TW201143090A - Double diffused drain metal-oxide-semiconductor devices with floating poly thereon and methods of manufacturing the same - Google Patents

Double diffused drain metal-oxide-semiconductor devices with floating poly thereon and methods of manufacturing the same Download PDF

Info

Publication number
TW201143090A
TW201143090A TW99116553A TW99116553A TW201143090A TW 201143090 A TW201143090 A TW 201143090A TW 99116553 A TW99116553 A TW 99116553A TW 99116553 A TW99116553 A TW 99116553A TW 201143090 A TW201143090 A TW 201143090A
Authority
TW
Taiwan
Prior art keywords
dielectric
patterned
conductive
conductive layer
substrate
Prior art date
Application number
TW99116553A
Other languages
Chinese (zh)
Other versions
TWI512977B (en
Inventor
yong-chu Chen
Chih-Min Hu
Shyi-Yuan Wu
Jeng Gong
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW099116553A priority Critical patent/TWI512977B/en
Publication of TW201143090A publication Critical patent/TW201143090A/en
Application granted granted Critical
Publication of TWI512977B publication Critical patent/TWI512977B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A metal-oxide-semiconductor (MOS) device is disclosed. The MOS device includes a substrate of a first impurity type, a diffused region of a second impurity type in the substrate, a patterned first dielectric layer including a first dielectric portion over the diffused region, a patterned first conductive layer on the patterned first dielectric layer, the patterned first conductive layer including a first conductive portion on the first dielectric portion, a patterned second dielectric layer including a second dielectric portion that extends on a first portion of an upper surface of the first conductive portion and along a sidewall of the first conductive portion to the substrate, a patterned second conductive layer on the patterned second dielectric layer; and the patterned second conductive layer including a second conductive portion on the second dielectric portion.

Description

201143090 ι 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種金屬氧化物半導體裝置,且特別 是有關於一種具有浮置多矽晶之雙擴散汲極金屬氧化物 半導體裝置及其製造方法。 【先前技術】 當做為功率積體電路之元件之用時,金屬氧化物半導 體(metal-oxide-semiconductor,MOS )裝置必須能夠維持 高操作電壓。為了達到此目的,習知之金屬氧化物半導體 裝置之閘極與汲極必須相隔足夠之距離,然而卻造成金屬 氧化物半導體裝置之尺寸無法更進一步縮小。以下將敘述 此問題。 第1A圖及第1B圖繪示習知金屬氧化物半導體裝置 之剖面示意圖。請參照第1A圖,金屬氧化物半導體裝置 1-1可包括P型基板10、位於基板1〇之上之數個第一隔離 結構13、位於基板1〇中之n型井區11及p型井區.丨2、 位於N型井區11中之高壓P·型(high-voltage “p” minus, HVPM)區17-1、一對p+型區ΐ8_ι、位於p型井區p中 之高壓 N-型(high-voltage “n” minus,HVNM)區 17-2, 以及一對N+型區18-2。其中一個p+型區18-1係位於高壓 P-型區中’而另一個P+型區18-1係位於N型井區11中。 其中一個N+型區18-2係位於高壓N-型區17-2中,而另 一個N+型區18_2位於p型井區12中。此外,金屬氧化物 半導體裝置1-1包括位於基板u上之圖案化之介電層,以 及位於圖案化介電層上之圖案化導電層。圖案化之介電層 201143090 ' 1 i 包括第一部分14-1及第二部分14-2,且圖案化導電層包 括第一部份15-1及第二部分15-2。數個第二隔離結構μ 可沿著圖案化介電層與圖案化導電層之側壁而形成。 金屬氧化物半導體裝置1-1可做為電源控管積體電路 (power management integrated circuit,PMIC ),並於例如 是12伏特之相對高電壓下操作。在某些應用中,間極盘 汲極間之距離WG可為L2微米(μιη)或更高,方能維推 如此高之電壓。此處之閘極可例如是圖案化導電層之第: 部分15-丨,且汲極可例如是位於高壓ρ_型區17_丨中之 型區18-1。此外,當操作電壓越高時,距離W0越大。與+ 例來說’當金屬氧化物半導之操作電 牛 Π時,距離W。可增加為〜。當金屬氧化物;導體 «置μ在更高之電壓下操作時,例如是麵 = w〇可增加為80μιη。 得距離 請參照第⑺圖’金屬氧化物半導體裝置“可 照第1Α圖所述之金屬氧化物半導體裝置μ相似。兩、: 不同之處在於金屬氧化物半導體|£1_2包括者 ,區17-1及叫與-對高壓Ν•型區17_2與叫间^ 氧化物半導體梦詈】2盘么厘& 金屬 η Β§裝置_八金屬虱化物半導體裝置Μ罝有 相同之問4,其尺寸無法進―步縮小。 ,、有 心Γ =在不顯著地增加閘極纽極間之距離的情、h 製以出可維持高操作電壓之金 况下 為重要的。 1化物+導體袭置係極 【發明内容】 本發明之實施例係提供—種金屬氧化物半導體裝 201143090BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a metal oxide semiconductor device, and more particularly to a double diffused gate metal oxide semiconductor device having floating poly germanium and Production method. [Prior Art] When used as a component of a power integrated circuit, a metal-oxide-semiconductor (MOS) device must be capable of maintaining a high operating voltage. In order to achieve this, the gate and the drain of the conventional MOS device must be separated by a sufficient distance, but the size of the MOS device cannot be further reduced. This issue will be described below. 1A and 1B are schematic cross-sectional views showing a conventional metal oxide semiconductor device. Referring to FIG. 1A, the MOS device 1-1 may include a P-type substrate 10, a plurality of first isolation structures 13 on the substrate 1〇, an n-type well region 11 and a p-type in the substrate 1〇. Well area 丨2, high-voltage “p” minus, HVPM zone 17-1 located in N-type well zone 11, a pair of p+-type zone ΐ8_ι, high pressure located in p-type well zone p A high-voltage "n" minus (HVNM) region 17-2, and a pair of N+ type regions 18-2. One of the p+ type regions 18-1 is located in the high pressure P-type region' and the other P+ type region 18-1 is located in the N type well region 11. One of the N+ type zones 18-2 is located in the high pressure N-type zone 17-2, and the other N+ type zone 18_2 is located in the p-type well zone 12. Further, the metal oxide semiconductor device 1-1 includes a patterned dielectric layer on the substrate u and a patterned conductive layer on the patterned dielectric layer. The patterned dielectric layer 201143090 ' 1 i includes a first portion 14-1 and a second portion 14-2, and the patterned conductive layer includes a first portion 15-1 and a second portion 15-2. A plurality of second isolation structures μ may be formed along the sidewalls of the patterned dielectric layer and the patterned conductive layer. The metal oxide semiconductor device 1-1 can function as a power management integrated circuit (PMIC) and operates at a relatively high voltage of, for example, 12 volts. In some applications, the distance WG between the poles of the interpolar plate can be L2 micron (μιη) or higher to push such a high voltage. The gate here may, for example, be the first portion of the patterned conductive layer: portion 15-turn, and the drain may be, for example, the pattern 18-1 located in the high voltage ρ_type region 17_丨. Further, when the operating voltage is higher, the distance W0 is larger. In the case of +, for example, when the metal oxide is semi-conductive, the distance is W. Can be increased to ~. When the metal oxide; the conductor « is operated at a higher voltage, for example, the face = w 〇 can be increased to 80 μm. For the distance, please refer to the metal oxide semiconductor device (Fig. 7), which can be similar to the metal oxide semiconductor device μ described in Fig. 1. Two: The difference is that the metal oxide semiconductor | £1_2 includes, area 17- 1 and called - and the high voltage Ν type area 17_2 and the middle of the oxide semiconductor nightmare] 2 sets of PCT & metal η Β § device _ eight metal bismuth semiconductor device Μ罝 have the same question 4, its size It is impossible to further reduce the size of the gate. It is important to increase the distance between the gates and the gates of the gates. It is important to maintain a high operating voltage. [Invention] The embodiment of the present invention provides a metal oxide semiconductor device 201143090

TW5638FA η、置包括-擴散區位於—基板卜圖二電 層:=化第一導電層、圖案化第二介電層以及圖案化第 m擴散區包括具一第二摻雜物型之一第一部份和 〃第_物型之一第二部份。圖案化第―介電層包括 =:擴,區之第一部份上之第一介電部分,及 第二介電部分爾第-導電層包括位 τ第:"電部分上之第一導電部分,及位於第二介電部分 t第:導電部分。圖案化第二介電層包括第三介電部分 由弟四,,電部分。第三介電部分係於第-導電部分上延 ::並:著第一導電部分之侧壁延伸至基板。 二導電部分上延伸,並沿著第二導電部分 ^申至基板。圖案化第二導電層係位於圖案化第二介電層 圖案化第二導電層包括第三導電部分及第四導電部 二第二導電部分係位於第三介電部分上,且第四導電部 分係位於第四介電部分上。 本發明之實_所提供之㈣氧化物半導體裝置可 包括一擴散區位於一基板中、 f散區包括具-第二捧雜物型之-第::!=。 =型之一第二部份。圖案化第-介電層包括位於擴散 區之第-部分上之第-介電部分。圖案化第一導電層= —介電層上’且圖案化第一導電層包括位於第 ::電第二介電部分係於第-導電部== 、。口者第一導電部分之側壁而延伸至基板。圖案化 201143090TW5638FA η, the inclusion-diffusion region is located at - the substrate, the second electrical layer: the first conductive layer, the patterned second dielectric layer, and the patterned m-th diffusion region comprise a second dopant type One part and the second part of the first type. The patterned first dielectric layer includes =: expansion, the first dielectric portion on the first portion of the region, and the second dielectric portion of the first conductive layer including the bit τ: " the first on the electrical portion a conductive portion, and a second dielectric portion t: a conductive portion. The patterned second dielectric layer includes a third dielectric portion, and an electrical portion. The third dielectric portion is extended on the first conductive portion: and: the sidewall of the first conductive portion extends to the substrate. The two conductive portions extend over the second conductive portion to the substrate. The patterned second conductive layer is located on the patterned second dielectric layer. The patterned second conductive layer includes a third conductive portion, and the fourth conductive portion and the second conductive portion are located on the third dielectric portion, and the fourth conductive portion It is located on the fourth dielectric part. The (4) oxide semiconductor device provided by the present invention may include a diffusion region located in a substrate, and the f-scatter region includes a - second holding type -::! = one of the second part of the type. The patterned first-dielectric layer includes a first-dielectric portion on a first portion of the diffusion region. Patterning the first conductive layer = - on the dielectric layer ' and patterning the first conductive layer comprises placing the first electrical portion on the first conductive portion == . The side wall of the first conductive portion of the mouth extends to the substrate. Patterning 201143090

I IW5638PA 第二導電層係位於第二介電層上並包括位於第二介電部 分上之第二導電部分。 本發明之實施例所提供之金屬氧化物半導體裝置可 包括一擴散區位於一基板中、圖案化第一介電層、圖案化 第一導電層和圖案化第二導電層。擴散區包括具一第二摻 雜物型之一第一部份和具一第一摻雜物型之一第二部 份。圖案化第一介電層包括位於擴散區之第一部分上之第 一介電部分。圖案化第一導電層係位於圖案化第一介電層 φ 上,並包括第二介電部分及第三介電部分。第二介電部分 係於第一導電部分上延伸,並沿著第一導電部分之第一侧 壁延伸至基板。第三介電部分係於第一導電部分上延伸並 沿著第一導電部分之第二側壁延伸至基板。第二及第三介 電部分係於第一導電部分上彼此分離。圖案化第二導電層 係為於圖案化第二介電層上並包括第二導電部分及第三 導電部分。第二導電部分係位於第二介電部分上,且第三 導電部分係位於第三介電部分上。 • 本發明之部分之其他特徵及優點將於下文中敘述,其 他部分則可由敘述中顯而易見地看出,或藉由實施本發明 得知。由申請專利範圍中指出之元件及其組合中可明白並 得知本發明之特徵及優點。 可了解的是,以上之一般敘述及後述之詳細内容係為 範例且僅用以解釋本發明,本發明之範圍並不以此為限。 為讓本發明之上述内容能更明顯易懂,下文特舉一較 佳實施例,並配合所附圖式,作詳細說明如下: 201143090 i 【實施方式】 以下係參照所附圖式詳細說明本發明。當情況許可 時,相同的標號係用以標示圖式中相同或相似之部分。需 注思的是’圖式係為閉化之形式而非精確的尺寸。 第2Α圖至第2D圖繪示依照本發明之一實施例之雙 擴散汲極(double diffused drain, DDD)金屬氧化物半導 體裝置之製造方法之剖面示意圖。請參照第2A圖,提供 一基板20。數個隔離結構23可形成於基板2〇上。在一實 施例中,隔離結構23可包括矽氧化物,例如是二氧化矽, 但並不以此為限。此外,隔離結構23可包括場氧化層(fieid oxide,FOX)結構,且場氧化層結構可藉由氧化製程而形 成於基板20上。或者,隔離結構23可包括淺溝槽隔離 (shadow trench is〇lation,STI)結構,且淺溝槽隔離結構 可藉由於氧化製程之前進行微影製程及刻製程而形成。 接著,第一摻雜物可被佈植於基板2〇中,第一摻雜 物例如是濃度約為,^之㈣摻雜物(在實施例中, 基板20之前紐摻雜—第二摻雜物,例如是p型摻雜物 被佈植之第—摻雜物可擴散至—所需深度,形成擴散區之 第-部份I’〗也就是基板2〇 + 型井區21。同樣地,濃 度、’勺為cm之第二摻雜物可被佈植於基板中。被 佈植之第-摻雜物可擴散而形成擴散區之第二部份,也就 是基板20中之p型井區22。 後帛介電層(未繪示於圖中)可藉由沈積製^ 而幵二成於基板2G上。之後,第_導電層(未繪示於圖中 可藉由另氧化製程(〇χί_⑽口咖⑽)而形成於第一介^ 201143090The I IW5638PA second conductive layer is on the second dielectric layer and includes a second conductive portion on the second dielectric portion. A metal oxide semiconductor device provided by an embodiment of the present invention may include a diffusion region in a substrate, a patterned first dielectric layer, a patterned first conductive layer, and a patterned second conductive layer. The diffusion region includes a first portion having a second dopant type and a second portion having a first dopant type. The patterned first dielectric layer includes a first dielectric portion on a first portion of the diffusion region. The patterned first conductive layer is on the patterned first dielectric layer φ and includes a second dielectric portion and a third dielectric portion. The second dielectric portion extends over the first conductive portion and extends along the first side wall of the first conductive portion to the substrate. The third dielectric portion extends over the first conductive portion and extends along the second sidewall of the first conductive portion to the substrate. The second and third dielectric portions are separated from each other on the first conductive portion. The patterned second conductive layer is patterned on the second dielectric layer and includes a second conductive portion and a third conductive portion. The second conductive portion is on the second dielectric portion and the third conductive portion is on the third dielectric portion. Other features and advantages of the invention will be set forth in the description which follows. The features and advantages of the present invention are apparent from the elements and combinations thereof pointed out. The above general description and the following detailed description are intended to be illustrative of the invention and are not intended to limit the scope of the invention. In order to make the above description of the present invention more comprehensible, the following description of the preferred embodiments and the accompanying drawings will be described in detail as follows: 201143090 i [Embodiment] The following is a detailed description with reference to the accompanying drawings. invention. When the circumstances permit, the same reference numbers are used to identify the same or similar parts in the drawings. It is important to note that the 'pattern is the form of closure rather than the exact size. 2D through 2D are cross-sectional views showing a method of fabricating a double diffused drain (DDD) metal oxide semiconductor device in accordance with an embodiment of the present invention. Referring to Figure 2A, a substrate 20 is provided. A plurality of isolation structures 23 may be formed on the substrate 2A. In one embodiment, the isolation structure 23 may comprise a cerium oxide, such as cerium oxide, but is not limited thereto. In addition, the isolation structure 23 may include a field oxide layer (FOX) structure, and the field oxide layer structure may be formed on the substrate 20 by an oxidation process. Alternatively, the isolation structure 23 may include a shallow trench isolation (STI) structure, and the shallow trench isolation structure may be formed by performing a lithography process and an engraving process prior to the oxidation process. Then, the first dopant can be implanted in the substrate 2, and the first dopant is, for example, a dopant of about (4) dopant (in the embodiment, the substrate 20 is doped before the second doping) The foreign matter, for example, the first dopant of the p-type dopant can be diffused to the desired depth, and the first part of the diffusion region is formed as the substrate 2〇+ type well region 21. Ground, a second dopant having a concentration of 'cute in cm' can be implanted in the substrate. The implanted dopant-diffusion can diffuse to form a second portion of the diffusion region, that is, p in the substrate 20. The well region 22. The rear germanium dielectric layer (not shown) can be formed on the substrate 2G by deposition. After that, the first conductive layer (not shown in the figure can be used by another Oxidation process (〇χί_(10) mouth coffee (10)) formed in the first media ^ 201143090

• ^ TW5638PA• ^ TW5638PA

層上。接著,圖案化第一導電層25可藉由蝕刻製程而形 成,並於之後使用圖案化第一導電層25為遮罩而形成圖 案化第一介電層24。在本發明之一實施例中,圖案化第一 介電層24可包括石夕氧化物,例如是二氧化石夕。此外,圖 案化第一導電層25可包括堆疊結構,且矽化鎢係堆疊於 多矽晶(poly-silicon )層上。圖案化第一導電層25可包 括位於N型井區21上之第一部分25-1及位於P型井區22 上之第二部分25-2。圖案化第一介電層24可包括位於N • 型井區21上之第一部分24-1及位於P型井區22上之第二 部分24-2。 請參照第2B圖,第二介電層34可藉由沈積製程而形 成於圖案化第一導電層25及基板20上。在一實施例中, 第二介電層34可包括高溫氧化物(high temperature oxide, HT0)。另一實施例中,第二介電層34可包括石夕氧化物或 氮化矽。接著,第二導電層35可藉由沈積製程而形成於 第二介電層34上。第二導電層35可包括多矽晶。 • 請參照第2C圖,可蝕刻第二導電層35以形成圖案化 第二導電層350。第二導電層350可包括第一部分35-1及 第二部分35-2。接著,可使用圖案化第二導電層350為遮 罩而蝕刻第二介電層34,以形成圖案化第二介電層340。 圖案化第二介電層340包括第一部分34-1及第二部分 34-2。圖案化第二介電層340之第一部分34-1可於圖案化 第一導電層25之第一部分25-1上延伸,覆蓋第一部分25-1 之上表面251Τ之一部份,並沿著圖案牝第一導電層25之 第一部分25-1之側壁251R延伸至基板20上。此外,圖ί s 201143090 l 9 j 案化第二導電層350之第一部分35-1可沈積於圖案化第二 介電層340之第一部分34-1上。 同樣地,圖案化第二介電層340之第二部分34-2可 於圖案化第一導電層25之第二部分25-2上延伸,覆蓋第 二部分25-2之上表面252T,並沿著圖案化第一導電層25 之第二部分25-2之側壁252R延伸至基板20上。此外, 圖案化第二導電層350之第二部分35-2可位於圖案化第二 導電層340之第二部分34-2上。 請參照第2D圖,例如是間隔物26之隔離結構可藉 由沈積製程而形成。具體地來說,某些間隔物26可朝向 基板20並分別沿著第一部分35-1及第二部分35-2之侧壁 351R及352R而形成,且其他的間隔物26可朝向基板20 並分別沿著第一部分25-1及第二部分25-2之側壁251L及 252L而形成。舉例來說,第二隔離結構26可包括四乙氧 基石夕炫·(tetraethyl orthosilicate,TEOS)。 之後,濃度約為1〇12 to 1013 cm·3之第一摻雜物可藉 由植入製程而被佈植於部分之N型井21,而形成可做為 高壓-P型區之第一佈植區27-1。一實施例中,第一佈植區 27-1之深度係介於0.4至0.6 μιη,並可與圖案化第二介電 層340之第一部份34-1及圖案化第二導電層350之第一 部分35-1重疊。 同樣地,濃度約介於1〇12至1〇13 cnT3之第一摻雜物 可藉由植入製程而被佈植於部份之P型區22,以形成第二 佈植區27-2。第二佈植區27-2可做為高壓N-型區。一實 施例中,第二佈植區27-2之深度可約介於0.4至0.6 μιη, 201143090On the floor. Next, the patterned first conductive layer 25 can be formed by an etching process, and then the patterned first dielectric layer 24 is formed using the patterned first conductive layer 25 as a mask. In one embodiment of the invention, the patterned first dielectric layer 24 may comprise a stone oxide, such as a dioxide dioxide. Further, the patterned first conductive layer 25 may include a stacked structure, and the tungsten telluride is stacked on the poly-silicon layer. The patterned first conductive layer 25 can include a first portion 25-1 on the N-well region 21 and a second portion 25-2 on the P-well region 22. The patterned first dielectric layer 24 can include a first portion 24-1 on the N-type well region 21 and a second portion 24-2 on the P-type well region 22. Referring to FIG. 2B, the second dielectric layer 34 can be formed on the patterned first conductive layer 25 and the substrate 20 by a deposition process. In an embodiment, the second dielectric layer 34 may include a high temperature oxide (HT0). In another embodiment, the second dielectric layer 34 may comprise a stone oxide or tantalum nitride. Next, the second conductive layer 35 can be formed on the second dielectric layer 34 by a deposition process. The second conductive layer 35 may include a plurality of twins. • Referring to Figure 2C, the second conductive layer 35 can be etched to form the patterned second conductive layer 350. The second conductive layer 350 may include a first portion 35-1 and a second portion 35-2. Next, the second dielectric layer 34 can be etched using the patterned second conductive layer 350 as a mask to form a patterned second dielectric layer 340. The patterned second dielectric layer 340 includes a first portion 34-1 and a second portion 34-2. The first portion 34-1 of the patterned second dielectric layer 340 may extend over the first portion 25-1 of the patterned first conductive layer 25, covering a portion of the upper surface 251 of the first portion 25-1, and along The sidewall 251R of the first portion 25-1 of the pattern 牝 first conductive layer 25 extends onto the substrate 20. In addition, a first portion 35-1 of the second conductive layer 350 may be deposited on the first portion 34-1 of the patterned second dielectric layer 340. Similarly, the second portion 34-2 of the patterned second dielectric layer 340 can extend over the second portion 25-2 of the patterned first conductive layer 25, covering the upper surface 252T of the second portion 25-2, and A sidewall 252R of the second portion 25-2 of the patterned first conductive layer 25 extends along the substrate 20. Additionally, the second portion 35-2 of the patterned second conductive layer 350 can be located on the second portion 34-2 of the patterned second conductive layer 340. Referring to Figure 2D, for example, the isolation structure of the spacers 26 can be formed by a deposition process. In particular, some of the spacers 26 may be formed toward the substrate 20 and along the sidewalls 351R and 352R of the first portion 35-1 and the second portion 35-2, respectively, and the other spacers 26 may face the substrate 20 and The sidewalls 251L and 252L of the first portion 25-1 and the second portion 25-2 are formed, respectively. For example, the second isolation structure 26 can include tetraethyl orthosilicate (TEOS). Thereafter, the first dopant having a concentration of about 1 〇 12 to 1013 cm·3 can be implanted in a portion of the N-type well 21 by an implantation process to form a first high-pressure-P-type region. Planting area 27-1. In one embodiment, the first implant region 27-1 has a depth of 0.4 to 0.6 μm, and can be patterned with the first portion 34-1 of the second dielectric layer 340 and the patterned second conductive layer 350. The first part 35-1 overlaps. Similarly, the first dopant having a concentration of about 1〇12 to 1〇13 cnT3 can be implanted in a portion of the P-type region 22 by the implantation process to form the second implant region 27-2. . The second planting zone 27-2 can be used as a high pressure N-type zone. In one embodiment, the second implant zone 27-2 may have a depth of between about 0.4 and 0.6 μm, 201143090

' · TW5638PA 並It案化第二介電層340之第二部分34-2及圖案化第 一導电層350之第二部分35-2重疊。 之後’可藉由植入製程而形成—對第三佈植區叫, ,、中一個第三佈植區28-丨係位於第—佈植區274中,而 另個第二佈植d 28-1係位於N型彳21中。一實施例中, 此兩個第二佈植區28-1之濃度約介於1〇15至1〇16 cm_3,The TW5638PA and the second portion 34-2 of the second dielectric layer 340 and the second portion 35-2 of the patterned first conductive layer 350 overlap. Then 'can be formed by the implantation process—called the third planting area, and the middle third planting area 28-丨 is located in the first planting area 274, and the other second planting d 28 The -1 system is located in the N-type crucible 21. In one embodiment, the concentration of the two second implanted regions 28-1 is between about 1〇15 and 1〇16 cm_3.

且其深度約為〇.2叩。同樣地’可形成兩個第四佈植區 -2,其中一個第四佈植區28_2係形成於第二佈植區27_2 中,而另一個第四佈植區28-2係形成於P型井22中。此 兩個第四佈植區28-2之濃度約介於1〇i5至1〇丨6。瓜_3,且 其深度約為0.2 μιη。 、然後’具有約A 1013 cm·3之第一濃度之第一摻雜物 可被摻雜於圖案化第二導電層35〇之第一部分35_1及第二 部分35·2中’⑽成具有非對稱結構之雙擴該極金屬^ 化物半導體裝置2-1。 "第3Α圖緣示依照本發明之一實施例之雙擴散沒極金 屬氧化物半導體裝置3-1之剖面示意圖。請參照第从圖, 金屬氧化物半導體裝置3-1可類似於參照第2D圖所述之 金屬氧化物半導體裝置2_丨,但圖案化第二導電層35〇之 第一部分45-1及第二部分45-2可分別取代圖案化第二導 電層350之第-部分35]及第二部分况。具體地來;, 具有約為lG14em_3之第二濃度之第—摻雜物可藉由植入 製程而被摻雜於圖案化第二導電層35〇之第一部分 及第二部分45-2中,且第二濃度係大於第一濃度。金屬氧 化物半導體裝置3-1之圖案化第二導電層35〇具有摻雜[ 201143090 1 W3035t"A * i , 物。因此,與金屬氧化物半導體裝置2-1相較,金屬氧化 物半導體裝置3-1可能更適合低電阻之應用。 第3B圖繪示依照本發明之另一實施例之雙擴散汲極 金屬氧化物半導體裝置3-2之剖面示意圖。請參照第3B 圖,金屬氧化物半導體裝置3-2可與參照第2D圖所述之 金屬氧化物半導體裝置2-1相似,但圖案化第二介電層440 與圖案化第二導電層450可分別取代圖案化第二介電層 340與圖案化第二導電層350。具體地來說,當蝕刻如第 2B圖所示之第二導電層35之後,圖案化第二導電層450 φ 包括位於隔離結構23上之第三部分35-3,並包括第一部 分35-1以及第二部分35-2。此外,當蝕刻如第2B圖所示 之第二介電層34之後,圖案化第二介電層440包括位於 隔離結構23上之第三部分34-3,並包括第一部分34-1及 第二部分34-2。金屬氧化物半導體裝置3-2具有第三部分 34-3與35-3。因此,與金屬氧化物半導體裝置2-1相較, 金屬氧化物半導體裝置3-2可能更適合高電阻之應用。 第4A圖及第4B圖繪示依照本發明之另一實施例之 籲 雙擴散金屬氧化物半導體裝置之製造方法之剖面示意 圖。當如第2B圖所示之第二介電層34及第二導電層35 而形成之後,請參照第4A圖,圖案化第二導電層550可 藉由於蝕刻製程中蝕刻第二導電層35而形成。圖案化第 二導電層550可包括位於N型井21上之第一部分35-1R 及第一部分35-1L,以及位於P型井22上之第二部分35-2R 及第二部分35-2L。 接著,圖案化第二介電層540可藉由使用圖案化第二 12 201143090And its depth is about 〇.2叩. Similarly, two fourth planting zones-2 can be formed, wherein one fourth planting zone 28_2 is formed in the second planting zone 27_2, and the other fourth planting zone 28-2 is formed in the P-type. In the well 22. The concentration of the two fourth planting zones 28-2 is approximately between 1〇i5 and 1〇丨6. Melon _3, and its depth is about 0.2 μηη. And then 'the first dopant having a first concentration of about A 1013 cm·3 can be doped in the first portion 35_1 and the second portion 35·2 of the patterned second conductive layer 35〇' (10) into a non- The metal structure semiconductor device 2-1 is double-spread by a symmetrical structure. <Fig. 3 is a schematic cross-sectional view showing a double-diffused electrodeless metal oxide semiconductor device 3-1 according to an embodiment of the present invention. Referring to the second embodiment, the metal oxide semiconductor device 3-1 can be similar to the metal oxide semiconductor device 2_丨 described with reference to FIG. 2D, but the first portion 45-1 and the first portion of the second conductive layer 35 are patterned. The two portions 45-2 can replace the first portion 35] and the second portion of the patterned second conductive layer 350, respectively. Specifically, a first dopant having a second concentration of about 1G14em_3 may be doped in the first portion and the second portion 45-2 of the patterned second conductive layer 35 by an implantation process, And the second concentration is greater than the first concentration. The patterned second conductive layer 35 of the metal oxide semiconductor device 3-1 has a doping [201143090 1 W3035t" A * i , object. Therefore, the metal oxide semiconductor device 3-1 may be more suitable for low resistance applications than the metal oxide semiconductor device 2-1. Fig. 3B is a cross-sectional view showing a double diffused drain metal oxide semiconductor device 3-2 according to another embodiment of the present invention. Referring to FIG. 3B, the MOS device 3-2 can be similar to the MOS device 2-1 described with reference to FIG. 2D, but the second dielectric layer 440 and the patterned second conductive layer 450 are patterned. The patterned second dielectric layer 340 and the patterned second conductive layer 350 may be replaced, respectively. Specifically, after etching the second conductive layer 35 as shown in FIG. 2B, the patterned second conductive layer 450 φ includes the third portion 35-3 on the isolation structure 23, and includes the first portion 35-1 And the second part 35-2. In addition, after etching the second dielectric layer 34 as shown in FIG. 2B, the patterned second dielectric layer 440 includes a third portion 34-3 on the isolation structure 23, and includes a first portion 34-1 and a portion The second part is 34-2. The metal oxide semiconductor device 3-2 has third portions 34-3 and 35-3. Therefore, the metal oxide semiconductor device 3-2 may be more suitable for high resistance applications than the metal oxide semiconductor device 2-1. 4A and 4B are schematic cross-sectional views showing a method of fabricating a double-diffused metal oxide semiconductor device in accordance with another embodiment of the present invention. After forming the second dielectric layer 34 and the second conductive layer 35 as shown in FIG. 2B, referring to FIG. 4A, the patterned second conductive layer 550 can be etched by etching the second conductive layer 35 in the etching process. form. The patterned second conductive layer 550 can include a first portion 35-1R and a first portion 35-1L on the N-well 21, and a second portion 35-2R and a second portion 35-2L on the P-well 22. Next, the patterned second dielectric layer 540 can be patterned by using the second 12 201143090

. TW5638PA 導電層550為遮罩,於蝕刻製程中蝕刻第二介電層34而 形成。圖案化第二介電層540可包括位於N型井21上之 第一部分34-1R及第一部分34-1L,以及位於P型井22上 之第二部分34-2R及第二部分34-2L。圖案化第二介電層 540之第一部分34-1R可於第一導電層25之第一部分25-1 上延伸,覆蓋第一部分25-1之上表面251T之一部份,並 沿著圖案化第一導電層25之第一部分25-1之側壁251R 延伸至基板20。此外,圖案化第二導電層550之第一部分 φ 35-1R可位於圖案化第二介電層540之第一部分34-1R上。 同樣地,圖案化第二介電層540之第一部分34-1L可 於圖案化導電層25之第一部分25-1上延伸,覆蓋第一部 分25-1之上表面251T之另一部分,並沿著圖案化第一導 電層25之第一部分25-1延伸至基板20。第一部分35-1R 及35-1L可於上表面251T上彼此分離。此外,圖案化第 二導電層550之第一部分35-1L可位於圖案化第二介電層 540之第一部分34-1L上。 • 同樣地,圖案化第二介電層540之第二部分34-2R可 於圖案化第一導電層25之第二部分25-2上延伸,覆蓋第 二部分25-2之上表面252T之一部份,並沿著圖案化第一 導電層25之第二部分25-2之側壁252R延伸至基板20。 此外,圖案化之第二導電層550之第二部分35-2R可位於 圖案化第二介電層540之第二部分34-2R上。 同樣地,圖案化第二介電層540之第二部分34-2L可 於圖案化第一導電層25之第二部分25-2上延伸,覆蓋第 二部分25-2之上表面252T之另一部份,並沿著圖案化第s 13 201143090 i 1 * 一導電層25之第二部分25-2之側壁252L延伸至基板20。 第二部分35-1R及35-1L可於上表面252T上彼此分離。 此外,圖案化第二導電層550之第二部分35-2L可位於圖 案化第二介電層540之第二部分34-2L上。 請參照第4B圖,間隔物46可沿著圖案化第一導電層 550及圖案化第二介電層540之側壁而形成。接著,一對 第一佈植區27-1及29-1可形成於N型井21中。第一佈植 區27-1可與第一部分34-1R及35-1R重疊。與第一佈植區 27-1分離之第一佈植區29-1可與第一部分34-1L及35-1L 重疊。 同樣地,一對第二佈植區27-2及29-2可形成於P型 井22中。第二佈植區27-2可與第二部分34-2L及35-2L 重疊。與第二佈植區27-2分離之第二佈植區29-2可與其 他的第二部分34-2L及35-2L重疊。 一對第三佈植區28-1可分別形成於第一佈植區27-1 及29-1中。同樣地,一對第四佈植區28-2可分別形成於 第二佈植區27-2及29-2中。接著,第二摻雜物可被摻雜 於圖案化第二導電層550之第一部分35-1R與35-1L以及 第二部分35-2R及35-2L。第一摻雜物具有約為1013cm·3 之第一濃度,使得雙擴散金屬氧化物半導體裝置4-1具有 對稱結構。 第5A圖繪示依照本發明之再一實施例之雙擴散汲極 金屬氧化物半導體裝置5-1之剖面示意圖。請參照第5A 圖,金屬氧化物半導體裝置5-1可類似於參照第4B圖所 述之金屬氧化物半導體裝置4-卜但圖案化第二導電層550 201143090 · TW5638P 入 之第一部分55-1R及55-1L及第二部分55-2R及55-2L可 分別取代圖案化第二導電層550之第一部分35-1R及 35-1L及第二部分35-2R及35-2L。具體地來說,具有約為 1014cm_3之第二濃度之第一摻雜物可藉由植入製程而被摻 雜於圖案化第二導電層550之第一部分55-1R及55-1L及 第二部分55-2R及55-2L。金屬氧化物半導體裝置5-1之 圖案化第二導電層550之第一部分55-1R及55-1L與第二 部分55-2R與55-2L係具有摻雜物。因此,與金屬氧化物 • 半導體裝置4-1相較,金屬氧化物半導體裝置5-1可能更 適合低電阻之應用。 第5B圖繪示依照本發明之一實施例之雙擴散汲極金 屬氧化物半導體裝置5-2之剖面示意圖,請參照第5B圖, 金屬氧化物半導體裝置5-2可類似於參照第4B圖所述之 金屬氧化物半導體裝置4-1,但圖案化第二介電層640及 圖案化第二導電層650可例如是分別取代圖案化第二介電 層540及圖案化第二導電層550。具體地來說,當蝕刻如 • 第2B圖所示之第二導電層35之後,圖案化第二導電層650 包括位於隔離結構23上之第三部分35-3,並包括第一部 分35-1R及35-1L與第二部分35-2R及35-2L。再者,當 蝕刻如第2B圖所示之第二介電層34之後,圖案化第二介 電層640包括位於隔離結構23上之第三部分34-3,並包 括第一部分34-1R及34-1L與第二部分34-2R及34-2L。 金屬氧化物半導體裝置5-2具有第三部分34-3及35-3。因 此,與金屬氧化物半導體裝置4-1相較,金屬氧化物半導 體裝置5-2更適合高電阻之應用。 [ 15 201143090 TW5638PA . ' 如上所述,高壓P-型區27-1及高壓N-區27-2中之摻 雜物濃度可約為1012至1013cnT3。當濃度為此等級時,具 有依照本發明之結構之雙擴散汲極金屬氧化物半導體裝 置之崩潰電壓可大於不具有本發明之結構之雙擴散汲極 金屬氧化物半導體裝置,且其汲極至源極導通電阻 (drain-to-source on-state resistance, RdsON )可能並無明顯 之變化。當濃度等級增加時,例如是增加至大於1〇12至1013 cm·3,崩潰電壓可能會減少,而汲極至源極導通電阻可能 亦會降低。具有低汲極至源極導通電阻之雙擴散汲極金屬 氧化物半導體裝置可容許電源管理積體電路具有較大之 功率。依此’在不需要增加閘極至汲極之距離之情況下, 藉由增加濃度之等級,依照本發明之雙擴散汲極金屬氧化 物半導體裝置可用於高電壓之環境。 综上所述,雖然本發明已以較佳實施例揭露如上,然 其並非用以限定本發明。本發明所屬技術領域中具有通常 知識者,在不脫離本發明之精神和範圍内,當可作各種之 更動與潤飾。因此,本發明之保護範圍當視後附之申請專 利範圍所界定者為準》 此外’在敘述本發明之上述實施例時,本發明之方法 且/或程序可依特定之順序而揭露。然而,本發明之方法或 粒序並不受限於此特定之順序。本發明所屬技術領域中具 有通常知識者當可了解,此方法或程序之步驟亦可具有其 他順序。因此,上述之步驟之特定順序並非用以限制本發 明之範圍。此外,與本發明之方法且/或程序相關之申請專 利範圍不應受限於所述之步驟之順序。本發明所屬技術領 201143090The TW5638PA conductive layer 550 is a mask formed by etching a second dielectric layer 34 in an etching process. The patterned second dielectric layer 540 can include a first portion 34-1R and a first portion 34-1L on the N-well 21, and a second portion 34-2R and a second portion 34-2L on the P-well 22. . The first portion 34-1R of the patterned second dielectric layer 540 may extend over the first portion 25-1 of the first conductive layer 25, covering a portion of the upper surface 251T of the first portion 25-1, and patterning along The sidewall 251R of the first portion 25-1 of the first conductive layer 25 extends to the substrate 20. Additionally, the first portion φ 35-1R of the patterned second conductive layer 550 can be located on the first portion 34-1R of the patterned second dielectric layer 540. Similarly, the first portion 34-1L of the patterned second dielectric layer 540 may extend over the first portion 25-1 of the patterned conductive layer 25, covering another portion of the upper surface 251T of the first portion 25-1, and along The first portion 25-1 of the patterned first conductive layer 25 extends to the substrate 20. The first portions 35-1R and 35-1L may be separated from each other on the upper surface 251T. Additionally, the first portion 35-1L of the patterned second conductive layer 550 can be located on the first portion 34-1L of the patterned second dielectric layer 540. • Similarly, the second portion 34-2R of the patterned second dielectric layer 540 can extend over the second portion 25-2 of the patterned first conductive layer 25, covering the upper surface 252T of the second portion 25-2. A portion extends along the sidewall 252R of the second portion 25-2 of the patterned first conductive layer 25 to the substrate 20. Additionally, the second portion 35-2R of the patterned second conductive layer 550 can be located on the second portion 34-2R of the patterned second dielectric layer 540. Similarly, the second portion 34-2L of the patterned second dielectric layer 540 can extend over the second portion 25-2 of the patterned first conductive layer 25, covering the upper surface 252T of the second portion 25-2. A portion extends along the sidewall 252L of the second portion 25-2 of the conductive layer 25 along the patterned s 13 201143090 i 1 * to the substrate 20. The second portions 35-1R and 35-1L may be separated from each other on the upper surface 252T. Additionally, the second portion 35-2L of the patterned second conductive layer 550 can be located on the second portion 34-2L of the patterned second dielectric layer 540. Referring to FIG. 4B, the spacers 46 may be formed along the sidewalls of the patterned first conductive layer 550 and the patterned second dielectric layer 540. Next, a pair of first implanting regions 27-1 and 29-1 may be formed in the N-type well 21. The first planting zone 27-1 may overlap the first sections 34-1R and 35-1R. The first planting zone 29-1 separated from the first planting zone 27-1 may overlap the first sections 34-1L and 35-1L. Similarly, a pair of second implant regions 27-2 and 29-2 can be formed in the P-well 22. The second implanting zone 27-2 can overlap the second sections 34-2L and 35-2L. The second planting zone 29-2 separated from the second planting zone 27-2 may overlap with the other second sections 34-2L and 35-2L. A pair of third implanting regions 28-1 may be formed in the first implanting regions 27-1 and 29-1, respectively. Similarly, a pair of fourth implanting regions 28-2 may be formed in the second implanting regions 27-2 and 29-2, respectively. Next, a second dopant may be doped to the first portions 35-1R and 35-1L and the second portions 35-2R and 35-2L of the patterned second conductive layer 550. The first dopant has a first concentration of about 1013 cm·3 such that the double-diffused metal oxide semiconductor device 4-1 has a symmetrical structure. Fig. 5A is a cross-sectional view showing a double diffused drain metal oxide semiconductor device 5-1 according to still another embodiment of the present invention. Referring to FIG. 5A, the metal oxide semiconductor device 5-1 can be similar to the metal oxide semiconductor device described in FIG. 4B - but the patterned second conductive layer 550 201143090 · TW5638P is incorporated into the first portion 55-1R. And 55-1L and second portions 55-2R and 55-2L may respectively replace the first portions 35-1R and 35-1L and the second portions 35-2R and 35-2L of the patterned second conductive layer 550. Specifically, the first dopant having a second concentration of about 1014 cm_3 may be doped to the first portions 55-1R and 55-1L and the second portion of the patterned second conductive layer 550 by an implantation process. Parts 55-2R and 55-2L. The first portions 55-1R and 55-1L of the patterned second conductive layer 550 of the MOS device 5-1 and the second portions 55-2R and 55-2L have dopants. Therefore, the metal oxide semiconductor device 5-1 may be more suitable for low resistance applications than the metal oxide semiconductor device 4-1. FIG. 5B is a cross-sectional view showing a double-diffused-drain metal oxide semiconductor device 5-2 according to an embodiment of the present invention. Referring to FIG. 5B, the metal oxide semiconductor device 5-2 can be similar to the reference to FIG. The metal oxide semiconductor device 4-1, but the patterned second dielectric layer 640 and the patterned second conductive layer 650 may, for example, replace the patterned second dielectric layer 540 and the patterned second conductive layer 550, respectively. . Specifically, after etching the second conductive layer 35 as shown in FIG. 2B, the patterned second conductive layer 650 includes the third portion 35-3 on the isolation structure 23, and includes the first portion 35-1R. And 35-1L and the second parts 35-2R and 35-2L. Furthermore, after etching the second dielectric layer 34 as shown in FIG. 2B, the patterned second dielectric layer 640 includes a third portion 34-3 on the isolation structure 23, and includes a first portion 34-1R and 34-1L and second portions 34-2R and 34-2L. The metal oxide semiconductor device 5-2 has third portions 34-3 and 35-3. Therefore, the metal oxide semiconductor device 5-2 is more suitable for high resistance applications than the metal oxide semiconductor device 4-1. [ 15 201143090 TW5638PA . ' As described above, the concentration of the dopant in the high-pressure P-type region 27-1 and the high-pressure N-region 27-2 may be about 1012 to 1013 cnT3. When the concentration is at this level, the double-diffused-electrode-metal oxide semiconductor device having the structure according to the present invention may have a breakdown voltage greater than that of the double-diffused-electrode-metal oxide semiconductor device having the structure of the present invention, and the drain is There may be no significant change in the drain-to-source on-state resistance ( RdsON ). When the concentration level is increased, for example, increasing to more than 1〇12 to 1013 cm·3, the breakdown voltage may decrease, and the drain-to-source on-resistance may also decrease. A double-diffused-drain metal oxide semiconductor device having a low-drain-to-source on-resistance allows the power management integrated circuit to have a large power. According to this, the double-diffused-electrode metal oxide semiconductor device according to the present invention can be used in a high-voltage environment by increasing the concentration of the gate to the drain. In the above, the present invention has been disclosed in the above preferred embodiments, but it is not intended to limit the present invention. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the present invention is defined by the scope of the appended claims, and the method and/or procedures of the present invention may be disclosed in a particular order. However, the methods or sequences of the present invention are not limited to this particular order. It will be appreciated by those of ordinary skill in the art that the steps of the method or procedure may have other sequences. Therefore, the specific order of steps described above is not intended to limit the scope of the invention. Furthermore, the scope of the patent application, which is related to the method and/or procedure of the present invention, should not be limited to the order of the steps described. Technical party to which the present invention pertains 201143090

‘ · 1W5638PA 域中具有通常知識者當可明瞭其順序可為不同,但仍不脫 離本發明之精神與範圍。 【圖式簡單說明】 第1A圖及第1B圖繪示習知金屬氧化物半導體裝置 之剖面示意圖; 第2A圖至第2D圖繪示依照本發明之一實施例之雙 擴散汲極金屬氧化物半導體裝置之製造方法之剖面示意 圖; φ 第3A圖繪示依照本發明之一實施例之雙擴散汲極金 屬氧化物半導體裝置之剖面示意圖; 第3B圖繪示依照本發明之另一實施例之雙擴散汲極 金屬氧化物半導體裝置之剖面示意圖; 第4A圖及第4B圖繪示依照本發明之另一實施例之 雙擴散金屬氧化物半導體裝置之製造方法之剖面示意圖; 第5A圖繪示依照本發明之再一實施例之雙擴散汲極 金屬氧化物半導體裝置之剖面示意圖;以及 • 第5B圖繪示依照本發明之再一實施例之雙擴散汲極 金屬氧化物半導體裝置之剖面示意圖。 【主要元件符號說明】 1-1、1-2、2-1、3-1、3-2、5-1、5-2 :金屬氧化物半 導體裝置 10、20 :基板 11 : N型井區 12 : P型井區 13、16、23 :隔離結構 - 17 201143090 TW5638FA * ' 14-1 :圖案化介電層之第一部份 14- 2:圖案化介電層之第二部分 15- 1 :圖案化導電層之第一部份 15-2:圖案化導電層之第二部分 17-1、19-1 :高壓P-型區 17- 2、19-2 :高壓N-型區 18- 1 . P+型區 18-2 · N+型區 24:圖案化第一介電層 24-1 : N型井區之第一部分 24- 2 : P型井區之第二部分 25:圖案化第一導電層 25- 1 :第一導電層之第一部份 25-2 :第一導電層之第二部分 26、46 :間隔物 27-1、29-1 :第一佈植區 27- 2、29-2 :第二佈植區 28- 1 :第三佈植區 28-2 :第四佈植區 34 :第二介電層 34-1、34-1L、34-1R :圖案化第二介電層之第一部份 34-2、34-2R、34-2L :圖案化第二介電層之第二部分 34- 3:圖案化第二介電層之第三部分 35 :第二導電層 35- 1、45-1、35_1L、35-1R、55-1L、55-1R :圖案化 201143090‘ The general knowledge of the 1W5638PA domain may be different, but the spirit and scope of the present invention will not be removed. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A and 1B are schematic cross-sectional views showing a conventional metal oxide semiconductor device; FIGS. 2A to 2D are diagrams showing a double diffused drain metal oxide according to an embodiment of the present invention. FIG. 3A is a schematic cross-sectional view showing a double-diffused drain metal oxide semiconductor device according to an embodiment of the present invention; FIG. 3B is a cross-sectional view showing another embodiment of the present invention; FIG. 4A and FIG. 4B are schematic cross-sectional views showing a method of fabricating a double-diffused metal oxide semiconductor device according to another embodiment of the present invention; FIG. 5A is a diagram A schematic cross-sectional view of a double-diffused-drain metal-oxide-semiconductor device according to still another embodiment of the present invention; and FIG. 5B is a cross-sectional view showing a double-diffused-drain metal-oxide-semiconductor device according to still another embodiment of the present invention. . [Explanation of main component symbols] 1-1, 1-2, 2-1, 3-1, 3-2, 5-1, 5-2: Metal oxide semiconductor device 10, 20: Substrate 11: N-type well region 12: P-type well area 13, 16, 23: isolation structure - 17 201143090 TW5638FA * ' 14-1 : The first part of the patterned dielectric layer 14 - 2: the second part of the patterned dielectric layer 15- 1 : The first portion of the patterned conductive layer 15-2: the second portion of the patterned conductive layer 17-1, 19-1: high voltage P-type region 17-2, 19-2: high voltage N-type region 18- 1. P+ type zone 18-2 · N+ type zone 24: patterned first dielectric layer 24-1: first part of N-type well zone 24-2: second part of P-type well zone 25: patterned first Conductive layer 25-1: first portion 25-2 of the first conductive layer: second portion 26, 46 of the first conductive layer: spacers 27-1, 29-1: first implant region 27-2 29-2: Second planting area 28-1: Third planting area 28-2: Fourth planting area 34: Second dielectric layer 34-1, 34-1L, 34-1R: Patterned second The first portion 34-2, 34-2R, 34-2L of the dielectric layer: the second portion 34-3 of the patterned second dielectric layer: the third portion 35 of the patterned second dielectric layer: second Conductive layer 35-1, 45- 1, 35_1L, 35-1R, 55-1L, 55-1R: Patterning 201143090

• · TW5638PA 第二導電層之第一部分 35-2、45-2、35-2L、35-2R、55-2L、55-2R :圖案化 第二導電層之第二部分 35-3 :圖案化第二導電層之第三部分 251R、251L、252R、252L、351R、352R :侧壁 251T、252T :上表面 340、440、540、640 :圖案化第二介電層 350、450、550、650 :圖案化第二導電層• TW5638PA first portion of the second conductive layer 35-2, 45-2, 35-2L, 35-2R, 55-2L, 55-2R: patterned second portion of the second conductive layer 35-3: patterning Third portion 251R, 251L, 252R, 252L, 351R, 352R of the second conductive layer: sidewalls 251T, 252T: upper surface 340, 440, 540, 640: patterned second dielectric layer 350, 450, 550, 650 : Patterning the second conductive layer

1919

Claims (1)

201143090 1 W^03»PA * 5 , 七、申請專利範圍: 1. 一種金屬氧化物半導體裝置,包括: 一擴散區位於一基板中,包括具一第二摻雜物型之一 第一部份和具一第一摻雜物型之一第二部份; 一圖案化第一介電層,包括一第一介電部分與一第二 介電部分,該第一介電部分係位於該擴散區之該第一部份 上,且該第二介電部分係位於該擴散區之該第二部份上; 一圖案化第一導電層,位於該圖案化第一介電層上, 該圖案化第一導電層包括一第一導電部分及一第二導電 Φ 部分,該第一導電部分係位於該第一介電部分上,且該第 二導電部分係位於該第二介電部分上; 一圖案化第二介電層,包括一第三介電部分及一第四 介電部分,該第三介電部分係於該第一導電部分上延伸, 並沿著該第一導電部分之一侧壁延伸至該基板,該第四介 電部分係於該第二導電部分上延伸,並沿著該第二導電部 分之一側壁延伸至該基板;和 一圖案化第二導電層,位於該圖案化第二介電層上,Φ 該圖案化第二導電層包括一第三導電部分及一第四導電 部分,該第三導電部分係位於該第三介電部分上,且該第 四導電部分係位於該第四介電部分上。 2. 如申請專利範圍第1項所述之裝置,更包括一第 一佈植區係該第二摻雜物型,位於該擴散區之該第一部份 中,該第一佈植區係與該第三介電部分及該第三導電部分 重疊。 3. 如申請專利範圍第1項所述之裝置,更包括一第 20 201143090 • · TW5638PA :佈摻雜物型,位於該擴散區之該第二部份 重二第-佈植區係與該第四介電部分及該第四導電部分 4.如申請專利範圍第丨項所述之裝置, =,複數個隔離結構’其中該圖案化第:介電 層^括位於該些_結構上之複數 圖案化第二導電層包括位於該第五介 二且该 第五導電部分。 "罨邛刀上之禝數個 化第-5.導如二,範圍第1項所述之裝置,其中該圖案 導】層包括複數個第一摻雜物,該些第一 為忒第一摻雜物型且具有一第一濃度。 化第^如//專利範圍第5項所述H其中該圖案 第一導電層包括複數個第一摻 為該第—摻雜物型且具有第 該第一濃度。 °亥苐一 /辰度係大於 -你Ir如申請專利範圍第2項所述之裝置更包括-對第 ^植區位於該擴散區之第—部份,其中該些第三佈植區 之一係配置於該第一佈植區中。 8. 如申請專利範圍第1項所述之裝置,苴中哕第一 二=分_該第—導電部分之—上表面之—第二; 第五二包括一第五介電部分,該 部分上μ 導電部分之該上表面之一第二 表面上彼此分Ϊ第三介電部分與該第五介電部分係於該上 9. 如申請專利範圍第8項所述之裝置更包括該第七* 21 201143090 1 W^bJSPA 摻雜物型之-第三佈植區,該第三佈植區係位於該擴散區 之第-部份,且該第三佈植區係與該第五介電部分重疊。 10. —金屬氧化物半導體裝置,包括: 〃-擴散區位於-基板中’包括具—第二摻雜物型之一 第一部份和具一第一掺雜物型之一第二部份; 一圖案化第一介電層,包括位於該擴散區之該第一部 份上之一第一介電部分; 一圖案化第一導電層,位於該圖案化第一介電層上, 該圖案化第一導電層包括位於該第一介電部分上之一第 一導電部分; 一圖案化第二介電層,包括一第二介電部分,該第二 介電部分係於該第一導電部分之一上表面之一第一部份 上延伸’並沿著該第-導電部分之一側壁延伸至該基板; 和 一圖案化第二導電層,位於該圖案化第二介電層上, 忒圖案化第二導電層包括位於該第二介電部分上之一第 二導電部分。 卜u.如申請專利範圍第10項所述之裝置,更包括一 第佈植區係為該第二摻雜物型,位於該擴散區之該第一 部份中,該第一佈植區係與該第二介電部分及該第二導電 部分重疊。 12.如申請專利範圍第1〇項所述之裝置,其甲該圖 案化第二介電層包括一第三介電部分’且該第三介電部分 係於該第一導電部分之該上表面之一第二部分上延伸該 第二介電部分及該第三介電部分係於該上表面上彼此分 22 201143090 . * TW5638PA 括一第胃專利㈣第12項所述之襄置,其中更包 括々第—佈㈣’係為該第二摻雜物型,位於 °亥第14。二且該第二佈植區係與該第三介電部‘重-之 如申請專利範圍第10項所述之裝置,1且 括位於該基板上之複數個隔離結構, ^匕 電層,5括位於該些隔離結構上之複數個第介 5.如申請專利範圍第10項所述之裝置,1 案化第二導電層包括複數個第一摻雜物,且該些第一:二 物係為該第一摻雜物型且具有一第一濃戶。μ一 卜、 宰化範圍第15項所述‘置,其中該圖 案化第—導電層包括複數個第—摻雜物,該些第 係為該第一摻雜物型且具有一第— 夕’、 於該第-濃度。 、有弟一辰度,該第二濃度係大 17·如申請專利範圍第1〇項所述之裝置, 案化第-介電層包括位於該擴散區之該第二部分上之二 第三介電部分’該圖案化第—導電層包括位於該第三介 :分上之-第三導電部分’且該圖案化第二介電層包括一 第四介電部分’該第四介電部分係於該第三導電部分之一 上表面之-第-部份上延伸’並沿著該第三導 側壁延伸至該基板。 18.如申請專利範圍第17項所述之裝置,其令該圖 案化第二導電層包括位於該第四介電部分上之一第四導 電部分,該金屬氧化物半導體裝置更包括—第二佈植區, 係為該第一摻雜物型且位於該擴散區之該第二部份中,具 23 201143090 TW5638PA §亥第一佈植區係與該第四介電部分重疊。 —金屬氧化物半導體裝置,包括: -擴散區位於-基板中,包括具一第二推雜物型之一 第邛份和具一第一摻雜物型之一第二部份; -圖案化第-介電層’包括位於該擴散區之 分上之一第一介電部分; ^第邛 -圖案化第-導電層’位於該圖案化第 該圖案化第一導電層包括位於該第一介電部分上之3望, -導電部分; 1刀上之-第 -圖案化第二介電層’包括一第二介電部分及三 :電部分’該第二介電部分係於該第—導電部分上延伸了 並第導電部分之—第—側壁延伸至該基板,該第 二”電科係於該第-導電部分上延伸,並沿著該第一導 第二側壁延伸至該基板,該第二介電部分及該 第一丨電部分係於該第一導電部分上彼此分離;和 一圖案化第二導電層,位於該圖案化第二介電声上, 該圖案化第二導電層包括位於該第二介電部分上之一第 二導電部分,以及位於該第三介電部分上之一第三導電部 分。 ^ 20.如申請專利範圍第19項所述之裝置,更包括一 f佈植區係為該第二摻雜物型,位於該擴散區之該第〆 部分中,該第-佈植區係與該第二介電部分重疊。 21.如申請專利範圍第19項所述之裝置,更包括一 立-佈植區係為該第二摻雜物型’位於該擴散區之該第〆 邛刀中,該第二佈植區係與該第三介電部分重疊。 24 201143090 • · TW5638PX. 22. 如申請專利範圍第19項所述之裝置,其中更包 括位於該基板上之複數個隔離結構,其中該圖案化第二介 電層包括位於該些隔離結構上之複數個第四介電部分,且 該圖案化第二導電層包括位於該第四介電部分上之複數 個第四導電部分。 23. 如申請專利範圍第19項所述之裝置,其中該圖 案化第二導電層包括複數個第一摻雜物,該些第一摻雜物 係為該第一摻雜物型且具有一第一濃度。 • 24·如申請專利範圍第23項所述之裝置,其中該圖 案化第二導電層包括複數個第一摻雜物,該些第一摻雜物 係為該第一摻雜物型且具有一第二濃度,該第二濃度係大 於該第一濃度。 25.如申請專利範圍第23項所述之裝置,其中該圖 案化第一介電層包括位於該擴散區之該第二部份上之一 第四介電部分,該圖案化第一導電層包括位於該第四介電 部分上之一第四導電部分,且該圖案化第二介電層包括一 • 第五介電部分及一第六介電部分,該第五介電部分係於該 第四導電部分上延伸,並沿著該第四導電部分之一第一側 壁延伸至該基板,且該第六介電部分係於該第四導電部分 上延伸,並沿著該第四導電部分之一第二侧壁延伸至該基 板,該第五部分及該第六部分係於該第四導電部分上彼此 分離。 25201143090 1 W^03»PA * 5 , VII. Patent application scope: 1. A metal oxide semiconductor device comprising: a diffusion region in a substrate, comprising a first part having a second dopant type And a second portion having a first dopant type; a patterned first dielectric layer comprising a first dielectric portion and a second dielectric portion, the first dielectric portion being located in the diffusion a first portion of the region, the second dielectric portion being located on the second portion of the diffusion region; a patterned first conductive layer on the patterned first dielectric layer, the pattern The first conductive layer includes a first conductive portion and a second conductive Φ portion, the first conductive portion is located on the first dielectric portion, and the second conductive portion is located on the second dielectric portion; a patterned second dielectric layer includes a third dielectric portion and a fourth dielectric portion, the third dielectric portion extending over the first conductive portion and along one of the first conductive portions a sidewall extending to the substrate, the fourth dielectric portion being attached to the second conductive portion Extending upwardly and extending along a sidewall of the second conductive portion to the substrate; and a patterned second conductive layer on the patterned second dielectric layer, Φ the patterned second conductive layer comprises a first a third conductive portion and a fourth conductive portion, the third conductive portion is located on the third dielectric portion, and the fourth conductive portion is located on the fourth dielectric portion. 2. The device of claim 1, further comprising a first implant region, the second dopant type, located in the first portion of the diffusion region, the first implant region And overlapping the third dielectric portion and the third conductive portion. 3. The apparatus of claim 1, further comprising a 20201143090 • TW5638PA: cloth doping type, the second part of the diffusion zone is a second-planting zone and the a fourth dielectric portion and the fourth conductive portion 4. The device according to the scope of claim 2, =, a plurality of isolation structures, wherein the patterned: dielectric layer is located on the _ structures The plurality of patterned second conductive layers includes the fifth dielectric layer and the fifth conductive portion. The apparatus of the first aspect of the invention, wherein the pattern guiding layer comprises a plurality of first dopants, and the first one is a first A dopant type and having a first concentration. The method of claim 5, wherein the pattern of the first conductive layer comprises a plurality of first dopings of the first dopant type and having the first concentration. °海苐一/辰度系 greater than - you Ir as described in the scope of claim 2, the device further includes - the first planting zone is located in the first part of the diffusion zone, wherein the third planting zone A series is disposed in the first planting area. 8. The device of claim 1, wherein the first two== the first conductive portion of the first conductive portion—the second surface; the fifth plurality includes a fifth dielectric portion, the portion The second surface of the upper surface of the upper portion of the conductive portion is separated from each other by the third dielectric portion and the fifth dielectric portion. The device according to claim 8 further includes the first七* 21 201143090 1 W^bJSPA dopant type - the third planting zone, the third planting zone is located in the first part of the diffusion zone, and the third planting zone and the fifth mediation The electricity partially overlaps. 10. A metal oxide semiconductor device comprising: a germanium-diffusion region in a substrate - comprising a first portion of the second dopant type and a second portion having a first dopant type a patterned first dielectric layer including a first dielectric portion on the first portion of the diffusion region; a patterned first conductive layer on the patterned first dielectric layer, The patterned first conductive layer includes a first conductive portion on the first dielectric portion; a patterned second dielectric layer includes a second dielectric portion, the second dielectric portion is attached to the first a first portion of one of the upper surfaces of the conductive portion extends 'and extends along a sidewall of the first conductive portion to the substrate; and a patterned second conductive layer is disposed on the patterned second dielectric layer The patterned second conductive layer includes a second conductive portion on the second dielectric portion. The device of claim 10, further comprising a first implanting region as the second dopant type, located in the first portion of the diffusion region, the first implant region And overlapping the second dielectric portion and the second conductive portion. 12. The device of claim 1, wherein the patterned second dielectric layer comprises a third dielectric portion and the third dielectric portion is attached to the first conductive portion The second dielectric portion and the third dielectric portion of the second portion of the surface are separated from each other on the upper surface by 22 201143090. * TW5638PA includes a device according to item 12 of the stomach patent (4), wherein In addition, the first cloth (four) is the second dopant type, located at 14th. And the second planting zone and the third dielectric component are as heavy as the device described in claim 10, and include a plurality of isolation structures on the substrate, 5 comprising a plurality of dielectric devices on the isolation structure. 5. The device according to claim 10, wherein the second conductive layer comprises a plurality of first dopants, and the first: two The system is of the first dopant type and has a first concentrate. The first conductive layer includes a plurality of first dopants, and the first plurality of first dopant types have a first eve ', at the first - concentration. The second concentration is greater than the apparatus described in claim 1, wherein the first dielectric layer comprises the second portion of the second portion of the diffusion region. The dielectric portion 'the patterned first conductive layer includes a third conductive portion on the third dielectric layer' and the patterned second dielectric layer includes a fourth dielectric portion 'the fourth dielectric portion Extending to the first portion of the upper surface of the third conductive portion and extending along the third conductive sidewall to the substrate. 18. The device of claim 17, wherein the patterned second conductive layer comprises a fourth conductive portion on the fourth dielectric portion, the metal oxide semiconductor device further comprising - a second The implanting region is the first dopant type and is located in the second portion of the diffusion region, and has a 23 201143090 TW5638PA § hai first planting zone overlapping the fourth dielectric portion. a metal oxide semiconductor device comprising: - a diffusion region in the substrate, comprising a second portion having a second dopant type and a second portion having a first dopant type; - patterning The first dielectric layer 'includes one of the first dielectric portions on the diffusion region; ^ the second-patterned first-conductive layer' is located at the patterned first patterned first conductive layer, including the first 3 on the dielectric portion, - conductive portion; 1 - the first - patterned second dielectric layer 'including a second dielectric portion and three: electrical portion 'the second dielectric portion is attached to the first a conductive portion extending over the first conductive portion of the first conductive portion extending to the substrate, the second "electrical portion" extending over the first conductive portion and extending along the first conductive second sidewall to the substrate The second dielectric portion and the first electrical portion are separated from each other on the first conductive portion; and a patterned second conductive layer is disposed on the patterned second dielectric sound, the patterned second The conductive layer includes a second conductive portion on the second dielectric portion, and is located a third conductive portion on the third dielectric portion. The device of claim 19, further comprising a f implant region as the second dopant type, located in the diffusion region In the third part, the first planting zone overlaps with the second dielectric component. 21. The device of claim 19, further comprising a vertical-planting zone for the second The dopant pattern is located in the first trowel of the diffusion region, and the second implant region overlaps the third dielectric portion. 24 201143090 • · TW5638PX. 22. As described in claim 19 The device further includes a plurality of isolation structures on the substrate, wherein the patterned second dielectric layer comprises a plurality of fourth dielectric portions on the isolation structures, and the patterned second conductive layer comprises A plurality of fourth conductive portions on the fourth dielectric portion. The device of claim 19, wherein the patterned second conductive layer comprises a plurality of first dopants, the a dopant is the first dopant type and has a first concentration The device of claim 23, wherein the patterned second conductive layer comprises a plurality of first dopants, the first dopants being the first dopant type and having The second concentration is greater than the first concentration. The device of claim 23, wherein the patterned first dielectric layer comprises the second portion of the diffusion region a fourth dielectric portion, the patterned first conductive layer includes a fourth conductive portion on the fourth dielectric portion, and the patterned second dielectric layer includes a fifth dielectric portion and a sixth dielectric portion extending over the fourth conductive portion and extending along the first sidewall of the fourth conductive portion to the substrate, and the sixth dielectric portion is tied to The fourth conductive portion extends and extends along the second sidewall of the fourth conductive portion to the substrate, and the fifth portion and the sixth portion are separated from each other on the fourth conductive portion. 25
TW099116553A 2010-05-24 2010-05-24 Double diffused drain metal-oxide-semiconductor devices with floating poly thereon and methods of manufacturing the same TWI512977B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099116553A TWI512977B (en) 2010-05-24 2010-05-24 Double diffused drain metal-oxide-semiconductor devices with floating poly thereon and methods of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099116553A TWI512977B (en) 2010-05-24 2010-05-24 Double diffused drain metal-oxide-semiconductor devices with floating poly thereon and methods of manufacturing the same

Publications (2)

Publication Number Publication Date
TW201143090A true TW201143090A (en) 2011-12-01
TWI512977B TWI512977B (en) 2015-12-11

Family

ID=46765207

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099116553A TWI512977B (en) 2010-05-24 2010-05-24 Double diffused drain metal-oxide-semiconductor devices with floating poly thereon and methods of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI512977B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8698240B2 (en) 2010-05-25 2014-04-15 Macronix International Co., Ltd. Double diffused drain metal-oxide-simiconductor devices with floating poly thereon and methods of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545575A (en) * 1994-10-24 1996-08-13 Motorola, Inc. Method for manufacturing an insulated gate semiconductor device
US5900657A (en) * 1997-05-19 1999-05-04 National Semiconductor Corp. MOS switch that reduces clock feed through in a switched capacitor circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8698240B2 (en) 2010-05-25 2014-04-15 Macronix International Co., Ltd. Double diffused drain metal-oxide-simiconductor devices with floating poly thereon and methods of manufacturing the same
US8963238B2 (en) 2010-05-25 2015-02-24 Macronix International Co., Ltd. Double diffused drain metal-oxide-semiconductor devices with floating poly thereon and methods of manufacturing the same

Also Published As

Publication number Publication date
TWI512977B (en) 2015-12-11

Similar Documents

Publication Publication Date Title
CN104517852B (en) Horizontal drain metal oxide semiconductor element and its manufacture method
TWI285954B (en) Semiconductor device and method for manufacturing the same
US7772644B2 (en) Vertical diffused MOSFET
US8399921B2 (en) Metal oxide semiconductor (MOS) structure and manufacturing method thereof
TW540139B (en) High voltage MOS-transistor
JP6492068B2 (en) Vertical trench MOSFET devices in integrated power technology
CN104733455A (en) Solution for aligning LDMOS drain extension part with groove
CN103904116B (en) Metal oxide semiconductor device and production method
TWI336949B (en) Semiconductor structure
US8502326B2 (en) Gate dielectric formation for high-voltage MOS devices
JP2008140817A (en) Semiconductor device
TW200828588A (en) Semiconductor structure and fabricating of the same
TW201218284A (en) Self-aligned body fully isolated device
US20090256160A1 (en) Semiconductor device and method for manufacturing the same
TW201041138A (en) Semiconductor devices and fabrication methods thereof
TW200807713A (en) Semiconductor structures
TWI503983B (en) Power mosfet and methods for forming the same
TW201222817A (en) Low on-resistance RESURF MOS transistor
CN104658913B (en) NLDMOS manufacture method
CN110808288B (en) Trench gate trench field plate semi-vertical semi-lateral MOSFET
US8648416B1 (en) LDMOS sense transistor structure for current sensing at high voltage
TW201143090A (en) Double diffused drain metal-oxide-semiconductor devices with floating poly thereon and methods of manufacturing the same
US7863144B2 (en) Semiconductor device and method for manufacturing the device
US8963238B2 (en) Double diffused drain metal-oxide-semiconductor devices with floating poly thereon and methods of manufacturing the same
TW201011915A (en) High-voltage metal-oxide semiconductor device and fabrication method thereof