TW201142568A - Direct current (DC) correction circuit for a time of flight (TOF) photodiode front end - Google Patents

Direct current (DC) correction circuit for a time of flight (TOF) photodiode front end Download PDF

Info

Publication number
TW201142568A
TW201142568A TW100103041A TW100103041A TW201142568A TW 201142568 A TW201142568 A TW 201142568A TW 100103041 A TW100103041 A TW 100103041A TW 100103041 A TW100103041 A TW 100103041A TW 201142568 A TW201142568 A TW 201142568A
Authority
TW
Taiwan
Prior art keywords
amplifier
sensor
light
signal
correction circuit
Prior art date
Application number
TW100103041A
Other languages
Chinese (zh)
Other versions
TWI448871B (en
Inventor
David W Ritter
Philip Golden
Carl Warren Craddock
Kevin Brehmer
Original Assignee
Intersil Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/013,146 external-priority patent/US8530819B2/en
Application filed by Intersil Inc filed Critical Intersil Inc
Publication of TW201142568A publication Critical patent/TW201142568A/en
Application granted granted Critical
Publication of TWI448871B publication Critical patent/TWI448871B/en

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

A system and method that compensates for the effects of ambient light in a time of flight (TOF) sensor front end is provided. Moreover, a direct current (DC) correction loop is utilized at the front end, which removes a DC component from a current generated by the TOF sensor and accordingly prevents saturating the front end. The DC correction loop attenuates the DC component without adding significant thermal noise at a modulation frequency and provides a corrected signal to the front end circuitry. The corrected signal is processed and utilized to detect a position of an object within the optical field of the sensor.

Description

201142568 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一飛行時間光二極體前級,特別係一 使用於一飛行時間光二極體前級之直流修正電路。 相關申請案之交叉參考 本申請案主張2010年1月27曰提申的美國臨時專利 申請案序號第61/298,895號的優先權,該案標題為「用於 具有一整合式環境光感測器之以反射為基礎的長程近接與 運動偵測器的架構(ARCHITECTURE FOR A REFLECTION BASED LONG RANGE PROXIMITY AND MOTION DETECTOR HAVING AN INTEGRATED AMBIENT LIGHT SENSOR)」,本文以引用的方式將其完整併入。進一步言 之,本申請案還和下面的美國專利申請案有關:2010年12 月28日提申之共同待審的美國專利申請案序號第 12/979,726 號(法律檔案編號為 SE-2773/INTEP105USA),該 案標題為「藉由飛行時間量測IQ域之微分的距離感測 (DISTANCE SENSING BY IQ DOMAIN DIFFERENTIATION OF TIME OF FLIGHT (TOF) MEASUREMENTS)」;____年 __月__曰提申之共同待審的美國專利申請案序號第 __________ 號 (法 律檔案 編號為 SE-2785-AN/INTEP105USC),該案標題為「具有改良之電 源供應抑制比的光二極體前級(PHOTODIODE FRONT END WITH IMPROVED POWER SUPPLY REJECTION RATIO(PSRR))」;____年__月__日提申之共同待審的美國 201142568 專利中請案序號第__________號(法律檔案編號為 SE-2876-AN/INTEP105USD),該案標題為「用於飛行時間 收發機之自動零點校正技術(AUTOMATIC ZERO CALIBRATION TECHNIQUE FOR TIME OF FLIGHT (TOF) TRANSCEIVERS)」;____年__月__日提申之共同待審的美 國專利中請案序號第__________號(法律檔案編號為201142568 VI. Description of the Invention: [Technical Field] The present invention relates to a time-of-flight photodiode preamplifier, and more particularly to a DC correction circuit for use in a flight time photodiode preamplifier. CROSS-REFERENCE TO RELATED APPLICATIONS This application claims priority to US Provisional Patent Application Serial No. 61/298,895, filed Jan. The ARCHITECTURE FOR A REFLECTION BASED LONG RANGE PROXIMITY AND MOTION DETECTOR HAVING AN INTEGRATED AMBIENT LIGHT SENSOR) is incorporated herein by reference. Further, the present application is also related to the following U.S. Patent Application: copending U.S. Patent Application Serial No. 12/979,726, filed on Dec. 28, 2010. ), the case titled "DISTANCE SENSING BY IQ DOMAIN DIFFERENTIATION OF TIME OF FLIGHT (TOF) MEASUREMENTS"; _____月__曰提申Co-pending U.S. Patent Application Serial No. __________ (legal file number SE-2785-AN/INTEP105USC), titled "Photodiode Front Stage with Improved Power Supply Rejection Ratio (PHOTODIODE FRONT END) WITH IMPROVED POWER SUPPLY REJECTION RATIO(PSRR))"; ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ /INTEP105USD), the case titled "AUTOMATIC ZERO CALIBRATION TECHNIQUE FOR TIME OF FLIGHT (TOF) TRANSCEIVERS"; ____ __月__日提申U.S. Patents pending in the same case, please Serial No. __________ (legal file number

SE-2877-AN/INTEP105USE),該案標題為「用於手勢辨識 之串鏈近接感測器(SERIAL-CHAINING PROXIMITY SENSORS FOR GESTURE RECOGNITION)」;以及____年 __月__曰提申之共同待審的美國專利申請案序號第 __________ 號 (法 律標案 編號為 SE-2878-AN/INTEP105USF),該案標題為「具有主要元件分 析之手勢辨識(GESTURE RECOGNITION WITH PRINCIPAL COMPONENT ANALYSIS)」。本文以引用的方式將前面申 請案中的每一案完整併入。 【先前技術】 201142568 【發明内容】 有一種新興的整合式裝置可讓電子產品感測它們的環 境。該些裝置包含各式各樣的裝置,例如,加速度計 (accelerometer)、整合式陀螺儀(monolithic gyroscope)、光 感測器(light sensor)、以及成像器(imager)。明球地說,光 感測器係最簡單且最便宜的一種,這使得它們可併入許多 消費性產品之中,舉例來說,夜燈(nightlight)、照相機、蜂 巢式電話、膝上型電腦、…等。一般來說,光感測器能夠被 運用在和近接感測有關的各式各樣應用之中,例如,但是 並不受限於此:偵測使用者的存在及/或偵測使用者至該產 品的距離,以達控制電力、顯示、或是其它介面選項的目 的。 紅外線(InfraRed ’ IR)近接偵測器係運用ir光來情測該 IR感測器之感測區裡面的物體。再者,IR光會由_ IR發 光二極體(Lighting Emitting Diode,LED)發射器發出,其會 在周圍區域之中的物體處反射偏離而且該等反射會被一偵 測器感測到。再者,該偵測器亦可能係一二極體(舉例來說, PIN二極體)、及/或會將IR光轉換成電訊號的任何其它類 型的設備。被感測到的訊號會經過分析,用以判斷是否有 物體存在於該感測區之中。某些習知的系統會發射一 IR光 脈衝並且偵測該脈衝是否返回該PIN二極體。然而,守此 奚知糸統很谷易因現貫中既有的IR光而遭到混淆,舉例來 201142568 說,環境光、太陽光、_.·等。此外,該等習知系統亦無法區 分來自靜態物體(舉例來說’椅子、桌子、汽水罐、.等)的 非所希反射和來自所希物體(舉例來說,人、動物、.等)的 反射。因此’為補償既有的^光,該等習知系統會量測資 料兩次:當該IR發射器開啟並且發射—ir脈衝時量測一 次;以及當該设發射器關閉時量測一次。再者,還會量測 兩種情況中的IR響應並且相減。然而,實施此等計算係一 既繁瑣且耗時的過程。&此之外,此等習知偵測器的範圍 僅約10至3 0公分(cm、。i隹'一半士々 〇 刀1 )進步s之,為在較大範圍(舉例 來說,20至30公分cm的範圍)中克服環境光的效應,該汲 LED還必須發射大量的電力。 本文中所揭示的系統與方法提供一種用於主動式長程 距離感測器的新穎訊號處理技術,其會防止前級發生直流 (Direct Cunrent,DC)飽和而不會造成明顯的雜訊(舉例: 說,雜訊頻譜密度)。舉例來說,本文所揭示的距離感測器 的範圍可能為1至2公尺。於其中一項觀點中,由一 IR 所發出的光會在而頻處被調變,舉例來說,1MHz至 50MHz。接著,所收到的ir響應,舉例來說,會藉由運用 正交振幅解調變器(I/Q解調變)被解調變並且會經過處理, 以便確認一物體和該感測器相隔的距離。可以明白的係, 雖然本文參照IR光來說明本發明的說明書;不過,本文中 所揭示的系統與方法亦能夠運用大部分的任何波長。舉例 來說,本發明的系統及/或方法步驟可以運用在聲波近接谓 測應用及/或超音波範圍尋找應用。進一步言之, 雖然本說 7 201142568 明書解釋與說明的係光/ _、 予α冽态(舉例來說,光二極 體);不過,可以明白的係,且 ’、,、亦涵羞會將一物理輸入轉換 成電§fl號的大部分任何電路要件。 本文會參考圖式來說明本發 +赞明主要内容,其中,所有 圖式中相同的元件符號待用於矣_ 現你用於表不相同的元件。為達解釋 的目的,在下面的說明中會提出許多明確的細節,以便徹 底瞭解本發明。不過,可 ^ J 月白的係’即使沒有該些明確 細節仍然可以實行本於 I仃丰明主要内谷。於其它實例中會以方 塊圖的形式來顯示眾所熟知的結構與裝置,以便幫助說明 本發明。當然,熟習本技術的人士便會瞭解,可以對此配 置進行許f修正,其並不會脫離本文所主張的本發明主要 内容的範疇或精神。 …再者,本文中所使用的「示範性」—詞意謂著當作一 範例、實例'或是解釋例。本文中被描述為「示範性」的 ㈣觀點或設計皆不必被視為係較佳的觀點或設計或者優 於其它觀點或設計。確切地說,「示範性詞的用法係 ,望以具體的形式來呈現各種概念。本申請案中所使用的 或」一詞希望意謂著包容性的「或」而非排斥性的「或」。 也就是,除非明確提及,或者文意非常清楚;否則,「X運 用A或B」希望意謂著任何本質上的包容性排列。也就是, 倘若X運用Α;χ運用B;或是χ運用八與6的話;那麼, 在任何前述的情況下皆符合「X運用Α或Β」。此外,除 非明確提及’或者文意非常清楚的指向單數形式;否則, 本申請案以及隨附申請專利範圍中所使用的冠詞「一」大 201142568 體上應該被視為意謂著「一或多個」。此外,本文中所使 用的「耦接」一詞意謂著直接或間接的電性或機械性耦接。 進一步言之,除非内文中在Γ感測區(sensearea)」、「視 覺範圍(visionfield)」、「光範圍(〇pticalfield)」等用詞以 及雷同的術語之間有特別區分;否則,該等用詞以及雷同 的術語可以在本申請案申交互運用。進一步言之,本文中 所運用的「環境」一詞可能係指具有大部分任何合理頻譜 的光,例如,但是並不受限於:白熱光、螢光 '太陽光、 任何黑體溫度、及/或它們的組合。再者,本文中所運用的 「環境光」一詞可能包含來自一恆定光源的大部分任何的 光0 【實施方式】 圖中所示的係根據本發明揭示内容的一觀 參考圖 點用於在一長程近接偵測器的前級中降低dc飽和的範例 系統100。一般來說,系統1〇〇能夠被運用在大部分的任何 光感測應用及/或光學近接應用之中。舉例來說,—膝上型 電腦或個人電腦可能會藉由運用系統1〇〇在债測到一使用 間時開機(舉例來說’從休眠、待機、.等狀態中 1拽)或者,§操作者太接近一機器時,該機器會藉由運 用系統100來警不該操作者是否有危險。於另一範例中, 蜂巢=電話或個人數位助理(p_nal Digital Assis副, PDA)可能會在偵測到該電話/pDA被握持在使用者的耳朵 處時藉由運用系統1GG來關掉顯示器(以便節省電池壽命)。 201142568 一般來說’系統100會運用飛行時間(TIME OF FLIGHT ’ TOF)量測,其依賴於光的有限速度《該有限速 度會在一電磁波的發射及其從一物體處的反射之間造成延 遲’該延遲會和該物體的距離成正比。在系統1 〇〇中,可 能會以一經調變(舉例來說,在5MHz處)的IR LED訊號的 相位延遲來量測該距離。再者,對以IR訊號偵測為基礎的 近接感測來說,系統100會運用一 IR LED 102以及一 ir 感測器104。舉例來說’該系統1 〇〇可能會運用一經過高頻 (舉例來說,5MHz)調變的LED 102以及一經過調諧的pin 偵測器104 ’用以最佳化偵測範圍。一般來說,一 LED驅 動器1 06可能會被用來提供一輸入訊號(舉例來說,經過頻 率調變的訊號)給該LED 102。一般來說,在同步偵測中(舉 例來說,藉由該感測器前級電路系統11 8)可能會運用一同 步於該LED驅動器的局部振盪器(圖中並未顯示)。舉例來 說,該IR LED 102會有匹配該近接感測器頻譜的典型尖峰 波長;具有較高輻射強度的狹窄視角,其能夠幫助聚集非 常適合於近接感測的能量。可以明白的係,大部分的任何 IR LED(或陣列)皆能夠以下面各項係數為基礎來運用,例 如,但是並不受限於:視角、機械性高度、覆蓋範圍、轄 射強度、電流消耗量、…等。進一步言之,該ir LED 102 能夠發射經過調變的IR訊號108給感測物體丨10 ;而IR感 測器104則能夠接收該被發射訊號的一部分1 i 2,其係從减 測物體11 〇的表面處被反射回來。該物體11 〇可能係大部 分任何的感興趣實體,例如’但是並不受限於:人體、自 10 201142568 動化元件、裝置、物品、動物、…等。 一般來說,反射H2的大小會相依於該物體110的尺 寸、該物體1 10的顏色、以及該物體1 10和IR感測器1〇4 的相隔距離。舉例來說,白色的襯衫所產生的反射可能會 高於黑色的襯衫。除了來自物體110的反射112之外,該 感測器10 4還可能會接收各種其它訊號114,例如,但是並 不受限於:電氣串訊、光學串訊、及/或環境反向散射 (environmental backscatter)。該些訊號中的每一者皆代表對 該感興趣物體之彳貞測所造成的干擾。該些干擾之中的電氣 串訊與光學串訊在該裝置的壽命期間可能會近似於恆定, 並且能夠在該應用的製造或開發階段處被校正。環境反向 散射114則可能係接收自該感測器1〇4的光範圍中的各種 來源,並且可能包含該物體丨10之偵測並不感興趣的大部 分任何訊號。舉例來說,桌子表面、長沙發、電視顯示器、 汽水罐、…等之類的物體並非實用的目標物,但是卻會被偵 測到而成為在感測器104處所收到之訊號的重要組成。於 其中一實施例中,該些恆定的光源(舉例來說,螢光、電燈、 太陽光、…等)會共同成為入射於該感測器1〇4上 104上的環境光。SE-2877-AN/INTEP105USE), the title of the case is "SERIAL-CHAINING PROXIMITY SENSORS FOR GESTURE RECOGNITION"; and ____ years __月__曰提The copending U.S. Patent Application Serial No. __________ (Legal No. SE-2878-AN/INTEP105USF), titled "GESTURE RECOGNITION WITH PRINCIPAL COMPONENT ANALYSIS" . Each of the previous applications is incorporated by reference in its entirety. [Prior Art] 201142568 [Invention] There is an emerging integrated device that allows electronic products to sense their environment. These devices include a wide variety of devices, such as accelerometers, monolithic gyroscopes, light sensors, and imagers. Ming Ball said that light sensors are the simplest and cheapest ones, which allows them to be incorporated into many consumer products, for example, nightlights, cameras, cellular phones, laptops. Computer,...etc. In general, light sensors can be used in a wide variety of applications related to proximity sensing, for example, but not limited to: detecting the presence of a user and/or detecting the user to The distance of the product for the purpose of controlling power, display, or other interface options. The infrared (InfraRed' IR) proximity detector uses ir light to sense the objects in the sensing area of the IR sensor. Furthermore, the IR light is emitted by the _IR Lighting Emitting Diode (LED) emitter, which deflects off at objects in the surrounding area and is reflected by a detector. Furthermore, the detector may be a diode (for example, a PIN diode), and/or any other type of device that converts IR light into an electrical signal. The sensed signal is analyzed to determine if an object is present in the sensing area. Some conventional systems emit an IR light pulse and detect if the pulse returns to the PIN diode. However, observing this ignorance is very confusing because of the existing IR light, for example, 201142568 said, ambient light, sunlight, _. Moreover, such conventional systems are also incapable of distinguishing between non-sense reflections from static objects (eg, 'chairs, tables, soda cans, etc.) and from the objects (eg, humans, animals, etc.) Reflection. Thus, in order to compensate for the existing light, the conventional system measures the data twice: once when the IR emitter is turned on and emits the -ir pulse; and once when the emitter is turned off. Furthermore, the IR responses in both cases are measured and subtracted. However, implementing such calculations is a cumbersome and time consuming process. & In addition, the range of such conventional detectors is only about 10 to 30 cm (cm, i隹 'half knives 1) progress, for a larger range (for example, Overcoming the effects of ambient light in the range of 20 to 30 cm, the xenon LED must also emit a large amount of power. The systems and methods disclosed herein provide a novel signal processing technique for active long range distance sensors that prevents DC (Direct Cunrent, DC) saturation of the front stage without causing significant noise (example: Said, noise spectrum density). For example, the distance sensor disclosed herein may range from 1 to 2 meters. In one of the views, the light emitted by an IR is modulated at the frequency, for example, 1 MHz to 50 MHz. Then, the received ir response, for example, is demodulated by using a quadrature amplitude demodulator (I/Q demodulation) and processed to confirm an object and the sensor. The distance between them. It will be understood that although the specification of the present invention is described herein with reference to IR light; however, the systems and methods disclosed herein can utilize most of any wavelength. For example, the system and/or method steps of the present invention can be used in sonic proximity applications and/or ultrasonic range finding applications. Further, although the interpretation and description of this book 7 201142568 is the light / _, to the alpha state (for example, the light diode); however, the system can be understood, and ',,, and also shame Convert a physical input to most of the electrical requirements of the electrical §fl number. This article will refer to the schema to illustrate the main content of this issue + praise, in which all the same component symbols in the schema are to be used for 矣 _ now you are used to distinguish components. For the purposes of explanation, many specific details are set forth in the description which follows. However, it can be implemented in the main inner valley of I Feng Ming, even if there is no clear details. In other instances, well-known structures and devices are shown in the form of block diagrams to help illustrate the invention. Of course, those skilled in the art will appreciate that modifications may be made to this configuration without departing from the scope or spirit of the subject matter of the invention as claimed herein. ... Again, the term "exemplary" as used in this document means "as an example, an instance" or an explanation. The (4) views or designs described herein as "exemplary" are not necessarily considered to be preferred views or designs or superior to other ideas or designs. To be precise, "the use of exemplary words is intended to present various concepts in a concrete form. The term "or" used in this application is intended to mean an inclusive "or" rather than a repulsive one. "." That is, unless explicitly mentioned, or the meaning of the text is very clear; otherwise, "X uses A or B" hopes to mean any essentially inclusive arrangement. That is, if X uses Α; χ uses B; or χ uses 8 and 6; then, in any of the above cases, it conforms to "X use Α or Β". In addition, unless expressly stated to the 'or the singular form, the singular form is used in the context of the application and the scope of the accompanying claims, the term "one" 201142568 should be considered to mean "one or Multiple". Furthermore, the term "coupled" as used herein refers to a direct or indirect electrical or mechanical coupling. Further, unless there is a special distinction between the terms "sensearea", "visionfield", "optical field" and the similar terms in the text; otherwise, Words and similar terms can be used interchangeably in this application. Furthermore, the term "environment" as used herein may refer to light having most of any reasonable spectrum, for example, but not limited to: white hot light, fluorescent 'sunlight', any black body temperature, and / Or a combination of them. Furthermore, the term "ambient light" as used herein may encompass most of any light from a constant source of light. [Embodiment] The figure is shown in accordance with an aspect of the present disclosure. The dc saturation example system 100 is reduced in the front stage of a long range proximity detector. In general, System 1 can be used in most of any light sensing applications and/or optical proximity applications. For example, a laptop or a personal computer may be powered on by using the system 1 when the debt is measured to a usage (for example, '1 from sleep, standby, etc.) or, § When the operator is too close to a machine, the machine will use the system 100 to alert the operator if the user is in danger. In another example, the hive = phone or personal digital assistant (p_nal Digital Assis, PDA) may turn off the display by using the system 1GG when detecting that the phone/pDA is being held at the user's ear. (to save battery life). 201142568 In general, System 100 uses the TIME OF FLIGHT 'TOF measurement, which relies on the limited speed of light. This limited speed causes a delay between the emission of an electromagnetic wave and its reflection from an object. 'This delay will be proportional to the distance of the object. In System 1 该, the distance may be measured with a phase delay of the IR LED signal that is modulated (for example, at 5 MHz). Furthermore, for proximity sensing based on IR signal detection, system 100 utilizes an IR LED 102 and an ir sensor 104. For example, the system 1 may utilize a high frequency (e.g., 5 MHz) modulated LED 102 and a tuned pin detector 104' to optimize the detection range. In general, an LED driver 106 may be used to provide an input signal (e.g., a frequency modulated signal) to the LED 102. In general, in synchronous detection (for example, by the sensor pre-stage circuitry 11 8), a local oscillator (not shown) that is synchronized to the LED driver may be employed. For example, the IR LED 102 will have a typical spike wavelength that matches the proximity sensor spectrum; a narrow viewing angle with higher radiation intensity that can help gather energy that is well suited for proximity sensing. It can be understood that most of the IR LEDs (or arrays) can be applied based on the following coefficients, for example, but not limited to: viewing angle, mechanical height, coverage, radiant intensity, current Consumption, ..., etc. Further, the ir LED 102 can transmit the modulated IR signal 108 to the sensing object 丨10; and the IR sensor 104 can receive a portion of the transmitted signal 1 i 2 from the subtracted object 11 The surface of the crucible is reflected back. The object 11 may be a majority of any entity of interest, such as 'but not limited to: human body, from 10 201142568 kinetic elements, devices, articles, animals, ... and the like. In general, the size of the reflection H2 will depend on the size of the object 110, the color of the object 1 10, and the distance separating the object 1 10 from the IR sensor 1〇4. For example, a white shirt may produce a higher reflection than a black shirt. In addition to the reflections 112 from the object 110, the sensor 104 may also receive various other signals 114, such as, but not limited to, electrical crosstalk, optical crosstalk, and/or environmental backscattering ( Environmental backscatter). Each of these signals represents interference caused by speculation of the object of interest. The electrical crosstalk and optical crosstalk among the interferers may be approximately constant during the life of the device and can be corrected at the manufacturing or development stage of the application. The ambient backscatter 114 may be from various sources in the range of light received from the sensor 1〇4 and may include most of the signals detected by the object 10 that are not of interest. For example, objects such as table surfaces, couches, television displays, soda cans, etc. are not practical targets, but are detected as an important component of the signals received at the sensor 104. . In one embodiment, the constant light sources (for example, fluorescent, electric light, sunlight, etc.) will collectively become ambient light incident on the sensor 104.

益所產生的訊號 。舉例來說,該 能夠讓後級使用之規格的大部分任何電路 201142568 前級可能包含一或多個放大器、一或多個類比至數位轉換 器(Analog-to-Digital Converter,ADC)、及/或一訊號處理 器。於其中一觀點中’系統100會運用Dc修正迴路116 ’ 其會適應性地調整不同環境光條件的熱雜訊並且消坪因該 % i兄光所引入的D C飽和電流’其並不會在系統1 〇 〇中接 noise 风 Ί/、 明顯的雜訊(舉例來說,熱雜訊,。於其中一範例中, 該DC修正迴路丨16可能會模仿一修正由環境光所產生的誤 差訊號的電感器,下面會參考圖2、3、以及4作詳細解釋。 可以明白的係,系統100的機械性設計可能包含不同 的元件選擇、不同的元件擺放方式、不同的維度、不同的 玻璃蓋板特徵、不同的led選擇、感測器104與LED 1〇2 之間不同的隔離技術、…等,以達最佳的近接感測效果。再 者,LED 102可能係大部分的任何光源,例如,但是並不受 限於.LED、有機 LED(〇rganic LED,0LED)、體發射 LED、 表面發射LED、垂直空腔表面發射雷射(Verticai cavity Surface Emitting Laser,VCSEL)、超冷光發光二極體(Super luminescent Light Emitting Di〇de,SLED)、雷射二極體像 素二極體、或是類似物。可以明白的係,該光源能夠產生 IR光,或是具有大部分任何其它波長的光。除此之外還 可以明白的係,該感測器可能還包含能夠用來產生用以表 不所偵測到的光的大小的電流或電壓的大部分任何光偵測 要件,例如,但是並不受限於··光阻器、光伏電池、光二 極體、光電晶體、電荷耦接裝置(Charge_c〇upied, CCD)、或是類似物。 12 201142568 進—步言之,還可以明白的係,該LED驅動器1〇6以 及該前級電路系統118可能包含大部分的任何(多個)電氣 電路,它們可能包含具有任何合宜數值的元件與電路系統 要件,以便實施本發明的實施例。又,LED驅動器1 、 DC修正迴路116、以及前級電路系統118亦可能會被實施 在一或多個積體電路(Integrated Circuit,IC)晶片之上並且 可能會被併入在相同或不同的(多個)封裝裡面。—般來說, 在成像系統之中可以運用各種IR頻帶(舉例來說,近汛頻 帶、中波IR頻帶、以及長波IR頻帶)。每—個頻帶皆可能 會有獨特的LED與感測器。通常,某些可見光偵測器系: 會工作在近IR頻帶之中並且可能包含被整合在該系統ic 之中的偵測器。此外,還可以明白的係,系統1〇〇並不受 限於運用IR力,而且LED/感測器/偵冑器亦能夠運用具有 大部分任何波長的訊號。 現在參考圖2,圖中所示的係根據本說明書一觀點的一 範例系統,其包含一會在距離感測期間修正因環境光而由 一感測器所產生的誤差訊號的IC 2〇2。再者,IC 2〇2亦能 夠被當作—主要距離監視系統及/或當作一用於校正傳統系 統的構件。明確地說,IC 202包含一 Dc修正迴路ιι6、一 放大器204、以及一距離決定電路2〇6,其會確認一物體和 該PIN二極體的相隔距離。可以明白的係,該修正迴路 116可能包含,舉例來說,本文中已針對系統1〇〇完整說明 的功能。進一步言之,圖2中雖然圖解單一 IC(202);不過’ 可以明白的係’亦可以運用多個IC或設備來實施本系統。 13 201142568 本文所揭示的主動式IR近接偵測器運用一 1R LED發 射器來發射IR光,其會在感測區中的物體處反射遠離,而 來自該等物體的反射則會被一偵測器(舉例來說,一 PIN二 極體)感測到。一般來說,環境光也會和該反射光一起入射 在該债測器之上。明確地說,該環境光及/或其它誤差訊號 (舉例來說’來自光二極體的漏電流)會在由該偵測器所產生 的電流中提供一 DC值。舉例來說,環境光可能包含大部分 的任何低頻光,其包含:太陽光、人造光(舉例來說,打算 用來照亮房間或某個區域)、及/或來自可能不感興趣的移動 中物體的陰影/光。於另一範例中,環境光可能還包含來自 人造光源之較高頻率的光,例如,直接由電力線驅動的光 所發出之具有各種較高諧振的100Hz或120Hz的光《環境 光可旎還包含在1〇〇KHz頻率範圍及諧振頻率中以小型變 壓器電路所驅動的螢光照明所發出的更高頻率的光^傳統 上可倉b會運用增益切換系統(其中,系統增益會適應性地 文I以便謇應於環境光)來修正由環境光所造成的DC誤 差。或者,可能會運用切換式電容器消除技術或是具有一 〇 授匕路的轉阻放大器(TransImpedance Amplifier,TIA) 二C L正。然而,s亥些複雜的系統可能會在該偵測器 月』、及處引入明顯的雜訊(舉例來說,雜訊頻譜密度)。相反 地’,沉修正迴路116則運用簡單、财用、而且低雜訊的電 路’其能夠讓偵測器前級保持恆定的增益,因而會簡化設 計。 於其中-觀點中,DC修正迴路116可以在調變頻率處 9 9201142568 (舉例來說,5MHZ)適應於全部範圍的DC電流(舉例來說 因環境光及/或大部分的任何誤差訊號所產生),而不利的結 果則僅會有微小的雜訊。再者,帛DC修正迴路i 16還會提 供一種電路讓高頻光訊號(舉例來說,反射自一物體)傳輸至 放大器204或;慮波器(圖中並未顯示),同時會消砰/降低 由入射於該偵測器上的環境光所產生的較低頻的訊號。於 其中一範例中,該DC修正迴路i 16會模仿一電感器,其會 移除該二極體電流中的DC組成並且防止該近接偵測電路 的前級發生飽和。明確地說,該DC修正迴路116所運用的 架構可達到DC修正的目的,但卻不會在調變頻率處增加熱 雜§fl (舉例來說’低雜訊頻譜密度)。在圖3與4十會詳細說 明用於該DC修正迴路的範例電路。該Dc修正迴路通 吊可能包含兩個放大器,舉例來說,跨導放大器(gmi與 gm2)。此外’一電容器電阻器對(Cf,Rf)可以被用來衰減該 第一跨導放大器(gm!)的雜訊轉換函數,而該第二跨導放大 器(gm2)的偏壓則會自動且動態地被調整,以便降低雜訊。 接著,來自該DC修正迴路的高頻訊號會被傳輸至一或 多個前級放大器204。該經放大的訊號會被提供至一用於近 接/運動偵測的距離決定電路206。於其中一範例中,該距 離決定電路206可能包含··一解調變器,舉例來說,一用 於解調變該經放大訊號的解調變電路;以及一用於確認該 已解調變訊號之相位以達TOF量測之目的的電路。 圖3所示的係根據本發明一觀點,用於補償由一光學 感測器所產生的DC電流的範例電路圖300。於其中一範例 15 201142568 中,電路300可謓一 ιηη,, _ 别級在有環境光(舉例來說,高達 lOOklux)存在時進行操作,而 〇運 300還不會在調變頻率處 / “匕之外,該電路 為5亥削級增加明顯的雜訊(舉例來 說,雜訊功率頻譜密度)。再者,本文中所使用的「明顯雜 訊」及/或「實質雜訊」所指 巧雜 叮知的係雜訊功率頻譜密度的數 在事先定義的臨界值之上,於吁 測中引進誤^ "仏界值處會在近接/運㈣ 光二極體302會響應於入射於其上的光產生一電流 Iambient+Signal並且提供給電容Cd 3〗〇。入射於該光二極體%2 之上=光包含反射自一物體的光(其會造成以及非所 希的%境光(其會造成Iambient)。由光二極體所產生的電 流中因環境光所造成的部分會在二極體電流中引進一 Μ 組成。一般來說’該DC組成可能會導致一誤差,其會有讓 該伯測器前級飽和的風險。於其中_觀點中,DC修正迴路 3〇8(其會平行於該光二極體3Q2被提供)會模仿—電感器, 並且因而會抑制因環境光的關係所產生的二極體電流的DC 組成。再者,該DC修正迴路308還會修正該Dc組成,而 不會在調變頻率處(舉例來說,5MHz)增加明顯的雜訊。 該DC修正迴路308包含放大器gml(3〇4)與㈣叩〇〇 以及一被連接在gml(304)之反向終端處的電容器電阻器 (cF,rf)對。明確地說,CfRf會衰減gml(3〇4)的雜訊轉換 函數。連接在電阻器Rf之上的參考電壓Vref(舉例來說, 接地)會建立光二極體3〇2的偏壓點,其係一 piN光二極體 之操作的一重要係數。此外,gm2則會藉由調整它的偏壓而 201142568 適應性地改變,用以調整/控制/降低㈣頻譜密& H > 聊2(3〇6)會適應於環境電流的變化,俾使得該沉修正迴路 3⑽的雜訊貢獻會妥適地保持在該環境光本身的雜訊貢獻 以下。明確地說,當環境電流的數值改變時,聊2的數值便 會以grnl的輸出所施加的偏壓為基礎而改變,以便確保電 路300的雜訊位準不會太明顯。 於其中一觀點中,該DC修正迴路3〇8理想上會在該光 二極體節點(N)處將該DC轉換函數變成零,而且沒有任〜可 DC組成會通過剩餘的電路系統,舉例來說,(多個)電壓放 大器、(多個)濾波器、…等。再者,因為該〇(:修正迴路3〇8 模仿/當作一電感器,所以,會為該DC組成提供一通往接 地的短路。據此,該DC修正迴路308在Dc處會產生一零 點,並且禁止該DC組成訊號進入該感測器前級(舉例來說, (多個)電壓放大器)。從該電路300處輸出的訊號會被提供 至該(等)電壓放大器,並且進一步會進行幫助近接/運動债 測的類比及/或數位訊號處理◎再者,該輸出訊號並不包含 由環境光造成的DC組成,且因此會保護該前級,使其不會 飽和。 此外,該DC修正迴路308的迴路增益可以計算如下: -gml (l + 5CFi?F) sCj^ sC pRpThe signal generated by the benefit. For example, most of the circuits 201142568 that can be used by the latter stage may contain one or more amplifiers, one or more Analog-to-Digital Converters (ADCs), and / Or a signal processor. In one of the views, 'system 100 will use Dc correction circuit 116', which will adaptively adjust the thermal noise of different ambient light conditions and eliminate the DC saturation current introduced by the % i-light. System 1 is connected to noise/popular noise (for example, thermal noise. In one example, the DC correction circuit 丨16 may mimic a correction error signal generated by ambient light. The inductors are explained in more detail below with reference to Figures 2, 3, and 4. It will be appreciated that the mechanical design of system 100 may include different component selections, different component placement methods, different dimensions, different glasses. Cover features, different led selections, different isolation techniques between sensor 104 and LED 1〇2, etc., for optimal proximity sensing. Furthermore, LED 102 may be the majority of any source. For example, but not limited to. LED, organic LED (〇rganic LED, OLED), body-emitting LED, surface-emitting LED, vertical cavity surface emitting laser (VCSEL), ultra-cold light emission Super luminescent Light Emitting Diode (SLED), laser diode diode, or the like. It is understood that the light source can generate IR light or have most of the other wavelengths. It is also understood that the sensor may also contain most of the light detecting requirements that can be used to generate a current or voltage that is indicative of the magnitude of the detected light, such as However, it is not limited to · photoresistors, photovoltaic cells, photodiodes, optoelectronic crystals, charge coupled devices (CCD), or the like. 12 201142568 Into - step, you can also It will be appreciated that the LED driver 1 〇 6 and the pre-stage circuitry 118 may contain most of any of the electrical circuit(s), which may include components and circuitry requirements having any convenient values to implement the practice of the present invention. In addition, LED driver 1, DC correction circuit 116, and pre-stage circuitry 118 may also be implemented on one or more integrated circuit (IC) wafers and possibly It is incorporated in the same or different package(s). In general, various IR bands (for example, near-band, medium-wave IR, and long-wave IR bands) can be utilized in the imaging system. There may be unique LEDs and sensors for each frequency band. Typically, some visible light detectors will operate in the near IR band and may contain detectors integrated into the system ic. In addition, it is also understandable that the system is not limited to the use of IR forces, and the LED/sensor/detector can also use signals with most of any wavelength. Referring now to Figure 2, there is shown an exemplary system in accordance with one aspect of the present specification including an IC 2 〇 2 that corrects an error signal generated by a sensor due to ambient light during distance sensing. . Furthermore, IC 2〇2 can also be considered as a primary distance monitoring system and/or as a component for correcting legacy systems. Specifically, the IC 202 includes a Dc correction loop ιι6, an amplifier 204, and a distance determining circuit 〇6 which confirms the distance between an object and the PIN diode. It will be appreciated that the correction loop 116 may include, for example, the functionality fully described herein for the system. Further, although a single IC (202) is illustrated in Fig. 2; however, the system can be implemented using a plurality of ICs or devices. 13 201142568 The active IR proximity detector disclosed in this paper uses a 1R LED emitter to emit IR light, which is reflected away from objects in the sensing area, and reflections from such objects are detected. A device (for example, a PIN diode) is sensed. In general, ambient light is also incident on the detector together with the reflected light. In particular, the ambient light and/or other error signals (e.g., leakage current from the photodiode) provide a DC value in the current generated by the detector. For example, ambient light may contain most of any low frequency light, including: sunlight, artificial light (for example, intended to illuminate a room or an area), and/or from a movement that may not be of interest. The shadow/light of the object. In another example, ambient light may also include higher frequency light from an artificial light source, such as 100 Hz or 120 Hz light with various higher resonances emitted by light directly driven by the power line. The higher frequency of the light emitted by the fluorescent illumination driven by the small transformer circuit in the frequency range of 1 kHz and the resonant frequency. Traditionally, the gain switching system is used. (where the system gain is adaptive) I to correct the DC error caused by ambient light in response to ambient light. Alternatively, a switched capacitor cancellation technique or a TransImpedance Amplifier (TIA) II C L positive with a bypass circuit may be used. However, some complex systems may introduce significant noise (for example, noise spectral density) in the detector month. Conversely, the Shen correction circuit 116 uses a simple, cost-effective, and low-noise circuit that maintains a constant gain at the front of the detector, thus simplifying the design. In the middle view, the DC correction loop 116 can be adapted to the full range of DC current at the modulation frequency 9 9201142568 (for example, 5 MHz) (for example, due to ambient light and/or most of any error signals) ), the result of the unfavorable is only a small amount of noise. Furthermore, the 帛DC correction circuit i 16 also provides a circuit for transmitting high frequency optical signals (for example, reflected from an object) to the amplifier 204 or to a wave filter (not shown), which simultaneously reduces/decreases A lower frequency signal produced by ambient light incident on the detector. In one example, the DC correction loop i 16 mimics an inductor that removes the DC component of the diode current and prevents saturation of the front stage of the proximity detection circuit. Specifically, the DC correction loop 116 utilizes a architecture that achieves DC correction, but does not add thermal §fl (for example, 'low noise spectral density') at the modulation frequency. An example circuit for the DC correction loop will be described in detail in Figures 3 and 40. The Dc correction loop can contain two amplifiers, for example, transconductance amplifiers (gmi and gm2). In addition, a 'capacitor resistor pair (Cf, Rf) can be used to attenuate the noise transfer function of the first transconductance amplifier (gm!), and the bias of the second transconductance amplifier (gm2) is automatic and Dynamically adjusted to reduce noise. The high frequency signal from the DC correction loop is then transmitted to one or more preamplifiers 204. The amplified signal is provided to a distance decision circuit 206 for proximity/motion detection. In one example, the distance decision circuit 206 may include a demodulator, for example, a demodulation circuit for demodulating the amplified signal; and a method for confirming the solution. The circuit that modulates the phase of the signal to the purpose of TOF measurement. 3 is an exemplary circuit diagram 300 for compensating for DC current generated by an optical sensor, in accordance with an aspect of the present invention. In one of the examples 15 201142568, the circuit 300 can operate in the presence of ambient light (for example, up to lOOklux), and the transport 300 is not at the modulation frequency / " In addition to this, the circuit adds significant noise to the 5th level (for example, the noise power spectral density). Furthermore, the "obvious noise" and / or "substantial noise" used in this article. The number of spectral power spectral densities of the known noise is above the pre-defined threshold, and the error is introduced in the call. The boundary value will be in the proximity/transport (4). The photodiode 302 will respond to the incident. The light on it produces a current Iambient+Signal and is supplied to the capacitor Cd 3 〇. Incident above the photodiode %2 = the light contains light reflected from an object (which causes and is not a good source of light (which causes Iambient). The current generated by the photodiode is due to ambient light The resulting part introduces a Μ composition in the diode current. In general, 'the DC composition may cause an error, which has the risk of saturating the front stage of the detector. _point of view, DC The correction loop 3〇8, which is provided parallel to the photodiode 3Q2, mimics the inductor and thus suppresses the DC composition of the diode current due to ambient light. Again, the DC correction Loop 308 also corrects the Dc composition without adding significant noise at the modulation frequency (for example, 5 MHz). The DC correction loop 308 includes amplifiers gml (3〇4) and (4) and one A pair of capacitor resistors (cF, rf) connected at the opposite terminal of gml (304). Specifically, CfRf attenuates the noise transfer function of gml (3〇4). Connected to resistor Rf The reference voltage Vref (for example, ground) establishes the bias point of the photodiode 3〇2 It is an important factor for the operation of a piN photodiode. In addition, gm2 is adaptively changed by adjusting its bias voltage to adjust/control/lower (4) spectral density & H > (3〇6) will adapt to the change of the ambient current, so that the noise contribution of the sink correction circuit 3(10) will be properly maintained below the noise contribution of the ambient light itself. Specifically, when the value of the ambient current changes The value of Chat 2 will be changed based on the bias applied by the output of grnl to ensure that the noise level of circuit 300 is not too noticeable. In one aspect, the DC correction circuit 3〇8 is ideally The DC conversion function will be zero at the photodiode node (N), and no DC can be passed through the remaining circuitry, for example, the voltage amplifier(s), filter(s) Furthermore, because the 〇 (: correction circuit 3 〇 8 imitates / acts as an inductor, it will provide a short circuit to the ground for the DC component. Accordingly, the DC correction circuit 308 is at Dc Will produce a zero point and prohibit the DC group The signal enters the front stage of the sensor (for example, a voltage amplifier(s). The signal output from the circuit 300 is supplied to the (equal) voltage amplifier, and further assists in proximity/motion debt testing. Analog and/or digital signal processing ◎ Furthermore, the output signal does not include a DC component caused by ambient light, and thus the front stage is protected from saturation. Furthermore, the loop gain of the DC correction loop 308 Can be calculated as follows: -gml (l + 5CFi?F) sCj^ sC pRp

Loopgain = 其中, CF係電容器CF 314的電容; RF係電阻器RF 3 12的電阻; 17 201142568 gm2係放大器gm2的增益; C 〇 3 1 0係光二極體3 〇 2的電容;以及 S係一常數。 根據其中一實施例,Rf 3 12能夠被實施為一金屬氧化 物半導體(Metal-Oxide Semiconductor,MOS)電晶體,其能 夠隨著溫度來追蹤gm2(3〇6)。該M0S電晶體會在該!^ΕΙ) 調變頻率附近於該迴路中達到更精確的頻率響應控制。在 Brehmer等人的美國專利申請案第4458212號中針對放大器 補償有詳細說明過該〜追蹤技術,該案的標題為「具有極 零點追蹤的經補償放大器(COMPENSATED AMPLIFIER HAVING POLE ZERO TRACKING)」,本文以引用的方式將 其併入。再者,§〇12(3〇2)的Rj?追蹤還可隨著溫度與製程對 該迴路頻率響應進行更佳的控制。 參考圖4,圖中所示的係根據本文所揭示之說明書的一 觀點,一被運用在T0F量測中的低雜訊Dc修正電路的另 一範例電路400 ^再者,舉例來說,DC修正迴路4〇2能夠 控制一特殊頻率(舉例來說,調變頻率(5MHz))處的訊號雜訊 比(Signai.t()_Noise Rati。,SNR)並且響應於環境光來降低/ 移除由光二極體302所產生的二極體電流中的DC組成。 和DC修正迴路3〇8雷同,該DC修正迴路4〇2會平行 於該光二極體3〇2被提供,用以補償由入射於該光二極體 302上的環境光所產生的二極體電流。再者該Dc修正迴 02還會模仿/當作一電感器並且因而會為該組成提 供一條通往接地的路徑。明確地說,該Dc修正迴路在 18 201142568Loopgain = where Capacitance of CF Capacitor CF 314; Resistance of RF Capacitor RF 3 12; 17 201142568 Gm2 Gain of Gamm2 Gain; C 〇3 1 0 Capacitance of Capacitor 3 〇2; constant. According to one embodiment, Rf 3 12 can be implemented as a Metal-Oxide Semiconductor (MOS) transistor capable of tracking gm2 (3〇6) with temperature. The MOS transistor will be there! ^ΕΙ) A more accurate frequency response control is achieved in the loop near the modulation frequency. The tracking technique is described in detail in the US Patent Application No. 4458212 to Brehmer et al. for the amplifier compensation. The title of the case is "COMPENSATED AMPLIFIER HAVING POLE ZERO TRACKING", It is incorporated by reference. Furthermore, the Rj? tracking of §〇12(3〇2) provides better control of the loop frequency response with temperature and process. Referring to Figure 4, there is shown another aspect of a low noise Dc correction circuit for use in TOF measurement in accordance with a perspective of the specification disclosed herein. Further, for example, DC The correction loop 4〇2 is capable of controlling the signal noise ratio (Signai.t()_Noise Rati., SNR) at a particular frequency (for example, modulation frequency (5 MHz)) and is reduced/removed in response to ambient light. It consists of DC in the diode current generated by the photodiode 302. Similar to the DC correction circuit 3〇8, the DC correction circuit 4〇2 is provided in parallel with the photodiode 3〇2 to compensate for the diode generated by the ambient light incident on the photodiode 302. Current. Again, the Dc correction back 02 will also mimic/become an inductor and thus provide a path to the ground for the composition. Specifically, the Dc correction loop is at 18 201142568

DC處會產生一零點’並且禁止該dc組成訊號進入該感測 盗刖級(舉例來說,(多個)電壓放大器)。舉例來說一第一 放大器gm 1(3 04)的一非反向輸入可能會被連接至一參考電 壓(Vref),舉例來說’接地;而反向輸入可能會透過電阻器 RF 312被連接至節點N。再者連接在放大器的 非反向輸入之上的Vref會建立光二極體302的偏壓點。進 步5之,一電容器cf314會被併入於gml(304)的一回授 匕路裡面’俾使得(^1^會衰減§1111(3()4)的雜訊轉換函數。 除此之外,gml(3〇4)的輸出還會被提供至gm2(3〇6)的非反 向輸入並且用於控制gm2(3〇6)的偏壓。據此,當環境電流 的數值改’炎時,gm2(3〇6)的數值便會改變,俾使得由該DC 修正迴路402所引進的雜訊會小於由該環境電流所引進的 雜訊。 於其中一觀點中,Rf 312能夠被實施為一 M〇s電晶 體’其t隨著 >益度與製程為該迴路頻率響應提供更佳的控 制月確地說’該MOS電晶體能夠隨著溫度來追蹤gm2(3〇6) 並且在該LED調變頻率附近於該迴路中達到更精確的頻率 s應控制。在Brehmer等人的美國專利申請案(u S 44582][2) 中針對放大器補償有詳細說明過該〜追蹤技術,本文以引 用的方式將其併入。 圖5所示的係根據本發明一觀點的有效光二極體阻抗 的範例頻率域曲線圖5〇〇β在電路3〇〇及/或4〇〇中,光二 極體302能夠將入射光轉換成電流。該光二極體的有效阻 抗,|Zdiode|,相對於頻率的關係圖解在圖5之中。再者,該 201142568 有效阻抗’ |Zdicdej,還能夠計算如下 gm2A zero point is generated at the DC and the dc component signal is prohibited from entering the sensing bandit level (e.g., voltage amplifier(s)). For example, a non-inverting input of a first amplifier gm 1 (304) may be connected to a reference voltage (Vref), for example 'grounded'; and the reverse input may be connected through a resistor RF 312 To node N. Further, Vref connected to the non-inverting input of the amplifier establishes a bias point of the photodiode 302. Progress 5, a capacitor cf314 will be incorporated into a feedback loop of gml (304) '俾 (^1^ will attenuate the noise conversion function of §1111(3()4). The output of gml(3〇4) is also supplied to the non-inverting input of gm2(3〇6) and used to control the bias of gm2(3〇6). Accordingly, when the value of the ambient current is changed to 'inflammation When the value of gm2 (3〇6) is changed, the noise introduced by the DC correction circuit 402 will be less than the noise introduced by the ambient current. In one of the views, the Rf 312 can be implemented. For a M〇s transistor, its t with > benefits and processes provide better control of the loop frequency response. Indeed, the MOS transistor is capable of tracking gm2 (3〇6) with temperature and A more accurate frequency s in the loop in the vicinity of the LED modulation frequency is to be controlled. The tracking technique is described in detail in the U.S. Patent Application Serial No. (U S 44,582, [2) to Brehmer et al. This is incorporated herein by reference. Figure 5 shows an example frequency domain curve of effective photodiode impedance in accordance with one aspect of the present invention. Figure 5 〇〇β In circuit 3〇〇 and/or 4〇〇, photodiode 302 is capable of converting incident light into a current. The effective impedance of the photodiode, |Zdiode|, is plotted against the frequency. 5. In addition, the 201142568 effective impedance ' |Zdicdej, can also calculate the following gm2

Vin lin gml + sCfRf +1 其中Vin lin gml + sCfRf +1 where

Vin係輸入電壓; lin係輸入電流;Vin is the input voltage; lin is the input current;

Cf係電容器cF 314的電容;The capacitance of the Cf capacitor cF 314;

Rf係電阻器rf 3 1 2的電阻; gm2係放大器gm2的增益; CD 310係光二極體3〇2的電容;以及 S係一常數。 如在關係圖500中所見,在超低頻率中,該光二極體 的有效阻抗,|Zdiode|,為零。換言之,在低頻處,在節點N 處不會產生任何電壓。進一步言之,從該沉修正迴路(3〇8 及/或402)的頻率響應的特徵曲線中能夠看出環境光的效 應。再者,阻抗代表增益,其在Dc處理想上為零(這表示 DC會被該DC修正迴路3〇8及/或4〇2完全移除卜一開始, 增益會隨著頻率增加而增加,並且在所希的頻率處,增益 會明顯高於DC。進—步言之’在特定的頻率處(f,至f2), 頻率響應會先停滯,然後接著再次滾離(在G處)。一般來 說,倘若該必要訊號係在該停滯頻率範圍裡面被提供的話 (舉例來說,響應於反射自該物體的光所產生的訊號),其將 會正常地通過。換言之,該必要訊號和DC之間的衰減係數 在fi與G之間非常明顯。 20 201142568The resistance of the Rf-type resistor rf 3 1 2; the gain of the gm2-type amplifier gm2; the capacitance of the CD 310-based photodiode 3〇2; and the S-system constant. As seen in diagram 500, at ultra low frequencies, the effective impedance of the photodiode, |Zdiode|, is zero. In other words, at low frequencies, no voltage is generated at node N. Further, the effect of the ambient light can be seen from the characteristic curve of the frequency response of the sink correction loop (3〇8 and/or 402). Furthermore, the impedance represents the gain, which is considered to be zero in the Dc process (this means that the DC will be completely removed by the DC correction circuit 3〇8 and/or 4〇2, and the gain will increase as the frequency increases. And at the desired frequency, the gain will be significantly higher than DC. In the step - at a specific frequency (f, to f2), the frequency response will first stagnate, and then roll again (at G). In general, if the necessary signal is provided within the stagnation frequency range (for example, in response to a signal generated by light reflected from the object), it will pass normally. In other words, the necessary signal and The attenuation coefficient between DCs is very noticeable between fi and G. 20 201142568

現在參考圖6’圖中所示的係一根據本發明的一觀點, 在用於DC衰減的Dc修正迴路裡面實施_ pM〇抑通道金 屬氧化物半導體)裝置的範例電路6〇〇。根據一實施例, gm2(306)能夠被實施為大部分任何的pM〇s裝置,例如, 但是並不受㈣PM〇S電晶體遍。PM〇s電晶们〇6的偏 壓會受控於gml的輸出,如圖3與4中所示。由該dc修 正迴路所造成的雜訊係由gm2的數值(pM〇s電晶體3㈧的 增益)來主導。據此’倘若gm2的數值增加,由該DC修正 迴路所產生的功率頻譜密度雜訊便會增加。藉由適應係地 改變牌2的數值,該DC修正迴路便會確保因為該PMOS 電晶體306的關係所造成的雜訊實質上會小於由該環境電 流所造成的雜訊。 再者,該PMOS電晶體306的偏壓還會以該環境光訊 號為基礎被適應性地改變,以便適應性地改變gm2的數值, 俾使得由該PMOS電晶體306所造成的雜訊實質上會小於 由凜%蜒汛號所造成的雜訊。進一步言之,當電流源 602下降時,會在低環境訊號處引進低雜訊;反之,當環境 訊號增加時,則會以散粒雜訊(shot noise)為主。然而,由該 D C t正迴路所造成的雜訊卻總是會小於由該環境電流所造 成的雜訊。於其中一觀點中,該PMOS電晶體3〇6可能包 含一比單—場效電晶體(Field Effect Transist01·,FET)更複 雜的電路要件(舉例來說,一複雜的放大器),俾使得該複雜 要件的傳導性能夠受到控制並且能夠變換尺寸。 輸出電流係由該PMOS電晶體306來控制,而其則會 21 201142568 受控於放大器gml。再者’放大器gml會先比較該參考電 壓(舉例來說,接地)和來自該輸出的回授電麼並且接著會放 大該差異。倘若該回授電壓低於該參考電壓的話,該pM〇S 裝置的閘極便會被拉低,讓更多的電流通過,並且提高輸 出電壓。倘若該回授電壓高於該參考電壓的話,該PM〇s 裝置的閘極則會被拉高,讓較少的電流通過,並且降低輸 出電壓。 圖7所示的係根據本文所揭示之主要内容的方法步驟 及/或流程圖。為簡化解釋起見,該等方法步驟會被描述與 說明成一連串的動作。應該瞭解與明白的係,本發明並不 f於圖中所示的動作及/或動作的順序,舉例來說,多個 動作可以各種順序來進行及/或同時進行,並且亦可能還有 本文中未提出與說明的其它動作。又,可能並不需要用到 所有已示的動作來實施根據本文所揭示之主要内容的方法 步驟。此外,熟習本技術的人士便會瞭解且明白,該等方 去步驟亦可以透過一狀態圖以一連串相互關聯的狀態來表 =或是以多個事件來表示。除此之外,還應該進一步明白 皆中以及整份說明書中所揭示的該等方法步驟 運:及製造商品中,用以幫助將此等方法步驟 電腦。本文中所使用的製造商品-詞希望涵 ^任何f料讀取裝置或電腦可讀取料體 處取得的電腦程式。 艰礼姊媸 圖7所不的係一能夠分辨一物體的距離或 處之距離同時會勿虼人从+ 疋勒赞生 m射在一感測器上的環境光的效應的 22 201142568 範例方法步驟700。一般來說,方法步驟7〇〇可以被運用在 各種應用中,例如,但是並不受限於:消費性電子裝置(舉 例來說,蜂巢式電話、膝上型電腦、媒體播放器、遊戲系 統、夜視系統、…等)、機械式系統(舉例來說,門/窗機構)、 工業自動化系統、機器人、·.·等。 在702處,舉例來說,一被輸入至一發射器(舉例來說, IR LED)的訊號可能會在百萬赫茲範圍的高頻處(舉例來 說,1MHz至50MHz)被調變。舉例來說,大部分的任何調 變技術皆可以被用來進行調變。在704處,該經過頻率調 變的訊號可能會被該IR LED用來發光。一般來說,該IR LED的範圍能夠依據應用來選擇(舉例來說,丨至2公尺)。 該被射出的IR訊號會從該光範圍裡面的(多個)物體(移動中 及/或靜止)處被反射回來,而且該等被反射的訊號會連同環 境光(舉例來說,太陽光、螢光、電燈、燈泡、…等)在一光 學感測器(舉例來說’一 IR感測器)處被接收。在7〇6處, 該訊號會從該感測器處被接收;並且在7〇8處,該已接收 訊號中的DC組成(舉例來說,因入射於該感測器上的環境 光所產生)會被衰減’同時控制由該衰減電路所造成的雜 訊。進一步言之,在710處,該訊號會經過處理,舉例來 說,被放大、被過濾、被解調變、…等,用以確認該(等)物 體的位置及/或發生運動的位置。一般來說,該訊號會藉由 運用一或多個放大器被放大並且藉由運用一正交振幅解調 變器被解調變。再者,還會以該解調變為基礎來找出相位 資料’接著,便可以運用相位資料來確認一物體的近接或 23 201142568 運動。 為提供本說明書之各項觀點的額外背景資料,圖8顯 不本發明之架構800的示範性功能方塊圖。於其中一觀點 中,該等在本文中所揭示的系統(舉例來說,圖丨至4以及 ό中所不)可以運用在具有或不具有整合式環境光感測器 (Ambient Light Sensor,ALS)的以反射為基礎的近接與運動 偵測器之令。該架才冓800包含一 LED及相關聯的驅動器電 路系統(未簡化起見’圖中並未顯示)、一光二極體感測器 302、一類比前級與訊號處理8〇2、資料轉換電路系統(舉例 來說,類比至數位轉換器804)、數位控制與訊號處理8〇6(舉 例來說,複雜的電腦可程式邏輯裝置(c〇mputerReferring now to Figure 1 of the accompanying drawings, an exemplary circuit 6 of a _pM snubber channel oxide semiconductor device is implemented in a Dc correction loop for DC attenuation in accordance with an aspect of the present invention. According to an embodiment, gm2 (306) can be implemented as most of any pM〇s device, for example, but not subject to (d) PM〇S transistor pass. The bias of the PM〇s electro-crystals 〇6 is controlled by the output of gml, as shown in Figures 3 and 4. The noise caused by the dc correction loop is dominated by the value of gm2 (the gain of pM〇s transistor 3 (8)). Accordingly, if the value of gm2 increases, the power spectral density noise generated by the DC correction loop will increase. By adapting the system to change the value of the card 2, the DC correction circuit ensures that the noise caused by the relationship of the PMOS transistor 306 is substantially less than the noise caused by the ambient current. Moreover, the bias voltage of the PMOS transistor 306 is also adaptively changed based on the ambient light signal to adaptively change the value of gm2 so that the noise caused by the PMOS transistor 306 is substantially It will be less than the noise caused by the 凛% apostrophe. Further, when the current source 602 drops, low noise is introduced at the low ambient signal; conversely, when the ambient signal increases, the shot noise is dominant. However, the noise caused by the D C t positive loop is always less than the noise caused by the ambient current. In one aspect, the PMOS transistor 3〇6 may comprise a more complex circuit element (for example, a complex amplifier) than a field-effect transistor (FET), such that The conductivity of complex elements can be controlled and scaled. The output current is controlled by the PMOS transistor 306, which is then controlled by the amplifier gml 21 201142568. Furthermore, the amplifier gml will first compare the reference voltage (for example, ground) with the feedback from the output and then amplify the difference. If the feedback voltage is lower than the reference voltage, the gate of the pM〇S device will be pulled low, allowing more current to pass and increasing the output voltage. If the feedback voltage is higher than the reference voltage, the gate of the PM〇s device is pulled high, allowing less current to pass and lowering the output voltage. Figure 7 illustrates method steps and/or flowcharts in accordance with the main teachings disclosed herein. To simplify the explanation, the method steps are described and illustrated as a series of actions. It should be understood and appreciated that the present invention is not intended to be in the <Desc/Clms Page number> Other actions not mentioned and described. Moreover, it is not necessary to use all of the illustrated acts to implement the method steps in accordance with the subject matter disclosed herein. Moreover, those skilled in the art will understand and appreciate that such steps can also be represented by a series of interrelated states via a state diagram = or by multiple events. In addition, it should be further understood that the method steps disclosed in the specification and the entire specification are as follows: and in the manufacture of goods, to assist in the steps of the computer. The article of manufacture used in this document is intended to be a computer program obtained at any f-reading device or computer-readable material. Difficulty Figure 7 is not able to distinguish the distance or distance of an object and will not let people from + 疋 赞 赞 赞 m Step 700. In general, method step 7 can be used in a variety of applications, such as, but not limited to, consumer electronic devices (eg, cellular phones, laptops, media players, gaming systems) , night vision systems, etc.), mechanical systems (for example, door/window mechanisms), industrial automation systems, robots, etc. At 702, for example, a signal input to a transmitter (e.g., an IR LED) may be modulated at a high frequency in the range of millions of Hertz (e.g., 1 MHz to 50 MHz). For example, most of any modulation techniques can be used for modulation. At 704, the frequency modulated signal may be used by the IR LED to illuminate. In general, the range of the IR LEDs can be selected depending on the application (for example, up to 2 meters). The emitted IR signal is reflected back from the object(s) (moving and/or stationary) in the light range, and the reflected signals are combined with ambient light (for example, sunlight, Fluorescent, electric light, light bulbs, etc.) are received at an optical sensor (for example, an 'IR sensor'). At 7〇6, the signal is received from the sensor; and at 7〇8, the DC in the received signal is composed (for example, due to ambient light incident on the sensor) Generated) will be attenuated' while controlling the noise caused by the attenuation circuit. Further, at 710, the signal is processed, for example, amplified, filtered, demodulated, etc., to confirm the location of the object and/or the location at which the motion occurred. Typically, the signal is amplified by the use of one or more amplifiers and demodulated by the use of a quadrature amplitude demodulator. Furthermore, the phase data is also found based on the demodulation. Then, the phase data can be used to confirm the proximity of an object or the motion of 201142568. To provide additional background information for the various aspects of the present specification, FIG. 8 shows an exemplary functional block diagram of architecture 800 of the present invention. In one of these points, the systems disclosed herein (for example, Figures 4 and 4) can be used with or without integrated ambient light sensors (Ambient Light Sensor, ALS). A reflection-based approach to proximity and motion detectors. The rack 800 includes an LED and associated driver circuitry (not shown in the 'not shown'), a photodiode sensor 302, an analog front stage and signal processing 8〇2, data conversion Circuitry (for example, analog to digital converter 804), digital control and signal processing 8〇6 (for example, complex computer programmable logic devices (c〇mputer)

Programmable Logic Device,cpld))、介面電路系統(未簡 化起見,圖中並未顯示)、及/或結果顯示器(未簡化起見, 圖中並未顯示)。該架構8〇〇會針對一給定的環境來適應性 地最佳化靈敏度與電力.再者,該架構8〇〇還會衍生出明 顯的效能改良效果並且降低前級飽和的風險。 根據本發明的一觀點,該架構8〇〇包含一前級(Fr〇ndProgrammable Logic Device, cpld)), interface circuitry (not shown in the figure, not shown), and/or result display (not shown, not shown). The architecture will adaptively optimize sensitivity and power for a given environment. Furthermore, the architecture will also provide significant performance improvements and reduce the risk of pre-saturation. According to an aspect of the invention, the architecture 8〇〇 includes a pre-stage (Fr〇nd

End ’ FE) ’ 其包含一跨感放大器(Trans-Inductance Amplifier,TIAh舉例來說,上面所揭示的DC修正電路 3 00、400、以及600皆能夠被實施在區段8〇8的DC修正迴 路116裡面。再者,該DC修正迴路116會衰減由該偵測器 所產生的電訊號的DC組成(舉例來說,誤差訊號”進一步 言之,該DC修正迴路丨16所造成的雜訊會小於由以反射為 基礎的近接偵測器的前級中的一或多個訊號處理元件(舉例 24 201142568 來說’放大器810、類比FE 802、ADC 804、…等)所造成 的雜訊。 一般來說’前級808的輸出可能會受到多級的電壓增 盃的作用,以便最大化該輸出訊號的SNR。舉例來說,該 電壓增益會以接收自前級808的訊號(其包含要被量測的所 希訊號)的大小為基礎被適應性地設定。該等干擾會在該量 測中被動態校正,以便改良靈敏度(舉例來說,藉由該Dc 修正迴路116^該架構800可能還包含:一具有低通濾波 (Low Pass Fiiter,LPF)的解調變器(未簡化起見,圖中並 未顯示),用以實施頻率解調變;轉換器(ADC)8〇4 ; 一用於 控制"面的通用序列匯排流(Universal seriai Bus,USB)處 理器;以及一電腦可程式邏輯裝置(CPLD),其包含數個模 組。再者,數位訊號處理器(Digital Signal Pr〇cess(>r,、 DSP)8〇6還會處理該數位訊號,用以確認—物體的近接、一 物體的運動、及/或一物體存在於該感測器302的感測範圍 裡面。 本發明的架構800能夠被使用在許多應用之中,其包 3 .電腦、自動車、工業、電視顯示器、以及其它應用。 舉例來說’該架構_彳以用來㈣—使用者已經進入房 間並且自動讓處於休眠模式之中的膝上型電腦甦醒並進入 作用模式之中,俾使得使用者能夠使用它。根據本發明的 -觀點’蝴冓800能夠在高達i至2公尺的範圍處實施 運動感測與近接感測。根據本發明的另一觀點,本發明的 架構_能夠使用少於二十毫瓦(mw)的電力來實施它的操 25 201142568 作。 於本發明的其中一實施例中,整個架構800會連同該 ㈣驅動n電㈣統與該LED—起被實施在單—積體電路 晶片(IC)之中。於本發明的另一實施例中,除了該LED驅 動器電路系統以及該LED之外(它們可能會被實施在該IC 的外面)’該架構800的所有組件皆能夠被實施在該Ic之 中。於本發明的又-實施例中,該架構8〇〇的各種組件皆 能夠被設置在該1C的裡面或外面。 上面已述者包含本發明的各種範例。當然,為達說明 本文所主張之主要内容的目的,雖然不可能說明每一種可 思及的元件或方法步驟的各種組合;不過,熟習本技術的 人士便可以明瞭,本發明還可能有許多進一步的組合與排 列。據此,本文所主張之主要内容希望涵蓋落在隨附申請 專利範圍的精神與範嘴裡面的所有此等改變、修正、以及 變化。 明確地說且針對上面所述之元件、裝置、電路、系統、 以及類似物所實施的各項功能,除非特別提及,否則,即 使結構方面並未等效於本文所揭示之實施本文中所示之本 文所主張的主要内容的示範性觀點的結構,不過,用來說 明此等元件的各種用詞(包含「構件」的引用)皆會希望對應 於貫施該等所述元件之指定功能的任何元件(舉例來說,在 ::方面等效就此方面來說’還要理解的係,本發明包 3 -錢以及一電腦可讀取媒體,該電腦可讀取媒體具有 用於貫施本文所主張之主要内容之各種方法的動作及/或事 26 201142568 件的電腦可執行指令。 本文已a針對數個元件之間的相互作用說明過前面提 及的系統/電路/模組。可以明白的係,此等系統/電路/模組 γ及7L件可%包含該些元件或是指定的子元件該等指定 _牛或子元件的_部分、及/或額外的元件,而且會根據前 述的各種排列與組合。子元件亦可被實施成以通訊方式被 耦接至其它元件的元件,而非被併入在父元件裡面(階層 式)。除此之外,還應該注意的係,—或多個元件可以被扭 合成單一元件以提供集合功能;或者,可以被分為數個分 離的子元件’而且任何一或多個中間層(例如,一管理層) 可能會.被提供用於以通訊方式㈣至此等子元件,以便提 U 口功此。本文所述的任何元件可能還會與本文中未明 確說明但是熟習本技術的人士便普遍知悉的一或多個其它 元件相互作用。爯去,μ二β丄 上面所述的元件與電路系統要件具 有任何合宜的數值,以你杳说β η 便實施本發明的實施例。舉例來說, 電阻器可能具有任何合宜的雷阳带Α β 且的電阻、電容器可能具有任何合 宜的電容、放大器可能會提供任何合宜的增益、等。 此外,本文雖然僅可能針對數種實施方式中的盆中一 種來揭示本發明的一特殊特點;不過 定或特殊的應用中,此特點伪叮&人上 仃、··α 匕将點仍可結合該等其它實施方式中 的一或多個其它特點,而且 叫且相當有利。又,在某種程度上, 本文的詳細說明或申請專利範圍中會使用到「包含」、「具 有」、「含有」等詞語、它們的變化詞語、以及其它雷同 用詞,和開放式過渡用㈣「包括」雷同,該些詞語皆希望 27 201142568 為包谷式’其並沒有排除任何額外或其它要件。 【圖式簡單說明】 圖1所不的係一用於在一長程近接偵測器的前級中降 低直流(DC)飽和的示範性系統,其並不會引入明顯的雜訊。 圖2所示的係一包含積體電路(IC)晶片的示範性系 統,其會在距離感測期間修正因環境光而由一光學感測器 所產生的誤差訊號。 圖3所示的係一用於補償由一光學感測器所產生的直 流(DC)電流的示範性電路圖。 圖4所示的係根據本文所揭示之說明書的一觀點一 被運用在飛行時間(TOF)量測中的低雜訊DC修正電路的示 範性電路。 圖5所示的係根據本發明一觀點的有效光二極體阻抗 的示範性頻率域曲線圖。 圖ό所示的係在用於DC衰減的DC修正迴路裡面實施 一 P通道金屬氧化物半導體(P-Ch_el Metal-Oxide-Semiconductor,PMOS)裝置的示範性電路。 圖7所不的係一能夠分辨一物體的距離或是運動發生 處之距離同時會忽略入射在一感測器上的環境光的效應的 示範性方法步驟。 圖8所示的係本發明之架構的示範性功能方塊圆。 【主要元件符號說明】 28 201142568 100 102 104 106 108 110 112 114 116 118 202 204 206 300 302 304 306 308 310 312 314 400 402 500End ' FE) 'It includes a Trans-Inductance Amplifier (TIAh, for example, the DC correction circuits 300, 400, and 600 disclosed above can be implemented in the DC correction circuit of the segment 8〇8 In addition, the DC correction circuit 116 attenuates the DC component of the electrical signal generated by the detector (for example, an error signal). Further, the DC correction circuit 16 causes a noise meeting. Less than the noise caused by one or more signal processing components in the front stage of the reflection-based proximity detector (for example, 24, 2011, 468, 'Amplifier 810, analog FE 802, ADC 804, ..., etc.). The output of the front stage 808 may be subject to multiple levels of voltage boosting to maximize the SNR of the output signal. For example, the voltage gain will be received by the signal from the previous stage 808 (which contains the amount to be measured The size of the measured signal is adaptively set. The interference is dynamically corrected in the measurement to improve sensitivity (for example, by the Dc correction circuit 116^ the architecture 800 may still contain : A low pass filter (Low Pass Fiiter, LPF) demodulator (not shown in the figure, not shown) for frequency demodulation; converter (ADC) 8〇4; Universal seriai Bus (USB) processor for control &face; and a computer programmable logic device (CPLD), which contains several modules. Furthermore, digital signal processor (Digital Signal Pr) The 〇cess(>r, DSP) 8〇6 also processes the digital signal to confirm that the proximity of the object, the motion of an object, and/or an object is present within the sensing range of the sensor 302. The architecture 800 of the present invention can be used in many applications, including computers, automobiles, industrial, television displays, and other applications. For example, 'the architecture _ 彳 for (4) - the user has entered the room And automatically wake up the laptop in sleep mode and enter the active mode, so that the user can use it. According to the present invention - the view 'Butterfly 800 can be in the range of up to i to 2 meters Implement motion sensing and near Sensing. According to another aspect of the present invention, the architecture of the present invention is capable of implementing its operation 25 201142568 using less than twenty milliwatts (mw) of power. In one embodiment of the present invention, the entire architecture 800 will be implemented in a single-integrated circuit chip (IC) along with the (four) driving n (four) system and the LED. In another embodiment of the invention, in addition to the LED driver circuit system and the LED Outside (they may be implemented outside of the IC) 'all components of the architecture 800 can be implemented in the Ic. In still another embodiment of the present invention, various components of the architecture 8 can be disposed inside or outside the 1C. The various examples of the invention have been described above. Of course, it is not possible to clarify various combinations of elements or method steps that can be considered for the purpose of illustrating the main content claimed herein; however, those skilled in the art will appreciate that the present invention may have many further The combination and arrangement. Accordingly, the main content claimed herein is intended to cover all such changes, modifications, and variations that fall within the spirit and scope of the appended claims. In particular, and in connection with the functions of the elements, devices, circuits, systems, and the like described above, unless specifically stated otherwise, the structural aspects are not equivalent to the embodiments disclosed herein. The structure of the exemplary aspects of the main content claimed herein, however, the various terms used to describe such elements (including references to "components") are intended to correspond to the specified functions of the elements described. Any of the components (for example, in terms of: equivalent in terms of 'in this respect', the invention includes a package of money and a computer readable medium having a medium for reading The actions of the various methods claimed in this document and/or the computer executable instructions of 201142568. This article has explained the system/circuit/module mentioned above for the interaction between several components. It is understood that such systems/circuits/modules γ and 7L components may include such elements or specified sub-elements, such as _ portions of the specified _ or sub-components, and/or additional components, and According to the various arrangements and combinations described above, the sub-elements can also be implemented as components that are communicatively coupled to other components, rather than being incorporated into the parent component (hierarchical). a system, or multiple elements may be twisted into a single element to provide a collective function; or, may be divided into several separate sub-elements' and any one or more intermediate layers (eg, a management layer) may be provided. It is used to communicate (4) to such sub-elements to facilitate U-ports. Any of the elements described herein may also interact with one or more other elements that are not commonly described herein but are generally known to those skilled in the art.爯 , μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ The positive resistance of the positive band Α β, the capacitor may have any suitable capacitance, the amplifier may provide any suitable gain, etc. In addition, although this article is only possible for the number One of the basins in the embodiments reveals a particular feature of the invention; however, in a fixed or special application, this feature can be combined with the 仃 amp amp · · · 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍One or more other features, and are said to be quite advantageous. Also, to some extent, the words "including", "having", "containing", etc., are used in the detailed description or patent application scope herein. Words, and other similar terms, and open transitions are similar to (4) "including". These words are all hoped that 27 201142568 is a Baogu type. It does not exclude any additional or other elements. [Simplified illustration] Figure 1 does not An exemplary system for reducing direct current (DC) saturation in the front stage of a long range proximity detector that does not introduce significant noise. Figure 1 shows an integrated circuit (IC) An exemplary system of wafers that corrects for error signals generated by an optical sensor due to ambient light during distance sensing. Figure 3 is an exemplary circuit diagram for compensating for direct current (DC) current generated by an optical sensor. 4 is an exemplary circuit of a low noise DC correction circuit that is utilized in time-of-flight (TOF) measurements in accordance with one aspect of the specification disclosed herein. Figure 5 is an exemplary frequency domain plot of effective photodiode impedance in accordance with an aspect of the present invention. Figure ό shows an exemplary circuit for implementing a P-Ch_el Metal-Oxide-Semiconductor (PMOS) device in a DC correction loop for DC attenuation. What is not shown in Figure 7 is an exemplary method step of being able to resolve the distance of an object or the distance at which the motion occurs while ignoring the effects of ambient light incident on a sensor. An exemplary functional block circle of the architecture of the present invention is shown in FIG. [Major component symbol description] 28 201142568 100 102 104 106 108 110 112 114 116 118 202 204 206 300 302 304 306 308 310 312 314 400 402 500

範例系統 IR LED IR感測器或PIN偵測器 LED驅動器 經過調變的IR訊號 感測物體 反射Example System IR LED IR Sensor or PIN Detector LED Driver Modulated IR Signal Sensing Object Reflection

其它訊號或環境反向散射 DC修正迴路 前級電路系統 1C 放大器 距離決定電路 範例電路 光二極體/感測器 放大器 放大器 DC修正迴路 電容 電阻器 電容器 範例電路 DC修正迴路 範例頻率域曲線圖 29 201142568 600 範例電路 602 電流源 700 範例方法 702-710 步驟 800 架構 802 類比前級 804 類比至數位轉換器 806 數位訊號處理 808 前級 810 放大器 30Other signal or environmental backscatter DC correction loop pre-stage circuit 1C Amplifier distance decision circuit example circuit photodiode / sensor amplifier amplifier DC correction loop capacitor resistor capacitor example circuit DC correction loop example frequency domain curve 29 201142568 600 Example Circuit 602 Current Source 700 Example Method 702-710 Step 800 Architecture 802 Analog Front Stage 804 Analog to Digital Converter 806 Digital Signal Processing 808 Preamp 810 Amplifier 30

Claims (1)

201142568 七、申請專利範圍: 1 ·—種設備,其包括: 一感測器;以及 一直流(DC)修正迴路,其耦接該感測器;其中, 該DC修正迴路係用於降低一部分由一入射於該感測 器之上的環境訊號所產生的DC誤差;以及 該DC修正迴路產生的雜訊頻譜密度低於由該前級中 所包含的一或多個訊號處理元件所產生的雜訊頻譜密度。 2 ·如申請專利範圍第1項的設備,.其中該D C修正迴路 係平行耦接該感測器。 3 _如申請專利範圍第1項的設備,其中,該感測器係一 光二極體。 4.如申請專利範圍第1項的設備,其中,該DC修正迴 路模仿一電感器。 5 _如申請專利範圍第1項的設備,其中該DC修正迴路 包含一第一放大器,其控制一第二放大器的一偏壓。 6. 如申請專利範圍第5項的設備,其中該DC修正迴路 包含一電阻器與一電容器對,其衰減該第一放大器的一雜 §fl轉換函數。 7. 如申請專利範圍第5項的設備,其中該第二放大器包 含一 P通道金屬氧化物半導體(PMOS)裝置或是一緩衝器中 之至少一者。 8 ·如申請專利範圍第5項的設備,其中該電阻器係實施 為一金屬氧化物半導體(MOS)電晶體。 31 201142568 9. 如申請專利範圍第5項的設備,其中該第二放大器的 一輸出係提供作為該第一放大器之一輸入的一回授。 10. 如申請專利範圍第丨項的設備,其進一步包括:一 發出和一經頻率調變訊號相關聯之光的發光二極體 (led) ’其中該光反射自一物體而且該感測器接收來自該物 體之該反射光中的至少一部分。 11 · 一種降低一感測器系統中之直流(DC)飽和的方法, 其包括: 產生一感測器訊號,其包含一 DC組成; 自該感測器訊號實質減去該DC組成;以及 適應性地降低在該減去步驟期間所引進的一熱雜訊數 值’俾使得該熱雜訊數值係小於一由後續訊號處理所引進 之不同的熱雜訊數值。 12_如申請專利範圍第11項的方法,其進一步包括: 頻率調變一電訊號;以及 發出一和一經頻率調變訊號相關聯的光。 13. 如申請專利範圍第12項的方法,其進一步包括:在 該感測器處’接收自一或多個於該光範圍内的物體所反射 之光的至少一部分。 14. 如申請專利範圍第13項的方法,其中該適應性地降 低該熱雜訊數值包含適應性地控制在該減去步驟期間於一 调變頻率處所引進的熱雜訊數值。 15. 如申請專利範圍第13項的方法,其進一步包括:處 理該感測器訊號以確認下面至少一者:該等一或多個物體 32 201142568 的一距離或是一運動發生的一距離。 16·如申請專利範圍第11項的方法,其中該減去包含模 仿一電感器,其至少移除或降低該DC組成。 17.—種系統’其包括: 一感測器’其產生一電訊號,該訊號包含一部分以環 境光為基礎的低頻組成以及一以反射自一物體的光為基礎 的向頻組成;以及 一平行於該感測器的回授迴路,其將該高頻組成傳輸 至一如級裝置並且至少消弭或降低該低頻組成,而不會引 進面於由s玄系統之一前級中的一訊號處理電路系統所引進 的熱雜訊之一位準的熱雜訊。 1 8 ·如申睛專利範圍第丨7項的系統,其中該回授迴路迴 路包含一電阻器與一電容器對,其衰減一第一放大器的一 雜訊轉換函數,該第一放大器控制一第二放大器的一偏壓。 19.如申請專利範圍第μ項的系統,其中 該感測器的一陰極係連接至該第一放大器的一非反向 輸入; 該電阻器係連接在一參考電壓與該第一放大器的一反 向輸入之間, 該電容器係連接在該第—放大器的一輸出與該第一放 大器的該反向輸入之間; 該第一放大斋的該輸出係連接至該第二放大器的一反 向輸入,以及 該第一放大盗的一輸出係回授至該感測器的該陰極。 33 201142568 20·如申請專利範圍第1 8項的系統,其中 §亥電阻器係連接在該感測的一陰極與該第一放大薄 的一反向輸入之間; 該電谷器係連接在該第一放大器的一輸出與該第一放 大器的該反向輸入之間; 該第一放大器的一非反向輸入係連接至一參考電壓; 該第一放大器的該輸出係連接至該第二放大器的一非 反向輸入;以及 該第二放大器的一輸出係回授至該感測器的該陰極。 八、圖式· (如次頁) 34201142568 VII. Patent application scope: 1 - A device comprising: a sensor; and a DC (DC) correction circuit coupled to the sensor; wherein the DC correction circuit is used to reduce a part of a DC error generated by an environmental signal incident on the sensor; and the noise correction density generated by the DC correction circuit is lower than that generated by one or more signal processing components included in the pre-stage Spectrum density. 2) The device of claim 1, wherein the D C correction circuit is coupled in parallel to the sensor. 3 _ The device of claim 1, wherein the sensor is a light diode. 4. The device of claim 1, wherein the DC correction circuit mimics an inductor. The apparatus of claim 1, wherein the DC correction circuit includes a first amplifier that controls a bias voltage of a second amplifier. 6. The device of claim 5, wherein the DC correction circuit includes a resistor and a capacitor pair that attenuates a ff conversion function of the first amplifier. 7. The device of claim 5, wherein the second amplifier comprises at least one of a P-channel metal oxide semiconductor (PMOS) device or a buffer. 8. The device of claim 5, wherein the resistor is implemented as a metal oxide semiconductor (MOS) transistor. 31. The device of claim 5, wherein an output of the second amplifier provides a feedback as an input to the first amplifier. 10. The device of claim 3, further comprising: a light emitting diode (LED) that emits light associated with a frequency modulated signal, wherein the light is reflected from an object and the sensor receives At least a portion of the reflected light from the object. 11 . A method of reducing direct current (DC) saturation in a sensor system, comprising: generating a sensor signal comprising a DC component; substantially subtracting the DC component from the sensor signal; and adapting The value of a thermal noise introduced during the subtraction step is reduced 俾 such that the thermal noise value is less than a different thermal noise value introduced by subsequent signal processing. 12_ The method of claim 11, further comprising: frequency modulating an electrical signal; and emitting light associated with the frequency modulated signal. 13. The method of claim 12, further comprising: at the sensor' receiving at least a portion of the light reflected from one or more objects within the range of light. 14. The method of claim 13 wherein the adaptively reducing the thermal noise value comprises adaptively controlling the amount of thermal noise introduced at a modulation frequency during the subtracting step. 15. The method of claim 13, further comprising: processing the sensor signal to confirm at least one of: one distance of the one or more objects 32 201142568 or a distance at which a motion occurs. The method of claim 11, wherein the subtracting comprises emulating an inductor that removes or reduces at least the DC composition. 17. A system comprising: a sensor that generates an electrical signal comprising a portion of a low frequency component based on ambient light and a phase frequency component based on light reflected from an object; Parallel to the feedback loop of the sensor, which transmits the high frequency component to a level device and at least eliminates or reduces the low frequency component without introducing a signal in a preamplifier of one of the s Xuan systems Handling thermal noise at one of the thermal noise introduced by the circuit system. 1 8 · The system of claim 7, wherein the feedback loop comprises a resistor and a capacitor pair, which attenuates a noise conversion function of the first amplifier, the first amplifier controls a first A bias of the two amplifiers. 19. The system of claim 5, wherein a cathode of the sensor is coupled to a non-inverting input of the first amplifier; the resistor is coupled to a reference voltage and a first amplifier Between the inverting inputs, the capacitor is coupled between an output of the first amplifier and the inverting input of the first amplifier; the output of the first amplification is coupled to a reverse of the second amplifier The input, and an output of the first magnifying thief, are fed back to the cathode of the sensor. 33. The system of claim 18, wherein the circuit is connected between the cathode of the sensing and an inverting input of the first amplification thin; the electric grid is connected An output of the first amplifier is coupled to the inverting input of the first amplifier; a non-inverting input of the first amplifier is coupled to a reference voltage; the output of the first amplifier is coupled to the second A non-inverting input of the amplifier; and an output of the second amplifier is fed back to the cathode of the sensor. Eight, schema · (such as the next page) 34
TW100103041A 2010-01-27 2011-01-27 Direct current (dc) correction circuit for a time of flight (tof) photodiode front end TWI448871B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29889510P 2010-01-27 2010-01-27
US13/013,146 US8530819B2 (en) 2010-01-27 2011-01-25 Direct current (DC) correction circuit for a time of flight (TOF) photodiode front end

Publications (2)

Publication Number Publication Date
TW201142568A true TW201142568A (en) 2011-12-01
TWI448871B TWI448871B (en) 2014-08-11

Family

ID=46765073

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100103041A TWI448871B (en) 2010-01-27 2011-01-27 Direct current (dc) correction circuit for a time of flight (tof) photodiode front end

Country Status (1)

Country Link
TW (1) TWI448871B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI808431B (en) * 2020-07-10 2023-07-11 大陸商廣州印芯半導體技術有限公司 Light sensor and ranging method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4458212A (en) * 1981-12-30 1984-07-03 Mostek Corporation Compensated amplifier having pole zero tracking
JPH11326043A (en) * 1998-05-19 1999-11-26 Shiina:Kk Artificial light detecting device
US6315211B1 (en) * 1999-12-03 2001-11-13 Emerson Electric Co. Hardwired or battery powered digital thermostat
US6803555B1 (en) * 2001-09-07 2004-10-12 Indigo Systems Corporation Two-stage auto-zero amplifier circuit for electro-optical arrays
US7288755B1 (en) * 2001-10-19 2007-10-30 Brian P. Platner Portable handheld artificial light detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI808431B (en) * 2020-07-10 2023-07-11 大陸商廣州印芯半導體技術有限公司 Light sensor and ranging method

Also Published As

Publication number Publication date
TWI448871B (en) 2014-08-11

Similar Documents

Publication Publication Date Title
US8530819B2 (en) Direct current (DC) correction circuit for a time of flight (TOF) photodiode front end
KR102345975B1 (en) Imaging device, monitoring device, and electronic appliance
TWI495840B (en) Long range proximity and/or motion detector with ambient light detection capabilities
TWI302194B (en) Apparatus and method for sensing ambient light
US11344234B2 (en) Circuit arrangement for an optical monitoring system and method for optical monitoring
Ngo et al. Wideband receiver for a three-dimensional ranging LADAR system
US20120049048A1 (en) Adaptive analog infrared subtraction circuit for an ambient light sensor
Zhou et al. A low-noise, large-dynamic-range-enhanced amplifier based on JFET buffering input and JFET bootstrap structure
US8309927B2 (en) Infrared detector
GB0721165D0 (en) Laser doppler imaging
US11625128B2 (en) Optical touch sensor systems and optical detectors with noise mitigation
TW201142568A (en) Direct current (DC) correction circuit for a time of flight (TOF) photodiode front end
Zheng et al. A linear and wide dynamic range transimpedance amplifier with adaptive gain control technique
Bulteel et al. Fully integrated blue/UV SOI CMOS photosensor for biomedical and environmental applications
CN110061786B (en) Infrared signal receiving and processing circuit module
CN105136633A (en) Pulsed infrared dust concentration detection circuit
CN209627330U (en) Promote the circuit across RSSI foot anti-noise ability in resistance amplifying circuit
CN110086434A (en) A kind of circuit promoted across RSSI foot anti-noise ability in resistance amplifying circuit
CN111511068A (en) Chip type photoelectric sensor and gesture recognition device
Qasemi et al. A Low Power Front-end for Biomedical Fluorescence Sensing Applications
JP2012209654A (en) Optical signal detection apparatus, suspended particulate detection apparatus, and fire alarm apparatus
US10670532B2 (en) Measuring apparatus comprising a line enclosure disposed around an electrical connection line electrically connected to the conductive part of an optical window and a housing
Hu et al. Design of Low Noise and High Gain Broadband Photodetector
US10627293B2 (en) Self-amplifying sensor pair
Stefan et al. Low-noise sampling system for photo current detection with monolithically integrated photo diodes