TW201143144A - Light emitting diode - Google Patents

Light emitting diode Download PDF

Info

Publication number
TW201143144A
TW201143144A TW99116423A TW99116423A TW201143144A TW 201143144 A TW201143144 A TW 201143144A TW 99116423 A TW99116423 A TW 99116423A TW 99116423 A TW99116423 A TW 99116423A TW 201143144 A TW201143144 A TW 201143144A
Authority
TW
Taiwan
Prior art keywords
light
type electrode
layer
emitting diode
type
Prior art date
Application number
TW99116423A
Other languages
Chinese (zh)
Other versions
TWI425669B (en
Inventor
Peng-Yi Wu
Shih-Cheng Huang
Po-Min Tu
Shun-Kuei Yang
Chia-Hung Huang
Original Assignee
Advanced Optoelectronic Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Optoelectronic Tech filed Critical Advanced Optoelectronic Tech
Priority to TW99116423A priority Critical patent/TWI425669B/en
Publication of TW201143144A publication Critical patent/TW201143144A/en
Application granted granted Critical
Publication of TWI425669B publication Critical patent/TWI425669B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light emitting diode (LED) includes a substrate, a buffer layer formed on a surface of the substrate, a N type semiconductor layer formed on the buffer layer, an active layer formed on the N type semiconductor layer, a P type semiconductor layer formed on the active layer, a transparent conductive layer formed on the P type semiconductor layer, a P type contact formed on the transparent conductive layer, and a N type contact formed on the N type semiconductor layer. The P type contact comprises a first P type contact and a second transparent P type contact.

Description

201143144 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種半導體發光元件,特別涉及一種具有高 出光效率的發光二極體。 【先前技系奸】 [0002] 作為一種新興的光源,發光二極體憑藉其發光效率高、 體積小、重量輕、環保等優點,已被廣泛地應用到當前 的照明等各個領域當中,大有取代傳統光源的趨勢。 0 [0003] 作為照明光源,業界對大功率的發光二極體的需求越來 越迫切。大功率發光二極體通常是透過加大發光二極體 的尺寸以提供較大的發光面積而實現。這種大面積的發 光二極體在提供較大的發光面積的同時也會產生問題。 例如,發光二極體面積的增大並不一定意味著發光面積 的增大,因為通常電流會選擇阻抗最低的路徑,導致發 光區域會相對集中於一處而發光不均勻。為降低電流阻 抗,實現電極與P型半導體層的良好接觸,通常會擴大P Q 型電極與P型半導體層的接.觸面'積。然而,由於P型電極 為較厚的導電金屬,當其面積越大,擋住發光二極體的 出光面積也就越大,因而降低了發光二極體的出光效率 。因此,如何提供一種高出光效率的發光二極體仍是業 界需要解決的一個課題。 【發明内容】 [0004] 有鑒於此,有必要提供一種具有高出光效率的發光二極 體。 [0005] —種發光二極體,包括:一概底,一緩衝層位於所述概 099116423 表單編號A0101 第3頁/共15頁 0992029204-0 201143144 底上,一N型半導體層位於緩衝層上,一發光層位於NS 半導體層上,一P型半導體層位於發光層上,一透明導電 層位於P型半導體層上,一 P型電極位於透明導電層上, 以及一N型電極位於N型半導體層上,所述P型電極包括一 第一 P型電極以及一透明的第二P型電極。 [0006] 與習知技術相比,本發明發光二極體中的P型電極設置有 第二P型電極,其可為透光材料,因而減小了 P型電極的 非透明區域的面積,即減小了 P型電極的遮光面積,可使 發光二極體發出的光線經該透明電極層透射出去,因此 大大提高發光二極體的發光效率。 【實施方式】 [0007] 請參閲圖卜2,本發明一實施例中的發光二極體10包括一 襯底11,形成於襯底11上的一緩衝層12,形成於緩衝層 12上的一N型半導體層13,形成於N型半導體層13上的發 光層14,形成於發光層14上的P型半導體層15,形成於P 型半導體層15上的透明導電層16。該發光二極體10還包 括形成於透明導電層16上的P型電極25及形成於N型半導 體層13上的N型電極23。利用P型電極25與N型電極23分 別連接至外部電源,使發光二極體10正向導通即可使發 光二極體10發光。 [0008] 襯底11可以使用例如目前公知的藍寶石襯底、碳化矽襯 底或氮化鎵襯底等。以相對於後續正常磊晶溫度較低的 環境成長緩衝層12於襯底11上。N型半導體層13可以使用 氮化物半導體晶體中摻雜N型雜質而形成,例如摻雜四族 的原子。發光層14可以摻雜η型或是p型的摻雜子( 099116423 表單編號Α0101 第4頁/共15頁 0992029204-0 201143144 dopant),可以是同時掺雜η型與ρ型的摻雜子,也可以 70全不摻雜。並且,可以是量子阱層摻雜而阻障層不摻 雜里子解層不換雜而阻Ρ早層播雜、量子牌層與阻障層 都摻雜或是量子阱層與阻障層都不摻雜。再者,亦可以 在量子阱層的部份區域進行高濃度的摻雜(delta dop_ ing)。卩型半導體層15可以使用氮化物半導體晶體中摻 雜P型雜質而形成,例如摻雜二族的原子。 [0009] Ο [0010] 透明導電層16可含有氧化銦錫(IT0),由此可以增加電 流在P型半導體層15的分佈面積,提高發光層14產生的光 〇201143144 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a semiconductor light-emitting element, and more particularly to a light-emitting diode having high light-emitting efficiency. [Previous technical traitor] [0002] As an emerging light source, LEDs have been widely used in various fields such as current lighting because of their high luminous efficiency, small size, light weight, and environmental protection. There is a trend to replace traditional light sources. 0 [0003] As an illumination source, the demand for high-power LEDs is becoming more and more urgent. High power light-emitting diodes are typically realized by increasing the size of the light-emitting diodes to provide a larger light-emitting area. Such large-area light-emitting diodes also cause problems while providing a large light-emitting area. For example, an increase in the area of the light-emitting diode does not necessarily mean an increase in the area of the light-emitting area, because usually the current selects the path with the lowest impedance, causing the light-emitting areas to be relatively concentrated in one place and unevenly illuminated. In order to reduce the current resistance and achieve good contact between the electrode and the P-type semiconductor layer, the contact area of the P Q type electrode and the P type semiconductor layer is generally enlarged. However, since the P-type electrode is a thick conductive metal, the larger the area, the larger the light-emitting area that blocks the light-emitting diode, thereby reducing the light-emitting efficiency of the light-emitting diode. Therefore, how to provide a light-emitting diode with high light-emitting efficiency is still a subject that the industry needs to solve. SUMMARY OF THE INVENTION [0004] In view of the above, it is necessary to provide a light-emitting diode having high light-emitting efficiency. [0005] A light-emitting diode comprising: a bottom layer, a buffer layer is located on the bottom of the general 099116423 Form No. A0101, page 3 / 15 pages 0992029204-0 201143144, an N-type semiconductor layer is located on the buffer layer, An luminescent layer is disposed on the NS semiconductor layer, a P-type semiconductor layer is on the luminescent layer, a transparent conductive layer is on the P-type semiconductor layer, a P-type electrode is on the transparent conductive layer, and an N-type electrode is located on the N-type semiconductor layer. The P-type electrode includes a first P-type electrode and a transparent second P-type electrode. Compared with the prior art, the P-type electrode in the light-emitting diode of the present invention is provided with a second P-type electrode, which can be a light-transmitting material, thereby reducing the area of the non-transparent area of the P-type electrode. That is, the light-shielding area of the P-type electrode is reduced, and the light emitted by the light-emitting diode can be transmitted through the transparent electrode layer, thereby greatly improving the luminous efficiency of the light-emitting diode. [0007] Referring to FIG. 2, a light-emitting diode 10 according to an embodiment of the present invention includes a substrate 11 formed on the substrate 11 and formed on the buffer layer 12. The N-type semiconductor layer 13, the light-emitting layer 14 formed on the N-type semiconductor layer 13, the P-type semiconductor layer 15 formed on the light-emitting layer 14, and the transparent conductive layer 16 formed on the P-type semiconductor layer 15. The light-emitting diode 10 further includes a P-type electrode 25 formed on the transparent conductive layer 16 and an N-type electrode 23 formed on the N-type semiconductor layer 13. The P-type electrode 25 and the N-type electrode 23 are respectively connected to an external power source, and the light-emitting diode 10 is caused to emit light to cause the light-emitting diode 10 to emit light. As the substrate 11, for example, a currently known sapphire substrate, a tantalum carbide substrate or a gallium nitride substrate or the like can be used. The buffer layer 12 is grown on the substrate 11 in an environment lower than the subsequent normal epitaxial temperature. The N-type semiconductor layer 13 can be formed by doping N-type impurities in a nitride semiconductor crystal, for example, doped with a group of four atoms. The light-emitting layer 14 may be doped with an n-type or a p-type dopant (099116423 Form No. 1010101, page 4/15 pages 0992029204-0 201143144 dopant), which may be doped with both n-type and p-type dopants. It can also be 70 undoped. Moreover, the quantum well layer may be doped, the barrier layer is not doped, the neutron solution layer is not replaced, the early layer is hindered, the quantum layer layer and the barrier layer are doped, or both the quantum well layer and the barrier layer are doped. Not doped. Furthermore, high concentration doping (delta dop_ ing) can also be performed in a portion of the quantum well layer. The 卩-type semiconductor layer 15 can be formed by doping a P-type impurity in a nitride semiconductor crystal, for example, doping a group of atoms. [0009] The transparent conductive layer 16 may contain indium tin oxide (ITO), whereby the distribution area of current in the P-type semiconductor layer 15 may be increased, and the light generated by the light-emitting layer 14 may be increased.

P型電極25包括一第一ρ型電極251及與第一ρ型電極251 電連接的一第二P型電極252,該第二ρ型電極252覆蓋於 透明導電層16上,該第二P型電極252之分柄圖形不限。 本實施例中的第二P型電極252為梳狀結構,覆蓋在透明 導電層16上的面積較小。進一步的,將第乒ρ型電極252 的厚度設置成比透明導電層16的厚度小。較佳的,第二ρ 变電極252的厚度在l〇nm以下》換句話說,第二ρ型電極 252的厚度可在2-lOnm之間。本實施例中,該第二ρ型電 極252含有鎳金合金(Ni/Au),該種材料不但可做成透 明性質,且導電性佳。用該第二ρ型電極252代替傳統的 厚金屬做成電極,不但可以減小使用厚金屬的量,以降 低成本,更加重要的是,發光二極體1〇的光可透過該第 二P型電極252,因而提高發光二極體1〇的出光效率。第 二P型電極252的材料並不限於上述一種,還可以使用例 如 AZ0 ’ GZ0 ’ FT0 ’ IZ0 ’ Zn〇,cdO 中的一種或多種。 099116423 表單編號A0101 0992029204-0 201143144 該第一P型電極251可包含鉑金合金(Pt/Au)、鎢(w) 、鉻金合金(Cr/Au)或把(Pd)等金屬或金屬合金,所 述第-P型電極251為-接觸電極。另夕卜,透明導電層16 與第二P型電極252彼此之間的電阻越低越好以利於電流 之流動。若前述兩層材料彼此之間的電阻太大,則電流 將會選擇電阻較小的-層流動,恐將失去本發明之用意 。再者,該第二P型電極252與第一p型電極251可位於同The P-type electrode 25 includes a first p-type electrode 251 and a second P-type electrode 252 electrically connected to the first p-type electrode 251. The second p-type electrode 252 covers the transparent conductive layer 16, and the second P The shape of the split electrode of the type electrode 252 is not limited. The second P-type electrode 252 in this embodiment has a comb-like structure, and the area covered on the transparent conductive layer 16 is small. Further, the thickness of the ping p-type electrode 252 is set to be smaller than the thickness of the transparent conductive layer 16. Preferably, the thickness of the second p-type electrode 252 is below 10 nm. In other words, the thickness of the second p-type electrode 252 may be between 2 and 1 nm. In the present embodiment, the second p-type electrode 252 contains a nickel-gold alloy (Ni/Au), which is not only transparent but also excellent in electrical conductivity. By using the second p-type electrode 252 instead of the conventional thick metal to form an electrode, not only the amount of thick metal can be reduced, but also the cost can be reduced. More importantly, the light of the light-emitting diode 1 可 can pass through the second P. The electrode 252 thus increases the light-emitting efficiency of the light-emitting diode 1〇. The material of the second P-type electrode 252 is not limited to the above one, and one or more of, for example, AZ0 ' GZ0 ' FT0 ' IZ0 ' Zn 〇, cdO may also be used. 099116423 Form No. A0101 0992029204-0 201143144 The first P-type electrode 251 may comprise a metal or metal alloy such as platinum alloy (Pt/Au), tungsten (w), chrome-gold alloy (Cr/Au) or (Pd). The first-P-type electrode 251 is a -contact electrode. In addition, the lower the resistance between the transparent conductive layer 16 and the second P-type electrode 252, the better, to facilitate the flow of current. If the resistance of the two layers of material to each other is too large, the current will select a less-flow-layer flow, which may lose the intention of the present invention. Furthermore, the second P-type electrode 252 and the first p-type electrode 251 can be located at the same

一水平面上並均與透明導電層16直接接觸。亦可將第一p 型電極251設置於該第二p型電極252上。由於第一p型電 極251與第二p型電極252的接觸面積較大,形成的電阻較 小,電流可較均勻的流動及分佈。N型電極23可包含鈦/ 銘/鈦/金(Ti/Al/Ti/Au)、鉻金合金(Cr/Au)或是 鉛金合金(Pd/Au )。 [0011] 圖3為本發明另一實施例的發光二極體30的俯視示意圖。 β玄發光一極體3〇的結構與上一實施例中的發光二極體1〇 的結構相似’其15型電極35與ΝΪ電極33分別連接至外部 電源,使發光二極體3〇正向導缚即可使發光二極體3〇發 光Ρ型電極35同樣包括第一 Ρ型電極351及與第一 Ρ型電 極351電連接的第二ρ型電極352。第二ρ型電極π?與第 Ρ聖電極351可位於同一水平面上並均與透明導電層( 圖3中未tf出)直接接觸。較佳的方式將第一ρ型電極 β又置於4第二Ρ型電極352上。由於第一Ρ型電極351與第 一卩!電極352的接觸面積較大,形成的電阻較小,電流 可車又均勻的流動及分佈。不同之處在於,該第二ρ型電極 352的面積較大’完全覆蓋住透明導電層也即第二ρ型 099116423 表單編號Α0101 第6頁/共15頁 0992029204-0 201143144 [0012] [0013] Ο [0014] [0015]A horizontal surface is in direct contact with the transparent conductive layer 16. The first p-type electrode 251 may also be disposed on the second p-type electrode 252. Since the contact area of the first p-type electrode 251 and the second p-type electrode 252 is large, the resistance formed is small, and the current can flow and distribute uniformly. The N-type electrode 23 may comprise titanium/ming/titanium/gold (Ti/Al/Ti/Au), chrome-gold alloy (Cr/Au) or lead-gold alloy (Pd/Au). 3 is a top plan view of a light emitting diode 30 according to another embodiment of the present invention. The structure of the β-light-emitting diode 3〇 is similar to that of the light-emitting diode 1〇 in the previous embodiment. The 15-type electrode 35 and the germanium electrode 33 are respectively connected to an external power source, so that the light-emitting diode 3 is positive. The light-emitting diode electrode 35 also includes a first Ρ-type electrode 351 and a second p-type electrode 352 electrically connected to the first Ρ-type electrode 351. The second p-type electrode π? and the second electrode 351 can be located on the same horizontal plane and are in direct contact with the transparent conductive layer (not shown in Fig. 3). Preferably, the first p-type electrode β is again placed on the fourth second electrode 352. Thanks to the first 电极-type electrode 351 and the first 卩! The contact area of the electrode 352 is large, the resistance formed is small, and the current can be uniformly flowed and distributed. The difference is that the area of the second p-type electrode 352 is larger 'completely covering the transparent conductive layer, that is, the second p-type 099116423 Form No. 1010101 Page 6 / Total 15 Page 0992029204-0 201143144 [0013] Ο [0015] [0015]

電極352的面積與透明導電層的面積相同。 下面,以發光二極體10的結構為例對本發明的發光二極 體的製造方法進行說明。 首先,形成一磊晶結構。在襯底11的表面上,利用例如 目前公知的有機金屬化學氣相沉積法(MOCVD)或是分子 束蠢晶(ΜΒΕ ; Molecular Beam Epitaxy),使緩衝 層12、N型半導體層13、發光層14、P型半導體層15按照 該順序結晶生長。 由於晶格結構與晶格常數是另一項選擇磊晶基板的重要 依據。若襯底與磊晶層之間晶格常數差異過大,往往需 要先形成一緩衝層12才可以得到較佳的磊晶品質。一般 以相對於後續正常磊晶溫度較低的環境成長緩衝層12於 襯底11上。 N型半導體層13則可以使用矽原子(Si),而矽的先驅物 在有機金屬化學氣相沉積機台中可以是矽曱烷(Si H4) 或是矽乙烷(Si2H6) 型半導體層13的形成方式依序 由高濃度摻雜矽原子(Si)的氮化鎵層(GaN)或是氮化 鋁鎵層(AlGaN)至低濃度摻雜矽原子(Si)的氮化鎵層 或是氮化鋁鎵層(AlGaN)。高濃度摻雜矽原子(Si)的 氮化鎵層(GaN)或是氮化鋁鎵層(AlGaN)可以提供N 型半導體的歐姆接觸(Ohmic Contact)。 發光層14可以是單異質結構、雙異質結構、單量子阱層 或是多重量子阱層結構。目前多採用多重量子阱層結構 ,也就是多重量子拼層/阻障層的結構。量子阱層可以使 099116423 表單編號A0101 第7頁/共15頁 0992029204-0 [0016] 201143144 用氮化銦鎵(InGaN ),而阻障層可以使用氮化銘嫁( AlGaN)等的三元結構。另外,也可以採用四元結構,也 就疋使用氮化铭嫁姻(AlxInyGal-x-yN)同時作為量子 阱層以及阻障層。其中調整鋁與銦的比例使得氮化鋁鎵 銦晶格的能階可以分別成為高能階的阻障層與低能階的 量子阱層。發光層14可以摻雜n型或是p型的摻雜子( dopant),可以是同時摻雜n型與p型的摻雜子,也可以 完全不摻雜。並且,可以是量子阱層摻雜而阻障層不摻 雜、量子阱層不摻雜而阻障層摻雜、量子阱層與阻障層 都摻雜或是量子阱層與阻障層都不摻雜。再者,亦可以 在量子阱層的部份區域進行高濃度的摻雜(delta d〇p_ ing)。 [0017] [0018] 摻雜鎂原子以形成P型半導體層15於發光層14上。而鎂的 先驅物在有機金屬化學氣相沉積機台中可以是。p 型半導體層15的形成方式依序由低濃度摻雜鎂原子(Mg )的氮化鎵層(GaN)或是氮化鉉鎵層(A1GaN)至高濃The area of the electrode 352 is the same as the area of the transparent conductive layer. Next, a method of manufacturing the light-emitting diode of the present invention will be described by taking the structure of the light-emitting diode 10 as an example. First, an epitaxial structure is formed. On the surface of the substrate 11, the buffer layer 12, the N-type semiconductor layer 13, and the light-emitting layer are formed by, for example, the currently known metalorganic chemical vapor deposition (MOCVD) or molecular beam epitaxy (Molecular Beam Epitaxy). 14. The P-type semiconductor layer 15 is crystal grown in this order. The lattice structure and lattice constant are another important basis for selecting an epitaxial substrate. If the difference in lattice constant between the substrate and the epitaxial layer is too large, it is often necessary to form a buffer layer 12 to obtain a better epitaxial quality. The buffer layer 12 is typically grown on the substrate 11 in an environment having a relatively low normal epitaxial temperature. The N-type semiconductor layer 13 may be a germanium atom (Si), and the precursor of germanium may be a germane (Si H4) or a germanium (Si 2 H 6 ) type semiconductor layer 13 in the organometallic chemical vapor deposition machine. The formation method is sequentially performed by a high concentration doped germanium (Si) gallium nitride layer (GaN) or an aluminum gallium nitride layer (AlGaN) to a low concentration doped germanium atom (Si) gallium nitride layer or nitrogen Aluminum gallium layer (AlGaN). A high concentration doped germanium atom (Si) gallium nitride layer (GaN) or an aluminum gallium nitride layer (AlGaN) can provide an ohmic contact of an N-type semiconductor. The light-emitting layer 14 may be a single heterostructure, a double heterostructure, a single quantum well layer or a multiple quantum well layer structure. At present, multiple quantum well layer structures are used, that is, structures of multiple quantum layer/barrier layers. The quantum well layer can be made to 099116423 Form No. A0101 Page 7 / 15 Page 0992029204-0 [0016] 201143144 Indium gallium nitride (InGaN), and the barrier layer can use ternary structure such as NiGaN . Alternatively, a quaternary structure may be used, and a nitriding marriage (AlxInyGal-x-yN) may be used as both a quantum well layer and a barrier layer. Adjusting the ratio of aluminum to indium makes the energy level of the aluminum gallium nitride indium lattice can be a high energy level barrier layer and a low energy level quantum well layer, respectively. The light-emitting layer 14 may be doped with an n-type or p-type dopant, and may be doped with n-type and p-type dopants at the same time, or may be completely undoped. Moreover, the quantum well layer may be doped and the barrier layer is not doped, the quantum well layer is not doped, the barrier layer is doped, the quantum well layer and the barrier layer are doped, or the quantum well layer and the barrier layer are both Not doped. Furthermore, high concentration doping (delta d〇p_ ing) can also be performed in a portion of the quantum well layer. [0018] A magnesium atom is doped to form a P-type semiconductor layer 15 on the light-emitting layer 14. Magnesium precursors can be used in organometallic chemical vapor deposition machines. The p-type semiconductor layer 15 is formed by a gallium nitride layer (GaN) or a gallium nitride layer (A1GaN) doped with magnesium (Mg) at a low concentration to a high concentration.

度換雜鎮原子(Mg)的氮化嫁層奉是氮化鋁鎵層(A1GaN )。尚濃度掺雜鎂原子(Mg)的氮化鎵層(GaN)或是氮 化鋁鎵層可以提供P型半導體之歐姆接觸(〇hmic contact) 。 借由光阻自旋塗布機以離心力將光阻劑全面塗布κρ型半 導體層15之表面上方以形成光阻膜。再以光微影法( Photolithography)將光阻膜圖案化而形成遮罩,使 仔預計餘刻部份顯露。再以電感式電漿蝕刻系統(111_The nitrided layer of the mixed town atom (Mg) is an aluminum gallium nitride layer (A1GaN). A gallium nitride layer (GaN) or an aluminum gallium nitride layer doped with magnesium atoms (Mg) at a concentration can provide an ohmic contact of a P-type semiconductor. The photoresist is entirely coated over the surface of the κρ-type semiconductor layer 15 by a centrifugal spin coater to form a photoresist film. The photoresist film is patterned by photolithography to form a mask, so that the remaining part of the film is expected to be revealed. Inductive plasma etching system (111_

dUCtlVely coupled Plasma etcher ; ICP)蝕刻出 N 099116423 表單編號A0101 第8頁/共15頁 0992029204-0 201143144 型半導體層13,再去除光阻: [0019] [0020] [0021] Ο [0022] [0023] G [0024] [0025] [0026] 接著’在P型半導體層15的表面上利用電子束蒸鑛等方法 形成含有氧化銦錫的透明導電層16。 之後’在透明導電層16的表面上湘電子束蒸鍍等方法 以預定圖形形成含有Ni/Au或本發明實施例部分中提到的 其他材料的第二P型電極252。也可以將第二p型電極⑽ 完全覆蓋於透明導電層16上。 最後以濺鍍或是蒸鍍的方式在第二p型電極252上形成第 一P型電極251以及寿从型半導體層13上形成N型電極23。 值得注意的是,該第一P型電極251為金屬,因此其形成 之面積不能太大’否則會影響到發光二極體之出光率。 另外,第一P型電極251與第二p型電極252可位於同一水 平面上並均與透明導電層16直接接觸。 综上所述,本發明確已符合發明專利之要许,遂依法提 +ρ; 出專利申請。惟,以上所述者僅為本發朋之較佳實施方 式,自不能以此限制未案 < 申請專利範圍。舉凡熟悉本 案技藝之人士援依本發明之精神所作之等效修飾或變化 ,皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本發明一實施例的發光二極體的俯視示意圖。 圖2為圖1中的發光二極體的側視示意圖。 圖3為本發明另一實施例的發光二極體的俯視示意圖。 【主要元件符號說明】 099116423 表單編號A0101 第9買/共15頁 0992029204-0 201143144 [0027] 發光二極體:10、30 [0028] 襯底:11 [0029] 緩衝層:12 [0030] N型半導體層:13 [0031] 發光層:14 [0032] P型半導體層:15 [0033] 透明導電層:16 [0034] N型電極:23、33 [0035] P型電極:25、35 [0036] 第一P型電極:251、351 [0037] 第二P型電極:252、352 099116423 表單編號A0101 第10頁/共15頁 0992029204-0dUCtlVely coupled Plasma etcher ; ICP) etched N 099116423 Form No. A0101 Page 8 / Total 15 Page 0992029204-0 201143144 Type Semiconductor Layer 13, and then remove the photoresist: [0020] [0021] Ο [0022] [0023 [0026] [0026] Next, a transparent conductive layer 16 containing indium tin oxide is formed on the surface of the P-type semiconductor layer 15 by electron beam evaporation or the like. Thereafter, a second P-type electrode 252 containing Ni/Au or other materials mentioned in the section of the present invention is formed in a predetermined pattern by a method such as e-beam evaporation on the surface of the transparent conductive layer 16. It is also possible to completely cover the second p-type electrode (10) on the transparent conductive layer 16. Finally, the first P-type electrode 251 and the N-type electrode 23 are formed on the second p-type electrode 252 by sputtering or evaporation. It should be noted that the first P-type electrode 251 is a metal, so the area of its formation cannot be too large 'otherwise, it will affect the light-emitting rate of the light-emitting diode. In addition, the first P-type electrode 251 and the second p-type electrode 252 may be located on the same horizontal plane and are in direct contact with the transparent conductive layer 16. In summary, the present invention has indeed met the requirements of the invention patent, and 提 提; However, the above is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a top plan view of a light-emitting diode according to an embodiment of the present invention. 2 is a side elevational view of the light emitting diode of FIG. 1. FIG. 3 is a schematic top plan view of a light emitting diode according to another embodiment of the present invention. [Main component symbol description] 099116423 Form No. A0101 No. 9 Buy/Total 15 Page 0992029204-0 201143144 [0027] Light Emitting Diode: 10, 30 [0028] Substrate: 11 [0029] Buffer Layer: 12 [0030] N Type semiconductor layer: 13 [0031] Light-emitting layer: 14 [0032] P-type semiconductor layer: 15 [0033] Transparent conductive layer: 16 [0034] N-type electrode: 23, 33 [0035] P-type electrode: 25, 35 [ 0036] First P-type electrode: 251, 351 [0037] Second P-type electrode: 252, 352 099116423 Form No. A0101 Page 10 / Total 15 Page 0992029204-0

Claims (1)

201143144 七、申請專利範圍: 1 . 一種發光二極體,包括: 一概底; 一緩衝層位於所述襯底上; 一 N型半導體層位於緩衝層上; ; 一發光層位於N型半導體層上; ' 一 P型半導體層位於發光層上; 一透明導電層位於P型半導體層上; 一 P型電極位於透明導電層上;以及 ❹ 一N型電極位於N型半導體層上,其改良在於:所述P型電 極包括一第一P型電極以及一透明的第二P型電極。 2. 如申請專利範圍第1項所述之發光二極體,其中所述透明 導電層含有氧化銦錫。 3. 如申請專利範圍第1項所述之發光二極體,其中所述第一 P 型電極為鉑金合金(Pt/Au)、鎢(W)、鉻金合金( Cr/Au)或鈀(Pd) 〇 4 .如申請專利範圍第1項所述之發光二極體,其中所述N型電 ❹ 極為鈦/鋁/鈦/金(Ti/Al/Ti/Au)、鉻金合金(Cr/Au )或是錯金合金(Pd/Au)。 5 .如申請專利範圍第1項所述之發光二極體,其中所述第二p 型電極包含 Ni/Au,ΑΖ0,GZ0,FT0,ΙΖ0,ZnO,CdO 中 的至少一種。 6 .如申請專利範圍第1項所述之發光二極體,其中所述第二P 型電極的厚度小於透明導電層的厚度。 7 .如申請專利範圍第6項所述之發光二極體,其中所述第二P 099116423 表單編號A0101 第11頁/共15頁 0992029204-0 201143144 型電極的厚度在2_10ηπι之間。 8 .如申請專利範圍第1-7項中任意一項所述之發光二極體, 其中所述第二Ρ型電極以圖形覆蓋在透明導電層上。 9 .如申請專利範圍第卜7項中任意一項所述之發光二極體, 其中所述第一Ρ型電極位於所述第二Ρ型電極上方,由該第 二Ρ型電極與該透明導電層直接接觸。 10 .如申請專利範圍第卜7項中任意一項所述之發光二極體, 其中所述第一 Ρ型電極與所述第二Ρ型電極位於同一水平面 上並均與透明導電層直接接觸。 099116423 表單編號Α0101 第12頁/共15頁 0992029204-0201143144 VII. Patent application scope: 1. A light-emitting diode comprising: a base; a buffer layer on the substrate; an N-type semiconductor layer on the buffer layer; and a light-emitting layer on the N-type semiconductor layer ; a P-type semiconductor layer is on the light-emitting layer; a transparent conductive layer is on the P-type semiconductor layer; a P-type electrode is on the transparent conductive layer; and a N-type electrode is on the N-type semiconductor layer, and the improvement is: The P-type electrode includes a first P-type electrode and a transparent second P-type electrode. 2. The light-emitting diode according to claim 1, wherein the transparent conductive layer contains indium tin oxide. 3. The light-emitting diode according to claim 1, wherein the first P-type electrode is a platinum alloy (Pt/Au), tungsten (W), chrome-gold alloy (Cr/Au) or palladium ( The light-emitting diode according to claim 1, wherein the N-type electrode is extremely titanium/aluminum/titanium/gold (Ti/Al/Ti/Au), chrome-gold alloy (Cr) /Au ) or gold alloy (Pd/Au). 5. The light-emitting diode according to claim 1, wherein the second p-type electrode comprises at least one of Ni/Au, ΑΖ0, GZ0, FT0, ΙΖ0, ZnO, CdO. 6. The light-emitting diode of claim 1, wherein the thickness of the second P-type electrode is less than the thickness of the transparent conductive layer. 7. The light-emitting diode according to claim 6, wherein the second P 099116423 form number A0101 page 11 / 15 page 0992029204-0 201143144 type electrode has a thickness of between 2_10ηπι. The light emitting diode according to any one of claims 1 to 7, wherein the second germanium electrode is patterned on the transparent conductive layer. The light-emitting diode according to any one of the preceding claims, wherein the first Ρ-type electrode is located above the second Ρ-type electrode, and the second Ρ-type electrode and the transparent The conductive layer is in direct contact. The light-emitting diode according to any one of the preceding claims, wherein the first Ρ-type electrode and the second Ρ-type electrode are on the same horizontal surface and are in direct contact with the transparent conductive layer. . 099116423 Form number Α0101 Page 12 of 15 0992029204-0
TW99116423A 2010-05-21 2010-05-21 Light emitting diode TWI425669B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99116423A TWI425669B (en) 2010-05-21 2010-05-21 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99116423A TWI425669B (en) 2010-05-21 2010-05-21 Light emitting diode

Publications (2)

Publication Number Publication Date
TW201143144A true TW201143144A (en) 2011-12-01
TWI425669B TWI425669B (en) 2014-02-01

Family

ID=46765228

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99116423A TWI425669B (en) 2010-05-21 2010-05-21 Light emitting diode

Country Status (1)

Country Link
TW (1) TWI425669B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI246210B (en) * 2005-04-28 2005-12-21 Epitech Corp Ltd Lateral current blocking light emitting diode and method for manufacturing the same
TWI287308B (en) * 2006-01-27 2007-09-21 Genesis Photonics Inc Making method for light emitting diode with heat sink reflection mirror
TWI366291B (en) * 2007-03-30 2012-06-11 Epistar Corp Semiconductor light-emitting device having stacked transparent electrodes

Also Published As

Publication number Publication date
TWI425669B (en) 2014-02-01

Similar Documents

Publication Publication Date Title
US9142718B2 (en) Light emitting device
KR101324442B1 (en) Group iii nitride semiconductor light-emitting element and method for manufacturing the same, and lamp
CN102822996B (en) Semiconductor light-emitting element
KR101813935B1 (en) Light emitting device
TW201238043A (en) Light-emitting diode device and method for manufacturing the same
KR20120064870A (en) Light emitting device and light emitting device package
US7868348B2 (en) Light emitting device having vertical structure and method for manufacturing the same
US9812614B2 (en) Light-emitting device
KR20110027296A (en) Light emitting device and method for fabricating the same
TW201034252A (en) Light emitting device
KR101007078B1 (en) Light emitting device and fabrication method thereof
KR20100122998A (en) Light emitting device and method for fabricating the same
KR100738399B1 (en) Nitride semiconductor light emitting device
WO2017101522A1 (en) Light emitting diode and method for manufacturing same
KR101132885B1 (en) Nitride light emitting diode and fabricating method thereof
JP2006179618A (en) Semiconductor light emitting device and its manufacturing method
CN107706277B (en) Manufacturing method of transparent conducting layer and light emitting diode thereof
TW201143144A (en) Light emitting diode
KR100998007B1 (en) Nitride semiconductor light emitting device
CN111640829A (en) Light-emitting diode with composite electron blocking layer and preparation method thereof
TWI455355B (en) Light emitting diode structure
KR100918830B1 (en) VERTICALLY STRUCTURED GaN TYPE LED DEVICEE AND METHOD OF MANUFACTURING THE SAME
CN102255025A (en) Light emitting diode
TWI447960B (en) Led chip and manufacturing method thereof
TWI570954B (en) Nitride semiconductor structure and semiconductor light-emitting element