TW201141205A - System for transforming video outputting format - Google Patents
System for transforming video outputting format Download PDFInfo
- Publication number
- TW201141205A TW201141205A TW99127218A TW99127218A TW201141205A TW 201141205 A TW201141205 A TW 201141205A TW 99127218 A TW99127218 A TW 99127218A TW 99127218 A TW99127218 A TW 99127218A TW 201141205 A TW201141205 A TW 201141205A
- Authority
- TW
- Taiwan
- Prior art keywords
- frame
- movie
- film
- format
- frames
- Prior art date
Links
Landscapes
- Studio Devices (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
- User Interface Of Digital Computer (AREA)
- Image Processing (AREA)
Abstract
Description
201141205 六、發明說明: 【發明所屬之技術領域】 本發明提供一種影片資料處理系統,係實現一種不等比 例衫片縮放之處理方法,特別地,此處理方法為一種結合裁 切及不等比例影片縮放之處理方法及其運用此處理方法之 相關裝置、電路的應用說明。 【先前技術】 由於現在科技發展卓越’將則與則在示設備 =進行寬S縮放改解析度是—重要,在不同的顯示 設備下有著各種不同的播麟式,像是手機、pDAs、寬 電視、筆記型f腦料。轉是如手機、PDAs此類型的行 動式裝置上由於具有較小的螢幕及所播放的圖片與 ϊίΓΐ求會不同’故’所要求的螢幕解析度會較高。目前 Ϊ地’依據—目標縣尺寸大小,對圖片及影片均句 巧性 Β 縮放或裁切左右兩邊之内容’以達到預定寬高比例。 」旦疋料線性驗會造成影像魄㈣失真,而裁切會 t些位於影像邊緣之重要物體魏,此,近年來有 為i之縮放技術,採用非等比例扭曲變形來達到 4所需要的尺核式’轉人類視慨官上較重 内谷之,狀_,並且將扭曲失真隱藏在較不重要區域。 k來,藉由使用非等比例扭曲變形或基於片段 J^ntatum-based)組成而達成内容感知圖片與影片 惜地,前者存有影像失真的缺陋,後者存有ίί 的圖片與片段的影片的出現。 然而,對於影片重新縮放基本上是不 Ϊ門=完ΐΓ決問題只依靠現有圖片縮放處^ 時間之限制。34個問題所存在之問題有兩項: 上 j—)物體動作和時間動態是影片核素 _;之前方法,影片中每齡新縮放運算 201141205 波動ίΐίί生?無法處理具有複雜動作的影片且畫面會有 下,(二内中容重為要主物之體二蓋整張j片時,在這種情況 縮放是,對此重新 於二放 :種影:方㈣^ 【發明内容】 標影片立以物件在-預定縮放二^ =的背景資 ^圖片與影片在不同縮放用=及所播 方法並不會失真。以下為此—目‘耻影片處理 本揭露的特定範例的一目的能夠 s:/或克服與先前技術(例如’此麵述)所== 視訊内料的至少一特定區域,在決 P間該至少-特定區域受到保護而不裁切 =程 框:S;序能夠包括,例如’接收與至少-影^ 201141205 ^出現在-_中的資訊相_容,且 接下來的特定數目的圖框内消失,該接下來 === 框與特定輯翅,及/或⑼包含與所料定= 動巧導向前景物件的資訊。範例程序能夠進一步包括.某^ ίίίΞϊίΞΞ則雖崎述做區域,所述特定區域 舉例來說’區域可以基於視覺流量來決定 每-資訊相關像素相_的平均流量向』ί ,騐1圖框的任何—圖框中保持可見,其中 ΐίίϊΐΐ通過測試的該f訊可雜標記。基於愈特定= 個有關的資訊之流量相關聯的熵“ 定。使用量化的流量向量及姆於流 行及S程4二步資包二基二^ 大可能熵的函數駄服了〜與流量均勻分布相關的最 依據本發明的某些實施例,範例 ί =行不等比例的次程序,其=二:= 。可使用至少暫時-致的不=例: 以促進相鄰序。—固定的頂點可以被限制, 該例示之過程更可包括辨認網格頂點 i 頂點位置可以是―預定鄰 頂 [。 41205 此外’該例示之不等比例縮放子程序可使用一網格,其 包括一群方格’且該例示過程更可包含決定至少一具有延伸 於特定圖框外之一流量向量之特定方格,其中,該等特定方 格可包含一大小,其與至少一更進一步之至少時間軸上鄰接 該特定方格之方格之大小有相同。且’可以使用一縮放過程 來限制之。該例示之不等比例縮放子程序可使用一像素水準 之格點和/或滑動視窗。此外,該例示之過程更包括於j吏用者 可存取之格式和/或使用者可讀之格式的儲存裴置配置之 訊顯示器和/或儲存裝置。 例示之用來促進該前述例示過程電腦存取媒介和 施例,在此一實施例可適用。 ,、’、只 在此亦一例示處理影像資料以在影片重製過程中,促進 至少一影片内容特定區域不等比例縮放之過程。例如,該程 ,根據-些前揭之例示實施例可包括,接收影片, ,資關於至少-影像圖框之訊息。藉由一硬體處理配置?該 二m可包括對至少—特坊和/或列蚊資訊。此決定‘ 狀區域之幾個圖框之内消失的資訊⑻包^】 之t移動前景物件之資訊來做成。該例示過程 ίί ΐ,影像圖框區域以依據該訊息被不等比ϊ ί::片資料上執行-不等比例縮放 來二二t域可邮—目標影片立方體朗内被變 y又保5隻以避免在裁切過程中被裁掉。 和由社f揭這些和其他物件、特色和優點,一但盘例示圖千 明,將會更加清楚。 抽麻實施例說 統’想二$格式系 -外部命令佩极姐 6 201141205 接收包含至少一個圖框之一影片 — 圖縮放比例之 影片使=1細_符合該= 出格式之-具林賴影片輪 “根㈣之又—構想’本發日績供―種影錄出格十 的二外二;外生與一影片輸出格式有‘ 系統,包含一外部輸入^供種衫月輸出袼式 的一外部命令α及-;7執行單元、關聯 ===度係足以容納該以 圖框中每 示俾使具有不同於該:輸口= 【實施方式】 的螢2手圖小 同的要求,先行界定重要的影像物件。、〜片縮放比例會有不 免被裁切。方法如下: 厅、物件,如何避 201141205 1、 計算每個圖框之視覺流量(optical flow),經過分析量 化後,得到圖框中每個晝素之流量向量(fl0W vect〇r)。 2、 將所有流量向量導入一扇型統計圖tfan chart)以進行 編號統計,並將該等編號之分佈機率導入熵公式(entr〇py), 以求得至少一圖框之每一行的熵資訊。 3、 利用所有圖框之每一行熵,尋找出不允許裁切的特 定區域(critical region) 〇201141205 VI. Description of the Invention: [Technical Field] The present invention provides a film data processing system, which is a method for processing unequal scale shirts. In particular, the processing method is a combination of cropping and unequal ratios. The processing method of the film zooming and the application description of the related device and circuit using the processing method. [Prior Art] Because of the excellent development of technology now, it will be important to display the device = wide S scaling to resolution, and there are various different types of display devices under different display devices, such as mobile phones, pDAs, and wide. TV, notebook type f brain. In the case of mobile devices such as mobile phones and PDAs, the resolution of the screen required by the smaller screen and the played picture is different from that of the PDA. At present, the location of the target is based on the size of the target county, and the picture and the film are both Β 缩放 或 或 或 裁 裁 裁 裁 裁 裁 裁 裁 裁 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Once the linear test will cause the image to be distorted (4), and the crop will be an important object at the edge of the image. In recent years, there is a scaling technique for i, which uses non-equal distortion to achieve 4 The ulnar nucleus's turn human beings are more heavily weighted in the inner valley, and the distortion distortion is hidden in less important areas. In order to achieve content-aware images and video singularity by using non-proportional distortion or segmentation based on J^ntatum-based composition, the former has a lack of image distortion, and the latter contains ίί images and fragments of the film. Appearance. However, re-scaling the movie is basically a trick. = The problem is only limited by the time limit of the existing image zoom. There are two problems in 34 problems: On j-) object motion and time dynamics are film nuclide _; before the method, the new scaling operation for each age in the movie 201141205 fluctuates ίΐίί students? Can not process movies with complex actions and pictures There will be next, (the second internal volume is the main body of the body to cover the entire piece of j, in this case the zoom is, this is re-released in the second: planting shadow: square (four) ^ [invention content] The object in the - predetermined zoom 2 ^ = background image and the film in the different scaling = and the method of broadcasting is not distorted. The following is a purpose of the film - the film of the specific example of the disclosure can be: / or overcome at least a specific area of the video material with the prior art (such as 'this facet'), the at least - specific area is protected between the blocks P without cutting = the frame: S; the order can include, For example, 'received with at least - shadow ^ 201141205 ^ appears in the information in the -_, and the next specific number of frames disappear, the next === box with a specific flap, and / or (9) contains And the information that is expected to be used to guide the foreground object. Sample program It can further include a certain ί ί ί ί 虽 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 崎 特定 ' ' ' ' ' ' ' ' ' The frame remains visible, where f ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ The function of the second base of the packet is convinced that some of the embodiments relating to the uniform distribution of the flow are most in accordance with the embodiment of the present invention, the example ί = the unequal proportion of the subroutine, which = two: =. At least temporarily - not in the case of: to promote the adjacent order - fixed vertices can be limited, the process of the illustration can further include identifying the grid vertex i vertex position can be "predetermined neighboring top." The unequal scaling subroutine may use a grid comprising a group of squares ' and the instantiation process may further comprise determining at least one particular square having a flow vector extending outside of the particular frame, The particular squares may comprise a size that is the same as the size of at least one further square on at least the time axis adjacent to the particular square. And 'a scaling process may be used to limit the. The unequal scaling subroutine can use a pixel level grid and/or sliding window. In addition, the illustrated process is further included in a format accessible to the user and/or stored in a user readable format. </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> In the process of film re-production, the process of unequal scaling of at least one specific area of the movie content is promoted. For example, the process, according to some of the foregoing exemplary embodiments, may include receiving a video, a message relating to at least an image frame. With a hardware processing configuration? The two m may include information on at least the Tefang and/or L. mosquitoes. This is determined by the information of the foreground object that disappears within several frames of the ‘area. The instantiation process ίί ΐ, the image frame area is not equal to 该 ί : : : : : : : : : : : : : : 片 片 片 片 片 片 片 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不Only to avoid being cut off during the cutting process. And by the community to expose these and other objects, features and advantages, once the disk is illustrated, it will be clearer. The numb embodiment says that the 'think two-format system-external order Peijie 6 201141205 receives a film containing at least one frame - the scale of the film makes = 1 fine _ in line with the = format - with Lin Lai The film round "root (four) is again - conception" this hair day performance for the kind of video recording out of the second two; the exogenous and a film output format has a 'system, including an external input ^ for the shirt type monthly output 袼An external command α and -; 7 execution unit, associated === degree is sufficient to accommodate the requirement that each of the frames in the frame has a different size than the fire hand 2 of the embodiment: First define the important image objects. ~ The scale of the film will be cut. The method is as follows: Hall, object, how to avoid 201141205 1, calculate the visual flow of each frame, after analysis and quantification, get The flow vector of each element in the frame (fl0W vect〇r) 2. Import all flow vectors into a tfan chart to perform number statistics and import the probability of the numbers into the entropy formula (entr 〇py) to find at least one frame Each row of information entropy. 3, each row by using the frame entropy of all, do not allow to find a particular area of the cut (critical region) square
1 、.·〇 σ刀兴个寻比例难茂進灯最佳化運算,使得該 圖框重新縮放後’符合目標影像立方體(加㊁过video cube)之 大小比例。換言之,在每一圖框透過定義一特定區域,每個 圖框位於此區域的内容絕對不能被刪除。利用視覺流量來制 定其準則且計算出包含所有特定區域之目標影片立方體,代 表臨界區域以外的内容可以被摒棄。具體而言,欲將一段影 1變窄時,不讓特定行之像素被移除,而欲將一段影片變寬 時,讓特定列保留下來。以影片變窄之做法為例: (1)當内容剛出現於圖框或者是即將消失於下—個圖 框,此内容不具有於時間軸上持續出現之特性。 …(2)特定區域裡面必須包含顯著移動前景物體,並定義 疋區j的最左邊及最右邊為特定行(criticalcolumn)。 ,參閱第1圖’其係本發明第一實施例之方法之流程 圖。本發明方法之流程如下: 步驟10:接收包含至少一個圖框之一影片; =11:找尋包含與至少—圖框有關聯的移動前景物件 I特疋區域。 Η古ίΞ12:界定包含—歡區域之―預定縮放比例目桿影 片立方體’其中該預定縮放比例係由人為決定。 ,、 -絲2 13:該量化雜包含將至少―®㈣視覺流量導入 公進行編號統計,並將該等職之分佈機率導入熵 "求侍至少一圖框之至少一行的熵資訊,其中該特定區 201141205 域係根據熵資訊而被決定。 對於欲進行縮放之影片先行界定在每一圖框之一特定 區域所包含如移動前景物件重要㈣像物件何必免被裁 ϋ法為士計算每個圖框之視覺流量(〇ptical fl〇w),經過 /刀析!化後,得到圖框裡面每個畫素之流量向量(_ 所有流量向量導人_扇型統計圖伽e_以進 订編唬統計,並將該等編號之分佈 有圖框之母H哥找出不允許裁 哪岭4:結合裁切與不等比例縮放=以= ’符合目標影像立方體二 之大小比例。換§之,在每一圖框透過定 絕對不能被刪除。利用視;流量來 =區體;代表 择丢姓看到特_之像素被移除掉;換言之,變寬 ίΐίϊίΓ下來。邮片變窄之做法為例 時不具有於時間軸上持續出現之特^ 此 (ΐίίίίίϊΓΓί包含顯著移動前景物體。並定義特定 域:ΐί Ϊ?右邊為特定行㈣ical CO—。 疋 圖框是否移動進入或離開;之=在下一個 ^並且測試它是否來自前圖====向 此行將標記在特定區域内。判k 件都不成立’則 师咖㈣作為依據,且二母二行視覺流量之 此物體之移動_立不同於3顯耆移動之物體, 首先利物_覺流量 201141205 (ΐΪ長向量會被量化到間格較多的區域 格)。人表來自於雜訊’不需要區分較多的量化間 z)表不—流量向量/經由量化後之整數值如下 nit) = 2fc1 , .· 〇 σ 兴 兴 兴 寻 寻 寻 寻 寻 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳 最佳In other words, by defining a specific area in each frame, the content of each frame in this area must not be deleted. Visual traffic is used to formulate its criteria and to calculate a target film cube containing all specific regions, and content outside the critical region can be discarded. Specifically, when a slice 1 is to be narrowed, pixels of a particular line are not removed, and when a film is to be widened, a specific column is left. Take the practice of narrowing the film as an example: (1) When the content just appears in the frame or is about to disappear in the next frame, this content does not have the characteristics that continue to appear on the timeline. ... (2) The specific area must contain significant moving foreground objects, and define the leftmost and rightmost sides of the area j as a specific line (criticalcolumn). Referring to Fig. 1 ', it is a flow chart of the method of the first embodiment of the present invention. The flow of the method of the present invention is as follows: Step 10: Receive a movie containing at least one frame; = 11: Find a moving foreground object I feature area associated with at least the frame. Η古ίΞ12: Defining the “predetermined zoom target stick movie cube” containing the area of the joy, where the predetermined zoom ratio is determined by humans. , - - 2 2: The quantified miscellaneous information includes introducing at least "(4) visual traffic into the public for numbering statistics, and importing the probability of distribution of the duties into the entropy " seeking at least one row of entropy information, wherein The specific zone 201141205 domain is determined based on the entropy information. For the movie to be scaled, the first definition is included in a specific area of each frame. If the moving foreground object is important (4), the image object should not be cut by the method to calculate the visual flow of each frame (〇ptical fl〇w) , after / knife analysis! After the transformation, get the flow vector of each pixel in the frame (_ all flow vector leads _ fan type chart gae_ to compile the compilation statistics, and the distribution of the number is the frame of the mother H brother Find out which is not allowed to cut the ridge 4: combine cutting and unequal scaling = = = 'conform to the size ratio of the target image cube 2. In addition, in each frame through the absolute must not be deleted. Use view; flow The pixel is removed. In other words, the pixel is removed. In other words, the width is narrowed down. The narrowing of the message is not the case that it continues to appear on the timeline (ΐ ί ί ί ί ί ί Contains significant moving foreground objects and defines specific fields: ΐί Ϊ? Right side is a specific line (4) ical CO—. Whether the frame moves to enter or leave; == at the next ^ and test if it comes from the previous figure ==== to this line It will be marked in a specific area. It is judged that none of the pieces are established. The teacher's coffee (four) is used as the basis, and the movement of the object of the second and second lines of visual flow is different from that of the object that is moving, and the first thing is the flow of the object. (ΐΪ long vector will be quantified . More compartment cell region) derived from human noise table 'need to distinguish between more quantization z) table is not - flow vector / the quantized integer value via the following nit) = 2fc
with k=[〇.5C(ii)U 述如^^和Θ(/3分別代表著’之長度與方向,這公式的原理闡 主二Ϊ扇形是由許多間距一樣的同心圓所構成,其第k 八it徑為2(k+1),且此k環區分成2k等分,以及每一等 r ρΐϋΐ度為2π/2、如第2圖所示,所有間格從最裡面為 幵Υ、行連續編號。將一流量向量放置於此扇形圖之原 : 用Eq.(l)求得該向量所位於的區間編號。詳細而言, L〇-5£(ft)」代表其流量向量位於扇形圖中第幾個環,則為某 Θ⑹/(〜#)」環裡面的第幾個區間。 首先簡介熵函式(entr〇py)。本專利中利用資訊理論中熵 之方法來尋找特定區域最左邊及最右邊之邊界;熵函式 、疋義為,假設有一系統S存在多個事件S={EhE2,E3,With k=[〇.5C(ii)U is described as ^^ and Θ (/3 respectively represent the length and direction of ', respectively. The principle of this formula is that the main fan is composed of many concentric circles with the same spacing. The kth eight-th path is 2(k+1), and the k-ring is divided into 2k aliquots, and each r ρ ΐϋΐ is 2π/2. As shown in Fig. 2, all the spaces are from the innermost side. Υ, row consecutive numbering. Place a flow vector in the original of the pie chart: Use Eq.(l) to find the interval number in which the vector is located. In detail, L〇-5£(ft)” represents its flow rate. The vector is located in the first ring of the pie chart, which is the first interval in a ring of (6)/(~#). First, the entropy function (entr〇py) is introduced. In this patent, the method of entropy in information theory is used. Find the leftmost and rightmost boundary of a particular region; the entropy function, 疋 meaning is assumed, there is a system S with multiple events S={EhE2, E3,
} ’且每一事件之機率分佈為ρ={Ρι,Ρ2,Ρ3,...,ρ則熵函’ 式為如下Eq.(2) H(C) = -YjP(fi)-\og〇P(fi).} 'and the probability distribution of each event is ρ={Ρι,Ρ2,Ρ3,...,ρ is the entropy function' is as follows Eq.(2) H(C) = -YjP(fi)-\og〇 P(fi).
i^C 一熵函式有幾個重要特性,其一是函式值必定大於零,其 二為假設N是系統s中的事件總數,則熵函式/ 4PFPf·..,”等號成立時,此時系統S之熵函式為最大。所 ^使用熵函式的主要原因在於此,當每一事件的機率相等 h ’則函式會達到最大,以視覺流量向量來看,當機率分佈 越平均’代表每個流量向量皆不一樣,及有重要物體再進行 移動;換言之,當機率分佈都集中於有一範圍時,代表流量 201141205 後的漭旦信’祕即代表為不重要之背景區域。因此,利用量化 之直;二:計之直方圖並且定義流量分佈機率(高度為主 將所有整數直方圖進行正規化此就可以 母一=熵函式C㈣ropy of col_ 〇。 筏仵 系統中,設定當某行之流量熵函式超過0.7片max 二^仃^含於特定區域之内;而I為當每個事件出 ’最大熵函式值。第3圖⑻及第3 _為利 定區域最左及最右之邊界示_。在本系 特定區⑽出須限制保留的特定區域邊界’但不意味著位於 佑播之所有内容都必須完全裁切;確切之裁切區域須 確保祕Li縮放運算及時_上維持—致性之限制,並且 “3未來時間軸上可以看見。因此,對於偵測前 ㈣確^7:有必要的,因為系統制的流量熵就是一個 該等等比例縮放,使得處理後的 楚4隱、L 3標衫片立方體之大小比例’如第4圖⑷及 公其巾’在步驟14中更包含至少—個最佳化 框‘一 j圖框進行不等比例縮放,使得處理後的該等圖 撼影片立方體之大小_,且該最佳化公式係根 據空間内容及時間-致性而設計。 管提出影片重新縮放架構是基於變分最佳化運 二Ϊί連、=之不等_縮放,且裁切運算時包含最佳化 墓、一 < 。糟由使用方格網格架構分離影片立方體區域,定 標計算網格之頂點位置:在幾個條件限制下 古故Γ最小能4函數值’以麟卿雜置,紐對每個 ⑽新定位產生出縮放後的影片。目標函數由 成個巧件所構成,翻維持時間和賴視覺上重要的内容, 以及時間軸上物體内容的連貫性。 及義標§己符號。在影片中每個圖框t之網格架構Mt= {vt. 201141205 E,Q } ’其巾V= { VA;^··.,VA }為向量位置合集,E和 Q分別代表邊和方格面(quad face),且所有的圖框彼此之間 都是相互連接。經由縮放形變後的新頂點=(xi,i,γί, 些變數皆使用最佳化計算過程。為簡化複雜度,將符號t 簡化成V ;當單一圖框頂點,以。表示。縮小的影片大 小(rx,ry,rz),匕及ry為縮放後的影片解析度。&圖框的總數。 基本上’將-段輸人的影片立方體壓縮至—預之 縮放=例目 標影片立方體。The i^C-entropy function has several important characteristics. One is that the function value must be greater than zero, and the second is that the hypothesis N is the total number of events in the system s, then the entropy function / 4PFPf·..," At this time, the entropy function of the system S is the largest. The main reason for using the entropy function is that when the probability of each event is equal, the function will reach the maximum, and the probability of the visual flow vector is taken as the probability. The more average distribution means that each flow vector is different, and there are important objects to move; in other words, when the probability distribution is concentrated in a range, the background of the traffic after 201141205 is the unimportant background. Area. Therefore, use the straightness of quantification; 2: Calculate the histogram and define the probability of flow distribution (the height is dominated by normalizing all integer histograms. This can be the parental one = entropy function C (four) ropey of col_ 〇. , set when the flow entropy function of a row exceeds 0.7 pieces max 2 ^ 仃 ^ is contained in a specific area; and I is the maximum entropy function value for each event. Figure 3 (8) and 3 _ for profit The leftmost and rightmost boundary of the fixed area shows _. The specific area (10) is bound to the specific area boundary that is required to be reserved. 'But it does not mean that all the contents of the so-called broadcast must be completely cut; the exact cut area must ensure that the secret Li scaling operation is timely and the limit is maintained. And "3 can be seen on the future time axis. Therefore, it is necessary for the detection before (4) ^7: because the system-based flow entropy is a proportional scaling, so that the processed Chu 4 hidden, L 3 standard The size ratio of the shirt piece cubes, as shown in Fig. 4 (4) and the public towel 'in step 14 , further includes at least one optimization frame' - j frame for unequal scaling, so that the processed picture films are processed. The size of the cube _, and the optimization formula is designed according to the spatial content and time-basedness. The proposed film re-scaling architecture is based on the variational optimization of the two-dimensional Ϊ lian, = _ _ zoom, and cut The cut operation includes the optimization of the tomb, a <. The separation of the film cube area by using the grid structure, the calculation of the vertex position of the grid: under a few conditions, the minimum energy 4 function value Mixed with Lin Qing The new position produces a scaled movie for each (10) new position. The objective function consists of a piece of hardware that maintains time and visually important content, as well as the coherence of object content on the timeline. The symbol. The grid structure of each frame t in the movie Mt= {vt. 201141205 E,Q } 'The towel V= { VA;^··., VA } is the vector position collection, E and Q respectively represent Edges and quad faces, and all the frames are connected to each other. New vertices after scaling deformation = (xi, i, γί, these variables are used to optimize the calculation process. To simplify Complexity, the symbol t is reduced to V; when a single frame vertex is represented by . The reduced movie size (rx, ry, rz), 匕 and ry are the scaled film resolution. The total number of & frames. Basically, the film cube of the input segment is compressed to - pre-scale = example target movie cube.
該最佳化公式包含用於維持空間内容之相似能量 jo^formal energy)、用於時間一致性在時間軸上内容之相似 能量(Temporal Coherence energy)、及裁切後對每一圖框進行 平滑化的二次平滑能量(second_order sm〇〇thing如过取)。且藉 由使用迭代函數(iterative minimization fhnction)對該算銥景 解一最小平額題’以轉-組最佳㈣結果。)^等月匕里 再者,在麵14巾,至少-圖框絲_格架構而進 行不等比例縮放(該不等比例縮放係使用框架在長、寬軸上 順地滑動,裁切外部較不重要的區域,以降低失真的累積), 以維持在該特定區_物件之形狀,並制幾何單元尺 該網格架構進行不等比讎放。而為了翻咖-致性,利 用、至ίΐ框之至少—幾何單元尺寸之視覺流量來獲得至 > 了幾何單7G尺寸的線性形變’並使經不等比例縮放前後之 至>、一幾何單元尺寸之線性形變能盡量保持一致性。 以下為本實施例較佳說明。 不#比例影片縮放之處理方法規定,經縮放變形後,原 始影片四個角落之頂點座標必須位於新解析度影片中,此實 方e例中’將所有的特定區域、經形變後,處於縮小的景多片大小 〇x,ry’rz)。一些影片中周遭兩旁的非特定區域經形變 能土現产影片t立方體之外’如此一來則被裁切掉。 令Vi和VY在t個圖框,最接近特區之左上和右下角落的 12 201141205 m須謹慎選取頂點,確保特定區域-定包含在這 必須在目標縮放立方體= > 0. xl' < Τχ;The optimization formula includes similar energy (jo^formal energy) for maintaining spatial content, Temporal Coherence energy for temporal consistency on the time axis, and smoothing each frame after cropping The secondary smoothing energy (second_order sm〇〇thing). And by using an iterative function (iterative minimization fhnction), the minimum level problem is solved for this algorithm to turn-group best (four) results. ^) Waiting for the moon, and then unequal scaling in the face of the towel, at least - the frame _ grid structure (this unequal scaling uses the frame to slide on the long and wide axes, cutting the outside Less important areas to reduce the accumulation of distortion) to maintain the shape of the object in the particular zone, and to make the grid structure of the grid structure to perform unequal ratio scaling. In order to turn the coffee, use the visual flow of at least the geometry of the frame to obtain the linear deformation of the geometric single 7G size and to unequal scale before and after. The linear deformation of the geometry unit size is as uniform as possible. The following is a description of the preferred embodiment. The method of not scaling the scale of the movie stipulates that after scaling and deformation, the vertex coordinates of the four corners of the original movie must be located in the new resolution movie. In this real e case, all the specific regions are deformed and then reduced. The size of the scene is 〇x, ry'rz). In some films, the non-specific areas on both sides of the film have been deformed. Let Vi and VY in the t frame, the closest to the upper left and lower right corners of the SAR 12 201141205 m must carefully select the vertices to ensure that the specific area - is included in this must be scaled in the target cube = > 0. xl' < Τχ
Ve ~ 0: ^ ry. for all 0 < ί < 7V 堆利所提出的不等比例影片縮放在時間軸具有 :且也不需要對時.-致性的裁切區 π田為^寺景i片中’每個圖框裡面視覺上的重要的物體, (:〇1^ 7 Vu、Vi2、vi3及vi4分別代表方格q之四個 =似^換參數化是由四個數字所組成(e.g.,w U);所ί 望的q和q ’達到最佳相似解:如下Eq.⑷ ' [一w=t5l[: 了]、小]沁 l * 這是屬於一線性最小平方問題,可寫成 [s’'ML' = (4XriAibv,其中如下邱.⑶Ve ~ 0: ^ ry. for all 0 < ί < 7V Hewlett-Packard's unequal-scale film scaling has a time axis: and does not require a time-sensitive cutting area π田为^寺In the scene i, the visually important objects in each frame, (: 〇1^7 Vu, Vi2, vi3, and vi4 respectively represent the four squares of the square q = like ^ change parameterization is by four numbers Composition (eg, w U); the desired q and q ' to achieve the best similar solution: Eq.(4) '[a w=t5l[:], small]沁l * This is a linear least squares problem Can be written as [s''ML' = (4XriAibv, which is as follows. (3)
—2/ή 1 ο Γ χ( η Vh .Χίτ 0 ι y1 Aq = • • :bg/ 二 *!/ll ^14 一 m4 1 0 Xr • yu 0 1 . u:J 將=Af全取決賴格·,Μ是—個未知數之矩陣 將k C w, v]qq,,將可以將從方格q以得到 干—2/ή 1 ο Γ χ( η Vh .Χίτ 0 ι y1 Aq = • • :bg/ 二*!/ll ^14 a m4 1 0 Xr • yu 0 1 . u:J will =Af all depends on the grid ·, Μ is—the matrix of unknown numbers will be k C w, v]qq, and will be able to get from the square q
Dc\q..q') = (Aq(A^Aq)-lA!;~I)bq/ 可寫成如下Eq.(6) 物〆)=ΣΣ^·〇ν)Dc\q..q') = (Aq(A^Aq)-lA!;~I)bq/ can be written as follows Eq.(6) 〆)=ΣΣ^·〇ν)
t a1 J 13 201141205t a1 J 13 201141205
Wq是第t個圖框中視覺重要方格之權重值,而每個圖框 之空間重要資訊圖(spatial importance map),結合顏色梯度量 測,影像視覺特徵圖,以及精準人臉偵測,該重要資訊圖經 由正規化後之範圍為[0.1,1.0]之間,防止不重要區域過度縮 放造成明顯地失真現象;而不等比例縮放方法近似於 (KRAHENBljHL,等人 2009)及(WANQ 等人 2009)。為避免 網格直線發生強列地扭曲現象。如下Eq.(7) — ^ = Σ* ( E{i,y}eEi; (χΐ ~ .xf)2+Wq is the weight value of the visually important squares in the t-th frame, and the spatial importance map of each frame, combined with color gradient measurement, image visual feature map, and accurate face detection, The important information map is normalized to a range of [0.1, 1.0] to prevent undisturbed areas from being excessively scaled to cause significant distortion; the unequal scaling method is similar to (KRAHENBljHL, et al. 2009) and (WANQ, etc.) People 2009). In order to avoid strong distortion of the grid line. Eq.(7) — ^ = Σ* ( E{i,y}eEi; (χΐ ~ .xf)2+
Σ^0.3'}€ΕΛ (?/i -Vj')2 ).Σ^0.3'}€ΕΛ (?/i -Vj')2 ).
Ev和Eh刀別代表網格架構中垂直和水平的邊。 為了實現時曝-雜之影>j縮放,本專利提出一 函數用來維持物體動作魏,並將則_,麟,波動 象降至最低。藉由視覺流量,可以取得每個方格由$ /幾化至下一個圖框時情況,以表示之。 找到,擬,線性轉換功_她sfbrm ,此貫施例不需要計算出連内 H為=要包含轉換τ外圍形狀之方格,。 準地位置。本專利目的在於影片縮放時,如何保持 無需==影,,而 函數之未知數,般哺ί正確定義 意味這些頂點為線性組合最鄰近_」一 ϋ頂點, 及第5 _所示,相對方格q(粗°如第5圖(a) 量所分析得知’在此例巾,翻轉格於視覺流 粗條網格頂點之線性組合,以u符^左上角頂點’採用 <1 = Σ>ν:+1付絲表不。如下%(9) 201141205 十’ %為方格點νγι之平均權重,現在可以利用Vi,重 疋義。如下Eq.(10)。 队⑹=Σ -ι4+1/)ΙΙ2, ,Ε(<^)是方格#之集合。 =些情況下,方格Qt〃已經移動至影片圖框外面,對於 =士格’利用如TEq.(U),簡化經時間縮放後,時間轴上 相鄰方格能盡量維持相似之限制 上 =Σ 11(< - - (f - Oil2· b’,fc)eE(々 = ’所有時間軸上相似之能量總合為:如下The Ev and Eh cutters represent the vertical and horizontal edges of the grid architecture. In order to achieve the time-exposure shadow >j scaling, this patent proposes a function to maintain the motion of the object and minimize the _, lin, and undulation. With visual traffic, you can get the situation when each square is changed from $/to the next frame. Find, quasi, linear conversion work _ her sfbrm, this example does not need to calculate the inner H is = to contain the square of the outer shape of the conversion τ. The location of the ground. The purpose of this patent is to maintain the image without scaling == shadow, and the unknown of the function, the correct definition means that these vertices are linear combinations closest to the _" vertices, and the fifth _, relative squares q (thickness, as shown in Fig. 5(a), the quantity is analyzed. 'In this case, the linear combination of the vertex of the grid of the visual flow thick grid is inverted, and the vertex of the upper left corner of the u symbol ^ is adopted by <1 = Σ> ; ν: +1 paid silk table does not. The following % (9) 201141205 ten '% is the average weight of the square point νγι, now you can use Vi, heavy meaning. As follows Eq. (10). Team (6) = Σ -ι4 +1/)ΙΙ2, ,Ε(<^) is a collection of squares#. In some cases, the square Qt〃 has been moved outside the film frame. For =Shige's use of TEq.(U), after simplification of time scaling, the adjacent squares on the timeline can maintain similar limits as much as possible. =Σ 11(< - - (f - Oil2· b',fc)eE(々= 'The sum of similar energy on all timelines is as follows:
Dt=? Σ _ eQ« 1 ?|€Q^ 同二量利用局部性限制’達到保持時間軸上相 :藉:ί:气f ’這代表不一致性的誤差在圖框間會持續 題,係提出一方法’既可以保持時間軸 ^目應方格之-致性,並進—步降低誤差程度。 ,當影片的移動是很平順時,利用q/與立對i之 2 t取=V與其職之方格f,取代原本的 發j改變’ δ^λ=5 °因為在影片中,物體形狀 S = 明?的’尤其在有物體或攝影機移動 Ξ況ϋ 容許在進行縮放時會有些微不—致 到目前為止’本專概出之能量只 於本實施例中先選擇一個固定點,選放 制其位置在相_框間改變能轉平順二。= 滑函式(second - order smoothing term)。如下 Eq (1曰3)白 15 201141205 ’ =ηΣ 丨丨 W - (W + 最小解’崎辑構失真達到 D = DC + Dt + jDt + δϋΒ, 在本系統中’ r =ι〇,5,傲兔旦/ 還:,侧式是為了保護特=== 非負mf太m件不等式,要求網格邊線不能為 ί;之=ΐί:限制採,方程式 之邊界。,Λ1''. 其運异時利用每個圖框頂部與底部 下ΐ圭曰欲在一些線性限制以及線性條件不等式 I獲罐目驗鑛修·迭代方 "在本實施例中,每次產生新陳㈣式會做為下一次進 邊請注細,每當條件限做變時,系統 ® $取決於Μ違反不等式的矛盾情況發Dt=? Σ _ eQ« 1 ?|€Q^ The same amount uses the local limit to reach the upper phase of the hold time axis: Borrow: ί: gas f ' This represents the inconsistency error will continue to be between the frames, A method is proposed to keep the time axis and the square, and to reduce the error. When the movement of the film is very smooth, use the q/ and the pair 2 to take the =V and the square of the job f, instead of the original hair j change ' δ ^ λ = 5 ° because in the film, the shape of the object S = Ming's 'especially when there is an object or the camera is moving ϋ Allowing some scaling when zooming in - so far the energy of this special only selects a fixed point in this embodiment, choose The placement of the position in the phase _ frame can be smoothed. = second - order smoothing term. As follows Eq (1曰3) white 15 201141205 ' =ηΣ 丨丨W - (W + minimum solution 'synaptic distortion reaches D = DC + Dt + jDt + δϋΒ, in this system' r = ι〇, 5, Proud rabbit Dan / also:, the side is to protect the special === non-negative mf too m inequality, the grid edge can not be ί; = ΐ ί: limit mining, the boundary of the equation., Λ 1 ''. When using the top and bottom of each frame, you want to get the tank inspection and iteration in some linear constraints and the linear condition inequality I. In this embodiment, each time a new (four) formula is generated, it will be Please pay attention to the next entry. When the condition limit is changed, the system ® $ depends on the contradiction of the violation of the inequality.
r· "i ^ I 生。本專利之系統,根據[Buat〇isetai 2009]此篇研究,利用 GPU((^hieS Process Unit)共輕梯度解法器 gradient solver)和多重平行處理為核心架構,比起一般單次解 法器’其會需要使用大量記憶體空間,但也大幅減短運算所 需時間、。-旦變形網格架構已計算結束,從制定的目標縮放 立雜裡面剪輯出縮放後之影片。此外,將每一圖框之圖片 縮放至每個方格,其系統使用線性内插,或者使用 201141205 提4之實妓躲之杨級器設 測試細上進行 (ΤΓΥ μ1 出的中央處理單元和Nvidia 參考資料例用;;=和歸(請 ϊ雜了效能m己憶體消耗量,因為計算的 品質ί=ί 放後影片的 之網縣構,後岭 ί=;ί=決於影片内容,平均需要 y' 不等式’在進行網格扭曲變形時接斗糸鉍吟 ϊ ι^ΐίϊίΓ"288、總數為288圖框之影片,系統可 =達到千均母秒處理6個圖框,並且可以處裡較多圖框之 型之ίϊ提範例的結果來證明可以處理各種類 都是使用之前所提到之參數設定 = 動決趣中之重=在㈡ 視覺流量自細(卿h_eut) ’並透過 如,=====卿序與線性縮放、與由,例 (:腾、舆=====二 =:=之者,: 私序兩者疋目前最先進的影片縮放技術,故將 17 201141205 • 本結果與MM和SVR程序進行比較。之前研究[wolf et al. 2〇町]、[Rubinstein et al. 2008]、[Zhang et al. 2008]在針對影片 進行縮放時,皆沒有考慮動作之物體於時間軸上一致性,因 此,必然無法媲美以動作為主方法,2⑻9] . 以廣泛使用者調查作為依據,推得出此項結論。有趣的是圖 片重新縮放方法[Dong et al. 2009]、[Rubinstein et al. 2009]結 合了裁切以及其他技術,以最佳化方式獲得與原本圖片最相 似之結果,但這些方法所需要很長的運算時間,並且僅僅適 靜祕像’並沒有延伸至影片,考慮_軸上物體一致 • 性的問題。 作為比較的一文獻’最主要與[Wangetal 2〇〇9]之 進行比較;因為此篇研究中,其明確地處理有關時間軸上一 致性的問題。但是其需要利用SIFT方法’進行每個圖框特 徵點對位,如果-影片只有均勻單調之背景,則將會導致 MAR失敗,例如第7圖(&>第7圖付)所示,其中第7圖(a) 為原來的圖框’第7圖(b)為線性縮放(linearscaling)的圖框, 第7圖(c)為KrShenbtihl等人所處理之圖片,而第7圖((1)為 為本實施例。 ‘ • 進一步而言’^在特徵點對位時存在著視差(parallax) 的問題,其方法無法將在不同景深下的物體進行一致性轉 換,在這種情況下,MAR此方法將退化成為線性縮放,例 如第6圖⑻-第6圖⑻所示,其中第6圖⑻及第6圖⑷為原 來的圖框,第6圖(b)及第6圖(f)為線性縮放(此邮scaling 的圖框,第6圖(c)及第6圖(g)為[Wang等人所處理之圖片], 而第6圖(d)及第.6圖(h)為本實施例。相較之下,本案的方法 能無失真地處理所有動作類型影片,且不需要任何^於圖框 特徵點對位,因此與MAR做比較,本案能成功解決任音 度改變及攝影機鏡頭移動之影片。 μ [Krahenblihletal.2009]的網格架構是以像素為大小,實 18 201141205 到如此快ϋ之效能,SVR相胁為了達 比例縮放之醜,且只是單純_時 、 致性是《每五個Sin 現及時影片重新縮放。(可參考例如參考資料第 化不等 均這幾麵框在空間上的重要資訊 視 = 可獲得較高的重要資訊。然都 如=在著攝影機晃動或者是動態物趙大 避免晝面失真及波動現象。 將不月匕r· "i ^ I students. The system of this patent, according to [Buat〇isetai 2009] this study, uses GPU ((^hieS Process Unit) gradient solver) and multiple parallel processing as the core architecture, compared to the general single solver It will require a lot of memory space, but it will also significantly reduce the time required for the operation. Once the deformed mesh structure has been calculated, the scaled movie is clipped from the defined target zoom. In addition, the image of each frame is scaled to each square, the system uses linear interpolation, or the test is performed using the 201141205 妓 之 之 杨 杨 ΤΓΥ ΤΓΥ ΤΓΥ ΤΓΥ 中央 中央 中央 中央 中央Nvidia reference example;;= and return (please noisy performance m memorize consumption, because the calculated quality ί=ί put the film's network county structure, Houling ί=; ί=depends on the content of the film On average, you need y' inequality' in the process of mesh distortion. 接 ι ι ι ι 288 288 288 288 288 288 288 288 288 288 288 288 288 288 288 288 288 、 288 288 总数 总数 总数 总数 总数 总数 总数 总数 总数 总数 总数 总数 总数 总数 总数 总数 288 288 288 288 There are more types of frames in the room. The results of the examples are shown to be able to deal with various classes that are used before the parameter settings mentioned in the following = the weight of the decision = in (b) the visual traffic is fine (clear h_eut) 'and Through, for example, =====Qing and linear scaling, and by, for example: (Teng, 舆 ===== two =:=,: private order is the most advanced film scaling technology, so 17 201141205 • This result is compared with the MM and SVR programs. Previous studies [wolf et al. 2〇町], [Ru Binstein et al. 2008], [Zhang et al. 2008] did not consider the consistency of the action object on the time axis when scaling the film. Therefore, it is inevitable that the motion-based method is the most important, 2(8)9]. Based on the user survey, this conclusion is derived. Interestingly, the image rescaling method [Dong et al. 2009], [Rubinstein et al. 2009] combines cutting and other techniques to obtain and optimize The original picture is the most similar result, but these methods require a long calculation time, and only the secret image ' does not extend to the film, considering the problem of consistent objects on the axis. The problem as a comparative literature' Compared with [Wangetal 2〇〇9]; because in this study, it explicitly deals with the problem of consistency on the time axis. However, it needs to use the SIFT method to perform the alignment of each frame feature point, if - The film has a uniform monotonous background, which will cause the MAR to fail, as shown in Figure 7 (&> Figure 7), where Figure 7 (a) is the original frame 'Figure 7 (b) Linear scaling (linea) Rscaling frame, Fig. 7(c) is a picture processed by KrShenbtihl et al., and Fig. 7 ((1) is the present embodiment. ' • Further, ^^ exists when the feature points are aligned Parallax problem, the method can not consistently convert objects in different depth of field, in this case, MAR this method will degenerate into linear scaling, as shown in Figure 6 (8) - Figure 6 (8), Figure 6 (8) and Figure 6 (4) are the original frames, and Figures 6 (b) and 6 (f) are linear scaling (the frame of this postscaling, Figure 6 (c) and Figure 6) (g) is [picture processed by Wang et al.], and figures 6 (d) and (6) are the present embodiment. In contrast, the method of this case can process all action type movies without distortion, and does not need any alignment of the feature points of the frame. Therefore, compared with MAR, this case can successfully solve the change of the tone and the movement of the camera lens. film. μ [Krahenblihletal.2009] grid architecture is based on the size of the pixel, real 18 201141205 to such a fast performance, SVR threats to scale the ugly, and is simply _ time, the nature is "every five Sin Now the movie is rescaled. (Refer to the reference information such as the reference data, the important information in the space of these frames can be used to obtain higher important information. However, if the camera shakes or the dynamic object Zhao Da avoids the distortion of the face and Fluctuation
除了之前最先㈣則重新縮放方法,林也 2:影此合會:自動產生的結果要好許多)進行比;?Ϊ ,,於採用裁切與不等比例縮放,特 有很顯著改變時。在本實驗中,本案的結= % ’在這種嚴苛的條件下’裁切可能合移除 ί見ί重要的物體或嚴重地改變攝影機路徑。值得二提的 ί,’ 用更細小、甚至像素等級解析度的網格架 體以及取得更佳之結果’因為視覺上顯著物 ^ σ i動 月b更加精準地分析運算。但是,為了改盖影 ’採用更精細網格是有舰的,因為網格裡每個二 份都是—樣的。本案實驗了各種不_格解析 二網格架構後進行運算時間以及所須記憶體大小, ^看出來’本案系統在於伽如、施2。、]G_、$ 合:眷有任何明顯地差異存在。雖然採用精細的‘格 、:暢.、H、S己憶體空間,但也使得重新縮放影片更加平順 j ’實驗中’發現利用Mo像素的網格架構,是在於品 ^能上最佳的平衡點。根據先前揭露—些例示實施例之一 藉執行以96位不同背景與年齡層的使者用調查,作 馬5平估本案方法的依據。本案制[David 1963]所提出的比較 201141205In addition to the first (four) re-scaling method, Lin also 2: shadow this: the automatic result is much better) than the ratio; Ϊ,, in the use of cropping and unequal scaling, especially when the change is significant. In this experiment, the knot = % ' in this case under this harsh condition' cutting may remove important objects or seriously change the camera path. It is worth mentioning that ί, ' uses a finer, even pixel-level resolution of the grid frame and achieve better results' because the visually significant object σ i moves the moon b to more accurately analyze the operation. However, in order to change the shadows, a finer mesh is used, because each of the two parts of the grid is the same. In this case, we experimented with various non-grid analysis and two-grid architectures, and the operation time and the size of the required memory. ^See that the system of this case lies in gamma and Shi. ,]G_, $合:眷 There are any obvious differences. Although the use of fine 'grid, smooth, H, S reminiscent space, but also makes the re-scaling film more smooth j 'experimental' found that the use of Mo pixel grid architecture, is the best in the product balance point. According to the previously disclosed one of the exemplified embodiments, the investigation of the method of using the 96 different backgrounds and age groups is carried out, and the basis of the method of estimating the case is evaluated. The comparison proposed by the case [David 1963] 201141205
方法’將本揭露程序的影片結果與[KrShenbiihl et al. 2009]和 ^ang ejal· 2009]之結果兩兩互相比較;發明人會提供一原始 影片内容以及任兩種方法的結果,讓使用者選擇他們所喜歡 的重新縮放版本。在—開始測試時,均沒有對使用者提供任 何特殊的技術指導’以確保實驗的準確性。在實驗中,本案 使用了六種不_糾,採林揭露演算法、[Krghen_e、t a=009]、[W,et aL 2_]全自動寬度減少篇之影片。 母片會做二次兩兩方法比較,因此每位使用者會被要求 = 3、χ6 = 18次測試。本案選取的六段影片,包括不同類型的場 ^及物體動作H像是現場拍攝的綱、CG電影、特 I、:頭 '廣角拍攝、單—或多個前景物體、快速或慢速移動 ΐϊΐί面、以及有無視差效果;六部影片中,我們使用了 3電:題材和-部CG動畫短片,並且盡量保持每部剪輯 有ί多圖框’因為每個短片會多加入3個比較且我 日二θ月望每個使用者會花超過2〇-30分鐘再參與實驗。並Method 'Compare the results of the film of this disclosure with the results of [KrShenbiihl et al. 2009] and ^ang ejal· 2009]; the inventor will provide an original film content and the results of either method, allowing the user Choose the re-scaled version they like. At the beginning of the test, no special technical guidance was provided to the user to ensure the accuracy of the experiment. In the experiment, the film used six kinds of non-correction, mining forest revealing algorithm, [Krghen_e, t a=009], [W, et aL 2_] automatic width reduction article. The master will do a second two-two comparison, so each user will be asked = 3, χ 6 = 18 tests. The six films selected in this case, including different types of field ^ and object motion H, are scene shooting, CG movies, special I,: head 'wide-angle shooting, single- or multiple foreground objects, fast or slow moving ΐϊΐί Face, and whether there is parallax effect; in the six films, we used 3 electricity: theme and - CG animation short film, and try to keep each clip with more frames 'Because each movie will add 3 more comparisons and I Every day, it takes more than 2-30 minutes for each user to participate in the experiment. and
方法總共被評比1152次(2x6x96)。 MVR —---- SVR Total 488 508 996 ------ 309 397 267 - - 335 表格-顧示%位使用者研究參與者之配對比較結果。總 20 201141205 執行。在此例中,在表格中間攔元^表 ,方法1比方法7要好〜的次數。並且可以由圖表三十三觀察 ^使之ί!报明顯地偏好本案演算法所做出來的 8f %(996/1152)次。與SVR相較之下有超過;5二Ji SVR另口目ί之下有超過84.7%的得票率。相反的^ -i ϋ? f 52)、證只有 34‘5〇/〇(397/1152)的得 Ϊ t t著決大多數參與者傾向本論文結果較佳。所= 的一致性係,代表兩兩循環比對是否有矛ί 發i —;本使用者結果調查,有78%的使 3矛好統計不—致性為卜1,意味著他們並 /又,矛盾的現象發生’且本使用者調查中,平均— 為? = _,鮮差為(U ’且料3個使用者—致性分數為 《=0·5,s兒明此调查結果有極高的準確度。 — 在本$露巾,完|對之前所有則麵職技術進行使 用者調查疋不太可能的’因此本案將比較的重點放在最近這 兩項技術[KrShenbtihl et al. 2009]、[Wang et al 2〇〇91。 ^^^^.,研究巾’咖方法㈣紐於線性縮 放,且[Wang et al. 2009]研究展示中以證明比陳f贫^ 2 及[Rubinstein et al. 2008]結果較佳,因此本案不重複再對線性 縮放、[Wolf et al.2007]、[Rubinstein et al. 2008]進行比較。根 據使用者調查可以進一步幫助我們深入研究,了解大多數人 希望看到何種重新收縮後影片’但也需要更多人協助調查並 且設計更複雜的實驗’例如本案也可以設計讓所有使 未接觸原始影片狀態下,評比各種方法。 在使用者調查實驗中,本案也特別針對本揭露所採用 術:以時間軸上物體出現時間為依據的裁切,是否會對 者造成觀看影片的困惱。但是經由本實驗結果,無論在是否 2] 201141205 有撥放原始影片的情況下,使用者只專注於影片中心部分, 往往忽略影片兩側資訊,且在本系統有針對裁切進行撥放平 滑化下表三十三數射得知’決大錄者都可以 接受此種裁切情況。 如本發明之前所述,保持影片中重要物體於時間與空間 上的型態,此為相互矛盾的目標;如果於影片中,一段重 物體的移動軌跡涵蓋了所有晝面,換言之,欲堆裤昧 -g,該物體在空間中移動過的所有背景 同的縮放’而在這種情況下,不等比例縮放將呈現線性縮放 的效果。在這種情況下,本案方法會尋找一最佳平衡點,利 用裁切移除掉部分視覺上已出現或未來可看見之景象。如 8圖(a)-第8圖(d)所示,攝影鏡頭隨著時間一直環繞圖中女 生,思、味著時間上前景物體的移動軌跡,已經涵蓋空間上所 有=景區域,[Wang etal. 2009]之方法與線性縮放^無差異, 但疋本實施例之方法仍然可保留影片重 小,其中第8圖⑻為原來的圖框,第8圖⑼為線= (linearscaling)的圖框’第8圖⑹為Wang等人所處理之圖片, ,第8圖(d)為本實施例。與純粹利用裁切相比,本案方法一 定可以保留最重要物體的特定區域,防止重要資訊被移除; 此外,裁切結合了不等_縮放,可以大·降低虛擬鏡頭 ^吏用率;且在裁切無法_或不顯著的情況下,不等比例 ,放,有效地利用线位置,料重要背景變賴縮。裁切 /、不等比例縮放使用比例,由變分最佳化函數在這兩者之 取得平衡。 本案方法在於增加時間與空間上可以變形及移除的區 ,丄但是於影片空間内容中’仍然存在許多視覺上顯著特徵 與別景物體,-旦經重新縮放後,在時間與抑上可能導致 巧曲失真的現象發生,例如第9圖⑷-第9 _)所示,JL中 第9圖⑷為原來的圖框,第9 _)為線性縮放伽咖㈣㈣ 22 201141205 ’第9圖⑹為WanS等人所處理之圖>1,而第9圖⑷ ^本=施例。在這_端的情況下,必須從藝術的角度去分 =’=影片中哪些關鍵圖框裡的範圍是可以永久存在出 攝^軸拍攝手法呈現時’如傾斜拍 自動裁標準可能會造成某些顯著物體永遠被 以採用!·麵=但是本#縣統架構是減有彈性的,可 ㈣J關ΐ動作導向的限制,所以只要完整定義此類型 理此種鏡頭傾斜的問題。其次,本案方法必 為:,與晝面_導致分析錯誤,如此一來,將使= d:要納入不可裁切的特定區域’影響縮放後的結 許夕統採用網格架構’當其中一方格裡面包含了 裡ί的動運t格的轉換數據不能代表著此方格 严 發Ϊ 像素層次的網格架構即可完全避免此 裝置1含一處理 眺-職置25及—tf=22、—電腦儲存媒 _Λ/...出裝置22包含一有線網路,一盔绫絪跤, 置配線及-感測器等等:=裝 气接ΐ及輸出該處理褒置的觸控訊息=二 不裝置26及/或該儲存裝置μ传二㈣该顯 者存取格式/使用者可讀袼式的資^不及/或錯存一使用 明參閱第11圖’其為依據本發明的實施例所提出的一 23 201141205 流程圖,該流程係由該處理裝置20來執行。首先,接收包 含至少-陳之影片(步驟31)。接著,包含*至少一圖 框有關聯的前景物件資訊(步驟32)。然後,決定免於被裁切 的特定區域(步驟33)。 前述介紹本發明之多個實施態樣及原則,熟習該項技術 者可從這些實關巾得知本發明〇個不同制及實施說 明’並從上述多個系統、裝置、及方法的綱來了解本發明 的構思。此外,提出的所有文獻及參考資料皆可納入本發明 的貫施態樣。所能了解地,電腦儲存媒體包含硬碟、隨機 取記憶體、唯讀記憶體、隨身碟、光碟、記憶棒等等此類型 置i由處理裝置/計算裝置2G執行指令可為一硬 體處理益,-微處理機,mini ’ macr〇,m ^令^解地’藉由本實施例所提及的專有名詞;^學“ »。的同義名έ司皆可納入本實施例概要。 ,據上述可知,在影片重建中在本實施例中所提到的系 ^,裝置,儲存媒體’方法及流程皆能讓影片_容免於被 裁切。移動的物件在本實施例中扮演重要的地位,在影片重 ίίίΪΪ物件仍可保有影像的比例縮放。根據前言所述, 物件的時間維度問題解決。且根據本 用視覺心在對於重建的流程中適用於空間及時 根據本文揭露的特定示範性實施例,由 鏡頭-直到場景片段的分析以及最佳化是程序 ?觀,’其計异的代價相對高於只運用預圖框最佳化的真實 點因iis技術☆士應該能夠了解本案所揭露的 "類°十异的代價根據本案揭露内容所提供的古 處理結果的一示範性實施例的結果,可為-個名: 24 201141205 則勒容僅僅敘述了本揭露内容的驗。針對敘述 ίί各樣ΐ修改以及變更,對於本領域技術人士 明確的顯示或揭露,但仍包含本== 及:斤揭路的範圍内。此外,有關前述的所有出 版。U以及參考魏_在此整體讀够考 Ϊ不ίί的存在任何電腦可如的贿媒體= 等處理裝置較應職知财。ml _*Q' _fr_ ^下再針對影片輸出格式系統敛述。詳,杜 lLtiV〇V^^ ;〇° ^ 括-個執行單元。該影/輪理農置创更包 發明之方法時,通常係式械,在應用本 而進行如第12 _所示三早該外部命令 驟可分別為:接收包含至少一 145一0旦及。而該三步 特定區域之-預定縮放比例目_ £ =、界定包含- 立方事體,上大標影片 片、界定該包接,含至少-個圖框之一影 影像座標、以及對該^圖 ^目標影片縮放比例之三維 的,符合該 片具有柯如袼紅-示俾使該影 201141205 =進行不等比例縮;的定符二 示俾使該影片具有不同於該影:輸 之禮三數個驟亦可分別為:接受包含-目標影像The method was rated a total of 1152 times (2x6x96). MVR —---- SVR Total 488 508 996 ------ 309 397 267 - - 335 Form - Shows the results of the paired comparison of % of the study participants. Total 20 201141205 Execution. In this example, in the middle of the table, the method is better than the method 7. And it can be observed by the chart thirty-three, so that it is clearly preferred to the 8f% (996/1152) times of the algorithm. Compared with the SVR, there are more than 8 seconds. The Ji SVR has more than 84.7% of the votes. The opposite ^ -i ϋ? f 52), the card only 34 '5 〇 / 〇 (397 / 1152) Ϊ t t decided that most participants tend to better the results of this paper. The consistency of = is representative of the two-two cycle comparison. Is there a spear? I-; This user results in the survey, 78% of the 3 spears are not statistically good - the sex is 1 meaning that they are , the phenomenon of contradiction occurs 'and in this user survey, the average - is? = _, the difference is (U' and 3 users - the score is "=0·5, s children have a very high accuracy. - In this $露巾,完|对It is unlikely that all face-to-face techniques will be investigated by users. Therefore, the focus of this case will be on the two recent technologies [KrShenbtihl et al. 2009], [Wang et al 2〇〇91. ^^^^. The study towel 'Caf method (4) is linearly scaled, and the [Wang et al. 2009] research shows that the results are better than Chen F 2 and [Rubinstein et al. 2008], so the case is not repeated and then linear. Scaling, [Wolf et al. 2007], [Rubinstein et al. 2008] for comparison. Based on user surveys, we can further help us to further study and understand what re-contracted films most people want to see' but also need more People assist in the investigation and design more complex experiments. For example, this case can also be designed to allow all methods to be evaluated without touching the original film. In the user survey experiment, this case is also specifically for the purpose of this disclosure: on the time axis Cutting based on the time of appearance of the object Whether it will cause annoyance to watch the movie. However, according to the results of this experiment, regardless of whether or not 2) 201141205 has the original video, the user only focuses on the center of the film, often ignoring the information on both sides of the film, and The system has a smoothing and smoothing for the cutting. The following table shows that the 'reporter can accept this kind of cutting situation. As described in the present invention, keep the important objects in the film in time and space. The upper form, this is a contradictory target; if in the film, the moving track of a heavy object covers all the faces, in other words, to pile up the pants-g, all the backgrounds of the object moving in space are the same Scaling' and in this case, unequal scaling will exhibit a linear scaling effect. In this case, the method will look for an optimal balance point, using the crop to remove portions that have visually appeared or are future Seeing the scene. As shown in Figure 8 (a) - Figure 8 (d), the photographic lens has been around the girl in the picture for a long time, thinking and smelling the movement of the foreground object in time, already covering the space. Above all = scene area, [Wang et al. 2009] method and linear scaling ^ no difference, but the method of this embodiment can still retain the film size, which is the original picture frame, Figure 8 (8) For the frame of line = (linearscaling), Fig. 8 (6) is the picture processed by Wang et al., and Fig. 8 (d) is the embodiment. Compared with the pure use of cutting, the method of this case must be retained the most important. A specific area of the object prevents important information from being removed; in addition, the cropping combines unequal _scaling, which can reduce the virtual lens's usage rate; and if the cropping cannot be _ or not significant, the unequal ratio , put, effectively use the position of the line, the important background is expected to become shrinking. The cropping / unequal scaling uses the ratio, and the variational optimization function balances the two. The method of this case is to increase the area that can be deformed and removed in time and space, but there are still many visually significant features and other objects in the content of the film space. After re-scaling, it may lead to time and inhibition. The phenomenon of clever distortion occurs, for example, Figure 9 (4) - 9th _), the 9th figure (4) in JL is the original frame, the 9th _) is the linear scaling gamma (4) (4) 22 201141205 '9th figure (6) is The map processed by WanS et al. >1, and the 9th figure (4) ^this is the example. In the case of this _ end, it must be divided from the artistic point of view = '= in the film which key frame range can be permanently present when the ^ axis shooting method is presented 'if the tilting automatic cutting standard may cause some Significant objects are always used! · Face = but this #县县结构 is less flexible, but (4) J is the limit of action-oriented, so as long as this type of lens is completely defined. Secondly, the method of this case must be:, and the _ _ leads to analysis errors, so that = d: to be included in the specific area that can not be cropped 'the impact of the scaled after the adoption of the grid architecture' when one of the parties The grid contains the conversion data of the movement of the ί, which does not represent the strictness of the grid. The grid structure of the pixel level can completely avoid the device 1 containing a processing 眺-position 25 and -tf=22, - Computer storage media _ Λ / ... The device 22 includes a wired network, a helmet, a wiring and a sensor, etc.: = a gas connection and a touch message outputting the processing device = two devices 26 and / or the storage device μ transmission two (four) the explicit access format / user-readable 的 资 / 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或A 23 201141205 flowchart proposed by the embodiment is executed by the processing device 20. First, a movie containing at least - Chen is received (step 31). Next, the foreground object information associated with at least one of the frames is included (step 32). Then, it is decided to be exempt from the specific area being cropped (step 33). The foregoing describes various embodiments and principles of the present invention, and those skilled in the art will be able to know from the actual closures a different system and implementation description of the invention' and from the above-described systems, devices, and methods. The concept of the invention is understood. In addition, all documents and references presented may be incorporated into the present invention. It can be understood that the computer storage medium includes a hard disk, a random memory, a read only memory, a flash drive, a compact disc, a memory stick, etc. This type of device can be processed by the processing device/computing device 2G. Benefits, - microprocessor, mini ' macr〇, m ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ According to the above, in the film reconstruction, the method, the process, the storage medium and the method mentioned in the embodiment can make the film _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The position of the object in the video can still maintain the scale of the image. According to the preface, the time dimension of the object is solved. And according to the visual sense, the space is applied to the reconstruction process in time according to the specific demonstration disclosed herein. The sexual embodiment, from the lens - until the analysis and optimization of the scene segment is the program? View, 'the cost of its calculation is relatively higher than the real point that only uses the pre-frame optimization. Because the iis technology should be able to The results of an exemplary embodiment of the ancient processing results provided by the disclosure of the present disclosure may be as follows: 24 201141205 Modifications and alterations to the description are expressly disclosed or disclosed by those skilled in the art, but still include the scope of this == and: Jin Jie Jie. In addition, all publications related to the foregoing. U and reference Wei _In this whole read enough to test the existence of any computer can be like the bribe media = such processing device is more suitable for the job. ml _*Q' _fr_ ^ then condensed for the film output format system. Details, Du lLtiV 〇V^^ ;〇° ^ Include an execution unit. When the shadow/wheel is used to invent the method of the invention, usually the system is used, and in the application, the external command is performed as shown in the 12th The steps may be respectively: receiving at least one 145-100 dans and - the predetermined zoom ratio of the three-step specific area _ £ =, defining the inclusion-cube object, the upper-scale movie, defining the package, including At least one of the frames, the image coordinates, and The ^ image ^ target film zoom ratio of the three-dimensional, in line with the film has Ke Ruhong - 俾 俾 该 41 201141205 = unequal scale reduction; the second sign of the 俾 该 该 该 该 该 该The three occasions of the ceremony can also be: accept the inclusion-target image
y容納該目標影像,並以一單位時間為其度2 單位時間係該複數侧框巾每相鄰賴框之時關隔、以^ 使該目標影像不等比例縮人該矩形體内,俾 同於該影λ _格式之-雜式雕顯示。〜有不 參考文獻 1 · AVIDAN, S., AND SHAMIR, A. 2007. Seam carving for contentaware image resizing. ACM Trans. Graph. 26, 3,10. 2. BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLDMAN, D. B. 2009. PatchMatch: A randomized correspondence procedure for structural image editing. ACM Trans. Graph. 28,3. 3. BUATOIS, L., CAUMON, G., AND L E VY, B. 2009. Concurrent number cruncher: a GPU implementation of a general sparse linear solver. Int. J. Parallel Emerg. Distrib. Syst. 24,3,205-223. 4. CHEN, L. Q., ΧΙΕ, X., FAN, X., MA, W. Y., ZHANG, H. J., AND ZHOU, H. Q. 2003. A visual attention model for adapting images on small displays. ACM Multimedia Systems Journal 9,4,353-364. 5. CHO, T. S., BUTMAN, M., AVIDAN, S., AND FREEMAN, W. T. 2008. The patch transform and its applications to image editing. In CVPR Ό8. 6. DAVID, H. A. 1963. The Method of Paired Comparisons. Charles Griffin & Company. 26 201141205 7. DESELAERS, T.9 DREUW5 P.5 AND NEY, H. 2008. Pan, zoom, scan: Time-coherent, trained automatic video cropping. In CVPR. 8. DONG, W., ZHOU, N., PAUL, J.-C.5 AND ZHANG, X. 2009. Optimized image resizing using seam carving and scaling. ACM Trans. Graph. 28,5,1-10. 9. FAN,X·,ΧΙΕ,X·,ZHOU,AND MA,W.-Y. 2003· Looking into video frames on small displays. In Multimedia 503,247-250. 10. GAL, R.3 SORKINE, 0., AND COHEN-OR, D. 2006. Featureaware texturing* In EGSR,06, 297-303.y accommodating the target image, and for a unit time of 2 units of time, the plurality of side frame towels are separated every time, and the target image is unequally scaled into the rectangular body, 俾Same as the shadow λ _ format - miscellaneous carving display. ~ There is no reference 1 · AVIDAN, S., AND SHAMIR, A. 2007. Seam carving for contentaware image resizing. ACM Trans. Graph. 26, 3,10. 2. BARNES, C., SHECHTMAN, E., FINKELSTEIN , A., AND GOLDMAN, DB 2009. PatchMatch: A randomized correspondence procedure for structural image editing. ACM Trans. Graph. 28,3. 3. BUATOIS, L., CAUMON, G., AND LE VY, B. 2009. Concurrent number cruncher: a GPU implementation of a general sparse linear solver. Int. J. Parallel Emerg. Distrib. Syst. 24,3,205-223. 4. CHEN, LQ, ΧΙΕ, X., FAN, X., MA, WY , ZHANG, HJ, AND ZHOU, HQ 2003. A visual attention model for adapting images on small displays. ACM Multimedia Systems Journal 9,4,353-364. 5. CHO, TS, BUTMAN, M., AVIDAN, S., AND FREEMAN WT 2008. The patch transform and its applications to image editing. In CVPR Ό 8. 6. DAVID, HA 1963. The Method of Paired Comparisons. Charles Griffin & Company. 26 201141205 7. DESELAERS, T.9 DREUW5 P.5 AND NEY, H. 2008. Pan, zoom, scan: Time-cohere Int, trained automatic video cropping. In CVPR. 8. DONG, W., ZHOU, N., PAUL, J.-C.5 AND ZHANG, X. 2009. Optimized image resizing using seam carving and scaling. ACM Trans. 28,5,1-10. 9. FAN,X·,ΧΙΕ,X·,ZHOU,AND MA,W.-Y. 2003· Looking into video frames on small displays. In Multimedia 503,247-250. 10. GAL , R.3 SORKINE, 0., AND COHEN-OR, D. 2006. Featureaware texturing* In EGSR,06, 297-303.
11. ITTI, L., KOCH, C.? AND NIEBUR, E. 1998. A model of saliencybased visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20,11,1254-1259. 12. KARNI, Z.? FREEDMAN, D, AND GOTSMAN, C. 2009. Energy based image deformation. Comput. Graph. Forum 28, 5, 1257-1268. 13. KRAHENBUHL,P” LANG,M” HORNUNG,A” AND GROSS,M· 2009· A system for retargeting of streaming video. ACM Trans. Graph. 28, 5. 14. LIU, F.? AND GLEICHER, M. 2006. Video retargeting: automating pan and scan. In Multimedia Ό6, 241-250. 15. LIU, H., XEE, X.s MA, W.-Y., AND ZHANG, H.-J. 2003. Automatic browsing of large pictures on mobile devices. In Proceedings of ACM International Conference on Multimedia, 148-155. 16. PRITCH,Y.,KAV-VENAKt E·,AND PELEG,S. 2009. Shift-map image editing· In ICCV’09· 17. RASHEED, Z.3 AND SHAH, M. 2003. Scene detection in Hollywood movies and TV shows. In CVPR ’03, vol. 2,11-343-8. 27 201141205 18. RUBINSTEIN, M., SHAMIR, A., AND AVIDAN, S. 2008. Improved seam carving for video retargeting. ACM Trans. Graph. 27,3. 19. RUBINSTEIN, M., SHAMIR, A., AND AVIDAN, S. 2009. Multioperator media retargeting. ACM Trans. Graph. 28, 3,23. 20. SANTELLA, A.? AGRAWALA, M.? DECARLO, D., SALESIN, D.s AND COHEN, M. 2006. Gaze-based interaction for semiautomatic photo cropping. In Proceedings of CHI, 771-780.11. ITTI, L., KOCH, C.? AND NIEBUR, E. 1998. A model of saliencybased visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20,11,1254-1259. KARNI, Z.? FREEDMAN, D, AND GOTSMAN, C. 2009. Energy based image deformation. Comput. Graph. Forum 28, 5, 1257-1268. 13. KRAHENBUHL, P” LANG, M” HORNUNG, A” AND GROSS ACM Trans. Graph. 28, 5. 14. LIU, F.? AND GLEICHER, M. 2006. Video retargeting: automating pan and scan. In Multimedia Ό6, 241- 250. 15. LIU, H., XEE, Xs MA, W.-Y., AND ZHANG, H.-J. 2003. Automatic browsing of large pictures on mobile devices. In Proceedings of ACM International Conference on Multimedia, 148- 155. 16. PRITCH, Y., KAV-VENAKt E·, AND PELEG, S. 2009. Shift-map image editing· In ICCV'09· 17. RASHEED, Z.3 AND SHAH, M. 2003. Scene detection in Hollywood movies and TV shows. In CVPR '03, vol. 2,11-343-8. 27 201141205 18. RUBINSTEIN, M., SHAMIR, A., AND AVIDAN, S. 2 008. Improved seam carving for video retargeting. ACM Trans. Graph. 27,3. 19. RUBINSTEIN, M., SHAMIR, A., AND AVIDAN, S. 2009. Multioperator media retargeting. ACM Trans. Graph. 28, 3, 23. 20. SANTELLA, A.? AGRAWALA, M.? DECARLO, D., SALESIN, Ds AND COHEN, M. 2006. Gaze-based interaction for semiautomatic photo cropping. In Proceedings of CHI, 771-780.
21. SHAMIR, A.s AND SORKINE, O. 2009. Visual media retargeting. In ACM SIGGRAPH Asia Courses. 22. SIMAKOV,D·,CASPI, Y” SHECHTMAN,E·,AND IRANI,M. 2008· Summarizing visual data using bidirectional similarity. 23. In CVPR,08. SUH,B·,LING,H.,BEDERSON,B· B·,AND JACOBS,D· W. 2003.21. SHAMIR, As AND SORKINE, O. 2009. Visual media retargeting. In ACM SIGGRAPH Asia Courses. 22. SIMAKOV, D·, CASPI, Y” SHECHTMAN, E·, AND IRANI, M. 2008· Summarizing visual data using bidirectional Similarity. 23. In CVPR, 08. SUH, B., LING, H., BEDERSON, B. B., AND JACOBS, D. W. 2003.
Automatic thumbnail cropping and its effectiveness. In Proceedings of UIST, 95-104. 24. VIOLA, P.s AND JONES, M. J. 2004. Robust real-time face detection. Int. J. Comput.Automatic thumbnail cropping and its effectiveness. In Proceedings of UIST, 95-104. 24. VIOLA, P.s AND JONES, M. J. 2004. Robust real-time face detection. Int. J. Comput.
Vision 57, 2, 137-154. 25. WANGS Y,S·, TAI,C-L.,SORKINE,0.,AND LEE,Τ·-Υ. 2008. Optimized scale-and-stretch for image resizing. ACM Trans. Graph. 27, 5, 118. 26. WANG, Y.-S·,FU5 H·,SORKINE,0·,LEE,T,Y·, AND SEIDEL,H,P· 2009.Vision 57, 2, 137-154. 25. WANGS Y, S·, TAI, CL., SORKINE, 0., AND LEE, Τ·-Υ. 2008. Optimized scale-and-stretch for image resizing. ACM Trans. Graph. 27, 5, 118. 26. WANG, Y.-S·, FU5 H·, SORKINE, 0·, LEE, T, Y·, AND SEIDEL, H, P· 2009.
Motion-aware temporal coherence for video resizing. ACM Trans. Graph. 28? 5. 27. WERLBERGER, M.? TROBINs W.s POCK5 T, WEDEL, A.s CREMERS, D.s AND BISCHOF, H. 2009. Anisotropic Huber-Ll optical flow. In Proceedings of the British Machine Vision Conference (BMVC). 28. WOLF, L.5 GUTTMANNs M.s AND COHEN-OR, D. 2007. Nonhomogeneous content-driven video-retargeting. In ICCV 507. r Λ i i i .28 201141205 29. ZHANG, Y,-F., HUS S.-M., AND MARTIN, R. R. 2008. Shrinkability maps for content-aware video resizing. In PG Ό8. 30. ZHANG, G.-X., CHENG, M.-M., HU, S.-M., AND MARTIN, R. R. 2009. A shape-preserving approach to image resizing. Computer Graphics Forum 28, 7, 1897-1906. 【主要元件符號說明】 20處理裝置 21處理器Motion-aware temporal coherence for video resizing. ACM Trans. Graph. 28? 5. 27. WERLBERGER, M.? TROBINs Ws POCK5 T, WEDEL, As CREMERS, Ds AND BISCHOF, H. 2009. Anisotropic Huber-Ll optical flow. In Proceedings of the British Machine Vision Conference (BMVC). 28. WOLF, L.5 GUTTMANNs Ms AND COHEN-OR, D. 2007. Nonhomogeneous content-driven video-retargeting. In ICCV 507. r Λ iii .28 201141205 29. ZHANG, Y,-F., HUS S.-M., AND MARTIN, RR 2008. Shrinkability maps for content-aware video resizing. In PG Ό8. 30. ZHANG, G.-X., CHENG, M.-M ., HU, S.-M., AND MARTIN, RR 2009. A shape-preserving approach to image resizing. Computer Graphics Forum 28, 7, 1897-1906. [Main component symbol description] 20 processing device 21 processor
22輸入/輸出裝置 23電腦儲存媒體 24執行指令 25儲存裝置 26顯示裝置 10~14步驟 31〜33步驟 400影片輸出格式系統 410 外部輸入指令 420 繪圖處理裝置 430 執行單元 440〜460步驟 【圖式簡單說明】 第1圖為本發明所使用的流程圖。 第2圖為扇形圖。 2圖關社财法伽 及最 右之遺界不意圖0 4圖⑻所示,對該等圖框進行不等比例縮放, 等圖框符合該目標影片立方體之大小比例。 第圖()及第5圖⑼所示,對應方格示意圖。 29 201141205 第6圖⑻-第6圖(h)所示,其中第6圖⑻及第6圖(e)為原來 的圖框’第6圖(b)及第6圖(f)為線性縮放(linear scaling)的圖 框’第6圖(c)及第6圖(g)為Wang等人所處理之圖片,而第 6圖(d)及第6圖(h)為本實施例。 第7圖⑻-第7圖(d)所示,其中第7圖⑷為原來的圖框,第 7圖(b)為線性縮放(此咖scaiing)的圖框,第7圖(c)為 KrahenbUhl等人所處理之圖片,而第7圖⑷為本實施例。22 input/output device 23 computer storage medium 24 execution command 25 storage device 26 display device 10~14 steps 31 to 33 step 400 movie output format system 410 external input command 420 drawing processing device 430 execution unit 440~460 step [simple drawing Description] Fig. 1 is a flow chart used in the present invention. Figure 2 is a pie chart. 2 Figure Guansha's financial method and the rightmost noun are not intended to be shown in Fig. 4 (8). The frames are scaled unequally, and the frames conform to the size ratio of the target movie cube. Figure () and Figure 5 (9), corresponding to the grid diagram. 29 201141205 Figure 6 (8) - Figure 6 (h), where Figure 6 (8) and Figure 6 (e) are the original frame 'Figure 6 (b) and Figure 6 (f) for linear scaling The frames of the linear scaling 'Fig. 6(c) and Fig. 6(g) are pictures processed by Wang et al., and Figs. 6(d) and 6(h) are the present embodiment. Figure 7 (8) - Figure 7 (d), where Figure 7 (4) is the original frame, Figure 7 (b) is the linear zoom (this coffee scaiing) frame, Figure 7 (c) is The picture processed by Krahenb Uhl et al., and Fig. 7 (4) is the embodiment.
厂中。固不,攝衫鏡頭隨者時間一直環繞圖中 女生,思味著時間上前景物體的移動執跡,已經涵蓋空間上 所有背景區域’其中第8圖⑻為原來的圖框,第8圖⑼為線 性縮放(linear scaling)的圖框,第8圖0)為Wang等人所處理 之圖片,而第8圖(φ為本實施例。 9圖⑷所示,其中第9圖(a)為原來的圖框,第 9„線性縮放(linear scaling)的圖框,第9圖⑹為麵 等人所處理之圖片,而第9 _)為本實施例。 第10圖為本發明之一系統方塊圖。 ί 發明的實施例所提出的—流程圖。 本發明的影片輸出格式系統之方塊圖。 第12圖⑻本發明的實關所提出的另一流程圖。In the factory. Solid, the camera lens has been around the girl in the picture, thinking about the movement of the foreground object in time, has covered all the background areas in the space. The 8th picture (8) is the original picture, Figure 8 (9) For the linear scaling frame, Fig. 8 is a picture processed by Wang et al., and Fig. 8 (φ is the embodiment. Fig. 9 (4), wherein Fig. 9(a) is The original frame, the 9th „linear scaling frame, the 9th figure (6) is the picture processed by the face, and the 9th _) is the embodiment. FIG. 10 is a system of the present invention. A block diagram of a film output format system of the present invention. Fig. 12 (8) Another flow chart proposed by the practice of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/106,971 US20110279641A1 (en) | 2010-05-14 | 2011-05-13 | Apparatus, systems, computer-accessible medium and methods for video cropping, temporally-coherent warping and retargeting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US33495310P | 2010-05-14 | 2010-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201141205A true TW201141205A (en) | 2011-11-16 |
Family
ID=46760295
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99127215A TWI417809B (en) | 2010-05-14 | 2010-08-13 | Video playing system having display device |
TW99127218A TW201141205A (en) | 2010-05-14 | 2010-08-13 | System for transforming video outputting format |
TW99127216A TW201141212A (en) | 2010-05-14 | 2010-08-13 | Video data processing system |
TW99127217A TW201140393A (en) | 2010-05-14 | 2010-08-13 | Touch control system |
TW99127214A TW201141204A (en) | 2010-05-14 | 2010-08-13 | Method of warping video |
TW99127219A TWI419075B (en) | 2010-05-14 | 2010-08-13 | Video warping graphic processor |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99127215A TWI417809B (en) | 2010-05-14 | 2010-08-13 | Video playing system having display device |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99127216A TW201141212A (en) | 2010-05-14 | 2010-08-13 | Video data processing system |
TW99127217A TW201140393A (en) | 2010-05-14 | 2010-08-13 | Touch control system |
TW99127214A TW201141204A (en) | 2010-05-14 | 2010-08-13 | Method of warping video |
TW99127219A TWI419075B (en) | 2010-05-14 | 2010-08-13 | Video warping graphic processor |
Country Status (1)
Country | Link |
---|---|
TW (6) | TWI417809B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI486794B (en) * | 2012-07-27 | 2015-06-01 | Wistron Corp | Video previewing methods and systems for providing preview of a video to be played and computer program products thereof |
KR102317789B1 (en) * | 2015-02-12 | 2021-10-26 | 삼성전자주식회사 | Scaler circuit for generating various resolution images from single image and devices including the same |
CN112367559B (en) * | 2020-10-30 | 2022-10-04 | 北京达佳互联信息技术有限公司 | Video display method and device, electronic equipment, server and storage medium |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6047088A (en) * | 1996-12-16 | 2000-04-04 | Sharp Laboratories Of America, Inc. | 2D mesh geometry and motion vector compression |
US6178272B1 (en) * | 1999-02-02 | 2001-01-23 | Oplus Technologies Ltd. | Non-linear and linear method of scale-up or scale-down image resolution conversion |
GB9906420D0 (en) * | 1999-03-19 | 1999-05-12 | Isis Innovation | Method and apparatus for image processing |
GB0315412D0 (en) * | 2003-07-02 | 2003-08-06 | Queen Mary & Westfield College | Optical flow estimation method |
TWI298465B (en) * | 2005-12-02 | 2008-07-01 | Prolific Technology Inc | Segment-based video and graphics system with video window |
US7747107B2 (en) * | 2007-03-06 | 2010-06-29 | Mitsubishi Electric Research Laboratories, Inc. | Method for retargeting images |
TW200945879A (en) * | 2008-04-22 | 2009-11-01 | Magima Digital Information Co Ltd | A universal picture scaling device and a corresponding method |
US8255825B2 (en) * | 2008-10-07 | 2012-08-28 | Microsoft Corporation | Content aware adaptive display |
-
2010
- 2010-08-13 TW TW99127215A patent/TWI417809B/en not_active IP Right Cessation
- 2010-08-13 TW TW99127218A patent/TW201141205A/en unknown
- 2010-08-13 TW TW99127216A patent/TW201141212A/en unknown
- 2010-08-13 TW TW99127217A patent/TW201140393A/en unknown
- 2010-08-13 TW TW99127214A patent/TW201141204A/en unknown
- 2010-08-13 TW TW99127219A patent/TWI419075B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW201140498A (en) | 2011-11-16 |
TW201140491A (en) | 2011-11-16 |
TW201141204A (en) | 2011-11-16 |
TW201141212A (en) | 2011-11-16 |
TWI419075B (en) | 2013-12-11 |
TWI417809B (en) | 2013-12-01 |
TW201140393A (en) | 2011-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Krähenbühl et al. | A system for retargeting of streaming video | |
Klette | Concise computer vision | |
CN105612478B (en) | The scaling of user interface program | |
Guo et al. | Image retargeting using mesh parametrization | |
TWI637355B (en) | Methods of compressing a texture image and image data processing system and methods of generating a 360-degree panoramic video thereof | |
US20160321833A1 (en) | Method and apparatus for generating moving photograph based on moving effect | |
Li et al. | Spatiotemporal grid flow for video retargeting | |
US20150104113A1 (en) | Method and Apparatus for Producing a Cinemagraph | |
CN112714253B (en) | Video recording method and device, electronic equipment and readable storage medium | |
JP2004193933A (en) | Image enlargement display method, its apparatus, and medium program | |
WO2022161260A1 (en) | Focusing method and apparatus, electronic device, and medium | |
JP2016212784A (en) | Image processing apparatus and image processing method | |
Kim et al. | PicMe: interactive visual guidance for taking requested photo composition | |
TW201141205A (en) | System for transforming video outputting format | |
CN107071273A (en) | A kind of photographing instruction sending method and device | |
CN112906553B (en) | Image processing method, apparatus, device and medium | |
CN109816620A (en) | Image processing method and device, electronic equipment and storage medium | |
CN114025100A (en) | Shooting method, shooting device, electronic equipment and readable storage medium | |
Gallea et al. | Physical metaphor for streaming media retargeting | |
CN111640201A (en) | Control method and device for virtual sand table display, electronic equipment and storage medium | |
Shim | Faces as light probes for relighting | |
AU2015258346A1 (en) | Method and system of transitioning between images | |
US20150229848A1 (en) | Method and system for generating an image including optically zoomed and digitally zoomed regions | |
Kim et al. | A study on the possibility of implementing a real-time stereoscopic 3D rendering TV system | |
Guindy et al. | CLASSROOM: synthetic high dynamic range light field dataset |