TW201144089A - Method for hydrophilizing surfaces of a print head assembly - Google Patents

Method for hydrophilizing surfaces of a print head assembly Download PDF

Info

Publication number
TW201144089A
TW201144089A TW99118392A TW99118392A TW201144089A TW 201144089 A TW201144089 A TW 201144089A TW 99118392 A TW99118392 A TW 99118392A TW 99118392 A TW99118392 A TW 99118392A TW 201144089 A TW201144089 A TW 201144089A
Authority
TW
Taiwan
Prior art keywords
printhead assembly
assembly
printhead
plasma
print head
Prior art date
Application number
TW99118392A
Other languages
Chinese (zh)
Inventor
Simon Fielder
Lewis Matich
Kia Silverbrook
Original Assignee
Silverbrook Res Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silverbrook Res Pty Ltd filed Critical Silverbrook Res Pty Ltd
Priority to TW99118392A priority Critical patent/TW201144089A/en
Publication of TW201144089A publication Critical patent/TW201144089A/en

Links

Abstract

A method for hydrophilizing surfaces of a printhead assembly includes decontaminating the printhead assembly; plasma activating the surfaces of the printhead assembly; treating the surfaces of the printhead assembly with a treatment solution; drying the printhead assembly; baking the printhead assembly; and performing a print quality and electrical test on the printhead assembly. The step of decontaminating the printhead assembly is performed before the step of plasma activating the surfaces of the printhead assembly.

Description

201144089 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種於大氣壓使用電漿而使印刷頭組合 件之表面具有親水性之方法。此外,所揭示的本發明係關 於處理親水化表面以延長內表面的親水壽命之方法》 【先前技術】 印刷頭組合件通常包括印刷頭、用以將墨供應至印刷 頭的一或多個墨徑,和驅動印刷頭的驅動電路。慣用印刷 頭組合件的操作期間內,已觀察到墨流經時,在墨徑和印 刷頭表面上形成氣泡的現象。此氣泡之形成造成墨流中阻 塞,降低表面潤濕度,並降低印刷品質。 欲改善此問題,可以在製造期間或之後,以電漿活化 印刷頭組合件之表面。印刷頭組合件內表面的電漿活化使 得這些表面更親水並提高其濕潤度;此又抑制氣泡形成。 但是,藉電漿活化供應至表面的親水特性隨著時間的 推移而降低或鬆驰。在印刷頭組合件的例子中,一個改善 此問題的方式係在印刷頭組合件表面經電漿活化之後,以 墨或似墨流體對印刷頭組合件施以底塗,及確保印刷頭組 合件維持經墨(若似墨流體)底塗直到其使用爲止。但是 ,維持印刷頭組合件經墨或似墨流體底塗,自製造時至使 用時,引發明顯複雜性,包括此經底塗的印刷頭組合件之 儲存和運送。 另一延緩經電漿活化的表面鬆弛之方法係以聚乙亞胺 201144089 (PEI )溶液處理經活化表面。根據此技術目前瞭解 PEI主要仰賴與經活化表面的分子內羧基鍵之形成。 ,以二氧化碳電漿以外的電漿活化表面時,PEI較無 〇 US 5,700,559、US 5,807,636 和 US 5,837,377 描 種用於含水環境的親水性物件,其包括基材、在該基 的離子性聚合層、及以離子方式鍵結至該聚合層之無 的多電解質塗層。 印刷頭組合件的電漿活化慣常使用真空電漿加工 行。但是,真空電漿加工法昂貴且費時。真空電漿加 需要昂貴的專用設備來製造真空及在真空中產生電漿 外,須要許多時間來將工件載入真空槽和/或移出真 ,形成和排除真空,及此電漿擴散通過及活化該工件 與真空電漿加工有關的其他缺點在於真空電漿加 於待活化的工件表面及它們的活化程度沒有選擇性》 特定表面的活化處理通常困難且不可能僅選擇性地活 表面β 此外,真空電漿加工法不適合印刷頭組合件製造 使用的連續/組合線型製法。欲使得真空電漿法成本 ,印刷頭組合件分批加工。印刷頭組合件的整合和之 拆解成批次用於真空電漿加工中斷了連續組合線型製 工作流程並降低製法的效率。 印刷頭組合件在真空電漿加工中之分批加工造成 連貫也引發品質控制問題。最先自真空加工批次移出 者, 因此 效用 述一 材上 規律 法進 工法 。此 空槽 〇 工對 針對 化內 中常 合宜 後的 法的 的不 的印 -6 - 201144089 刷頭組合件及最晚自相同批次移出的印刷頭組合件之陳舊 程度不同。例如,最先自離開真空電漿法的批料移出的印 刷頭組合件之活化表面比最晚自相同批料移出的印刷頭,袓 合件要來得“年輕”。此陳舊程度差異影響在真空電紫加工 步驟的下游進行的其他加工步驟的結果。 【發明內容】 根據本揭示的方面,一種使印刷頭組合件之表面具有 親水性之方法包括印刷頭組合件的去污;電漿活化印刷頭 組合件之表面;以處理液處理印刷頭組合件之表面;乾燥 印刷頭組合件;烘烤印刷頭組合件;及在印刷頭組合件上 進行印刷品質和電測試。印刷頭組合件的去污步驟係在電 漿活化印刷頭組合件之表面的步驟之前進行。 【實施方式】 電漿活化基材以藉由產生活性化學物種而提高基材表 面的表面能量,藉此使得基材表面具有較高的親水性。但 在表面形成的此活性物種之能量高於未經處理的表面或表 面下方的整體相。就熱力上看來,此爲不利者且系統會試 圖最小化此能量。此程序被稱爲鬆驰(relaxation)。 吸附及與大氣物種之反應常爲所觀察到硬表面(如矽 和二氧化矽)鬆弛的原因。軟材料(如塑料)的情況中, 一種分子隱沒(此處化學活性物種折回塑料的整體相中, 藉此而使得表面回到非常接近其未經處理的狀態),通常 201144089 被視爲鬆弛機構所致。 在由不同材料之複合物所構成的印刷頭組合件中 合件的一些表面(如膠合接點)本質上較其他表面具 性。這些較疏水的表面之潤濕較無效率,且更重要地 易被除濕。此外,印刷頭組合件的不同表面的鬆弛速 化很大。 電漿活化法無法在製造此印刷頭組合件之材料的 物上生成均勻表面能量,在這些表面進行電漿活化之 印刷頭組合件的表面立刻具有最高程度的表面能量和 最高均勻度的表面能量。 本發明中,印刷頭組合件於大氣壓進行電漿活化 化其內表面。表面的電漿活化之後,表面經乙氧化的 亞胺(EPI)處理。涉及含括EPI的該處理方法留下 發性、高度潤濕的EPI薄膜,此情況延長至活化表面 親水性的時間。 圖5A出示EPI的結構式,而圖5B出示聚乙亞 PEI )的結構式。在本發明當時,此技術通常瞭解經 化碳電漿活化的表面暴於PEI溶液,會在PEI的胺基 性和在以二氧化碳進行電漿加工期間內形成的表面上 性羧基之間形成大規模和緊密結合的鹽錯合物。 根據此技術的一般瞭解,PEI分子的胺基與經二 碳活化的表面的羧基彼此作用之反應性控制此鹽錯合 形成和後續安定性。羧基可接近之PEI分子內的一級 官能性的比例越高,所得表面層的品質和堅固性越高 ,組 疏水 ,較 率變 複合 後, 具有 以活 聚乙 非揮 維持 胺( 二氧 官能 的酸 氧化 物之 胺基 。反 -8- 201144089 之,PEI分子內的胺基官能性的立體阻礙越高, 之親水層的處理效能和品質越低。 値得注意地,前述暗示官能性PEI衍生物( 生物未造成任何巨分子鹽形成)所得表面較不堅 性欠佳。例如,相較於其母聚合物(PEI ), PEI (即EPI)中的一級胺基的數目實質上會降 80%乙氧化反應時,平均而言,EPI的胺基官能 立體阻礙遠超過母聚合物(PEI )。此外,由於 應引入的官能基不會參與鹽形成,所以預期EPI 化表面的親水化方面之效用不及PEI之試劑。 相對於此技術的一般認知,本發明之發明者 較於以PEI處理者,以EPI處理活化表面形成優 膜。本發明之發明者建議黏著機構係經由較弱但 的氫鍵的強烈網絡,而非經由鹽形成。 因此,本發明中,使用EPI作爲優於PEI的 處理經電漿活化的表面,且特別是印刷頭組合件 活化的表面。 相較於PEI處理,以EPI處理之經活化的表 化的表面上形成優良的親水膜。此技術中已接受 生於P E I和經活化表面之間之安定化互相作用的 此已接受之認知建議EPI不及PEI,此與使用 PEI不相符。 圖1以圖示說明本發明的一個具體例的例 1 000 )。 自彼形成 此處的衍 固且親水 乙氧化的 低,且於 性受到的 乙氧化反 爲在羧基 發現,相 良的親水 一樣多產 替代品來 之經電漿 片在經活 之關於發 認知,因 EPI優於 示裝置( -9 - 201144089 裝置( 10 00 )包括將電漿供應至電漿接收區(115) 的電獎源(11〇) ’和裝備在型架(100)中以位於電獎接 收區(1 1 5 )內的印刷頭組合件(1 2 0 )。印刷頭組合件包 括由印刷頭組合件的第一表面(12 3)界定的噴嘴(121) ,和連接至印刷頭組合件的第二表面(124)的插口( 122 )。此插口( 1 22 )是’例如’印刷頭組合件(120 )的供 墨入口和/或連接器,其將印刷頭組合件(1 2 0 )的印刷 頭連接至供墨處(例如墨儲槽或供墨通道)。此裝置( i 000 )另包括橫跨電漿接收區(1 1 5 )(特別是橫跨第一 表面(123)和第二表面(^24))建立的壓力差。 一具體例中’壓力差係藉連接至插口(122)的吸取 泵(135)建立。或者,或此外’吸取泵(135),鼓風機 配備在電漿源(1 1 〇 )側並朝向噴嘴(1 2 1 )。 電漿源(110)是大氣壓產生裝置,且其朝向電漿接 收區(115)和噴嘴(121)。藉由使用大氣的電漿源,印 刷頭組合件(1 20 )在大氣壓或接近大氣壓的環境中活化 。此配置克服了前文討論之與真空電漿加工相關的複雜性 和缺點。 橫跨第一表面(123)和第二表面(124)建立的壓力 差(13)將自電漿源(110)產生的電漿經由插口(122) 和噴嘴(1 2 1 )傳遞通過印刷頭組合件(1 20 )的墨徑。電 漿較佳自噴嘴(121)傳遞通至插口(122),但也可以藉 由反轉壓力差,自插口(122)傳遞通至噴嘴(121)。亦 可進行電漿的兩向傳遞,一自噴嘴(121)通至插口(122 -10- 201144089 )及一自插口(122)通至噴嘴(121),以確保在印刷頭 組合件(1 20 )中之所有的內表面之活化作用。 裝置(1 〇〇〇 )另外得以將處理液自印刷頭組合件( 120)的第一表面供應至印刷頭組合件(120)的第一表面 (123)上的噴嘴(121),或傳遞通過插口(122)至印 刷頭組合件的噴嘴(1 2 1 )。可以改變藉吸取泵建立的壓 力差以使得電漿傳遞通過印刷頭組合件(1 20 )的墨徑及 處理液傳遞通過墨徑。 第一具體例 圖2係說明本發明之親水化法的第一具體例的流程圖 〇 新製造的印刷頭組合件先進行電漿活化程序(S2-1 ) 。第一具體例中,使用02電漿。此〇2電漿活化程序係以 印刷頭組合件在大氣壓進行。 大氣壓電漿產生工具較佳利用電漿源,使得印刷頭組 合件維持在大氣壓或接近大氣壓的環境下。或者可以使用 針對印刷頭組合件的電暈放電裝置。 電漿活化程序(S2-1 )之後,經活化的印刷頭組合件 包裝成印刷厘組合件,藉此以墨施以底塗且印刷匣組合件 進行印刷品質和電測試程序(S2-2 )。 印刷頭組合件之經活化表面具有提高的表面能量,有 助於在印刷品質和電測試程序(S2-2 )期間內’墨迅速進 入印刷頭組合件的流體通道。印刷品質和電測試程序中使 -11 - 201144089 用的墨包含大部分的水、水溶性二醇、染料和界面活 ,並因此不與經電漿活化的表面的潤濕特性妥協。使 墨之印刷品質和電測試程序(S2-2 )因此未導致藉由 電漿而產生的印刷頭組合件的親水性有任何明顯受損 況。 測試之後,清除未經使用的墨,並以似墨媒液( 似墨組份,沒有可溶性染料或水,有或無界面活性 S2-3 ))清洗印刷頭組合件,將經印刷品質測試的組 回復至保留足夠表面活性和親水性的條件。 例示印刷品質和電測試程序中,進行印刷匣組合 墨底塗試驗和電試驗。然後,經由印刷頭組合件的背 道,印刷匣組合件於40 kPa以去離子水清洗,於減| kPa於常溫,以水真空萃取3次。 清除程序(S2-3 )之後,自印刷匣組合件拆解印 組合件。 如前述者,雖然印刷頭組合件的表面在氧電漿活 序(S 2 -1 )之後具親水性,但此經活化表面隨時間鬆 總是回到較不具親水性的狀態。欲防止活化表面鬆弛 水性耗損,第一具體例在印刷頭組合件表面上進行處 序(S2-4 ),藉此使得印刷頭組合件的內部活化表面 ΕΡΙ處理液。此處理程序(S2-4)在清除程序(S2-3 後進行。 處理程序(S2-4 )將ΕΡΙ處理液注入通過印刷頭 件的墨徑。此處理液可以注入通過印刷頭組合件的插 性劑 用此 暴於 的情 包含 劑( 合件 件的 面通 g -40 刷頭 化程 弛且 及親 理程 暴於 )之 組合 口至 -12- 201144089 噴嘴,但較佳自噴嘴注射至插口,以便亦清洗已自印刷品 質和電測試程序(S2-2)累積的污染物。 欲確保印刷頭組合件的內部結構完全暴於處理液,阻 塞組合件的墨通道和/或處於壓力脈衝狀態下。此壓力脈 衝造成浪湧流,其使得在注入處理液的期間內不能移動的 (任何氣泡)能夠移動。壓力脈衝進一步壓縮任何此氣泡 ,藉此進一步有助於它們的釋放。每一顏色通道的墨通道 可經全體或個別處理。個別顏色通道之處理因爲可以偵測 試劑流的變化而使得程序獲更佳控制。 EPI以商業方式以在水中之濃縮液(通常介於35%和 40%之間)提供,含EPI的處理液較佳藉由以相容溶劑進 一步稀釋EPI濃縮物而形成。本具體例中,使用水,因其 操作安全(無毒性、非可燃)、便宜和易棄置之故。此外 ,水不會鈍化高能量表面,本身具有高表面張力,且當揮 發時,不會過於迅速乾燥。EPI溶液之乾燥過於迅速造成 印刷頭組合件中的微流體結構之無可彌補的阻塞。 丙二醇或揮發性相仿的其他二醇及二醇醚(如聚乙二 醇- 300)可以另加至EPI溶液以減緩EPI溶液的乾燥速率 ,使得EP I溶液在此程序期間內維持流體狀態。 • EPI處理液的例示調合物(以質量%表示)如下 • EPI ( 0.01% 至 10% );通常 0.1% • 丙二醇(0.1%至30%);通常10% /或者,聚 乙二醇- 300(0.1% 至 30%);通常 10% -13- 201144089 • 界面活性劑,如Surfonyl (0.01%至5%); 通常0.1% • 水(其餘質量) 處理程序(S2-4 )之後,乾燥經處理的印刷頭組合件 經(S 2 - 5 )。 例示乾燥程序中,經純化的壓縮空氣於壓力600 kPa 施用於印刷頭組合件的每一通道。壓力線經由開-關旋塞 或活栓連接至印刷頭組合件,藉由旋轉旋塞,經純化的壓 縮空氣脈衝通過墨通道。由於氣體通過每一通道的流徑係 藉其結構的複雜度和其最小部件提供的限制程度決定,所 以脈衝壓縮空氣確保所有的處理液自流徑清除,此包括清 除留滯在印刷頭組合件的流體結構中之任何累積的過量流 體。脈衝操作的頻率和數目由經清除的印刷頭的有效乾燥 度決定。發現每次循環爲期1〇秒鐘的一至六個循環有效 ,但乾燥程序不受此限制。然後,所有的通道通以800 kP a的暖空氣10分鐘。此暖空氣較佳藉渦流裝置生成, 藉此,生成的空氣實質上沒有污染物。例示乾燥法中,印 刷頭組合件最終置於7 0 °C的烤箱中2或更多小時,此時 ,印刷頭組合件的噴嘴向上。 乾燥經處理的印刷頭之程序實質上移除自處理液引入 的任何水和丙二醇。非揮發性、高度潤濕的EPI薄膜留在 印刷頭組合件表面上。 如前述者,處理液是EPI濃縮物之以水爲基礎的溶液 。藉由水分子與適當受體位置(即含括EPI的乙氧基和/ -14- 201144089 或胺基官能性)之間的氫鍵結作用達到EPI在水中之溶劑 化作用。但是,欲達到EP I在印刷頭組合件之經活化表面 上的氫鍵結位置之黏著,必須誘導與溶劑化相關的水分子 離開處理液及使得在經活化表面處的羥基取代其位置。此 最有效地經由溶劑的熱置換,即,烘烤,達成。 烘烤用以驅除水分子,過量的熱能使得EPI更迅速地 使其表面作用最大化及達到安定的表面塗覆。烘烤亦有助 於揮發乾燥程序之後留下之任何殘留的丙二醇。據此,經 乾燥的印刷頭組合件再組裝成印刷頭匣並在烤箱中烘烤/ 固化(S 2 - 6 )。較佳地,此印刷頭匣於約7 0 °C固化1至 1 8小時。 第一具體例中,在印刷品質和電測試程序(S2-2 )之 後,進行處理程序(S2-4 )和乾燥程序(S2-5 )。此方式 中,乾燥程序(S2-5)之後留下的EPI薄膜未被碰觸且不 會受到任何其他程序之’影響。 第二具體例 圖3係說明本發明之親水化法的第二具體例的流程圖 〇 第二具體例中,新製造的印刷頭組合件先進行電獎活 化程序(S3-1)。類似於第一具體例’使用02電漿。電 漿活化程序(S3-1 )係以印刷頭組合件在大氣壓進行。 大氣壓電獎產生工具較佳利用電漿源。或者,可以使 用針對印刷頭組合件的電暈放電裝置。201144089 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of using a plasma at atmospheric pressure to impart hydrophilicity to the surface of a printhead assembly. Furthermore, the disclosed invention relates to a method of treating a hydrophilized surface to extend the hydrophilic lifetime of the inner surface. [Prior Art] A printhead assembly typically includes a printhead, one or more inks for supplying ink to the printhead. The diameter, and the drive circuit that drives the print head. During the operation of the conventional print head assembly, it has been observed that bubbles are formed on the ink path and the surface of the print head as the ink flows. The formation of this bubble causes blockage in the ink stream, reduces surface wetting, and reduces print quality. To improve this problem, the surface of the printhead assembly can be activated with plasma during or after manufacture. The activation of the plasma on the inner surface of the printhead assembly renders these surfaces more hydrophilic and enhances their wetness; this in turn inhibits bubble formation. However, the hydrophilic properties supplied to the surface by plasma activation are reduced or relaxed over time. In the example of a printhead assembly, one way to improve this problem is to apply a primer to the printhead assembly with ink or ink-like fluid after the surface of the printhead assembly is plasma activated, and to ensure that the printhead assembly is The ink (if ink-like fluid) is maintained undercoat until it is used. However, maintaining the inkjet or ink-like fluid primer for the printhead assembly results in significant complications from the time of manufacture to use, including the storage and transport of the primed printhead assembly. Another method of retarding surface relaxation by plasma activation is to treat the activated surface with a solution of polyethyleneimine 201144089 (PEI). It is currently understood from this technique that PEI primarily relies on the formation of intramolecular carboxyl bonds with activated surfaces. When a surface is activated by a plasma other than the carbon dioxide plasma, the PEI is described in US Pat. No. 5,700,559, US Pat. No. 5,807,636, and US Pat. No. 5,837,377, which are incorporated herein by reference. And a multi-electrolyte coating ionically bonded to the polymeric layer. Plasma activation of the printhead assembly is conventionally performed using vacuum plasma processing. However, vacuum plasma processing is expensive and time consuming. Vacuum plasma addition requires expensive special equipment to create vacuum and generate plasma in vacuum. It takes a lot of time to load the workpiece into the vacuum chamber and/or remove it, forming and removing vacuum, and the plasma diffuses through and activates. Other disadvantages associated with vacuum plasma processing of the workpiece are that the vacuum plasma is applied to the surface of the workpiece to be activated and their degree of activation is not selective. The activation of a particular surface is often difficult and it is not possible to selectively only activate the surface β. The vacuum plasma processing method is not suitable for continuous/combined line type manufacturing methods used in the manufacture of print head assemblies. In order to make the vacuum plasma method cost, the print head assembly is processed in batches. The integration and disassembly of the printhead assembly into batches for vacuum plasma processing interrupts the continuous combined linear workflow and reduces the efficiency of the process. The batch processing of the print head assembly in vacuum plasma processing causes consistency and also causes quality control problems. The first method is to remove the batch from the vacuum processing batch, so the utility method is described in the regular method. This empty trough is not the same as the one that is often used in the process. The -6 - 201144089 brush head assembly and the print head assembly removed from the same batch at the latest are different in age. For example, the active surface of the printhead assembly that was first removed from the batch leaving the vacuum plasma process is "young" than the printhead that was removed from the same batch at the latest. This difference in staleness affects the results of other processing steps performed downstream of the vacuum violet process step. SUMMARY OF THE INVENTION In accordance with aspects of the present disclosure, a method of rendering a surface of a printhead assembly hydrophilic comprises decontamination of a printhead assembly; a plasma activating a surface of the printhead assembly; processing the printhead assembly with a treatment fluid Surface; dry print head assembly; bake print head assembly; and print quality and electrical testing on the print head assembly. The decontamination step of the printhead assembly is performed prior to the step of activating the surface of the printhead assembly. [Embodiment] A plasma-activated substrate enhances the surface energy of the surface of the substrate by generating an active chemical species, thereby making the surface of the substrate highly hydrophilic. However, the energy of this active species formed on the surface is higher than the untreated surface or the overall phase below the surface. In terms of heat, this is unfavorable and the system will try to minimize this energy. This program is called relaxation. Adsorption and reaction with atmospheric species are often the cause of the observed relaxation of hard surfaces such as antimony and cerium oxide. In the case of soft materials (such as plastics), a molecule is hidden (where the chemically active species fold back into the overall phase of the plastic, thereby causing the surface to return very close to its untreated state), usually 201144089 is considered a relaxation mechanism Caused. Some surfaces of the assembly, such as glued joints, in a printhead assembly of composites of different materials are inherently more characteristic than others. Wetting of these more hydrophobic surfaces is less efficient and, more importantly, dehumidified. In addition, the relaxation of the different surfaces of the printhead assembly is greatly accelerated. The plasma activation method does not produce uniform surface energy on the material from which the printhead assembly is made, and the surface of the printhead assembly that is plasma activated on these surfaces immediately has the highest surface energy and highest uniformity of surface energy. . In the present invention, the print head assembly is plasma activated at its atmospheric pressure to its inner surface. After activation of the surface plasma, the surface is treated with ethoxylated imine (EPI). This treatment involving the inclusion of EPI involves a leavenent, highly wet EPI film which extends to the time of activation of the hydrophilicity of the surface. Fig. 5A shows the structural formula of EPI, and Fig. 5B shows the structural formula of polyethylene PEI). At the time of the present invention, this technique generally understood that surface-activated carbonized plasma storms in PEI solutions formed large scales between the amine nature of PEI and the surface carboxyl groups formed during plasma processing with carbon dioxide. And a tightly bound salt complex. According to the general knowledge of this technique, the reactivity of the amine groups of the PEI molecule with the carboxyl groups of the carbon-activated surface controls the salt formation and subsequent stability. The higher the proportion of the primary functionality in the PEI molecule to which the carboxyl group is accessible, the higher the quality and firmness of the obtained surface layer, the hydrophobicity of the group, and the compounding of the polyethylidene (dioxy-functional) The amine group of the acid oxide. The anti--8-201144089, the higher the steric hindrance of the amine function in the PEI molecule, the lower the treatment efficiency and quality of the hydrophilic layer. Note that the above suggestive functional PEI derivative The surface obtained by the organism (the organism does not cause any macromolecular salt formation) is less rigid. For example, the number of primary amine groups in PEI (ie EPI) is substantially reduced by 80 compared to its parent polymer (PEI). In the case of ethoxylation, on average, the steric hindrance of the amino function of EPI far exceeds that of the parent polymer (PEI). Furthermore, since the functional group to be introduced does not participate in salt formation, it is expected that the surface of the EPI is hydrophilized. The utility of the invention is inferior to the reagent of PEI. Relative to the general knowledge of the technology, the inventors of the present invention form an excellent film by treating the activated surface with EPI as compared with the PEI processor. The inventors of the present invention suggest that the adhesive mechanism is A weaker network of hydrogen bonds, rather than via salt formation. Thus, in the present invention, EPI is used as a plasma-activated surface for processing superior to PEI, and in particular the surface activated by the printhead assembly. Upon PEI treatment, an excellent hydrophilic membrane is formed on the activated surface of the EPI treatment. This technique has accepted the accepted cognitive suggestion that EPI is not compatible with the stabilization interaction between PEI and the activated surface. PEI, which does not correspond to the use of PEI. Fig. 1 is a diagram illustrating an example of a specific example of the present invention. Since the formation of the here and the hydrophilic ethoxylation is low, and the ethoxylation of the property is reversed in the carboxyl group, the good hydrophilicity of the same kind of substitute is the result of the plasma film in the living, Because the EPI is superior to the display device ( -9 - 201144089 device (10 00 ) includes the power source (11〇) that supplies the plasma to the plasma receiving area (115)' and is equipped in the frame (100) to be located in the electricity a printhead assembly (1 2 0 ) within the prize receiving area (1 15). The printhead assembly includes a nozzle (121) defined by a first surface (123) of the printhead assembly, and is coupled to the printhead a socket (122) of the second surface (124) of the assembly. The socket (122) is an ink supply inlet and/or connector of, for example, a printhead assembly (120) that will print the head assembly (1) The print head of 2 0 ) is connected to the ink supply (for example, an ink reservoir or an ink supply channel). The device (i 000 ) further includes a cross-plasma receiving area (1 15) (particularly across the first surface ( 123) and the second surface (^24)) establishes a pressure difference. In a specific example, the 'pressure difference is connected to the socket (122) The suction pump (135) is established. Alternatively, or in addition to the 'absorption pump (135), the blower is provided on the side of the plasma source (1 1 〇) and faces the nozzle (1 2 1 ). The plasma source (110) is an atmospheric pressure generating device. And it faces the plasma receiving zone (115) and the nozzle (121). The printhead assembly (120) is activated in an atmospheric or near atmospheric environment by using an atmospheric plasma source. This configuration overcomes the foregoing discussion. Complexities and Disadvantages Associated with Vacuum Plasma Processing. The pressure differential (13) established across the first surface (123) and the second surface (124) passes the plasma generated from the plasma source (110) through the socket (122). And the nozzle (1 2 1 ) transmits the ink path through the print head assembly (1 20 ). The plasma is preferably transmitted from the nozzle (121) to the socket (122), but may also be reversed by the pressure difference. The socket (122) is transmitted to the nozzle (121). The two-way transmission of the plasma can also be performed, one from the nozzle (121) to the socket (122 -10- 201144089) and one from the socket (122) to the nozzle (121) ) to ensure activation of all of the inner surfaces in the printhead assembly (1 20). Further, the treatment liquid is additionally supplied from the first surface of the printhead assembly (120) to the nozzle (121) on the first surface (123) of the printhead assembly (120), or through the socket (122). ) to the nozzle (1 2 1 ) of the printhead assembly. The pressure differential established by the suction pump can be varied to cause the plasma to pass through the ink path of the printhead assembly (1 20) and the process fluid to pass through the ink path. First Specific Example Fig. 2 is a flow chart for explaining a first specific example of the hydrophilization method of the present invention. 〇 The newly manufactured print head assembly is first subjected to a plasma activation program (S2-1). In the first specific example, 02 plasma was used. This 〇2 plasma activation procedure is carried out at atmospheric pressure with the printhead assembly. The atmospheric piezoelectric slurry generating tool preferably utilizes a plasma source to maintain the printhead assembly at atmospheric or near atmospheric pressure. Alternatively, a corona discharge device for the printhead assembly can be used. After the plasma activation procedure (S2-1), the activated print head assembly is packaged into a printing PCT assembly, whereby the ink is primed and the enamel assembly is printed for printing quality and electrical testing procedures (S2-2) . The activated surface of the printhead assembly has an increased surface energy that facilitates rapid entry of ink into the fluid path of the printhead assembly during print quality and electrical testing procedures (S2-2). The ink used in the print quality and electrical test procedures for -11 - 201144089 contains most of the water, water soluble glycols, dyes and interfacial activity and therefore does not compromise the wetting characteristics of the plasma activated surface. The printing quality of the ink and the electrical test procedure (S2-2) therefore did not result in any significant deterioration in the hydrophilicity of the printhead assembly produced by the plasma. After the test, the unused ink is removed and the print head assembly is cleaned with an ink-like medium (ink-like composition, no soluble dye or water, with or without interface activity S2-3), which will be tested for print quality. The group reverts to conditions that retain sufficient surface activity and hydrophilicity. In the exemplary print quality and electrical test procedures, a print 匣 combination ink undercoat test and an electrical test are performed. Then, via the back of the print head assembly, the printing enamel assembly was rinsed with deionized water at 40 kPa, and at room temperature minus kPa at room temperature, vacuum extraction 3 times with water. After the program (S2-3) is cleared, the print assembly is removed from the print cartridge assembly. As previously mentioned, although the surface of the printhead assembly is hydrophilic after the oxy-plasma sequence (S 2 -1 ), the activated surface always returns to a less hydrophilic state over time. To prevent the activation surface from being relaxed, the first embodiment is subjected to the step (S2-4) on the surface of the print head assembly, whereby the inner surface of the print head assembly is activated to ΕΡΙ the treatment liquid. This processing program (S2-4) is performed after the cleaning process (S2-3. The processing program (S2-4) injects the hydrazine treatment liquid into the ink path passing through the printing head member. This processing liquid can be injected into the insertion through the print head assembly. The agent uses the combination of the explosive inclusion agent (the surface of the piece is g-40, and the prosthetic process is relaxed) and the nozzle is -12-201144089, but it is preferably injected from the nozzle. Sockets to also clean contaminants that have accumulated from the print quality and electrical test procedures (S2-2). To ensure that the internal structure of the printhead assembly is completely blasted to the process fluid, block the ink path of the assembly and/or be at pressure pulses. In this state, this pressure pulse causes a surge flow that enables movement (any bubble) that cannot move during the injection of the treatment fluid. The pressure pulse further compresses any such bubbles, thereby further contributing to their release. The ink channels of the color channels can be processed in whole or individually. The processing of individual color channels allows for better control of the program by detecting changes in reagent flow. EPI is commercially concentrated in water. (usually between 35% and 40%) is provided, and the EPI-containing treatment liquid is preferably formed by further diluting the EPI concentrate with a compatible solvent. In this embodiment, water is used because of its safe operation (non-toxicity) In addition, water does not passivate high-energy surfaces, has high surface tension, and does not dry too quickly when volatilized. EPI solution drying too quickly causes print head assembly The irreparable blockage of the microfluidic structure. Propylene glycol or other similar diols and glycol ethers (such as polyethylene glycol-300) can be added to the EPI solution to slow the drying rate of the EPI solution, making EP The I solution maintains a fluid state during this procedure. • An exemplary blend of EPI treatments (expressed in mass %) is as follows: • EPI (0.01% to 10%); typically 0.1% • Propylene glycol (0.1% to 30%); 10% / or, polyethylene glycol - 300 (0.1% to 30%); usually 10% -13 - 201144089 • Surfactant, such as Surfonyl (0.01% to 5%); usually 0.1% • Water (remaining mass) After the treatment (S2-4), the drying is processed The print head assembly is passed through (S 2 - 5 ). In the illustrated drying procedure, purified compressed air is applied to each channel of the printhead assembly at a pressure of 600 kPa. The pressure line is connected to the print head via an open-close cock or a stopcock The assembly, through the rotary cock, the purified compressed air is pulsed through the ink channel. Since the flow path of the gas through each channel is determined by the complexity of its structure and the degree of limitation provided by its smallest component, the pulsed compressed air ensures that all The treatment fluid is purged from the flow path, which includes removing any accumulated excess fluid remaining in the fluid structure of the printhead assembly. The frequency and number of pulse operations is determined by the effective dryness of the erased printhead. It was found that one to six cycles of one cycle per cycle were effective, but the drying procedure was not limited by this. Then, all the channels are connected to the warm air of 800 kP a for 10 minutes. This warm air is preferably generated by a vortex device whereby the generated air is substantially free of contaminants. In the illustrated drying process, the print head assembly is finally placed in an oven at 70 ° C for 2 or more hours, at which point the nozzle of the print head assembly is upward. The procedure for drying the treated print head substantially removes any water and propylene glycol introduced from the treatment liquid. A non-volatile, highly wet EPI film remains on the surface of the printhead assembly. As mentioned above, the treatment liquid is a water-based solution of the EPI concentrate. The solvation of EPI in water is achieved by hydrogen bonding between the water molecule and the appropriate acceptor position (i.e., the EPI containing EPI and /14-201144089 or the amine functionality). However, in order to achieve adhesion of the EP I to the hydrogen bonding sites on the activated surface of the printhead assembly, it is necessary to induce the water molecules associated with solvation to leave the treatment liquid and to replace the position of the hydroxyl groups at the activated surface. This is most effectively achieved by thermal displacement of the solvent, i.e., baking. Baking is used to drive off water molecules, and excess heat allows the EPI to maximize its surface action and achieve a stable surface coating. Baking also aids in the evaporation of any residual propylene glycol remaining after the drying process. Accordingly, the dried print head assembly is assembled into a print head and baked/cured in the oven (S 2 - 6 ). Preferably, the print head is cured at about 70 ° C for 1 to 18 hours. In the first specific example, after the print quality and the electrical test program (S2-2), the processing program (S2-4) and the drying program (S2-5) are performed. In this manner, the EPI film remaining after the drying procedure (S2-5) is not touched and is not affected by any other procedure. Second Specific Example Fig. 3 is a flow chart for explaining a second specific example of the hydrophilization method of the present invention. 〇 In the second specific example, the newly manufactured print head assembly is first subjected to a power award activation program (S3-1). A 02 plasma was used similarly to the first specific example. The plasma activation procedure (S3-1) is carried out at atmospheric pressure in a print head assembly. The atmospheric piezoelectric award generating tool preferably utilizes a plasma source. Alternatively, a corona discharge device for the printhead assembly can be used.

-15- 201144089 印刷頭組合件活化之後(S3 -1 ),進行去污程序( S3-2 )。此去污程序(S3-2 )使清潔用流體沖洗通過印刷 頭組合件。 可接受的清潔用流體包括在去離水中的surfynol、含 水的二醇和醇、在去離子中的其他界面活性劑,或該等流 體之組合。這些流體的共通點係以水爲基礎、具以良好潤 濕特性、具有低表面張力、有助於成膜污染物溶解、揮發 性(以有助於迅速乾燥)、及僅留下與後續濕潤加工相容 的殘渣。所用清潔用流體必須亦不損及印刷頭組合件材料 (包括膠合點和封條),且較佳爲無毒性、便宜、易取得 及過濾後可回收使用者。 由於在印刷頭組合件內的通道的樹枝狀構造,墨徑( 例如,供墨通道)尺寸自印刷頭組合件背面朝向印刷頭組 合件正面(例如墨噴嘴和噴嘴供墨通道)逐漸降低。因此 ,該清潔用流體自印刷頭組合件正面上的噴嘴逆向沖洗, 經由背面上的插口流出。逆向沖洗確保污染物粒子傳遞進 入尺寸更提高的通道。以此方式,污染物粒子不會陷在墨 徑中,且不會堵塞或停留在墨徑的較窄部分。 例示去污程序(S3-2)中,逆沖洗以200毫升/分鐘 於4 5 °C進行2 0 0秒。之後印刷頭組合件組裝成印刷匣組 合件,且使用甘油和乙二醇在水中和少量的 surfynol 之溶 液,於3-5 kPa緩慢脈衝通過洗滌此印刷匣組合件達三個 循環,之後於80 kP a脈衝通過6秒鐘一個循環。然後, 將印刷匣組合件拆解成印刷頭組合件。 -16- 201144089 去污程序(S3-2)之後’使用EPI處理 組合件上進行處理程序(S3-3)。 處理程序(S 3 - 3 )注入處理液通過印刷 徑。此處理液可以注入通過印刷頭組合件的 但較佳自噴嘴注射至插口,以便亦清洗已累 污染物。欲確保印刷頭組合件的內部結構完 ,堵塞組合件的墨通道和/或處於壓力脈衝 力脈衝造成浪湧流,其使得在注入處理液的 動的任何氣泡能夠移動。壓力脈衝進一步壓 ,藉此進一步有助於它們的釋放。每一顏色 可經全體或個別處理。個別顏色通道之處理 試劑流的變化而使得程序獲更佳控制" 如同第一具體例,EPI的處理液較佳藉 稀釋EPI濃縮物而形成。丙二醇可以另加至 緩和EPI溶液的乾燥速率,使得EPI溶液在 持流體狀態。 處理程序(S3-3)之後進行乾燥程序( 乾燥程序中,經純化的壓縮空氣於壓力600 刷頭組合件的每一通道。壓力線經由開-關 接至印刷頭組合件,藉由旋轉旋塞,經純化 衝通過墨通道。由於氣體通過每一通道的流 的複雜度和其最小部件提供的限制程度決定 縮空氣確保所有的處理液自流徑清除,此包 刷頭組合件的流體結構中之任何累積的過量 液,在印刷頭 頭組合件的墨 插口至噴嘴, 積在墨徑中的 全暴於處理液 狀態下。此壓 期間內不能移 縮任何此氣泡 通道的墨通道 因爲可以偵測 由以相容溶劑 EPI溶液,以 程序期間內維 S 3 - 4 )。例示 kPa施用於印 旋塞或活栓連 的壓縮空氣脈 徑係藉其結構 ,所以脈衝壓 括清除留在印 流體。 17- 201144089 脈衝操作的頻率和數目由經清除的印刷頭的有效乾燥 度決定。發現每次循環爲期10秒鐘的一至六個循環有效 ,但乾燥程序不受此限制。然後’所有的通道通以8 0 0 kP a的暖空氣10分鐘。此暖空氣較佳藉渦流裝置生成, 藉此,生成的空氣實質上沒有污染物。例示乾燥法中,印 刷頭組合件最終置於7 0 °C的烤箱中2或更多小時,此時 ,印刷頭組合件的噴嘴向上。 乾燥經處理的印刷頭之程序移除由處理液引入的任何 水和丙二醇》非揮發性、高度潤濕的EPI薄膜留在印刷頭 組合件表面上。 如前述者,處理液係EPI濃縮物之以水爲基礎的溶液 。藉由水分子與適當受體位置(即含括EPI的乙氧基和/ 或胺基官能性)之間的氫鍵結作用達到EPI在水中之溶劑 化作用。但是,欲達到EP I在印刷頭組合件之經活化表面 上的氫鍵結位置之黏著,必須誘導與溶劑化相關的水分子 離開處理液及使得在經活化表面處的羥基取代其位置。此 最有效地經由溶劑的熱置換,即,烘烤,達成。 烘烤用以驅除水分子,過量的熱能使得EPI更迅速地 使其表面作用最大化及達到安定的表面塗覆。烘烤亦有助 於揮發乾燥程序之後留下之任何殘留的丙二醇。據此,經 乾燥的印刷頭組合件再組裝成印刷頭匣並在烤箱中烘烤/ 固化(S3-5 )。較佳地,此印刷頭匣於約70°C固化1至 1 8小時。 之後在印刷匣組合件上進行類似於第一具體例於( -18- 201144089 S 2 - 2 )描述的印刷品質和電測試程序(S 3 - 6 ) ’且使此印 刷匣組合件靜置一天至乾。 第二具體例中,相較於第一具體例’包括電漿活化程 序(S3-1 )之後但在處理程序(S3-3 )之前進行之額外的 去污程序(S 3 - 2 )。此去污程序自印刷頭組合件內表面移 除微粒污染物和成膜碎屑。以此方式’內表面獲得更有效 率和充分的處理。 此外,第二具體例中,在處理程序(S3-3 )和乾燥程 序(S3-4)之後,進行印刷品質和電測試程序(S3-6)。 印刷品質和電測試程序(S3-6 )期間內,通過印刷頭組合 件的墨將溶解一些薄膜EPI塗層(內表面),薄膜溶解速 率緩慢,相較於完全溶解此薄膜所須的時間,用於印刷、 測試、洗滌和清理的時間短暫。 但是,在印刷品質和電測試程序(S 3 - 6 )之前進行處 理程序(S 3 - 3 )的優點在於處理程序(S 3 - 3 )在剛經去污 的表面(其未暴於任何其他物質,如墨及在印刷品質和電 測試程序(S3-6 )期間內使用的沖洗流體)上進行。以此 方式,內表面獲得更充分和有效率的處理。 第三具體例 圖4係說明本發明之親水化法的第三具體例的流程圖 〇 第二具體例中,印刷頭組合件先進行去污程序(s 4 _ 1 )。此去污程序(S4-1)使清潔用流體逆沖洗通過印刷頭 -19- 201144089 組合件。因爲第二具體例中的前述原因而進行逆沖洗。 第三具體例中特別重要的是去污程序(S4-l )之後, 沒有殘渣留在印刷頭組合件的內表面上’此因在第三具體 例中之之後的電漿活化步驟不會使得與電漿接觸的任何材 料活化,即使此材料包括清潔用流體留下的界面活性劑殘 渣亦然。組合件的內表面亦必須在電漿活化之前完全乾燥 ,此因殘留的水或任何流體會遮蓋表面而使得電漿物種無 法通過其上方之故。經活化的界面活性劑殘渣極易高度潤 濕的同時,與第三具體例中欲進行的後續處理程序良好地 調合。 欲留下確實去污之沒有殘留物的表面,清潔用流體必 須不含有非揮發性組份,及欲有助’於乾燥,較佳藉由暴於 熱而移除。因此,第三具體例中,使用溶劑代替界面活性 劑作爲清潔用流體。 含水的乙醇係滿足前述要求之特別有效的溶劑。丙-1-醇亦爲有效溶劑。含水的乙醇之表面張力比只有水時爲 低並因此更濕潤。此外,乙醇是良好溶劑、易蒸發、便宜 、稀釋時相對安全、無毒性且易以純形式取得。因此,本 發明的第三具體例較佳逆沖洗含水乙醇作爲去污程序( S4-1 )中的清潔用流體。 然後,使含水乙醇的清潔用流體充分乾燥,藉此完成 去污程序(S4-1 )。例示去污程序中,印刷頭組合件在約 7〇°C的烤箱中真空乾燥2小時。 去污程序(S4-1 )之後,印刷頭組合件進行電漿活化 -20- 201144089 程序(S4-2 )。類似於第一具體例中,使用02電漿。電 漿活化程序係以印刷頭組合件在大氣壓進行。 大氣壓電漿產生工具較佳利用電漿源,使得印刷頭組 合件維持於或接近於大氣壓環境。或者,可以使用針對或 引至印刷頭組合件的電暈放電裝置。 電漿活化程序(S4-2 )之後,印刷頭組合件使用EPI 處理液進行處理程序(S4-3 )。 處理程序(S4-3 )注入處理液通過印刷頭組合件的墨 徑。此處理液可以注入通過印刷頭組合件的插口至噴嘴, 但較佳自噴嘴注射至插口,以便亦清洗已累積在墨徑中的 污染物。欲確保印刷頭組合件的內部結構完全暴於處理液 ,堵塞組合件的墨通道和/或處於壓力脈衝狀態下。此壓 力脈衝造成浪湧流,其使得在注入處理液的期間內不能移 動的任何氣泡能夠移動。壓力脈衝進一步壓縮任何此氣泡 ,藉此進一步有助於它們的釋放。每一顏色通道的墨通道 可經全體或個別處理。個別顏色通道之處理因爲可以偵測 試劑流的變化而使得程序獲更佳控制。 如同第一具體例,EPI的處理液較佳藉由以相容溶劑 稀釋EPI濃縮物而形成。丙二醇可以另加至EPI溶液,以 緩和EPI溶液的乾燥速率,使得EPI溶液在程序期間內維 持流體狀態。 之後,經處理的印刷頭組合件經乾燥(S4-4 )。例示 乾燥程序中,經純化的壓縮空氣(沒有微粒污染物)於壓 力6 00 kPa施用於印刷頭組合件的每一通道。壓力線經由 -21 - 201144089 開-關旋塞或活栓連接至印刷頭組合件,藉由旋轉旋塞’ 經純化的壓縮空氣脈衝通過墨通道。由於氣體通過每一通 道的流徑係藉其結構的複雜度和其最小部件提供的限制程 度決定,所以壓縮空氣脈衝確保所有的處理液自流徑清除 ,此包括清除留在印刷頭組合件的流體結構中之任何累積 的過量流體。 脈衝操作的頻率和數目由經清除的印刷頭的有效乾燥 度決定。發現每次循環爲期1〇秒鐘的一至六個循環有效 ,但乾燥程序不受此限制。然後,所有的通道通以800 kPa和在或約40 °C的暖空氣1〇分鐘》此暖空氣較佳藉渦 流裝置生成,藉此,產生的空氣實質上沒有污染物。 乾燥程序(S4-4 )之後’印刷頭組合件在約70°C的 烤箱中烘烤/固化(S4-5 ) 1-18小時(S4-5 )。如前述者 ,烘烤用以驅除水分子,過量的熱能使得EPI更迅速地使 其表面作用最大化及達到安定的表面塗覆。烘烤亦有助於 揮發乾燥程序之後留下之任何殘留的丙二醇。 烘烤程序(S 4 - 5 )之後,印刷頭組合件組裝成印刷匣 組合件,並進行印刷品質和電連接測試程序(S4-6 )。印 刷品質和電測試程序類似於第一具體例中於(S2-2 )中描 述者。 第三具體例中,去污步驟(S4_1 )作爲親水化法的第 一步驟之一。藉由在電漿活化程序(以-2 )之前進行去污 程序(S4-1 ),印刷頭組合件的內表面較佳暴於電漿,並 據此達到更完全和最適的表面活化。特別地,在活化內表 -22- 201144089 面之前,移除可能會遮蓋內表面的關鍵區域的微粒或膜。 不同於電漿活化程序在去污程序之前進行的第一和第 二具體例,對於處理之接受度較低之未經活化的表面之存 在明顯減少。 此外,第三具體例中,在電漿活化程序(S4-2 )之後 立刻有效率地進行處理程序(S4-3 )。以此方式,相較於 第一和第二具體例,印刷頭組合件之經活化的表面所提供 的鬆弛時間較短,且維持接近其最活躍的狀態。此外,由 於印刷頭組合件製自複合材料,材料各者具有不同的鬆弛 時間,所以在電漿活化程序之後,越快進行處理程序,將 會使得構成印刷頭組合件之不同材料的表面能量更均勻。 此外,相較於第二具體例,藉由在電漿活化程序( S4-2 )之後立刻進行處理程序(S4-3 ),而非於其間穿插 去污程序,處理程序(S4-3 )在未暴於其他物質(如去污 程序(S4-1 )中使用者)之新活化的表面上進行。 類似於第二具體例,在處理程序(S4-3 )之後進行印 刷品質和電測試程序(S4-6 )。印刷品質和電測試程序( S 4-6 )期間內,通過印刷頭組合件的墨將溶解一些薄膜 EPI塗層(內表面),薄膜溶解速率緩慢,相較於完全溶 解此薄膜所須的時間,用於印刷、測試、洗滌和清理的時 間短暫。 如同第二具體例,在印刷品質和電測試程序(S4-6 ) 之前進行處理程序(S4-3)的優點在於處理程序(S4-3) 在剛經去污的表面(其未暴於任何其他物質,如墨及在印 -23- 201144089 刷品質和電測試程序(S4-6 )期間內使用的沖洗流體)上 進行。以此方式,內表面獲得更充分和有效率的處理。 加工後包裝和運送 經根據前文所揭示之具體例之經電漿活化和處理的印 刷頭組合件的表面以非揮發性、高潤濕性的EP I薄膜塗覆 ,該薄膜抑制經活化表面的鬆弛。 此EPI薄膜提供鬆弛抑制效果,此類似於在製造之後 ,以墨或似墨流體施以底塗,及確保印刷頭組合件維持以 墨或似墨流體施以底塗直到使用(下文中稱爲”濕運送”) ,此濕運送如之前在先前技術中所討論者,且此EPI薄膜 沒有與濕運送相關的複雜性和無效率。 濕運送印刷頭組合件要求印刷頭組合件包裝在防水完 整密封袋中。濕運送印刷頭組合件無法忍受密封環境的任 何損害,且另有漏墨之虞。反之,非揮發性高度潤濕的 EPI薄膜塗層,藉所揭示的具體例加工之印刷頭組合件表 面巨觀來看爲乾燥者。據此,不須特殊包裝和密封要求。 因此,相較於印刷頭組合件之濕運送,本發明的其他 具體例中,使用成本更有效的包裝來包裝印刷頭組合件。 此包裝的例子包括較低等級的真空包裝和收縮膜包裝》 又其他具體例中,印刷頭組合件事先裝設在個別印表 機中,並與印表機一起儲存和運送。此印刷頭組合件以對 於方向不敏感的方式儲存和運送,使得印刷頭組合件經由 後勤鏈以空間和時間更有效率的方式操作,並據此,顯著 -24- 201144089 節省成本。由於在後勤鏈的這些階段的期間內,能夠完全 防止印刷頭組合件漏墨,所以能夠以此方式儲存、運送和 銷售印刷頭組合件。 此外,避免運送液體含括之符合進出口規則、運送分 類、海關分類和其他合法和程序複雜性。亦能提供真實的 “即插即用”印刷系統。 所揭示的本發明的其他方面的例子示於下列段落: 1 . 一種使印刷頭組合件之表面具有親水性的方法, 該方法之步驟包含: 電漿活化該印刷頭組合件之表面; 以處理液處理該印刷頭組合件之表面; 乾燥該印刷頭組合件;和 供烤該印刷頭組合件。 2. 根據段落1之方法,其中該電漿活化印刷頭組合 件之表面的步驟係在大氣壓下進行於該印刷頭組合件。 3. 根據段落1之方法,其中該電漿活化印刷頭組合 件之表面的步驟係使用氧電漿。 4. 根據段落1之方法,進一步包含在該印刷頭組合 件上進行印刷品質和電測試的步驟。 5. 根據段落4之方法,進一步包含在進行該印刷品 質和電測試之前,將該印刷頭組合件組裝至印刷頭匣的步 驟。 6. 根據段落4之方法,其中進行該印刷品質和電測 試的步驟包含自該印刷頭組合件清除未經使用之墨的步驟 -25- 201144089 7. 根據段落4之方法,其中進行該印刷品質和電測 試的步驟包含清洗該印刷頭組合件的步驟° 8. 根據段落5之方法,進一步包含在該印刷品質和 電測試之後及在以處理液處理該印刷頭組合件之表面的步 驟之前,將該印刷頭匣拆解成該印刷頭組合件的步驟。 9. 根據段落1之方法,其中該電漿活化的步驟包括 電漿通過該印刷頭組合件的墨通道的第一次傳遞’其係自 該印刷頭組合件的噴嘴側至該印刷頭組合件的供墨側。 10. 根據段落8之方法,其中該電漿活化步驟進—步 包括電漿通過該印刷頭組合件的該墨通道的第二次傳遞’ 其係自該印刷頭組合件的供墨側至該印刷頭組合件的噴嘴 側。 11. 根據段落10之方法,其中第一次傳遞係在第二 次傳遞之前進行。 12. 根據段落1之方法,其中該處理印刷頭組合件之 表面的步驟注射乙氧化的聚乙亞胺(EPI)溶液通過該印 刷頭組合件的墨通道》 13. 根據段落1之方法,其中該處理印刷頭組合件之 表面的步驟注射該處理液自該印刷頭組合件的噴嘴側至該 印刷頭組合件的供墨側而通過該印刷頭組合件的墨通道。 14. 根據段落1之方法,其中該處理印刷頭組合件之 表面的步驟包括阻斷該印刷頭組合件的供墨側並以壓力脈 衝輸送處理液自該印刷頭組合件的噴嘴側通過該印刷頭組 -26- 201144089 合件。 15. 根據段落1之方法,進一步包含以丙二醇稀釋該 處理液的步驟。 16. 根據段落1之方法,其中乾燥該印刷頭組合件的 步驟供應經純化的壓縮空氣通過該印刷頭組合件的墨通道 〇 1 7 .根據段落1 6之方法,其中該經純化的壓縮空氣 以600 kPa壓力供應。 1 8 ·根據段落1 6之方法,其中該經純化的壓縮空氣 被脈衝輸送而通過該印刷頭組合件的墨通道。 19.根據段落18之方法,其中該經純化的壓縮空氣 脈衝通過印刷頭組合件的墨通道達一至六個循環。 20·根據段落1 9之方法,其中每一循環期間約1 〇秒 〇 2 1 ·根據段落1 6之方法,其中乾燥該印刷頭組合件 的步驟另供應壓力爲800 kPa的暖空氣通過印刷頭組合件 的墨通道達10分鐘。 22. 根據段落1之方法,其中該烘烤印刷頭組合件的 步驟包括將該印刷頭組合件組裝成印刷頭匣,及在烤箱中 烘烤該印刷頭匣。 23. 根據段落22之方法,其中該印刷頭匣於70°C烘 烤。 24. 根據段落1之方法,其中在處理該印刷頭組合件' 之表面和乾燥該印刷頭組合件的步驟之前,進行該印刷品 -27- 201144089 質和電測試的步驟。 2 5 . —種使印刷頭組合件之表面具有親水性的方法, 該方法之步驟包含: 電漿活化該印刷頭組合件之表面; 印刷頭組合件之去污; 以處理液處理該印刷頭組合件之表面; 乾燥該印刷頭組合件:和 烘烤該印刷頭組合件。 2 6 .根據段落2 5之方法,其中該電漿活化印刷頭組 合件之表面的步驟係在大氣壓下進行於該印刷頭組合件。 2 7 .根據段落2 5之方法,其中該電漿活化印刷頭組 合件之表面的步驟係使用氧電漿。 2 8 .根據段落2 5之方法,進一步包含在該印刷頭組 合件上進行印刷品質和電測試的步驟。 2 9 .根據段落2 8之方法’進一步包含在進行該印刷 品質和.電測試之前’將該印刷頭組合件組裝至印刷頭匣的 步驟。 30.根據段落28之方法,其中進行該印刷品質和電 測試的步驟包含自該印刷頭組合件清除未經使用之墨的步 驟。 3 1 .根據段落2 8之方法’其中進行該印刷品質和電 測試的步驟包含清洗該印刷頭組合件的步驟。 « 3 2 .根據段落2 9之方法,進一步包含在該印刷品質 和電測試之後及在以處理液處理該印刷頭組合件之表面的 •28- 201144089 步驟之前,將該印刷頭匣拆解成該印刷頭組合件的步驟。 33. 根據段落25之方法,其中該電漿活化的步驟包 括電漿通過該印刷頭組合件的墨通道的第一次傳遞’其係 自該印刷頭組合件的噴嘴側至該印刷頭組合件的供墨側。 34. 根據段落33之方法,其中該電漿活化步驟進一 步包括電漿通過該印刷頭組合件的該墨通道的第二次傳遞 ,其係自該印刷頭組合件的供墨側至該印刷頭組合件的噴 嘴側。 35. 根據段落34之方法,其中第一次傳遞係在第二 次傳遞之前進行。 36. 根據段落2 5之方法,其中該處理印刷頭組合件 之表面的步驟注射乙氧化的聚乙亞胺(EPI)溶液通過該 印刷頭組合件的墨通道。 37. 根據段落2 5之方法,其中該處理印刷頭組合件 之表面的步驟注射該處理液自該印刷頭組合件的噴嘴側至 該印刷頭組合件的供墨側而通過該印刷頭組合件的墨通道 〇 3 8 .根據段落2 5之方法’其中該處理印刷頭組合件 之表面的步驟包括阻斷該印刷頭組合件的供墨側並以壓力 脈衝輸送處理液自該印刷頭組合件的噴嘴側通過該印刷頭 組合件。 39.根據段落25之方法’進一步包含以丙二醇稀釋 該處理液的步驟。 4 0 ·根據段落2 5之方法’其中乾燥該印刷頭組合件 -29- 201144089 的步驟供應經純化的壓縮空氣通過該印刷頭組合件的墨通 道。 41·根據段落4〇之方法,其中該經純化的壓縮空氣 以600 kPa壓力供應。 42·根據段落40之方法,其中該經純化的壓縮空氣 被脈衝輸送而通過該印刷頭組合件的墨通道。 43.根據段落42之方法,其中該經純化的壓縮空氣 脈衝通過印刷頭組合件的墨通道達一至六個循環。 4 4.根據段落43之方法,其中每一循環期間約1〇秒 〇 45 ·根據段落4〇之方法,其中乾燥該印刷頭組合件 的步驟另供應壓力爲800 kPa的暖空氣通過印刷頭組合件 的墨通道達10分鐘。 4 6.根據段落25之方法,其中該烘烤印刷頭組合件 的步驟包括將該印刷頭組合件組裝成印刷頭匣,及在烤箱 中烘烤該印刷頭匣。 47. 根據段落46之方法,其中該印刷頭匣於70°C烘 烤。 48. 根據段落25之方法,其中該印刷頭組合件的去 污步驟令清潔用流體沖洗通過印刷頭組合件。 49. 根據段落48之方法,其中該清潔用流體選自去 離水中的surfynol、含水的二醇、醇、在去離子中的界面 活性劑,或該等流體之組合。 50. 根據段落48之方法,其中該印刷頭組合件的去 -30- 201144089 污步驟令清潔用流體沖洗自印刷頭組合件的噴嘴側通至印 刷頭組合件的供墨側。 5 1.根據段落48之方法,其中使該清潔用流體於45 °C以200毫升/分鐘的速率沖洗通過印刷頭組合件達200 秒。 52. 根據段落48之方法,其中該印刷頭組合件的去 污步驟另包括將印刷頭組合件組裝成印刷頭匣,及在甘油 和乙二醇的溶液中清洗該印刷頭匣的步驟。 53. 根據段落52之方法,其中甘油和乙二醇之溶液 和surfynol於3至5 kPa間脈衝通過此印刷頭匣達三個循 環,之後於80 KPa脈衝通過6秒鐘。 54. 根據段落53之方法,其另包括在完成該去污步 驟之後,將印刷頭匣拆解成印刷頭組合件的步驟》 5 5 .根據段落2 5之方法,其中在印刷頭組合件的電 漿活化步驟之後,進行該印刷頭組合件的去污步驟。 5 6 ·根據段落2 5之方法’其中在處理該印刷頭組合 件之表面的步驟之前’進行該印刷頭組合件的去污步驟。 5 7 .根據段落2 8之方法,其中在印刷頭組合件上進 行該印刷品質和電測試的步驟之前,進行以處理液處理該 印刷頭組合件之表面的步驟。 5 8. —種使印刷頭組合件之表面具有親水性的方法, 該方法之步驟包含: 印刷頭組合件之去污; 電漿活化該印刷頭組合件之表面; -31 - 201144089 以處理液處理該印刷頭組合件之表面; 乾燥該印刷頭組合件;和 烘烤該印刷頭組合件’其中 在電漿活化該印刷頭組合件之表面之前’進行該印刷 頭組合件的去污步驟。 5 9 .根據段落5 8之方法,其中該電漿活化印刷頭組 合件之表面的步驟係在大氣壓下進行於該印刷頭組合件° 6 0 .根據段落5 8之方法,其中該電漿活化印刷頭組 合件之表面的步驟係使用氧電漿。 6 1 .根據段落5 8之方法’進一步包含在該印刷頭組 合件上進行印刷品質和電測試的步驟。 62.根據段落61之方法,進一步包含在進行該印刷 品質和電測試之前,將該印刷頭組合件組裝至印刷頭匣的 步驟。 63 .根據段落6 1之方法,其中進行該印刷品質和電 測試的步驟包含自該印刷頭組合件清除未經使用之墨的步 驟。 6 4 .根據段落6 1之方法,其中進行該印刷品質和電 測試的步驟包含清洗該印刷頭組合件的步驟。 65. 根據段落61之方法,進一步包含在該印刷品質 和電測試之後及在以處理液處理該印刷頭組合件之表面的 步驟之前,將該印刷頭匣拆解成該印刷頭組合件的步驟。 66. 根據段落58之方法’其中該電漿活化的步驟包 括電漿通過該印刷頭組合件的墨通道的第一次傳遞’其係 -32- 201144089 自該印刷頭組合件的噴嘴側至該印刷頭組合件的供墨 6 7.根據段落66之方法,其中該電漿活化步驟 步包括電漿通過該印刷頭組合件的該墨通道的第二次 ,其係自該印刷頭組合件的供墨側至該印刷頭組合件 嘴側。 6 8.根據段落67之方法,其中第一次傳遞係在 次傳遞之前進行。 69.根據段落58之方法,其中該處理印刷頭組 之表面的步驟注射乙氧化的聚乙亞胺(EPI)溶液通 印刷頭組合件的墨通道。 7 0.根據段落58之方法’其中該處理印刷頭組 之表面的步驟注射該處理液以自該印刷頭組合件的噴 至該印刷頭組合件的供墨側而通過該印刷頭組合件的 道。 7 1.根據段落58之方法,其中該處理印刷頭組 之表面的步驟包括阻斷該印刷頭組合件的供墨側並以 脈衝輸送處理液以自該印刷頭組合件的噴嘴側通過該 頭組合件。 7 2.根據段落58之方法,進一步包含以丙二醇 該處理液的步驟。 7 3 .根據段落5 8之方法’其中乾燥該印刷頭組 的步驟供應經純化的壓縮空氣通過該印刷頭組合件的 道。 74.根據段落73之方法’其中該經純化的壓縮 側。 進一· 傳遞 的噴 第二 合件 過該 合件 嘴側 墨通 合件 壓力 印刷 稀釋 合件 墨通 空氣 -33- 201144089 以600 kPa壓力供應。 75·根據段落73之方法,其中該經純化的壓縮空氣 被脈衝輸送而通過該印刷頭組合件的墨通道。 76. 根據段落75之方法,其中該經純化的壓縮空氣 脈衝通過印刷頭組合件的墨通道達一至六個循環。 77. 根據段落76之方法,其中每一循環期間約10秒 〇 7 8 .根據段落73之方法,其中乾燥該印刷頭組合件 的步驟另供應壓力爲800 kpa的暖空氣通過印刷頭組合件 的墨通道達10分鐘。 7 9.根據段落58之方法,其中該烘烤印刷頭組合件 的步驟包括將該印刷頭組合件組裝成印刷頭匣’及在烤箱 中烘烤該印刷頭匣。 8 0 .根據段落7 9之方法’其中該印刷頭E於7 〇 °C烘 烤。 8 1 .根據段落5 8之方法’其中該印刷頭組合件的去 污步驟令清潔用流體沖洗通過印刷頭組合件。 82. 根據段落81之方法’其中該清潔用流體選自去 離水中的surfynol、含水的二醇、醇、在去離子中的界面 活性劑,或該等流體之組合。 83. 根據段落8 1之方法’其中該印刷頭組合件的去 污步驟令清潔用流體自印刷頭組合件的噴嘴側沖洗通至印 刷頭組合件的供墨側。-15- 201144089 After activation of the print head assembly (S3 -1), a decontamination procedure (S3-2) is performed. This decontamination procedure (S3-2) flushes the cleaning fluid through the printhead assembly. Acceptable cleaning fluids include surfynol in deionized water, water-containing diols and alcohols, other surfactants in deionization, or combinations of such fluids. The common points of these fluids are water-based, have good wetting characteristics, have low surface tension, contribute to filming contaminant dissolution, volatility (to help dry quickly), and remain only with subsequent wetting. Process compatible residues. The cleaning fluid used must also not damage the printhead assembly material (including gluing points and seals) and is preferably non-toxic, inexpensive, readily available, and recyclable after filtration. Due to the dendritic configuration of the channels within the printhead assembly, the size of the ink path (e.g., ink supply channel) gradually decreases from the back of the printhead assembly toward the front side of the printhead assembly (e.g., ink nozzle and nozzle ink supply channels). Therefore, the cleaning fluid is reversely flushed from the nozzle on the front side of the printhead assembly and flows out through the socket on the back side. Reverse rinsing ensures that contaminant particles pass into a more dimensionally sized channel. In this way, the contaminant particles do not get trapped in the ink path and do not clog or stay in the narrower portion of the ink path. In the exemplified decontamination procedure (S3-2), the backwashing was carried out at 200 ml/min at 45 ° C for 200 seconds. The print head assembly is then assembled into a print cartridge assembly and a solution of glycerol and ethylene glycol in water and a small amount of surfynol is used to slowly pulse through the wash cartridge assembly at 3-5 kPa for three cycles, followed by 80 kP. A pulse passes through a cycle of 6 seconds. The print cartridge assembly is then disassembled into a print head assembly. -16- 201144089 After the decontamination procedure (S3-2), the processing procedure (S3-3) is performed using the EPI processing assembly. The processing program (S 3 - 3) injects the treatment liquid through the printing path. This treatment fluid can be injected through the printhead assembly but preferably from the nozzle to the socket to also clean the contaminated contaminants. To ensure that the internal structure of the printhead assembly is complete, clogging the ink passages of the assembly and/or at a pulse of force pulses causes a surge flow that allows any air bubbles moving in the process fluid to move. The pressure pulses are further pressed, thereby further contributing to their release. Each color can be processed in whole or in part. Treatment of Individual Color Channels Changes in Reagent Flow Make Process Better Control" As in the first specific example, the EPI treatment solution is preferably formed by diluting the EPI concentrate. Propylene glycol can be added to alleviate the drying rate of the EPI solution so that the EPI solution is in a fluid-holding state. After the process (S3-3), the drying process is carried out (in the drying process, the purified compressed air is applied to each channel of the pressure brush head assembly. The pressure line is connected to the print head assembly via the on-off, by rotating the cock Purified through the ink channel. Due to the complexity of the flow of gas through each channel and the degree of restriction provided by its smallest component, the shrinkage of air ensures that all of the treatment fluid is removed from the flow path, in the fluid structure of the package head assembly Any accumulated excess liquid, in the ink nozzle of the print head assembly to the nozzle, accumulated in the ink path in the state of the treatment liquid. During this pressure period, the ink channel of any bubble channel cannot be retracted because it can be detected by Take a compatible solvent EPI solution to the internal dimension of the dimension S 3 - 4 ). The compressed air pulse applied to the cock or the slinger by the kPa is illustrated by its structure, so the pulse squeezing is left in the printing fluid. 17- 201144089 The frequency and number of pulse operations is determined by the effective dryness of the cleaned print head. It was found that one to six cycles of 10 seconds per cycle were effective, but the drying procedure was not limited by this. Then all the passages were passed through the warm air of 800 kPa for 10 minutes. This warm air is preferably generated by a vortex device whereby the generated air is substantially free of contaminants. In the illustrated drying process, the print head assembly is finally placed in an oven at 70 ° C for 2 or more hours, at which point the nozzle of the print head assembly is upward. The procedure for drying the treated printhead removes any water and propylene glycol introduced by the treatment fluid. The non-volatile, highly wet EPI film remains on the surface of the printhead assembly. As described above, the treatment liquid is a water-based solution of the EPI concentrate. The solvation of EPI in water is achieved by hydrogen bonding between the water molecule and the appropriate acceptor position (i.e., the ethoxy and/or amine functionality comprising EPI). However, in order to achieve adhesion of the EP I to the hydrogen bonding sites on the activated surface of the printhead assembly, it is necessary to induce the water molecules associated with solvation to leave the treatment liquid and to replace the position of the hydroxyl groups at the activated surface. This is most effectively achieved by thermal displacement of the solvent, i.e., baking. Baking is used to drive off water molecules, and excess heat allows the EPI to maximize its surface action and achieve a stable surface coating. Baking also aids in the evaporation of any residual propylene glycol remaining after the drying process. Accordingly, the dried print head assembly is assembled into a print head and baked/cured in the oven (S3-5). Preferably, the print head is cured at about 70 ° C for 1 to 18 hours. Thereafter, a printing quality and electrical test procedure (S 3 - 6 ) similar to that described in the first specific example ( -18- 201144089 S 2 - 2 ) is performed on the printing cymbal assembly and the printing cymbal assembly is allowed to stand for one day. To the dry. In the second specific example, an additional decontamination procedure (S 3 - 2) is performed after the plasma activation procedure (S3-1) is included but before the treatment procedure (S3-3). This decontamination procedure removes particulate contaminants and filming debris from the inner surface of the printhead assembly. In this way the inner surface is more efficient and adequately processed. Further, in the second specific example, after the processing program (S3-3) and the drying process (S3-4), the printing quality and the electric test program (S3-6) are performed. During the printing quality and electrical test procedure (S3-6), the ink passing through the printhead assembly will dissolve some of the film EPI coating (inner surface), and the film dissolution rate will be slower than the time required to completely dissolve the film. The time spent on printing, testing, washing and cleaning is short. However, the advantage of the processing procedure (S 3 - 3) prior to the print quality and electrical test procedure (S 3 - 6 ) is that the processing procedure (S 3 - 3 ) is on a freshly decontaminated surface (it is not violent to any other Substances, such as inks, and rinsing fluids used during the printing quality and electrical test procedures (S3-6). In this way, the inner surface is more fully and efficiently processed. Third Specific Example Fig. 4 is a flow chart for explaining a third specific example of the hydrophilization method of the present invention. 〇 In the second specific example, the print head assembly is first subjected to a decontamination process (s 4 _ 1 ). This decontamination procedure (S4-1) allows the cleaning fluid to be backflushed through the printhead -19- 201144089 assembly. The backwashing was performed because of the foregoing reasons in the second specific example. Of particular importance in the third embodiment is that after the decontamination procedure (S4-1), no residue remains on the inner surface of the printhead assembly'. This is because the plasma activation step after the third embodiment does not Any material in contact with the plasma is activated, even if this material includes surfactant residues left by the cleaning fluid. The inner surface of the assembly must also be completely dried prior to activation of the plasma, as residual water or any fluid can cover the surface so that the plasma species cannot pass over it. The activated surfactant residue is highly viscous and is well blended with the subsequent processing procedure to be carried out in the third embodiment. To leave a surface that is decontaminated and free of residue, the cleaning fluid must be free of non-volatile components and to be ' helped to dry, preferably by exposure to heat. Therefore, in the third specific example, a solvent is used instead of the surfactant as a cleaning fluid. Aqueous ethanol is a particularly effective solvent that meets the aforementioned requirements. Propan-1-ol is also an effective solvent. The surface tension of aqueous ethanol is lower than that of water alone and therefore more moist. In addition, ethanol is a good solvent, easy to evaporate, inexpensive, relatively safe when diluted, non-toxic and readily available in pure form. Therefore, the third embodiment of the present invention preferably backwashes aqueous ethanol as a cleaning fluid in the decontamination procedure (S4-1). Then, the cleaning fluid for aqueous ethanol is sufficiently dried, thereby completing the decontamination procedure (S4-1). In the exemplary decontamination procedure, the printhead assembly was vacuum dried in an oven at about 7 °C for 2 hours. After the decontamination procedure (S4-1), the print head assembly is subjected to plasma activation -20- 201144089 procedure (S4-2). Similar to the first specific example, 02 plasma was used. The plasma activation process is carried out at atmospheric pressure in a print head assembly. The atmospheric piezoelectric slurry generating tool preferably utilizes a plasma source to maintain the printhead assembly at or near atmospheric pressure. Alternatively, a corona discharge device for or directed to the printhead assembly can be used. After the plasma activation procedure (S4-2), the print head assembly is processed using the EPI treatment solution (S4-3). The processing program (S4-3) injects the treatment liquid through the ink path of the print head assembly. This treatment fluid can be injected through the socket of the printhead assembly to the nozzle, but is preferably injected from the nozzle to the socket to also clean contaminants that have accumulated in the ink path. It is desirable to ensure that the internal structure of the printhead assembly is completely violent to the process fluid, clogging the ink passage of the assembly and/or under pressure pulse conditions. This pressure pulse causes a surge flow that allows any air bubbles that cannot move during the injection of the treatment liquid to move. The pressure pulse further compresses any of these bubbles, thereby further contributing to their release. The ink channels of each color channel can be processed in whole or individually. The processing of individual color channels allows for better control of the program by detecting changes in reagent flow. As in the first specific example, the treatment liquid of the EPI is preferably formed by diluting the EPI concentrate with a compatible solvent. Propylene glycol can be added to the EPI solution to moderate the drying rate of the EPI solution so that the EPI solution maintains the fluid state during the procedure. Thereafter, the treated print head assembly is dried (S4-4). In the illustrated drying procedure, purified compressed air (without particulate contaminants) is applied to each channel of the printhead assembly at a pressure of 600 kPa. The pressure line is connected to the printhead assembly via a -21 - 201144089 open-closed cock or stopcock, and the purified compressed air is pulsed through the ink passage by rotating the cock '. Since the flow path of the gas through each channel is determined by the complexity of its structure and the degree of restriction provided by its smallest component, the compressed air pulse ensures that all of the process fluid is purged from the flow path, including the removal of fluid remaining in the printhead assembly. Any accumulated excess fluid in the structure. The frequency and number of pulse operations is determined by the effective dryness of the erased printhead. It was found that one to six cycles of one cycle per cycle were effective, but the drying procedure was not limited by this. Then, all the passages are passed through 800 kPa and warm air at or about 40 °C for 1 minute. This warm air is preferably generated by a vortex device, whereby the generated air is substantially free of contaminants. After the drying procedure (S4-4), the print head assembly is baked/cured (S4-5) in an oven at about 70 ° C for 1-18 hours (S4-5 ). As mentioned above, baking is used to drive off water molecules, and excess heat allows the EPI to maximize its surface action and achieve a stable surface coating. Baking also aids in the evaporation of any residual propylene glycol remaining after the drying process. After the baking process (S 4 - 5), the print head assembly is assembled into a printing unit assembly, and a print quality and electrical connection test program (S4-6) is performed. The print quality and electrical test procedure are similar to those described in (S2-2) in the first specific example. In the third specific example, the decontamination step (S4_1) is one of the first steps of the hydrophilization method. By performing the decontamination procedure (S4-1) prior to the plasma activation procedure (by -2), the inner surface of the printhead assembly is preferably exposed to plasma and thereby achieves more complete and optimal surface activation. In particular, remove particles or membranes that may obscure critical areas of the inner surface prior to activation of the inner surface -22- 201144089. Unlike the first and second specific examples of the plasma activation procedure performed prior to the decontamination procedure, the presence of an unactivated surface with a lower acceptability for processing is significantly reduced. Further, in the third specific example, the processing procedure (S4-3) is efficiently performed immediately after the plasma activation program (S4-2). In this manner, the activated surface of the printhead assembly provides a shorter relaxation time and maintains near its most active state as compared to the first and second embodiments. In addition, since the print head assembly is fabricated from a composite material, each material has a different relaxation time, so the faster the processing procedure after the plasma activation process, the more surface energy of the different materials that make up the printhead assembly. Evenly. Further, compared with the second specific example, by performing the processing procedure (S4-3) immediately after the plasma activation procedure (S4-2), instead of interspersing the decontamination procedure therebetween, the processing procedure (S4-3) is It is carried out on a newly activated surface that is not exposed to other substances such as the user in the decontamination procedure (S4-1). Similar to the second specific example, the print quality and the electric test program (S4-6) are performed after the processing (S4-3). During the printing quality and electrical test procedure (S 4-6 ), the ink passing through the print head assembly will dissolve some of the film EPI coating (inner surface), and the film dissolution rate will be slow compared to the time required to completely dissolve the film. The time for printing, testing, washing and cleaning is short. As with the second specific example, the advantage of performing the processing procedure (S4-3) before the print quality and electrical test program (S4-6) is that the processing program (S4-3) is on a freshly decontaminated surface (it is not violent at any Other substances, such as inks, are used on the rinsing fluid used during the -23-201144089 brush quality and electrical test procedure (S4-6). In this way, the inner surface is more fully and efficiently processed. Post-Process Packaging and Transport The surface of the plasma-activated and treated printhead assembly according to the specific examples disclosed above is coated with a non-volatile, highly wet EP I film that inhibits the activated surface. relaxation. The EPI film provides a relaxation inhibiting effect similar to the application of an ink or ink-like fluid to the primer after manufacture, and ensures that the printhead assembly maintains a primer with ink or ink-like fluid until use (hereinafter referred to as "Wet transport"), this wet transport is as previously discussed in the prior art, and this EPI film has no complexity and inefficiency associated with wet transport. The wet transport printhead assembly requires the printhead assembly to be packaged in a fully waterproof sealed pouch. The wet transport printhead assembly cannot withstand any damage to the sealed environment, and there is also the possibility of ink leakage. Conversely, non-volatile, highly wet EPI film coatings are considered to be dry by the macroscopic view of the printed head assembly processed in the specific examples disclosed. Accordingly, special packaging and sealing requirements are not required. Thus, in other embodiments of the present invention, the print head assembly is packaged using a more cost effective package than wet transport of the printhead assembly. Examples of such packages include lower grade vacuum packaging and shrink film packaging. In still other embodiments, the print head assembly is pre-installed in a separate printer and stored and shipped with the printer. The printhead assembly is stored and transported in a direction-insensitive manner, allowing the printhead assembly to operate in a more space and time manner via the logistics chain, and accordingly, significant cost savings of -24-201144089. Since the print head assembly can be completely prevented from leaking ink during these stages of the logistics chain, the print head assembly can be stored, transported, and sold in this manner. In addition, avoid shipping fluids that are consistent with import and export rules, shipping classifications, customs classifications, and other legal and procedural complexity. It also provides a true “plug and play” printing system. Examples of other aspects of the invention disclosed are shown in the following paragraphs: 1. A method of rendering a surface of a printhead assembly hydrophilic, the method comprising the steps of: activating a surface of the printhead assembly with a plasma; The surface of the printhead assembly is treated with liquid; the printhead assembly is dried; and the printhead assembly is baked. 2. The method of paragraph 1, wherein the step of activating the surface of the printhead assembly by the plasma is performed on the printhead assembly at atmospheric pressure. 3. The method of paragraph 1, wherein the step of activating the surface of the printhead assembly with the plasma uses oxygen plasma. 4. The method of paragraph 1, further comprising the step of performing print quality and electrical testing on the printhead assembly. 5. The method of paragraph 4, further comprising the step of assembling the printhead assembly to the printhead cartridge prior to performing the print quality and electrical testing. 6. The method of paragraph 4, wherein the step of performing the print quality and electrical testing comprises the step of removing unused ink from the printhead assembly - 25, 2011, 440, 89. 7. The method of paragraph 4, wherein the print quality is performed And the step of electrically testing includes the step of cleaning the printhead assembly. 8. The method of paragraph 5, further comprising, after the printing quality and electrical testing and prior to the step of treating the surface of the printhead assembly with the treatment fluid, The step of disassembling the print head cartridge into the print head assembly. 9. The method of paragraph 1, wherein the step of activating the plasma comprises passing a first pass of the plasma through the ink passage of the printhead assembly 'from the nozzle side of the printhead assembly to the printhead assembly The ink supply side. 10. The method of paragraph 8, wherein the plasma activation step further comprises passing a second pass of the plasma through the ink passage of the printhead assembly 'from the ink supply side of the printhead assembly to the The nozzle side of the printhead assembly. 11. The method of paragraph 10, wherein the first delivery is performed prior to the second delivery. 12. The method of paragraph 1, wherein the step of treating the surface of the printhead assembly injects an ethoxylated polyethyleneimine (EPI) solution through the ink channel of the printhead assembly. 13. The method according to paragraph 1, wherein The step of treating the surface of the printhead assembly injects the treatment fluid through the ink passage of the printhead assembly from the nozzle side of the printhead assembly to the ink supply side of the printhead assembly. 14. The method of paragraph 1, wherein the step of treating the surface of the printhead assembly comprises blocking the ink supply side of the printhead assembly and delivering the treatment fluid by pressure pulse from the nozzle side of the printhead assembly through the printing Head group -26- 201144089. 15. The method of paragraph 1, further comprising the step of diluting the treatment with propylene glycol. 16. The method of paragraph 1, wherein the step of drying the printhead assembly supplies purified compressed air through an ink channel 〇17 of the printhead assembly. The purified compressed air according to the method of paragraph 16. It is supplied at a pressure of 600 kPa. The method of paragraph 166, wherein the purified compressed air is pulsed through the ink passage of the printhead assembly. 19. The method of paragraph 18, wherein the purified compressed air pulse is passed through the ink passage of the printhead assembly for one to six cycles. 20. The method according to paragraph 19, wherein each cycle is about 1 〇 〇 2 1 · According to the method of paragraph 166, wherein the step of drying the print head assembly further supplies warm air at a pressure of 800 kPa through the print head The ink path of the assembly is up to 10 minutes. 22. The method of paragraph 1, wherein the step of baking the printhead assembly comprises assembling the printhead assembly into a printhead cartridge and baking the printhead cartridge in an oven. 23. The method of paragraph 22, wherein the print head is baked at 70 °C. 24. The method of paragraph 1, wherein the step of mass and electrical testing of the print -27- 201144089 is performed prior to the step of treating the surface of the printhead assembly and drying the printhead assembly. 2 5. A method of rendering a surface of a printhead assembly hydrophilic, the method comprising: activating a surface of the printhead assembly with a plasma; decontaminating the printhead assembly; treating the printhead with a treatment fluid The surface of the assembly; drying the printhead assembly: and baking the printhead assembly. The method of paragraph 25, wherein the step of activating the surface of the printhead assembly by the plasma is performed on the printhead assembly at atmospheric pressure. The method of paragraph 25, wherein the step of activating the surface of the printhead assembly with the plasma uses oxygen plasma. 28. The method of paragraph 25, further comprising the step of performing print quality and electrical testing on the printhead assembly. 29. The method according to paragraph 28, further comprising the step of assembling the printhead assembly to the printhead 在 prior to performing the print quality and electrical testing. 30. The method of paragraph 28, wherein the step of performing the print quality and electrical testing comprises the step of removing unused ink from the printhead assembly. 3 1. The method of paragraph 28 wherein the step of performing the print quality and electrical testing comprises the step of cleaning the printhead assembly. « 3 2 . According to the method of paragraph 2, further comprising disassembling the print head 成 after the printing quality and electrical test and before the step 28-201144089 of treating the surface of the print head assembly with a treatment liquid The steps of the print head assembly. 33. The method of paragraph 25, wherein the step of activating the plasma comprises passing a first pass of the plasma through the ink passage of the printhead assembly 'from the nozzle side of the printhead assembly to the printhead assembly The ink supply side. 34. The method of paragraph 33, wherein the plasma activation step further comprises a second pass of plasma through the ink channel of the printhead assembly from the ink supply side of the printhead assembly to the printhead The nozzle side of the assembly. 35. The method of paragraph 34, wherein the first delivery is performed prior to the second delivery. 36. The method of paragraph 25, wherein the step of treating the surface of the printhead assembly injects an ethoxylated polyethyleneimine (EPI) solution through the ink passage of the printhead assembly. 37. The method of paragraph 25, wherein the step of treating the surface of the printhead assembly injects the treatment fluid from the nozzle side of the printhead assembly to the ink supply side of the printhead assembly through the printhead assembly The ink passage 〇3 8. The method according to paragraph 25, wherein the step of treating the surface of the print head assembly comprises blocking the ink supply side of the print head assembly and delivering the treatment liquid from the print head assembly with a pressure pulse The nozzle side passes through the printhead assembly. 39. The method according to paragraph 25, further comprising the step of diluting the treatment liquid with propylene glycol. The process of drying the print head assembly -29- 201144089 according to the method of paragraph 2 5 supplies purified compressed air through the ink passage of the print head assembly. 41. The method of paragraph 4, wherein the purified compressed air is supplied at a pressure of 600 kPa. 42. The method of paragraph 40, wherein the purified compressed air is pulsed through the ink passage of the printhead assembly. 43. The method of paragraph 42, wherein the purified compressed air pulse is passed through the ink passage of the printhead assembly for one to six cycles. 4. The method of paragraph 43, wherein each cycle is about 1 〇 〇 45. According to the method of paragraph 4, wherein the step of drying the print head assembly is additionally supplied with warm air at a pressure of 800 kPa through a print head combination The ink path of the piece is up to 10 minutes. The method of paragraph 25, wherein the step of baking the printhead assembly comprises assembling the printhead assembly into a printhead cartridge and baking the printhead cartridge in an oven. 47. The method of paragraph 46, wherein the print head is baked at 70 °C. 48. The method of paragraph 25, wherein the step of decontaminating the printhead assembly rinsing the cleaning fluid through the printhead assembly. 49. The method of paragraph 48, wherein the cleaning fluid is selected from the group consisting of surfynol in deionized water, an aqueous diol, an alcohol, an interfacial surfactant in deionization, or a combination of such fluids. 50. The method of paragraph 48, wherein the -30-201144089 fouling step of the printhead assembly causes the cleaning fluid to flush from the nozzle side of the printhead assembly to the ink supply side of the printhead assembly. 5. The method of paragraph 48, wherein the cleaning fluid is flushed through the printhead assembly at a rate of 200 ml/min at 45 °C for 200 seconds. 52. The method of paragraph 48, wherein the step of decontaminating the printhead assembly further comprises the steps of assembling the printhead assembly into a printhead cartridge and cleaning the printhead cartridge in a solution of glycerin and ethylene glycol. 53. The method of paragraph 52, wherein the solution of glycerol and ethylene glycol and surfynol are pulsed through the printhead for three cycles between 3 and 5 kPa, followed by a pulse of 6 seconds at 80 KPa. 54. The method of paragraph 53, further comprising the step of disassembling the print head cartridge into a printhead assembly after completion of the stain removal step. 5 5. The method of paragraph 25, wherein in the printhead assembly After the plasma activation step, a decontamination step of the printhead assembly is performed. The cleaning step of the print head assembly is carried out according to the method of paragraph 2 5, wherein the step of treating the surface of the print head assembly is performed. The method of paragraph 28, wherein the step of treating the surface of the printhead assembly with the treatment fluid is performed prior to the step of performing the print quality and electrical testing on the printhead assembly. 5 8. A method of rendering a surface of a printhead assembly hydrophilic, the method comprising: decontaminating a printhead assembly; a plasma activating a surface of the printhead assembly; -31 - 201144089 Processing the surface of the printhead assembly; drying the printhead assembly; and baking the printhead assembly 'where the decontamination step of the printhead assembly is performed before the plasma activates the surface of the printhead assembly. 5. The method of paragraph 5, wherein the step of activating the surface of the printhead assembly by the plasma is performed at atmospheric pressure on the printhead assembly 690. According to the method of paragraph 58, wherein the plasma is activated. The step of printing the surface of the head assembly uses oxygen plasma. 6 1. The method according to paragraph 58 further comprising the step of performing print quality and electrical testing on the printhead assembly. 62. The method of paragraph 61, further comprising the step of assembling the printhead assembly to the printhead 在 prior to performing the print quality and electrical testing. 63. The method of paragraph 61, wherein the step of performing the print quality and electrical testing comprises the step of removing unused ink from the printhead assembly. The method of paragraph 61, wherein the step of performing the print quality and electrical testing comprises the step of cleaning the printhead assembly. 65. The method of paragraph 61, further comprising the step of disassembling the print head cartridge into the printhead assembly prior to the step of printing quality and electrical testing and prior to the step of treating the surface of the printhead assembly with a processing fluid . 66. The method of paragraph 58 wherein the step of activating the plasma comprises passing a first pass of the plasma through the ink passage of the printhead assembly 'the system-32- 201144089 from the nozzle side of the printhead assembly to the The ink supply of the printhead assembly. The method of paragraph 66, wherein the plasma activation step comprises the second pass of the plasma through the ink passage of the printhead assembly from the printhead assembly. The ink supply side is to the mouth side of the printhead assembly. 6. The method of paragraph 67, wherein the first delivery is performed prior to the secondary delivery. 69. The method of paragraph 58, wherein the step of treating the surface of the printhead set injects an ethoxylated polyethyleneimine (EPI) solution through the ink passage of the printhead assembly. 70. The method of paragraph 58 wherein the step of treating the surface of the printhead set injects the treatment fluid from the printhead assembly to the ink supply side of the printhead assembly through the printhead assembly Road. 7. The method of paragraph 58, wherein the step of treating the surface of the printhead set comprises blocking the ink supply side of the printhead assembly and pulsing the treatment fluid through the head from the nozzle side of the printhead assembly Assembly. 7. The method according to paragraph 58, further comprising the step of treating the solution with propylene glycol. The process of drying the print head set according to the method of paragraph 58 wherein the purified compressed air is supplied through the print head assembly. 74. The method according to paragraph 73, wherein the purified compressed side. In the second pass of the spray, the second joint passes through the fitting, the mouth side, the ink-passing member, the pressure, the printing, the dilution, the ink supply, the air, and the air-33- 201144089, which are supplied at a pressure of 600 kPa. 75. The method of paragraph 73, wherein the purified compressed air is pulsed through the ink passage of the printhead assembly. 76. The method of paragraph 75, wherein the purified compressed air pulse passes through the ink passage of the printhead assembly for one to six cycles. 77. The method of paragraph 76, wherein each cycle is about 10 seconds 〇78. According to the method of paragraph 73, wherein the step of drying the printhead assembly further supplies warm air at a pressure of 800 kPa through the printhead assembly. The ink channel is up to 10 minutes. The method of paragraph 58, wherein the step of baking the printhead assembly comprises assembling the printhead assembly into a printhead 匣' and baking the printhead 烤箱 in an oven. 80. The method according to paragraph 7-9 wherein the print head E is baked at 7 ° C. 8. The method of paragraph 58 wherein the decontamination step of the printhead assembly rinsing the cleaning fluid through the printhead assembly. 82. The method according to paragraph 81, wherein the cleaning fluid is selected from the group consisting of surfynol in water, an aqueous diol, an alcohol, an interfacial surfactant in deionization, or a combination of such fluids. 83. The method of paragraph 81, wherein the cleaning step of the printhead assembly causes cleaning fluid to pass from the nozzle side of the printhead assembly to the ink supply side of the printhead assembly.

84. 根據段落81之方法’其中該清潔用流體於45 °C -34- 201144089 以200毫升/分鐘的速率沖洗通過印刷頭組合件達200秒 〇 85. 根據段落8 1之方法’其中該印刷頭組合件的去 污步驟另包括將印刷頭組合件組裝成印刷頭匣,及在甘油 和乙二醇的溶液中清洗該印刷頭匣的步驟。 86. 根據段落85之方法’其中甘油和乙二醇之溶液 和Surfynol於3至5 kPa間脈衝通過此印刷匣組合件達三 個循環,之後於80kPa脈衝通過6秒鐘。 87. 根據段落85之方法’其另包括在完成該去污步 驟之後,將印刷頭®拆解成印刷頭組合件的步驟。 8 8 .根據段落5 8之方法’其中在電漿活化該印刷頭 組合件之表面的步驟之後’直接進行以處理液處理該印刷 頭組合件之表面的步驟。 8 9 .根據段落5 8之方法,其中在該印刷頭組合件上 進行印刷品質和電測試的步驟之前,進行以處理液處理該 印刷頭組合件之表面的步驟。 9 0. —種印刷頭組合件親水化系統,其包含: 供應電漿的電漿源; 印刷頭組合件接收電漿的電漿接收區,該電漿接收區 實質上維持於大氣壓:和 用以建立橫跨電漿接收區之壓力差的泵,其中 電漿源將電漿供應至電漿接收區,和 藉泵建立的壓力差使得電漿傳遞橫跨電漿接收區和通 過在電漿接收區中接收的印刷頭組合件。 -35- 201144089 91. 根據段落90之系統’其中該電漿源係大氣電策 產生裝置。 92. 根據段落90之系統’其中該電漿源係電暈放電 裝置。 93·根據段落90之系統,其中該泵可進一步操作以 將含水處理液傳遞通過印刷頭組合件。 雖然此處已經以參考數個具體例的方法描述本發明, 嫻於此技術之人士將瞭解本發明不限於所揭示的具體例, 且所述的這些具體例係最佳模式/較佳具體例,有鑒於此 ,本發明可以本發明之範圍含括的其他形式體現。 【圖式簡單說明】84. The method according to paragraph 81, wherein the cleaning fluid is rinsed through the printhead assembly at a rate of 200 ml/min at a temperature of 200 ° C. for 200 seconds. 85. According to the method of paragraph 8 1 wherein the printing The decontamination step of the head assembly further includes the steps of assembling the print head assembly into a print head cartridge and cleaning the print head cartridge in a solution of glycerin and ethylene glycol. 86. The method according to paragraph 85 wherein the solution of glycerol and ethylene glycol and Surfynol are pulsed through the printing cartridge assembly for 3 cycles between 3 and 5 kPa, followed by a 6 second pulse at 80 kPa. 87. The method according to paragraph 85, which further comprises the step of disassembling the print head® into a printhead assembly after completion of the decontamination step. 8. The method of treating the surface of the printhead assembly with a treatment liquid directly following the step of the method of paragraph 58 wherein the plasma activates the surface of the printhead assembly. 8. The method of paragraph 58, wherein the step of treating the surface of the printhead assembly with the treatment fluid is performed prior to the step of performing print quality and electrical testing on the printhead assembly. 9 0. A printhead assembly hydrophilization system comprising: a plasma source for supplying a plasma; a printhead assembly receiving a plasma receiving zone of the plasma, the plasma receiving zone being substantially maintained at atmospheric pressure: and To establish a pump across the pressure differential of the plasma receiving zone, wherein the plasma source supplies the plasma to the plasma receiving zone, and the pressure differential established by the pump causes the plasma to pass across the plasma receiving zone and through the plasma A printhead assembly received in the receiving area. -35- 201144089 91. The system according to paragraph 90 wherein the plasma source is an atmospheric electricity generation device. 92. The system according to paragraph 90 wherein the plasma source is a corona discharge device. 93. The system of paragraph 90, wherein the pump is further operable to transfer the aqueous treatment fluid through the printhead assembly. Although the present invention has been described herein with reference to a number of specific examples, those skilled in the art will understand that the invention is not limited to the specific examples disclosed, and In view of the above, the invention may be embodied in other forms encompassed by the scope of the invention. [Simple description of the map]

圖1係用於印刷頭組合件之電漿活化的例示裝置t H 示; 圖2係本發明的第一具體例之流程圖; 圖3係本發明的第二具體例之流程圖; 圖4係本發明的第三具體例之流程圖; 圖5A係乙氧化的聚乙亞胺(EPI )的化學結構;和 圖5B係聚乙亞胺(PEI)的化學結構。 【主要元件符號說明】 100 :型架 1 1 〇 :電漿源 U5 :電漿接收區 -36- 201144089 120: 121 : 122: 123 : 124 : 13 5: 印刷頭組合件 噴嘴 插口 第一表面 第二表面 吸取泵 1 000:裝置1 is a schematic diagram of a plasma activation of a printhead assembly; FIG. 2 is a flow chart of a first embodiment of the present invention; FIG. 3 is a flow chart of a second embodiment of the present invention; A flow chart of a third embodiment of the present invention; FIG. 5A is a chemical structure of ethoxylated polyethyleneimine (EPI); and FIG. 5B is a chemical structure of polyethyleneimine (PEI). [Main component symbol description] 100: Frame 1 1 〇: Plasma source U5: Plasma receiving area -36- 201144089 120: 121 : 122: 123 : 124 : 13 5: Print head assembly nozzle socket first surface Two surface suction pump 1 000: device

Claims (1)

201144089 七、申請專利範圍: 1 . 一種使印刷頭組合件之表面具有親水性的方法, 該方法之步驟包含: 電漿活化該印刷頭組合件之表面; 以處理液處理該印刷頭組合件之表面; 乾燥該印刷頭組合件;和 烘烤該印刷頭組合件。 2. 如申請專利範圍第1項之方法,其中該電漿活化 印刷頭組合件之表面的步驟係在大氣壓下進行於該印刷頭 組合件。 3. 如申請專利範圍第1項之方法,其中該電漿活化 印刷頭組合件之表面的步驟係使用氧電發。 4. 如申請專利範圍第1項之方法,進一步包含在該 印刷頭組合件上進行印刷品質和電測試的步驟。 5. 如申請專利範圍第4項之方法.,進一步包含在進 行該印刷品質和電測試之前,將該印刷頭組合件組裝至印 刷頭匣的步驟。 6. 如申請專利範圍第4項之方法,其中進行該印刷 品質和電測試的步驟包含自該印刷頭組合件清除未經使用 之墨的步驟。 7. 如申請專利範圍第4項之方法,其中進行該印刷 品質和電測試的步驟包含清洗該印刷頭組合件的步驟。 8. 如申請專利範圍第5項之方法,進一步包含在該 印刷品質和電測試之後及在以處理液處理該印刷頭組合件 -38 - 201144089 之表面的步驟之前,將該印刷頭匣拆解成該印刷頭組合件 的步驟。 9. 如申請專利範圍第1項之方法,其中該電漿活化 的步驟包括電漿通過該印刷頭組合件的墨通道的第一次傳 遞,其係自該印刷頭組合件的噴嘴側至該印刷頭組合件的 供墨側。 10. 如申請專利範圍第8項之方法’其中該電獎活化 步驟進一步包括電漿通過該印刷頭組合件的該墨通道的第 二次傳遞,其係自該印刷頭組合件的供墨側至該印刷頭組 合件的噴嘴側。 11. 如申請專利範圍第1 〇項之方法,其中第一次傳 遞係在第二次傳遞之前進行。 12. 如申請專利範圍第1項之方法’其中該處理印刷 頭組合件之表面的步驟注射乙氧化的聚乙亞胺(EPI )溶 液通過該印刷頭組合件的墨通道。 13. 如申請專利範圍第1項之方法’其中該處理印刷 頭組合件之表面的步驟注射該處理液自該印刷頭組合件的 噴嘴側至該印刷頭組合件的供墨側而通過該印刷頭組合件 的墨通道。 14. 如申請專利範圍第1項之方法,其中該處理印刷 頭組合件之表面的步驟包括阻斷該印刷頭組合件的供墨側 並以壓力脈衝輸送處理液自該印刷頭組合件的噴嘴側通過 該印刷頭組合件。 15. 如申請專利範圍第1項之方法,進一步包含以丙 -39- 201144089 二醇稀釋該處理液的步驟。 16·如申請專利範圍第1項之方法,其中乾燥該印刷 頭組合件的步驟供應經純化的壓縮空氣通過該印刷頭組合 件的墨通道。 17.如申請專利範圍第16項之方法,其中該經純化 的壓縮空氣以600 kP a壓力供應。 1 8 .如申請專利範圍第1 6項之方法,其中該經純化 的壓縮空氣被脈衝輸送而通過該印刷頭組合件的墨通道。 19. 如申請專利範圍第1項之方法,其中該烘烤印刷 頭組合件的步驟包括將該印刷頭組合件組裝成印刷頭匣, 及在烤箱中烘烤該印刷頭匣。 20. 如申請專利範圍第1項之方法,其中在處理該印 刷頭組合件之表面和乾燥該印刷頭組合件的步驟之前,進 行該印刷品質和電測試的步驟。 -40 -201144089 VII. Patent Application Range: 1. A method for making the surface of a print head assembly hydrophilic, the method comprising the steps of: activating a surface of the print head assembly with a plasma; treating the print head assembly with a treatment liquid Surface; drying the printhead assembly; and baking the printhead assembly. 2. The method of claim 1, wherein the step of activating the surface of the printhead assembly is performed at atmospheric pressure on the printhead assembly. 3. The method of claim 1, wherein the step of activating the surface of the printhead assembly with the plasma uses oxygen. 4. The method of claim 1, further comprising the step of performing print quality and electrical testing on the printhead assembly. 5. The method of claim 4, further comprising the step of assembling the printhead assembly to the printhead 进 prior to performing the print quality and electrical testing. 6. The method of claim 4, wherein the step of performing the print quality and electrical testing comprises the step of removing unused ink from the printhead assembly. 7. The method of claim 4, wherein the step of performing the printing quality and electrical testing comprises the step of cleaning the printhead assembly. 8. The method of claim 5, further comprising disassembling the print head after the printing quality and electrical test and before the step of treating the surface of the print head assembly -38 - 201144089 with a treatment liquid The step of forming the printhead assembly. 9. The method of claim 1, wherein the step of activating the plasma comprises passing a first pass of the plasma through the ink passage of the printhead assembly from the nozzle side of the printhead assembly to the The ink supply side of the printhead assembly. 10. The method of claim 8 wherein the charge activation step further comprises passing a second pass of the plasma through the ink passage of the printhead assembly from the ink supply side of the printhead assembly To the nozzle side of the printhead assembly. 11. The method of claim 1, wherein the first delivery is performed prior to the second transmission. 12. The method of claim 1 wherein the step of treating the surface of the printhead assembly injects an ethoxylated polyethyleneimine (EPI) solution through the ink passage of the printhead assembly. 13. The method of claim 1, wherein the step of treating the surface of the printhead assembly injects the treatment fluid from the nozzle side of the printhead assembly to the ink supply side of the printhead assembly through the printing The ink path of the head assembly. 14. The method of claim 1, wherein the step of treating the surface of the printhead assembly comprises blocking the ink supply side of the printhead assembly and delivering the treatment fluid from the nozzle of the printhead assembly with a pressure pulse The side passes through the printhead assembly. 15. The method of claim 1, further comprising the step of diluting the treatment solution with propylene-39-201144089 diol. The method of claim 1, wherein the step of drying the printhead assembly supplies purified compressed air through an ink passage of the printhead assembly. 17. The method of claim 16, wherein the purified compressed air is supplied at a pressure of 600 kPa. The method of claim 16 wherein the purified compressed air is pulsed through the ink passage of the printhead assembly. 19. The method of claim 1, wherein the step of baking the printhead assembly comprises assembling the printhead assembly into a printhead, and baking the printhead in an oven. 20. The method of claim 1, wherein the step of printing quality and electrical testing is performed prior to the step of treating the surface of the printhead assembly and drying the printhead assembly. -40 -
TW99118392A 2010-06-07 2010-06-07 Method for hydrophilizing surfaces of a print head assembly TW201144089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99118392A TW201144089A (en) 2010-06-07 2010-06-07 Method for hydrophilizing surfaces of a print head assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99118392A TW201144089A (en) 2010-06-07 2010-06-07 Method for hydrophilizing surfaces of a print head assembly

Publications (1)

Publication Number Publication Date
TW201144089A true TW201144089A (en) 2011-12-16

Family

ID=46765523

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99118392A TW201144089A (en) 2010-06-07 2010-06-07 Method for hydrophilizing surfaces of a print head assembly

Country Status (1)

Country Link
TW (1) TW201144089A (en)

Similar Documents

Publication Publication Date Title
EP3702332A1 (en) Ultrafine bubble generating method, ultrafine bubble generating apparatus, and ultrafine bubble-containing liquid
US8745868B2 (en) Method for hydrophilizing surfaces of a print head assembly
WO2011122325A1 (en) Fluid mixture spray device
CN102129957A (en) Cleaning method
TW201030879A (en) Cleaning module for a substrate and apparatus for processing a substrate having the same
CN111617651B (en) Ultra-fine bubble generation method, ultra-fine bubble generation device, and liquid containing ultra-fine bubbles
US6342105B1 (en) Washing solution for ink jet head, method for producing the same, and method for washing ink jet head using the same
KR100254292B1 (en) Method of removing coating from edge of substrate
JP2012179825A (en) Inkjet recording method
CN111617653A (en) Ultrafine bubble generation device and ultrafine bubble generation method
TW201144089A (en) Method for hydrophilizing surfaces of a print head assembly
JP2013056455A (en) Inkjet recording method
TWI694973B (en) Coating liquid generating device and coating device
CN112742227A (en) Equipment and method for producing liquid containing ultramicrobubbles
JP2021112903A (en) Wiping device, recording device, and method for wiping discharge port surface
CN112742228A (en) Equipment and method for producing liquid containing ultramicrobubbles
JP2016060157A (en) Inkjet recording apparatus and printing method
JP2020142232A (en) Ultra fine bubble generation method, ultra fine bubble generation device, and ultra fine bubble containing liquid
JP3629926B2 (en) INK JET HEAD CLEANING LIQUID, ITS MANUFACTURING METHOD, AND INK JET HEAD CLEANING METHOD
EP3865206A1 (en) Ultrafine bubble generating apparatus and ultrafine bubble generating head
JP2017045808A (en) Nanobubble washing device and nanobubble washing method
JP2001203182A (en) Cleaning method of object surface and cleaning equipment for method
JP4092771B2 (en) Method for manufacturing ink jet recording head
JP2006272733A (en) Waste ink liquid absorber and inkjet type recorder including the same
JP2011068094A (en) Method for forming liquid repellent film, inkjet head, and inkjet recorder