TW201142895A - Field emission device - Google Patents

Field emission device Download PDF

Info

Publication number
TW201142895A
TW201142895A TW99116607A TW99116607A TW201142895A TW 201142895 A TW201142895 A TW 201142895A TW 99116607 A TW99116607 A TW 99116607A TW 99116607 A TW99116607 A TW 99116607A TW 201142895 A TW201142895 A TW 201142895A
Authority
TW
Taiwan
Prior art keywords
electron
electrode
disposed
cathode electrode
opening
Prior art date
Application number
TW99116607A
Other languages
Chinese (zh)
Other versions
TWI407477B (en
Inventor
Peng Liu
Duan-Liang Zhou
Pi-Jin Chen
Zhao-Fu Hu
Cai-Lin Guo
Bing-Chu Du
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99116607A priority Critical patent/TWI407477B/en
Publication of TW201142895A publication Critical patent/TW201142895A/en
Application granted granted Critical
Publication of TWI407477B publication Critical patent/TWI407477B/en

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

The present invention relates to a field emission device. The field emission device includes an insulative substrate, an electron pulling electrode, a secondary electron emission layer, a cathode, an electron emission layer, and a gate electrode. The electron pulling electrode is located on a surface of the insulative substrate. The secondary electron emission layer is located on a surface of the electron pulling electrode. The cathode is located apart from the electron pulling electrode via a first insulative layer. The electron pulling electrode is located between the cathode and the insulative substrate. At least a part of the cathode is opposite to the electron pulling electrode. The cathode has an opening as an electron outputting element. The electron emission layer is located on a surface of the cathode opposite to the electron pulling electrode. The gate electrode is located apart from the cathode. The cathode is located between the gate electrode and the electron pulling electrode.

Description

201142895 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種場發射裝置。 【先前彳支術】 [0002] 場發射裝置係場發射電子器件’如場發射顯不器的重要 元件。 [0003] 先前技術中的場發射裝置通常包括一絕緣基底’ 一設置 於該絕緣基底上的陰極電極;複數個設置於陰極電極上 的電子發射體;一設置於該絕緣基底上的第一絕緣搞離 層,所述第一絕緣隔離層具有通孔,所述電子發射體通 過該通孔暴露,以使電子發射體發射的電子通過該通孔 射出;以及一陽極電極,所述陽極電極與陰極電極間隔 設置。當所述場發射裝置工作時,向陽極電極施加一高 電位,向陰極電極施加一低電位。故,電子發射體發射 的電子通過該通孔射陽極。 [0004] 然而,電子發射體發射的電子會與真空中游離的氣體分 子碰撞,從而使氣體分子電離產生離子。而且,該離子 會向處於低電位的陰極電極方向運動。由於所述場發射 裝置的電子發射體通過所述通孔暴露,故,該電子發射 體很容易受到該離子的轟擊,從而導致電子發射體損壞 〇 【發明内容】 [0005] 有鑒於此,提供一種可以有效避免離子轟擊電子發射體 的場發射裝置實為必要。 099116607 表單編號A0101 第4頁/共36頁 0992029539-0 201142895 [0006] Ο [0007] ❹ [0008] 一種場發射裝置,其包括:一絕緣基底;一電子引出電 極*該電子引出電極設置於該絕緣基底的'一表面;一二 次電子發射層,該二次電子發射層設置於該電子引出電 極的表面;一陰極電極,該陰極電極通過一第一絕緣隔 離層與該電子引出電極間隔設置,所述電子引出電極設 置在陰極電極與絕緣基底之間,該陰極電極具有一表面 至少部分與該電子引出電極面對設置,該陰極電極具有 一第一開口,該第一開口定義一電子出射部;一電子發 射層,該電子發射層設置在陰極電極面對該電子引出電 極設置的部分表面;一栅極電極,該柵極電極與陰極電 極絕緣設置,且所述陰極電極設置在電子引出極與柵極 電極之間。 一種場發射裝置,其包括:一種場發射裝置,其包括: 一絕緣基底;一電子引出電極,該電子引出電極設置於 該絕緣基底的一表面;一二次電子發射層,該二次電子 發射層設置於該電子引出電極的表面;一陰極電極,該 陰極電極通過一第一絕緣隔離層與該電子引出電極間隔 設置,所述電子引出電極設置在陰極電極與絕緣基底之 間,該陰極電極具有一表面至少部分與該電子引出電極 面對設置,該陰極電極具有一第一開口,該第一開口定 義一電子出射部;一電子發射層,該電子發射層設置在 陰極電極面對該電子引出電極設置的部分表面;一陽極 電極,該陽極電極與陰極電極間隔設置,且所述陰極電 極設置在電子引出極與陽極電極之間。 與先前技術相比,由於電子出射部形成於陰極電極上, 099116607 表單編號Α0101 第5頁/共36頁 0992029539-0 201142895 電子發射體的電子發射端不會通過電子出射部暴露,故 ,當電子發射體發射的電子與真空中游離的氣體分子碰 撞產生離子向電子引出電極方向運動時,該離子不會轟 擊到該電子發射體,從而使該電子發射體具有較長壽命 〇 【實施方式】 [0009] [0010] [0011] 以下將結合附圖詳細說明本發明實施例提供的場發射裝 置。所述場發射裝置可以包括一個或複數個單元。本發 明實施例僅以一個單元為例說明。 請參閱圖1至圖3,本發明第一實施例提供一種場發射裝 置100,其包括一絕緣基底110,一第一絕緣隔離層112 ,一陰極電極114,一電子發射層116,一電子引出電極 118,一二次電子發射層12〇 ’一第二絕緣隔離層ΐ2ι以 及一柵極電極122。 所述絕緣基底11〇具有一表面,且,述電子引出電極118 ax置於S亥絕緣基底1 1 0的表.面、=v所述;二次電子發射層1 2 〇 設置於所述電子引出電極118遠離絕緣基底11〇的表面。 所述陰極電極114通過一第一絕緣隔離層112與該電子引 出電極118間隔設置,且所述電子引出電極118設置於陰 極電極114與絕緣基底11〇之間。所述陰極電極114定義 一第一開口 1140作為電子出射部。所述陰極電極丨14的第 一開口 1140與所述電子引出電極u 8面對設置,即電子出 射部與所述電子引出電極118相對設置。所述陰極電極 114具有一表面,且該表面的至少部分與該電子引出電極 118面對設置。所述電子發射層U6設置於陰極電極 099116607 表單編號A0101 第6頁/共36頁 0992029539-0 201142895 與該電子引出電極118面對設置的部分表面。優選地,所 述電子發射層116設置於陰極電極114表面靠近電子出射 部的位置。所述柵極電極122通過所述第二絕緣隔離層 121與所述陰極電極丨丨彳間隔設置。所述電子發射層116 發射的電子轟擊所述二次電子發射層12〇產生二次電子。 所述二次電子發射層120發射的二次電子在柵極電極 作用下通過電子出射部射出。 [0012] Ο 所述絕緣基底110的材料可以為矽、玻璃、陶瓷、塑膠或 聚合物。所述絕緣基底110的形狀與厚度不限,可以根據 實際需要選擇。優選地,所述絕緣基底鳥0的形狀為圓形 、正方形或矩形《本實施例中,所述絶緣基底1丨〇為一邊 長為10毫米,厚度為1毫米的正方形玻璃板。 [0013]201142895 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a field emission device. [Previous sacral surgery] [0002] Field emission devices are important components of field emission electronics such as field emission displays. [0003] A field emission device in the prior art generally includes an insulating substrate 'a cathode electrode disposed on the insulating substrate; a plurality of electron emitters disposed on the cathode electrode; and a first insulating layer disposed on the insulating substrate Engaging the layer, the first insulating isolation layer has a through hole through which the electron emitter is exposed so that electrons emitted from the electron emitter are emitted through the through hole; and an anode electrode, the anode electrode and The cathode electrodes are spaced apart. When the field emission device is operating, a high potential is applied to the anode electrode and a low potential is applied to the cathode electrode. Therefore, electrons emitted from the electron emitter pass through the through hole. [0004] However, electrons emitted by the electron emitter collide with free gas molecules in the vacuum, thereby ionizing the gas molecules to generate ions. Moreover, the ions move toward the cathode electrode at a low potential. Since the electron emitter of the field emission device is exposed through the through hole, the electron emitter is easily bombarded by the ion, thereby causing damage to the electron emitter. [Invention] [0005] In view of this, A field emission device that can effectively prevent ion bombardment of an electron emitter is necessary. 099116607 Form No. A0101 Page 4/36 Page 0992029539-0 201142895 [0007] [0007] A field emission device comprising: an insulating substrate; an electron extraction electrode * the electron extraction electrode is disposed at a surface of the insulating substrate; a secondary electron emission layer disposed on a surface of the electron extraction electrode; a cathode electrode disposed at a distance from the electron extraction electrode through a first insulating isolation layer The electron extraction electrode is disposed between the cathode electrode and the insulating substrate, the cathode electrode has a surface at least partially disposed opposite the electron extraction electrode, the cathode electrode has a first opening, the first opening defines an electron emission An electron emission layer disposed on a surface of the cathode electrode facing the electron extraction electrode; a gate electrode, the gate electrode is insulated from the cathode electrode, and the cathode electrode is disposed at the electron extraction Between the pole and the gate electrode. A field emission device comprising: a field emission device comprising: an insulating substrate; an electron extraction electrode disposed on a surface of the insulating substrate; a secondary electron emission layer, the secondary electron emission a layer disposed on a surface of the electron extraction electrode; a cathode electrode disposed at a distance from the electron extraction electrode through a first insulating isolation layer disposed between the cathode electrode and the insulating substrate, the cathode electrode Having a surface at least partially disposed opposite the electron extraction electrode, the cathode electrode having a first opening defining an electron emission portion; an electron emission layer disposed on the cathode electrode facing the electron a portion of the surface of the electrode is disposed; an anode electrode, the anode electrode is spaced apart from the cathode electrode, and the cathode electrode is disposed between the electron extraction electrode and the anode electrode. Compared with the prior art, since the electron emission portion is formed on the cathode electrode, 099116607 Form No. 1010101 Page 5 / Total 36 Page 0992029539-0 201142895 The electron emission end of the electron emitter is not exposed through the electron emission portion, so when the electron When the electrons emitted by the emitter collide with free gas molecules in the vacuum to generate ions to move toward the electron extraction electrode, the ions do not bombard the electron emitter, thereby making the electron emitter have a long life. [Embodiment] [0011] The field emission device provided by the embodiment of the present invention will be described in detail below with reference to the accompanying drawings. The field emission device can include one or more cells. The embodiment of the present invention is described by taking only one unit as an example. Referring to FIG. 1 to FIG. 3, a first embodiment of the present invention provides a field emission device 100 including an insulating substrate 110, a first insulating isolation layer 112, a cathode electrode 114, an electron emission layer 116, and an electron extraction. The electrode 118 has a secondary electron emission layer 12'' and a second insulating isolation layer ΐ2ι and a gate electrode 122. The insulating substrate 11 has a surface, and the electron extraction electrode 118 ax is placed on the surface of the insulating substrate 110, and the secondary electron emission layer 12 is disposed on the electron. The extraction electrode 118 is away from the surface of the insulating substrate 11A. The cathode electrode 114 is spaced apart from the electron extraction electrode 118 by a first insulating spacer 112, and the electron extraction electrode 118 is disposed between the cathode electrode 114 and the insulating substrate 11A. The cathode electrode 114 defines a first opening 1140 as an electron emitting portion. The first opening 1140 of the cathode electrode 14 faces the electron extraction electrode u 8 , that is, the electron emission portion is disposed opposite to the electron extraction electrode 118. The cathode electrode 114 has a surface, and at least a portion of the surface faces the electron extraction electrode 118. The electron emission layer U6 is disposed on the cathode electrode 099116607 Form No. A0101, page 6 / page 36 0992029539-0 201142895, and the electronic extraction electrode 118 faces a portion of the surface disposed. Preferably, the electron emission layer 116 is disposed at a position where the surface of the cathode electrode 114 is close to the electron emission portion. The gate electrode 122 is spaced apart from the cathode electrode 通过 by the second insulating isolation layer 121. The electrons emitted from the electron emission layer 116 bombard the secondary electron emission layer 12 to generate secondary electrons. The secondary electrons emitted from the secondary electron emission layer 120 are emitted through the electron emission portion by the gate electrode. [0012] The material of the insulating substrate 110 may be tantalum, glass, ceramic, plastic or polymer. The shape and thickness of the insulating substrate 110 are not limited and can be selected according to actual needs. Preferably, the shape of the insulating substrate bird 0 is circular, square or rectangular. In the present embodiment, the insulating substrate 1 is a square glass plate having a length of 10 mm and a thickness of 1 mm. [0013]

G 所述電子引出電極118為一導電層,且其厚度和大小可以 根據實際需要選擇《所述電子引出電極118的材料可以為 純金眉、合金、氧化姻錫或導電浆料等可以理解,當 絕緣基底110為矽片時,該電子引出電極118可以為一石夕 摻雜層。本實施例丰,所述電子引出電極118為一厚度為 20微米的圓形銘膜。該銘膜通磁控賤射法沈積於絕緣 基底110表面。 [0014] 所述二次電子發射層120的材料包括氧化鎂(Mg〇)、氧 化鈹(BeO)、氟化鎂(Mg%)、氟化鈹(BeF )、氧化 铯(CsO)以及氧化鋇(β3〇)中的一種或幾種,其厚度 和Λ小可以根據實際需要選擇。所述二次電子發射層12〇 <以通過塗敷、電子束蒸發、熱蒸發或礎控錢射等方法 形成於電子引出電極118的表面。可以理解,所述二次電 099116607 表單煸號Α0101 第7頁/共36頁 0992029539-0 201142895 子發射層120的表面還可以形成有凹凸結構以增加二次電 子發射層120的面積,可提高二次電子發射效率。本實施 例中,所述二次電子發射層120為一厚度為20微米的圓形 氧化鋇層。 [0015] 所述陰極電極114可以為一導電層或導電基板,其材料可 以為金屬、合金、氧化銦錫(ITO)或導電漿料等。所述 陰極電極114的厚度和大小可以根據實際需要選擇。所述 陰極電極114的至少部分表面與所述二次電子發射層120 面對設置。所述陰極電極114具有一第一開口 1140作為電 子出射部。具體地,所述陰極電極114可以為一具有通孔 的層狀結構或複數個相隔一定距離設置的條狀結構。所 述第一開口 1140可以為所述陰極電極114的通孔或相隔一 定距離設置的條狀結構之間的間隔。本實施例中,所述 陰極電極114為一圓環形鋁導電層,且其中心具有一通孔 作為電子出射部。 [0016] 所述第一絕緣隔離層112設置於所述陰極電極與電子引出 電極之間,用於使所述陰極電極與電子引出電極之間絕 緣。所述第一絕緣隔離層112的材料可以為樹脂、厚膜曝 光膠、玻璃、陶瓷、氧化物及其混合物等。所述氧化物 包括二氧化矽、三氧化二鋁、氧化鉍等,其厚度和形狀 可以根據實際需要選擇。所述第一絕緣隔離層112可以直 接設置於絕緣基底110表面,也可設置於電子引出電極 118表面。所述第一絕緣隔離層112具有一第二開口 1120 。具體地,所述第一絕緣隔離層Π2可以為一具有通孔的 層狀結構,所述通孔為第二開口 1120,暴露出二次電子 099116607 表單編號A0101 第8頁/共36頁 0992029539-0 發射層120。所述第一絕緣隔離層11 2也可為複數個相隔 一定距離設置的條狀結構,且所述相隔一定距離設置的 條狀結構之間的間隔為第二開口 1120。所述陰極電極114 的至少部分對應設置於所述第一絕緣隔離層112的第二開 口 1120處,並通過該第一絕緣隔離層112的第二開口 1120暴露出部分表面面對所述二次電子發射層12〇設置。 所述陰極電極114的第一開口 1140與所述第一絕緣隔離層 的第二開口 1120至少部分交疊設置。所述第一開口 u4〇 與所述第二開口 1120交疊的部分作為電子出射部。優選 地,所述第一開口 1140完全設置在第二開口 1120範圍内 ’所述第一開口1140作為電子出射部本實施例中,所 述第一絕緣隔離層112為一厚度為1〇〇微米的圓環形SU-8 光刻膠設置於玻璃板表面,且其定義有一圓形通孔,所 述陰極電極114的部分表面通過該圓形通孔與二次電子發 射層120面對設置’所述陰極電極丨14的通孔設置在第一 絕緣隔離層112的圓形通孔的範圍内,作為電子出射部。 所述柵極電極122可以為金屬柵網、金屬片、氧化銦錫薄 •::iί . 膝或導電漿料層等。所述柵極電極122設置於第二絕緣隔 離層121與陰極電極114相對的另一表面,即第二絕緣隔 離層121設置於柵極電極122與陰極電極114之間。具體 地,所述栅極電極122可設置於第二絕緣隔離層121的上 表面靠近電子出射部的位置。當所述柵極電極122為柵網 時,町覆蓋所述電子出射部設置。所述柵極電極122可以 通過絲網列印、電鍍、化學氣相沈積、磁控濺射、熱沈 積等方法製備,也可以將提前製備好的金屬柵網直接設 表單褊號A0101 第9頁/共36頁 201142895 置於第二絕緣隔離層12i上。本實施例争,所述柳極電極 122為金屬栅網,且該栅極電極122從第二絕緣隔離層 121的表面延伸至電子出射部上方,且該金屬栅網覆蓋所 述電子出射部。可以理解,所述金屬柵網上還可以塗敷The electron extraction electrode 118 is a conductive layer, and the thickness and size thereof can be selected according to actual needs. The material of the electron extraction electrode 118 can be pure gold eyebrow, alloy, oxidized sulphur tin or conductive paste, etc. When the insulating substrate 110 is a germanium, the electron extracting electrode 118 may be a doped layer. In this embodiment, the electron extraction electrode 118 is a circular film having a thickness of 20 μm. The Ming film is deposited on the surface of the insulating substrate 110 by a magnetron sputtering method. [0014] The material of the secondary electron emission layer 120 includes magnesium oxide (Mg〇), beryllium oxide (BeO), magnesium fluoride (Mg%), neodymium fluoride (BeF), antimony oxide (CsO), and antimony oxide. One or more of (β3〇), the thickness and the smallness can be selected according to actual needs. The secondary electron emission layer 12 is formed on the surface of the electron extraction electrode 118 by a method such as coating, electron beam evaporation, thermal evaporation, or fundamental control. It can be understood that the secondary electric 099116607 form Α Α 0101 7th / 36 pages 0992029539-0 201142895 The surface of the sub-emissive layer 120 may also be formed with a concave-convex structure to increase the area of the secondary electron-emitting layer 120, which may be improved Secondary electron emission efficiency. In this embodiment, the secondary electron emission layer 120 is a circular yttrium oxide layer having a thickness of 20 μm. [0015] The cathode electrode 114 may be a conductive layer or a conductive substrate, and the material thereof may be metal, alloy, indium tin oxide (ITO) or conductive paste. The thickness and size of the cathode electrode 114 can be selected according to actual needs. At least a portion of the surface of the cathode electrode 114 is disposed to face the secondary electron emission layer 120. The cathode electrode 114 has a first opening 1140 as an electron emitting portion. Specifically, the cathode electrode 114 may be a layered structure having through holes or a plurality of strip structures disposed at a distance. The first opening 1140 may be a space between the through holes of the cathode electrode 114 or a strip structure disposed at a certain distance. In this embodiment, the cathode electrode 114 is a circular aluminum conductive layer and has a through hole at the center thereof as an electron emitting portion. [0016] The first insulating isolation layer 112 is disposed between the cathode electrode and the electron extraction electrode for insulating the cathode electrode and the electron extraction electrode. The material of the first insulating spacer 112 may be a resin, a thick film exposure adhesive, glass, ceramic, oxide, a mixture thereof or the like. The oxide includes cerium oxide, aluminum oxide, cerium oxide, etc., and its thickness and shape can be selected according to actual needs. The first insulating isolation layer 112 may be directly disposed on the surface of the insulating substrate 110 or may be disposed on the surface of the electron extraction electrode 118. The first insulating isolation layer 112 has a second opening 1120. Specifically, the first insulating spacer layer 2 may be a layered structure having a through hole, and the through hole is a second opening 1120, exposing secondary electrons 099116607 Form No. A0101 Page 8 / 36 pages 0992029539- 0 Emissive layer 120. The first insulating spacer 11 2 may also be a plurality of strip structures disposed at a certain distance, and the interval between the strip structures disposed at a certain distance is the second opening 1120. At least a portion of the cathode electrode 114 is disposed at the second opening 1120 of the first insulating isolation layer 112, and the second opening 1120 of the first insulating isolation layer 112 exposes a portion of the surface facing the second The electron emission layer 12 is set. The first opening 1140 of the cathode electrode 114 is at least partially overlapped with the second opening 1120 of the first insulating spacer. A portion of the first opening u4 交 overlapping the second opening 1120 serves as an electron emitting portion. Preferably, the first opening 1140 is completely disposed in the range of the second opening 1120. The first opening 1140 is an electron emitting portion. In the embodiment, the first insulating isolation layer 112 is a thickness of 1 μm. The annular SU-8 photoresist is disposed on the surface of the glass plate, and defines a circular through hole through which a part of the surface of the cathode electrode 114 faces the secondary electron emission layer 120. The through hole of the cathode electrode 14 is disposed in the range of the circular through hole of the first insulating spacer 112 as an electron emitting portion. The gate electrode 122 may be a metal grid, a metal piece, a thin indium tin oxide film, a knee or a conductive paste layer, or the like. The gate electrode 122 is disposed on the other surface of the second insulating isolation layer 121 opposite to the cathode electrode 114, that is, the second insulating isolation layer 121 is disposed between the gate electrode 122 and the cathode electrode 114. Specifically, the gate electrode 122 may be disposed at a position where the upper surface of the second insulating isolation layer 121 is close to the electron emission portion. When the gate electrode 122 is a grid, the town covers the electron exit portion. The gate electrode 122 can be prepared by screen printing, electroplating, chemical vapor deposition, magnetron sputtering, thermal deposition, etc., or the metal grid prepared in advance can be directly formed into a form No. A0101 page 9 / Total 36 pages 201142895 is placed on the second insulating isolation layer 12i. In this embodiment, the salient electrode 122 is a metal grid, and the gate electrode 122 extends from the surface of the second insulating spacer 121 to above the electron emitting portion, and the metal grid covers the electron emitting portion. It can be understood that the metal grid can also be coated.

二次電子發射材料,以進_步增強場發射裝置⑽的場發 射電流密度。 XThe secondary electron-emitting material enhances the field emission current density of the field emission device (10). X

[0018] 所述第二絕緣隔離層121的材料和形成方法與第—絕緣隔 離層112的材料和形成方法相同。所述第二絕緣隔離層 121的作用為使陰極電極114與柵極電極絕緣。所述陰極 電極114設置於第二絕緣祕層121靠近電刊出電極 118的表面。所述第二絕緣隔離層121為-層狀結構,其 形狀和大小與陰極魏114相對應。所述第二絕緣隔離層 121具有—與電子出射部對應的第三開σ 1212。所述第三 開口 1212與第—開口⑽及第二開口 112G至少部分交疊 .又置所述第二開口 1212與第一開口 114〇及所述第二開 口 1120又叠的部分作為電子出射部。本實施例中所述 第二絕緣隔離層121具有一與電子出射部相對應的通孔。 所述第二絕緣隔離層121在第三開口1212的内壁上可以進 -步設置有二次電子發射材料。即,所述第二絕緣隔離 層121靠近電子出射部的表面可以設置:次電子發射材料 。此時,所述第二絕緣隔離層m的厚度可以做的較大, 如500微# IOgq微米,以提高二次電子發射材料的面積 進步所述第二絕緣隔離層121在第三開口 1212的内 壁上可以形成複數個凹&結構,以增加二次電子發射材 料的面積。 099116607 表單編號A0101 第10頁/共36頁 0992029539-0 201142895 [0019] 所述電子發射層116設置於陰極電極ιΐ4面對二次電子發 射層120的部分表面,所述電子發射層116面對所述> a 電子發射層120設置。優選地,所述電子發射層11 6設襄 於陰極電極114的表面靠近電子出射部的位置。所述電手 發射層116包括複數個電子發射體1162,如奈米碳管、 Ο Ο [0020] 米碳纖維、或矽奈米線等。所述每個電子發射體1162臭 有一電子發射端1164,且該電子發射端11 64指向所述〆 次電子發射層120設置。所述電子發射層116的厚度和大 小可以根據實際需要選擇。進一步,所述電子發射層116 的表面開可以設置一層抗離子轟擊材料以提高其穩定’味 和壽命。所述抗離子轟擊材料包括碳化锆、碳化铪、六 硼化鑭等中的一種或複數種。本實施例冲,所述電子發 射層116為一環形奈米碳管漿料層。所述奈米碳管漿料包 括奈米碳管、低熔點玻璃粉以及有機載體。其中,有機 載體在烘烤過程中蒸發,低熔點玻璃粉在烘烤過程中嫁 化並將奈米碳管固定於陰極電極U4表面。所述環形電子 發射層11 6的外徑小於或等於二次電子發射層12 0的半往 ,且内徑等於電子出射部的半徑。 所述電子發射層116的電子發射體1162的電子發射端 Η 64與二次電子發射層120相對於電子發射端1164的表 面的距離小於電子與氣體分子的平均自由程’以減少離 子對電子發射體1162的轟擊。一方面,由於電子發射端 U 64與二次電子發射層120相對於電子發射端11 64的表 面的距離小於電子與氣體分子的平均自由程,故’電子 發射體1162發射的電子在與氣體分子(指電子發射端 099116607 表筚編號Α0101 第11買/共36頁 0992029539-0 201142895 1164與二次電子發射層i2〇之間的氣體分子)碰撞之前會 先轟擊二次電子發射層12〇,從而提高的電子發射體1162 發射的電子轟擊二次電子發射層120幾率。另一方面,由 於電子發射體11 62發射的電子與氣體分子碰撞的幾率減 小’即氣體分子被電離的產生離子的幾率也減小,故, 電子發射端11 64與二次電子發射層120之間產生離子的幾 率也減小’從而使電子發射端1164被離子正面轟擊的幾 率減小。 [0021] 根據氣體分子運動論,在一定壓強下,氣體分子之間的 平均自由程以及自由電子與氣體分子之間的平均自由程 分別由公式(1 )和(2 )所示,: [0022][0018] The material and formation method of the second insulating spacer 121 are the same as those of the first insulating spacer 112. The second insulating spacer 121 functions to insulate the cathode electrode 114 from the gate electrode. The cathode electrode 114 is disposed on a surface of the second insulating secret layer 121 adjacent to the electrical output electrode 118. The second insulating spacer 121 is a layered structure having a shape and size corresponding to the cathode Wei 114. The second insulating spacer 121 has a third open σ 1212 corresponding to the electron exit portion. The third opening 1212 at least partially overlaps the first opening (10) and the second opening 112G. The portion of the second opening 1212 overlapping the first opening 114 and the second opening 1120 is further disposed as an electron emitting portion. . In the embodiment, the second insulating isolation layer 121 has a through hole corresponding to the electron emission portion. The second insulating isolation layer 121 may be provided with a secondary electron emission material on the inner wall of the third opening 1212. That is, the surface of the second insulating spacer 121 close to the electron emitting portion may be provided with a secondary electron emitting material. At this time, the thickness of the second insulating isolation layer m may be made larger, such as 500 micro #10 gq micron, to improve the area of the secondary electron emission material. The second insulating isolation layer 121 is at the third opening 1212. A plurality of recess & structures may be formed on the inner wall to increase the area of the secondary electron emissive material. 099116607 Form No. A0101 Page 10/36 Page 0992029539-0 201142895 [0019] The electron emission layer 116 is disposed on a portion of the surface of the cathode electrode ι 4 facing the secondary electron emission layer 120, and the electron emission layer 116 faces the surface > a Electron emission layer 120 is provided. Preferably, the electron emission layer 11 6 is disposed at a position where the surface of the cathode electrode 114 is close to the electron emission portion. The electric hand emitting layer 116 includes a plurality of electron emitters 1162, such as carbon nanotubes, carbon nanotubes, or nanowires. Each of the electron emitters 1162 has an electron emitting end 1164, and the electron emitting end 11 64 is disposed toward the top electron emitting layer 120. The thickness and size of the electron emission layer 116 can be selected according to actual needs. Further, the surface of the electron emission layer 116 may be provided with an anti-ion bombardment material to improve its stability and taste. The ion bombardment resistant material includes one or more of zirconium carbide, tantalum carbide, lanthanum hexaboride, and the like. In this embodiment, the electron emission layer 116 is a circular carbon nanotube slurry layer. The carbon nanotube slurry comprises a carbon nanotube, a low melting glass powder, and an organic vehicle. Among them, the organic carrier evaporates during the baking process, and the low-melting glass frit is grafted in the baking process and the carbon nanotubes are fixed on the surface of the cathode electrode U4. The outer diameter of the annular electron-emitting layer 116 is less than or equal to half of the secondary electron-emitting layer 120, and the inner diameter is equal to the radius of the electron-emitting portion. The distance between the electron-emitting end 64 of the electron-emitting body 1162 of the electron-emitting layer 116 and the surface of the secondary electron-emitting layer 120 with respect to the surface of the electron-emitting end 1164 is smaller than the mean free path of electrons and gas molecules to reduce ion-pair electron emission. Bombardment of body 1162. On the one hand, since the distance between the electron-emitting end U 64 and the surface of the secondary electron-emitting layer 120 with respect to the surface of the electron-emitting end 11 64 is smaller than the mean free path of electrons and gas molecules, the electrons emitted by the electron-emitting body 1162 are in the gas molecule (refers to the electron emission end 099116607 No. Α 0101 11th buy / 36 pages 0992029539-0 201142895 1164 and the gas molecules between the secondary electron emission layer i2 )) will first bombard the secondary electron emission layer 12 〇, thereby The electrons emitted by the enhanced electron emitter 1162 bombard the secondary electron emission layer 120. On the other hand, since the probability of electrons emitted from the electron emitter 11 62 colliding with the gas molecules is reduced, that is, the probability of ion generation of the gas molecules is also reduced, the electron emission end 11 64 and the secondary electron emission layer 120 are also reduced. The probability of generating ions between them is also reduced, thereby reducing the probability that the electron-emitting end 1164 is bombarded with ions in front. [0021] According to the theory of gas molecular motion, the mean free path between gas molecules and the mean free path between free electrons and gas molecules are shown by equations (1) and (2), respectively, at a certain pressure: [0022] ]

kT4ϊπά2Ρ (1)kT4ϊπά2Ρ (1)

[0023] [0024] 其中’k = 1.38xl0 23J/K為波爾茲曼常數;τ為絕對溫度 ;d為氣體分子的有效直徑;ρ為氣體壓強。以溫度為 300K的氮氣為例’在氣體壓強為ιτ〇ΓΙ·的真空度下,空 氣分子的平均自由程約為50微米,而自由電子與氣體分 子的平均自由程為283微米。故,如果所述電子發射端 099116607 表單編號A0101[0024] wherein 'k = 1.38xl0 23J/K is a Boltzmann constant; τ is an absolute temperature; d is the effective diameter of the gas molecule; ρ is the gas pressure. Taking a nitrogen gas having a temperature of 300 K as an example, the average free path of air molecules is about 50 μm at a gas pressure of ιτ〇ΓΙ·, and the mean free path of free electrons and gas molecules is 283 μm. Therefore, if the electron emission end 099116607 form number A0101

第12頁/共36 I 0992029539-0 201142895 11 64與二次電子發射層120表面的距離足夠小的情況下, 所述場發射裝置100就可以在低真空狀態工作而不會引起 電子發射體1162的損壞。 [0025] Ο 本實施例中,所述電子發射端1164與二次電子發射層120 相對於電子發射端1164的表面的距離為10微米〜30微米 。相應地,所述場發射裝置100可以在壓強高至 9Torr〜27Torr的低真空的條件下工作也不至於導致發射 體的損壞。在更好的真空如壓強降低1個量級至ITorr左 右下工作,電子在發射間隙與氣體分子的碰撞就可以忽 略至不計,因而發射體由於離子轟擊造成的破壞也就可 以忽略不計。可以理解,所述場發射裝置100也可以在高 真空環境或惰性氣體環境中工作,會有更穩定的性能。 [0026] ❹ 具體地,本實施例所述場發射裝置100的具體結構如下。 所述第一絕緣隔離層112設置於所述絕緣基底110的一表 面,且該第一絕緣隔離層112定義一第二開口 1120以使絕 緣基底110的表面通過該第二開口 1120暴露。所述電子引 出電極11 8設置於所述絕緣基底110通過該第二開口 1120 暴露的表面,且所述電子引出電極118的厚度小於第一絕 緣隔離層112的厚度。所述二次電子發射層120設置於所 述電子引出電極118的表面,且與電子引出電極118電連 接。所述陰極電極114設置於所述第一絕緣隔離層112的 表面,且延伸至所述二次電子發射層120的上方。所述陰 極電極114定義一第一開口 1140作為電子出射部。所述電 子發射層116設置於所述陰極電極114面向二次電子發射 層120的表面,且與陰極電極114電連接。所述電子發射 099116607 表單編號A0101 第13頁/共36頁 0992029539-0 201142895 層116與二次電子發射層120相對且間隔設置。所述第二 絕緣隔離層1 21設置於所述陰極電極114遠離二次電子發 射層1 2 0的表面,且該第二絕緣隔離層1 21的第三開口 1212與電子出射部對應設置。所述栅極電極122設置於第 二絕緣隔離層121的表面,且從第二絕緣隔離層121的表 面延伸至電子出射部的上方以將電子出射部覆蓋。 [0027] 所述場發射裝置100工作時,電子引出電極118的電位高 於陰極電極114的電位,栅極電極122的電位高於電子引 出電極118的電位。本實施例中,所述陰極電極114保持 零電位,電子引出電極118上施加一 100伏特的電壓,柵 極電極12 2上施加一 5 0 0伏特._的電壓。所述電子發射體 1162在電子引出電極118電壓作用下發射電子,且該電子 轟擊二次電子發射層120以使二次電子發射層120發射二 次電子。所述二次電子發射層120發射的二次電子在柵極 電極12 2電壓作用下從電子出射部射出。 [0028] 所述場發射裝置100具有以下優點:由於電子出射部形成 於陰極電極114上,電子發射體1162的電子發射端1164 不會通過電子出射部暴露,故,當電子發射體11 62發射 的電子與真空中游離的氣體分子碰撞產生離子向電子引 出電極118方向運動時,該離子不會轟擊到該電子發射體 1162,從而使該電子發射體1162具有較長壽命。由於電 子發射層116上形成抗離子轟擊材料可以提高其穩定性和 壽命。同時,由於採用了二次電子發射層1 20,可以在較 低的發射電壓情況下得到較大的發射電流。 [0029] 請參閱圖4,本發明第一實施例提供一種場發射裝置100 099116607 表單編號A0101 第14頁/共36頁 0992029539-0 201142895 [0030] . [0031] [0032] [0033] Ο [0034] [0035] ο [0036] [0037] 的製備方法,其包括以下步驟: 步驟一,提供一絕緣基底110。 本實施例中,所述絕緣基底110為一方形玻璃板。 步驟二,在絕緣基底110的一表面形成一電子引出電極 118。 所述電子引出電極118可以通過絲網列印、電鍍、化學氣 相沈積、磁控濺射或熱沈積等方法製備。本實施例中, 通過磁控滅射法在絕緣基底110表面沈積一紹層作為電子 引出電極118。 步驟三,在電子引出電極118的表面形成一二次電子發射 層 120。 所述二次電子發射層120可以通過絲網列印、電鍍、化學 氣相沈積、磁控濺射或熱沈積等方法製備。本實施例中 ,通過表面塗覆在電子引出電極118表面形成一層氧化鋇 作為二次電子發射層120。 步驟四,在絕緣基底110表面形成一第一絕緣隔離層112 ,該第一絕緣隔離層112具有一第二開口 1120以使得二次 電子發射層120的表面通過該第二開口 1120暴露。 所述第一絕緣隔離層112可以通過絲網列印、甩膠、塗敷 或厚膜工藝等方法製備。本實施例中,通過絲網列印法 在陰極電極114表面直接形成一具有圓形通孔的第一絕緣 隔離層112,從而使得二次電子發射層120的表面通過該 圓形通孔暴露。 099116607 表單編號Α0101 第15頁/共36頁 0992029539-0 201142895 [0038] 步驟五,提供_陰極雷 七咕 極電極板(圖未標),該陰極電極板具 有一第一開口 1140,+ 並在該陰極電極板的部分表面形成 一電子發射層11 6。 [0039] 所述陰極電極板可以為— 緣基板。 導電基板或形成有導電層的絕 [0040] 本實施例中, 所述陰極電極板的製備方法包括以下步驟 [0041]首先,提供一第二絕緣隔離層ΐ2ι。 剛所述第二絕緣隔離層j 21可以為具有通孔的基板或條狀體 。本實施例中,所述第二絕緣隔離層121為一圓環形玻璃 板,且所述第二絕緣隔離層121具有一第三開口。^。 [0043] 然後,在所述第二絕緣隔離層121的表面靠近第三開口 1212的位置形成一陰極電極丨丨4。 [0044] 所述陰極電極114可以通過絲翁列印,真空鍍膜等方法製 備,也可以將一金屬片直接設置於第二絕緣隔離層121表 面。本實施例中,通過磁控濺射法%第二絕緣隔離層 的表面沈積一圓環形鋁層作為陰極電極114,且所述阶極 電極114形成有與第三開口 1212對應的第一開〇U4〇, 作為電子出射部。 [0045] 所述電子發射層116可以通過列印漿料或化學氣相沈積、、去 等方法製備。本實施例中,先通過絲網列印在陰極電極 114表面形成一環形奈米碳管漿料層,再對該奈米碳管| 料層進行烘烤。所述奈米碳管漿料包括奈米碳管、低均^ 099116607 表單編號A0101 第16頁/共36頁 0992029539-0 201142895 [0046] Ο [0047]Page 12 / 36 I 0992029539-0 201142895 11 64 In the case where the distance from the surface of the secondary electron emission layer 120 is sufficiently small, the field emission device 100 can operate in a low vacuum state without causing the electron emitter 1162 Damage. [0025] In the present embodiment, the distance between the electron-emitting end 1164 and the secondary electron-emitting layer 120 with respect to the surface of the electron-emitting end 1164 is 10 μm to 30 μm. Accordingly, the field emission device 100 can operate under a low vacuum condition of a pressure of up to 9 Torr to 27 Torr without causing damage to the emitter. When a better vacuum, such as a pressure drop of one order of magnitude down to ITorr, the collision of electrons with the gas molecules in the launch gap can be neglected, and the damage caused by the ion bombardment of the emitter can be neglected. It will be appreciated that the field emission device 100 can also operate in a high vacuum environment or an inert gas environment with more stable performance. Specifically, the specific structure of the field emission device 100 of the present embodiment is as follows. The first insulating isolation layer 112 is disposed on a surface of the insulating substrate 110, and the first insulating isolation layer 112 defines a second opening 1120 to expose a surface of the insulating substrate 110 through the second opening 1120. The electron extraction electrode 11 8 is disposed on a surface of the insulating substrate 110 exposed through the second opening 1120, and the thickness of the electron extraction electrode 118 is smaller than the thickness of the first insulating isolation layer 112. The secondary electron emission layer 120 is disposed on a surface of the electron extraction electrode 118 and electrically connected to the electron extraction electrode 118. The cathode electrode 114 is disposed on a surface of the first insulating isolation layer 112 and extends above the secondary electron emission layer 120. The cathode electrode 114 defines a first opening 1140 as an electron exit portion. The electron emission layer 116 is disposed on a surface of the cathode electrode 114 facing the secondary electron emission layer 120, and is electrically connected to the cathode electrode 114. The electron emission 099116607 Form No. A0101 Page 13 of 36 0992029539-0 201142895 The layer 116 is opposite and spaced apart from the secondary electron emission layer 120. The second insulating isolation layer 211 is disposed on a surface of the cathode electrode 114 away from the secondary electron emission layer 120, and the third opening 1212 of the second insulating isolation layer 121 is disposed corresponding to the electron emission portion. The gate electrode 122 is disposed on a surface of the second insulating spacer 121 and extends from a surface of the second insulating spacer 121 to an upper portion of the electron emitting portion to cover the electron emitting portion. [0027] When the field emission device 100 is in operation, the potential of the electron extraction electrode 118 is higher than the potential of the cathode electrode 114, and the potential of the gate electrode 122 is higher than the potential of the electron extraction electrode 118. In this embodiment, the cathode electrode 114 is maintained at a zero potential, a voltage of 100 volts is applied to the electron extraction electrode 118, and a voltage of 500 volts. _ is applied to the gate electrode 12 2 . The electron emitter 1162 emits electrons under the action of the voltage of the electron extraction electrode 118, and the electrons bombard the secondary electron emission layer 120 to cause the secondary electron emission layer 120 to emit secondary electrons. The secondary electrons emitted from the secondary electron emission layer 120 are emitted from the electron emission portion by the voltage of the gate electrode 122. [0028] The field emission device 100 has the advantage that since the electron emission portion is formed on the cathode electrode 114, the electron emission end 1164 of the electron emitter 1162 is not exposed through the electron emission portion, so when the electron emitter 11 62 is emitted When the electron collides with the free gas molecules in the vacuum to generate ions moving toward the electron extraction electrode 118, the ions do not bombard the electron emitter 1162, so that the electron emitter 1162 has a long life. The formation of an anti-ion bombardment material on the electron-emitting layer 116 can improve its stability and life. At the same time, since the secondary electron emission layer 120 is used, a large emission current can be obtained at a low emission voltage. Referring to FIG. 4, a first embodiment of the present invention provides a field emission device 100 099116607 Form No. A0101 Page 14 / Total 36 Page 0992029539-0 201142895 [0030] [0033] [0033] Ο [ [0035] The preparation method of the method includes the following steps: Step one, providing an insulating substrate 110. In this embodiment, the insulating substrate 110 is a square glass plate. In step two, an electron extraction electrode 118 is formed on a surface of the insulating substrate 110. The electron extraction electrode 118 can be prepared by screen printing, electroplating, chemical vapor deposition, magnetron sputtering or thermal deposition. In this embodiment, a layer is deposited as an electron extraction electrode 118 on the surface of the insulating substrate 110 by a magnetron emission killing method. In the third step, a secondary electron emission layer 120 is formed on the surface of the electron extraction electrode 118. The secondary electron emission layer 120 may be prepared by screen printing, electroplating, chemical vapor deposition, magnetron sputtering or thermal deposition. In the present embodiment, a layer of ruthenium oxide is formed on the surface of the electron extraction electrode 118 as a secondary electron emission layer 120 by surface coating. Step 4, forming a first insulating isolation layer 112 on the surface of the insulating substrate 110, the first insulating isolation layer 112 having a second opening 1120 such that the surface of the secondary electron emission layer 120 is exposed through the second opening 1120. The first insulating spacer layer 112 can be prepared by a method such as screen printing, silicone coating, coating or thick film process. In the present embodiment, a first insulating spacer 112 having a circular via hole is directly formed on the surface of the cathode electrode 114 by screen printing, so that the surface of the secondary electron emission layer 120 is exposed through the circular via hole. 099116607 Form No. 1010101 Page 15 / Total 36 Page 0992029539-0 201142895 [0038] Step 5, providing a cathode-threshold seven-electrode electrode plate (not shown) having a first opening 1140, + and A part of the surface of the cathode electrode plate forms an electron emission layer 116. [0039] The cathode electrode plate may be a rim substrate. The conductive substrate or the conductive layer is formed. [0040] In the embodiment, the method for preparing the cathode electrode plate includes the following steps. [0041] First, a second insulating isolation layer ΐ2ι is provided. The second insulating spacer j 21 may be a substrate or a strip having a through hole. In this embodiment, the second insulating isolation layer 121 is an annular glass plate, and the second insulating isolation layer 121 has a third opening. ^. Then, a cathode electrode 丨丨4 is formed at a position of the surface of the second insulating isolation layer 121 near the third opening 1212. [0044] The cathode electrode 114 may be prepared by a method such as silk printing, vacuum coating, or the like, or a metal piece may be directly disposed on the surface of the second insulating isolation layer 121. In this embodiment, a circular aluminum layer is deposited as a cathode electrode 114 on the surface of the second insulating isolation layer by magnetron sputtering, and the step electrode 114 is formed with a first opening corresponding to the third opening 1212. 〇U4〇, as an electron emission unit. [0045] The electron emission layer 116 may be prepared by a printing paste or chemical vapor deposition, de-equivalent method. In this embodiment, a ring of carbon nanotube paste is formed on the surface of the cathode electrode 114 by screen printing, and then the carbon nanotube layer is baked. The carbon nanotube slurry comprises a carbon nanotube, a low average ^ 099116607 Form No. A0101 Page 16 of 36 0992029539-0 201142895 [0046] Ο [0047]

[0048] [0049] 099116607 點玻璃粉以及有機載體。其中,有機載體在烘烤過程中 蒸發,低熔點玻璃粉在烘烤過程中熔化並將奈米碳管固 定於陰極電極114表面。進—步,還可以採用膠帶黏結剝 離等方式對奈米碳管電子發射層116進行表面處理,以使 得更多的奈米碳管暴露。可以理解,採用膠帶黏結剝離 奈米碳管電子發射層116可以使得奈米碳管暴露的同時豎 立以與二次電子發射層12〇表面垂直。 進一步,可在此電子發射層116上形成抗離子轟擊材料如 碳化锆,碳化鈴,六硼化鑭等,以提高其穩定性和壽命 。本實施例中,採用_控機射的方法在奈米碳管表面形 成一碳化铪的薄膜。 1 步驟六,將陰極電極板組裝於第一絕緣隔離層112相對於 絕緣基底110的另一表面,使第一開口 114〇與第二開口 1120至少部分交疊設置以定義一電子出射部,並使得電 子發射層116至少部分設置在第一絕緣隔離層112的第二 開口 1120處並面對電子引出電極1 u設置。 將陰極電極114的第一開口 η 4 〇對應於第一絕緣隔離層 112的第二開口 1120設置,並使得第一開口丨14〇與第二 開口 1120至少部分重疊以定義一電子出射部。 本實施例中,將所述圓環形陰極電極板直接設置於第一 絕緣隔離層112的表面,使得第一開口 114〇完全設置在第 二開口 1120的範圍内,並使得電子發射層116至少部分面 對電子引出電極118設置。可以理解,當陰極電極板為條 狀體時,可以將至少兩個陰極電極板平行間隔設置於第 表單編號Λ010】 第17頁/共36頁 〇卯2029539 〇 201142895 一絕緣隔離層11 2的表面。間隔設置的陰極電極板之間定 義一第一開口 114〇以作為電子出射部。 [0050] 步驟七’在第二絕緣隔離層121遠離電子引出電極118的 表面設置一柵極電極122。 [0051] 所述柵極電極122可以通過絲網列印、電鍍,化學氣相沈 積、磁控濺射、熱沈積等方法製備’也可以將提前製備 好的金屬柵網直接設置於第二絕緣隔離層121上》本實施 例中’將一金屬栅網直接設置並固定於第二絕緣隔離層 121表面。可以理解,該步驟為可選步驟。 [0052] 可以理解’上述場發射裝置100的製備方法的步驟不限於 上述順序,本領域技術人員可以根據實際需要進行調整 。例如’上述場發射裝置1〇〇的製備方法可以包括以下步 驟: [0053] 步驟一 ’提供一陰極電極板’該肆極電極板具有一第一 開口 1140,並在該陰極電極板6¾¾卩分表面形成一電子發 射層116 〇 [0054] 步驟二,在陰極電極板表面形成一第一絕緣隔離層112, 該第一絕緣隔離層11 2具有第二開口 1120以使得電子發射 層116通過該第二開口 1120暴露。 [0055] 步驟三,提供一絕緣基底110。 [0056] 步驟四,在絕緣基底110表面依次形成一電子引出電極 118和一二次電子發射層120。 [0057] 步驟五’將該絕緣基底110組裝於第一絕緣隔離層112相 099116607 表單編號A0101 第18頁/共36頁 0992029539-0 201142895 對於絕緣基底110的另一的表面,使第一開口 1140與第二 開口 1120至少部分交疊設置以定義一電子出射部,並使 得使得電子發射層11 6至少部分設置在第一絕緣隔離層 112的第二開口 1120處並面對電子引出電極118設置。 [0058] 請參閱圖5 ’本發明第二實施例提供一種場發射裝置2〇〇 ,其包括一絕緣基底21〇,一第一絕緣隔離層212,一陰 極電極214 ’一電子發射層216,一電子引出電極218, Ο —二次電子發射層220,一第二絕緣隔離層221以及一柵 極電極222。本發明第二實施例提供的場發射裝置2〇〇的 結構與本發明第一實施例提供的場發射裝置1〇〇的結構基 本相同’其區別在於所述二次電子發射層220表面與第一 開口 2140相對的位置具有至少一第一突起2202,所述陰 極電極214與二次電子發射層22〇相對的表面具有至少一 第二突起2142。所述電子發射層216設置於該至少一第二 突起2142的表面’且所述電子發射體2162的電子發射端 2164指向至少—第一突起2202的表面。 Ο [0059] 所述第一突起2202和第二突起2142的形狀和大小不限, 可以根據實際需要選擇。可以理解,當所述陰極電極214 為一具有通孔的層狀結構時,所述第一突起22〇2可以為 一錐形,所述第二突起2142為一圍繞第一突起22〇2的環 形突起,當所述陰極電極214為複數個間隔設置的條狀結 構時,所述第一突起2202與第二突起2142可以為一沿著 條狀結構延伸的棱錐體。本實施例中,所述第一突起 2202為一指向第一開口 214〇的圓錐體。所述第二突起 2142與第一突起2202相對的侧面與第一突起22〇2的表面 099116607 表單編琥Α0101 第19頁/共36頁 0992029539-0 201142895 平行。所述電子發射層216的電子發射體2162向第一突起 2202的表面垂直延伸。可以理解’所述電子發射體 發射的電子轟擊第一突起2202的表面激發的二次電子更 容易在柵極電極222作用下從電子出射部射出。 [0060] 請參閱圖6 ’本發明第三實施例提供一種場發射裝置3〇 〇 ,其包括一絕緣基底310,一第一絕緣隔離層312,—陰 極電極314,一電子發射層316 ’ 一電子引出電極318, —二次電子發射層320,一第二絕緣隔離層321以及—麵 極電極322。本發明第三實施例提供的場發射襞置3〇〇的 結構與本發明第一實施例提供的場發射裝置1 〇〇的結構基 本相同,其區別在於所述第二絶緣隔離層321的厚度大於 500微米,所述第二絕緣隔離層321具有一第三開〇3212 ,所述第三開口 3212的内壁,即第二絕緣隔離層321靠近 電子出射部的表面進一步設置有二次電子發射材料,且 第三開口 3212的大小沿著遠離電子引出電極3丨8的方向逐 漸減小,以使得二次電子發射層320發射的電子更容易轟 擊到第三開口 3212内壁的二次電子發射材料。所述柵極 電極322為一圓環形導電層。所述柵極電極322可以對二 次電子發射層320發射的電子起到聚焦作用。 [0061] 請參閱圖7,本發明第四實施例提供一種場發射裝置4〇〇 ,其包括一絕緣基底410 ’ 一第一絕緣隔離層412,―^ 極電極414,一電子發射層416,一電子引出電極418, —二次電子發射層420,一第二絕緣隔離層421,_ - a —-人 電子倍增極424,一第三絕緣隔離層426,以及—拇極電 極422。本發明第四實施例提供的場發射裝置4〇〇的於構 099116607 表單編號A0101 第20頁/共36頁 0992029539-0 201142895 與本發明第一實施例提供的場發射裝置1 00的結構基本相 同,其區別在於所述第二絕緣隔離層421與栅極電極422 之間進一步包括一二次電子倍增極424以及一第三絕緣隔 離層426。所述栅極電極422與二次電子倍增極424之間 通過該第三絕緣隔離層4 2 6絕緣。所述柵極電極4 2 2為一 金屬柵網。 [0062] Ο[0049] 099116607 point glass powder and an organic vehicle. Wherein the organic vehicle evaporates during the baking process, the low-melting glass frit melts during the baking process and the carbon nanotubes are fixed to the surface of the cathode electrode 114. Further, the carbon nanotube electron-emitting layer 116 may be surface-treated by means of tape bonding and peeling to expose more carbon nanotubes. It is understood that the carbon nanotube electron-emitting layer 116 is peeled off by tape bonding so that the carbon nanotubes are exposed while being perpendicular to the surface of the secondary electron-emitting layer 12 . Further, an ion bombarding material such as zirconium carbide, carbonized bell, lanthanum hexaboride or the like may be formed on the electron emission layer 116 to improve stability and life. In this embodiment, a film of tantalum carbide is formed on the surface of the carbon nanotube by a method of controlling the machine. 1 step 6, assembling the cathode electrode plate to the other surface of the first insulating isolation layer 112 relative to the insulating substrate 110, so that the first opening 114〇 and the second opening 1120 are at least partially overlapped to define an electron emitting portion, and The electron emission layer 116 is disposed at least partially at the second opening 1120 of the first insulating isolation layer 112 and disposed facing the electron extraction electrode 51. The first opening η 4 阴极 of the cathode electrode 114 is disposed corresponding to the second opening 1120 of the first insulating spacer 112, and the first opening 丨14〇 is at least partially overlapped with the second opening 1120 to define an electron emitting portion. In this embodiment, the annular cathode electrode plate is directly disposed on the surface of the first insulating isolation layer 112 such that the first opening 114 is completely disposed within the range of the second opening 1120, and the electron emission layer 116 is at least Part of the surface is disposed facing the electron extraction electrode 118. It can be understood that when the cathode electrode plate is a strip body, at least two cathode electrode plates can be arranged in parallel at the first form number Λ 010] page 17 / 36 pages 〇卯 2029539 〇 201142895 surface of an insulating isolation layer 11 2 . A first opening 114 is defined between the spaced apart cathode electrode plates as an electron emitting portion. [0050] Step 7' is provided with a gate electrode 122 on the surface of the second insulating isolation layer 121 away from the electron extraction electrode 118. [0051] The gate electrode 122 can be prepared by screen printing, electroplating, chemical vapor deposition, magnetron sputtering, thermal deposition, etc. 'The metal grid prepared in advance can also be directly disposed on the second insulation. In the isolation layer 121, a metal grid is directly disposed and fixed on the surface of the second insulating isolation layer 121 in this embodiment. It can be understood that this step is an optional step. It is to be understood that the steps of the above-described method of manufacturing the field emission device 100 are not limited to the above-described order, and those skilled in the art can make adjustments according to actual needs. For example, the preparation method of the above field emission device 1〇〇 may include the following steps: [0053] Step 1 'provides a cathode electrode plate' having a first opening 1140 and dividing the cathode electrode plate 63⁄43⁄4 Forming an electron emission layer 116 on the surface 005 [0054] Step 2, forming a first insulating isolation layer 112 on the surface of the cathode electrode plate, the first insulating isolation layer 11 2 having a second opening 1120 such that the electron emission layer 116 passes through the first The two openings 1120 are exposed. [0055] Step three, providing an insulating substrate 110. [0056] Step 4, an electron extraction electrode 118 and a secondary electron emission layer 120 are sequentially formed on the surface of the insulating substrate 110. [0057] Step 5 'Assemble the insulating substrate 110 to the first insulating isolation layer 112 phase 099116607 Form No. A0101 Page 18 / Total 36 Page 0992029539-0 201142895 For the other surface of the insulating substrate 110, the first opening 1140 is made The second opening 1120 is at least partially overlapped to define an electron emitting portion, and such that the electron emission layer 116 is disposed at least partially at the second opening 1120 of the first insulating isolation layer 112 and disposed facing the electron extraction electrode 118. Referring to FIG. 5, a second embodiment of the present invention provides a field emission device 2A including an insulating substrate 21A, a first insulating isolation layer 212, a cathode electrode 214', and an electron emission layer 216. An electron extraction electrode 218, a secondary electron emission layer 220, a second isolation isolation layer 221, and a gate electrode 222. The structure of the field emission device 2A provided by the second embodiment of the present invention is substantially the same as that of the field emission device 1A according to the first embodiment of the present invention. The difference is that the surface of the secondary electron emission layer 220 is the same as the first An opposite opening 2140 has at least one first protrusion 2202, and a surface of the cathode electrode 214 opposite to the secondary electron emission layer 22 has at least one second protrusion 2142. The electron emission layer 216 is disposed on the surface of the at least one second protrusion 2142 and the electron emission end 2164 of the electron emitter 2162 is directed to at least the surface of the first protrusion 2202. [0059] The shape and size of the first protrusion 2202 and the second protrusion 2142 are not limited, and may be selected according to actual needs. It can be understood that when the cathode electrode 214 is a layered structure having a through hole, the first protrusion 22〇2 may be a taper, and the second protrusion 2142 is a surrounding first protrusion 22〇2. The annular protrusions, when the cathode electrode 214 is a plurality of spaced strip structures, the first protrusions 2202 and the second protrusions 2142 may be a pyramid extending along the strip structure. In this embodiment, the first protrusion 2202 is a cone pointing to the first opening 214A. The side of the second protrusion 2142 opposite to the first protrusion 2202 is parallel to the surface 099116607 of the first protrusion 22〇2, page 19/19, 0992029539-0 201142895. The electron emitter 2162 of the electron emission layer 216 extends perpendicularly to the surface of the first protrusion 2202. It is understood that the secondary electrons excited by the electrons emitted by the electron emitters striking the surface of the first protrusions 2202 are more easily emitted from the electron emitting portions by the gate electrodes 222. Referring to FIG. 6 , a third embodiment of the present invention provides a field emission device 3A including an insulating substrate 310, a first insulating isolation layer 312, a cathode electrode 314, and an electron emission layer 316'. The electron extraction electrode 318, the secondary electron emission layer 320, a second insulation isolation layer 321 and the surface electrode 322. The structure of the field emission device 3 提供 provided by the third embodiment of the present invention is substantially the same as that of the field emission device 1 提供 provided by the first embodiment of the present invention, and the difference is the thickness of the second insulating isolation layer 321 . The second insulating spacer 321 has a third opening 3212, and the inner wall of the third opening 3212, that is, the surface of the second insulating isolation layer 321 near the electron emitting portion is further provided with a secondary electron emitting material. And the size of the third opening 3212 gradually decreases in a direction away from the electron extraction electrode 3丨8, so that electrons emitted from the secondary electron emission layer 320 are more easily bombarded to the secondary electron emission material of the inner wall of the third opening 3212. The gate electrode 322 is a circular conductive layer. The gate electrode 322 can focus on electrons emitted from the secondary electron emission layer 320. Referring to FIG. 7, a fourth embodiment of the present invention provides a field emission device 4A including an insulating substrate 410', a first insulating isolation layer 412, a cathode electrode 414, and an electron emission layer 416. An electron extraction electrode 418, a secondary electron emission layer 420, a second insulation isolation layer 421, _ - a - a human electron dynode 424, a third insulation isolation layer 426, and a thumb electrode 422. The field emission device 10 of the fourth embodiment of the present invention has the same structure as the field emission device 100 provided by the first embodiment of the present invention. The structure of the field emission device 100 is the same as that of the first embodiment of the present invention. The difference between the second insulating isolation layer 421 and the gate electrode 422 further includes a secondary electron dynode 424 and a third insulating isolation layer 426. The gate electrode 422 and the secondary electron dynode 424 are insulated by the third insulating spacer 4 26 . The gate electrode 42 2 is a metal grid. [0062] Ο

G 所述二次電子倍增極424為一導電層,其厚度大於5〇〇微 米’且其具有一與第一開口 4140對應的第四開口 4240。 該第四開口 4240的内壁,即二次電子倍增極424靠近電子 出射部的表面,塗敷有二次電子發射材料4242,以進一 步增強場發射裝置400的場發射電流密度。進一步,所述 第四開口4240的内壁還可以形成複數個凹凸結構以增加 塗敷二次電子發射材料4242的面積。所述場發射裝置400 工作時,電子引出電極41 8的電位高於陰極電極414的電 位’二次電子倍增極424的電位高於電子引出電極518的 電位,栅極電極422的電位高於二次電子倍增極424的電 位。可以理解,所述二次電子發射贗420發射的電子在二 次電子倍增極424的作用下可以更有力的轟擊二次電子倍 增極424表面的二次電子發射材料4242,以激發更過的二 次電子。 [0063] 請參閱圖8,本發明第五實施例提供一種場發射裝置500 ,其包括一絕緣基底510,一第一絕緣隔離層512,一陰 極電極514,一電子發射層516,一電子引出電極518, 一二次電子發射層520,一第二絕緣隔離層521,一栅極 電極522以及一陽極電極530。本發明第五實施例提供的 099116607 表單編號A0101 第21頁/共36頁 0992029539-0 201142895The secondary electron dynode 424 is a conductive layer having a thickness greater than 5 Å micrometers and having a fourth opening 4240 corresponding to the first opening 4140. The inner wall of the fourth opening 4240, i.e., the secondary electron dynode 424, is adjacent to the surface of the electron-emitting portion, and is coated with a secondary electron-emitting material 4242 to further enhance the field emission current density of the field emission device 400. Further, the inner wall of the fourth opening 4240 may further form a plurality of concave and convex structures to increase the area of the coated secondary electron emission material 4242. When the field emission device 400 is in operation, the potential of the electron extraction electrode 418 is higher than the potential of the cathode electrode 414. The potential of the secondary electron dynode 424 is higher than the potential of the electron extraction electrode 518, and the potential of the gate electrode 422 is higher than two. The potential of the secondary electron dynode 424. It can be understood that the electrons emitted by the secondary electron emission 赝420 can bombard the secondary electron emission material 4242 on the surface of the secondary electron dynode 424 more strongly under the action of the secondary electron dynode 424 to excite the second. Secondary electrons. [0063] Referring to FIG. 8, a fifth embodiment of the present invention provides a field emission device 500 including an insulating substrate 510, a first insulating isolation layer 512, a cathode electrode 514, an electron emission layer 516, and an electron extraction. The electrode 518, a secondary electron emission layer 520, a second insulating isolation layer 521, a gate electrode 522 and an anode electrode 530. The fifth embodiment of the present invention provides 099116607 Form No. A0101 Page 21 of 36 0992029539-0 201142895

電極518之間, 電極514設置於陽極電極53〇與電子引出 所述柵極電極522設置於陽極電極53〇與 陰極電極514之間。所述陽極電極530為一導電層,其材 料可以為氧化銦錫,金屬,奈米碳管等。本實施例中, 所述陽極電極530為氧化銦錫透明導電層。所述場發射裝 置500工作時,電子引出電極518的電位高於陰極電極 514的電位,柵極電極522的電位高於電子引出電極8 的電位,陽極電極530的電位高於柵極電極522的電位。 可以理解’所述柵極電極522為一可選結構。 [0064] [0065] [0066] [0067] [0068] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ’自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效袼飾或變化, 皆應涵蓋於以下申請專利範園内。 【圖式簡單說明】 圖1為本發明第一實施例提供的場發射裝置的結構示意圖 〇 圖2為圖1的場發射裝置沿11 -11線剖開後的俯視圖。 圖3為圖1的場發射裝置沿I 11 -111線剖開後的仰視圖。 圖4為本發明第一實施例提供的場發射裝置的製借方法工 藝流程圖。 099116607 表單編號A0101 第22頁/共36頁 0992029539-0 201142895 ^)69] ® 5為本發明第二實施例提供的場發射裝置的結構示意圖 〇 [〇〇7〇]圖6為本發明第三實施例提供的場發射裝置的結構示意圖 〇 [0071] 圖7為本發明第四實施例提供的場發射裝置的結構示意圖 〇 [0072] 圖8為本發明第五實施例提供的場發射裝置的結構示意圖 [0073] 【主要元件符號說明】 場發射裝置:100,200,300,400,50Ό [0074] 絕緣基底:110,210,310,410,510 [0075] 第一絕緣隔離層:112,212,312,412, 512 [0076] 第二開口 : 1120 [0077] 陰極電極:114,214,314,414,514 [0078] 第一開口 : 1140,2140,4140 [0079] 電子發射層:116,216,316,416, 516 [0080] 電子發射體:1162,2162 [0081] 電子發射端:1164,2164 [0082] 電子引出電極:118,218,318,418,518 [0083] 二次電子發射層:12〇,220,320,420, 520 [0084] 第二絕緣隔離層:121,221,321,421, 521 099116607 表單編號 A0101 第 23 頁/共 36 頁 0992029539-0 201142895 [0085] 第三開口 : 1212,3212 [0086] 栅極電極:122,222,322,422,522 [0087] 第二突起:2142 [0088] 第一突起:2202 [0089] 二次電子倍增極:424 [0090] 第四開口 : 4240 [0091] 二次電子發射材料:4242 [0092] 第三絕緣隔離層:426 [0093] 陽極電極:530 0992029539-0 099116607 表單編號A0101 第24頁/共36頁Between the electrodes 518, the electrode 514 is disposed on the anode electrode 53 and the electron is extracted. The gate electrode 522 is disposed between the anode electrode 53A and the cathode electrode 514. The anode electrode 530 is a conductive layer, and the material thereof may be indium tin oxide, metal, carbon nanotubes or the like. In this embodiment, the anode electrode 530 is an indium tin oxide transparent conductive layer. When the field emission device 500 is in operation, the potential of the electron extraction electrode 518 is higher than the potential of the cathode electrode 514, the potential of the gate electrode 522 is higher than the potential of the electron extraction electrode 8, and the potential of the anode electrode 530 is higher than that of the gate electrode 522. Potential. It will be understood that the gate electrode 522 is an optional structure. [0068] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and the scope of the patent application of the present invention is not limited thereto. Any equivalents or changes made by those who are familiar with the skill of the present invention in accordance with the spirit of the present invention shall be covered in the following patent application gardens. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of a field emission device according to a first embodiment of the present invention. FIG. 2 is a plan view of the field emission device of FIG. 1 taken along line 11-11. Figure 3 is a bottom plan view of the field emission device of Figure 1 taken along line I 11 -111. FIG. 4 is a flow chart of a method for lending a field emission device according to a first embodiment of the present invention. 099116607 Form No. A0101 Page 22/36 Page 0992029539-0 201142895 ^) 69] ® 5 is a schematic structural view of a field emission device according to a second embodiment of the present invention. [〇〇7〇] FIG. 6 is the third embodiment of the present invention. FIG. 7 is a schematic structural diagram of a field emission device according to a fourth embodiment of the present invention. [0072] FIG. 8 is a schematic diagram of a field emission device according to a fifth embodiment of the present invention. Schematic diagram of structure [0073] [Explanation of main component symbols] Field emission device: 100, 200, 300, 400, 50 Ό [0074] Insulation substrate: 110, 210, 310, 410, 510 [0075] First insulating isolation layer: 112, 212, 312, 412, 512 [0076] second opening: 1120 [0077] cathode electrode: 114, 214, 314, 414, 514 [0078] first opening: 1140, 2140, 4140 [0079] electron emission layer: 116 , 216, 316, 416, 516 [0080] electron emitter: 1162, 2162 [0081] electron emission end: 1164, 2164 [0082] electron extraction electrode: 118, 218, 318, 418, 518 [0083] secondary electron Emissive layer: 12〇, 220, 320, 420, 520 [0084] Second Insulation barrier: 121, 221, 321, 421, 521 099116607 Form No. A0101 Page 23 of 36 0992029539-0 201142895 [0085] Third opening: 1212, 3212 [0086] Gate electrode: 122, 222, 322 , 422, 522 [0087] second protrusion: 2142 [0088] first protrusion: 2202 [0089] secondary electron dynode: 424 [0090] fourth opening: 4240 [0091] secondary electron emission material: 4242 [0092] Third insulating isolation layer: 426 [0093] Anode electrode: 530 0992029539-0 099116607 Form number A0101 Page 24 of 36

Claims (1)

201142895 七、申請專利範圍: 1 . 一種場發射裝置,其包括: 一絕緣基底; 一電子引出電極,該電子引出電極設置於該絕緣基底的一 表面; 一二次電子發射層,該二次電子發射層設置於該電子引出 電極的表面; 一陰極電極,該陰極電極通過一第一絕緣隔離層與該電子 八 引出電極間隔設置,所述電子引出電極設置在陰極電極與 〇 絕緣基底之間,該陰極電極具有一表面至少部分與該電子 引出電極面對設置,該陰極電極具有一第一開口,該第一 開口定義一電子出射部; 一電子發射層,該電子發射層設置在陰極電極面對該電子 引出電極設置的至少部分表面; 一柵極電極,該柵極電極與陰極電極絕緣設置,且所述陰 極電極設置在電子引出極與柵極電極之間。 Q 2 .如申請專利範圍第1項所述的場發射裝置,其中,所述陰 極電極具有一通孔,該通孔作為所述電子出射部。 3.如申請專利範圍第1項所述的場發射裝置,其中,所述陰 極電極包括複數個相隔一定距離並設置在同一平面的條狀 導電體,該複數個條狀導電體之間的間隔作為所述電子出 射部。 4 .如申請專利範圍第1項所述的場發射裝置,其中,所述電 子發射層設置在陰極電極的表面靠近電子出射部的位置。 5.如申請專利範圍第1項所述的場發射裝置,其中,所述電 099116607 表單編號A0101 第25頁/共36頁 0992029539-0 201142895 子發射層至少部分與所述二次電子發射層面對設置。 6 .如申請專利範圍第1項所述的場發射裝置,其中,所述第 一絕緣隔離層具有一第二開口對應於所述陰極電極的第一 開口設置,所述陰極電極的第一開口與第一絕緣隔離層的 第二開口部分交疊設置,交疊部分定義為電子出射部。 7 .如申請專利範圍第1項所述的場發射裝置,其中,所述電 子發射層包括複數個電子發射體,且該電子發射體為奈米 碳管、奈米碳纖維以及矽奈米線中的一種或多種。 8 .如申請專利範圍第7項所述的場發射裝置,其中,所述電 子發射體具有一電子發射端,且該電子發射端指向所述二 次電子發射層。 9 ·如申請專利範圍第8項所述的場發射裝置,其中,所述二 次電子發射層表面與電子出射部相對的位置具有至少一第 一突起,所述陰極電極與二次電子發射層相對的表面具有 至少一第二突起,所述電子發射層設置於該至少一第二突 起的表面,且所述電子發射體的電子發射端指向該至少一 第一突起的表面。 10 .如申請專利範圍第8項所述的場發射裝置,其中,所述電 子發射端與二次電子發射層相對於電子發射端的表面的最 大距離小於電子與氣體分子的平均自由程。 11 .如申請專利範圍第10項所述的場發射裝置,其中,所述電 子發射端與二次電子發射層相對於電子發射端的表面的最 大距離為10微米〜30微米。 12 .如申請專利範圍第1項所述的場發射裝置,其中,所述栅 極電極設置於陰極電極遠離電子引出電極的一側,且與陰 極電極之間通過一第二絕緣隔離層絕緣間隔設置。 099116607 表單編號A0101 第26頁/共36頁 0992029539-0 201142895 13 .如申請專利範圍第12項所述的場發射裝置’其中,所述栅 極電極為一金屬栅網,且柵極電棰覆蓋所迷電子出射部設 置,所述該金屬柵網上塗敷有二·次電子發射材料。 14 .如申請專利範圍第12項所述的場發射裝置’其中,所述第 二絕緣隔離層具有一第三開口與所述陰極電極的第一開口 對應設置,所述第三開口的内壁設置有二次電子發射材料 15 ·如申請專利範圍第14項所述的場發射裝置’其中,所述第 一絕緣隔離層具有一第二開口,所述第二絕緣隔離層具有 一第三開口,所述第一開.口、第二闕:口與第三開口部分交 疊設置’交疊部分定義為電子出射部° 16 .如申請專利範圍第12項所述的場發射裝置’其中,所述第 二絕緣隔離層的厚度大於5〇〇微米,所述第三開口的大小 沿著遠離電子引出電極的方向逐漸減小。 17 .201142895 VII. Patent application scope: 1. A field emission device comprising: an insulating substrate; an electron extraction electrode disposed on a surface of the insulating substrate; a secondary electron emission layer, the secondary electron An emission layer is disposed on a surface of the electron extraction electrode; a cathode electrode is disposed at a distance from the electron eight extraction electrode through a first insulation isolation layer, and the electron extraction electrode is disposed between the cathode electrode and the germanium insulation substrate, The cathode electrode has a surface at least partially facing the electron extraction electrode, the cathode electrode has a first opening, the first opening defines an electron emission portion, and an electron emission layer disposed on the cathode electrode surface At least a portion of the surface of the electron extraction electrode; a gate electrode, the gate electrode is insulated from the cathode electrode, and the cathode electrode is disposed between the electron extraction electrode and the gate electrode. The field emission device of claim 1, wherein the cathode electrode has a through hole as the electron emission portion. 3. The field emission device of claim 1, wherein the cathode electrode comprises a plurality of strip-shaped conductors spaced apart by a distance and disposed in the same plane, and an interval between the plurality of strip-shaped conductors As the electron emission portion. 4. The field emission device of claim 1, wherein the electron emission layer is disposed at a position of a surface of the cathode electrode near the electron emission portion. 5. The field emission device of claim 1, wherein the electric 099116607 form number A0101 page 25/36 pages 0992029539-0 201142895 the sub-emissive layer at least partially with the secondary electron emission layer For the settings. 6. The field emission device of claim 1, wherein the first insulating spacer has a second opening corresponding to a first opening of the cathode electrode, and the first opening of the cathode electrode The second opening portion of the first insulating isolation layer is disposed to overlap, and the overlapping portion is defined as an electron emitting portion. 7. The field emission device of claim 1, wherein the electron emission layer comprises a plurality of electron emitters, and the electron emitters are carbon nanotubes, nano carbon fibers, and nanowires. One or more. 8. The field emission device of claim 7, wherein the electron emitter has an electron emission end, and the electron emission end is directed to the secondary electron emission layer. The field emission device of claim 8, wherein the surface of the secondary electron emission layer opposite to the electron emission portion has at least one first protrusion, the cathode electrode and the secondary electron emission layer The opposite surface has at least one second protrusion, the electron emission layer is disposed on a surface of the at least one second protrusion, and an electron emission end of the electron emitter is directed to a surface of the at least one first protrusion. 10. The field emission device of claim 8, wherein a maximum distance between the electron emission end and a surface of the secondary electron emission layer with respect to the electron emission end is smaller than an average free path of electrons and gas molecules. The field emission device of claim 10, wherein a maximum distance between the electron-emitting end and the surface of the secondary electron-emitting layer with respect to the electron-emitting end is 10 μm to 30 μm. 12. The field emission device of claim 1, wherein the gate electrode is disposed on a side of the cathode electrode remote from the electron extraction electrode, and is insulated from the cathode electrode by a second insulating spacer. Settings. The field emission device of the invention of claim 12, wherein the gate electrode is a metal grid and the gate electrode is covered by the method of the invention. The electron emission portion is disposed, and the metal grid is coated with a secondary electron emission material. The field emission device of claim 12, wherein the second insulating spacer has a third opening corresponding to the first opening of the cathode electrode, and the inner wall of the third opening is disposed The field emission device of the invention of claim 14, wherein the first insulating isolation layer has a second opening, and the second insulating isolation layer has a third opening, The first opening, the second opening, and the third opening are overlapped with each other. The overlapping portion is defined as an electron emitting portion. The field emission device of claim 12, wherein The thickness of the second insulating isolation layer is greater than 5 μm, and the size of the third opening gradually decreases in a direction away from the electron extraction electrode. 17 . 18 . 19 . 099116607 如申請專利範圍第12項所述的場發射裝置,其中,進—步 包括一二次電子倍増極,該二次電子倍增極設置於所述拇 極電極與第二絕緣隔離層之間’該二次電子倍增極與柵極 電極之間通過一第三絕緣隔,離層絕緣間隔設置,所述二次 電子倍增極具有一第四開口與所述陰極電極的第—開口對 應ex置,所述第四開口的内壁設置有二次電子發射枒料。 如申明專利範圍第1項所述的場發射裝置,其中,進一步 包括-陽極電極’該陽極電極與柵極電極間隔設置,且所 述栅極電極設置在陰極電極⑽極電極之間。如申請專職圍㈣項所述㈣發魏置,其巾,所述電 子引出電極的電位高於陰極電極的電位柵極電極的電位 间於電子引出電極的電位,陽極電極的電位高於柵核電極 表單編敢Α0101 第27頁/共兆頁 0992029539-0 201142895 的電位。 20 . —種場發射裝置,其包括: 一絕緣基底; 一電子引出電極,該電子引出電極設置於該絕緣基底的一 表面; 一二次電子發射層,該二次電子發射層設置於該電子引出 電極的表面; 一陰極電極,該陰極電極通過一第一絕緣隔離層與該電子 引出電極間隔設置,所述電子引出電極設置在陰極電極與 絕緣基底之間,該陰極電極具有一表面至少部分與該電子 引出電極面對設置,該陰極電極具有一第一開口,該第一 開口定義一電子出射部; 一電子發射層,該電子發射層設置在陰極電極面對該電子 引出電極設置的部分表面; 一陽極電極,該陽極電極與陰極電極間隔設置,且所述陰 極電極設置在電子引出極與陽極電極之間。 099116607 表單編號A0101 第28頁/共36頁 0992029539-0The invention relates to the field emission device of claim 12, wherein the step further comprises a secondary electron doubled pole, the secondary electron dynode being disposed at the thumb electrode and the second insulation Between the layers, the secondary electron dynode and the gate electrode are separated by a third insulating spacer, and the secondary electron dynode has a fourth opening and a first opening of the cathode electrode. Corresponding to the ex, the inner wall of the fourth opening is provided with a secondary electron emission dip. The field emission device of claim 1, further comprising an anode electrode disposed at an interval from the gate electrode, wherein the gate electrode is disposed between the cathode electrode (10). For example, if the application is full (4), the electric potential of the electrode is higher than the potential of the cathode electrode and the potential of the electrode is between the potential of the electron extraction electrode, and the potential of the anode electrode is higher than the grid core. The electrode form is compiled with the potential of 0101 page 27 / total mega page 0992029539-0 201142895. 20. A field emission device, comprising: an insulating substrate; an electron extraction electrode disposed on a surface of the insulating substrate; a secondary electron emission layer, the secondary electron emission layer being disposed on the electron a surface of the extraction electrode; a cathode electrode disposed at a distance from the electron extraction electrode through a first insulating isolation layer disposed between the cathode electrode and the insulating substrate, the cathode electrode having a surface at least partially Facing the electron extraction electrode, the cathode electrode has a first opening, the first opening defines an electron emission portion, and an electron emission layer disposed at a portion of the cathode electrode facing the electron extraction electrode Surface; an anode electrode, the anode electrode is spaced apart from the cathode electrode, and the cathode electrode is disposed between the electron extraction electrode and the anode electrode. 099116607 Form No. A0101 Page 28 of 36 0992029539-0
TW99116607A 2010-05-25 2010-05-25 Field emission device TWI407477B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99116607A TWI407477B (en) 2010-05-25 2010-05-25 Field emission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99116607A TWI407477B (en) 2010-05-25 2010-05-25 Field emission device

Publications (2)

Publication Number Publication Date
TW201142895A true TW201142895A (en) 2011-12-01
TWI407477B TWI407477B (en) 2013-09-01

Family

ID=46765177

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99116607A TWI407477B (en) 2010-05-25 2010-05-25 Field emission device

Country Status (1)

Country Link
TW (1) TWI407477B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467616B (en) * 2012-12-06 2015-01-01 Hon Hai Prec Ind Co Ltd Field emission cathode device and field emission equipment using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2254486B (en) * 1991-03-06 1995-01-18 Sony Corp Flat image-display apparatus
JP2001188507A (en) * 1999-12-28 2001-07-10 Futaba Corp Fluorescent light-emitting display and fluorescent light- emitting display device
TWI281183B (en) * 2004-11-12 2007-05-11 Hon Hai Prec Ind Co Ltd Field emission cathode and field emission device using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467616B (en) * 2012-12-06 2015-01-01 Hon Hai Prec Ind Co Ltd Field emission cathode device and field emission equipment using the same
US9184016B2 (en) 2012-12-06 2015-11-10 Tsinghua University Field emission cathode device and field emission equipment using the same

Also Published As

Publication number Publication date
TWI407477B (en) 2013-09-01

Similar Documents

Publication Publication Date Title
CN101894725B (en) Ion source
JP4880568B2 (en) Surface conduction electron-emitting device and electron source using the electron-emitting device
TWI467616B (en) Field emission cathode device and field emission equipment using the same
JP2008130573A (en) Method of manufacturing surface conduction electron emitting element
Chen et al. A microionizer for portable mass spectrometers using double-gated isolated vertically aligned carbon nanofiber arrays
TWI539480B (en) Reflex klystron and electron emission device
US10832885B2 (en) Electron transparent membrane for cold cathode devices
CN102254762B (en) Field emission device
US7741768B2 (en) Field emission device with increased current of emitted electrons
TW201142895A (en) Field emission device
CN102254765B (en) Method for preparing field emission device
US10734180B2 (en) Field emission cathode structure for a field emission arrangement
TWI407478B (en) Method for making field emission device
JP2012089258A (en) Electron emission element
TWI407476B (en) Ion source
JP2010211955A (en) Light emitting device
TW564453B (en) Method of fabricating cathode substrate of field-emission display
JP4916221B2 (en) Method for manufacturing cold cathode and method for manufacturing apparatus equipped with cold cathode
RU2524207C1 (en) Assembly of electrovacuum instrument with field-emission cathode
KR20120058136A (en) Metal-carbon nanotube composite powder, metal-carbon nanotube composite paste, and field emission device using the same
JP2012185942A (en) Field-emission light-emitting apparatus, and method for manufacturing the same
JP2003331710A (en) Gate electrode of field emission type electron source and its manufacturing method
JP2001035356A (en) Field emission type electron source and manufacture thereof, and display device