TWI353581B - Acoustic device - Google Patents

Acoustic device Download PDF

Info

Publication number
TWI353581B
TWI353581B TW97124089A TW97124089A TWI353581B TW I353581 B TWI353581 B TW I353581B TW 97124089 A TW97124089 A TW 97124089A TW 97124089 A TW97124089 A TW 97124089A TW I353581 B TWI353581 B TW I353581B
Authority
TW
Taiwan
Prior art keywords
sounding
carbon nanotube
sounding device
sound
electrode
Prior art date
Application number
TW97124089A
Other languages
Chinese (zh)
Other versions
TW201002093A (en
Inventor
Kai-Li Jiang
Lin Xiao
Zhuo Chen
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97124089A priority Critical patent/TWI353581B/en
Publication of TW201002093A publication Critical patent/TW201002093A/en
Application granted granted Critical
Publication of TWI353581B publication Critical patent/TWI353581B/en

Links

Landscapes

  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Description

1353581 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種發聲裝置,尤其涉及一種基於奈米 碳管的發聲裝置。 【先前技術】 . 發聲裝置一般由信號輸入裝置和發聲元件組成。通過 信號輸入裝置輸入電信號給發聲元件,進而發出聲音。先 籲前技術中的發聲元件一般爲一揚聲器。該揚聲器爲一種把 電信號轉換成聲音信號的電聲器件。具體地,揚聲器可將 一疋範圍内的音頻電功率信號通過換能方式轉變爲失真小 並具有足够聲壓級的可聽聲音。 先前的揚聲器的種類很多,根據其工作原理,分爲: 電動式揚聲器、電磁式揚聲器、靜電式揚聲器及壓電式揚 聲器。雖然它們的工作方式不同,但一般均爲通過産生機 械振動推動周圍的空氣,使空氣介質産生波動從而實現“電 擊-力-聲”之轉換。其中,電動式揚聲器的應用最爲廣泛。 請參閱圖1,先前的電動式揚聲器100通常由三部分 組成:音圈102、磁鐵1〇4以及振膜1〇6。音圈1〇2通常採 用通電導體,當音圈102中輸入一個音頻電流信號時,音 圈102相當於一個載流導體。由於放在所述磁鐵1〇4産生 的磁%晨,根據載流導體在磁場中會受到力的作用而運動 的原理,音圈102會受到一個大小與音頻電流成正比、方 向隨音頻電流變化而變化的力。因此,音圈1〇2就會在所 述磁鐵104産生的磁場作用下産生振動,並帶動振膜1〇6 將電信號轉換成 100的結構較爲 振動,振膜106前後的空氣亦隨之振動, 聲波向四周輻射。然而,該電動式揚聲器 複雜,且其必須在有磁的條件下工作。 自九十年代初以來,以奈米碳管(請參見Helical ⑽Ules 〇f graphitic carb〇n,N晰e,Sumi〇 π細a,ν〇ι ,p56(1991))爲代表的奈米材料以其獨特的結構和性質 Ιί了t們極大的關注。近幾年來’隨著奈米碳管及奈米1353581 IX. Description of the Invention: [Technical Field] The present invention relates to a sound emitting device, and more particularly to a sound emitting device based on a carbon nanotube. [Prior Art] The sounding device is generally composed of a signal input device and a sounding element. An electrical signal is input to the sounding element through the signal input device to generate a sound. The sounding element of the prior art is generally a speaker. The speaker is an electroacoustic device that converts an electrical signal into a sound signal. Specifically, the speaker can convert an audio electric power signal within a range to a audible sound with a small distortion and sufficient sound pressure level. There are many types of speakers, and according to their working principle, they are divided into: electric speakers, electromagnetic speakers, electrostatic speakers and piezoelectric speakers. Although they work in different ways, they generally drive the “air shock-force-sound” by generating mechanical vibrations to propel the surrounding air and causing the air medium to fluctuate. Among them, electric speakers are the most widely used. Referring to Fig. 1, the prior electric speaker 100 is generally composed of three parts: a voice coil 102, a magnet 1〇4, and a diaphragm 1〇6. The voice coil 1〇2 usually employs an energizing conductor, and when an audio current signal is input to the voice coil 102, the voice coil 102 corresponds to a current carrying conductor. Due to the magnetic % generated by the magnet 1〇4, according to the principle that the current carrying conductor is subjected to the force in the magnetic field, the voice coil 102 is subjected to a magnitude proportional to the audio current and the direction varies with the audio current. And the power of change. Therefore, the voice coil 1〇2 will vibrate under the action of the magnetic field generated by the magnet 104, and the structure that drives the diaphragm 1〇6 to convert the electrical signal into 100 will vibrate, and the air before and after the diaphragm 106 will follow. Vibration, sound waves radiate around. However, the electrodynamic speaker is complicated and must operate under magnetic conditions. Since the early 1990s, nanomaterials represented by carbon nanotubes (see Helical (10) Ules 〇f graphitic carb〇n, N-e, Sumi〇π, a, ν〇ι, p56 (1991)) Its unique structure and nature have greatly attracted people's attention. In recent years, 'with carbon nanotubes and nano

,研九的不斷冰入’其廣闊的應用前景不斷顯現出來。 例如,由於奈来碳管所具有的獨特的電磁學、光學、力學、 =學等性能’大量有關其在場發射電子源、傳感器、新型 先學材料、軟鐵磁材料等領域的應用研究不斷被報道。缺 而’先前技術巾却尚未發現奈米碳管用於聲學領域。 有蓉於此,提供-種結構簡單,可在無磁的條件下工 作的發聲裝置實為必要。 【發明内容】 •…-種發聲裝置’其包括:一信號輸入裝置;以及一發 聲疋件,該發聲疋件與所述信號輸入裝置的兩端電連接; 其^所述發聲元件至少部分設置在一支撑結構表面,該 發聲兀件包括-奈米碳管結構,所述信號輸入裝置輸入電 信號給該奈米碳管結構’通過該奈米碳管結構加熱周圍氣 體介質發出聲波。 、相較於先刖技術,本技術方案所提供的發聲裝置具有 以:其一,由於所述發聲裝置中的發聲元件僅包括 不米炭笞、.’σ構,無需磁鐵等其它複雜結構,故該發聲裝置 ^353581 的、’·《構較爲簡單,有利於降低該發聲裝置的成本。其二, 該發聲裝置利用輸入信號造成該發聲元件溫度變化,從而 使其周圍氣體介質迅速膨脹和收縮,進而發出聲波,無需 振膜,且該發聲元件組成的發聲裝置可在無磁的條件下工 作。其三,由於奈米碳管結構具有較小的熱容和大的比表 面積,在輸入信號後,根據信號强度(如電流强度)的變 ,,由奈米碳皆結構組成的發聲元件可均勻地加熱周圍的 氣體"質、迅速升降溫、産生周期性的溫度變化,並和周 圍氣體”質進行快速熱交換,使周圍氣體介質迅速膨服和 枚縮發出人耳可感知的聲音,且所發出的聲音的頻率範 圍較寬(lHZ〜l(K)kHz)’發聲效果較好。另外,當該發聲 =件厚度比較小時,例如小於職米,該發聲元件具有較 尚的透明度’故所形成的發聲裝置爲透明發聲裝置,可以 直接安裝在各種顯示裂置、手機顯示屏的顯示表面或油畫 顯不裝置、油晝等的表面作爲節省空間的透明發聲裝置。 其四’由於奈米碳管具有較好的機械强度和勒性,故由太 :碳管組成的奈米碳管結構具有較好的機械强度和勃性: 較好從而有利於製備由奈米碳管結構組成的各種 狀、尺寸的發聲裝置,進而方便地應用於各種領域。其 五由於所述發聲元件至少部分設置在 面,所述發聲元件可以名, 又详、.口構表 辦强…Π 受强度較高的信號輸入,進而可 曰强所述發聲裝置的發聲效果。 【實施方式】 以下將、、”附圖詳細說明本技術方案實施例的發聲裝 1353581 叫參閱圖2,本技術方案第一實施例提供一種發聲裝 置10,該發聲裝置1〇包括一信號輸入裝置12,一發聲元 件14,一支撑結構16,一第一電極142以及一第二電極 • 144。所述發聲元件14設置於所述支撑結構16表面。所述 .第一電極142和第二電極144間隔設置在所述發聲元件14 的兩端或表面,且與所述發聲元件14電連接。所述第一電 極142和第二電極144通過外接導線149與所述信號輸入 裝置12的兩端電連接,用於將所述信號輸入裝置中的 電信號輸入到所述發聲元件14中。 所述支撑結構16主要起支撑作用,其形狀不限,任何 具有確定形狀的物體’如一墻壁或桌面,均可作爲本技術 方案第-實施例中的支撑結構16。具體地,該支撑結構16 可以爲一平面結構或一曲面結構,並具有一表面。此時, 該發聲元件14直接設置並貼合於該支撑結構“的表面。 #由於該發聲元件14整體通過支撐結構16支撑因此該發 聲元件14可以承受强度較高的信號輸入,從而具有較高^ 發聲强度。 該支撑結構16的材料不限,可以爲一硬性材料,如金 剛石、玻璃或石英。另外,所述支撑結構16還可爲一柔性 材料,如塑料或樹脂。優選地,該支撐結構16的材料應具 有較好的絕熱性能,從而防止該發聲元件14產生的熱量過 度的被該支撑結構16吸收,無法達到加熱周圍氣體 而發聲的㈣。另夕卜,該支撑結構16應具有一較爲粗糖的 1353581 表面’從而可以使設置於上述支撑結構16表面的發聲元件 14 j空氣或其他外界介質具有更大的接觸面積,進而可在 一定程度上改善所述發聲裝置10的發聲效果。 所述發聲元件14包括一奈米碳管結構。該奈米碳管結 ^層狀或其它形狀,且具有較大的比表面積。所述奈米 碳管結構包括均勻分布的奈米碳管,奈米碳管之間通過凡 德瓦爾力緊密結合。該奈来碳管結構中的奈米碳管爲無序 或^序排列。具體地,當奈米碳管結構包括無序排㈣奈 ^炭管時’奈米碳管相互纏繞或者各向同性排列;當奈米 碳管結構包括有序排列的奈米碳管時,奈米碳管沿 向或者多個方向擇優取向排列。所述奈米碳管結構爲至少 一層奈米碳管薄膜、多個奈米碳管長線或其組合。所述夺 ^炭^薄臈可由有序排列的奈来碳管或無序排列的奈米碳 所述奈米碳管長線包括多個首尾相連的奈米碳管 束:結構或由多個首尾相連的奈米碳管束組成的 ς =構。本技術方案實施例中,所述奈米碳管結構包括 =排列的奈米碳管,且奈米碳管沿―固定方向擇優取向 徘列。 …該奈求碳f結構的厚度爲。奈米〜!毫求。所述奈米 妷官結構的厚度太大,則比表 奈米碳管結構的厚度太小,强;;^、谷增大;所述 :米施例中,所述奈米碳管結構的厚度爲50 :壁太;二::結構’的奈米碳管包括單壁奈米碳管、 又及多壁奈米碳管中的_種或多種。所述單壁 1353581 奈米碳管的直徑爲0.5奈米〜50奈米,所述雙壁奈米碳管 的直徑爲1.0奈米〜50奈米,所述多壁奈米碳管的直徑爲 1.5奈米〜50奈米。 叮以理解,所述奈米碳管結構的具體結構不限,只需 .滿足下述三個條件,gp :爲層狀或其它形&,且具有較大 •的比表面積;包括均勻分布的奈米碳管;以及厚度爲05 奈米〜1毫米。 骞 纟於奈来碳管具有極大的比表面積,在凡德瓦爾力的 作用下1¾不米碳管結構本身有很好的黏附性,故採用該 奈米碳管結構作發聲元件14時,所述發聲元件14與所述 支撑結構16之間可以直接黏附固定。進一步地,在所述發 聲元件14與所述支撐結構16之間還可以進一步包括一黏 結層(圖未示)。所述黏結層可設置於所述發聲元件14的表 面。所述黏結層可以將所述發聲元件14更好地固定於所述 支撑結構16的表面。所述黏結層的材料可爲絕緣材料,也 φ可爲具有一$導電性能的材料。本實施作】中,戶斤述黏結層 爲一層銀膠。 β曰 所述第一電極142>第二電極144由導電材料形成, 其具體形狀結構不限。具體地,所述第一電極142和第二 2極144可選擇爲層狀、棒狀、塊狀或其它形狀。所述第 一電極142和第二電極144的材料可選擇爲金屬、導電膠、 金屬性奈米碳管、銦錫氧化物(ΙΤ〇)等。所述第一電極 =^和第二電極i 4 4用於實現所述信號輸入裴置i 2與所述 ^疋件14之間的電連接。所述第一電極142和第二電極The continuous application of the research and development of the nine is constantly showing its broad application prospects. For example, due to the unique electromagnetic, optical, mechanical, and other properties of the carbon nanotubes, there are a large number of applications related to their applications in field emission electron sources, sensors, new precursor materials, and soft ferromagnetic materials. Was reported. In the absence of prior art towels, nanocarbon tubes have not been found in the field of acoustics. There is a sounding device which is simple in structure and can be operated under non-magnetic conditions. SUMMARY OF THE INVENTION A sounding device includes: a signal input device; and a sounding device electrically connected to both ends of the signal input device; wherein the sounding element is at least partially disposed On a support structure surface, the audible element comprises a carbon nanotube structure, and the signal input device inputs an electrical signal to the carbon nanotube structure to heat the surrounding gaseous medium through the carbon nanotube structure to emit sound waves. Compared with the prior art, the sounding device provided by the technical solution has one of the following: since the sounding element in the sounding device only includes the non-carbon anthrax, the 'sigma structure, and no other complicated structure such as a magnet, Therefore, the structure of the sounding device ^353581 is relatively simple, which is advantageous for reducing the cost of the sounding device. Secondly, the sounding device uses the input signal to cause the temperature of the sounding element to change, thereby rapidly expanding and contracting the surrounding gas medium, thereby generating sound waves without a diaphragm, and the sounding device composed of the sounding element can be in a non-magnetic condition. jobs. Third, since the carbon nanotube structure has a small heat capacity and a large specific surface area, after the input signal, the sounding element composed of the nano carbon structure can be uniformly distributed according to the change of the signal intensity (such as the current intensity). Heating the surrounding gas "quality, rapid temperature rise, periodic temperature changes, and rapid heat exchange with the surrounding gas, so that the surrounding gas medium can quickly expand and condense to make the human ear perceive the sound, and The frequency range of the emitted sound is wider (lHZ~l(K)kHz). The sounding effect is better. In addition, when the sounding is smaller than the thickness of the piece, for example, less than the working meter, the sounding element has a relatively high transparency. The sound generating device is a transparent sounding device, which can be directly installed on various display cracks, display surfaces of mobile phone display screens or oil painting display devices, oil rafts, etc. as a space-saving transparent sounding device. The tube has good mechanical strength and character, so the carbon nanotube structure composed of carbon tube has good mechanical strength and boring property: it is better to facilitate preparation. The sounding device of various shapes and sizes composed of a carbon nanotube structure is conveniently applied to various fields. Fifth, since the sound emitting element is at least partially disposed on a surface, the sounding element can be named, detailed, and configured. The operation is strong... Π The input of the signal with higher intensity can further suppress the sounding effect of the sounding device. [Embodiment] The following is a detailed description of the sounding device 1335381 of the embodiment of the present technical solution. The first embodiment of the present invention provides a sounding device 10, which includes a signal input device 12, a sound emitting element 14, a support structure 16, a first electrode 142, and a second electrode 144. The sounding element 14 is disposed on a surface of the support structure 16. The first electrode 142 and the second electrode 144 are disposed at two ends or surfaces of the sound emitting element 14 and are electrically connected to the sound emitting element 14. The first electrode 142 and the second electrode 144 are electrically connected to both ends of the signal input device 12 via an external lead 149 for inputting an electrical signal in the signal input device into the sound emitting element 14. The support structure 16 mainly serves as a support, and its shape is not limited. Any object having a certain shape such as a wall or a table top can be used as the support structure 16 in the first embodiment of the present technical solution. Specifically, the support structure 16 may be a planar structure or a curved structure and has a surface. At this time, the sounding element 14 is directly disposed and attached to the surface of the support structure. # Since the sounding element 14 is entirely supported by the support structure 16, the sounding element 14 can withstand high-intensity signal input, thereby having a higher ^ Sound intensity. The material of the support structure 16 is not limited and may be a rigid material such as diamond, glass or quartz. In addition, the support structure 16 may also be a flexible material such as plastic or resin. Preferably, the support The material of the structure 16 should have better thermal insulation properties, so that the heat generated by the sound-emitting element 14 is prevented from being excessively absorbed by the support structure 16, and the sound of the surrounding gas cannot be heated (4). In addition, the support structure 16 should have A surface of the 15355891 of a relatively coarse sugar can thereby make the sound-emitting element 14 j disposed on the surface of the support structure 16 have a larger contact area, thereby improving the sounding effect of the sound-emitting device 10 to some extent. The sound emitting element 14 includes a carbon nanotube structure. The carbon nanotube has a layered or other shape and has a comparative Specific surface area. The carbon nanotube structure comprises uniformly distributed carbon nanotubes, and the carbon nanotubes are tightly coupled by van der Waals force. The carbon nanotubes in the carbon nanotube structure are disordered or Specifically, when the carbon nanotube structure includes the disordered row (four) carbon nanotubes, the nanocarbon tubes are intertwined or isotropically aligned; when the carbon nanotube structure includes the ordered arrangement of nanocarbons In the tube, the carbon nanotubes are arranged in a preferred orientation along the direction or directions. The carbon nanotube structure is at least one layer of carbon nanotube film, a plurality of carbon nanotube long lines or a combination thereof. The thin crucible may be an ordered carbon nanotube or an unordered nanocarbon. The carbon nanotube long line includes a plurality of end-to-end carbon nanotube bundles: a structure or a plurality of end-to-end carbon nanotube bundles. In the embodiment of the technical solution, the carbon nanotube structure comprises: an aligned carbon nanotube, and the carbon nanotube is preferentially oriented along the "fixed direction". The thickness is nanometer ~! milli. The thickness of the nano-ankle structure is too large. The thickness of the carbon nanotube structure is too small, strong;; ^, valley increase; said: in the rice example, the thickness of the carbon nanotube structure is 50: wall too; two:: structure ' The carbon nanotubes include a single-walled carbon nanotube, and a multi-walled carbon nanotube. The single-walled 1353581 carbon nanotube has a diameter of 0.5 nm to 50 nm. The double-walled carbon nanotube has a diameter of 1.0 nm to 50 nm, and the multi-walled carbon nanotube has a diameter of 1.5 nm to 50 nm. 叮In order to understand, the specific structure of the carbon nanotube structure Not limited to, only need to meet the following three conditions, gp: layered or other shape & and has a larger specific surface area; including a uniform distribution of carbon nanotubes; and a thickness of 05 nm ~ 1 Mm. The carbon nanotubes have a very large specific surface area. Under the action of Van der Waals force, the 13⁄4 carbon nanotube structure itself has good adhesion, so when using the carbon nanotube structure as the sounding element 14 The sound emitting element 14 and the support structure 16 can be directly adhered and fixed. Further, an adhesive layer (not shown) may be further included between the sound emitting element 14 and the support structure 16. The bonding layer may be disposed on a surface of the sound emitting element 14. The bonding layer can better secure the sounding element 14 to the surface of the support structure 16. The material of the adhesive layer may be an insulating material, and φ may be a material having a conductive property. In this embodiment, the bonding layer is a layer of silver glue. β曰 The first electrode 142> The second electrode 144 is formed of a conductive material, and its specific shape is not limited. Specifically, the first electrode 142 and the second pole 144 may be selected in a layer shape, a rod shape, a block shape or the like. The material of the first electrode 142 and the second electrode 144 may be selected from a metal, a conductive paste, a metallic carbon nanotube, an indium tin oxide, or the like. The first electrode φ and the second electrode i 4 4 are used to realize an electrical connection between the signal input device i 2 and the 疋 14 . The first electrode 142 and the second electrode

11 .外署:Ά述發聲元件14電連接。由於所述發聲元件14 .°又所述支撑結構16表面,所述第-電極142和第二電 極144也可間隔設置固定在所述發聲元件 所述第一電極142釦笙+ 觸乂衣面。 电徑丄42和第二電極144的設置與所述發聲元 14中的奈米&官的排列方向有關。本技術方案實施例中, -所述第一電極142和第二電極144爲棒狀金屬電極,所述 第電極142和第二電極144間隔設置固定在所述發聲元 籲件14兩端,且所述發聲元件中的全部奈米碳管沿所述第一 電極142至第二電極144的方向延伸。由於所述第一電極 :42和第二電極144間隔設置,所述發聲元件14應用於發 聲裝置10時能接入一定的阻值避免短路現象産生。由於奈 米碳管具有極大的比表面積,在凡德瓦爾力的作用下,^ 奈米碳管結構本身有很好的黏附性,故採用該奈米碳管結 構作發聲元件14 _,所述第-電極142和第二電極^4 與所述發聲元件14之間可以直接黏附固定,並形成很好的 0電接觸。 另外’所述第一電極142和第二電極144與所述發聲 兀件14之間還可以進一步包括一導電黏結層(圖未示)。所 述導電黏結層可設置於所述發聲元件14的表面。所述導電 黏結層在實現第一電極142和第二電極144與所述發聲元 件14電接觸的同時,還可以使所述第一電極第二電 極144與所述發聲元件14更好地固定。本實施例中,所述 導電黏結層爲一層銀膠。 可以理解,本技術方案第一實施例可進—步設置多個 12 1353581 :電極於所述發聲元件14表面,其數量不限,只需確保任意 兩個相鄰的電極均間隔設置、與所述發聲元件14電連接, 且均分別與所述信號輸入裝置12的兩端電連接即可。 可以理解,由於所述發聲元件14設置在所述支撑結構 • I6表面,故所述第一電極142與第二電極144爲可選擇的 •結構。所述信號輸入裝置12可直接通過導線或電極引線等 方式與所述發聲元件14電連接。只需確保所述信號輸入裝 鲁置12能將電信號輸入給所述發聲元件μ即可。任何可實 現所述信號輸入裝置12與所述發聲元件14之間電連接的 方式都在本技術方案的保護範圍之内。 所述信號輸入裝置12輸入的信號包括交流電信號以 及音頻電信號等。所述信號輸入裝置12通過導線149與\斤 述第一電極142和第二電極144電連接,並通過所述第一 電極142和第二電極144將信號輸入到所述發聲元件14 t。 • 上述發聲裝置10在使用時,由於奈米碳管結構由均勻 分布的奈米碳管組成,奈米碳管具有較小的熱容,且該卉 米碳管結構爲層狀、具有較大的比表面積且厚度較小,故 該奈米碳管結構具有較小的熱容和大的散熱表面,在輸入 信號後,奈米碳管結構可迅速升降溫,産生周期性的溫度 變化,並和周圍氣體介質快速進行熱交換’使周圍氣 質迅速膨脹和收縮,發出人耳可感知的聲音,且所發出= 聲音的頻率範圍較寬,發聲效果較好。故本技術方案實施 例中,所述發聲元件14的發聲原理爲“電_熱_聲,,的轉換= 13 1353581 具有廣泛的應用範圍。 圖3爲採用長見均爲3〇毫米且奈米碳管沿同一方向擇 優取向排列的奈米碳管薄膜用作所述奈米碳管結構時所 述發聲裝置1G的頻率響應特性曲線。從圖3中可以看出, •所述發聲裝置1〇的發聲强度可心〇5聲壓級嗜聲頻率範 圍爲20赫茲至10萬赫茲,所述發聲裝置10具有較好的發 聲效果。另外,本技術方案實施例中的奈米碳管結構且有 癱較好的勒性和機械强度,所述奈米碳管結構可方便地製成 各種形狀和尺寸的發聲裝置10,該發聲裝置10可方便地 應用於各種可發聲的裝置中,如音響、手機、MP3、綱、 電視、計算機等電子領域及其它發聲裝置10中。 請參閱圖4,本技術方案第二實施例提供一種發聲裝 置20,該發聲裝置2〇包括一信號輸入裝置22、一發聲元 件24、一支撑結構26、一第一電極242、一第二電極244、 第二電極246以及一第四電極248。 鲁本技術方案第一實施例中的發聲裝置2〇與第一實施 例7的發聲裝置10的結構基本相同,區別在於,本技術方 案第二實施例甲的發聲元件24環繞所述支撑結構26設 置,形成一環形發聲元件24。所述支撑結構26的形狀不 限了爲任何立體結構。優選地’所述支撑結構26爲一立 方體、一圓錐體或一圓柱體。本技術方案實施例中,所述 支撑結構26爲一圓柱體。所述第一電極242、第二電極 244、第三電極246和第四電極248間隔設置在所述發聲元 件24表面並與所述發聲元件24電連接。任意兩個相鄰的 電極句77別與所述信號輸人裝置22的兩端電連接,以使位 :相鄰電極之間的發聲元件24接入輸入信號。具體地,先 將不相鄰的兩個電極用導線249連接後與所述信號輸入裝 置22的端電連接,剩下的兩個電極用導線249連接後與 所述L號輸人裝置22的另-端電連接。本技術方案實施例 • _,可先將所述第一電極242和第三電極246用導線249 連接後與所述佗號輸入裝置22的一端電連接,再將所述第 參二電極244和第四電極248用導線249連接後與所述信號 輸入襄置22的另-端電連接。上述連接方式可實現相鄰電 極之間的奈米碳管結構的並聯。並聯後的奈米碳管結構具 有較小的電阻,可降低工作電壓。且,上述連接方式可使 所述發聲το件24具有較大的輻射面積,且發聲强度得到增 强’從而實現環繞發聲效果。 可以理解,本技術方案可設置多個電極,其數量不限, 一舄確保任意兩個相鄰的電極均間隔設置、與所述發聲元 籲件24電連接,且均分別與所述信號輸入裝置^的兩端電 連接即可。 請參閱圖5,本技術方案第三實施例提供一種發聲裝 置30,該發聲裝置30包括一信號輸入裝置32、一發聲元 件34、一支撑結構36、一第一電極342、一第二電極344。 本技術方案第三實施例中的發聲.裝置3〇與第一實施 例中的發聲裝置10的結構基本相同,區別在於,本技術方 案第三實施例十的發聲元件34部分設置在所述支撑結構 36表面,從而在所述發聲元件34表面至支撑結構% :間 15 1353581 •形成一攏音空間。所形成的攏音空間可爲一封閉空間或一 開放二間。所述支撐結構3 6爲一 V型、U型結構或一耳 有狹窄開口的腔體。當所述支撐結構36爲一具有狹窄開: 的腔體時’該發聲元件34可平鋪固定設置於該腔體的開口 •上,從而形成一亥姆霍茲共振腔。該支撑結構36的材料可 爲木質、塑料、金屬或玻璃等。本技術方案實施例中,所 述支撐結構36爲一 V型結構。所述發聲元件34設置在所 籲述V型結構的兩端,即從v型結構的一端延伸至另一端, 使所述發聲元件34部分懸空設置,從而在所述發聲元件 34表面至支撑結構36之間形成一攏音空間。所述第一電 極342和第二電極344間隔設置在所述發聲元件%表面。 所述第一電極342和第二電極344連接導線349後與所述 仏號輸入裝置32的兩端電連接。所述v型支撐結構36可 反射所述發聲元件34位於所述支撑結構36 —侧的聲波, 增强所述發聲裝置30的發聲效果。 • 本技術方案實施例提供的發聲裝置具有以下優點:其 一,由於所述發聲裝置中的發聲元件僅包括奈米碳管結 構,無需磁鐵等其它複雜結構,故該發聲裝置的結構較爲 簡單’有利於降低該發聲裝置的成本。其二,該發聲裝置 利用輸入信號造成該發聲元件溫度變化,從而使其周圍氣 體,質迅速膨脹和收縮’進而發出聲波,無需振膜’且該 發聲元件組成的發聲裝置可在無磁的條件下工作。其三, ;不米《反管結構具有較小的熱容和大的比表面積,在輸 入信號後’根據信號强度(如電流强度)的變化,由奈米 16 !353581 •碳管結構組成的發聲元件可均勻地加熱周圍的氣體介質、 迅速升降溫、產生周期性的溫度變化,並和周圍氣體介質 進行快速熱交換,使周圍氣體介質迅速膨脹和收縮,發出 人耳可感知的聲音,且所發出的聲音的頻率範圍較寬(ΐΗζ .〜100kHz),發聲效果較好。另外,當該發聲元件厚度比較 -小時,例如小於1〇微米,該發聲元件具有較高的透明度, 故所形成的發聲裝置爲透明發聲裝置,可以直接安裝^各 籲種‘”貞示裝置、手機顯示屏的顯示表面或油晝顯示裝置、油 畫等的表面作爲節省空間的透明發聲裝置。其四,由於奈 米碳管具有較好的機械强度和韌性,則由奈米碳管結構組 成的發聲元件具有較好的機械强度和韌性,耐用性較好, 從而有利於製備由發聲元件組成的各種形狀、尺寸的發聲 裝置,進而方便地應用於各種領域。其五,當所述支撑結 構爲一平面時,所述發聲元件直接設置並貼合於該支撑結 構的表面,故該發聲元件可以承受强度較高的信號輸入, 籲從而具有較高的發聲强度;當所述支撑結構爲一V型、U 型結構或一具有狹窄開口的腔體時,所述發聲元件部分設 置於所述支撑結構表面,形成一攏音空間,所述支撑結構 可增强所述發聲裝置的發聲效果。 综上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡習知本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 17 圖式簡單說明】 圖1係現有技術中揚聲器的結構示意圖。 圖 。圖2係本技術方案第一實施例發聲裝置的結構示意 響應特 圖3係本技術方案第一實施例發聲裝置的頻率 性曲線。 圖4係本技術方案第二實施例發聲裝置的結構示意 圖5係本技術方案第三實施例發聲裝置的結構示咅 100 102 104 106 10, 20, 30 12, 22, 32 14, 24, 34 16, 26, 36 142, 242, 342 144, 244, 344 149, 249, 349 246 248 【主要元件符號說明】 揚聲器 音圈 礤鐵 振模 _發聲裝置 信號輪入裝置 發聲元件 支撐結構 第一電極 第二電極 導線 第三電極 第四電極 1811. Outer Office: The electrical connection of the sounding element 14 is described. The first electrode 142 and the second electrode 144 are also spaced and fixed to the first electrode 142 of the sound emitting element 笙 + contact surface due to the surface of the supporting structure 16 . . The arrangement of the electric diameter 丄 42 and the second electrode 144 is related to the arrangement direction of the nano & In the embodiment of the technical solution, the first electrode 142 and the second electrode 144 are rod-shaped metal electrodes, and the first electrode 142 and the second electrode 144 are spaced and fixed at both ends of the sounding element, and All of the carbon nanotubes in the sounding element extend in the direction of the first electrode 142 to the second electrode 144. Since the first electrode 42 and the second electrode 144 are spaced apart, the sound emitting element 14 can be applied to the sounding device 10 to access a certain resistance value to avoid short circuit. Since the carbon nanotube has a very large specific surface area, the nanocarbon tube structure itself has good adhesion under the action of the van der Waals force, so the carbon nanotube structure is used as the sounding element 14 _, The first electrode 142 and the second electrode ^4 and the sound emitting element 14 can be directly adhered and fixed, and form a good zero electrical contact. Further, a conductive bonding layer (not shown) may be further included between the first electrode 142 and the second electrode 144 and the sound emitting element 14. The conductive bonding layer may be disposed on a surface of the sound emitting element 14. The conductive bonding layer can also better fix the first electrode second electrode 144 and the sound emitting element 14 while making the first electrode 142 and the second electrode 144 electrically contact with the sounding element 14. In this embodiment, the conductive bonding layer is a layer of silver glue. It can be understood that the first embodiment of the present technical solution can further set a plurality of 12 1353581 : electrodes on the surface of the sound emitting element 14 , the number of which is not limited, only need to ensure that any two adjacent electrodes are spaced apart, and The sound emitting elements 14 are electrically connected, and are each electrically connected to both ends of the signal input device 12. It can be understood that since the sound emitting element 14 is disposed on the surface of the support structure I6, the first electrode 142 and the second electrode 144 are optional structures. The signal input device 12 can be electrically connected to the sound emitting element 14 directly by wires or electrode leads or the like. It is only necessary to ensure that the signal input device 12 can input an electrical signal to the sounding element μ. Any manner of achieving electrical connection between the signal input device 12 and the sound producing element 14 is within the scope of the present technical solution. The signal input by the signal input device 12 includes an alternating current signal and an audio electric signal and the like. The signal input device 12 is electrically connected to the first electrode 142 and the second electrode 144 via a wire 149, and a signal is input to the sound emitting element 14 t through the first electrode 142 and the second electrode 144. • When the above-mentioned sounding device 10 is used, since the carbon nanotube structure is composed of uniformly distributed carbon nanotubes, the carbon nanotubes have a small heat capacity, and the carbon nanotube structure is layered and large. The specific surface area and the small thickness, the carbon nanotube structure has a small heat capacity and a large heat dissipation surface, and after inputting the signal, the carbon nanotube structure can rapidly rise and fall, generating periodic temperature changes, and Rapid heat exchange with the surrounding gaseous medium's rapid expansion and contraction of the surrounding temperament, giving the human ear a perceptible sound, and the sound frequency of the emitted = sound is wider and the sounding effect is better. Therefore, in the embodiment of the technical solution, the sounding principle of the sound emitting element 14 is “electric_heat_sound, and the conversion=13 1353581 has a wide range of applications. FIG. 3 shows that the long view is 3 mm and the nanometer is used. A frequency response characteristic curve of the sound generating device 1G when the carbon nanotubes are preferentially aligned in the same direction as the carbon nanotube structure. As can be seen from FIG. 3, the sounding device 1〇 The vocalization intensity can be as good as 5 sound pressure level, and the sounding frequency range is from 20 Hz to 100,000 Hz. The sounding device 10 has a good sounding effect. In addition, the carbon nanotube structure in the embodiment of the present technical solution has The carbon nanotube structure can be conveniently fabricated into sounding devices 10 of various shapes and sizes, and the sounding device 10 can be conveniently applied to various sound-emitting devices, such as sound, In the electronic field of the mobile phone, the MP3, the computer, the computer, the computer, and other sounding devices 10. Referring to FIG. 4, the second embodiment of the present invention provides a sounding device 20, which includes a signal input device 22, Voice a member 24, a support structure 26, a first electrode 242, a second electrode 244, a second electrode 246, and a fourth electrode 248. The sounding device 2 in the first embodiment of the Ruben technical solution and the first embodiment The structure of the sounding device 10 of the seventh embodiment is basically the same, except that the sound emitting element 24 of the second embodiment of the present technical solution is disposed around the support structure 26 to form an annular sounding element 24. The shape of the support structure 26 is not limited. Preferably, the support structure 26 is a cube, a cone or a cylinder. In the embodiment of the technical solution, the support structure 26 is a cylinder. The first electrode 242, the first The two electrodes 244, the third electrode 246 and the fourth electrode 248 are spaced apart from each other on the surface of the sound emitting element 24 and electrically connected to the sound emitting element 24. Any two adjacent electrode sentences 77 and the signal input device 22 The two ends are electrically connected such that the bit: the sounding element 24 between the adjacent electrodes is connected to the input signal. Specifically, the two electrodes that are not adjacent are first connected by the wire 249 and the end of the signal input device 22 Electrical connection The remaining two electrodes are electrically connected to the other end of the L-number input device 22 after being connected by the wire 249. In the embodiment of the present invention, the first electrode 242 and the third electrode 246 may be used first. After the wire 249 is connected, it is electrically connected to one end of the nickname input device 22, and then the second reference electrode 244 and the fourth electrode 248 are connected by a wire 249 and electrically connected to the other end of the signal input device 22. The above connection manner can realize parallel connection of the carbon nanotube structures between adjacent electrodes. The carbon nanotube structure after parallel connection has a small resistance, which can lower the working voltage. Moreover, the above connection manner can make the sounding το. The piece 24 has a large radiant area and the vocal intensity is enhanced' to achieve a surround sounding effect. It can be understood that the present technical solution can be provided with a plurality of electrodes, the number of which is not limited, and one 舄 ensures that any two adjacent electrodes are spaced apart from each other, electrically connected to the utterance element 24, and are respectively input with the signal Both ends of the device ^ can be electrically connected. Referring to FIG. 5 , a third embodiment of the present invention provides a sounding device 30 . The sounding device 30 includes a signal input device 32 , a sound emitting component 34 , a supporting structure 36 , a first electrode 342 , and a second electrode 344 . . The sounding device 3 in the third embodiment of the present technical solution is basically the same as the sounding device 10 in the first embodiment, except that the sound emitting element 34 of the third embodiment of the present technical solution is partially disposed on the support. The surface of the structure 36 is such that at the surface of the sounding element 34 to the support structure %: between 15 1353581 • a sounding space is formed. The formed sounding space can be a closed space or an open two rooms. The support structure 36 is a V-shaped, U-shaped structure or a cavity having a narrow opening in the ear. When the support structure 36 is a cavity having a narrow opening: the sounding element 34 can be tiled and fixed on the opening of the cavity to form a Helmholtz resonant cavity. The material of the support structure 36 may be wood, plastic, metal or glass. In the embodiment of the technical solution, the support structure 36 is a V-shaped structure. The sounding element 34 is disposed at both ends of the V-shaped structure, that is, from one end of the v-shaped structure to the other end, so that the sound-emitting element 34 is partially suspended, so that the surface of the sound-emitting element 34 to the support structure A close-up sound space is formed between 36. The first electrode 342 and the second electrode 344 are spaced apart from each other on the surface of the sound emitting element. The first electrode 342 and the second electrode 344 are electrically connected to both ends of the yoke input device 32 after being connected to the wire 349. The v-shaped support structure 36 can reflect sound waves of the sound-emitting element 34 on the side of the support structure 36 to enhance the sounding effect of the sound-emitting device 30. The sounding device provided by the embodiment of the present technical solution has the following advantages: First, since the sounding element in the sounding device includes only a carbon nanotube structure, and other complicated structures such as magnets are not required, the sounding device has a relatively simple structure. 'It is beneficial to reduce the cost of the sounding device. Secondly, the sounding device uses the input signal to cause the temperature of the sounding element to change, so that the surrounding gas, the material rapidly expands and contracts, and then emits sound waves, without the diaphragm, and the sounding device composed of the sounding element can be in a non-magnetic condition. Work under. Third, the non-meter "reverse tube structure has a small heat capacity and a large specific surface area, after the input signal, according to the change in signal strength (such as current intensity), the sound composed of nano 16 !353581 • carbon tube structure The component can uniformly heat the surrounding gaseous medium, rapidly rise and fall temperature, generate periodic temperature changes, and perform rapid heat exchange with the surrounding gaseous medium, so that the surrounding gaseous medium rapidly expands and contracts, and emits a sound that can be perceived by the human ear. The frequency of the emitted sound is wider (ΐΗζ.~100kHz), and the sounding effect is better. In addition, when the sound-emitting element has a thickness of -hour, for example, less than 1 〇 micrometer, the sound-emitting element has a high transparency, so that the sound-generating device formed is a transparent sound-sounding device, and the device can be directly mounted. The surface of the display screen of the mobile phone display or the surface of the oil slick display device, oil painting, etc. is used as a space-saving transparent sounding device. Fourth, since the carbon nanotube has good mechanical strength and toughness, the sound is composed of a carbon nanotube structure. The component has better mechanical strength and toughness, and has better durability, thereby facilitating the preparation of sounding devices of various shapes and sizes composed of sounding elements, and is thus conveniently applied to various fields. Fifth, when the supporting structure is one In the plane, the sounding element is directly disposed and attached to the surface of the support structure, so the sounding element can withstand a high-intensity signal input, thereby having a higher sounding intensity; when the supporting structure is a V-shaped a U-shaped structure or a cavity having a narrow opening, the sound-emitting element portion being disposed on a surface of the support structure to form In the sounding space, the support structure can enhance the sounding effect of the sounding device. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above is only the present invention. The preferred embodiments are not intended to limit the scope of the invention. The equivalent modifications and variations of those skilled in the art in the spirit of the invention are intended to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic structural view of a speaker in the prior art. Fig. 2 is a schematic diagram showing the structure of a sounding device according to a first embodiment of the present technical solution. Fig. 3 is a frequency curve of a sounding device according to a first embodiment of the present technical solution. 4 is a schematic structural view of a sounding device according to a second embodiment of the present technical solution. FIG. 4 is a structural diagram of a sounding device according to a third embodiment of the present technical solution. 100 102 104 106 10, 20, 30 12, 22, 32 14, 24, 34 16 , 26, 36 142, 242, 342 144, 244, 344 149, 249, 349 246 248 [Description of main components] Speaker voice coil 礤 iron vibration mode _ sounding device signal wheeling device sounding element Support structure first electrode second electrode wire third electrode fourth electrode 18

Claims (1)

1353581 十、申請專利範圍 1. 一種發聲裝置,其包括: 一信號輸入裝置;以及 一發聲7L件’該發聲元件與所述信號輸入裝置的兩端 電連接;其改良在於, 所述發聲元件至少部分設置在一支撑結構表面,該發 聲兀件包括一奈米碳管結構,所述信號輸入裝置輸入 電^號給該奈米碳管結構’通過該奈米碳管結構加熱 周圍氣體介質發出聲波。 2. 如申請專利範圍第i項所述的發聲裝置,其中,所述 奈米碳管結構爲層狀。 3. 如申請專利範圍第!項所述的發聲裝置,其中,所述 奈米碳管結構的厚度爲0.5奈米〜丨毫米。 4. 如申^利範圍第1項所述的發聲裝置,其中,所述 奈米碳管結構包括均句分布的奈米碳管,奈米碳管之 間通過凡德瓦爾力相互連接。 5. 如申請專利範圍帛4項所述的發聲裝置,其中,該奈 米碳管結構中的奈米碳管爲無序或有序排列。不、 6·如中請專利範圍第4項所述的發聲裝置,其中,所述 奈米碳管薄膜中的奈求碳管爲單壁奈来碳管、雙壁奈 米碳管及多壁奈米碳管中的一種或多種。 7.如U利範圍第6項所述的發聲震置,其中,所述 單壁奈米碳管的直徑爲〇.5奈米〜5〇奈米,所述雙壁 奈米碳管的直徑爲!.〇奈来〜5〇奈米,所述多壁奈米 19 碳管的直徑爲1.5奈米〜50奈米。 如申凊專利範圍第1項所述的發聲裝置,其中,所述 發聲元件直接設置並貼合於該支撑結構的表面。 如申凊專利範圍第1項所述的發聲裴置,其中,所述 支撐結構的材料爲金剛石、玻璃、石英、塑料或樹脂。 如申明專利範圍第1項所述的發聲裝置,盆,所 支撐結構爲一 V型、11型結構或一具有狹窄開口的腔 體,所述發聲元件通過該支撑結構部分懸空設置,在 所述發聲元件至支撑結構之間形成一擺音空間。 11. 如申請專利範圍第i項所述的發聲裝置,其中,所述 支撐結構爲一立體結構,所述發聲元件環繞所述支撑 結構設置。 12. 如申請專利範圍第1項所述的發聲裝置,其中,所述 =聲裝置進-步包括至少兩電極,該至少兩電極間隔 «又置於所述發聲元件表面且與所述發聲元件電連接。 13. 如申凊專利範圍第12項所述的發聲裝置,其中,所述 至少兩電極進一步通過導線與所述信號輸入裝置的兩 端電連接。 如,明專利範圍第13項所述的發聲裝置,其中,所述 發聲裝置包括多個電極,該多個電極間隔設置且均與 所述發聲元件電連接,且該多個電極中任意兩個相鄰 的電極分別與所述信號輸入裝置的兩端電連接。 15.如申請專利範圍第14項所述的發聲裝置,其中,所述 電極的材料爲金屬、導電膠、金屬性奈米碳管或銦錫 20 1353581 氧化物。 16. 如申請專利範圍第12項所述的發聲裝置,其中,所述 發聲裝置進一步包括一導電黏結層設置在所述至少兩 電極和發聲元件之間。 17. 如申請專利範圍第1項所述的發聲裝置,其中,所述 信號輸入裝置輸入的信號包括交流電信號或音頻電信 號。1353581 X. Patent application scope 1. A sounding device comprising: a signal input device; and a sounding 7L member; the sound emitting element is electrically connected to both ends of the signal input device; and the improvement is that the sound emitting component is at least Partially disposed on a surface of a supporting structure, the sounding element comprises a carbon nanotube structure, and the signal input device inputs a signal to the carbon nanotube structure to emit sound waves through the carbon nanotube structure to heat the surrounding gas medium. . 2. The sounding device of claim i, wherein the carbon nanotube structure is layered. 3. If you apply for a patent scope! The sounding device according to the item, wherein the carbon nanotube structure has a thickness of 0.5 nm to 丨 mm. 4. The sounding device of claim 1, wherein the carbon nanotube structure comprises a carbon nanotube having a uniform distribution, and the carbon nanotubes are connected to each other by a van der Waals force. 5. The sounding device of claim 4, wherein the carbon nanotubes in the carbon nanotube structure are disordered or ordered. The sounding device according to the fourth aspect of the invention, wherein the carbon nanotubes in the carbon nanotube film are single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled One or more of the carbon nanotubes. 7. The sounding device according to Item 6, wherein the diameter of the single-walled carbon nanotube is 〇5 nm to 5 〇 nanometer, and the diameter of the double-walled carbon nanotube for! .〇奈来~5〇N, the multi-walled nano 19 carbon tube has a diameter of 1.5 nm to 50 nm. The sounding device of claim 1, wherein the sounding element is directly disposed and attached to a surface of the support structure. The vocalizing device according to claim 1, wherein the material of the supporting structure is diamond, glass, quartz, plastic or resin. The sounding device according to claim 1, wherein the support structure is a V-shaped, 11-type structure or a cavity having a narrow opening, and the sound-emitting element is partially suspended by the support structure, A sounding space is formed between the sounding element and the support structure. 11. The sounding device of claim i, wherein the support structure is a three-dimensional structure, and the sounding element is disposed around the support structure. 12. The sounding device of claim 1, wherein the sounding device further comprises at least two electrodes, the at least two electrode spacings being placed on the surface of the sounding element and with the sounding element Electrical connection. 13. The sounding device of claim 12, wherein the at least two electrodes are further electrically connected to both ends of the signal input device by wires. The sounding device of claim 13, wherein the sounding device comprises a plurality of electrodes, and the plurality of electrodes are spaced apart and electrically connected to the sound emitting element, and any two of the plurality of electrodes Adjacent electrodes are electrically connected to both ends of the signal input device, respectively. The sounding device according to claim 14, wherein the material of the electrode is metal, conductive paste, metallic carbon nanotube or indium tin 20 1353581 oxide. 16. The sounding device of claim 12, wherein the sounding device further comprises a conductive bonding layer disposed between the at least two electrodes and the sound emitting element. 17. The sounding device of claim 1, wherein the signal input by the signal input device comprises an alternating current signal or an audio signal. 21twenty one
TW97124089A 2008-06-27 2008-06-27 Acoustic device TWI353581B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97124089A TWI353581B (en) 2008-06-27 2008-06-27 Acoustic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97124089A TWI353581B (en) 2008-06-27 2008-06-27 Acoustic device

Publications (2)

Publication Number Publication Date
TW201002093A TW201002093A (en) 2010-01-01
TWI353581B true TWI353581B (en) 2011-12-01

Family

ID=44825075

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97124089A TWI353581B (en) 2008-06-27 2008-06-27 Acoustic device

Country Status (1)

Country Link
TW (1) TWI353581B (en)

Also Published As

Publication number Publication date
TW201002093A (en) 2010-01-01

Similar Documents

Publication Publication Date Title
TWI500331B (en) Thermoacoustic device
TWI351680B (en) Acoustic device
CN106131761B (en) Thermoacoustic device
US8406450B2 (en) Thermoacoustic device with heat dissipating structure
TWI462600B (en) Ear phone
JP5107964B2 (en) Thermoacoustic device
JP5270646B2 (en) Thermoacoustic device
KR101217913B1 (en) Sound Emitting Device
JP5107965B2 (en) Thermoacoustic device
TWI353581B (en) Acoustic device
JP5356992B2 (en) Thermoacoustic device
JP5107969B2 (en) Thermoacoustic device
TWI353580B (en) Acoustic device
TWI351681B (en) Acoustic device
JP5107970B2 (en) Thermoacoustic device
JP5107968B2 (en) Thermoacoustic device
JP5270466B2 (en) Thermoacoustic device
TWI380283B (en) Acoustic generator for ultrasound
TWI353583B (en) Acoustic device
TWI353582B (en) Acoustic device
TWI351682B (en) Acoustic device
TWI403180B (en) Sound box
TWI352337B (en) Acoustic device
TWI397324B (en) Loudspeaker system
TWI383691B (en) Soft acoustic device