TW201143474A - Thermoacoustic device - Google Patents

Thermoacoustic device Download PDF

Info

Publication number
TW201143474A
TW201143474A TW99115877A TW99115877A TW201143474A TW 201143474 A TW201143474 A TW 201143474A TW 99115877 A TW99115877 A TW 99115877A TW 99115877 A TW99115877 A TW 99115877A TW 201143474 A TW201143474 A TW 201143474A
Authority
TW
Taiwan
Prior art keywords
thermo
carbon nanotube
acoustic
thermoacoustic
insulating layer
Prior art date
Application number
TW99115877A
Other languages
Chinese (zh)
Other versions
TWI500331B (en
Inventor
yu-quan Wang
Li Qian
Chen Feng
Liang Liu
Original Assignee
Beijing Funate Innovation Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Funate Innovation Tech filed Critical Beijing Funate Innovation Tech
Priority to TW099115877A priority Critical patent/TWI500331B/en
Publication of TW201143474A publication Critical patent/TW201143474A/en
Application granted granted Critical
Publication of TWI500331B publication Critical patent/TWI500331B/en

Links

Abstract

The present invention relates to a thermoacoustic device, and includes: a thermoacoustic element, a signal input device and a supporter. The supporter includes a metal substrate and an insulated layer formed on the surface of the metal substrate. The thermoacoustic element is a carbon nanotubes structure. The carbon nanotubes structure is disposed on the surface of the insulated layer of the supporter. The signal input device is used to input the signal to the thermoacoustic element. The carbon nanotubes structure can convert the received signal into sounds by the thermoacoustic theory.

Description

201143474 ' 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種發聲裝置,尤其涉及一種基於奈米碳管 的熱致發聲裝置。 [0002] 【先前技術】 發聲裝置一般由訊號輸入裝置和發聲元件組成。通過訊 號輸入裝置輸入電訊號給發聲元件,進而發出聲音。先 前技術中的發聲元件一般為一揚聲器。該揚聲器為一種 把電訊號轉換成聲音訊號的電聲器件。具體地,揚聲器 〇 可將一定範圍内的音頻電功率訊號通過換能方式轉變為 ... . :. .. 失真小並具有足夠聲壓級的可聽聲音。 . [0003] 〇 自九十年代初以來,以奈米碳管為代表的奈米材料以其 獨特的結構和性質引起了人們極大的關注。近幾年來, 隨著奈米碳管及奈米材料研究的不斷深入,其廣闊的應 用前景不斷顯現出來。例如,由於奈米碳管所具有的獨 特的電磁學、光學、力學、化學等性能,大量有關其在 場發射電子源、感測器、新型光學材料、軟鐵磁材料等 領域的應用研究不斷被報導。 [0004] 2008年10月29日,范守善在一篇標題為“Flexible, 099115877 Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers (Shoushan Fan等,Nano Letters, Vol. 8, No. 12, 2008, p4539-4545) ”的論文中公開了一種應用奈米碳管膜的熱致發聲揚聲 器。惟,因為所述奈米碳管膜為導電材料’如果將該奈 米碳管膜設置於金屬支撐結構的表面會引起短路’從而 表單編號A0101 第3頁/共25頁 0992028189-0 201143474 使得所述奈米碳·管膜不能工作,進而使得該揚聲器不能 發聲。因此,該應用奈米碳管膜的熱致發聲揚聲器不能 採用金屬材料作為支撐結構,亦無法利用金屬材料的製作 工藝成熟,可塑性強的優勢。 【發明内容】 [0005] [0006] [0007] 099115877 有鑒於此,提供一種採用金屬材料基底作為支撐結構的 熱致發聲裝置實為必要。 一種熱致發聲裝置,其包括:一熱致發聲元件,該熱致 發聲元件為一奈米碳管結構;一訊號輸入裝置,用於將 訊號輸入至所述熱致發聲元件,使得所述奈米碳管結構 接收所述訊號輸入裝置輸入的訊號並發出相應聲波;以 及一支撐結構,所述熱致發聲元件設置於該支撐結構的 表面;其中,所述支撑結構包括一金屬材料基底及一形 成於該金屬材料基底表面的絕緣層,所述熱致發聲元件 貼合設置於該絕緣層的表面。 一種熱致發聲裝置,包括:一熱致發聲元件,該熱致發 聲元件為一奈米碳管結構;一訊號輪入裝置,用於將訊 號輸入至所述熱致發聲元件,使得所述奈米碳管結構接 收所述訊號輸入裝置輸入的訊號並發出相應聲波;以及 一支撐結構,所述熱致發聲元件設置於該支撐結構的表 面;其中,所述支撐結構包括一金屬材料基底及一通過 氧化處理該金屬材料基底而形成在該金屬材料基底表面 的該金屬氧化物絕緣層,所述熱致發聲元件貼合設置於 該金屬氧化物絕緣層的表面。 相較於先前技術,本發明所提供的熱致發聲裝置具有以 表單編號A0101 第4頁/共25頁 [0008] 201143474 下優點:第一,所述熱致發聲裝置採用金屬材料基底及 絕緣層作為支撐結構,實現了採用金屬材料基底作為熱 致發聲裝置的支携·結構,並克服了熱致發聲元件容易與 所述金屬基底短路的問題。第二,由於金屬材料基底的 可塑性比較好’而且金屬材料的成型工藝比較成熟而且 簡單,所以’採用所述金屬材料基底作為熱致發聲裝置 的支撐結構,使得該熱致發聲裝置的製備工藝比較簡單 ’容易實現產業化應用。 【實施方式】 Ο [0009] [0010] Ο [0011] 下面將結合附圖及具體實施例’對本發明提供的熱致發 聲裝置作進一步的詳細說明。 請參閱圖1,本發明第一實施例提供一種熱致發聲裝置10 ,該熱致發聲裝置10包括一訊號輸入裝置12 ’ 一熱致發 聲元件14,一支撐結構16,一第一電振142以及一第二電 極144。所述熱致發聲元件14設置於該支揮結構1 6的表面 ’該支撐結構16用於支撐所述熱致發聲元件14。所述第 一電極142和第二電極144間隔設置於熱致發聲元件14且 與該熱致發聲元件14電連接。該第^電極142和第二電極 144分別與所述訊號輸入裝置12的兩端電連接,用於將所 述訊號輸入裝置12 _的訊號輸入到所述熱致發聲元件U 中。 所述支撐結構16主要起支撐所述熱致發聲元件14的作用 ’該支撐結構16的形狀可以根據實際需要確定,該支撐 結構16具有至少一個表面,該表面·^"以係平面或曲面, 所述曲面包括圓柱側面、圓錐側面、球形面等。具體地 099115877 表單編號Α0101 第5頁/共25頁 0992028189-0 201143474 ,所述支撐結構16可以為一立方體、一圓錐體或一圓柱 體。本實施例中,所述支撐結構16為一平板結構。請參 閱圖1,所述支撐結構16包括一金屬材料基底162及一形 成於該金屬材料基底162表面的絕緣層164。從宏觀上看 ,所述熱致發聲元件14與該絕緣層164大致平行且與該絕 緣層164的表面接觸設置,即該熱致發聲元件14貼合設置 於該絕緣層164的表面。 [0012] 所述金屬材料基底162的材料為純金屬或合金。所述絕緣 層164的電阻大於所述熱致發聲元件14的電阻,優選地; 該絕緣層164的電阻大於10千歐。優選地,所述絕緣層 164具有較好的電絕緣性能,可以防止所述支撐結構16的 金屬材料基底162與所述熱致發聲元件14發生短路。此外 ,所述絕緣層164具有較好的絕熱性能,從而防止所述熱 致發聲元件14產生的熱量過度的被所述支撐結構16吸收 ,無法達到加熱周圍介質進而發聲的目的。另外,所述 絕緣層164的表面比較粗糙,因此使得設置於該絕緣層 164表面的熱致發聲元件14與空氣或其他外界介質具有更 大的接觸面積,進而在一定程度上改善所述熱致發聲裝 置10的發聲效果。 [0013] 具體地,所述絕緣層164的材料可以為熱絕緣特性的金屬 氧化物材料,優選地,該金屬氧化物材料為一多孔材料 ,且具有電絕緣特性。所述絕緣層164可以通過氧化處理 所述金屬材料基底162而在該金屬材料基底162表面形成 一金屬氧化物絕緣層,且該金屬氧化物絕緣層的表面具 有複數個微孔。該金屬氧化物絕緣層的厚度可以為幾十 099115877 表單編號A0101 第6頁/共25頁 0992028189-0 201143474 微米。當所述熱致發聲元件14設置於該金屬氧化物絕緣 層時,從微觀上看,所述熱致發聲元件14在該金屬氧化 物絕緣層的微孔處懸空設置,在該金屬氧化物絕緣層的 非微孔處貼合設置。其中,所述金屬材料基底162的材料 可以為鋁,鐵,銅或其任意組合的合金;所述絕緣層164 的材料為氧化鋁、二氧化三鐵、四氧化三鐵、氧化銅或 其組合。 [0014] 此外,所述絕緣層164的材料還可以為耐高溫的電絕緣材 料,如,油漆或絕緣聚合物材料;此時,所述絕緣層16 4 可以通過在所述金屬材料基底1 62上塗覆一層耐高溫的油 漆或耐高溫電絕緣的聚合物材料形成。優選地,所述絕 緣層164還可以經過圖案化處理,使其表面比較粗糙。其 中,所述聚合物材料可以為矽膠,亞克力膠等材料。 [0015] 本實施例中,所述支撐結構16由一鋁金屬材料基底162以 及通過直接氧化處理該鋁金屬材料基底162而在該鋁金屬 材料基底162表面形成的氧化鋁絕緣層164組成。該氧化 鋁絕緣層164的厚度在40微米左右,其為一多孔絕熱材料 ,該氧化鋁絕緣層164的表面具有複數個微孔;從微觀上 來看,所述熱致發聲元件14在該氧化鋁絕緣層164的複數 個微孔處懸空設置,在該氧化鋁絕緣層164靠近該熱致發 聲元件14的表面的非微孔處貼合設置。由於氧化鋁絕緣 層164為多孔材料,從而使得設置於該氧化鋁絕緣層164 表面的熱致發聲元件14與空氣或其他外界介質具有更大 的接觸面積,進而使得所述熱致發聲裝置10具有良好的 發聲效果。由於氧化鋁具有較好的絕熱性能,所以該氧 099115877 表單編號A0101 第7頁/共25頁 0992028189-0 201143474 化鋁絕緣層164可以防止該熱致發聲元件14產生的熱量過 度的被該支撐結構16吸收,無法達到加熱周圍介質進而 發聲的目的。 [0016] 由於氧化鋁絕緣層164係通過直接氧化處理所述鋁金屬材 料基底162而形成的,而且鋁金屬的製造工藝比較成熟、 製造方法簡單,所以該支撙結構16的製備方法比較簡單 ,從而使得該熱致發聲裝置10的製備工藝比較簡單,容 易實現,而且有利於降低成本。另外,鋁金屬的可塑性 比較強,易於製成各種形狀,所以該支撐結構16亦易於 製成各種形狀。鋁金屬還具有較好的柔韌性及強度,所 以該支撐結構16具有良好的柔韌性和強度,可以使得所 述熱致發聲裝置10具有較好的柔性及抗震防碎的特點。 [0017] 所述熱致發聲元件14為一奈米碳管結構,用於接收所述 訊號輸入裝置12輸出的訊號並發出相應聲波。所述熱致 發聲元件14圍繞所述支撐結構16的至少一個表面設置, 形成具有至少一個平面的熱致發聲元件或具有一曲面的 熱致發聲元件。具體地,所述支撐結構16的至少一個表 面為所述絕緣層164的至少一個表面,所述奈米碳管結構 圍繞該絕緣層164的至少一個表面設置,且貼合設置於該 絕緣層164的至少一個表面,形成具有至少一個平面的熱 致發聲元件14或具有一曲面的熱致發聲元件14。本實施 例中,由於所述支撐結構16為一平板結構,所以所述奈 米碳管結構貼合設置於所述絕緣層164的一個表面上形成 一平面形熱致發聲元件14。所述奈米碳管結構為膜狀或 其他形狀,且具有較大的比表面積。當所述奈米碳管結 099115877 表單編號A0101 第8頁/共25頁 0992028189-0 201143474 構為臈狀時,所述熱致發聲元件14為一奈米碳管膜結構 [0018] 所述奈米碳管結構由均勻分佈的奈米碳管組成’且奈米 碳管之間通過凡德瓦爾力緊密結合。該奈米碳管結構中 的奈米碳管為無序或有序排列。所謂無序排列係指奈米 碳管的排列方向無規則。所謂有序排列係指奈米碳管的 排列方向有規則。具體地,當奈米碳管結構包括無序排 列的奈米碳管時,奈米碳管相互纏繞或者奈米碳管結構 Ο 各向同性;當奈米碳管結構包括有序排列的奈米碳管時 ’該奈米碳管結構中的大多數奈米善管沿一個方向或者 複數個方向擇優取向排列。其令,所謂“擇履取向”係 才曰所述奈米碳管結構中的大多數奈米碳管在一個方向或 咸個方向上具有較大的取向幾率;即,該奈米碳管層中 的大多數奈米碳管的轴向基本沿同一方向或幾個方向延 伸。 [0019] ❹ I:T 1·!! i; '!;·:·::·'IN : 山=不米碳管結構包括至少一奈米碳管膜、複數個奈米 碳Β線或其組合。所述奈来碳管膜可以由有序排列的奈 来唉官或無序排列的奈米碳管組成,且該奈米碳管膜中 多數不米碳管的轴向基本平行於該奈米碳管膜的表 。。所述複數個奈米碳管線可以平行設置組成一束狀結 構或相互扭轉組成—絞線結構1述奈米碳管線可為一 非扭轉的奈米唉管線或扭轉的奈米碳管線。所述非扭轉 的奈米碳管線包括複數個沿該非扭轉的奈米碳管線長产 方向平行排列的奈来碳管。所述扭轉的奈米碳管線包^ 複數個沿該扭轉的奈米碳管線長度方㈣㈣_ 099115877 表單編號Α0101 第9頁/共25頁 201143474 碳管。該扭轉的奈米碳管線為採用一機械力將所述首尾 相連的奈米碳管組成的奈米碳管膜的兩端沿相反方向扭 轉獲得。所述奈米碳管結構可以具有自支撐結構。所謂 自支撐結構即所述奈米碳管結構中的複數個奈米碳管間 通過凡德瓦爾力相互吸引,從而使奈米碳管結構具有特 定的形狀。可以理解,由於奈米碳管結構設置在所述支 撐結構16之表面,所述奈米碳管結構可通過所述支撐結 構16支撐,故所述奈米碳管結構亦可以無需具有自支撐 結構。 [0020] 所述奈米碳管結構的厚度為0.5奈米~1毫米。如果所述奈 米碳管結構的厚度太大,則比表面積減小,單位面積熱 容增大;如果所述奈米碳管結構的厚度太小,則機械強 度較差,耐用性不夠好。所述奈米碳管結構的單位面積 熱容可小於2x1 0_4焦耳每平方釐米開爾文。優選地,所 述奈米碳管結構的單位面積熱容小於1. 7x1 0_6焦耳每平 方釐米開爾文。所述奈米碳管結構中的奈米碳管包括單 壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或 複數種。所述單壁奈米碳管的直徑為0.5奈米〜50奈米, 所述雙壁奈米碳管的直徑為1. 0奈米〜50奈米,所述多壁 奈米碳管的直徑為1. 5奈米〜50奈米。 [0021] 本實施例中,所述熱致發聲元件14為由複數個奈米碳管 組成的奈米碳管膜,且該奈米碳管膜中的大多數奈米碳 管基本沿同一方向擇優取向排列。該奈米碳管膜中大多 數奈米碳管的整體延伸方向基本朝同一方向。而且,所 述大多數奈米碳管的整體延伸方向基本平行於該奈米碳 099115877 表單編號A0101 第10頁/共25頁 0992028189-0 201143474 管膜的表面。進一步地,所述奈米碳管膜中多數奈米碳 管係通過凡德瓦爾力首尾相連。具體地,所述奈米碳管 膜中基本朝同一方向延伸的大多氧奈米碳管中每一奈米 碳管與在延伸方向上相鄰的奈米碳管通過凡德瓦爾力首 尾相連。其中,該奈米碳管膜具有一第一方向及一第二 方向,該第一方向為該奈米碳管膜中的大多數奈米碳管 的整體軸向延伸方向,亦就係奈米碳管的擇優取向排列 的方向。該第二方向平行於該奈米碳管膜的表面,且與 -r> 所述第一方向相交,亦就係說,所述第二方向可以與所 〇 述第一方向垂直,亦可以不與該第一方向_垂直。該奈米 碳管膜具有導電異向性,為導電異向性膜,其在該第二 方向的方塊電阻大於在該第一方向的方塊電阻;具體地 ,該奈米碳管膜在第二方向上的方塊電阻至少為第一方 向上的方塊電阻的70倍,如第二方向上的方塊電阻大約 為250千歐,第一方向上的方塊電阻大約3千歐。該奈米 碳管膜的厚度為50奈米。 [0022] 由於奈米碳管具有極大的比表面積,在凡德瓦爾力的作 ❹ 用下,該奈米碳管結構本身有很好的黏附性,故採用該 奈米碳管結構作熱致發聲元件14時,所述熱致發聲元件 14與所述支撐結構16之間可以直接黏附固定。進一步地 ,在所述熱致發聲元件14與所述支撐結構16之間還可以 進一步包括一黏結層(圖未示)。所述黏結層可以將所述 熱致發聲元件14更好地固定於所述支撐結構16的表面。 所述黏結層的材料可為絕緣材料,亦可為具有一定導電 性能的材料。 099115877 表單編號 A0101 第 11 頁/共 25 頁 0992028189-0 201143474 [0023] 所述第一電極142和第二電極1 44分別與所述熱致發聲元 件14電連接。該第一電極142和第二電極144可進一步通 過一導線149分別與所述訊號輸入裝置12電連接,用於將 所述訊號輸入裝置12的訊號輸入到所述熱致發聲元件14 中。所述第一電極142和第二電極144由導電材料形成, 其具體形狀結構不限。具體地,所述第一電極142和第二 電極144可選擇為層狀、棒狀、塊狀或其他形狀。所述第 一電極142和第二電極144的材料可選擇為金屬、導電膠 、金屬性奈米碳管、銦錫氧化物(IT 0 )等。所述熱致發 聲元件14設置在所述支撐結構16的表面,所述第一電極 142和第二電極144可間隔設置在所述熱致發聲元件14的 兩端或表面。所述第一電極142和第二電極144的設置與 所述熱致發聲元件14中的奈米碳管的排列方向有關。 [0024] 本實施例中,所述第一電極142和第二電極144為棒狀金 屬電極,所述第一電極142和第二電極144平行且間隔設 置在所述熱致發聲元件14的兩端,具體地,該第一電極 142和第二電極144間隔設置於所述熱致發聲元件14中的 奈米碳管膜沿所述第一方向的兩端,即該熱致發聲元件 14中的大多數奈米碳管沿所述第一電極14 2至第二電極 144的方向延伸。由於所述第一電極142和第二電極144 間隔設置,所述熱致發聲元件14應用於熱致發聲裝置10 時能接入一定的阻值避免短路現象產生。由於奈米碳管 具有極大的比表面積,在凡德瓦爾力的作用下,該奈米 碳管結構本身有很好的黏附性,故採用該奈米碳管結構 作熱致發聲元件14時,所述第一電極142和第二電極144 099115877 表單編號A0101 第12頁/共25頁 0992028189-0 201143474 與所述熱致發聲元件14之間可以直接黏附固定,並形成 • 較好的電接觸。 [0025] 另外,所述第一電極142和第二電極144與所述熱致發聲 元件14之間還可以進一步包括一導電黏結層(圖未示)。 所述導電黏結層在實現第一電極142和第二電極144與所 述熱致發聲元件14電接觸的同時,還可以使所述第一電 極142和第二電極144與所述熱致發聲元件14更好地固定 。本實施例中,所述導電黏結層為一層銀膠。 ^ [0026] 可以理解,本發明第一實施例可進一步設置複數個電極 於所述熱致發聲元件14之表面,其數量不限,只需確保 任意兩個相鄰的電極均間隔設置、與所述熱致發聲元件 14電連接,且均分別與所述訊號輸入裝置12的兩端電連 接即可。 [0027] 所述訊號輸入裝置12包括音頻訊號輸入裝置、光訊號輸 入裝置、電訊號輸入裝置及電磁波訊號輸入裝置等。相 應地,所述訊號輸入裝置12輸入的訊號不限,包括電磁 〇 波、交流訊號、音頻訊號以及光訊號等。可以理解,所 述訊號輸入裝置12輸入的訊號與所述熱致發聲裝置10的 具體應用有關。如:當所述熱致發聲裝置10應用於收音 機時,所述訊號輸入裝置12輸入的訊號為電磁波;當所 述熱致發聲裝置10應用於耳機時,所述訊號輸入裝置12 輸入的訊號為交流電訊號或音頻電訊號。本實施例中, 所述訊號輸入裝置12為電訊號輸入裝置;該訊號輸入裝 置12通過導線149與所述第一電極142和第二電極144電 連接,並通過所述第一電極142和第二電極144將電訊號 099115877 表單編號 A0101 第 13 頁/共 25 頁 0992028189-0 201143474 輸入到所述熱致發聲元件14中。可以理解,由於所述熱 致發聲元件14設置在所述支撐結構16的表面,且該熱致 發聲元件14同時亦為一導電材料,故本實施例中的第一 電極142與第二電極144可以為可選擇的結構。所述訊號 輸入裝置12可直接通過導線等方式與所述熱致發聲元件 14電連接。只需確保所述訊號輸入裝置12能將電訊號輸 入給所述熱致發聲元件14即可。 [0028] 可以理解,根據訊號輸入裝置12的不同,所述第一電極 142和第二電極144為可選擇的結構,如當輸入訊號為光 或電磁波等訊號時,所述訊號輸入裝置12可直接輸入訊 號給所述熱致發聲元件14,無需電極及導線。 [0029] 所述熱致發聲裝置10在使用時,由於奈米碳管結構由均 勻分佈的奈米碳管組成,奈米碳管具有較小的熱容,且 該奈米碳管結構為膜狀、具有較大的比表面積且厚度較 小,故該奈米碳管結構具有較小的單位面積熱容和較大 的散熱表面,在輸入訊號後,奈米碳管結構可迅速升降 溫,產生週期性的溫度變化,並和周圍氣體介質快速進 行熱交換,使周圍氣體介質迅速膨脹和冷縮,進而發出 聲音。故本實施例中,當輸入電訊號時,所述熱致發聲 元件14就按照“電-熱-聲”轉換的原理發聲。可以理解 ,當輸入訊號為光訊號時,所述熱致發聲元件14的發聲 原理為“光-熱-聲”的轉換。因此,由上述熱致發聲元 件14組成的熱致發聲裝置10具有廣泛的應用範圍。 [0030] 所述熱致發聲裝置10的發聲頻率範圍為1赫茲至10萬赫茲 (•即lHz~100kHz)。圖2為採用長寬均為30毫米且奈米碳 099115877 表單編號A0101 第14頁/共25頁 0992028189-0 201143474 管首尾相連且沿同一方向擇優取向排列的奈米碳管膜用 作所述熱致發聲元件14,輸入電壓為50伏時,將一麥克 風放在距熱致發聲元件5釐米的位置時測得的所述熱致發 聲裝置10的頻率回應特性曲線。從圖2中可以看出,所述 發聲裝置的聲壓級大於50分貝,甚至可達1〇5分貝,所述 發聲裝置的發聲頻率範圍為100赫茲至10萬赫兹(即 100Hz~100kHz),所述發聲裝置在5〇〇赫茲〜4萬赫兹頻 率範圍内的失真度小於3%,所述熱致發聲裝置具有較 好的發聲效果。另外’本實施娜中的奈米碳管結構具有 〇 較好的韌性和機械強度,所述奈米碳管雄轉可方便地製 成各種形狀和尺寸的熱致發聲裝置10,該熱致發聲裝置 10可方便地應用於各種可發聲的產品中,如音響、手機 、MP3、MP4、電視、電腦等電子領域及其他產品中。 [0031] β青參閱圖3,本發明第二實施例提供一種熱致發聲裝置2 〇 ,該熱致發聲裝置20包括一訊號輸入裝置22、一熱致發 聲元件24、一支撐結構26、一第一電極242、一第二電極 244、一第三電極246以及一第四電極248。 〇 [0032] 所述訊號輸入裝置22的結構及類型與第一實施例提供的 熱致發聲裝置10中的訊號輸入裝置12的結構及類型相同 [0033] 所述熱致發聲元件24的材料與第一實施例提供的熱致發 聲裝置10中的熱致發聲元件14的材料相同,即,該熱致 發聲元件24亦為奈米碳管結構。所述熱致發聲元件24圍 繞所述支撐結構26設置,形成一曲面形或折面形熱致發 聲元件24。 099115877 表單编號 Α0101 第 15 頁/共 25 頁 0992028189-0 201143474 [0034] 所述支撐結構26為一立方體、一圓錐體或一圓枉體。其 中’所述支撐結構26包括一金屬材料基底262及形成於該 金屬材料基底262的絕緣層264。所述絕緣層264為耐高 溫的電絕緣及熱絕緣材料。所述熱致發聲元件2 4貼合設 置於該絕緣層264的表面,且圍繞該絕緣層264設置。在 本實施例中,所述支撐結構26為中空的圓柱體,由一中 空的圓柱形銅金屬材料基底262及塗覆於該圓柱形銅金屬 材料基底262外表面的油漆絕緣層264組成。所述熱致發 聲元件24與所述支撐結構26的絕緣層264貼合設置,且該 熱致發聲元件24環繞該支撐奋構2g設置形成一環形熱致 發聲元件24。可以理解,所述絕緣層264亦可以為金屬材 料基底262的材料的氧化物形成的金屬氧化物材料層。 [0035] 所述第一電極242、第二電極244、第三電極246和第四 電極248間隔設置在所述環形熱致發聲元件24表面並與該 環形熱致發聲元件24電連接。任意兩個相鄰的電極均分 別與所述訊號輸入裝置22的兩端電連接,以使位於相鄰 電極之間的熱致發聲元件24锋尽輸入訊號。具體地,先 將不相鄰的兩個電極用一導線249連接後與所述訊號輸入 裝置22的一端電連接’剩下的兩個電極用導線249連接後 與所述訊號輸入裝置22的另一端電連接。本實施例中, 可先將所述第一電極242和第三電極246用導線249連接 後與所述訊號輸入裝置22的一端電連接,再將所述第二 電極244和第四電極248用導線249連接後與所述訊號輸 入裝置22的另一端電連接。上述連接方式可實現相鄰電 極之間的奈米碳管結構並聯。並聯後的奈米碳管結構具 099115877 表單編號A0101 第16頁/共25頁 0992028189-0 201143474 有較小的電阻’可降仏作。且,上述連接方式可 使所述熱致發聲元件24產生的聲波向各個方向均句轄射 ’且發聲強度得到增強,從而實現環繞發聲效果。 [0036] 可以理解’本實施财可設置更複數個電極,其數量不 限’只需確保任意兩她鄰的電極均間隔設置、與所述 熱致發聲元件24電連接’且均分叫所述減輸入裝置 22的兩端電連接即可。 [0037]本發明實施例提供的熱致發聲裝置具有以下優點:第一 〇 ,本發明實施例提供的熱致發聲敲置採用金屬材料基底 及絕緣層作為支撐結構,實現了採用金屬材料基底作為 熱致發聲裝置的支撐結構,並克服了熱致發聲元件容易 與所述金屬材料基底短路的問題第二,由於金屬材料 基底的製造工藝比較成熟而且製造方法比較簡單,所以 無論係通過氧化處理所述金屬材料基底来製備所述絕緣 層,還係通過塗覆絕緣材料在.該金屬材料基底表面來形 成絕緣層,都使得所述支撐結構的製備工藝均比較簡單 Q ,從而使得該熱致發聲裝置的製備工藝比較簡單,容易 實現產業化應用。第三,由於所述金屬材料基底由金屬 材料組成,而金屬材料具有較好的強度及韌性,所以所 述支撐結構具有較好的強度及韌性,可以使得應用該支 撐結構的發聲裝置具有抗震防碎的特點。第四,由於所 述支撐結構包括具有較好的柔動性的金屬材料基底,所 述熱致發聲元件為具有較好的柔勤性的奈米碳管結構, 所以本發明實施例提供的熱致發聲裝置可以為一柔性發 聲裝置。第五,金屬材料基底的可塑性比較強,易於製 099115877 表單編號A0101 第17頁/共25頁 0992028189-0 201143474 成各種形狀,所以所述支撐結構亦易於製成各種形狀, 另外,所述熱致發聲元件為奈米碳管結構,亦比較容易 製成各種形狀’因此’本發明實施例提供的熱致發聲裝 置亦比較容易製成各種形狀。 [0038] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 .· . . 【圖式簡單說明】 [0039] 圖1係本發明第一實施例熱致發聲裝置的結構示意圖。 [0040] 圖2係本發明第一實施例熱致發聲裝置的頻率響應特性曲 線。 [0041] 圖3係本發明第二實施例熱致發聲裝置的結構示意圖。 【主要元件符號說明】 [0042] 熱致發聲裝置:10,20 [0043] 訊號輸入裝置·· 12,22 [0044] 熱致發聲元件:14,24 [0045] 第一電極:142,242 [0046] 第二電極:144,244 [0047] 導線:149, 249 [0048] 支撐結構:16,26 099115877 表單編號A0101 第18頁/共25頁 0992028189-0 201143474 [0049] 金屬材料基底:162,262 [0050] 絕緣層:164,264 [0051] 第三電極:246 [0052] 第四電極:248 〇 〇 099115877 表單編號A0101 第19頁/共25頁 0992028189-0201143474 ' VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a sound emitting device, and more particularly to a thermo-acoustic device based on a carbon nanotube. [Prior Art] The sounding device is generally composed of a signal input device and a sounding element. The signal is input to the sounding component through the signal input device to make a sound. The sounding element of the prior art is generally a speaker. The speaker is an electroacoustic device that converts an electrical signal into an acoustic signal. Specifically, the speaker 〇 can convert the audio electric power signal within a certain range into a conversion mode by .... . . . . . audible sound with small distortion and sufficient sound pressure level. [0003] 奈 Since the early 1990s, nanomaterials represented by carbon nanotubes have attracted great attention due to their unique structure and properties. In recent years, with the deepening of research on carbon nanotubes and nanomaterials, its broad application prospects have been continuously revealed. For example, due to the unique electromagnetic, optical, mechanical, and chemical properties of carbon nanotubes, a large number of applications in field emission electron sources, sensors, new optical materials, soft ferromagnetic materials, etc. Was reported. [0004] On October 29, 2008, Fan Shoushan was entitled "Flexible, 099115877 Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers (Shoushan Fan et al, Nano Letters, Vol. 8, No. 12, 2008, p4539-4545). A paper on the use of a carbon nanotube film thermo-acoustic speaker is disclosed in the paper. However, because the carbon nanotube film is a conductive material 'If the carbon nanotube film is placed on the surface of the metal support structure, it will cause a short circuit'. Form No. A0101 Page 3 of 25 0992028189-0 201143474 The nanocarbon film can not work, and the speaker can not sound. Therefore, the thermoacoustic speaker using the carbon nanotube film cannot use the metal material as the supporting structure, and the metal material manufacturing process is mature and the plasticity is strong. SUMMARY OF THE INVENTION [0006] In view of this, it is necessary to provide a thermo-acoustic device using a metal material substrate as a support structure. A thermo-acoustic device comprising: a thermo-acoustic element, the thermo-acoustic element is a carbon nanotube structure; a signal input device for inputting a signal to the thermo-acoustic element, such that the a carbon nanotube structure receives a signal input by the signal input device and emits a corresponding sound wave; and a support structure, the thermo-acoustic element is disposed on a surface of the support structure; wherein the support structure comprises a metal material substrate and a An insulating layer formed on a surface of the metal material substrate, the thermo-acoustic element being disposed on a surface of the insulating layer. A thermo-acoustic device comprising: a thermo-acoustic element, the thermo-acoustic element is a carbon nanotube structure; a signal wheeling device for inputting a signal to the thermo-acoustic element, such that the a carbon nanotube structure receives a signal input by the signal input device and emits a corresponding sound wave; and a support structure, the thermo-acoustic element is disposed on a surface of the support structure; wherein the support structure comprises a metal material substrate and a The metal oxide insulating layer is formed on the surface of the metal material substrate by oxidizing the metal material substrate, and the thermo-acoustic element is attached to the surface of the metal oxide insulating layer. Compared with the prior art, the thermoacoustic device provided by the present invention has the advantages of Form No. A0101, Page 4 of 25 [0008] 201143474. First, the thermoacoustic device uses a metal substrate and an insulating layer. As the supporting structure, the use of the metal material substrate as the supporting structure of the thermo-acoustic device is realized, and the problem that the thermo-acoustic element is easily short-circuited with the metal substrate is overcome. Secondly, since the metal material substrate has better plasticity and the metal material forming process is relatively mature and simple, the use of the metal material substrate as a support structure of the thermo-acoustic device makes the preparation process of the thermo-acoustic device relatively Simple 'easy to implement industrial applications. [Embodiment] 0009 [0010] The thermoacoustic device provided by the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. Referring to FIG. 1 , a first embodiment of the present invention provides a thermo-acoustic device 10 . The thermo-acoustic device 10 includes a signal input device 12 ′, a thermo-acoustic component 14 , a support structure 16 , and a first electrical vibration 142 . And a second electrode 144. The thermally audible element 14 is disposed on the surface of the undulating structure 16. The support structure 16 is for supporting the thermoacoustic element 14. The first electrode 142 and the second electrode 144 are spaced apart from each other and electrically connected to the thermoacoustic element 14. The second electrode 142 and the second electrode 144 are respectively electrically connected to both ends of the signal input device 12 for inputting the signal of the signal input device 12_ into the thermoacoustic element U. The supporting structure 16 mainly serves to support the thermo-acoustic element 14. The shape of the supporting structure 16 can be determined according to actual needs. The supporting structure 16 has at least one surface, which is a plane or a curved surface. The curved surface includes a cylindrical side surface, a conical side surface, a spherical surface, and the like. Specifically, 099115877 Form No. Α0101, Page 5 of 25 0992028189-0 201143474, the support structure 16 may be a cube, a cone or a cylinder. In this embodiment, the support structure 16 is a flat plate structure. Referring to FIG. 1, the support structure 16 includes a metal material substrate 162 and an insulating layer 164 formed on the surface of the metal material substrate 162. In a macroscopic view, the thermally audible element 14 is substantially parallel to the insulating layer 164 and is in contact with the surface of the insulating layer 164, i.e., the thermally audible element 14 is disposed on the surface of the insulating layer 164. [0012] The material of the metal material substrate 162 is a pure metal or alloy. The electrical resistance of the insulating layer 164 is greater than the electrical resistance of the thermoacoustic element 14, preferably; the electrical resistance of the insulating layer 164 is greater than 10 kohms. Preferably, the insulating layer 164 has better electrical insulating properties to prevent short circuiting of the metal material substrate 162 of the support structure 16 from the thermo-acoustic element 14. In addition, the insulating layer 164 has better heat insulating properties, so that the heat generated by the thermally utterable element 14 is prevented from being excessively absorbed by the support structure 16, and the purpose of heating the surrounding medium and sounding is not achieved. In addition, the surface of the insulating layer 164 is relatively rough, so that the thermoacoustic element 14 disposed on the surface of the insulating layer 164 has a larger contact area with air or other external medium, thereby improving the heat-induced to some extent. The sounding effect of the sounding device 10. [0013] Specifically, the material of the insulating layer 164 may be a metal oxide material having thermal insulating properties. Preferably, the metal oxide material is a porous material and has electrical insulating properties. The insulating layer 164 may form a metal oxide insulating layer on the surface of the metal material substrate 162 by oxidizing the metal material substrate 162, and the surface of the metal oxide insulating layer has a plurality of micropores. The metal oxide insulating layer may have a thickness of several tens of 099115877 Form No. A0101 Page 6 of 25 0992028189-0 201143474 Micron. When the thermo-acoustic element 14 is disposed on the metal oxide insulating layer, the thermo-acoustic element 14 is suspended from the micro-hole of the metal oxide insulating layer, and is insulated at the metal oxide. The non-microporous layer of the layer fits together. The material of the metal material substrate 162 may be an alloy of aluminum, iron, copper or any combination thereof; the material of the insulating layer 164 is aluminum oxide, ferric oxide, triiron tetroxide, copper oxide or a combination thereof. . [0014] In addition, the material of the insulating layer 164 may also be a high temperature resistant electrical insulating material, such as a paint or an insulating polymer material; in this case, the insulating layer 16 4 may pass through the metal material substrate 1 62 It is formed by coating a layer of high temperature resistant paint or high temperature electrically insulating polymer material. Preferably, the insulating layer 164 may also be patterned to have a rough surface. The polymer material may be a silicone rubber, an acrylic rubber or the like. In the present embodiment, the support structure 16 is composed of an aluminum metal material substrate 162 and an aluminum oxide insulating layer 164 formed on the surface of the aluminum metal material substrate 162 by directly oxidizing the aluminum metal material substrate 162. The aluminum oxide insulating layer 164 has a thickness of about 40 micrometers, which is a porous heat insulating material. The surface of the aluminum oxide insulating layer 164 has a plurality of micropores; microscopically, the thermo-acoustic element 14 is in the oxidation. A plurality of micropores of the aluminum insulating layer 164 are suspended and disposed in a non-microporous manner near the surface of the thermal insulating element 14 of the aluminum oxide insulating layer 164. Since the alumina insulating layer 164 is a porous material, the thermo-acoustic element 14 disposed on the surface of the alumina insulating layer 164 has a larger contact area with air or other external medium, thereby causing the thermo-acoustic device 10 to have Good sounding effect. Since the alumina has better thermal insulation properties, the oxygen 099115877 Form No. A0101 Page 7 / Total 25 Page 0992028189-0 201143474 The aluminum insulating layer 164 can prevent the heat generated by the thermoacoustic element 14 from being excessively supported by the support structure. 16 absorption, can not achieve the purpose of heating the surrounding medium and then sound. [0016] Since the aluminum oxide insulating layer 164 is formed by directly oxidizing the aluminum metal material substrate 162, and the aluminum metal manufacturing process is relatively mature and the manufacturing method is simple, the preparation method of the support structure 16 is relatively simple. Therefore, the preparation process of the thermo-acoustic device 10 is relatively simple, easy to implement, and is advantageous in reducing cost. Further, the aluminum metal is relatively plastic and easy to be formed into various shapes, so that the support structure 16 can be easily formed into various shapes. The aluminum metal also has good flexibility and strength, so that the support structure 16 has good flexibility and strength, and the thermo-acoustic device 10 can have better flexibility and shock resistance. [0017] The thermo-acoustic component 14 is a carbon nanotube structure for receiving signals output by the signal input device 12 and emitting corresponding sound waves. The thermo-acoustic element 14 is disposed around at least one surface of the support structure 16 to form a thermo-acoustic element having at least one plane or a thermo-acoustic element having a curved surface. Specifically, at least one surface of the support structure 16 is at least one surface of the insulating layer 164, and the carbon nanotube structure is disposed around at least one surface of the insulating layer 164, and is disposed on the insulating layer 164 At least one surface forms a thermo-acoustic element 14 having at least one plane or a thermo-acoustic element 14 having a curved surface. In this embodiment, since the support structure 16 is a flat plate structure, the carbon nanotube structure is disposed on one surface of the insulating layer 164 to form a planar thermoacoustic element 14. The carbon nanotube structure is in the form of a film or other shape and has a large specific surface area. When the carbon nanotube junction 099115877 Form No. A0101 Page 8 / 25 pages 0992028189-0 201143474 is configured as a braid, the thermo-acoustic element 14 is a carbon nanotube membrane structure [0018] The carbon nanotube structure consists of uniformly distributed carbon nanotubes' and the carbon nanotubes are tightly coupled by van der Waals force. The carbon nanotubes in the carbon nanotube structure are disordered or ordered. The so-called disordered arrangement means that the arrangement direction of the carbon nanotubes is irregular. The so-called ordered arrangement means that the arrangement of the carbon nanotubes is regular. Specifically, when the carbon nanotube structure includes a disordered arrangement of carbon nanotubes, the carbon nanotubes are intertwined or the carbon nanotube structure is isotropic; when the carbon nanotube structure includes ordered nanometers In the case of a carbon tube, most of the nanotubes in the carbon nanotube structure are arranged in one direction or in a plurality of directions. Therefore, the so-called "selective orientation" means that most of the carbon nanotubes in the carbon nanotube structure have a large orientation probability in one direction or a salty direction; that is, the carbon nanotube layer The majority of the carbon nanotubes in the axial direction extend substantially in the same direction or in several directions. [0019] ❹ I: T 1·!! i; '!;·:::·'IN: Mountain = not carbon nanotube structure including at least one carbon nanotube film, a plurality of nano carbon tantalum wires or combination. The carbon nanotube membrane may be composed of an ordered array of nanotubes or a disordered arrangement of carbon nanotubes, and the majority of the carbon nanotubes in the carbon nanotube membrane are substantially parallel to the nanometer. A watch of the carbon tube film. . The plurality of nanocarbon pipelines may be arranged in parallel to form a bundle structure or mutually twisted. The stranded carbon structure may be a non-twisted nanotube line or a twisted nanocarbon line. The non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes arranged in parallel along the long-term direction of the non-twisted nanocarbon pipeline. The twisted nanocarbon pipeline package has a plurality of lengths along the twisted nanocarbon pipeline (four) (four) _ 099115877 Form No. Α 0101 Page 9 / Total 25 pages 201143474 Carbon tube. The twisted nanocarbon line is obtained by twisting both ends of the carbon nanotube film composed of the end-to-end connected carbon nanotubes in opposite directions by a mechanical force. The carbon nanotube structure may have a self-supporting structure. The so-called self-supporting structure, that is, the plurality of carbon nanotubes in the carbon nanotube structure are attracted to each other by the van der Waals force, so that the carbon nanotube structure has a specific shape. It can be understood that since the carbon nanotube structure is disposed on the surface of the support structure 16, the carbon nanotube structure can be supported by the support structure 16, so the carbon nanotube structure can also be free from a self-supporting structure. . [0020] The carbon nanotube structure has a thickness of 0.5 nm to 1 mm. If the thickness of the carbon nanotube structure is too large, the specific surface area is decreased, and the heat capacity per unit area is increased; if the thickness of the carbon nanotube structure is too small, the mechanical strength is poor and the durability is not good enough. The carbon nanotube structure may have a heat capacity per unit area of less than 2 x 10 0 4 joules per square centimeter Kelvin. Preferably, the carbon nanotube structure has a heat capacity per unit area of less than 1. 7x1 0_6 joules per square centimeter Kelvin. The carbon nanotubes in the carbon nanotube structure include one or a plurality of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes. The diameter of the single-walled carbon nanotube is 0.5 nm to 50 nm, and the diameter of the double-walled carbon nanotube is 1.0 nm to 50 nm, and the diameter of the multi-walled carbon nanotube For 1. 5 nm ~ 50 nm. [0021] In this embodiment, the thermo-acoustic element 14 is a carbon nanotube film composed of a plurality of carbon nanotubes, and most of the carbon nanotubes in the carbon nanotube film are substantially in the same direction Preferred orientation. Most of the carbon nanotubes in the carbon nanotube film extend substantially in the same direction. Moreover, the overall extension direction of the majority of the carbon nanotubes is substantially parallel to the nanocarbon. 099115877 Form No. A0101 Page 10 of 25 0992028189-0 201143474 The surface of the tubular membrane. Further, most of the carbon nanotubes in the carbon nanotube membrane are connected end to end by Van der Waals force. Specifically, each of the carbon nanotubes in the majority of the carbon nanotube membranes extending in the same direction and the carbon nanotubes adjacent in the extending direction are connected end to end by the van der Waals force. Wherein, the carbon nanotube film has a first direction and a second direction, wherein the first direction is an overall axial extension direction of most of the carbon nanotubes in the carbon nanotube film, and is also a nanometer The direction in which the preferred orientation of the carbon tubes is aligned. The second direction is parallel to the surface of the carbon nanotube film and intersects with the first direction of -r>, that is, the second direction may be perpendicular to the first direction, or may not It is perpendicular to the first direction. The carbon nanotube film has an anisotropic conductivity and is a conductive anisotropic film whose sheet resistance in the second direction is greater than a sheet resistance in the first direction; specifically, the carbon nanotube film is in the second The sheet resistance in the direction is at least 70 times the sheet resistance in the first direction, such as a sheet resistance of about 250 kohms in the second direction and a sheet resistance of about 3 kohms in the first direction. The carbon nanotube film has a thickness of 50 nm. [0022] Since the carbon nanotube has a large specific surface area, the carbon nanotube structure itself has good adhesion under the action of the van der Waals force, so the carbon nanotube structure is used as a heat-induced structure. When the sound element 14 is sounded, the thermo-acoustic element 14 and the support structure 16 can be directly adhered and fixed. Further, a bonding layer (not shown) may be further included between the thermo-acoustic element 14 and the support structure 16. The bonding layer can better secure the thermo-acoustic element 14 to the surface of the support structure 16. The material of the adhesive layer may be an insulating material or a material having a certain electrical conductivity. 099115877 Form No. A0101 Page 11 of 25 0992028189-0 201143474 [0023] The first electrode 142 and the second electrode 144 are electrically connected to the thermo-acoustic element 14, respectively. The first electrode 142 and the second electrode 144 are further electrically connected to the signal input device 12 via a wire 149 for inputting the signal of the signal input device 12 into the thermo-acoustic component 14. The first electrode 142 and the second electrode 144 are formed of a conductive material, and the specific shape and structure thereof are not limited. Specifically, the first electrode 142 and the second electrode 144 may be selected in a layer shape, a rod shape, a block shape or other shapes. The material of the first electrode 142 and the second electrode 144 may be selected from a metal, a conductive paste, a metallic carbon nanotube, an indium tin oxide (IT 0 ), or the like. The thermoacoustic element 14 is disposed on a surface of the support structure 16, and the first electrode 142 and the second electrode 144 are spaced apart from both ends or surfaces of the thermoacoustic element 14. The arrangement of the first electrode 142 and the second electrode 144 is related to the arrangement direction of the carbon nanotubes in the thermo-acoustic element 14. [0024] In this embodiment, the first electrode 142 and the second electrode 144 are rod-shaped metal electrodes, and the first electrode 142 and the second electrode 144 are parallel and spaced apart from each other of the thermo-acoustic element 14 Specifically, the first electrode 142 and the second electrode 144 are spaced apart from the carbon nanotube film in the thermo-acoustic element 14 at both ends in the first direction, that is, the thermo-acoustic element 14 Most of the carbon nanotubes extend in the direction of the first electrode 14 2 to the second electrode 144. Since the first electrode 142 and the second electrode 144 are spaced apart, the thermo-acoustic element 14 can be applied to the thermo-acoustic device 10 to access a certain resistance value to avoid short-circuit phenomenon. Since the carbon nanotube has a large specific surface area, the carbon nanotube structure itself has good adhesion under the action of the van der Waals force, so when the carbon nanotube structure is used as the thermoacoustic element 14, The first electrode 142 and the second electrode 144 099115877 Form No. A0101 Page 12 / Total 25 Page 0992028189-0 201143474 can be directly adhered to the thermoacoustic element 14 and form a better electrical contact. [0025] In addition, the first electrode 142 and the second electrode 144 and the thermo-acoustic element 14 may further include a conductive bonding layer (not shown). The conductive bonding layer may further enable the first electrode 142 and the second electrode 144 and the thermo-acoustic component while achieving electrical contact between the first electrode 142 and the second electrode 144 and the thermo-acoustic element 14 14 is better fixed. In this embodiment, the conductive bonding layer is a layer of silver glue. [0026] It can be understood that the first embodiment of the present invention can further provide a plurality of electrodes on the surface of the thermo-acoustic element 14, the number of which is not limited, and only needs to ensure that any two adjacent electrodes are spaced apart from each other. The thermo-acoustic elements 14 are electrically connected and are respectively electrically connected to both ends of the signal input device 12. [0027] The signal input device 12 includes an audio signal input device, an optical signal input device, a telecommunication input device, and an electromagnetic wave signal input device. Correspondingly, the signal input by the signal input device 12 is not limited, and includes electromagnetic chopping, alternating current signals, audio signals, and optical signals. It can be understood that the signal input by the signal input device 12 is related to the specific application of the thermoacoustic device 10. For example, when the thermo-acoustic device 10 is applied to a radio, the signal input by the signal input device 12 is an electromagnetic wave; when the thermo-acoustic device 10 is applied to an earphone, the signal input by the signal input device 12 is AC signal or audio signal. In this embodiment, the signal input device 12 is an electrical signal input device; the signal input device 12 is electrically connected to the first electrode 142 and the second electrode 144 through a wire 149, and passes through the first electrode 142 and the The two electrodes 144 input the electrical signal 099115877 Form No. A0101, page 13 / page 25, 0992028189-0 201143474 into the thermoacoustic element 14. It can be understood that, since the thermo-acoustic element 14 is disposed on the surface of the support structure 16, and the thermo-acoustic element 14 is also a conductive material, the first electrode 142 and the second electrode 144 in this embodiment. Can be an optional structure. The signal input device 12 can be electrically connected to the thermo-acoustic element 14 directly by wires or the like. It is only necessary to ensure that the signal input device 12 can input an electrical signal to the thermoacoustic element 14. [0028] It can be understood that, according to the signal input device 12, the first electrode 142 and the second electrode 144 are optional structures. For example, when the input signal is a signal such as light or electromagnetic waves, the signal input device 12 can be Direct input of the signal to the thermoacoustic element 14 eliminates the need for electrodes and wires. [0029] When the thermo-acoustic device 10 is in use, since the carbon nanotube structure is composed of uniformly distributed carbon nanotubes, the carbon nanotube has a small heat capacity, and the carbon nanotube structure is a membrane. The shape, the large specific surface area and the small thickness, the carbon nanotube structure has a small heat capacity per unit area and a large heat dissipation surface, and the carbon nanotube structure can rapidly rise and fall after the input signal. It produces periodic temperature changes and rapidly exchanges heat with the surrounding gaseous medium, causing the surrounding gaseous medium to rapidly expand and contract, thereby producing sound. Therefore, in the present embodiment, when the electrical signal is input, the thermoacoustic element 14 sounds in accordance with the principle of "electric-thermal-acoustic" conversion. It can be understood that when the input signal is an optical signal, the principle of sounding of the thermoacoustic element 14 is "photo-thermal-acoustic" conversion. Therefore, the thermoacoustic device 10 composed of the above-described thermoacoustic element 14 has a wide range of applications. [0030] The sounding frequency of the thermo-acoustic device 10 ranges from 1 Hz to 100,000 Hz (ie, 1 Hz to 100 kHz). Figure 2 is a carbon nanotube film with a length and width of 30 mm and a carbon of 099115877 Form No. A0101 Page 14 / Total 25 Page 0992028189-0 201143474 Tubes connected end to end and aligned in the same direction as the heat The sound-emitting element 14 has a frequency response characteristic curve of the thermo-acoustic device 10 measured when a microphone is placed at a position of 5 cm from the thermally-sounding element when the input voltage is 50 volts. As can be seen from FIG. 2, the sound pressure level of the sounding device is greater than 50 decibels, and even up to 1 dB, and the sounding frequency of the sounding device ranges from 100 Hz to 100,000 Hz (ie, 100 Hz to 100 kHz). The sounding device has a distortion of less than 3% in a frequency range of 5 Hz to 40,000 Hz, and the thermoacoustic device has a good sounding effect. In addition, the carbon nanotube structure in the present embodiment has better toughness and mechanical strength, and the carbon nanotube can be easily made into a thermoacoustic device 10 of various shapes and sizes. The device 10 can be conveniently applied to various sound-emitting products, such as audio, mobile phones, MP3, MP4, television, computers and other electronic fields and other products. [0031] 青青 Referring to FIG. 3, a second embodiment of the present invention provides a thermo-acoustic device 2, which includes a signal input device 22, a thermo-acoustic component 24, a support structure 26, and a The first electrode 242, the second electrode 244, the third electrode 246, and the fourth electrode 248. [0032] The structure and type of the signal input device 22 are the same as those of the signal input device 12 in the thermoacoustic device 10 provided in the first embodiment. [0033] The material of the thermoacoustic element 24 is The material of the thermo-acoustic element 14 in the thermo-acoustic device 10 provided by the first embodiment is the same, that is, the thermo-acoustic element 24 is also a carbon nanotube structure. The thermally audible element 24 is disposed about the support structure 26 to form a curved or folded shaped thermally audible element 24. 099115877 Form No. Α0101 Page 15 of 25 0992028189-0 201143474 [0034] The support structure 26 is a cube, a cone or a round body. The support structure 26 includes a metal material substrate 262 and an insulating layer 264 formed on the metal material substrate 262. The insulating layer 264 is a high temperature resistant electrical insulating and thermal insulating material. The thermo-acoustic component 24 is disposed on the surface of the insulating layer 264 and disposed around the insulating layer 264. In the present embodiment, the support structure 26 is a hollow cylinder composed of a hollow cylindrical copper metal material substrate 262 and a paint insulating layer 264 coated on the outer surface of the cylindrical copper metal material substrate 262. The thermally audible element 24 is disposed in engagement with the insulating layer 264 of the support structure 26, and the thermally audible element 24 is disposed around the support 2g to form an annular thermo-acoustic element 24. It can be understood that the insulating layer 264 can also be a metal oxide material layer formed of an oxide of a material of the metal material substrate 262. [0035] The first electrode 242, the second electrode 244, the third electrode 246, and the fourth electrode 248 are spaced apart from each other and electrically connected to the surface of the annular thermoacoustic element 24. Any two adjacent electrodes are electrically connected to both ends of the signal input device 22, respectively, so that the thermally audible elements 24 located between the adjacent electrodes are turned on. Specifically, two electrodes that are not adjacent are first connected by a wire 249 and then electrically connected to one end of the signal input device 22. The remaining two electrodes are connected by a wire 249 and the other of the signal input device 22 One end is electrically connected. In this embodiment, the first electrode 242 and the third electrode 246 may be connected to the end of the signal input device 22 by being connected by a wire 249, and then the second electrode 244 and the fourth electrode 248 may be used. The wire 249 is electrically connected to the other end of the signal input device 22. The above connection method can realize the parallel connection of the carbon nanotube structures between adjacent electrodes. The carbon nanotube structure after parallel connection 099115877 Form No. A0101 Page 16 of 25 0992028189-0 201143474 There is a small resistance 'can be reduced. Moreover, the above-mentioned connection manner enables the sound waves generated by the thermo-acoustic element 24 to be conditioned in all directions and the vocal intensity is enhanced, thereby achieving a surround sounding effect. [0036] It can be understood that the present embodiment can provide a plurality of electrodes, the number of which is not limited, as long as it is only necessary to ensure that any two adjacent electrodes are spaced apart from each other and electrically connected to the thermo-acoustic element 24. The two ends of the input device 22 may be electrically connected. [0037] The thermo-acoustic device provided by the embodiment of the present invention has the following advantages: First, the thermo-acoustic tapping provided by the embodiment of the present invention uses a metal material substrate and an insulating layer as a supporting structure, and realizes using a metal material substrate as a base material. The support structure of the thermo-acoustic device overcomes the problem that the thermo-acoustic element is easily short-circuited with the substrate of the metal material. Second, since the manufacturing process of the metal material substrate is relatively mature and the manufacturing method is relatively simple, it is processed by oxidation treatment. The metal material substrate is used to prepare the insulating layer, and the insulating layer is formed by coating an insulating material on the surface of the metal material substrate, so that the preparation process of the supporting structure is relatively simple, so that the heat is generated. The preparation process of the device is relatively simple, and it is easy to realize industrial application. Third, since the metal material substrate is composed of a metal material, and the metal material has good strength and toughness, the support structure has good strength and toughness, and the sounding device applying the support structure can be made to have earthquake resistance. Broken features. Fourth, since the support structure includes a metal material substrate having better flexibility, the thermo-acoustic element is a carbon nanotube structure having better flexibility, so the heat provided by the embodiment of the present invention The sound producing device can be a flexible sounding device. Fifthly, the metal material substrate is relatively plastic, and is easy to manufacture 099115877 Form No. A0101 Page 17 / 25 pages 0992028189-0 201143474 in various shapes, so the support structure is also easy to be formed into various shapes, and the heat is caused. The sound emitting element is a carbon nanotube structure, and is also relatively easy to be formed into various shapes. Therefore, the thermoacoustic device provided by the embodiment of the present invention is relatively easy to be formed into various shapes. [0038] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0039] FIG. 1 is a schematic structural view of a thermoacoustic device according to a first embodiment of the present invention. 2 is a frequency response characteristic curve of a thermoacoustic device according to a first embodiment of the present invention. 3 is a schematic structural view of a thermoacoustic device according to a second embodiment of the present invention. [Main component symbol description] [0042] Thermal sounding device: 10,20 [0043] Signal input device·· 12,22 [0044] Thermoacoustic component: 14,24 [0045] First electrode: 142,242 [ 0046] Second electrode: 144, 244 [0047] Conductor: 149, 249 [0048] Support structure: 16, 26 099115877 Form number A0101 Page 18 of 25 0992028189-0 201143474 [0049] Metal material substrate: 162, 262 [0050] Insulation: 164, 264 [0051] Third electrode: 246 [0052] Fourth electrode: 248 〇〇 099115877 Form number A0101 Page 19 / Total 25 page 0992028189-0

Claims (1)

201143474 七、申請專利範圍: 1 . 一種熱致發聲裝置,包括: 一熱致發聲元件,該熱致發聲元件為一奈米碳管結構; 一訊號輸入裝置,用於將訊號輸入至所述熱致發聲元件, 使得所述奈米碳管結構接收所述訊號輸入裝置輸入的訊號 並發出相應聲波;以及 一支撐結構,所述熱致發聲元件設置於該支撐結構的表面 其改良在於,所述支撐結構包括一金屬材料基底及一形成 於該金屬材料基底表面的絕緣層,所述熱致發聲元件貼合 設置於該絕緣層的表面。 2. 如申請專利範圍第1項所述的熱致發聲裝置,其中,所述 金屬材料基底的材料為純金屬或合金。 3. 如申請專利範圍第1項所述的熱致發聲裝置,其中,所述 絕緣層的材料為油漆、絕緣聚合物或金屬氧化物。 4 .如申請專利範圍第1項所述的熱致發聲裝置,其中,所述 絕緣層為一多孔結構,表面具有複數個微孔,所述奈米碳 管結構在絕緣層的微孔處懸空設置。 . 5 .如申請專利範圍第1項所述的熱致發聲裝置,其中,所述 奈米碳管結構為一自支撐結構,包括均勻分佈的奈米碳管 ,奈米碳管之間通過凡德瓦爾力相互連接。 6 .如申請專利範圍第5項所述的熱致發聲裝置,其中,所述 奈米碳管結構中奈米碳管基本沿同一方向擇優取向排列。 7 .如申請專利範圍第6項所述的熱致發聲裝置,其中,所述 奈米碳管結構中基本朝同一方向擇優取向排列的奈米碳管 099115877 表單編號A0101 第20頁/共25頁 0992028189-0 201143474 中每一奈米碳管與在延伸方向上相鄰的奈米碳管通過凡德 瓦爾力首尾相連。 8 .如申請專利範圍第7項所述的熱致發聲裝置,其中,所述 奈米碳管結構為導電異向性奈米碳管膜。 9 .如申請專利範圍第8項所述的熱致發聲裝置,其中,所述 • 奈米碳管結構具有一第一方向及一第二方向,且該奈米碳 管結構在該第二方向的方塊電阻大於在該第一方向的方塊 電阻。 10 .如申請專利範圍第9項所述的熱致發聲裝置,其中,所述 Ο 熱致發聲裝置進一步包括兩個電極,該兩個電極間隔設置 於所述奈米碳管結構沿第一方向的兩端,並將所述訊號輸 入裝置輸出的訊號通過該兩個電極輸入至所述熱致發聲元 件。 11 .如申請專利範圍第1項所述的熱致發聲裝置,其中,所述 支撐結構具有至少一表面,所述熱致發聲元件圍繞該支撐 結構的至少一表面設置,形成一至少一平®形熱致發聲元 件或一曲面形熱致發聲元件。 〇 12 . —種熱致發聲裝置,包括: 一熱致發聲元件,該熱致發聲元件為一奈米碳管結構; 一訊號輸入裝置,用於將訊號輸入至所述熱致發聲元件, 使得所述奈米碳管結構接收所述訊號輸入裝置輸入的訊號 並發出相應聲波;以及 一支撐結構,所述熱敖發聲元件設置於該支撐結構的表面 9 其改良在於,所述支撐結構包括一金屬材料基底及一通過 氧化處理該金屬材料基底而形成在該金屬材料基底表面的 099115877 表單編號A0101 第21頁/共25頁 0992028189-0 201143474 該金屬氧化物絕緣層,所述熱致發聲元件貼合設置於該金 屬氧化物絕緣層的表面。 13 . 如申請專利範圍第12項所述的熱致發聲裝置,其中,所述 金屬氧化物絕緣層材料為氧化鋁、二氧化三鐵、四氧化三 鐵、氧化銅或其任意組合。 099115877 表單編號A0101 第22頁/共25頁 0992028189-0201143474 VII. Patent application scope: 1. A thermo-acoustic device comprising: a thermo-acoustic component, the thermo-acoustic component is a carbon nanotube structure; a signal input device for inputting a signal to the heat Actuating the sound generating element, the carbon nanotube structure receiving the signal input by the signal input device and emitting a corresponding sound wave; and a supporting structure, the thermoacoustic element being disposed on the surface of the supporting structure, wherein the The support structure comprises a metal material substrate and an insulating layer formed on the surface of the metal material substrate, and the thermo-acoustic element is disposed on the surface of the insulating layer. 2. The thermoacoustic device according to claim 1, wherein the material of the metal material substrate is a pure metal or an alloy. 3. The thermoacoustic device according to claim 1, wherein the insulating layer is made of a paint, an insulating polymer or a metal oxide. 4. The thermoacoustic device according to claim 1, wherein the insulating layer is a porous structure having a plurality of micropores on the surface, and the carbon nanotube structure is at a micropore of the insulating layer. Dangling settings. 5. The thermoacoustic device according to claim 1, wherein the carbon nanotube structure is a self-supporting structure comprising uniformly distributed carbon nanotubes, and between the carbon nanotubes Devalli is connected to each other. 6. The thermoacoustic device according to claim 5, wherein the carbon nanotubes in the carbon nanotube structure are arranged in a preferred orientation in substantially the same direction. 7. The thermoacoustic device according to claim 6, wherein the carbon nanotube structure is substantially aligned in the same direction in a preferred orientation of the carbon nanotubes 099115877 Form No. A0101 Page 20 of 25 0992028189-0 201143474 Each of the carbon nanotubes is connected end to end with a vanadium force in the direction of extension. 8. The thermoacoustic device according to claim 7, wherein the carbon nanotube structure is an electrically conductive anisotropic carbon nanotube film. 9. The thermoacoustic device according to claim 8, wherein the carbon nanotube structure has a first direction and a second direction, and the carbon nanotube structure is in the second direction The square resistance is greater than the square resistance in the first direction. 10. The thermoacoustic device according to claim 9, wherein the thermo-acoustic device further comprises two electrodes spaced apart from each other in the first direction of the carbon nanotube structure Both ends of the signal and the signal output by the signal input device are input to the thermo-acoustic element through the two electrodes. The thermo-acoustic device according to claim 1, wherein the support structure has at least one surface, and the thermo-acoustic element is disposed around at least one surface of the support structure to form at least one flat® shape A thermally audible element or a curved thermoacoustic element. 〇12. A thermo-acoustic device comprising: a thermo-acoustic component, the thermo-acoustic component is a carbon nanotube structure; a signal input device for inputting a signal to the thermo-acoustic component, such that The carbon nanotube structure receives a signal input by the signal input device and emits a corresponding sound wave; and a support structure, the heat generating sound element is disposed on a surface 9 of the support structure, wherein the support structure includes a support structure a metal material substrate and a 099115877 formed on the surface of the metal material substrate by oxidizing the metal material substrate. Form No. A0101 Page 21 / 25 pages 0992028189-0 201143474 The metal oxide insulating layer, the thermoacoustic component The surface is disposed on the surface of the metal oxide insulating layer. The thermoacoustic device according to claim 12, wherein the metal oxide insulating layer material is alumina, triiron tetroxide, triiron tetroxide, copper oxide or any combination thereof. 099115877 Form No. A0101 Page 22 of 25 0992028189-0
TW099115877A 2010-05-18 2010-05-18 Thermoacoustic device TWI500331B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099115877A TWI500331B (en) 2010-05-18 2010-05-18 Thermoacoustic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099115877A TWI500331B (en) 2010-05-18 2010-05-18 Thermoacoustic device

Publications (2)

Publication Number Publication Date
TW201143474A true TW201143474A (en) 2011-12-01
TWI500331B TWI500331B (en) 2015-09-11

Family

ID=46765329

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099115877A TWI500331B (en) 2010-05-18 2010-05-18 Thermoacoustic device

Country Status (1)

Country Link
TW (1) TWI500331B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8879757B2 (en) 2012-11-20 2014-11-04 Tsinghua University Thermoacoustic device
US8908888B2 (en) 2012-11-20 2014-12-09 Tsinghua University Earphone
US8913764B2 (en) 2012-11-20 2014-12-16 Tsinghua University Earphone
US8913765B2 (en) 2012-11-20 2014-12-16 Tsinghua University Earphone
US8923534B2 (en) 2012-11-20 2014-12-30 Tsinghua University Earphone
TWI478592B (en) * 2012-11-20 2015-03-21 Hon Hai Prec Ind Co Ltd Earphone
TWI487384B (en) * 2012-11-20 2015-06-01 Hon Hai Prec Ind Co Ltd Earphone
TWI489446B (en) * 2012-11-20 2015-06-21 Hon Hai Prec Ind Co Ltd Method of making thermoacoustic device array
US9088851B2 (en) 2012-11-20 2015-07-21 Tsinghua University Thermoacoustic device array
TWI503003B (en) * 2012-11-20 2015-10-01 Hon Hai Prec Ind Co Ltd Acoustic chip
US9161135B2 (en) 2012-11-20 2015-10-13 Tsinghua University Thermoacoustic chip
US9264819B2 (en) 2012-11-20 2016-02-16 Tsinghua University Thermoacoustic device
TWI547939B (en) * 2012-12-28 2016-09-01 鴻海精密工業股份有限公司 Thermoacoustic device
TWI583204B (en) * 2012-11-20 2017-05-11 鴻海精密工業股份有限公司 Method for making thermoacoustic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114225247B (en) * 2021-12-06 2022-11-01 大连理工大学 Flexible variable-frequency ultrasonic therapy probe based on carbon nanotube film thermoacoustic effect

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0001748D0 (en) * 2000-03-30 2000-05-12 Abb Ab Induction Winding
US6994584B1 (en) * 2002-08-30 2006-02-07 Advanced Micro Devices, Inc. Thermally conductive integrated circuit mounting structures
EP1599068A4 (en) * 2003-02-28 2009-04-22 Univ Tokyo Agriculture & Technology Tlo Co Ltd Thermally excited sound wave generating device
US7402909B2 (en) * 2005-04-28 2008-07-22 Intel Corporation Microelectronic package interconnect and method of fabrication thereof
US8249279B2 (en) * 2008-04-28 2012-08-21 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8259967B2 (en) * 2008-04-28 2012-09-04 Tsinghua University Thermoacoustic device
TWI351681B (en) * 2008-06-20 2011-11-01 Hon Hai Prec Ind Co Ltd Acoustic device
TWI353580B (en) * 2008-06-27 2011-12-01 Hon Hai Prec Ind Co Ltd Acoustic device
US8325947B2 (en) * 2008-12-30 2012-12-04 Bejing FUNATE Innovation Technology Co., Ltd. Thermoacoustic device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI503003B (en) * 2012-11-20 2015-10-01 Hon Hai Prec Ind Co Ltd Acoustic chip
TWI583204B (en) * 2012-11-20 2017-05-11 鴻海精密工業股份有限公司 Method for making thermoacoustic device
US8913764B2 (en) 2012-11-20 2014-12-16 Tsinghua University Earphone
US8913765B2 (en) 2012-11-20 2014-12-16 Tsinghua University Earphone
US8923534B2 (en) 2012-11-20 2014-12-30 Tsinghua University Earphone
TWI478592B (en) * 2012-11-20 2015-03-21 Hon Hai Prec Ind Co Ltd Earphone
TWI487384B (en) * 2012-11-20 2015-06-01 Hon Hai Prec Ind Co Ltd Earphone
TWI489446B (en) * 2012-11-20 2015-06-21 Hon Hai Prec Ind Co Ltd Method of making thermoacoustic device array
TWI491270B (en) * 2012-11-20 2015-07-01 Hon Hai Prec Ind Co Ltd Earphone
TWI492218B (en) * 2012-11-20 2015-07-11 Hon Hai Prec Ind Co Ltd Thermoacoustic device
US9774971B2 (en) 2012-11-20 2017-09-26 Tsinghua University Method for making thermoacoustic device
US8908888B2 (en) 2012-11-20 2014-12-09 Tsinghua University Earphone
US9241221B2 (en) 2012-11-20 2016-01-19 Tsinghua University Thermoacoustic chip
US9161135B2 (en) 2012-11-20 2015-10-13 Tsinghua University Thermoacoustic chip
US8879757B2 (en) 2012-11-20 2014-11-04 Tsinghua University Thermoacoustic device
US9264819B2 (en) 2012-11-20 2016-02-16 Tsinghua University Thermoacoustic device
US9402127B2 (en) 2012-11-20 2016-07-26 Tsinghua University Earphone
US9088851B2 (en) 2012-11-20 2015-07-21 Tsinghua University Thermoacoustic device array
US9491535B2 (en) 2012-11-20 2016-11-08 Tsinghua University Earphone
TWI583209B (en) * 2012-11-20 2017-05-11 鴻海精密工業股份有限公司 Earphone
TWI583201B (en) * 2012-11-20 2017-05-11 鴻海精密工業股份有限公司 Earphone
TWI501655B (en) * 2012-11-20 2015-09-21 Hon Hai Prec Ind Co Ltd Thermoacoustic device array
US9756442B2 (en) 2012-11-20 2017-09-05 Tsinghua University Method for making thermoacoustic device array
TWI547939B (en) * 2012-12-28 2016-09-01 鴻海精密工業股份有限公司 Thermoacoustic device

Also Published As

Publication number Publication date
TWI500331B (en) 2015-09-11

Similar Documents

Publication Publication Date Title
TWI500331B (en) Thermoacoustic device
CN106131761B (en) Thermoacoustic device
TWI351680B (en) Acoustic device
JP5069345B2 (en) Thermoacoustic device
JP5113132B2 (en) Flexible thermoacoustic device and flag using a thermoacoustic element including the flexible thermoacoustic device
TWI462600B (en) Ear phone
JP5107964B2 (en) Thermoacoustic device
JP5270646B2 (en) Thermoacoustic device
JP5107965B2 (en) Thermoacoustic device
KR101217913B1 (en) Sound Emitting Device
JP5356992B2 (en) Thermoacoustic device
JP5107969B2 (en) Thermoacoustic device
TWI351681B (en) Acoustic device
TWI380283B (en) Acoustic generator for ultrasound
JP5270466B2 (en) Thermoacoustic device
JP5107968B2 (en) Thermoacoustic device
JP5107970B2 (en) Thermoacoustic device
TWI351682B (en) Acoustic device
TWI353580B (en) Acoustic device
TWI353582B (en) Acoustic device
TWI383691B (en) Soft acoustic device
TWI353581B (en) Acoustic device
TW201002095A (en) Acoustic device
TW201002090A (en) Acoustic device