurement in a typical ingot based on an A1-rich UMG-Si material. The conductivity pattern is changed. In the cross-sectional image of the ingot, a strong change in the ingot yield line (as indicated by the impurity line 7〇) is observed, which indicates that the ingot is produced on the left ingot side 72. The rate is close to 90% and the ingot yield on the right ingot side 74 is close to 60%. The large yield change across the ingot reflects solidification. During the non-uniform thermal state of the ingot, this results in a heterogeneous segregation of the doping elements B, P and A1. Directional solidification typically concentrates the impurities at the top of the ingot and then removes the top layer with most of the impurities. A relatively pure bottom layer is left for further processing. As shown in Figure 5, layer 78 has less impurities than layer 77. However, UMG-Si ingots have few flat, planar impurity curves after directional solidification. The flat cut line 76 shows a flat cut line that would typically be used to remove impurities concentrated in the top end of the ingot. However, the flat cut does not utilize the uneven and inconsistent distribution of the impurities in the material (by the impurity line 7〇 It shows that 'there is a UMG-Si process that results in poor performance and waste. Figure 6 shows a face image of a UMG-Si ingot after directional solidification with a cut line generated according to the disclosed subject matter. Impurity (such as boron, phosphorus and aluminum) have doping activity in the crucible and affect the resistivity of the ingot. Resistivity measurement provides an accurate measure of where to remove the contaminated portion of the ingot to reduce the overall ingot The absolute concentration of dopants and metal impurities. The lowest impurity concentration is found in the cold zone 80 (the zone where it first solidifies). The highest impurity concentration is found in the hot zone 82 (the final solidified zone). Segregation of impurities It is concentrated in the final state of the cast 13 201144224 block which is solidified during the directional solidification. This causes the impurity profile in the ingot to vary from region to region. ί's idea is in the scale bricks and the tracing 94 The degree of impurities is different. The ingot has been cut into a monument to control the removal of impurities by customizing the cutting line of each brick. The ortho-blocks 86, 88, 9〇, 92 have been cut after directional solidification. 94. Cutting _4 reflects the boundary line on the image (4). After the monument has been cut, the resistivity curve of the ingot is generated on the graph or 3D resistivity map by measuring the resistivity of the ingot from the bottom to the top and plotting (10) the calculated values. The measurement of the frequency of electrical rotation can also occur before the prayer block has been _ bricked. Furthermore, the brick cut is based on a number of factors, including (but not limited to, the size of the ingot, the impurity concentration of the block, the accuracy required to obtain (4) (4), and the manufacturing efficiency requirements. In Figure 6 The impurity line reflects the impurity concentration in the ingot at the threshold demand level. The standard cut dragon 4 flat cut line attempts to balance the impurity removal and the tantalum material yield. The controlled cut shows the resistivity curve according to the brick. The drawing defines a cutting line for each brick. The controlled cutting line defines the calculated cutting line according to the resistivity curve of the crucible (4), so only the part (4) containing the concentrated_quality is removed, and the tree is protected. Material yield. This allows for the most ideal removal of impurities without sacrificing the available stone eve. This cutting is calculated by measuring the resistivity of each brick from top to bottom. Conventional standard cutting is not performed according to the disclosure. The controlled cutting of the method, which leaves a lot of impurities in the ingot (such as in the ingot region of the brick 94), so that it needs to be subjected to another:: under-directional solidification for further purification originating from this casting 14 201144224 Figure 7 is a graphical illustration of the 3D solidification interface of the ingot casting block. Because it is difficult to control solidification, the solid-liquid interface during the ingot crystallization is not planar and produces a non-uniform segregation layer, as shown in the In Fig. 7, the impurities are concentrated in the top of the ingot after directional solidification. However, the solidified layers 90, 92 and 94 are obviously uneven. It is clear that the 5 kel solidified layer is not flat but vertically upward in the ingot. It varies downwards and has different thicknesses throughout the ingot. This causes the impurity profile to vary from region to region in the ingot, which results in an uneven grain profile. This uneven solidified layer makes it difficult to remove the concentration easily and efficiently. Impurities without sacrificing high yields or leaving too much impurities in the ingot. Figure 8 is a graph showing the concentration profiles of dopants boron 100, phosphorus 102 and aluminum 106 in UMG material ingots. (Percentage of ingot per cubic centimeter of ingot to mass converted to solidified component grams) In Figure 8, the initial concentration of boron is 0.411 ppmw, the initial concentration of phosphorus is 1.3 ppmw, and the initial concentration of #吕 is 23_08 ppmw. The different segregation coefficients of Si Peng, Phosphorus and Aluminum during directional solidification have a conductivity type change at an ingot height of about 87°. This change is based on the absolute concentration of boron and phosphorus plus the concentration of aluminum (abs). (B-P+Al), shown as 1〇4 on Fig. 8) reflects 'and its definition of the limit of P-type material yield. Figure 9 is the UMG-Si cast described in Figure 8. The cross-sectional image of the aluminum concentration curve of the block. Again, since it is difficult to control the thermal field during the directional solidification process, the crystal layer becomes uneven, resulting in a non-uniform impurity concentration profile. The aluminum concentration increases at the top of the ingot and is cast throughout Block cross-section variations, as indicated by impurity line 110. This makes it difficult to efficiently remove aluminum and other impurities through the entire ingot. 15 201144224 Figure 10 depicts the concentration of UMG-Si ingots in Figure 8. A cross-sectional image of the graph. The scaly concentration increases at the top of the block and varies across the cross section of the block, as indicated by the miscellaneous line 112. The concentration of the lining is significantly souther in some parts of the prayer block, making it difficult for the larva to remove the phosphorus impurities from a flat cut line along the overall block. Fig. 11 is a cross-sectional view showing the boron concentration profile of the UMG-Si ingot in Fig. 8. The pen concentration increases at the top of the scale and varies throughout the section of the ingot as shown by the impurity line 114. The rot concentration is significantly more pronounced in some parts of the ingot than in the south. It is difficult to remove scale impurities from a flat cutting line along the overall prayer block. Figure 12 is a process flow showing a side view of the solidification of the tantalum material in a biaxial solidification furnace. A bidirectional solidification furnace, a type of solidification furnace comprising a top end and a side heater, is often arranged with a heater to heat the top of the ingot and a plurality of heaters to heat the sides of the ingot, which are at the top of the resulting ingot block and Concentrate impurities on one side. The bidirectional solidification system of Fig. 12 uses the top heater 122 and the side heaters 120 and 124 to concentrate the impurities at the top end of the ingot at the top end heater 122 and at the ingot side of the placement side heater 120. . Liquid helium contains concentrated impurities and is also known as a contaminated area. At a furnace temperature of 1500 ° C, it is a complete liquid. In step 126, the furnace temperature is lowered to 145 〇t, and the melted portion is solidified, and a solidified layer is formed at the bottom of the ingot below the Weirong. Recently, the crucible of the top heater 122 is still molten while the helium crystals and impurities away from the top end heater 122 are concentrated in the melting crucible. During the step of ^, the side heater 120 and the side heater 124 are set at the same temperature, and when solidified, a vertical gradient is formed which is the same as the horizontal solidification gradient. 16 201144224 In step 128, most of the crystallization is carried out at a furnace temperature of 1420 ° C, and only the regions of the top heater 122 and the side heater 120 are melted, and the remaining sand has crystallized. The side heater 124 and the top heater 122 are cooled, which allows the enthalpy of the nearmost side heater 124 and the top end heater 122 to crystallize, and the molten crucible moves closest to the side heater 120. The impurities are concentrated in the remaining liquid helium in the top corner of the side heater 120 which is hot recently. Therefore, the impurities are concentrated in the molten region closest to the tip heater 122 and the side heater 120. This is the area to be removed to purify the fully crystalline tantalum ingot. The bidirectional condensing furnace can be equipped with five holes (one at the center and four in the corner) on the top to control and measure the height of the solidified crotch portion (often using a simple stone rod). In step 130, at the furnace temperature 140 (TC, the cooling side heater 12 and the crucible ingot are completely solidified. The impurities are concentrated in the crystal region closest to the top heater 122 and the side heater 120. Now, ready The ingot is divided into monuments and impurities are removed. The bidirectional solidification furnace uses a hot zone close to the heater to concentrate the impurities so as to be efficiently removed after the crucible has completely crystallized. In the process, when the crucible is melted in the ingot When it begins to solidify, it produces a vertical stone eve. It is cut in the cast part of the towel (four), its solidification and miscellaneous (butter, fill and !g) move into the remaining cool *** towel ^ in solid / liquid The interface reaches an area that changes the conductivity pattern excessively (usually within the coagulation of 8〇% of the town block: the temperature of the M'j'S circumference of the full-side heater to produce a horizontal Shiga solidification gradient, which will leave the remaining dazzling The edge of the ingot (the side of the hotter edge heater). Figure 13 shows the process flow, which shows the top view of the solidification of the stone material in a bidirectional solidification furnace (without display top heater). Side plus 17 201144224 heater 132 and side heater 34 to produce a horizontal helium solidification gradient and the nearest side heater 132 to concentrate impurities. Initially, at a furnace temperature of 15 〇〇 β (:, all of the ruthenium in the crucible is melted. In step 丨 36, the furnace temperature is adjusted to 145 The crucible c and the molten crucible begin to solidify at the bottom of the crucible (see Figure 12, side view of crucible solidification in a bidirectional solidification furnace). 'The simultaneously molten crucible moves to the nearest top heater. In step 138 At a furnace temperature of 1420 ° C, the side heater 132 is heated and the side heater 134 is cooled, which produces a horizontal helium solidification gradient. When the crucible of the heater 134 is cooled and solidified recently, the molten crucible moves to the nearest side. The impurities are collected in the molten stone of the nearest side heater 132. When the furnace temperature is lowered to 1400 ° C in step 140, the remaining molten helium (with the degree of concentrated impurities) solidifies 'and the impurities are trapped in the nearest In the ingot region of the side heater 132. Figure 14 is a graphical illustration of the 3d solidification interface of the Shixi ingot produced in the bidirectional solidification furnace. It is shown that the solid-liquid interface is substantially during the ingot crystallization. Keep flat on Thus, a substantially flat and planar solidified layer is formed. Therefore, the impurity profile from the top to the bottom is substantially the same for any region of the tantalum ingot. The solidified layers 150, 152, and 154 are throughout the ingot plane, unlike in the seventh Layers 90, 92 and 94 in the Figure. Further, as shown from the top plan view, the contaminated solidified layer has been further concentrated on side 156 by use of a bidirectional solidification oven (such as shown in Figure 13). The formation permits the concentration of impurities to be concentrated in an area that can be easily cut according to the disclosed method. The bidirectional solidification furnace is preferably operated using a crucible having a rectangular, non-secondary cross section, thereby facing a smaller financial disaster. The side heater ° 18 201144224 Figure 15 is a graph showing resistivity curves of various impurity concentrations (patterned in ohm-cm to solidified component grams) and cutting lines. The resistivity plot is strongly dependent on the impurity concentration. This allows the determination of the impurity concentration at each point on the resistivity graph. The cutting lines 166, 168 and 170 are dependent on the resistivity profile of the ingot. The cutting line can be determined based on the impurity concentration of the stone that is allowed in the final product. The graph of resistivity of the prayer block 160 has a shed concentration of ppm·45 ppmw, a dish yield of 1.59 ppmw, and an aluminum concentration of 0.087 ppmw. The cut line 166 corresponds to the resistivity curve 160 and the resistive curve 160 produces a controlled cut line that corrects the impurity concentration. The ingot resistivity curve 162 has a shed concentration of 0.45 ppmw, a dish concentration of 1.45 ppmw, and an aluminum concentration of 〇_〇79 ppmw. The cut line 168 corresponds to the resistivity curve 162 and the resistive rate graph 162 produces a controlled cut line that corrects the amount of impurity interposed. The ingot resistivity curve 164 has a boron concentration of 0.45 ppmw, a dish concentration of 1.59 ppmw, and an aluminum concentration of 119.119 ppmw. The cutting line 17〇 corresponds to the resistivity curve 164 and the resistivity curve 164 produces a controlled cutting line that produces a large amount of impurity concentration. Figures 16-18 are a graph ' which shows the relationship between the resistivity curve of the scale and the impurity concentration profile of the same ingot. The controlled cutting line can be calculated based on the desired threshold concentration of the particular impurity. Figures 16-18 show a cut line based on an aluminum concentration of 0.5 ppmw' but the cut line can be based on a different amount of impurities (such as 'deleted or filled) at any concentration. Figure 16 illustrates the calculation of the resistivity curve from the same Shixi ingot and the cutting line of the impurity concentration 19 201144224 degree graph. The upper graph shows the resistivity curve of the Shixi ingot with boron concentration 〇_45 Ppmw, squama concentration I·45 ppmw, and aluminum concentration 〇.〇79 ppmw (in ohm-cm to solidification component percentage). The lower graph shows the concentration profiles of boron 186, phosphorus 184, and aluminum 188 for the same ingot (percentage of solids per cubic centimeter). The cutting line 180 has been calculated for an aluminum concentration of 5.5 ppmw at a scale height of 84.5%. It means that the radon block has a concentration below 0.5 ppmw below the cutting line 180, and the ingot has an aluminum concentration above 0.5 ppmw on the cut line 180. Figure 17 illustrates the resistivity from the same tantalum ingot. The calculation of the cutting line of the graph and the impurity concentration graph. The upper graph shows the resistivity curve of the tantalum ingot with boron concentration 〇·45 PPmw, phosphorus concentration 1.45 ppmw, and aluminum concentration 0.117 ppmw. Figure 2〇2 (in ohm-cm to solidification component percentage). The lower graph shows the concentration profiles of boron 2〇8, phosphorus 204, and aluminum 206 for the same ingot (percentage of solids per cubic centimeter). The cutting line 2〇〇 has been calculated for the intrinsic concentration 〇.5 ppmw at 77% of the ingot height. It means that the 3 Xuanzhen block has a concentration lower than 0.5 ppmw when it is lower than the cutting line 200 and the casting has a concentration higher than 〇.5 ppmw on the cutting line 200. Figure 18 illustrates the calculation of the resistivity plot from the same Shixi ingot and the cut line of the impurity concentration plot. The upper graph shows the resistivity plot 224 (in ohm-cm versus solids fraction) with a boron concentration of 0.45 ppmw, a fill concentration of 1.8 ppmw, and an aluminum concentration of 0_079 ppmw. The lower graph shows the concentration profiles of boron 228, phosphorus 226, and aluminum 230 for the same ingot (percentage of solids per cubic centimeter). The cutting line 222 has been calculated for a concentration of ppm·5 ppmw at a height of 84.5% of the block. It means that the 20 201144224 ingot has an aluminum concentration below 0.5 ppmw below the cutting line 222 and the ingot has a concentration above the 〇·5 ppmw on the cutting line 222. The cutting line 220 has also been calculated at a height of 83% of the ingot from the resistivity curve at p/N (where the ingot moves from P to n). This cut line reflects the most ideal cut line' to preserve the highest p-type tantalum material yield from the ingot. Figure 19 is a graph showing the resistivity of the tantalum ingot in Figures 16-18 (in ohm-cm versus solids fraction). The resistivity graph 182 shows the resistivity of the ingot in Fig. 16, and the cut line 180 is calculated at an ingot height of 0.8.5% at the ingot height of 84.5%. The resistivity graph 102 shows the resistivity of the ingot in Fig. 17, and the cut line 2 is calculated at the ingot height of 0.5 ppmw at the ingot height of 77% (the resistivity curve 224 is shown at the 18th). The resistivity of the ingot in the figure and the cut line 220 calculated at the P/N transition at the ingot height of 83.5%. Fig. 20 shows the boron of the resistivity curves 182, 202 and 224 in Fig. 19. Filled with the corresponding concentration curve of aluminum. Figures 21 to 33 are for a control process and a method for evaluating the quality of UMG-Si raw materials. By analyzing the ingots obtained from the batch of multiple UMG-Si raw materials. The resistivity plot of the test sample determines the boron and phosphorus content of those batches (thus determining the quality of the UMG-Si material). Furthermore, other impurities such as, but not limited to, SiC can be detected. Figure 21 shows a prior art process flow 'Description of boron, fill and aluminum content in a crucible according to an inductively coupled plasma mass spectrometer (ICPMS) method. In step 210, a pure feedstock is selected (such as Quartz and coal) to make MG-Si with low boron content. Then, step 21 2 Reducing the aluminum content by refining the gas into a 21 201144224. Additionally, for example, further boron content can be reduced in a furnace containing an oxy-fuel burner, ultimately resulting in UMG-Si. Then, in order to further reduce impurities (such as boron) , phosphorus and aluminum), applying ICPMS for chemical analysis of UMG-Si (shown as step 214). If the analysis provides a boron concentration less than the specified threshold concentration (shown as 1 ppmw), the material is considered Ready for crystallization and shipping for casting ingots' shows as the final UMG-Si product 216. However, if the boron concentration is measured to be greater than the specified threshold concentration (shown as 1 ppmw), then The refining process is repeated until the material is suitable for a UMG-Si product with a minimum boron threshold concentration. It is important that other threshold concentrations of other impurities, such as phosphorus, be used for boron. More efficient impurity control is required to provide The purer Shi Xi, while reducing waste. The disclosed subject matter provides an alternative to the above chemical analysis (ICPMS), and can alternatively introduce another to control 1;] ^ (3_ by raw material quality Process and method. Analysis of the disclosed control method 11] ^ (3_& test ingot before the release of the material resistivity curve. This control method uses a reasonably large test 51 ingot (from the raw material batch to be controlled) The electrical data obtained. In particular, the measurement of the resistivity curve from the bottom of the casting ghost to the top releases the UMG_Si raw material batch as a criterion for the product. As for the method of the uncovered method, Provides a method for simultaneously testing a plurality of ingots, and estimates that the alpha heating and the joyful have a pure domain (which can & top and bottom)

二》s有頂端加熱器,諸如顯示在第12及13圖中的 雙方向性凝固熗〗T J 結晶生長器。之、,、。晶生長器。因此,具有N乘N個坩堝的 改肖田A ^可生長及測試NXN個測試鑄塊。此程序進一步 …一原料品質的方法。 步 22 201144224 第22及23圖係-曲線®,其顯示出不同_MG__料 批料之實際測量的電阻率。注意,從在第Μ圖中的批料至 在第23圖中的批料之電阻率(因此產率)看到大的UMG-Si原 料文化性。第22及23圖的曲線圖顯示出從二個批料(出自相 同原料)生長之二個鑄塊的電阻率曲線圖(以歐姆-公分對從 底部至頂端的鑄塊高度)。注意’電阻率曲線圖反映出由蝴 及磷在鑄塊中的偏析特徵所造成之導電度型式改變。在第 22圖中,15〇毫米高的鑄塊在約75毫米處具有p/N改變(鑄塊 從P型移動至η型的點)’遺留約45%產率的pSUMG_Si(以參 考數字m顯祕㈣。表219提供贿在帛22圖的電 阻率曲線圖中之批料的電阻率資料,包括平均、中位數、 最小及最大電阻率值(以歐姆-公分計)。15〇毫米高在第幻 圖中的鑄塊在約110毫米處具有P/N改變,遺留約74%產率 的P型UMG-Si(以參考數字220顯示出)用於使用。表221提供 在第23圖的電阻率曲線圖中所描述之批料的電阻率資料, 包括平均、中位數、最小及最大電阻率值(以歐姆_公分計)。 此大的變化性主要源自於進料材料(諸如(但不限於)石 英及煤)。本揭示建議一種在將此原料使用來鑄造工業尺寸 鑄塊前控制此變化性的方法及製程,然後,該禱塊 外* 日日片 化後使用來製造太陽能電池。 第24圖顯示出在四堆禍運轉中,於四種不同抵料(抵料 1、批料2、批料3及批料4)上同步方向性凝固運轉的範例則 試鑄塊之B(硼)及P(磷)的ICPMS資料。表224顯示出抵料i 及批料2之經測量的硼及磷濃度。表226顯示出抵料3及抵料 23 201144224 4之經測量的硼及磷濃度。相應電阻率曲線圖顯示在第圖 (批料1)、第26圖(批料2)、第27圖(批料3)及第28圖(批料4) 中。於此,電阻率資料未與以ICPMS為基礎的期待一致。 例如’根據硼及磷的測量值,將預計批料如顯示在第Μ 圖中)及批料3(如顯示在第27圖中)有類似的電阻率曲線 圖。每個批料之測量的電阻率曲線圖允許用於原料〇所之 實際可行的評估及不為化學分析。 同時,亦可根據電阻率曲線圖決定可能的共捧雜物量 來修改各別的原料批料,從而保證在共摻雜後高p型產率及 有用的電阻率範圍。 第25圖係一曲線圖,其以電阻(以歐姆-公分計)對從底 部至頂端的鑄塊高度顯示出在第24圖中的抵料丨之測量的 電阻率資料(電阻率曲線圖230)。批料1在約12〇毫米處 改變,遺留約73%產率的UMG-Si(以參考數字234顯示出) 表232提供批料1的電阻率資料,包括平均、中位數、最^ 及最大電阻率值(以歐姆-公分計)。 第26圖係一曲線圖,其以電阻(以歐姆-公分計)董士從 部至頂端的鑄塊高度顯示出在第24圖中的批料2之琪彳量\ 電阻率資料(電阻率曲線圖236)。批料2在約45毫米處p/N 變,遺留約26%產率的UMG-Si(以參考數字240顯示出)。表 238提供批料2的電阻率資料,包括平均、中位數、最^ 最大電阻率值(以歐姆-公分計)。 第27圖係一曲線圖’其以電阻(以歐姆-公分計)對,足 部至頂端的鑄塊高度顯示出在第24圖中的批料3之測量的 24 201144224 電阻率資料(電阻率曲線圖240)。批料3在約50毫米處文 變’遺留約28%產率的UMG-Si(以參考數字246顯示出) 表242提供批料3的電阻率資料,包括平均、中位數、最 及最大電阻率值(以歐姆-公分計)。 第28圖係一曲線圖’其以電阻(以歐姆_公分,)斜"_ 至頂如!的禱塊南度顯示出在第24圖中的批料4 + " _ μ之消!量的 電阻率資料(電阻率曲線圖248)。批料4在約70毫卡声ρ/ 變,遺留約41%產率的UMG-Si(以參考數字252顯示出) 250提供批料4的電阻率資料,包括平均、中 最大電阻率值(以歐姆-公分計)。 第2 9圖係讀造的鎮塊從底部至頂端之相片。本揭一 述出一種用來控制UMG-Si原料的品質之方法, 田 /、猎由從每 個批料的矽原料製造出小測試鑄塊,接著測量從底邛至頂 端的電阻率達成。此方法能夠測量鑄塊的生長條件。一 典型的具體實例製造450公斤銹塊及詳細指明用來増加= 產率及電阻率控制之生長條件。但是,本揭示讓其它此生 長條件成為可能。 第30圖繪圖地描出根據所揭示的主題事件之結晶生長 器_組態的具體實例。為了控制原料品f,本:測量 原料材料義及磷濃度,其使用可適W種裝配(諸如顯示 在第30圖中_些)之多㈣結晶生長㈣步生則根據方 向性凝固方法)測試鑄塊,測量其從底部至頂端的電阻率曲 線圖。結晶生長器形式262具有2x2叫形式,其可在相同 運轉期間生長最高4個測試鑄塊。結晶生長器形式264具有 25 201144224The second s has a top heater such as the bidirectional solidified TT J crystal grower shown in Figures 12 and 13. ,,,. Crystal grower. Therefore, the modified Xiaotian A^ with N times N turns can grow and test NXN test ingots. This procedure further ... a method of raw material quality. Step 22 201144224 Figures 22 and 23 - Curves®, which show the actual measured resistivity for different _MG__ batches. Note that the large UMG-Si raw material culture is seen from the batch in the figure to the resistivity (and thus the yield) of the batch in Fig. 23. The graphs of Figures 22 and 23 show the resistivity plots of the two ingots grown from two batches (from the same material) (in ohm-cm pairs from the bottom to the top of the ingot). Note that the 'resistivity curve' reflects the change in conductivity pattern caused by the segregation characteristics of the butterfly and phosphorus in the ingot. In Fig. 22, the 15 mm high ingot has a p/N change at about 75 mm (the ingot moves from the P-type to the η-type point) 'remaining about 45% yield of pSUMG_Si (by reference numeral m) Explicit (4). Table 219 provides the resistivity data for the batch in the resistivity graph of the 帛22 diagram, including the average, median, minimum and maximum resistivity values (in ohm-cm). 15 mm The ingot in the first magic map has a P/N change at about 110 mm, leaving approximately 74% yield of P-type UMG-Si (shown by reference numeral 220) for use. Table 221 is provided at The resistivity data for the batches described in the resistivity plots for the graph, including the mean, median, minimum, and maximum resistivity values (in ohm-centimeter). This large variability is primarily due to the feed material. (such as, but not limited to, quartz and coal.) This disclosure suggests a method and process for controlling this variability before using this material to cast an industrial size ingot, and then use it outside the day of the prayer block. To make solar cells. Figure 24 shows four different kinds of resistance in the four-stack operation ( Material 1, Batch 2, Batch 3 and Batch 4) Example of simultaneous synchronous directional solidification operation. ICPMS data of B (boron) and P (phosphorus) of the test block. Table 224 shows the resistance i and the batch. The measured boron and phosphorus concentrations of material 2. Table 226 shows the measured boron and phosphorus concentrations for the resist 3 and the resist 23 201144224 4. The corresponding resistivity curves are shown in the figure (batch 1), 26 Figure (batch 2), 27 (batch 3) and 28 (batch 4). Here, the resistivity data is not consistent with the ICPMS-based expectations. For example, 'based on boron and phosphorus measurements The values, which are expected to be batched as shown in Figure ) and Batch 3 (as shown in Figure 27), have similar resistivity plots. The measured resistivity plots for each batch allow for practical evaluation of the raw material and not for chemical analysis. At the same time, it is also possible to modify the individual raw material batches according to the resistivity curve to determine the possible amount of common impurities, thereby ensuring high p-type yield and useful resistivity range after co-doping. Fig. 25 is a graph showing the measured resistivity data of the resisting 在 in Fig. 24 with respect to the height of the ingot from the bottom to the top in resistance (in ohm-cm) (resistivity graph 230) ). Batch 1 was changed at about 12 mm, leaving about 73% yield of UMG-Si (shown by reference numeral 234). Table 232 provides the resistivity data for Batch 1, including average, median, and most Maximum resistivity value in ohm-cm. Figure 26 is a graph showing the amount of the material of the batch 2 in Figure 24 from the height of the ingot to the top of the ingot (in ohm-cm). Graph 236). Batch 2 was p/N changed at about 45 mm, leaving about 26% yield of UMG-Si (shown by reference numeral 240). Table 238 provides the resistivity data for Batch 2, including the average, median, and maximum resistivity values in ohm-cm. Figure 27 is a graph of 'resistance (in ohm-cm) pairs, and the height of the ingot to the top shows the measurement of batch 3 in Figure 24 201144224 Resistivity data (resistivity) Graph 240). Batch 3 was changed at about 50 mm to leave about 28% yield of UMG-Si (shown by reference numeral 246). Table 242 provides resistivity data for Batch 3, including average, median, maximum and maximum. Resistivity value in ohm-cents. Figure 28 is a graph of 'the resistance (in ohms-cm,) oblique "_ to the top of the prayer block south shows the batch 4 + " _ μ in the 24th figure! The amount of resistivity data (resistivity curve 248). Batch 4 is at about 70 mcal rpm, leaving about 41% yield of UMG-Si (shown by reference numeral 252) 250 to provide resistivity data for batch 4, including average, medium to maximum resistivity values ( In ohm-cm). Figure 29 is a photograph of the read block from the bottom to the top. The present invention describes a method for controlling the quality of UMG-Si raw materials. Field/hunting is to produce a small test ingot from the raw material of each batch, and then measure the resistivity from the bottom to the top. This method is capable of measuring the growth conditions of the ingot. A typical example produces a 450 kg rust block and specifies the growth conditions used for the addition of yield and resistivity control. However, this disclosure makes other such growth conditions possible. Figure 30 graphically depicts a specific example of a crystal grower_configuration in accordance with the disclosed subject matter. In order to control the raw material f, this: measuring the raw material material and phosphorus concentration, the use of which can be suitable for W type assembly (such as shown in Figure 30) (4) crystal growth (four) step according to directional solidification method) test Ingot, measure the resistivity curve from bottom to top. Crystallizer form 262 has a 2x2 design that can grow up to 4 test ingots during the same run. Crystal grower form 264 has 25 201144224

3X3掛網形式,其可在相同運轉期間生長最高9個測試缚 塊。結B斗E 長器形式266具有4x4J#禍形式’其可在相同運 月,生長最高16個測試鑄塊。結晶生長器形式268具有 6X6坩堝形式,其可在相同運轉期間生長最高36個測試鑄 亦可使用其它坩堝形式,諸如較大組態(諸如7x7)或長 ,式(諸如2x3、3x2、3x4或4x3)或其任何變化。 八在典型的具體實例中,該測試鑄塊的重量可在範圍^ ▲内及δ亥方法在相同運轉期間從不同原料批料生長這此 式鱗塊1驗測試證實該全縣料㈣與此方法之令人 60001 =徵。典型來說原料批料之範圍可從2000公斤至 再者’可藉由侧SiC污染物增補在原料材料中的蝴及 制。此可藉由使用1R麵貞測在鑄塊(來自此 原杆材枓)中的“内含物”進行。 戶石圖中包括原料材料之批料的掛禍可由從高純 度石昼或其它此材料製得的蓋子覆蓋, 相互污染。顯示在篦阁丄 兄在、.,〇日日期間 中的組態係用來同步鑄造及測古式 不同原料批料的可能袓能 Λ ° 貫施例。在另—個具體實例 中Γ 襲形狀的其它組態,諸如圓枝形狀。 第叫係-相片表示,其顯示出一修改 固運轉單_熱組駐四( 母万⑴生凝 7ΛΡ, 坩堝熱組態。早坩堝結晶生長 益270已經修改成四坩堝結 日日生長窃272。因此,每方向,随 參考-- 26 201144224 在此具體實例中,各別的鑄塊尺寸允許製造出六(6)英 叫太陽能電池。本揭示的方法允許快速及可信賴的B/P比率 控制。顯示在第31圖中的具體實例可依比例增加例如至每 運轉三十六(36)個鑄塊,與UMG-Si原料材料5〇 MT的原料 批料尺寸相應。 那些測試鎮塊之相對小的尺寸允許使用工業規模具有 特別設計用來保證熱及氣流對稱性的構件之結晶嫁爐來良 好地控制結晶度。每原料批料對B/P比率證實使用一鎮塊測 試,及接著進一步分析(諸如SiC内含物之偵測)。3X3 hanging net form, which can grow up to 9 test blocks during the same run. The knot B bucket E gauge form 266 has a 4x4J# crash form. It can grow up to 16 test ingots in the same month. The crystallizer form 268 has a 6X6 坩埚 form that can be grown up to 36 test casts during the same run or other 坩埚 forms, such as larger configurations (such as 7x7) or long, such as 2x3, 3x2, 3x4 or 4x3) or any change thereof. In a typical example, the weight of the test ingot can be grown in the range of ^ ▲ and the δ Hai method from the different raw materials during the same operation. This scale test proves that the county material (four) and this The method is 60001 = levy. Typically, the raw material batch can range from 2000 kilograms to the other, which can be supplemented by the side SiC contaminants in the raw material. This can be done by using the "inclusions" in the ingot (from this original rod) using 1R surface speculation. The hazard of the batch containing the raw material in the household stone map may be covered by a lid made of high purity stone mortar or other such material, which is mutually polluted. The configuration shown in the 篦 丄 丄 brother's, ., 〇 〇 〇 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步In another embodiment, other configurations of the shape, such as a round shape. The first call-photograph shows that it shows a modified solid-running single _ hot group stationed in four (mother 10,000 (1) raw condensate 7 ΛΡ, 坩埚 heat configuration. Early 坩埚 crystal growth benefit 270 has been modified into four knots day growth 272 Therefore, for each direction, with reference - 26 201144224 In this specific example, the individual ingot sizes allow the manufacture of six (6) england solar cells. The method of the present disclosure allows for a fast and reliable B/P ratio. Control. The specific example shown in Figure 31 can be scaled up, for example, to thirty-six (36) ingots per run, corresponding to the raw material size of the UMG-Si stock material 5 〇 MT. The relatives of those tested. The small size allows for the good control of crystallinity using industrial grade crystallization furnaces with specially designed components to ensure heat and gas symmetry. The B/P ratio for each batch of raw materials is confirmed using a one-block test, followed by further analysis. (such as detection of SiC inclusions).

第33圖係一製程流程, 其顯示出所揭示的UMG-Si控制 第32圖係一相片貫施例,其顯示出在實際的UMG-Si 鑄塊中實測到的碳化矽(SiC)雜質。注意,在鑄塊276、鑄塊 278及鑄塊280中的SiC内含物之變化度。Sic内含物可透過 紅外線成像(IR)方法測量。端視在原料供應者的場所處之製 程條件而定,SiC内含物經常可從一個批料至其它而形成。 因為含有SiC内含物的原料會製造出含有内含物的铸塊,在 原料供應者的場所處較好的控制方法允許製⑼在使用者 (諸如太陽能電池製造商)的場所處無内含物之鱗塊。在一個 具體實例中’多配允許原料材料之可信賴的製程拽 ^法之一個具體實例的主要步驟。在步驟290中,選擇用於Figure 33 is a process flow showing the disclosed UMG-Si control Figure 32 is a photographic example showing the tantalum carbide (SiC) impurities actually observed in actual UMG-Si ingots. Note the degree of change in SiC content in ingot 276, ingot 278, and ingot 280. Sic inclusions can be measured by infrared imaging (IR) methods. Depending on the process conditions at the location of the raw material supplier, the SiC content can often be formed from one batch to the other. Since the raw material containing the SiC inclusions produces ingots containing inclusions, a better control method at the location of the raw material supplier allows for (9) no inclusion at the location of the user (such as a solar cell manufacturer). Scales of things. In a specific example, the main steps of a specific example of a process that allows for the reliable management of raw material materials. In step 290, selected for

分析的原料材料γ.,.., 一(2)至六(6)ΜΤ 27 201144224 對原料批料的尺寸應該大於2χ1(Τ3。此比率係大於以 U M G - S i原料的化學分析為基礎之現行實施3 - 4個級數大 /J\ 〇 在步驟292中,發生測試批料結晶。坩堝的尺寸及形狀 典型允許鑄塊能在156毫米xl56毫米的級數上產生晶圓。再 者,因為所揭示的方法在單一運轉中分析複數個批料,其 應該呈現出用於全部坩堝及測試批料的對稱性熱及氣流條 件。 在步驟294中,測量各別鑄塊的電阻率曲線圖。可從此 電阻率測量決定硼及磷濃度。 選擇性步驟296測量可使用來增加鑄塊產率及產生適 當的電阻率曲線圖(以在所分析的原料批料中之硼及磷量 為基礎)之共摻雜物。選擇性步驟298經由IR分析來測量在 測試鑄塊中的SiC内含物。及選擇性步驟300製造用於原料 批料的大量評估之測試晶圓。 在操作時,所揭示的主題事件提供一種品質控制方 法,以根據測試鑄塊(其係從該批料的UMG-Si製得)之電阻 率曲線圖來決定在UMG-Si原料批料中之雜質濃度。可根據 方向性凝固方法同步地生長多個測試鑄塊(每個皆與 UMG-Si原料批料相應)。 雖然已經詳細地描述所揭示的主題事件,應瞭解到此 為止可製得多種變化、取代及改變而沒有離開本發明如由 所附加的申請專利範圍所定義之精神及範圍。 C圖式簡單說明3 28 201144224 第旧(先述技藝)係-用來減少在石夕中的石朋、碟及铭含 量之製程流程; 第2圖顯示出不同UMG原料抵料之實際測量的雜質之 曲線圖; 第3圖係-曲線圖’其顯示出在應匕闕塊中的雜質 硼及磷之濃度曲線圖; 第4圖係一曲線圖,其顯示出在第3圖中所測量的 UMG-Si鑄塊之電阻率曲線圖(計算對測量的電阻率); 第5圖顯示出UMG-Si铸塊在方向性凝固後之戴面影 像; 第6圖係UMG-Si鑄塊在方向性凝固後之截面影像與根 據所揭示的主題事件所產生之裁切線; 第7圖係矽鑄塊的3D凝固界面之圖解說明; 第8圖係一曲線圖,其顯示出在UMG-Si鑄塊中的雜質 硼、磷及鋁之濃度曲線圖; 第9圖係在第8圖中所描述的UMG-Si鑄塊之鋁濃度的 截面影像; 第10圖係在第8圖中所描述的UMG-Si鑄塊之磷濃度的 截面影像; 第U圖係在第8圖中所描述的UMG-Si鑄塊之硼濃度的 截面影像; 第12圖係—製程流程,其顯示出在雙方向性凝固爐中 凝固的矽材料之側視圖; 第13圖係一製程流程,其顯示出在雙方向性凝固爐中 29 201144224 凝固的矽材料之上俯視圖; 第14圖為在雙方向性凝固爐中所產生的矽鑄塊之31)凝 固界面的圖解說明; 第15圖係一曲線圖,其顯示出多種雜質濃度的電阻率 曲線圖及裁切線; 第16-18圖係一曲線圖,其闡明在矽鑄塊之電阻率曲線 圖與雜質濃度曲線圖間的關係; 第19圖係一曲線圖,其顯示出在第16_18圖中的矽鑷塊 之電阻率曲線圖(以歐姆-公分對凝固分量); 第20圖呈現出在第19圖中的電阻率曲線圖之相應的雜 質濃度曲線圖; 第21圖顯示出先述技藝用來減少硼、填及鋁的製程流 程之圖解說明; 第22及23圖係一曲線圖,其顯示出不同UMG Si原料批 料之實際測量的電阻率; 第24圖顯示出同步進行方向性凝固的範例測試鑄塊之 B及P的ICPMS資料; 第25圖係一曲線圖,其顯示出在第24圖中的批料1之測 量的電阻率資料; 第26圖係一曲線圖,其顯示出在第24圖中的批料2之測 量的電阻率資料; 第27圖係一曲線圖,其顯示出在第24圖中的批料3之測 量的電阻率資料; 第28圖係一曲線圖,其顯示出在第24圖中的批料4之測 30 201144224 量的電阻率資料; 第29圖係所鑄造的鑄塊之相片; 第30圖繪圖地描出根據所揭示的主題事件之結晶生長 器坩堝組態的具體實例; 第31圖係一相片表示,其顯示出一修改,每輪熱組態 單坩堝熱組態至四(4)坩堝; 第32圖係一相片實施例,其顯示出在實際UMG-Si鑄塊 中實測到的雜質;及 第33圖係一製程流程,其顯示出所揭示的UMG-Si控制 方法之一個具體實例的主要步驟。 【主要元件符號說明】 2...步驟 72...左鑄塊邊 4...步驟 74...右鑄塊邊 6...第一 DSS通過 76...平坦裁切線 8...第二DSS通過 77…層 40...鋁 78…層 42...硼 80...冷區域 44...磷 82...熱區域 50".硼 84...切割線 52."磷 86...鑄塊磚 54...B/P 比率 88...鑄塊磚 60...測量的電阻率 90...鑄塊碑,凝固層 62...計算的電阻率 92...鑄塊磚,凝固層 70...雜質線 94...鑄塊磚,凝固層 31 201144224 100···硼 102".磷 104.. .abs(B-P+Al)Analytical raw material γ.,.., one (2) to six (6) ΜΤ 27 201144224 The size of the raw material batch should be greater than 2χ1 (Τ3. This ratio is greater than the chemical analysis based on UMG-S i raw materials. Current implementation 3 - 4 series large / J \ 测试 In step 292, test batch crystallization occurs. The size and shape of the crucible typically allows the ingot to produce wafers on a 156 mm x 56 mm level. Because the disclosed method analyzes a plurality of batches in a single run, it should exhibit symmetrical heat and gas flow conditions for all of the helium and test batches. In step 294, the resistivity curves of the individual ingots are measured. The boron and phosphorus concentrations can be determined from this resistivity measurement. The optional step 296 measurement can be used to increase the ingot yield and produce an appropriate resistivity profile (based on the amount of boron and phosphorus in the raw material batch being analyzed). a co-dopant. The optional step 298 measures the SiC content in the test ingot via IR analysis. And the optional step 300 produces a test wafer for extensive evaluation of the stock batch. Revealed subject matter Providing a quality control method for determining the impurity concentration in the UMG-Si raw material batch according to the resistivity curve of the test ingot (which is obtained from the UMG-Si of the batch). According to the directional solidification method Simultaneously growing a plurality of test ingots (each corresponding to the UMG-Si stock batch). Although the disclosed subject matter has been described in detail, it should be understood that a variety of variations, substitutions, and changes can be made without leaving The present invention is as defined by the scope of the appended claims. C-Simple Description 3 28 201144224 The first (previously described) system - used to reduce the process of stone, dish and inscription in Shi Xizhong Process; Figure 2 shows the actual measured impurity of different UMG raw materials; Figure 3 shows the concentration of boron and phosphorus in the block; Figure is a graph showing the resistivity curve of the UMG-Si ingot measured in Figure 3 (calculated versus measured resistivity); Figure 5 shows the directional solidification of the UMG-Si ingot After wearing a face image; Figure 6 is a UM The cross-sectional image of the G-Si ingot after directional solidification and the cutting line generated according to the disclosed subject matter; Figure 7 is a graphical illustration of the 3D solidification interface of the ingot ingot; Figure 8 is a graph, which is a graph A graph showing the concentration of boron, phosphorus and aluminum in the UMG-Si ingot; Fig. 9 is a cross-sectional image of the aluminum concentration of the UMG-Si ingot described in Fig. 8; A cross-sectional image of the phosphorus concentration of the UMG-Si ingot described in Figure 8; Figure U is a cross-sectional image of the boron concentration of the UMG-Si ingot described in Figure 8; Figure 12 - Process flow , which shows a side view of the tantalum material solidified in the bidirectional solidification furnace; Fig. 13 is a process flow diagram showing a top view of the tantalum material solidified in the bidirectional solidification furnace 29 201144224; Graphical illustration of the solidification interface of the 31) cast ingot produced in a biaxial solidification furnace; Figure 15 is a graph showing resistivity curves and cut lines of various impurity concentrations; Figure is a graph illustrating the resistivity plot and impurity concentration of the tantalum ingot The relationship between the graphs; Fig. 19 is a graph showing the resistivity curve of the block in the 16th-18th image (in ohm-cm to solidified component); Figure 20 is shown in Figure 19. Corresponding impurity concentration curve of the resistivity graph in the middle; Figure 21 shows a schematic diagram of the process flow for reducing boron, filling and aluminum in the prior art; Figures 22 and 23 are a graph showing different The actual measured resistivity of the UMG Si raw material batch; Figure 24 shows the ICPMS data for the B and P of the sample test ingots for simultaneous directional solidification; Figure 25 is a graph showing the same in Figure 24 The resistivity data of the batch 1 is measured; Fig. 26 is a graph showing the measured resistivity data of the batch 2 in Fig. 24; Fig. 27 is a graph showing The resistivity data of the batch 3 measured in Fig. 24; Fig. 28 is a graph showing the resistivity data of the batch No. 4 201144224 in Fig. 24; Fig. 29 Photograph of the cast ingot; Figure 30 is drawn graphically according to the disclosed A specific example of the crystal grower configuration of the event; Figure 31 is a photo representation showing a modification, each configuration of the thermal configuration of the thermal configuration to four (4) 坩埚; Figure 32 is a photo The examples, which show the impurities actually detected in the actual UMG-Si ingot; and the 33rd, a process flow, show the main steps of a specific example of the disclosed UMG-Si control method. [Main component symbol description] 2...Step 72...Left ingot block edge 4...Step 74...Right ingot block edge 6...The first DSS passes through 76...the flat cutting line 8: The second DSS passes through 77...layer 40...aluminum 78...layer 42...boron 80...cold zone 44...phosphorus 82...hot zone 50".boron 84...cut line 52. "Phosphorus 86...Ingot brick 54...B/P ratio 88...Ingot brick 60...Measured resistivity 90...cast block, solidified layer 62...calculated resistance Rate 92... ingot brick, solidified layer 70... impurity line 94... ingot brick, solidified layer 31 201144224 100··· boron 102". phosphorus 104.. .abs(B-P+Al)

106.. . IS 110.. .雜質線 112.. .雜質線 114.. .雜質線 120.. .邊加熱器 122.. .頂端加熱器 124.. .邊加熱器 126.. .步驟 128.··步驟 130…步驟 132.. .邊加熱器 134.. .邊加熱器 136…步驟 138.··步驟 140.. .步驟 150.. .凝固層 152.. .凝固層 154.. .凝固層 156.. .邊 160.. .電阻率曲線圖 162.. .電阻率曲線圖 164.. .電阻率曲線圖 166.. .裁切線 168…裁切線 170…裁切線 180.. .裁切線 182.. .電阻率曲線圖 184.. .磷 186.. .硼 188.. .鋁 200.. .裁切線 202.. .電阻率曲線圖 204.. .磷 206."鋁 208…硼 210…步驟 212.. .步驟 214…步驟 216.. .產物 218.. .裁切線 219…表 220.. .裁切線 221…表 222.. .裁切線 224.. .電阻率曲線圖,表 32 201144224 226.. .表,磷 228…硼 230.. .鋁,電阻率曲線圖 232.. .表 234.. .裁切線 236.. .電阻率曲線圖 238.. .表 240裁切線,電阻率曲線圖 242.. .表 246.. .裁切線 248.. .電阻率曲線圖 250.. .表 252.. .裁切線 262.. .結晶生長器形式 264.. .結晶生長器形式 266.. .結晶生長器形式 268.. .結晶生長器形式 270…單坩堝結晶生長器 272.. .四坩堝結晶生長器 274.. .四個測試鑄塊 276.. ·鑄塊 278.. .鑄塊 280.. .鑄塊 290-300...步驟 33106.. . IS 110.. . impurity line 112.. impurity line 114.. impurity line 120.. side heater 122.. top heater 124.. side heater 126.. . Step 130...Step 132.. Side Heater 134.. Side Heater 136...Step 138. Step 140.. Step 150.. Solidified Layer 152.. Solidified Layer 154.. Solidified layer 156.. Side 160.. Resistivity curve 162.. Resistivity curve 164.. Resistivity curve 166.. Cutting line 168... Cutting line 170... Cutting line 180.. Tangent 182.. . Resistivity curve 184.. Phosphorus 186.. Boron 188.. . Aluminum 200.. . Cutting line 202.. . Resistivity curve 204.. . Phosphorus 206. " Aluminum 208... Boron 210...Step 212.. Step 214...Step 216.. Product 218.. Cut Line 219... Table 220.. Cut Line 221... Table 222.. Cut Line 224.. Resistivity Graph, Table 32 201144224 226.. Table, phosphorus 228... boron 230.. aluminum, resistivity curve 232.. Table 234.. cutting line 236.. resistivity curve 238.. , resistivity curve 242.. Table 246.. cutting line 248.. . resistivity curve 250.. . Table 252.. cutting 262.. Crystallizer format 264.. Crystallizer format 266.. Crystallizer format 268.. Crystallizer format 270... Single crystallizer 272.. Four crystal growth 274. . . four test ingots 276.. · ingots 278.. ingots 280.. ingots 290-300...Step 33

Claims (1)

201144224 七 1. 2. 3. 4. 5. 6. 、申請專利範圍: 種用來。平估UMG-Si原料品質的控制方法,該方法之 步驟包括: 進仃來自UMG-Si原料批料之熔融的uMG_Si之方 向性凝固’以形成一矽測試鑄塊; 測量該妙測試鑄塊從頂端至底部的電阻率; 繪製該矽測試鑄塊的電阻率曲線圖; 根據該矽測試鑄塊的電阻率曲線圖來計算該 UMG-Si原料批料之磷及硼濃度。 如申明專利範圍第旧之方法’其中根據财測試鱗塊 的電阻率曲線圖來計算所選擇的UM G _ s i原料批料之碟 及硼濃度的步驟更包括,根據從該矽測試鑄塊的電阻率 曲線圖所決定之該矽測試鑄塊的產率來計算所選擇的 UMG-Si原料批料之磷及硼濃度的步驟。 如申請專利範圍第丨項之方法,更包括測量共摻雜物的 步驟,其中s亥共捧雜物使用來增加轉塊產率及根據所選 擇的UMG-Si原料批料之硼及磷濃度產生適當的電阻率 曲線圖。 如申請專利範圍第1項之方法,更包括透過汉成像分析 來測量在該矽測試鑄塊中的S i C内含物之步驟。 如申請專利範圍第丨項之方法,更包括從該矽測試鑄塊 製造測試晶圓的步驟。 如申請專利範圍第1項之方法,其中該矽測試鑄塊對該 UMG-Si原料批料的重量比率大於2Χι〇_3。 34 201144224 7·如申請專利範圍第1項之方法,其中該矽測試鑄塊的重 量大約15公斤。 8·如申請專利範圍第1項之方法,其中該進行方向性凝固 的步驟使用一雙方向性凝固爐,其在該矽測試鑄塊的頂 端及一邊上濃縮雜質。 9.—種用來評估UMG-Si原料的品質之控制方法,該方法 的步驟包括: 從複數個UMG-Si原料批料,在單晶生長器中進行 炫融的UMG-Si同步方向性凝固,以形成複數個矽測試 鑄塊’其中該複數個矽測試鑄塊每個皆與特別的 UMG-Si原料批料相應; 測量該等矽測試鑄塊每個從頂端至底部之電阻率; 繪製該等矽測試鑄塊每個的電阻率曲線圖; 根據該等相應矽測試鑄塊每個的電阻率曲線圖來 叶算該等UMG-Si原料批料每個之磷及硼濃度。 1〇.如申請專利範圍第9項之方法,其中該從複數個UMG-Si 原料批料,在單晶生長器中進行熔融的UMG-Si之同步 方向性凝固以形成複數個矽測試鑄塊之步驟,其中該複 數個矽測試鑄塊每個與特別的UMG- Si原料批料相應, 進一步包括從複數個UMG_Si原料批料,在單一多坩堝 、、、°曰曰生長器中進行熔融的UMG-Si之同步方向性凝固以 形成複數财測試鑄塊’其中職數個㈣試鑄塊每個 與特別的UMG-Si原料批料相應。 士申π專利fegl第9項之方法’其中根據該相應石夕測試 35 201144224 鑄塊每個的電阻率曲線圖來計算該等U M G - S i原料批料 每個之磷及硼濃度的步驟進一步包括,根據該等石夕測試 鑄塊每個從該矽測試鑄塊每個的電阻率曲線圖所、央$ 之產率來計算該等所選擇的U M G - S i原料抵料每個之_ 及硼濃度的步驟。 12. 如申請專利範圍第9項之方法’更包括測量共摻雜物的 步驟,其中該共摻雜物使用來增加鑄塊產率及根據所選 擇的UMG-Si原料批料之硼及磷濃度產生適當的電阻率 曲線圖。 13. 如申請專利範圍第9項之方法,更包括透過讯成像分析 來測量在該矽測試鑄塊中的S i C内含物之步驟。 M.如申請專利範圍第9項之方法,更包括從該等矽測試鑄 塊每個製造測試晶圓的步驟。 15. 如申請專利範圍第9項之方法,其中該等矽測試鑄塊每 個對δ亥相應UMG-Si原料批料每個的重量比率係大於2χ 1(Τ3。 16. 如申請專利範圍第9項之方法,其中該等矽測試鑄塊每 個的重量大約15公斤。 17. 如申請專利範圍第9項之方法,其中該進行方向性凝固 的步驟使用一雙方向性凝固爐,其在該等矽測試鑄塊每 個的頂端及一邊上濃縮雜質。 18. 如申請專利範圍第9項之方法,其中該從複數個UMG-Si 原料批料’在單晶生長器中進行炼融的UMG-Si之同步 方向性凝固以形成複數個矽測試鑄塊的步驟,其中該複 36 201144224 數個矽測試鑄塊每個與特別的UMG-Si原料批料相應, 進一步包括從複數個UMG-Si原料批料,在具有NxN坩 堝形式之單一多坩堝結晶生長器中進行熔融的UMG-Si 之同步方向性凝固以形成複數個矽測試鑄塊,其中該複 數個矽測試鑄塊每個與特別的UMG- S i原料批料相應。 37201144224 VII 1. 2. 3. 4. 5. 6. Patent application scope: Kind to use. A method for controlling the quality of UMG-Si raw materials, the method comprising the steps of: introducing directional solidification of molten uMG_Si from a batch of UMG-Si raw materials to form a test ingot; measuring the ingot of the test ingot The top to bottom resistivity; plot the resistivity of the tantalum test ingot; calculate the phosphorus and boron concentrations of the UMG-Si stock batch based on the resistivity plot of the tantalum test ingot. The method of calculating the range of the selected UM G_si raw material batch and the boron concentration according to the resistivity curve of the financial test scale further includes, according to the test of the ingot from the crucible The step of determining the phosphorus and boron concentrations of the selected UMG-Si raw material batch is determined by the yield of the test ingot as determined by the resistivity plot. The method of claim </ RTI> further includes the step of measuring the co-dopant, wherein the sho is used to increase the yield of the lumps and the concentration of boron and phosphorus according to the selected UMG-Si raw material batch. Generate an appropriate resistivity plot. The method of claim 1, further comprising the step of measuring the content of S i C in the ingot by the Han imaging analysis. The method of claim 3, further comprising the step of manufacturing a test wafer from the crucible test ingot. The method of claim 1, wherein the weight ratio of the niobium test ingot to the UMG-Si raw material batch is greater than 2Χι〇_3. 34 201144224 7. The method of claim 1, wherein the crucible is tested in an ingot weight of about 15 kg. 8. The method of claim 1, wherein the step of directional solidification uses a bidirectional solidification furnace for concentrating impurities on the top and one side of the crucible test ingot. 9. A method for controlling the quality of UMG-Si raw materials, the method comprising the steps of: UMG-Si synchronous directional solidification in a single crystal grower from a plurality of UMG-Si raw material batches Forming a plurality of flaw test ingots each of which corresponds to a particular UMG-Si stock batch; measuring the resistivity of each of the tantalum test ingots from top to bottom; drawing The enthalpy tests each resistivity profile of the ingot; the resistivity curves of each of the corresponding ingots are tested to calculate the phosphorus and boron concentrations for each of the UMG-Si stock batches. The method of claim 9, wherein the simultaneous directional solidification of the molten UMG-Si is performed from a plurality of UMG-Si raw material batches in a single crystal grower to form a plurality of ruthenium test ingots. And the step of wherein the plurality of ruthenium test ingots each correspond to a special UMG-Si raw material batch, further comprising melting from a plurality of UMG_Si raw material batches in a single multi-turn, and a helium grower The simultaneous directional solidification of the UMG-Si to form a plurality of test ingots, wherein each of the four (4) test casting blocks corresponds to a special UMG-Si raw material batch. The method of the sigma π patent fegl item 9 'in which the phosphorus and boron concentrations of each UMG-S i raw material batch are further calculated according to the resistivity curve of each of the corresponding ingots 35 201144224 ingots Including, according to the yield curves of each of the ingots of the ingot test, each of the selected UMG-S i materials is used to calculate the yield of each of the selected UMG-S i materials. And the step of boron concentration. 12. The method of claim 9 further comprising the step of measuring a co-dopant, wherein the co-dopant is used to increase the ingot yield and the boron and phosphorus according to the selected UMG-Si raw material batch. The concentration produces an appropriate resistivity plot. 13. The method of claim 9, further comprising the step of measuring the content of S i C in the ingot by the imaging analysis. M. The method of claim 9, further comprising the step of manufacturing a test wafer from each of the test pieces. 15. The method of claim 9, wherein the weight ratio of each of the bismuth test ingots to each of the UMG-Si raw material batches is greater than 2 χ 1 (Τ3. 16. The method of claim 9, wherein the weight of each of the ingots is about 15 kg. 17. The method of claim 9, wherein the step of directional solidification uses a bidirectional solidification furnace, The crucibles are tested for concentrating impurities on the top and side of each of the ingots. 18. The method of claim 9, wherein the plurality of UMG-Si raw material batches are smelted in a single crystal grower Simultaneous directional solidification of UMG-Si to form a plurality of ruthenium test ingots, wherein the composite 36 201144224 plurality of ruthenium test ingots each correspond to a particular UMG-Si raw material batch, further comprising from a plurality of UMG- Si raw material batch, synchronous directional solidification of molten UMG-Si in a single multi-turn crystallizer having an NxN坩埚 form to form a plurality of tantalum test ingots, wherein the plurality of tantalum test ingots are each Special UMG-S i original The batch is corresponding. 37
TW100114831A 2010-04-29 2011-04-28 Quality control process for UMG-Si feedstock TW201144224A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/770,688 US8547121B2 (en) 2009-04-29 2010-04-29 Quality control process for UMG-SI feedstock

Publications (1)

Publication Number Publication Date
TW201144224A true TW201144224A (en) 2011-12-16

Family

ID=46765571

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100114831A TW201144224A (en) 2010-04-29 2011-04-28 Quality control process for UMG-Si feedstock

Country Status (1)

Country Link
TW (1) TW201144224A (en)

Similar Documents

Publication Publication Date Title
JP2012525322A (en) UMG-SI raw material quality control process
JP5820439B2 (en) Single crystal produced from raw material melt
JP5496674B2 (en) Method for refining metallic silicon by directional solidification
CN105358742B (en) Pass through the method for the growth manufacture silicon column body on crystal seed in directional solidification furnace
TWI532891B (en) Polycrystalline silicon wafers
Yoshikawa et al. Solution growth of silicon carbide using Fe–Si solvent
JP2012525322A5 (en)
CN106894093A (en) To for forming the method that the annealing furnace of Thermal donor is calibrated
Mokhtari et al. Effect of grain boundary grooves at the crystal/melt interface on impurity accumulation during the unidirectional growth of multicrystalline silicon
Jiang et al. Phosphorus removal from silicon by vacuum refining and directional solidification
Li et al. Microstructure and conversion efficiency of multicrystalline silicon ingot prepared by upgraded metallurgical grade silicon
Nakajima et al. Formation process of Si3N4 particles on surface of Si ingots grown using silica crucibles with Si3N4 coating by noncontact crucible method
Taishi et al. Constitutional supercooling in heavily As-doped Czochralski Si crystal growth
US8547121B2 (en) Quality control process for UMG-SI feedstock
Li et al. Distributions of substitutional and interstitial impurities in silicon ingot with different grain morphologies
Kwapil et al. Influence of crucible and coating on the contamination of directionally solidified silicon: First results of the German research network ‘SolarWins
CN107523868A (en) Boron foundry alloy preparation method
Chen et al. Influence of vertical temperature gradients on wafer quality and cell efficiency of Seed-assisted high-performance multi-crystalline silicon
WO2013094245A1 (en) Polycrystalline silicon ingot, process for producing same, and uses thereof
WO2010127184A1 (en) Quality control process for umg-si feedstock
CN101748481B (en) Method for purifying polycrystalline silicon material
Dold Silicon crystallization technologies
TW201144224A (en) Quality control process for UMG-Si feedstock
Kutsukake et al. Modeling of incorporation of oxygen and carbon impurities into multicrystalline silicon ingot during one-directional growth
Huang et al. Electrical resistivity distribution of silicon ingot grown by cold crucible continuous melting and directional solidification