TW201141204A - Method of warping video - Google Patents

Method of warping video Download PDF

Info

Publication number
TW201141204A
TW201141204A TW99127214A TW99127214A TW201141204A TW 201141204 A TW201141204 A TW 201141204A TW 99127214 A TW99127214 A TW 99127214A TW 99127214 A TW99127214 A TW 99127214A TW 201141204 A TW201141204 A TW 201141204A
Authority
TW
Taiwan
Prior art keywords
frame
frames
scaling
movie
unequal
Prior art date
Application number
TW99127214A
Other languages
Chinese (zh)
Inventor
Yu-Shuen Wang
Hui-Chih Lin
Sorkine Olga
Tong-Yee Lee
Original Assignee
Univ Nat Cheng Kung
Univ New York
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung, Univ New York filed Critical Univ Nat Cheng Kung
Priority to US13/106,971 priority Critical patent/US20110279641A1/en
Publication of TW201141204A publication Critical patent/TW201141204A/en

Links

Abstract

A method of warping video is provided. The method includes the processes of (a) receiving a video including at least one frame; (b) defining a target video cube having a predetermined warping ratio, wherein the target video cube having the predetermined warping ratio includes a specific area; and (c) warping the at least one frame so that the processed at least one frame can conform to the aspect ratio of the target video cube.

Description

201141204 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種不等比例影片縮放之處理方法 用此處理方法之裝置及電路,尤指一種結合裁切及不等2 影片縮放之處理方法及運用此處理方法之裝置及電路。 【先前技術】 由於現在科技發展卓越’將圖片與影片在不 下進行寬㊅敝以改變其解析度是—重要課題 ^201141204 VI. Description of the Invention: [Technical Field] The present invention relates to a device and a circuit for processing a method for unequal-scale film scaling, and more particularly to a method for processing a combination of cropping and unequal 2 film scaling And devices and circuits using the processing method. [Prior Art] Due to the rapid development of technology now, it is important to change the resolution of pictures and films.

=傷下有著各種不同的播放格式,像是手機、=门= 裝置,由於具有較小的螢幕及所播放的圖 貝 望地,係依據一晴幕尺寸大小,對=目;=期 性縮放或裁切左右兩邊之内容,以達 2 =勾地線 但是簡單線性縮放會造成影像内容 =产於影像邊緣之重要物體資訊=真近:= 到圖片和影片所需要的尺扭曲變形來達 以谷之形狀比例,並且將扭曲失真隱藏在較不重要ί 内容感知圖片曲或裁切組成而達成 ,缺陷’而後者會 放工^於靜止的圖片縮 題。所存在之問題有_: _方法,*能完全解決問 ㈠物體梅__咖核罐,必須明確地 201141204 處f;在習知技術中,影片中每個訊框重新縮放運算時,只 f著時間軸進行平滑化,這種作法無法處理具有複雜動作的 影片’且晝面會產生波動及失真。 ^ (二)當影片中重要物體涵蓋整張圖片時,任何以圖片内 容為主之縮放技術皆會受到限制’在這種情況下,無法在不 移除或扭曲變形重要内容下來達成重新縮放。 「,是之故,發明人有鑑於習知技術之缺失,發明出本案 不等比例影片縮放之處理方法及運用此處理方法之裝置 及電路」’以改善習知技術之缺失。= There are various playback formats in the injury, such as mobile phone, = door = device, due to the smaller screen and the displayed picture, according to the size of a large screen, the size of the screen; Or crop the contents of the left and right sides to 2 = hook ground line but simple linear scaling will cause image content = important object information produced at the edge of the image = true near: = the distortion of the scale required for the picture and the film The shape of the valley is proportioned, and the distortion distortion is hidden in less important ί. The content perceives the picture song or the cropping composition is achieved, the defect 'the latter will work ^ the still picture retraction. The existing problems are _: _ method, * can completely solve the problem (a) object plum __ coffee core can, must be clearly 201141204 f; in the conventional technology, each frame in the film re-scaling operation, only f Smoothing the timeline, this method can't handle movies with complex motions' and the ripples and distortions inside. ^ (B) When the important object in the film covers the entire picture, any zooming technology based on the image content will be limited. In this case, it is impossible to rescale without removing or distorting the important content. "For the sake of this, the inventors have invented the processing method of the unequal scale film scaling and the apparatus and circuit using the processing method" in view of the lack of the prior art to improve the lack of the prior art.

【發明内容】 =發,之一目的在於提供一種不等比例影片縮放之處 二。在本發明中,會講述到如何決定一個重要的影像物 時Ζίΐ放比例目標影片立方體中避免被裁切,且同 件有賴的㈣資贿可被㈣。可驗證 求下,越田ίϊ及所播放的圖片與影片在不同縮放比例的要 目的的說明。日月之影片處理方法並不會失真。以下為此一 例的缺點 例問i揭例ΐ—目的能夠是探討上面所述的範 众以一 5克服,、先前技術(例如’此處所述)所常相關範 序期間少-特定區域,在-影片重新標定程 揭露特定範例的保,不裁切。例如,根據本 框相關的視訊資料广夠匕括,例如,接收與至少-影片圖 用硬體處理配置,範例程序也能夠包括:決定用於至少 201141204 二特定列(Column)及/或行(Row)的資訊。做這決定能夠是基 =.=與㈣在-圖框中的資訊有關的内容,且/或該内容在 iii的特定數目的圖框内消失’該接下來的特定數目的圖 U定區域有關,及/或⑼包含與所述特定區域有關的罝 =導向前景物件的資訊。範例程序能夠進—步包括:基於 決摘述影片圖框的所述較區域,所述特定區域 又保§蔓而不被裁切。 ,例來說,區域可以基於視覺流量來決定,而範例程序 ^括測試與每一資訊相關像素相關聯的平均流量向量,來 ΐίί之前k個圖框的任何特定圖框中,資訊是否出現,並 在,續的」·個圖框的任何一圖框中保持可見,其中k及 數。未通過職的該*訊可峨標記。基於與特定行 個有關的資訊之流量相關聯的熵,顯著地移 被決定。使用量化的流量向量及/或基於流 里機率,熵可以被決定。 杆序可進—步包括基於與超過-預定門襤的特定 Κ或列中任何一個的資訊相關聯的特定流量熵,來選擇特 數贼奶料叹餘4料饰相關的最 片資’範_序可進—步包括在影 ΐ ΐϊΐί 4例的次程序,其中特定區域在一目標影 =方體中被轉換。可使用至少暫時-致的不等比例函數 不等比例次程序。—固定的頂點可以被限制, 以促進相鄰圖框的平滑播放。 〜 頂點更可包括辨認網格咖位置,其中該網格 f可以—基於最小平方差技術之目標函數和ί 小化函數來決定。—或多個特定區域可被預 或夕個關鍵圖框,其中該預定可叹自動產生和\或人^ 201141204 作 此外,該例示之不等比例縮放子程序可使用—網袼,i 包括一群方格,且該例示過程更可包含決定至少—具证ς 於特定圖框外之一流量向量之特定方格,其中,該^ 格可包含-大小,其與至少-更進-步之至少時^轴上= 該特定方格之方格之大小有相同。且,可以使用一縮放 來限制之。該例示之不等比例縮放子程序可使用一像水 之格點和/或滑動視窗。此外,該例示之過程更包括於使用者 可存取之格式和/或使用者可讀之格式的儲存裝置配 訊顯示器和/或儲存裝置。 且心負 例不之用來促進該前述例示過程電腦存取媒介和 施例,在此一實施例可適用。 在此亦一例示處理影像資料以在影片重製過程中,促進 至少一衫片内谷特定區域不等比例縮放之過程。例如,該程 序根據-些_之例示實施例可包括,接收影片f料,g 括?關於至少-影像圖框之訊息^藉由―硬體處理配置,談 例不程序可包括對至少—特定行和/朗決定資訊。此決定可 依(1)關聯至一圖框中出現和/或被設定在特定數量之 特定區域之幾個_之㈣失的資訊(ii)包含關聯 區Ϊ之顯著移動前景物件之資訊來做成。該例示過程 ^決疋一特定影像圖框區域以依據該訊息被不等比例 Ϊϋ示過程更包括在影片資料上執行—不等比例縮放 Ϊ該特定區域可以在—目標影片立方體範圍内被變 保濩以避免在裁切過程中被裁掉。 申和其他物件、特色和優點,一但與例示圖示和 tUti參照後’ 以下詳細例示實施例說 虚述構想’本發義提供—種不等關影片縮放之 法’該方法包含私)接收包含至少一個圖框之一影片; 201141204 (b)界定包含-特定區域之—預定縮放比例目 體;以及(e)對該相框進行轉比 ^ 等圖框符合該目標影片立方體之大小比例。付處理後的該 ,據上述構想’本發明另提供—種則處理, 少—蝴框之—影片;⑼界定包二 圖r行不等比例縮放,使得處理圖s σ該目才示衫片二維影像座標之大小。 構想’本發明又提供—種影片處理方法,該方 Ϊ 複數個圖框;(b财適用於各該複數個圖框 縱縮放比例;以及⑷對每—該圖框進行 ^比例縮放’使得處理後的每一圖框符合該預 比 例。 μ 構Λ,本發明再提供一種影片處理方法,該方 法os.(a)接又包含一目標影像之複數個圖框;( 標矩=體’該矩形體之二維尺度係足以容_目標影像並 時間為其第三維尺度’該單位時間係該複數個圖框 時間間隔;以及·該目標影像不等比例 【實施方式】 ^先’對將欲播放包含至少一個圖框之影片於具有較小 =幕之手機、PDA或是播放的圖片與影片縮放比例會有不 同的要求,先行界定重要的影像物件^ 對於欲進行縮放之影片,先行界定在每一圖框之一 ^域所包含之重要的影像物件,例如移動前景物件,如何 免被裁切。方法如下: 1 «+算母個圖框之視覺流1 (〇pticai fj〇w),經過分析量 201141204 化後,1到圖框中每個畫素之流量向量(fl〇w彻㈣。 ㈣戶 1 有流量向量導入一扇型統計,㈣㈣以進行 娜允許裁切的特 與符 圔ϋί3之,在母一’透過定義-特定區域,每個 簠目/區巧的内容絕對不能被刪除。利祕覺流量來制 計算出包含所有特定區域之目標影片立方體,“ ΐϊϊί域以外的内容可以被摒棄。具體而言,欲將-段影 時,讓特定列保留下來。以影片變窄之倣法為例.變寬 (1)當内容剛出現於圖框或者是即將消失於下一個圖 才王,此内容不具有於時間軸上持續出現之特性。 =)特定區域裡面必須包含顯著移動前景物體,並 疋區,的最左邊及最右邊為特定行㈣ieal e()lumn卜 ’ 請參閱第1圖,其係本發明第一實施例 圖。本發明方法之流程如下: 】之方法之流程 步驟10:接收包含至少一個圖框之一影片; 之一 $=1 域找哥包含與至少一圖框有關聯的移動前景物件 Η *ίΐ12:界定包含一特定區域之一預定縮放比例目標影 片立方體,其中該就縮放比例係由人為決定。 步驟13:該量化過程包含將至少—隨的視覺 ^計圖以進行編號統計,並將該等編號之分佈機 么式以求得至少一圖框之至少一行的熵資訊,发中 域係根據熵資訊而被決定。 、"X寺疋《 201141204 區诚進彳亍縮放之影片先行界定在每—圖框之一特定 οσ ^、匕3如移動前景物件重要的影像物件何必免被裁 ^析量t為^計算每個圖框之視覺流量(optical flow),經過 vem後,得到圖框裡面每個畫素之流量向量 行^^=所有流量向量導人—統計以進 仃,旒統叶,並將該等編號之分佈機率導入熵公 ’―以求得至少—圖插之每—行的熵資訊。3圳所 找出不允許裁切的特定__caiSUMMARY OF THE INVENTION One purpose is to provide an unequal proportion of film zoom. In the present invention, it is described how to determine an important image material when the target film cube is avoided from being cropped, and the same (4) bribe can be used (4). Verifiable, the description of the purpose of the different scales of the pictures and videos played by Yuetian. The film processing method of the sun and the moon is not distorted. The following is an example of a shortcoming of this example. The purpose can be to explore the above-mentioned fandom to overcome by a 5, the prior art (such as 'here described here) often related to the lesser period - specific area, In the film recalibration process, the specific example is covered and not cut. For example, according to the video data related to the present frame, for example, the receiving and at least the film processing is configured by hardware, and the example program can also include: deciding to use at least 201141204 for a specific column and/or line ( Row) information. This decision can be made by the base =.= and (d) the information in the - frame, and / or the content disappears within a certain number of frames of iii 'the next specific number of maps And/or (9) contains information about the particular area associated with the foreground object. The example program can further include: based on the comparison of the regions of the movie frame, the particular region is protected from cropping. For example, the region can be determined based on visual traffic, and the sample program includes testing the average traffic vector associated with each information-related pixel to see if any information appears in any particular frame of the previous k frames. And in any of the frames of the continuation of the frame, it remains visible, where k and the number. The * message that has not passed the job can be marked. Significant shifts are determined based on the entropy associated with the flow of information related to a particular row. Entropy can be determined using quantized traffic vectors and/or based on fluency. The step-by-step method includes selecting a specific singularity associated with information of any one of a particular enthalpy or column exceeding a predetermined threshold to select a sneak sigh The sequence can be included in the sub-program of 4 cases, in which a specific area is converted in a target shadow = square. An at least temporary-to-equal proportional function can be used. - Fixed vertices can be restricted to facilitate smooth playback of adjacent frames. The vertices may further include identifying the location of the grid coffee, wherein the grid f can be determined based on the objective function of the least squares difference technique and the ί function. - or a plurality of specific areas may be pre- or a key frame, wherein the predetermined sigh is automatically generated and / or person ^ 201141204. In addition, the illustrated unequal scaling subroutine may be used - i, including a group a square, and the exemplifying process may further comprise a particular square that determines at least one of the flow vectors outside of the particular frame, wherein the square may include a size that is at least - more advanced than at least On the ^ axis = the size of the square of the particular square is the same. Also, you can use a zoom to limit it. The illustrated unequal scaling subroutine can use a water point and/or a sliding window. Moreover, the exemplary process is further included in a storage device display and/or storage device in a format accessible by the user and/or in a user readable format. Moreover, it is not intended to facilitate the aforementioned exemplary process computer access media and embodiments, and an embodiment is applicable. There is also an example of processing image data to facilitate the process of unequal scaling of a particular region of at least one of the tiles during the film reproduction process. For example, the exemplary embodiment of the program may include receiving a video material, including a message about at least an image frame, and a hardware processing configuration, and the program may include at least one specific Line and / Lang determine the information. This decision may be made by (1) being associated with information that appears in a frame and/or is set in a particular number of specific areas (ii) missing information (ii) contains significant moving foreground objects in the associated area. to make. The exemplifying process determines a specific image frame area to be unequally displayed according to the message, and is further included in the film material - unequal scaling, the specific area can be changed within the range of the target film cube濩 to avoid being cut off during the cutting process.申 and other objects, features and advantages, once with the illustrations and tUti reference, 'the following detailed exemplifying embodiment is a hypothetical concept. 'This method provides a method of unequal film scaling'. The method includes private reception. A film containing at least one frame; 201141204 (b) defining a predetermined scale target containing the - specific area; and (e) converting the frame to a frame such that the size of the target movie cube matches the size of the target movie cube. After the processing, according to the above concept, 'the invention provides another kind of processing, less - the frame of the film - the film; (9) defines the unequal scale of the package r chart, so that the processing figure s σ the picture shows the film The size of the 2D image coordinates. The invention further provides a film processing method, the method is a plurality of frames; (b is applicable to each of the plurality of frames; and (4) is scaled for each frame; Each frame after the frame conforms to the pre-proportion. The invention further provides a film processing method, the method os. (a) further comprises a plurality of frames of a target image; (the standard = body ' The two-dimensional scale of the rectangular body is sufficient for the _ target image and the time is its third dimension. The unit time is the time interval of the plurality of frames; and the target image is not equal [implementation] Playing a movie containing at least one frame on a mobile phone with a smaller screen, a PDA, or playing a picture will have different requirements on the zoom ratio of the movie, first defining important image objects. ^ For the movie to be scaled, first define The important image objects contained in one of the frames of the frame, such as moving the foreground object, are protected from being cropped. The method is as follows: 1 «The visual flow of the computing frame 1 (〇pticai fj〇w), After the points After the amount of 201141204, 1 to the flow vector of each pixel in the frame (fl〇w (4). (4) Household 1 has a flow vector to import a fan type statistics, (4) (4) to carry out the special permission of the cut 圔ϋί3 In the parent-by-definition-specific area, the content of each item/area must not be deleted. The savvy traffic is used to calculate the target movie cube containing all the specific areas, and the content outside the ΐϊϊί domain can be Specifically, if you want to make a segment, let the specific column be preserved. Take the imitation of the film as an example. Widening (1) When the content just appears in the frame or is about to disappear in the next picture. Wang, this content does not have the characteristics that continue to appear on the timeline. =) The specific area must contain significant moving foreground objects, and the left and right sides of the area are specific lines. (4) ieal e()lumnb' See section 1 is a diagram of a first embodiment of the present invention. The flow of the method of the present invention is as follows: Step 10 of the method of the method: receiving a movie containing at least one frame; one of the $=1 fields containing at least one The frame is associated Moving foreground object Η *ίΐ12: Defining a target movie cube containing a predetermined scale of a specific area, where the scaling is determined by humans. Step 13: The quantization process includes at least the following visual plan number for numbering Statistics, and the number of the distribution machine to obtain at least one entropy information of at least one frame, the middle domain is determined according to the entropy information. , "X Temple 疋 "201141204 District Chengjin The zoomed movie is defined first in each frame-specific σσ^, 匕3, such as moving the foreground object, important image objects, why not be cut out, the amount t is ^ to calculate the visual flow of each frame, after After vem, get the flow vector line of each pixel in the frame ^^=All flow vector leads-statistics to enter, 旒, and import the number of these numbers into the entropy' to get at least - Entropy information for each line of the map. 3 Shenzhen found a specific __cai that does not allow cutting

’不看雜定行之像缝移除掉;換言之,g H疋列能保留下來。以影片變窄之做法為例: 時=:=二 區3__前景物體。並定義特定 …、最左及最右邊為特定行(critical column) 〇 圖框,iii量之t平分量可以得知,影片之内容在下一個 ΐ二二離開;因此平均每一行像素之流量向 异於二ϋ匕疋否來自前圖框並且會保持ki並且會保持可 此Λ#ί = ki=k2=3G) ’如果這些條件都不成立,則 仃將“e*在觀區_。觸特枕以每—行 S7py)料鋪,且較行必触含義之物體, f严獨立不同於攝影鏡頭的移動。為了計算熵, 用扇形圖對視覺流量向量规行量化(⑷此處c代 、母-仃所有像素),較長向量會被量化刺格較多的區域 201141204 (微小流量向量代表來自於雜訊,不需要區分較多的量化間 格)。令/(/D表示一流量向量/經由量化後之整數值如下 Eq.(l): 7(fi) = 2 ' + with fc = L〇,5£(fi)J,The image is removed without seeing the miscellaneous lines; in other words, the g H column can be retained. Take the practice of narrowing the film as an example: Time =:= 2 zone 3__ foreground object. And define the specific..., the leftmost and the rightmost are the critical column , frame, the amount of t of the amount of t can be known, the content of the film leaves at the next ΐ22; therefore, the average flow of pixels per line is different. In the second frame, it will come from the previous frame and will keep ki and will remain available. #ί = ki=k2=3G) 'If these conditions are not met, then e will be "e* in the viewing area _. In each line of S7py), and the object that must touch the meaning of the line, f is strictly independent of the movement of the photographic lens. In order to calculate the entropy, the visual flow vector is quantified by the pie chart ((4) here c generation, mother - 仃 all pixels), the longer vector will be quantized by the area with more thorns 201141204 (the tiny flow vector represents the noise, there is no need to distinguish more quantization spaces). Let / (/D denote a flow vector / The quantized integer value is as follows Eq.(l): 7(fi) = 2 ' + with fc = L〇, 5£(fi)J,

和θ(/3分別代表著/之長度與方向,這公式的原理闡 j如下:此扇形是由許多間距一樣的同心圓所構成,其第k 環之半徑為2(k+l),且此k環區分成2k等分,以及每一等 分所占之角度為2π/2勺如第2圖所示,所有間格從最裡面為 1開始進行連續編號。將一流量向量放置於此扇形圖之原 點’利用Eq.⑴求得該向量所位於的區間編號。詳細而言, :⑹」代表其流量向量位於扇形圖中第幾個環,則為某 叫fi)/(2?r/2fc)j環裡面的第幾個區間。 函式式(entnW) °本專利中利用資訊理論中^ 的找特定區域最左邊及最右邊之邊界;熵& 義,’假设有一系統s存在多個事件 Ϊ為如梅則认p-dt iec 墒函式有幾個重要特性苴 二為假設N是糸其疋函式值必定大於零 老㈣-ί 中的事件總數,則熵函式执<1〇ί ,用網函柄主要 ^Υ之熵函式為最大 :;則函式會二要大原因以在以 ’代表每個流量來看,當機率 =都換;之,當機率=二;有=物體再: 都—致’即代表為不重要之背‘!ti:絲 201141204 每一行之熵邮’如此就可以獲得 日#,=^系、fl中’設定當某行之流量熵函式超過〇.wmax 現機車都仃^含於特定區域之内;*^為#每個事件出 :!ί ’最大熵函式值。第3圖⑷及第3 _為: 3=^_區域最左及最右之邊界示意圖。在本系 》員限制保留的特定區域邊界,但不意味著位於 有内容都必須完全裁切;物之裁切區域須 運算及_轴上_—致性之限制,並且 景物體來時’上可以看見。咖’對於偵測前 ==¾,有必要的,因為系統採用的流量熵就是-個 料對該等圖框進行不等比例縮放’使得處理後的 目標影片立方體之大小比例,如第4圖⑻及 ^圖(b)所不。其中,在步驟14中更包含至少一個最佳化 ίίϋΐϊΐ框進行不等比例縮放’使得處理後的該等圖 攄立方體之大小比例’且該最佳化公式係根 據二間内各及時間一致性而設計。 董提出影片重新縮放架構是基於變分最佳化運 铬株2連Ϊ性之不等比例縮放,且裁切運算時包含最佳化 制。藉由使財格網格轉分離影片立方體區域,定 1標函數計算網格之継位置:在幾個條件限制下 =传到最小能量函紐,謂騎_位置,然後對每個 ϊίϊτ1)内插重新定位產生出縮放後的影片。目標函數由 &個條件所構成’達到轉賴和空間視覺上重要的内容, 以及時間軸上物體内容的連貫性。 定義標記符號。在影片中每個圖框t之網格架構Μι= ίν1 ’Q} ’其中ν=丨ν^ν:、..,ν=ιη}為向量位置合集,Ε和 201141204 Q分別代表邊和方格面(quad face),且所有的圖框彼此之間 都是相互連接。經由縮放形變後的新頂點 < =(义,}; 這些變數皆使用最佳化計算過程。為簡化複雜度,將符號t 簡化成Vi ;當單一圖框頂點’以V%。表示。縮小的影片大 小(rx,ry,rz) ’匕及&為縮放後的影片解析度。&圖框的總數。 基本上,將一段輸入的影片立方體壓縮至一預定縮放比例目 標影片立方體。And θ (/3 respectively represent the length and direction of /, respectively, the principle of this formula is as follows: this fan shape is composed of many concentric circles of the same pitch, the radius of the kth ring is 2 (k + l), and The k-ring is divided into 2k equal parts, and each aliquot takes an angle of 2π/2 scoops as shown in Fig. 2, and all the cells are consecutively numbered starting from the innermost one. A flow vector is placed here. The origin of the pie chart 'Eq. (1) is used to find the interval number in which the vector is located. In detail, :(6)" represents the flow rate vector located in the first ring of the pie chart, which is called fi) / (2? r/2fc) The first interval in the j ring. Function (entnW) ° This patent uses the information theory to find the leftmost and rightmost boundary of a specific region; entropy & meaning, 'assuming there is a system s there are multiple events, such as plum, then p-dt The iec 墒 function has several important features. The second is that the N is that the value of the function must be greater than the total number of events in the old (four)-ί, then the entropy function holds <1〇ί , with the net handle main ^ The entropy function of Υ is the largest:; the function of the second function is to be in the 'representing each flow, when the probability = change; then, when the probability = two; there = object again: all - to the ' That represents the unimportant back! Ti: silk 201141204 entropy of each line 'so you can get the day #, = ^ system, fl 'set when the flow entropy function of a certain line exceeds 〇.wmax locomotives are included in a specific area; * ^为#Every event:! ί 'Maximum entropy function value. Fig. 3 (4) and 3rd _ are: The schematic diagram of the leftmost and rightmost boundaries of the 3=^_ region. In this department, the limit of the specific area of the reservation is restricted, but it does not mean that the content must be completely cut; the cropped area of the object must be operated and the _-axis is limited, and when the object is coming Can be seen. Coffee 'is necessary for detection ==3⁄4, because the flow entropy used by the system is - the material is scaled unequally to the frame' so that the size of the target film cube after processing, as shown in Figure 4 (8) and ^ Figure (b) does not. Wherein, in step 14, at least one optimization frame is further included to perform unequal scaling 'so that the size ratio of the processed graphics cubes is 'and the optimization formula is based on the two internal and temporal consistency And design. Dong proposed that the film re-scaling architecture is based on the unequal scale scaling of the variational optimization chrome 2 and the optimization of the cropping operation. By separating the fiscal grid from the film cube area, the 1st function calculates the position of the grid: under several conditions = pass to the minimum energy function, ie ride_location, then for each ϊίϊτ1) Insert repositioning produces a scaled movie. The objective function consists of & conditions' to achieve the visually important content of the reliance and space, and the coherence of the object content on the timeline. Define the tag symbol. In the movie, the grid structure of each frame t is Μι= ίν1 'Q} 'where ν=丨ν^ν:,..,ν=ιη} is the vector position collection, Ε and 201141204 Q represent the edges and squares respectively. Quad face, and all frames are connected to each other. The new vertex after scaling deformation <=(义,}; These variables use the optimization calculation process. To simplify the complexity, the symbol t is reduced to Vi; when the single frame vertex 'is represented by V%. The movie size (rx, ry, rz) '匕 & is the scaled movie resolution. & the total number of frames. Basically, compresses an input movie cube to a predetermined scale target movie cube.

該最佳化公式包含用於維持空間内容之相似能量 jc^fonnal energy)、用於時間一致性在時間軸上内容之相似 ,量(Temporal Coherence energy)、及裁切後對每一圖框進行 平滑化的二次平滑能量(sec〇nd-order smoothing energy)。且藉 由使用迭代函數(iterative minimizatiQn 解一最小平方問題,以取得一組最佳化的結果。 ιϋ,在步驟14中’至少—陳係基於曝架構而進 仃不等比例縮放(該不等比例縮放係使用框架 外部較不重要_域,以降低失真的= =格架構進行不等比例縮放。而為了達到二= 二幾何單元尺寸之視覺流量來獲得』 至少:幾7;=;變前後之 以下為本貫施例較佳說明。 縮紅處财絲定’ _放變形後,丹 =四個角洛之頂點座標必須曼3 非特定區域經== 二U 外,如此一來則被裁切掉。 網i頂/在1個圖框’最接近特區之左上和右下角落的 观頂點,必猶_取頂點,確健定區域-定 201141204 範圍區間。為了迫使特定區域必須在目標縮放立方體内,必 須滿足下列條件如下Eq.(3): ^>〇, a^'<rx,The optimization formula includes a similar energy jc^fonnal energy for maintaining spatial content, a similarity for temporal consistency on the time axis, a quantity (Temporal Coherence energy), and a frame for each frame after cutting. Smoothed secondary smoothing energy (sec〇nd-order smoothing energy). And by using an iterative function (iterative minimizatiQn to solve a least squares problem, to obtain a set of optimized results. ιϋ, in step 14 'at least - Chen based on the exposure architecture and unequal scaling (this unequal The scaling is done using the less important _ field outside the frame, to reduce the distortion of the == lattice structure for unequal scaling, and to achieve the visual traffic of the two = two geometry size to get at least: a few 7; =; before and after the change The following is a better description of the present embodiment. The reddish financial position is fixed after the _ deformation, the dan of the four corners of the vertices must be mann 3 non-specific areas == two U, so that Cut out. Net i top / in the 1 frame 'close to the upper left and lower right corners of the SAR, the apex, must be _ vertices, indeed the fixed area - set 201141204 range interval. In order to force a specific area must be in the target Within the scaling cube, the following conditions must be met as follows Eq.(3): ^>〇, a^'<rx,

Vv < ry, for all 0<t<rz, 此外,本專利所提出的不等比例影片縮放在時間軸具有 維持物體一致性,並且也不需要對時間軸上一致性的裁^刀區 域’設計不同的限制。 々為了保持影片中,每個圖框裡面視覺上的重要的物體,Vv < ry, for all 0<t<rz, in addition, the unequal-scale film scaling proposed in this patent has a consistency of the object on the time axis, and does not require a knives region on the time axis. Design different limits. In order to maintain the visually important objects in each frame of the film,

採用Zhang等人(請參考資料3〇)所提出的之相似能量 (conformal energy)。 令Vn、及Vw分別代表方格q之四個頂點, =似,換參數化是由四個數字所組離g,^ % v);所^ 的q和q’,達到最佳相似解:如下Eq.(4) [*)r, u, u]g = argmin ΣUse the similar energy proposed by Zhang et al. (please refer to item 3). Let Vn, and Vw represent the four vertices of square q, respectively, = parameterization, the parameterization is divided by four numbers, g, ^% v); q and q' of ^, to achieve the best similar solution: As follows Eq.(4) [*)r, u, u]g = argmin Σ

Τ SΤ S

Vi,Vi,

u Vu V

[= ,其中如下 Eq (5) 这是屬於一線性最小平方問題,可寫成 '~Vix 1 0 Vh -r.^ 〇 1 • » . 「4 1 Vix • * * * . . * · * ♦ xi4 -Vu 1 0 -o i 3 bqt == ;,;i4 L 」[= , where Eq (5) is a linear least squares problem, which can be written as '~Vix 1 0 Vh -r.^ 〇1 • » . "4 1 Vix • * * * . . * · * ♦ xi4 -Vu 1 0 -oi 3 bqt == ;,;i4 L ”

將严取,網格架構,而…個未知數之矩陣。 ',]q,q,’將可以將從方格q以得至 c(9!?,) = U9KX)-U;[-/)b7, 可寫成如下Eq.(6) D〇 = Σ Σ ΚΏα iq', q·'), 之權重值’而每個圖框 wq是第t個圖框中視覺重要方格 12 201141204 之空間重要資訊圖(spatial importance map),結合顏色梯度量 測,影像視覺特徵圖,以及精準人臉偵測,該重^資訊&經 由正規化後之範圍為[0.1,1.0]之間,防止不重要區域過度縮 放造成明顯地失真現象;而不等比例縮放方法近似於 (KRAHENBtFHL,等人 2009)及(WANQ 等人 2009)。為避免 網格直線發生強列地扭曲現象。如下Eq.(7)Will take strict, grid architecture, and ... a matrix of unknowns. ',]q,q,' will be able to get from square q to c(9!?,) = U9KX)-U;[-/)b7, can be written as follows Eq.(6) D〇= Σ Σ ΚΏα iq', q·'), the weight value' and each frame wq is the spatial importance map of the visually important square 12 201141204 in the t-th frame, combined with the color gradient measurement, the image Visual feature map, as well as accurate face detection, the range of normal information is [0.1, 1.0], preventing undisturbed areas from over-scaling and causing significant distortion; unequal scaling method Approximate to (KRAHENBtFHL, et al. 2009) and (WANQ et al. 2009). In order to avoid strong distortion of the grid line. As follows Eq. (7)

Dt = Σι { - χί/)2+ ~νΙ)2 )·Dt = Σι { - χί/)2+ ~νΙ)2)·

Ev和Eh分別代表網格架構中垂直和水平的邊。 為了實現時間軸一致性之影片縮放,本專利提出一能量 函數用來維持物體動作資訊,並將影片閃爍,顫抖,波動等 ^真現象降至最低。藉由視覺流量,可以取得每個方格由 演化至下一個圖框時情況,以表示之。 1 t找到最佳擬合之線性轉換Tit(linear,即為 =(¾) %Pi+,此貫施例不需要計算出連内部都有包含的轉 ίΐ位因包含轉換了賴形狀之方格,而不是其精 。本專利目的在於影片縮放時,如何保持上述之線 轉換’因此制定下列能量函式。如下Ea f 起·此此量函已包含攝影機鏡頭移動和獨立個體運動,而 j分別處理這兩種狀況。剩下要進行駐作就 ,未知數,像是網格頂點。利用u/+1 +1之頂點我 ίΪΓΐ頂點為線性組合最鄰近的網格點%+1。如第5圖(a) =分析得知,在此例中,_細條方格左 視= 粗條網格頂點之線性組合,以u符號來表示。如gq g用 u^+1=J2^vd+l: 13 201141204 定義之平均權重,現在可㈣^,重新 凡(必=E I町(«) —(d1/)||2, ’ Ε(#)是方格q/之集合。 i士此2情,下’方格Q、已經移動至影片圖框外面,對於 相“格能匕經時間縮放後’她上 ΰί<,Ι)=,£,ί'Ι(ν5,~νί,)-(ν5+,,-^1,)Ι12 ’所有時間軸上相似之能量總合為:如下 D-EE^)+EE w *㈣ t㈣ 同量=用局部性限制,達到保持時間軸上相 二ifl ’14代表不—致性的誤差在圖框間會持續 為解決11個問題,係提出—方法,既可以保持時間軸 相應方格之了致性,並進_步降低誤差程度^明確而言, 中’當影片_動是很平順時,利用β與其對應之 乂ί PU喊原本的qit與其對應之方格ρ,+λ,取代原本的 Pi ’在實驗中’設定λ=5。因為在影片中,物體形狀 ’微小”,常不的’尤其在有物體或攝影機移動 時’因此,本實_可以料在進行騎時會錢微不一致 情況發生。 到目前為止,本專利提出之能量只討論如何調整縮放。 於本實施例中先選擇一個固定點,選擇最左上點V,,限 制其位置在相鄰圖框間改變能維持平順。因此,藉’由二°階平 滑函式(second - order smoothing term)。如下 Eq (13)Ev and Eh represent the vertical and horizontal edges in the grid architecture, respectively. In order to achieve time-axis uniform film scaling, this patent proposes an energy function to maintain object motion information and minimize the flicker, trembling, fluctuations, etc. of the film. With visual traffic, you can get the situation when each square evolves from the next frame to the next. 1 t find the best-fit linear transformation Tit (linear, ie =(3⁄4) %Pi+, this example does not need to calculate the inner 都有 包含 因 因 , , , , , , , , , , Rather than its essence. The purpose of this patent is to maintain the above-mentioned line conversion when the film is zoomed. 'Therefore, the following energy functions are formulated. As follows, Ea f starts. This volume function already includes camera lens movement and independent individual motion, and j separately processes These two conditions. The rest are to be stationed, unknowns, like mesh vertices. Using the vertices of u/+1 +1, the vertices are linearly combined with the nearest grid point %+1. As shown in Figure 5. (a) = Analysis shows that, in this example, _ thin squares left view = linear combination of coarse mesh vertices, represented by u symbol. For example, gq g uses u^+1=J2^vd+l: 13 201141204 The average weight of the definition can now be (4)^, re-every (must = EI-cho («) - (d1/)||2, ' Ε (#) is a collection of squares q /. The next 'square Q, has moved to the outside of the film frame, for the phase "the grid can be scaled after the time, she is on the page ί<, Ι) =, £, ί'Ι (ν5,~νί,)-(ν5+, , -^1,)Ι12 'The sum of similar energy on all time axes is as follows: D-EE^)+EE w *(4) t(4) Same amount = use locality limit to achieve the second axis of the retention time axis ifl '14 The non-conformity error will continue to solve 11 problems between the frames, and the method is proposed to maintain the consistency of the corresponding square of the time axis, and to reduce the error degree in the _ step. When the film is very smooth, use β and its corresponding 乂ί PU to call the original qit and its corresponding square ρ, +λ, instead of the original Pi 'in the experiment' set λ = 5. Because in the film, the object The shape is 'small', often 'not when there is an object or the camera moves'. Therefore, the actual _ can be expected to be inconsistent when riding. So far, the energy proposed in this patent only discusses how to adjust the scaling. In this embodiment, a fixed point is selected first, and the top left point V is selected, and the position is restricted to maintain smoothness between adjacent frames. Therefore, borrowed by a second-order smoothing term. As follows Eq (13)

De=nJ2 \\2ν*〇 ~ (νΙ~ν + ν*+1,)||2! 201141204 ο 最小。ίΐϊϋζ欲伸一最佳解,使形變網格架構失真達到 D = Dc + D^ + yDt+ms, 在本系統中,r=〗n,。 二邊界限制不等式是為了保護特制並且第 Φ =之;象。筆直邊界限制採用線性方程式確 $界邊界_筆直,其運算時利_圖框頂部= 最佳化過程,欲在一些線性限制以及線性條件不犛彳 ί獲冗茲方問題使得目標函數獲得最小值,tit …在本實施例中’每次產生新的限制等式會做為下一 灯迭代之依據。這邊請注意到’每當條件限制改變時 矩陣也會壯改變,這取決於是否違反轉式的矛盾情= 生。本專利之系統’根據[Buatoisetal.2009]此篇研究,利用 GPU(GmPhicS Process Unit)共輛梯度解法器(_ gradient solver)和多重平行處理為核心架構,比起一般單次 法器,其會需要使用大量記憶體空間,但也大幅減 需時間。一旦變形網格架構已計算結束,從制定的目^縮放 立方體裡面剪輯出縮放後之影片。此外,將每—圖框之圖片 縮放至每個方格,其系統使用線性内插,或者使用 [Krahenbiihl et al 2009]所提出之實體成像法之高斯濾波器設 15 201141204 計(EWA surface splatting)。 根據本揭露的特定範例程序在桌上型個 s2.33 ghz的中央處理單元和漏匕 卡M列如,利用—和歸(請 y17)所述的方法,然後將影片依據場景改變,f裁 ^換,,無相干,沒树相=上^ 2二ίίΐ施改善了效能與^1體消耗量,因為計算的 成平方成長。為了縮放後影片的 通常採用每-方格為像素 於影片内容,平均需要使用二至三次 ^代。本案使用多重網格細秦㈣策略,在粗略_下以 ί解式’在進行網格㈣變料提升系統效 月匕在解析度為6貼尤a8、總數為288 =達到平均每秒處理6個圖框,並且可以處以‘: 影月。 上述提及圖式顯示範例的結果來證明可以處理各種類 型之影片。根據本揭露的特定範例自動產生之結果,演算法 都是使用之前所提到之參數設定,某些特殊情況下,本案系 5以允許,使用者手動決定影片中之重要物體;在某二圖 框Ul見覺流量對物體進行圖形分割(卿㈣,並透過 視覺流篁自動延展至其它圖框。 根據本揭露的特定範例的程序與線性縮放、與由 如’ Wang *人(請參考資料26)所述的以動作為主影片縮放 (MAR)程序、與由’例如,祕6遍w等人(請參考資料 所述的隨時間編輯之影片縮放(SVR)程序做比較、。由於 序兩者是目前最先進的影片縮放技術,故將 本U與MAR和SVR程序進行比較。之前研究_f付吐 201141204 2007]、[Rubinstein et al. 2008]、[Zhang et al. 2008]在針對影片 進行縮放時,皆沒有考慮動作之物體於時間軸上一致性,因 此,必然無法媲美以動作為主方法,阳池enbaMetal 2〇〇9] 以廣泛使用者調查作為依據,推得出此項結論。有趣的是圖 片重新縮放方法pong et al. 2009]、[Rubinstdn et al 2〇〇9]結 合了裁切以及其他技術,以最佳化方式獲得與原本圖片最相 似之結果,但這些方法所需要很長的運算時間,並且僅僅適 用於靜態影像’並沒梭伸至則,考慮時間軸上物致 性的問題。De=nJ2 \\2ν*〇 ~ (νΙ~ν + ν*+1,)||2! 201141204 ο Minimal. Ϊ́ϊϋζ ΐϊϋζ want to extend the best solution, so that the deformation grid structure distortion reaches D = Dc + D^ + yDt + ms, in this system, r = 〗 〖,. The second boundary restriction inequality is to protect the special system and the Φ = it; The straight boundary limit uses the linear equation to determine the boundary of the $ boundary, which is straightforward when it is operated. At the top of the frame = the optimization process, it is necessary to obtain the minimum value of the objective function in some linear constraints and linear conditions. ,tit ...in this embodiment, each time a new constraint equation is generated, it will be used as the basis for the next lamp iteration. Please note here that the matrix will change every time the conditional limit changes, depending on whether or not the contradiction of the transition is violated. The system of this patent 'according to [Buatoisetal.2009] this research, using GPU (GmPhicS Process Unit) common gradient solver (_ gradient solver) and multiple parallel processing as the core architecture, compared to the general single-time implement, it will A lot of memory space is needed, but it also takes a lot of time. Once the deformed mesh structure has been calculated, the scaled movie is clipped from the defined zoom cube. In addition, the image of each frame is scaled to each square, the system uses linear interpolation, or the Gaussian filter set using the solid imaging method proposed by [Krahenbiihl et al 2009] (20118204 meter) (EWA surface splatting) . According to the specific example program of the present disclosure, the central processing unit and the drain card M column of the desktop type s2.33 ghz, for example, use the method described by - and return (please y17), and then change the movie according to the scene, ^Change, no correlation, no tree phase = upper ^ 2 2 ίίΐ improved performance and ^1 body consumption, because the calculated squared growth. In order to scale the movie, the average per square is the pixel content, and the average is two to three generations. This case uses the multi-grid fine Qin (four) strategy, in the rough _ under the ί solution 'in the grid (four) variable material to improve the system efficiency month 匕 in the resolution of 6 stickers especially a8, the total number of 288 = reached an average of 6 per second processing Frames, and can be called ': Shadowmoon. The above mentioned figures show the results of the examples to demonstrate that various types of movies can be processed. According to the automatically generated result of the specific example of the present disclosure, the algorithm uses the parameter setting mentioned above. In some special cases, the case 5 allows the user to manually determine the important object in the film; Box Ul sees the flow of the image to segment the object (Qing (4), and automatically extends to other frames through the visual flow. The program and linear scaling according to the specific example of this disclosure, and such as 'Wang * people (please refer to 26 The action-based movie zoom (MAR) program is compared with the movie zoom (SVR) program edited by the user, for example, 6 times w. It is the most advanced film scaling technology, so it compares the U with the MAR and SVR programs. Previous studies _f vomit 201141204 2007], [Rubinstein et al. 2008], [Zhang et al. 2008] When scaling, there is no consideration of the consistency of the action object on the time axis. Therefore, it is inevitable that it is not comparable to the action-based method. Yangba enbaMetal 2〇〇9] is based on extensive user surveys. Conclusion. Interestingly, the image rescaling method pong et al. 2009], [Rubinstdn et al 2〇〇9] combines cropping and other techniques to obtain the most similar results to the original image in an optimized way, but these methods It takes a long time to calculate, and it only applies to the static image 'and does not shuttle to it, considering the problem of objectivity on the time axis.

/作為比較的一文獻,最主要與[WangetaL2〇〇9]之疆 進行比較;因為此篇研究中,其明確地處理有關時間軸上一 致性的問題。但是其f要彻SIFT方法,進行每個圖框特 徵點對位,如果-影片只有均勻單調之背景,則將會導致 MAR失敗,例如第7圖⑻_第7圖(d)所示,其中第7 為原來的’ ’第7 _)絲性縮放(linearsealing)_框, 第7圖(c)為KrShenMihl等人所處理之圖片,而第7圖 為本實施例。 的門ί 一 在特徵點對位時存在著視差㈣㈣ ,題,,、方法無法將在不同景深下的物體進行一致 種情況下’ MAR此方法將退化成騎性縮放,^ ^第6圖⑻-第6圖(h)所示,其中第6圖⑻及第 p圖框,第6 _及第6 _树性縮麵 的圖框,第6圖⑹及第6圖(g)為[Wang等人所處理之g) 而第ό圖(d)及第6圖(h)為本實施例。相較之下,本 能無失真地處理所有動作類型影片,且不需 :认法 ,點對位,因此與證做比較,本案=== 度改變及攝影機鏡頭移動之影片。 、思/果 [Krahenbtihl et al. 2009]的網格架構是以像素 現及時影片重新縮放。(可參考例如參考資料第13、)。為、,實 201141204 顯動作物趙的資訊;Jfi ;==根據視覺流量凸 避免晝面失真及波動現象。 ⑽碟動將不月b 二:ft顯著改變時。在本實驗中’本案的結果$是 β ϋί體或厫重地改變攝影機路徑。值得-提的 g,iiiti採用更細小、甚至像素等級解析度的網格架 體以及以取得更佳之結果,因為視覺上顯著物 片品ϊ ii^L精準地分析運算。但是,為了改善影 夕向0 η収精細網格是有触的’因為網格裡每個方格 产。份都是—樣的。本案實驗了各種不同網格解析 網格架構後進行運算時間以及所須記憶體大小, M ,本案系統在於4〇x4〇、2〇x2〇、10x10、5x5網格架 有任何明顯地差異存在。賴採用精細的網格 濟暢.己憶體空間’但也使得重新縮放影片更加平順 丄實驗中發現利用20x20像素的網格架構,是在於品質 最麵平衡點。根據先前揭露—些麻實施例之一 iif'藉執行以96位不同背景與年齡層的使者關查,作 =估本案方法的依據。本案採用[David 1963]所提出的比較 /將本揭露程序的影片結果與[KrShenbtihl et al. 2009]和 201141204/ As a comparative literature, it is mainly compared with [WangetaL2〇〇9]; because in this study, it explicitly deals with the problem of consistency on the time axis. However, it is necessary to carry out the SIFT method to perform the alignment of the feature points of each frame. If the film has only a uniform monotonous background, it will cause the MAR to fail, as shown in Fig. 7 (8)_Fig. 7(d). The seventh is the original ''7th _) silky linearization (frame), the seventh figure (c) is the picture processed by KrShenMihl et al., and the seventh figure is the embodiment. The door ί has a parallax when the feature points are aligned (4) (4), questions, and methods cannot be consistent in the case of objects with different depths of field. ' MAR This method will degenerate into a riding scale, ^ ^ Figure 6 (8) - Figure 6 (h), where picture 6 (8) and p frame, frame of the 6th and 6th tree, 6th (6) and 6th (g) are [Wang The g) and the sixth (h) are the examples. In contrast, instinctively processing all action type movies without distortion, and does not need to: recognize, point, and therefore compare with the certificate, the case === degree change and the camera lens movement of the film. The thinking/fruit [Krahenbtihl et al. 2009] grid architecture is rescaled in pixels and in time. (See, for example, reference 13). For, and 201141204 shows the information of Zhao Zhao; Jfi; == according to visual traffic convex to avoid kneading distortion and fluctuations. (10) The dish will not change when the month b: ft changes significantly. In this experiment, the result of this case is $ ϋ 体 or the camera path is changed violently. It's worth mentioning that g, iiiti uses a smaller, even pixel-level, grid frame and better results, because the visually significant object ϊ ii ^ L accurately analyzes the operation. However, in order to improve the image, it is touched to the 0 η fine grid [because each square in the grid is produced. The shares are all the same. In this case, we experimented with various grids to analyze the grid architecture and then calculate the operation time and the required memory size. M. The system of this case lies in 4〇x4〇, 2〇x2〇, 10x10, 5x5 grid frames. Lai uses a fine grid to save the space. But it also makes the re-scaling film smoother. 丄 It is found in the experiment that the 20x20 pixel grid architecture is based on the balance of quality. According to the previous disclosure, one of the examples of hemp is used to perform the investigation of the method of estimating the case by using 96 different backgrounds and ages. This case uses the comparison proposed by [David 1963] / the film results of this disclosure procedure with [KrShenbtihl et al. 2009] and 201141204

[Wang et al. 2009]之結果兩兩互相比較;發明人會提供一原始 影片内容以及任兩種方法的結果,讓使用者選擇他們所喜歡 的重新縮放版本。在一開始測試時,均沒有對使用者提供任 何特殊的技術指導,以確保實驗的準確性。在實驗中,本案 使用了六種不_制’剩本揭紐算法、阳齡應技 2〇09]、[Wang et al. 20〇9]全自動寬度減少5〇%之影片。 母部影片會做二次兩兩方法比較,因此每位使用者會被要求 做3><6 = 18次測試。本案選取的六段影片.,包括不同類型的場 景以及物體動作型態:像是現場拍攝的鏡頭、CG電影、特 寫鏡頭、廣角拍攝、單一或多個前景物體、快速或慢速移動 的鏡頭畫面、以及有無視差效果;六部影片中,我們使用了 五部電影題材和一部CG動畫短片,並且盡量保持每部剪輯 影片不會有太多圖框’因為每個短片會多加入3個比較且我 們不能期望每個使用者會花超過20-30分鐘再參與實驗。並 且問題是以隨機的順序提出以避免偏頗。本實驗中,取得總 數1728(18X 96)的答案’且每一方法總共被評比丨丨52次(2χ 6χ96)。 較佳於 示範程序 MVR SVR Total 示範程序 - 488 508 996 MVR 88 - 309 397 SVR 68 267 - 335 表格一 表格一顯示96位使用者研究參與者之配對比較結果。總 共有1728個比較被執行。在此例中,在表格中間欄元素%表 201141204 示方法z比方法y要好%的次數。並且可以由圖表三十三觀察 到’使用者=查之結果很明顯地偏好本案演算法所做出來的 、、’r»果總而5之,本發明結果在經比較後,獲得的得單率 86.5%(996/1152)次。與SVR她之下有超過88.2%的得票 率,另外與MAR相較之下有超過84 7%的得票率。相反的, SVR 只有 29.1%(335/1152)、MAR 只有 34.5%(397/1152)的得 票率,代表著決大多數參與者傾向本論文結果較佳。所量測 之Kendall的一致性係數為„ = ()356 ’代表統計顯著性為 p<〇.〇m Kendall的一致性係,代表兩兩循環比對是否有矛盾 現象發生,如;本使用者結果調查,有78%的使 用者,個別使用者偏好統計不一致性為Η,意味著他們並 沒^矛盾的現象發生;且本使用者調查中,平均一致性係數 為J = o.94,標準差為0.1,且只有3個使用者一致性分數為 f = 〇.5,說明此調查結果有極高的準確度。 ’ 在本揭露中,完整對之前所有影片重新縮放技術進行使 用者調查是不太可能的,因此本案將比較的重點放在最近這 兩項技術[Kr^henbtthl et al. 2〇〇9]、[Wang et ai. 2009]。在 [Krahenbiihl et al. 2009]研究中,SVR方法很明顯優於線性縮 放;且[Wang et al. 2009]研究展示中以證明比[w〇lf时al雇η 及[Rubinstein et al. 2008]結果較佳’因此本案不重複再對線性 縮放、[Wolf et aUO〇7]、[Rubinstein et al. 2008]進行比較。根 據使用者調查可以進一步幫助我們深入研究,了解大多數人 希望看到何種重新收縮後影片,但也需要更多人協助調查並 且設計更複雜的實驗,例如本案也可以設計讓所有使用^在 未接觸原始影片狀態下,評比各種方法。 在使用者調查實驗中’本案也特別針對本揭露所採用技 術:以時間軸上物體出現時間為依據的裁切,是否會對使用 者造成觀看影片的困惱。但是經由本實驗結果,無論在是否 有撥放原始影片的情況下,使用者只專注於影片中心部分, 20 [ S3 201141204 往往忽略影片兩側資訊,且 滑化下,由圖表三十三數射ίί 撥放平 接受此種裁切情況。 决大夕數使用者都可以 如本發明之前所述,保持影片中 上的型態,此為相互矛盾的目標;時間與空間 物體的移動執跡涵蓋了所有畫面,換言之r二本重要 -致性,該物體在空財移動過的所 必1時=上的 同的縮放,而在愔yp π# '、’、須以維持相 的效果。在况:案放The results of [Wang et al. 2009] are compared to each other; the inventor will provide an original film content and the results of either method, allowing the user to choose the re-scaled version they like. At the beginning of the test, no special technical guidance was provided to the user to ensure the accuracy of the experiment. In the experiment, the film used six kinds of films that did not have a residual algorithm, Yang Ling Technology 2〇09], [Wang et al. 20〇9] fully automatic width reduction of 5〇%. The parent video will be compared twice in a two-two way, so each user will be asked to do 3><6 = 18 tests. The six films selected in this case, including different types of scenes and object motion patterns: such as live shots, CG movies, close-ups, wide-angle shots, single or multiple foreground objects, fast or slow moving shots And with or without parallax effect; in the six films, we used five movie themes and one CG animated short film, and try to keep each clip movie without too many frames' because each movie will add 3 more comparisons. And we can't expect each user to spend more than 20-30 minutes to participate in the experiment. And the questions are presented in random order to avoid bias. In this experiment, the total number of 1728 (18X 96) answers was taken and each method was evaluated a total of 52 times (2χ 6χ96). Preferred Example Program MVR SVR Total Demonstration Program - 488 508 996 MVR 88 - 309 397 SVR 68 267 - 335 Table 1 Table 1 shows the results of the paired comparison of 96 user study participants. A total of 1728 comparisons were performed. In this example, in the table middle column element % table 201141204 shows how many times the method z is better than the method y. And it can be observed from the chart thirty-three that the 'user=check result is obviously preferred by the algorithm of the case, the 'r» is the total, and the result of the invention is obtained after comparison. The rate is 86.5% (996/1152) times. With SVR, she has more than 88.2% of the votes, and in addition to MAR, there are more than 84% of the votes. Conversely, SVR has only 29.1% (335/1152) and MAR only 34.5% (397/1152), which means that most participants tend to prefer the results of this paper. The measured Kendall's consistency coefficient is „ = ()356 ' represents statistical significance for p<〇.〇m Kendall's consistency system, which represents whether there is a contradiction between the two or two cycle comparisons, such as; According to the results of the survey, 78% of users, individual users' preference statistical inconsistency is ambiguous, meaning that they have no contradictory phenomenon; and in this user survey, the average consistency coefficient is J = o.94, the standard The difference is 0.1, and only 3 user consistency scores are f = 〇.5, indicating that the survey results are extremely accurate. 'In this disclosure, a complete user survey of all previous film rescaling techniques is It is unlikely, so the case will focus more on the recent two technologies [Kr^henbtthl et al. 2〇〇9], [Wang et ai. 2009]. In the study [Krahenbiihl et al. 2009], The SVR method is clearly superior to linear scaling; and [Wang et al. 2009] shows that the ratio is better than [w〇lf when al hire η and [Rubinstein et al. 2008] are better. Scaling, [Wolf et aUO〇7], [Rubinstein et al. 2008] Comparisons based on user surveys can further help us to further study and understand what re-contracted films most people want to see, but more people need to assist in the investigation and design more complex experiments. For example, this case can also be designed to make all Use ^ to evaluate various methods without touching the original film. In the user survey experiment, 'this case is also specifically for the technology used in this disclosure: whether the cutting based on the time of occurrence of the object on the time axis will cause the user Watching the film's annoyance. But through the results of this experiment, the user only focuses on the center of the film, whether or not the original video is played, 20 [ S3 201141204 often ignores the information on both sides of the film, and under the sliding, by The chart thirty-three digital ίί dials the flat to accept this kind of cutting situation. The users of the big eve can maintain the type in the film as described before the present invention, which is a contradictory goal; time and space The movement of the object covers all the pictures, in other words, the two important things, the object must be moved in the empty money. 1 hour = the same scaling on the upper, and 愔yp π# ', ', must maintain the effect of the phase. In the situation: the case

用裁切移除掉部分視覺上已出現J點J 8圖(:)-第8圖⑷所示’攝影鏡頭隨著時間一直i ί背上前景Γ體的移動執跡,已經涵蓋二間上所 ί ί:,’陶eta1·2009]之方法與線性縮放毫益差異, :疋巧 ==7'留影片重要物體的形狀大 其中第8 _為原來的_,第8 _為線性縮放 (l=arScaling)的圖框,第8圖(〇為等人所處二圖^片, 而第8圖(d)為本實施例。與純粹利用裁切概, 一 留ίί要物體的特定區域,防止重要資訊被移除; 了不等比例縮放,可以大幅地降低虛擬鏡頭 的使用率;且在裁切無法使用或不顯著的情況下,不等比例 縮放,有效地利用空間位置,將不重要背景變形壓縮。裁切 與不等比^(歹i缩放使用比例’由變分最佳化函數在這兩者之間 取得平衡。 本案方法在於增加時間與空間上可以變形及移除的區 域’但是於影片空間内容中,仍然存在許多視覺上顯著特徵 與前景物體,一旦經重新縮放後,在時間與空間上可能導致 扭曲失真的現象發生,例如第9圖⑷-第9圖(d)所示,其中 第9圖⑻為原來的圖框,第9圖⑼為線性縮放(linearscaling) 的圖框’第9圖(c)為Wang等人所處理之圖片,而第9圖⑼ 21 201141204 ,本實,=。在這種極端的情況下,必須從藝術的角度去分 斤,決定影片中哪些關鍵圖框裡的範圍是可以永久存在出 2f外,當攝影鏡頭以極端的拍攝手法呈現時,如傾斜拍 • 切鮮可能會造成某些麟物體永遠被 以二ιίϊ現。但是本案的系統架構是很具有彈性的,可 ϋ 動作導㈣限制,所以只要完整定義此類型 須ΐ靠此種鏡頭傾斜的問題。其次,本案方法必 為雜訊與晝使的f齡有可能因 裁切的特定區域,影響縮放後的結 畔客採用網格架構,當其中一方格裡面包含了 i面的物,運=袼的轉換數據不能代表著此方格 問題發生。像素層次的網袼架構即可完全避免此 裝置ί〇ω-明塊圖’該系統包含一處理 體23、—儲存裝置25及-置22、—電腦儲存媒 —資料選擇配線:=二無_路, ㊁,接收及輸:本^使用-^置26及/或該儲存裝置25係用:Ί。此外,該顯 者存取格式/使用者可讀袼式的資料。、顯喊/或館存-使用 流程巧^^以匕發:實施例所提出的- 首先,接收包 22 201141204 含至少一圖框之影片(步驟31)。接著,尋找包含與至少一圖 框有關聯的前景物件資訊(步驟32)。紐,決^免於被 的特定區域(步驟33)。 前述介紹本發明之多個實施態樣及原則,熟習該項技術 ^可從這些實_巾得知本發明之多财同_及實施說 明’並從上㈣個纽、裝置、及方法的朗來了解本發明 的構思。此外,提出騎有文獻及參考觸皆可納入本發 的實施態樣。所能了解地,f腦儲存媒體包含硬碟 取3己憶體、唯敎憶體、隨身碟、光碟、記憶棒等等此 的記憶裝置。而由處理裝置/計算裝置2〇執行指令 ’maen) ’mainframe 及其組合 專。7人理解地,藉由本實施例所提及的專有名詞及術 語的同義名詞皆可納入本實施例概要。 根據上述可知’在影X重建中在本實施例巾所 統,裝置,儲存媒體,方法及流程皆能讓影片的内於被 裁切。移動的物件在本實細中扮演重要的地位 、 建中移動的物件仍可保有影像的比例縮放。根據前^重 2:===件的時間維度問題解決。工根據本 在對於重建的流程中適用於空間及時 根據本文揭露的特定示範性實施例,由 鏡頭一直到場f片段的分析以及最佳化是程序 的觀J K算的代翻對s糾制糊框綠化 時間系統。目為本倾技術人士麟賴了 揭 :ί=理;算的;偷據本案揭露内容= 上的問題。 0 口質巧,理、、Ό果的-不紐實施綱結果可為一個名義 實 前述内容健敘述了本揭露内容的原理。針對敘述的Using the crop to remove part of the visually appearing J point J 8 (:) - Figure 8 (4) 'The photographic lens has been on the back of the foreground. In the ί ί:, 'Tao eta1·2009' method and the linear scaling difference, : 疋 = == 7 'remains the important shape of the film, the 8th _ is the original _, the 8th _ is linear scaling ( l=arScaling) frame, Figure 8 (〇 is the second picture of the person, and figure 8 (d) is the embodiment. With pure use of the cutting, leave a specific area of the object To prevent important information from being removed; unequal scaling can greatly reduce the use of virtual lenses; and if the cropping is not available or insignificant, unequal scaling, effectively utilizing the spatial position, will not Important background deformation compression. Crop and unequal ratio ^(歹i scaling use ratio ' is balanced by the variational optimization function. The method in this case is to increase the time and space that can be deformed and removed. 'But in the content of the film space, there are still many visually significant features and foreground objects. Once rescaled, distortion and distortion may occur in time and space, as shown in Fig. 9 (4) - Fig. 9 (d), where Fig. 9 (8) is the original frame, and Fig. 9 (9) The frame for linear scaling (Fig. 9 (c) is the picture processed by Wang et al., and the picture 9 (9) 21 201141204, this is true, =. In this extreme case, it must be from the art The angle is divided into several points, which determines which of the key frames in the film can be permanently present outside the 2f. When the photographic lens is rendered in extreme shooting, such as tilting the shot, the cut may cause some of the lining objects to be permanently However, the system architecture of this case is very flexible and can be restricted by the action guide (4), so as long as this type is fully defined, the problem of tilting the lens must be relied upon. Secondly, the method of this case must be noise and instigation. The age of f may be due to the specific area of the cut, affecting the scaled edge of the edge using the grid structure, when one of the squares contains the i-face object, the conversion data of Yun = 不能 can not represent this grid problem. Pixel level袼Architecture can completely avoid this device 〇 〇 明 明 明 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该Receiving and transceiving: This is used - and 26 or / or the storage device 25 is used: 此外. In addition, the explicit access format / user-readable data, display / or library - use The process is as follows: First, the package 22 201141204 contains at least one frame of the movie (step 31). Next, the search includes foreground object information associated with at least one frame (step 32). ), New, and ^ are protected from the specific area (step 33). The foregoing describes various embodiments and principles of the present invention, and is familiar with the technology. From the actual disclosure, the invention can be learned from the simplifications of the present invention and the implementation descriptions from the above (four) buttons, devices, and methods. The concept of the invention will be understood. In addition, it is proposed that the riding literature and reference can be incorporated into the implementation of the present invention. As far as you can understand, the f-brain storage medium contains a memory device that uses three hard disks, such as a memory, a memory, a compact disc, a memory stick, and the like. The processing device/computing device 2 executes the instruction 'maen) 'mainframe and its combination. It is understood by the seven persons that the synonymous nouns and the synonymous terms of the terms mentioned in the embodiment can be included in the summary of the embodiment. According to the above, it can be seen that in the embodiment of the present invention, the apparatus, the storage medium, the method and the flow of the embodiment can cut the inside of the movie. Moving objects play an important role in this detail, and objects moving in the middle of the building can still maintain the scaling of the image. According to the time dimension of the previous 2:=== piece, the problem is solved. According to the present invention, it is applicable to space in the process of reconstruction. According to the specific exemplary embodiment disclosed herein, the analysis and optimization of the segment from the lens to the field f is the process of the JK calculation. Box greening time system. The eyes of the technology-based people have been exposed: ί=理;算的;Sacred according to the case revealed content = the problem. 0 mouth quality, rationality, and results - the results of the implementation of the program can be a nominal reality The content of the above description of the principles of this disclosure. Narrative

{- ·> ^1 J 23 201141204 施例所做的各種各樣的修改以及變更 而^可藉由本案所教導_容輕易的完成。 的纽'裝置《及方法然 於本ίίί Γ的顯示ΐ揭露,但仍包含本案的原理且屬 參考文獻係以在此整體合併為參考文獻。在此描述 _ 靖 域κ:二==讀記憶“光碟、{- ·> ^1 J 23 201141204 Various modifications and changes made by the example can be easily accomplished by the teachings of this case. The "New" device and method are disclosed in the present invention, but still contain the principles of the present invention and are incorporated herein by reference. Described here _ Jing domain κ: two == read memory "disc,

以y再舉出三個實施例,其中第二實施例之步驟如下: (a)接收包含至少一個圖框之一影片; 之 -維含—特定區域之—預定縮放比例目標影片 二維影像座標;以及 框令關?行轉_縮放,使得處理後的該等圖 才〔付〇該目裇影片三維影像座標之大小。 第三實施例之步驟如下: ⑻接受複數個圖框; 〇>)界定咖於各賴數個闕之—敎區域之一預定 縮放比例;以及 每-該0框進行不等_縮放,使得處理後的每一 圖框符合該預定縮放比例。 第四實施例之步驟如下: (a)接受包含一目標影像之複數個圖框; 姑Η ί)疋義一目標矩形體’該矩形體之二維尺度係足以容納 fit影像’並以一單位時間為其第三維尺度,該單位時間 係該複數侧框巾每相鄰_框之時關隔;以及 (c)使該目標影像不等比例縮入該矩形體内。 以上所述實施例僅係為了方便說明而舉例,並非限制本 24 201141204 發明。因此熟悉本技藝之人士在不違背本發明之精神,對於 上述實施例進行修改、變化,然皆不脫如附申請專利範圍所 欲保護者。 參考文獻 1. AVIDAN, S., AND SHAMIR, A. 2007. Seam carving for contentaware image resizing ACM Trans. Graph. 26, 3, 10.Three embodiments are further illustrated by y, wherein the steps of the second embodiment are as follows: (a) receiving a movie containing at least one frame; - a dimension containing - a specific area - a predetermined scaling target movie 2D image coordinates And the box is turned off and the zoom is made so that the processed maps are only the size of the 3D image coordinates of the video. The steps of the third embodiment are as follows: (8) accepting a plurality of frames; 〇>) defining a predetermined scaling ratio of one of the plurality of 敎-敎 regions; and arranging each of the 0 frames to unequal_scale Each frame after processing conforms to the predetermined scaling. The steps of the fourth embodiment are as follows: (a) accepting a plurality of frames including a target image; Η ί 疋 一 a target rectangular body 'the two-dimensional scale of the rectangular body is sufficient to accommodate the fit image' and for one unit time For its third dimension, the unit time is when the adjacent side frame is separated by each adjacent frame; and (c) the target image is unequally retracted into the rectangular body. The above-described embodiments are merely examples for convenience of description, and do not limit the invention of the present invention. Therefore, those skilled in the art can make modifications and changes to the above embodiments without departing from the spirit and scope of the invention. References 1. AVIDAN, S., AND SHAMIR, A. 2007. Seam carving for contentaware image resizing ACM Trans. Graph. 26, 3, 10.

2. BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLDMAN, D. B. 2009. PatchMatch: A randomized correspondence procedure for structural image editing. ACM Trans. Graph. 28, 3. 3. BUATOIS, L., CAUMON, G., AND UE VY, B. 2009. Concurrent number cruncher: a GPU implementation of a general sparse linear solver· Int· J. Parallel Emerg. Distrib.2. BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLDMAN, DB 2009. PatchMatch: A randomized correspondence procedure for structural image editing. ACM Trans. Graph. 28, 3. 3. BUATOIS, L., CAUMON, G., AND UE VY, B. 2009. Concurrent number cruncher: a GPU implementation of a general sparse linear solver· Int· J. Parallel Emerg. Distrib.

Syst. 24, 3,205-223. 4. CHEN,L· Q·,ΧΙΕ,X” FAN, X.,MA,W. Y.,ZHANG,H. J.,AND ZHOU,Η· Q. 2003. A visual attention model for adapting images on small displays. ACM Multimedia Systems Journal 9, 4, 353—364. 5. CHO, T. S.,BUTMAN,M.,AVIDAN,S·,AND FREEMAN,W. T_ 2008· The patch transform and its applications to image editing. In CVPR Ό8. 6. DAVID, H. A. 1963. The Method of Paired Comparisons. Charles Griffin & Company. 7. DESELAERS, T., DREUW, P.5 AND NEY, H. 2008. Pan, zoom, scan: Time-coherent, trained automatic video cropping. In CVPR. 8. DONG, W.5 ZHOU, N., PAUL, J.-C.9 AND ZHANG, X. 2009. Optimized image resizing using seam carving and scaling. ACM Trans. Graph. 28, 5, 1-10. 9. FAN,X·,ΧΙΕ,X·,ZHOU,H.-Q” AND MA,W,Y. 2003. Looking into video frames on small displays· In Multimedia ’03, 247-250.Syst. 24, 3, 205-223. 4. CHEN, L· Q·, ΧΙΕ, X” FAN, X., MA, WY, ZHANG, HJ, AND ZHOU, Η· Q. 2003. A visual attention model for adapting images On small displays. ACM Multimedia Systems Journal 9, 4, 353-364. 5. CHO, TS, BUTMAN, M., AVIDAN, S·, AND FREEMAN, W. T_ 2008· The patch transform and its applications to image editing. In CVPR Ό 8. 6. DAVID, HA 1963. The Method of Paired Comparisons. Charles Griffin & Company. 7. DESELAERS, T., DREUW, P.5 AND NEY, H. 2008. Pan, zoom, scan: Time- Cohenent, trained automatic video cropping. In CVPR. 8. DONG, W.5 ZHOU, N., PAUL, J.-C.9 AND ZHANG, X. 2009. Optimized image resizing using seam carving and scaling. ACM Trans. Graph 28, 5, 1-10. 9. FAN, X·, ΧΙΕ, X·, ZHOU, H.-Q” AND MA, W, Y. 2003. Looking into video frames on small displays· In Multimedia '03, 247-250.

[S] 25 201141204 10. GAL, R., SORKINE, 0., AND COHEN-OR, D. 2006. Featureaware tejduring. In EGSR ’06, 297-303. 11. ITTI, L.# KOCH, C., AND NIEBUR, E. 1998. A model of saliencybased visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 11, 1254-1259. 12. KARNI, Z., FREEDMAN, D., AND GOTSMAN, C. 2009. Energy based image deformation. Comput. Graph. Forum 28, 5, 1257-1268. 13. BCRAHENBiJHL, P., LANG, M., HOKNUNG, A., AND GROSS, M. 2009. A system for retargeting of streaming video. ACM Trans. Graph. 28, 5.[S] 25 201141204 10. GAL, R., SORKINE, 0., AND COHEN-OR, D. 2006. Featureaware tejduring. In EGSR '06, 297-303. 11. ITTI, L.# KOCH, C., AND NIEBUR, E. 1998. A model of saliency based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 11, 1254-1259. 12. KARNI, Z., FREEDMAN, D., AND GOTSMAN , C. 2009. Energy based image deformation. Comput. Graph. Forum 28, 5, 1257-1268. 13. BCRAHENBiJHL, P., LANG, M., HOKNUNG, A., AND GROSS, M. 2009. A system for Retargeting of streaming video. ACM Trans. Graph. 28, 5.

14. LIU, F., AND GLEICHER, M. 2006. Video retargeting: automating pan and scan. In Multimedia Ό6, 241-250. 15. LIU, Η., ΧΙΕ, X., MA, W.-Y., AND ZHANG, H.-J. 2003. Automatic browsing of large pictures on mobile devices. In Proceedings of ACM International Conference on Multimedia, 148-155. 16. PRITCH, Y., KAV-VENAKI, E., AND PELEG, S. 2009. Shift-map image editing. In ICCVO9. 17. RASHEED, Z., AND SHAH, M. 2003. Scene detection in Hollywood movies and TV shows. In CVPR Ό3, vol. 2, Π-343-8. 18. RUBINSTEIN, M., SHAMIR, A., AND AVIDAN, S. 2008. Improved seam carving for video retargeting. ACM Trans. Graph. 27, 3. 19. RUBINSTEIN, M., SHAMIR, A., AND AVIDAN, S. 2009. Multioperator media retargeting. ACM Trans. Graph. 28, 3, 23. 20. SANTELLA,A·,AGRAWALA, M” DECARLO, D.,SALESIN,D., AND COHEN,M. 2006. Gaze-based interaction for semiautomatic photo cropping. In Proceedings of CHI, 771-780. 26 201141204 21. SHAMIR, A., AND SORKINE, O. 2009. Visual media retargeting. In ACM SIGGRAPH Asia Courses. 22· SMAKOV,D” CASPI,Y·,SHECHTMAN,E” AND IRANI,M. 2008· Summarizing visual data using bidirectional similarity. 23. In CVPR ’08. SUH,B·,LING,H.,BEDERSON,Β· B·,AND JACOBS,D. W· 2003· Automatic thumbnail cropping and its effectiveness. In Proceedings of UIST, 95-104. 24. VIOLA, P., AND JONES, M. J. 2004. Robust real-time face detection. Int. J. Comput. Vision 57, 2, 137—154.14. LIU, F., AND GLEICHER, M. 2006. Video retargeting: automating pan and scan. In Multimedia Ό 6, 241-250. 15. LIU, Η., ΧΙΕ, X., MA, W.-Y., AND ZHANG, H.-J. 2003. Automatic browsing of large pictures on mobile devices. In Proceedings of ACM International Conference on Multimedia, 148-155. 16. PRITCH, Y., KAV-VENAKI, E., AND PELEG, S 2009. Shift-map image editing. In ICCVO9. 17. RASHEED, Z., AND SHAH, M. 2003. Scene detection in Hollywood movies and TV shows. In CVPR Ό3, vol. 2, Π-343-8. 18 RUBINSTEIN, M., SHAMIR, A., AND AVIDAN, S. 2008. improved seam carving for video retargeting. ACM Trans. Graph. 27, 3. 19. RUBINSTEIN, M., SHAMIR, A., AND AVIDAN, S 2009. Multioperator media retargeting. ACM Trans. Graph. 28, 3, 23. 20. SANTELLA, A·, AGRAWALA, M” DECARLO, D., SALESIN, D., AND COHEN, M. 2006. Gaze-based interaction In semicematic photo cropping. In Proceedings of CHI, 771-780. 26 201141204 21. SHAMIR, A., AND SORKINE, O. 2009. Visual media retargeting. In ACM SIGG RAPH Asia Courses. 22· SMAKOV, D” CASPI, Y·, SHECHTMAN, E” AND IRANI, M. 2008· Summarizing visual data using bidirectional similarity. 23. In CVPR '08. SUH, B·, LING, H., BEDERSON, Β·B·, AND JACOBS, D. W. 2003· Automatic thumbnail cropping and its effectiveness. In Proceedings of UIST, 95-104. 24. VIOLA, P., AND JONES, MJ 2004. Robust real-time face Detection. Int. J. Comput. Vision 57, 2, 137-154.

25. WANG, Y.-S., TAI, C.-L., SORKINE, O., AND LEE, T.-Y. 2008. Optimized scale-and-stretch for image resizing. ACM Trans. Graph. 27, 5,118. 26. WANG, Y.-S., FU, H.5 SORKINE, 0., LEE, T.-Y., AND SEIDEL, H.-P. 2009. Motion-aware temporal coherence for video resizing. ACM Trans. Graph. 28, 5. 27. WERLBERGER, M., TROBIN, W.5 POCK, T., WEDEL, A., CREMERS, D., AND BISCHOF, H. 2009. Anisotropic Huber-Ll optical flow. In Proceedings of the British Machine Vision Conference (BMVC). 28. WOLF, L., GUmVlANN, M.5 AND COHEN-OR, D. 2007. Nonhomogeneous content-driven video-retargeting. In ICCV 507. 29. ZHANG, Y.-F., HU, S.-M., AND MARTIN, R. R. 2008. Shrinkability maps for content-aware video resizing. In PG Ό8. 30. ZHANG, G.-X., CHENG, M.-M., HU, S.-M, AND MARTIN, R. R. 2009. A shape-preserving approach to image resizing. Computer Graphics Forum 28, 7, 1897-1906. 【主要元件符號說明】 27 201141204 20處理裝置 21處理器 22輸入/輪出裝置 23電腦儲存媒體 24執行指令 25儲存裝置 26顯示裝置 10〜14步驟 31〜33步驟25. WANG, Y.-S., TAI, C.-L., SORKINE, O., AND LEE, T.-Y. 2008. Optimized scale-and-stretch for image resizing. ACM Trans. Graph. 27, 5,118. 26. WANG, Y.-S., FU, H.5 SORKINE, 0., LEE, T.-Y., AND SEIDEL, H.-P. 2009. Motion-aware temporal coherence for video resizing. ACM Trans. Graph. 28, 5. 27. WERLBERGER, M., TROBIN, W.5 POCK, T., WEDEL, A., CREMERS, D., AND BISCHOF, H. 2009. Anisotropic Huber-Ll optical flow. In Proceedings of the British Machine Vision Conference (BMVC). 28. WOLF, L., GUmVlANN, M.5 AND COHEN-OR, D. 2007. Nonhomogeneous content-driven video-retargeting. In ICCV 507. 29. ZHANG, Y. -F., HU, S.-M., AND MARTIN, RR 2008. Shrinkability maps for content-aware video resizing. In PG Ό8. 30. ZHANG, G.-X., CHENG, M.-M., HU , S.-M, AND MARTIN, RR 2009. A shape-preserving approach to image resizing. Computer Graphics Forum 28, 7, 1897-1906. [Main component symbol description] 27 201141204 20 processing device 21 processor 22 input / round Out device 23 computer storage medium 24 executes instruction 25 storage Device 26 display device 10~14 steps 31~33 steps

【圖式簡單說明】 第1圖為本發明所使用 第2圖為扇形圖。 程圖。 第3圖⑻及第3圖(b)為 右之邊界示意圖。 述方法偵測特定區域最左及最 第4圖⑻及第4圖(b)所示,斜#& 使得處理後的鱗圖轉Α 進行不等比例縮放, 第5圖⑻及第5 _所示σ/對目體之大小比例。 第6圖⑻-第6圖_示,了意圖: 的圖框,第6圖⑼及第6 _^ 第6圖(e)為原來 6圖⑷及第6圖(h)為本實施例。I厅處理之圖片,而第 第7圖⑻-第7圖⑷所示,其中第7 ^ 7圖⑼為線性縮放(linear : ί I if第Λ圖’示,攝影鏡頭隨著時間—直環繞圖中 女生,思味者_上前景物體的移動獅,已經涵蓋空1 所有背景區域,其中第8圖⑻為原來的圖框,第8 _為= 性縮放(linearscaling)的圖框,第8圖⑻為Wang等人所處理 S] 28 201141204 之圖片,而第8圖(d)為本實施例。 第9圖⑻-第9圖⑻所示,其中第9圖⑻為原來的圖框,第 9圖(b)為線性縮放(linear scaling)的圖框,第9圖(c)為Wang 等人所處理之圖片,而第9圖(d)為本實施例。 第10圖為本發明之一系統方塊圖。 第11圖為依據本發明的實施例所提出的一流程圖。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view of the present invention. Fig. 2 is a sector diagram. Cheng Tu. Fig. 3 (8) and Fig. 3 (b) are schematic diagrams of the right boundary. The method detects the leftmost and most 4th (8) and 4th (b) of the specific area, and the oblique #& causes the processed scale to switch to unequal scaling, Figure 5 (8) and 5 The ratio of the size of the indicated σ/to the eye. Fig. 6 (8) - Fig. 6 shows the frame of the intent: Fig. 6 (9) and Fig. 6 (E) are the original Fig. 6 (4) and Fig. 6 (h) are the embodiments. The picture processed by Hall I, and shown in Figure 7 (8) - Figure 7 (4), where the 7th 7th (9) is a linear zoom (linear: ί I if the second picture shows), the photographic lens with time - straight surround In the picture, the girl, the singer _ the moving lion on the foreground object, has covered all the background areas of the space 1, where the 8th picture (8) is the original picture frame, the 8th _ is = linear scaling (linearscaling) frame, the 8th Figure (8) is a picture of S] 28 201141204 processed by Wang et al., and Figure 8 (d) is the embodiment. Figure 9 (8) - Figure 9 (8), wherein Figure 9 (8) is the original frame, Figure 9 (b) is a linear scaling frame, Figure 9 (c) is a picture processed by Wang et al., and Figure 9 (d) is the embodiment. Figure 10 is the present invention. A system block diagram. Figure 11 is a flow chart of an embodiment in accordance with the present invention.

2929

Claims (1)

201141204 : 七、申請專利範園: 1.一種不等比例影片縮放之處理方法,該方法包含: ⑻接收包含至少一個圖框之一影片; (b) 界定包含一特定區域之一預定縮放比例目標影片立方 體;以及 (c) 對该等圖框進行不等比例縮放,使得處理後的該等圖 框符合該目標影片立方體之大小比例。 ^如申請專利範圍第1項所述之方法,其中步驟(a)之後更包 含一步驟用以找尋包含與至少一圖框有關聯的移動前景物 籲 件之一特定區域。 3. 如申凊專利範圍第2項所述之方法,更包含一步驟用以找 ,士少一圖框的視覺流量(〇ptical fl〇w)並進行量化以相應地 长付至夕一里化結果的流置向量(£[qw vector)。 4. 如申請專利範圍第3項所述之方法,其中該量化過程包含 將至乂、圖框的視覺流量(optical flow)導入一統計圖以進行 編,統計,並將該等編號之分佈機率導入熵(entr〇py)公式以 求得至少一圖框之至少一行的熵(entr〇py)資訊。 5. 如申請專利細第4項所述之方法,其巾該特定區域根據 燏(entropy)資訊而被決定。 # 6·如申請專利範圍第1項所述之方法,其中該預定縮放比例 為人為所決定。 7.如申請專利範圍第1項所述之方法,更包含至少一個最佳 化公式對該等圖框進行不等比例縮放,使得處理後的該等圖 框符合該目標影片立方體之大小比例。 8;如申请專利範圍第7項所述之方法,其中該等最佳化公式 係根據空間内容及時間一致性而設計。 9.如申請專利範圍第7項所述之方法,其中該等最佳化公式 包含用於維持空間内容之相似能量(c〇nf〇mial energy)、用於 時間-致性在時間軸上内容之相似能量(Temp〇rd c〇her_ 30 201141204 園^及對㈣後對每—圖框進 (second-order smoothing energy) 〇 月扪一人十碉肊罝 =申請專利範圍第9項所述之方法 數(触_ mi— ^由使用迭代函 小平方問題,取得-組最佳化的if ^量咖奶解一最 Π =請專利制第i項所叙 構而進行不等比例 :其中係使用幾何單 13.如申請專利範圍第u項所述之 -致性,利用至少一圖框的至少 J:=間 flow)轉縣少—肋單元尺柏雜形變見: 轉m、-贿單元尺寸雜形變乾 =項所述之方法,其中該不等_縮放 =用^在長、寬軸上平順地滑動,裁切外部較 區域,藉以降低失真的累積。 f扪 15. —種影片處理方法,該方法包含: (a) 接收包含至少一個圖框之一影片; (b) 界定包含-特定區域之—預定放比例目標 : 維影像座標;以及 ⑹對該等圖框進行不等比例縮放,使得處理後的該等圖 框符合該目標影片三維影像座標之大小。 16. —種影像處理方法,該方法包含: ⑻接受複數個圖框; · (b) 界疋適用於各該複數個圖框之一特定區域之一預定縮 放比例;以及 ’ (c) 對每一該圖框進行不等比例縮放,使得處理後的每一 31 201141204 圖框符合該預定縮放比例。 17.—種影像處理方法,該方法包含: (a) 接受包含一目標影像之複數個圖框; (b) 定義一目標矩形體,該矩形體之二維尺度係足以容衲 該目標影像,並以一單位時間為其第三維尺度’該單位時間 係該複數個圖框中每相鄰兩圖框之時間間隔;以及 (c) 使該目標影像不等比例縮入該矩形體内。201141204: VII. Application for Patent Park: 1. A method for processing unequal proportions of video, the method comprising: (8) receiving a movie containing at least one frame; (b) defining a predetermined scaling target containing one of the specific regions The movie cubes; and (c) unequal scaling of the frames such that the processed frames conform to the size ratio of the target movie cube. The method of claim 1, wherein the step (a) further comprises a step of finding a specific area containing one of the moving foreground objects associated with the at least one frame. 3. The method described in claim 2 of the patent scope further includes a step for finding the visual flow (〇ptical fl〇w) of the frame of less than one frame and quantifying it to pay the corresponding length to Xiyili. The resulting vector of the result (£[qw vector). 4. The method of claim 3, wherein the quanting process comprises importing an optical flow of the frame into the chart for compilation, statistics, and probability of distribution of the numbers. An entropy (entr〇py) formula is introduced to obtain at least one entropy (inr〇py) information of at least one frame. 5. The method of claim 4, wherein the specific area of the towel is determined based on entropy information. #6. The method of claim 1, wherein the predetermined scaling is determined by an artificial one. 7. The method of claim 1, further comprising at least one optimization formula unequal scaling the frames such that the processed frames conform to a size ratio of the target movie cube. 8. The method of claim 7, wherein the optimization formula is designed based on spatial content and temporal consistency. 9. The method of claim 7, wherein the optimization formula comprises a similar energy for maintaining spatial content (c〇nf〇mial energy) for time-based content on a time axis Similar energy (Temp〇rd c〇her_ 30 201141204 garden ^ and pair (4) after each - second-order smoothing energy 〇月扪一人十碉肊罝 = the method described in claim 9 The number (touch _ mi - ^ is determined by using the iterative function small square problem, the get-group optimization of the if ^ amount of coffee milk solution is the most Π = please describe the i-term of the patent system and unequal proportion: which is used Geometry 13. As described in the scope of patent application, the sufficiency, using at least one frame of at least J: = between flow) to the county less - rib unit cymbal cymbal variant: see m, - bribe unit size The method according to the item of the invention, wherein the unequal_zoom=sliding smoothly on the long and wide axes, and cutting the outer region, thereby reducing the accumulation of distortion. f扪15. The method comprises: (a) receiving a movie containing at least one frame; (b) defining the package Including - a specific area - a predetermined scale target: a dimensional image coordinate; and (6) unequal scaling of the frames such that the processed frames conform to the size of the 3D image coordinates of the target movie. An image processing method, the method comprising: (8) accepting a plurality of frames; (b) defining a predetermined scaling ratio for one of the specific regions of each of the plurality of frames; and '(c) for each of the frames Performing unequal scaling so that each processed 31 201141204 frame conforms to the predetermined scaling ratio. 17. An image processing method, the method comprising: (a) accepting a plurality of frames including a target image; (b Defining a target rectangular body, the two-dimensional scale of the rectangular body is sufficient to accommodate the target image, and one unit time is the third dimensional scale of the unit time, the unit time is each adjacent two frames in the plurality of frames a time interval; and (c) causing the target image to be unequally retracted into the rectangular body. 3232
TW99127214A 2010-05-14 2010-08-13 Method of warping video TW201141204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/106,971 US20110279641A1 (en) 2010-05-14 2011-05-13 Apparatus, systems, computer-accessible medium and methods for video cropping, temporally-coherent warping and retargeting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US33495310P 2010-05-14 2010-05-14

Publications (1)

Publication Number Publication Date
TW201141204A true TW201141204A (en) 2011-11-16

Family

ID=46760295

Family Applications (6)

Application Number Title Priority Date Filing Date
TW99127218A TW201141205A (en) 2010-05-14 2010-08-13 System for transforming video outputting format
TW99127214A TW201141204A (en) 2010-05-14 2010-08-13 Method of warping video
TW99127217A TW201140393A (en) 2010-05-14 2010-08-13 Touch control system
TW99127215A TWI417809B (en) 2010-05-14 2010-08-13 Video playing system having display device
TW99127216A TW201141212A (en) 2010-05-14 2010-08-13 Video data processing system
TW99127219A TWI419075B (en) 2010-05-14 2010-08-13 Video warping graphic processor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW99127218A TW201141205A (en) 2010-05-14 2010-08-13 System for transforming video outputting format

Family Applications After (4)

Application Number Title Priority Date Filing Date
TW99127217A TW201140393A (en) 2010-05-14 2010-08-13 Touch control system
TW99127215A TWI417809B (en) 2010-05-14 2010-08-13 Video playing system having display device
TW99127216A TW201141212A (en) 2010-05-14 2010-08-13 Video data processing system
TW99127219A TWI419075B (en) 2010-05-14 2010-08-13 Video warping graphic processor

Country Status (1)

Country Link
TW (6) TW201141205A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI486794B (en) * 2012-07-27 2015-06-01 Wistron Corp Video previewing methods and systems for providing preview of a video to be played and computer program products thereof
KR102317789B1 (en) * 2015-02-12 2021-10-26 삼성전자주식회사 Scaler circuit for generating various resolution images from single image and devices including the same
CN112367559B (en) * 2020-10-30 2022-10-04 北京达佳互联信息技术有限公司 Video display method and device, electronic equipment, server and storage medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6047088A (en) * 1996-12-16 2000-04-04 Sharp Laboratories Of America, Inc. 2D mesh geometry and motion vector compression
US6178272B1 (en) * 1999-02-02 2001-01-23 Oplus Technologies Ltd. Non-linear and linear method of scale-up or scale-down image resolution conversion
GB9906420D0 (en) * 1999-03-19 1999-05-12 Isis Innovation Method and apparatus for image processing
GB0315412D0 (en) * 2003-07-02 2003-08-06 Queen Mary & Westfield College Optical flow estimation method
TWI298465B (en) * 2005-12-02 2008-07-01 Prolific Technology Inc Segment-based video and graphics system with video window
US7747107B2 (en) * 2007-03-06 2010-06-29 Mitsubishi Electric Research Laboratories, Inc. Method for retargeting images
TW200945879A (en) * 2008-04-22 2009-11-01 Magima Digital Information Co Ltd A universal picture scaling device and a corresponding method
US8255825B2 (en) * 2008-10-07 2012-08-28 Microsoft Corporation Content aware adaptive display

Also Published As

Publication number Publication date
TWI417809B (en) 2013-12-01
TW201141212A (en) 2011-11-16
TW201141205A (en) 2011-11-16
TWI419075B (en) 2013-12-11
TW201140498A (en) 2011-11-16
TW201140393A (en) 2011-11-16
TW201140491A (en) 2011-11-16

Similar Documents

Publication Publication Date Title
Krähenbühl et al. A system for retargeting of streaming video
TWI253860B (en) Method for generating a slide show of an image
Zhou et al. Time-mapping using space-time saliency
Wang et al. Motion-based video retargeting with optimized crop-and-warp
Wexler et al. Space-time video completion
CN104519401B (en) Video segmentation point preparation method and equipment
Zhang et al. Backward registration-based aspect ratio similarity for image retargeting quality assessment
CN101601279B (en) Imaging device, imaging method, and program
US9373187B2 (en) Method and apparatus for producing a cinemagraph
BRPI1011189B1 (en) COMPUTER-BASED SYSTEM FOR SELECTING OPTIMUM VIEWING POINTS AND NON TRANSIENT MACHINE-READABLE SIGNAL STORAGE MEANS
KR20080082963A (en) Method and system for producing a video synopsis
JP2014215604A (en) Image processing apparatus and image processing method
CN112819944A (en) Three-dimensional human body model reconstruction method and device, electronic equipment and storage medium
TW201141204A (en) Method of warping video
Chen et al. Preserving motion-tolerant contextual visual saliency for video resizing
Li et al. Video retargeting with multi-scale trajectory optimization
Lei et al. HFF-SRGAN: super-resolution generative adversarial network based on high-frequency feature fusion
JP5612457B2 (en) Moving image display device, moving image object search system, moving image display method and program
Gallea et al. Physical metaphor for streaming media retargeting
CN109816620A (en) Image processing method and device, electronic equipment and storage medium
Řeřábek et al. JPEG backward compatible coding of omnidirectional images
Shi et al. Consumer video retargeting: context assisted spatial-temporal grid optimization
Choudhary et al. Real time video summarization on mobile platform
Laco et al. Depth in the visual attention modelling from the egocentric perspective of view
Lee Novel video stabilization for real-time optical character recognition applications