TW201140637A - Mems switch - Google Patents

Mems switch Download PDF

Info

Publication number
TW201140637A
TW201140637A TW99135787A TW99135787A TW201140637A TW 201140637 A TW201140637 A TW 201140637A TW 99135787 A TW99135787 A TW 99135787A TW 99135787 A TW99135787 A TW 99135787A TW 201140637 A TW201140637 A TW 201140637A
Authority
TW
Taiwan
Prior art keywords
signal line
layer
variable capacitor
electrode layer
bias voltage
Prior art date
Application number
TW99135787A
Other languages
Chinese (zh)
Inventor
Kentaro Nakamura
Tomonori Fujii
Original Assignee
Taiyo Yuden Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Kk filed Critical Taiyo Yuden Kk
Publication of TW201140637A publication Critical patent/TW201140637A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/06Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture having a dielectric selected for the variation of its permittivity with applied voltage, i.e. ferroelectric capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H57/00Electrostrictive relays; Piezo-electric relays

Abstract

Disclosed is an MEMS switch capable of adjusting characteristic impedance to offset characteristic impedance disruption that may arise when in use. An MEMS switch (SD10) comprises a first tunable capacitor (CA11) disposed corresponding to a first signal line (SL11), a second tunable capacitor (CA12) disposed corresponding to a second signal line (SL12), a bias voltage input terminal (Ti11b) for applying bias voltage to a dielectric layer (24) of the first tunable capacitor (CA11) via the first signal line (SL11) and one electrode layer (25) of the first tunable capacitor (CA11), and a bias voltage input terminal (Ti12b) for applying bias voltage to a dielectric layer (27) of the second tunable capacitor (CA12) via the second signal line (SL12) and one electrode layer (28) of the second tunable capacitor (CA12).

Description

201140637 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種 MEMS(Micro Electro Mechanical201140637 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a MEMS (Micro Electro Mechanical)

Systems,微機電系統)開關。 【先前技術】 使用有二極體或FET(Field Effect Transistor,場效電晶 體)等之半導體開關隨著頻率變高而產生傳輸損失增加或 絕緣性降低等特性惡化,然而MEMS開關難以產生如此之 特性惡化’故作為適合使用於高頻電路,例如數GHz〜數 百GHz之高頻信號所流經之電路之開關元件正受到注目。 通常,MEMS開關具有使用眾所周知之薄膜形成方法而 製成之多層構造。通常之MEMS開關具有以下功能:藉由 使接點電極接觸於非導通之第〗信號線路及第2信號線路而 使兩條信號線路經由接點電極成為導通狀態,並且,藉由 解除接點電極相對於兩條信號線路之接觸而使兩條信號線 路為非導通狀態。 MEMS開關雖然設計為具有例如5〇 Ω或75 Ω等特定之特 性阻抗,但尤其是使用於高頻電路時,其特性阻抗有時會 因外部影響而錯亂。 Β 該特性阻抗之錯亂雖可根據MEMS開關之用途而於某種 程度上進行推測,然而即便調整信號線路構造(線路寬 度、線路長度或線路厚度等)等而基於推測結果預先調整 了特性阻抗’實際中亦可能會產生難以預測之外部影響, 故難以確保最佳之特性阻抗。又,製造根據每種料而信 150772.doc 201140637 號線路構造不同之mems開關之情況,就通用性方面及降 低成本方面而言不佳。 換言之’若可以抵消使用時可能產生之特性阻抗之錯亂 之方式來調整該特性阻抗,則不論何種用途均可確保 MEMS開關為最佳之特性阻抗,藉此可避免由特性阻抗之 錯亂所引起之傳輸損失增加或絕緣性降低等特性惡化。 [先前技術文獻] [專利文獻] [專利文獻1]曰本專利特願2008-277743號公報 【發明内容】 [發明所欲解決之問題] 本發明之目的在於提供一種可以抵消使用時可能產生之 特性阻抗之錯亂的方式來調整該特性阻抗之MEMS開關。 [解決問題之技術手段] 為了達成上述目的,本發明之MEMS開關係藉由使接點 電極接觸於非導通之第1信號線路及第2信號線路而使兩條 t號線路經由接點電極成為導通狀態,且,藉由解除接點 電極相對於兩條信號線路之接觸而使兩條信號線路為非導 通狀態者;且該MEMS開關包括:第1可變電容器,其係 對應於第1信號線路而設置;第2可變電容器,其係對應於 第2信號線路而設置;第丨偏壓電壓輸入端子,其係用以經 由第1信號線路及第1可變電容器之一電極層側而對該第j 可變電容器之介電質層施加偏壓電壓;及第2偏壓電壓輸 入端子’其係用以經由第2信號線路及第2可變電容器之一 150772.doc 201140637 電極層側而對該第2可變電容器之介電質層施加偏壓電 壓。 根據該MEMS開關,可藉由對第i可變電容器之介電質 層及第2可變電容器之介電質層施加偏壓電壓,而使兩個 可變電容器之介電質層之比介電係數變化,藉由該變化而 使兩個可變電容器之電容變化,且藉由該變化而使mems 開關之特性阻抗變化。 即,即便於搭載於電路基板等中之MEMS開關之特性阻 抗(例如50 Ω或75 Ω等)因外部影響而錯亂之情形時,只要 藉由偏壓電壓而使兩個可變電容器之電容變化以抵消該錯 亂,則即可將該特性阻抗調整至最佳之值。 [發明之效果] 根據本發明之各種實施形態,可以抵消使用時所產生之 特性阻抗之錯亂之方式來調整該特性阻抗,故可確保 mems開關為最佳之特性阻抗,藉此可避免由特性阻抗之 錯亂所引起之傳輸損失增加或絕緣性降低等特性惡化。 本發明之上述之目的及除此以外之目的、構成特徵、及 作用效果將藉由以下之說明及隨附圖式而明確。 【實施方式】 [第1實施形態] 圓1〜圖5係表示本發明(MEMS開關)之第1實施形態。此 處之說明中’為了方便說明,將圖】之左、右、下、上、 近削及内部與其他圖之相當於該等之方向分別記載為前、 後、左、右、上及下。 150772.doc 201140637 首先’參照圖1〜圖3,對MEMS開關SD10之構成進行說 明。 圖1〜圖3所示之MEMS開關SD10具有使用眾所周知之薄 膜形成方法而製成之多層構造。於一實施形態中,該 MEMS開關SD10係構成為前後尺寸約為1 ·〇 mm,左右尺寸 約為2.0 mm,且上下尺寸約為〇.5 mm。 該MEMS開關SD10包括:基體BS11、桿FL11、接點電 極CT11、第1可變電容器CA11、連接端子Tcall、第2可變 電容器CA12、連接端子Tcal2、第1信號線路SL11、第2信 號線路SL12、接地端子Tgll及Tgl2、驅動電壓輸入端子 Till a及Til 2a、以及偏壓電壓輸入端子Till b及Til 2b。 基體BS11包括:第1基體層11,其包含Si等;第1絕緣體 層12,其包含Si02等,且形成於第1基體層11上;第2基體 層13’其包含Si等,且形成於第1絕緣體層12上;及第2絕 緣體層14 ’其包含Si02等,且形成於第2基體層13上。 於第1基體層11及第1絕緣體層12形成有俯視輪廓為大致 矩形之第1貫通孔PH11。又,於第2基體層13及第2絕緣體 層14平行地形成有俯視輪廓為大致矩形、且前後尺寸小於 第1貫通孔PH11之2個第2貫通孔PH12。於該2個第2貫通孔 PH12之間存在成為桿FL11之母材之帶狀基體層13a及帶狀 絕緣體層14a。於一實施形態中,亦可藉由不於第1基體層 11形成第1貫通孔PHI 1僅除去第1絕緣體層12,而使桿 FL11可動作。 進而,於基體BS11之左側上表面及右側上表面形成有一 150772.doc 201140637 組第1電極層15,其包含將Ti層與pt層積層而成之Ti/pt, 且俯視輪廓為大致矩形。進而,於基體BS11之前側上表面 及後側上表面’以與第1電極層15相同之厚度形成有包含 Ti/Pt、且俯視輪廓為大致矩形之一組第2電極層丨6。 桿FL11包括:2個驅動部FLlla、位於兩個驅動部FLlla 之間之位移部FL 11 b、及將各驅動部FL11 a與位移部FL11 b 連結之絞鏈部FL11 c。 各驅動部FLlla係以上文所述之帶狀基體層i3a及帶狀絕 緣體層14a之左右部分作為其母材《於該左右部分上,以 與第1電極層15相同之厚度且與該第1電極層15連續地形成 有包含Ti/Pt、且俯視輪廓為大致矩形之第3電極層17。 又’於第3電極層17上,形成有包含pzT(lead-zirconate_ titanate,結欽酸鉛)等、且俯視輪廓與第3電極層1 7相同之 壓電體層18。進而,於壓電體層18上,形成有包含Ti/Pt、 且俯視輪廓與壓電體層18相同之第4電極層19。 位移部FL lib以上文所述之帶狀基體層13a及帶狀絕緣體 層14a之中央部分作為其母材。於該帶狀基體層i 3 a及帶狀 絕緣體層14a之中央部分之前後方向之中央,以與第3電極 層17相同之厚度形成有包含Ti/Pt、且俯視輪廓為大致矩形 之虛設電極層20。又,於虛設電極層20上,以與壓電體層 18相同之厚度形成有包含PZT等、且俯視輪廓與虛設電極 層20相同之虛設壓電體層21。進而,於虛設壓電體層21 上,以與第4電極層19相同之厚度形成有包含將Ti層及Au 層積層而成之Ti/Au、且俯視輪廓與虛設壓電體層21相同 150772.doc 201140637 之虛设電極層22 °進而,於虛設電極層22上,形成有包含 T"AU、且俯視輪廓與虛設電極層22相同之接點電極 CT11。 又,於構成位移部FLUb之帶狀基體層13a及帶狀絕緣體 層14a之中央部分之前側,以與虛設電極層2〇相同之厚度 形成有匕3 Ti/Pt、且俯視輪廓為大致矩形之下部電極層 23。又,於下部電極層23上,以與虛設壓電體層21相同之 厚度形成有包含pzt等、且俯視輪廓與下部電極層23相同 之介電質層24。進而,於介電質層24上,以與虛設電極層 22相同之厚度、或者較虛設電極層22僅薄〇〇i 左右而形成有包含丁i/Pt、且俯視輪廓與介電質層24相同之 上部電極層25。此處之下部電極層23、介電質層24及上部 電極層25構成第1可變電容器CAn,且該第i可變電容器 CA11係配置於位移部FLnb上。進而,於第i可變電容器 CA11之上部電極層25上,形成有包含Ti/Au、且俯視輪廓 與上部電極層25相同之連接端子Tcall。該上部電極層連 接端子Tcal 1係形成為與接點電極CT11相同之厚度,或者 較接點電極CT11僅薄0.01 pm〜〇5 μηι左右。由圖2(S3)可 知’該連接端子Tcall之上表面高度與接點電極CT11之上 表面高度一致,或者僅低O.Oi μπι〜〇.5 μπι左右。 又’於構成位移部FL11 b之帶狀基體層13a及帶狀絕緣體 層14a之中央部分之後側’以與虛設電極層2〇相同之厚度 形成有包含Ti/Pt、且俯視輪廓為大致矩形之下部電極層 26 °又’於下部電極層26上,以與虛設壓電體層21相同之 150772.doc 201140637 厚度形成有包含PZT等、且俯視輪廓與下部電極層26相同 之介電質層27。進而,於介電質層27上,以與虛設電極層 22相同之厚度、或者較虛設電極層22僅薄〇 〇1 5 左右形成有包含Ti/pt、且俯視輪廓與介電質層27相同之上 電極層28。此處之下部電極層26、介電質層27及上部電 極層28構成第2可變電容器CA12,且該第2可變電容器 CA12係配置於位移部FLllb上。進而,於第2可變電容5| CA12之上部電極層28上,形成有包含Ti/Au、且俯視輪廓 與上部電極層28相同之連接端子Tcal2。該連接端子Tcal2 係形成為與接點電極CT11相同之厚度,或者僅薄〇 〇1 μηι〜0.5 μηι左右。由圖2(S3)可知,該連接端子Tcal2之上 表面高度與接點電極CT11之上表面高度一致,或者僅低 〇·〇1 μπι〜0.5 μιη左右。 各鉸鏈部FLllc以夾持於上文所述之帶狀基體層13a及帶 狀絕緣體層14a之前後部分與中央部分之部分作為其母 材。藉由於該等之母材形成貫通孔(無符號),而對各鉸鏈 部FLllc賦予發揮鉸鏈之功能之可撓性。由圖丨及圖3(s8) 可知,各驅動部FLlla上之第3電極層17係形成為經由各鉸 鏈部FLllc上而到達位移部扎111},且各第3電極層17之邊 緣到達第1可變電容器CA11之下部電極層23及第2可變電 容器CA12之下部電極層26兩者。 第1信號線路SL11及第2信號線路SL12係包含Ti/Au ,且 分別具有使平坦之母材材料彎曲9〇度’進而向相反方向弯 曲90度之剖面形狀。第!信號線路队丨丨之前側部分之下表 I50772.doc 201140637 面係連接於刖側之第2電極層丨6之上表面,第2信號線路 SL12之後側部分之下表面係連接於後側之第2電極層16之 上表面。由於第1信號線路儿丨!與第2信號線路儿12係形成 為相對於S8-S8線而線對稱,故而第!信號線路5]^11之後側 部分之上下表面與第2信號線路SL12之前側部分之上下表 面成為同一平面。 又,由圖1可知,第1信號線路SL11及第2信號線路SL12 之左右尺寸大於接點電極CTU與兩個連接端子丁以丨丨及 Tcal2之左右尺寸。此外,第!信號線路儿〗〗之後側部分及 第2信號線路SL1 2之前側部分延伸至接點電極cTU之上方 為止,且於該後側部分與該前側部分之間設置有用以使第 1信號線路S L11與第2信號線路S l 12為非導通的間隙G A。 進而,接點電極CT11、連接端子^“}、及連接端子 2之上表面咼度相互大致相同,或者接點電極ct 11較 連接端子TCall或連接端子Tcal2僅高〇 〇1 μπι〜〇 5 μηι左 右,因此,於第1信號線路SL11之後側部分之下表面及第2 L號線路SL 12之前側部分之下表面與接點電極CT1丨之 間、於第〗信號線路SL11之後側部分之下表面與連接端子 Tcall之上表面之間、及於第2信號線路乩^之前側部分之 下表面與連接端子Tcal2之上表面之間’形成有大致同一 上下尺寸的間隙(無符號)。 ,接地端子Tgll係包含Ti/Au’且於左側之第i電極層"上 形成為俯視輪廓為大致矩形。又,接地端子Tgi2係包含 ’心且於右側之第i電極層15上形成為俯視輪廊為大致 150772.doc 201140637 矩形。 驅動電壓輸入端子Till a係包含Ti/Au,B妖丄 且於左側之驅動 部:FUUU4電極層19上之左端形成為俯視輪廓為大致矩Systems, MEMS) switches. [Prior Art] A semiconductor switch using a diode or a FET (Field Effect Transistor) causes deterioration in characteristics such as an increase in transmission loss or a decrease in insulation as the frequency becomes higher, but the MEMS switch is difficult to produce such a problem. The deterioration of the characteristics is attracting attention as a switching element suitable for use in a high-frequency circuit, for example, a circuit through which a high-frequency signal of several GHz to several hundreds of GHz flows. Typically, MEMS switches have a multilayer construction made using well known film formation methods. A conventional MEMS switch has a function of bringing two signal lines into an on state via a contact electrode by bringing a contact electrode into contact with a non-conducting signal line and a second signal line, and by releasing the contact electrode The two signal lines are non-conducting with respect to the contact of the two signal lines. Although the MEMS switch is designed to have a specific characteristic impedance such as 5 〇 Ω or 75 Ω, especially when used in a high-frequency circuit, its characteristic impedance is sometimes disturbed by external influences.错 The distortion of the characteristic impedance can be estimated to some extent depending on the application of the MEMS switch. However, the characteristic impedance is adjusted in advance based on the estimation result even if the signal line structure (line width, line length, line thickness, etc.) is adjusted. In practice, it is also possible to produce unpredictable external influences, so it is difficult to ensure the best characteristic impedance. In addition, it is not good in terms of versatility and cost reduction in the case of manufacturing a MEMS switch having a different line structure according to each of the materials 150772.doc 201140637. In other words, if the characteristic impedance can be adjusted in such a way as to offset the distortion of the characteristic impedance that may occur during use, the MEMS switch can be ensured to be the optimum characteristic impedance for any purpose, thereby avoiding the distortion caused by the characteristic impedance. Characteristics such as an increase in transmission loss or a decrease in insulation are deteriorated. [Prior Art Document] [Patent Document 1] [Patent Document 1] Japanese Patent Application No. 2008-277743 [Draft] [Problems to be Solved by the Invention] An object of the present invention is to provide a product that can be offset when used. A MEMS switch that adjusts the characteristic impedance in a manner that distort the characteristic impedance. [Means for Solving the Problems] In order to achieve the above object, the MEMS-on relationship of the present invention causes two t-number lines to pass through the contact electrodes by bringing the contact electrodes into contact with the non-conducting first signal line and the second signal line. a state in which the two signal lines are in a non-conducting state by releasing contact of the contact electrodes with respect to the two signal lines; and the MEMS switch includes: a first variable capacitor corresponding to the first signal The second variable capacitor is provided corresponding to the second signal line, and the second bias voltage input terminal is configured to pass through the first signal line and one of the first variable capacitors on the electrode layer side. Applying a bias voltage to the dielectric layer of the jth variable capacitor; and a second bias voltage input terminal 'passing through one of the second signal line and the second variable capacitor 150772.doc 201140637 electrode layer side A bias voltage is applied to the dielectric layer of the second variable capacitor. According to the MEMS switch, by applying a bias voltage to the dielectric layer of the i-th variable capacitor and the dielectric layer of the second variable capacitor, the dielectric layers of the two variable capacitors can be compared. The electric coefficient changes, and the capacitance of the two variable capacitors changes by the change, and the characteristic impedance of the mems switch changes by the change. In other words, even when the characteristic impedance (for example, 50 Ω or 75 Ω, etc.) of the MEMS switch mounted on the circuit board or the like is disturbed by external influence, the capacitance of the two variable capacitors is changed by the bias voltage. To offset the confusion, the characteristic impedance can be adjusted to an optimum value. [Effects of the Invention] According to various embodiments of the present invention, the characteristic impedance can be adjusted in such a manner as to cancel out the disorder of the characteristic impedance generated during use, thereby ensuring that the MEMS switch is optimal in characteristic impedance, thereby avoiding characteristics. Characteristics such as an increase in transmission loss caused by the disorder of impedance or a decrease in insulation are deteriorated. The above and other objects, features, and advantages of the invention will be apparent from the description and appended claims. [Embodiment] [First Embodiment] A circle 1 to 5 shows a first embodiment of the present invention (MEMS switch). In the description herein, 'for the sake of convenience, the left, right, lower, upper, and lower cuts of the figure and the other directions corresponding to the other figures are described as front, back, left, right, up and down, respectively. . 150772.doc 201140637 First, the configuration of the MEMS switch SD10 will be described with reference to Figs. 1 to 3 . The MEMS switch SD10 shown in Figs. 1 to 3 has a multilayer structure which is formed by a well-known film forming method. In one embodiment, the MEMS switch SD10 is configured to have a front and rear dimension of about 1. 〇 mm, a left and right dimension of about 2.0 mm, and an upper and lower dimension of about 〇5 mm. The MEMS switch SD10 includes a base BS11, a lever FL11, a contact electrode CT11, a first variable capacitor CA11, a connection terminal Tcall, a second variable capacitor CA12, a connection terminal Tcal2, a first signal line SL11, and a second signal line SL12. The ground terminals Tg11 and Tgl2, the driving voltage input terminals Till a and Til 2a, and the bias voltage input terminals Till b and Til 2b. The base BS 11 includes a first base layer 11 including Si or the like, a first insulator layer 12 including SiO 2 or the like, and formed on the first base layer 11 , and a second base layer 13 ′ including Si or the like and formed on The first insulator layer 12 and the second insulator layer 14' are formed of SiO 2 or the like and formed on the second base layer 13. A first through hole PH11 having a substantially rectangular outline in plan view is formed in the first base layer 11 and the first insulator layer 12. Further, in the second base layer 13 and the second insulator layer 14, two second through holes PH12 having a substantially rectangular shape in plan view and having a front-back dimension smaller than the first through holes PH11 are formed in parallel. Between the two second through holes PH12, a strip-shaped base layer 13a and a strip-shaped insulator layer 14a which are the base material of the rod FL11 are present. In one embodiment, the first insulator layer 12 can be removed only by forming the first through holes PHI 1 in the first base layer 11, and the rod FL11 can be operated. Further, on the upper left surface and the upper right surface of the base BS11, a first electrode layer 15 of 150772.doc 201140637 is formed, which comprises Ti/pt formed by laminating a Ti layer and a pt layer, and has a substantially rectangular shape in plan view. Further, on the front side upper surface and the rear upper surface ' of the base BS11, a second electrode layer 丨6 including Ti/Pt and a substantially rectangular shape in plan view is formed to have the same thickness as the first electrode layer 15. The lever FL11 includes two drive portions FL11a, a displacement portion FL11b between the two drive portions FL11a, and a hinge portion FL11c that connects the drive portions FL11a and the displacement portion FL11b. Each of the driving portions FL11a is a base material of the strip-shaped base layer i3a and the strip-shaped insulator layer 14a described above as the base material "on the left and right portions, and has the same thickness as the first electrode layer 15 and the first portion The electrode layer 15 is continuously formed with a third electrode layer 17 containing Ti/Pt and having a substantially rectangular outline in plan view. Further, on the third electrode layer 17, a piezoelectric layer 18 including pzT (lead-zirconate_tittanate) and the like having the same profile as that of the third electrode layer 17 is formed. Further, on the piezoelectric layer 18, a fourth electrode layer 19 including Ti/Pt and having the same plan view as the piezoelectric layer 18 is formed. The displacement portion FL lib has a central portion of the strip-shaped base layer 13a and the strip-shaped insulator layer 14a as described above as its base material. In the center of the front and rear directions of the central portion of the strip-shaped base layer i 3 a and the strip-shaped insulator layer 14a, a dummy electrode including Ti/Pt and having a substantially rectangular outline in plan view is formed to have the same thickness as the third electrode layer 17. Layer 20. Further, on the dummy electrode layer 20, a dummy piezoelectric layer 21 including PZT or the like and having the same profile as that of the dummy electrode layer 20 is formed in the same thickness as the piezoelectric layer 18. Further, on the dummy piezoelectric layer 21, Ti/Au in which a Ti layer and an Au layer are laminated is formed in the same thickness as the fourth electrode layer 19, and the planar profile is the same as that of the dummy piezoelectric layer 21 150772.doc The dummy electrode layer 22° of 201140637 is further formed on the dummy electrode layer 22 with a contact electrode CT11 including T"AU and having the same profile as the dummy electrode layer 22 in plan view. Further, on the front side of the central portion of the strip-shaped base layer 13a and the strip-shaped insulator layer 14a constituting the displacement portion FLUb, 匕3 Ti/Pt is formed in the same thickness as the dummy electrode layer 2, and the outline is substantially rectangular in plan view. Lower electrode layer 23. Further, on the lower electrode layer 23, a dielectric layer 24 having pzt or the like and having the same plan view as that of the lower electrode layer 23 is formed to have the same thickness as the dummy piezoelectric layer 21. Further, on the dielectric layer 24, the thickness of the dummy electrode layer 22 is the same as that of the dummy electrode layer 22, or the dummy electrode layer 22 is formed only by a thin 〇〇i, and includes a di-i/Pt and a plan view and a dielectric layer 24. The same upper electrode layer 25. Here, the lower electrode layer 23, the dielectric layer 24, and the upper electrode layer 25 constitute a first variable capacitor CAn, and the i-th variable capacitor CA11 is disposed on the displacement portion FLnb. Further, on the upper electrode layer 25 of the i-th variable capacitor CA11, a connection terminal Tcall including Ti/Au and having the same outline as that of the upper electrode layer 25 is formed. The upper electrode layer connection terminal Tcal 1 is formed to have the same thickness as the contact electrode CT11, or is only about 0.01 pm to 〇5 μηι thinner than the contact electrode CT11. 2 (S3), the height of the upper surface of the connection terminal Tcall coincides with the height of the upper surface of the contact electrode CT11, or is only about O.Oi μπι to 5.5 μπι. Further, 'the rear side of the central portion of the strip-shaped base layer 13a and the strip-shaped insulator layer 14a constituting the displacement portion FL11b is formed to have Ti/Pt and a rectangular shape in plan view in the same thickness as the dummy electrode layer 2'. The lower electrode layer 26° is formed on the lower electrode layer 26, and a dielectric layer 27 including PZT or the like and having the same profile as the lower electrode layer 26 is formed to have the same thickness as 150772.doc 201140637 which is the same as the dummy piezoelectric layer 21. Further, on the dielectric layer 27, Ti/pt is formed to have the same thickness as the dummy electrode layer 22 or the dummy electrode layer 22 is only about 15 Å, and the planar profile is the same as that of the dielectric layer 27. Upper electrode layer 28. Here, the lower electrode layer 26, the dielectric layer 27, and the upper electrode layer 28 constitute the second variable capacitor CA12, and the second variable capacitor CA12 is disposed on the displacement portion FL11b. Further, on the upper electrode layer 28 of the second variable capacitor 5|CA12, a connection terminal Tcal2 including Ti/Au and having the same profile as that of the upper electrode layer 28 is formed. The connection terminal Tcal2 is formed to have the same thickness as the contact electrode CT11, or is only about 〇1 μηι to 0.5 μηι. As is apparent from Fig. 2 (S3), the height of the upper surface of the connection terminal Tcal2 coincides with the height of the upper surface of the contact electrode CT11, or is only about 〇·〇1 μπι to 0.5 μιη. Each of the hinge portions FLllc serves as a base material of the portion between the rear portion and the central portion of the strip-shaped base layer 13a and the strip-shaped insulator layer 14a described above. By forming the through holes (unsigned) in the base material, the hinge portions FLllc are provided with flexibility to function as a hinge. As can be seen from FIG. 3 and FIG. 3 (s8), the third electrode layer 17 on each of the driving portions FL11a is formed to reach the displacement portion 111 via the respective hinge portions FLllc, and the edge of each third electrode layer 17 reaches the 1 variable capacitor CA11 lower electrode layer 23 and second variable capacitor CA12 lower electrode layer 26. The first signal line SL11 and the second signal line SL12 include Ti/Au, and each has a cross-sectional shape in which a flat base material is bent by 9 ’ degrees and bent in the opposite direction by 90 degrees. The first! Below the front side of the signal line team, the surface I50772.doc 201140637 is connected to the upper surface of the second electrode layer 丨6 on the 刖 side, and the lower surface of the rear side portion of the second signal line SL12 is connected to the rear side. 2 The upper surface of the electrode layer 16. Because the first signal line is a child! The second signal line 12 is formed to be line symmetrical with respect to the S8-S8 line, so the first! The lower surface of the rear side portion of the signal line 5] is adjacent to the lower surface of the front side portion of the second signal line SL12. Further, as is apparent from Fig. 1, the left and right dimensions of the first signal line SL11 and the second signal line SL12 are larger than the left and right dimensions of the contact electrode CTU and the two connection terminals T and Tcal2. Also, the first! The signal line 〗 〖the rear side portion and the front side portion of the second signal line SL1 2 extend above the contact electrode cTU, and a useful relationship is provided between the rear side portion and the front side portion to make the first signal line S L11 The second signal line S 12 12 is a non-conducting gap GA. Further, the surface of the contact electrode CT11, the connection terminal ^"}, and the connection terminal 2 are substantially the same as each other, or the contact electrode ct 11 is higher than the connection terminal TCall or the connection terminal Tcal2 by only μ1 μπι~〇5 μηι Left and right, therefore, between the lower surface of the rear side portion of the first signal line SL11 and the lower surface of the front side portion of the second L-line line SL 12 and the contact electrode CT1丨, below the rear side portion of the first signal line SL11 A gap (unsigned) having substantially the same upper and lower dimensions is formed between the surface and the upper surface of the connection terminal Tcall and between the lower surface of the front side portion of the second signal line and the upper surface of the connection terminal Tcal2. The terminal Tg11 includes Ti/Au' and is formed in a substantially rectangular shape in plan view on the ith electrode layer on the left side. Further, the ground terminal Tgi2 includes a 'heart and is formed as a top view wheel on the i-th electrode layer 15 on the right side. The corridor is roughly 150772.doc 201140637 rectangle. The driving voltage input terminal Till a contains Ti/Au, B is enchanting and the driving part on the left side: the left end of the FUUU4 electrode layer 19 is formed into a plan view with a substantially rectangular shape.

形。又,驅動電壓輸入端子Til2a係包令T;/A 丁匕3 U/Au,且於右側 之驅動部FMU之第4電極層19上之右端形成為俯視輪廓為 大致矩形。 偏壓電壓輸入端子Tillb係包含Ti/Au,且於基體3811之 左側上表面以俯視輪廓成為大致矩形之方式,且與驅動電 壓輸入端子Ti 11 a隔開間隔而排列之方式形成。又偏壓 電壓輸入端子Til2b係包含Ti/Au ’且於基體bsi 1之右側上 表面以俯視輪廓成為大致矩形之方式,且與驅動電壓輸入 端子Til 2a隔開間隔而排列之方式形成。 又,偏壓電壓輸入端子Ti 11 b與前側之第2電極層丨6係藉 由间電阻線路HRL11而連接’且偏壓電壓輸入端子τ丨i2b 與後側之第2電極層16係藉由高電阻線路HRL12而連接。 該等高電阻線路HRL11及HRL12係包含TaN等高電阻材 料,且與第1信號線路SL11及第2信號線路SL12相比電阻率 較高。 以下,參照圖4及圖5 ’對本發明之一實施形態之MEMS 開關SD1 0之使用方法及功能進行說明。 於使用時,如圖4所示,將MEMS開關SD10搭載於電路 基板等。又,將第1可變直流電源DC 11 a之正極側連接於驅 動電壓輸入端子Til la ’將第2可變直流電源DC1 lb之正極 側連接於偏愿電壓輸入端子Ti 11 b,且將兩個可變直流電 150772.doc -11 · 201140637 源0(:113及0(:1113之負極側連接於接地端子7^11〇又,將 第3可變直流電源DC 12a之正極側連接於驅動電壓輸入端 子Til 2a ’將第4可變直流電源DC lib之正極側連接於偏壓 電壓輸入端子Til2b ’且將兩個可變直流電源DC 12a及 DC12b之負極側連接於接地端子Tgll。 如下所述,因施加至驅動電壓輸入端子Til ia及2a中 之驅動電壓為同一值,故於一實施態樣中,可將1個可變 直流電源作為驅動電壓施加用而加以共用。又,因施加至 偏壓電壓輸入端子Tillb及Til2b中之偏壓電壓為同一值, 故於一實施態樣中’亦可將與驅動電壓施加用電源不同之 1個可變直流電源作為偏壓電壓施加用而加以共用。又, 於一實施態樣中’只要下述之電壓施加可同樣地進行,則 亦可由設置於電路基板等中之直流電壓輸入線路來代替該 可變直流電源。 將設置於電路基板等中之高頻信號路線(輸入側)連接於 第1信號線路SL11,且將高頻信號路線(輸出側)連接於第2 信號線路SL12。反之,亦可將高頻信號路線(輸入側)連接 於第2信號線路SL12,且將高頻信號路線(輸出側)連接於 第1信號線路SL11。 於使用時,自第1可變直流電源DC 11 a對驅動電壓輸入 端子Til la施加特定值之直流電壓(以下,稱為驅動電壓), 且’自第3可變直流電源DC12a對驅動電壓輸入端子丁丨i2a 施加與其為同一值之驅動電壓。又,自第2可變直流電源 DC1 lb對偏壓電壓輸入端子Til lb施加特定值之直流電壓 I50772.doc 12 201140637 (以下,稱為偏壓電壓),且,自第4可變直流電源DC 12b對 偏壓電壓輸入端子Til 2b施加與其為同一值之偏壓電壓。 施加至驅動電壓輸入端子Ti 11 a之驅動電壓,係經由構 成桿FL11之左側之驅動部FL11 a之第4電極層19而施加至該 驅動部FL 11a之壓電體層18。又’施加至驅動電壓輸入端 子Ti 12a之驅動電壓,係經由構成桿fl 11之右側之驅動部 FL1 la之第4電極層19而施加至該驅動部fl 11a之壓電體層 18 ° 藉此’如圖5所示’於構成兩個驅動部FLlla之壓電體層 18產生由壓電效應所引起之收縮。藉由該壓電體層18之收 縮而兩個驅動部FL 11 a之鉸鏈部FL 11 c側向上方上魅,故藉 由該上翹而桿FL11之位移部FL lib向上方位移,且藉由該 上方位移而接點電極CT11之上表面接觸於第1信號線路 SL11之後側部分之下表面及第2信號線路SL i 2之前側部分 之下表面。藉由該接觸而兩條信號線路儿^及儿丨?經由接 點電極ct 11成為導通狀態。即,輸入至第i信號線路SLi 1 中之咼頻is號經由該第1信號線路SL丨〖、接點電極Ct 11及 第2信號線路SL12而自該第2信號線路SL 12輸出。 又,第1可變電容器CA11及第2可變電容器CA12係配置 於桿FL11之位移部FLllb上,且第1信號線路儿丨丨之後側 刀之下表面及第2信號線路儿12之前‘側部分之下表面與 接點電極CT11的間隙、第!信號線路SL丨丨之後側部分之下 表面與連接端子Tea 11之上表面的間隙、以及第2信號線路 SL12之剛側部分之下表面與連接端子Tcai2之上表面的間 150772.doc 13 201140637 隙大致相同,故於接點電極(:丁11之上表面接觸於第t信號 線路SL11之後側部分之下表面及第2信號線路SLn之前側 部分之下表面的大致同時,第丨可變電容器CA112連接端 子Tcall之上表面接觸並電性連接於第1信號線路讥丨丨之後 側部分之下表面’且’第2可變電容器CA12之連接端子 Tcal2之上表面接觸並電性連接於第2信號線路儿12之前側 部分之下表面。 另一方面,施加至偏壓電壓輸入端子Tillb中之偏壓電 壓係經由高電阻線路HRL11、前側之第2電極層16、第1信 號線路SL11、連接端子Teal 1及第1可變電容器CA11之上 部電極層25而施加至該第1可變電容器ca 11之介電質層 24 »又’施加至偏壓電壓輸入端子Til2b中之偏壓電壓係 經由高電阻線路HRL12、後側之第2電極層16、第2信號線 路SL12、連接端子Tcal2及第2可變電容器CA12之上部電 極層28而施加至該第2可變電容器CA12之介電質層27。 藉此’兩個可變電容器CA11及CA12之介電質層24及27 之比介電係數會變化,藉由該變化而兩個可變電容器 CA11及CA11之電容會變化’且藉由該變化而MEMS開關 SD1 0之特性阻抗會變化。 即’即便於搭載於電路基板等中之MEMS開關SD10之特 性阻抗(例如50 Ω或75 Ω等)因外部影響而錯亂之情形時, 若為了抵消該錯亂而藉由偏壓電壓來使兩個可變電容器 CA11及CA11之電容變化,則可將該特性阻抗調整為最佳 之值。 150772.doc -14. 201140637 其次’對藉由本發明之一實施形態之MEMS開關SD10而 獲得之效果進行說明。 (1) 於本發明之—實施形態之MEMS開關SD10中,藉由偏 壓電壓而使兩個可變電容器CA11及CA11之電容變化,藉 此可以抵消使用時所產生之特性阻抗之錯亂之方式來調整 該特性阻抗,故可確保MEMS開關SD10為最佳之特性阻 抗。藉此’可避免由特性阻抗之錯亂所引起之傳輸損失增 加或絕緣性降低等特性惡化。 (2) 本發明之一實施形態之mEmS開關SD10中,對應於第 1信號線路SL11而設置有第1可變電容器CA11,且,對應 於第2信號線路SL12而設置有第2可變電容器CA12,因此 可對而頻信號所流經之線路整體(第1信號線路几丨丨、接點 電極C T11及第2彳§號線路s L1 2)有效地進行所期待之特性阻 抗調整。 (3) 於本發明之一實施形態之mEms開關SD10中,將第1 可變電谷器CA11及第2可變電容器CA 12配置於桿FL· 11之位 移部FLllb上,並且,使第1信號線路儿丨丨之後側部分之下 表面及第2信號線路SL 12之前側部分之下表面與接點電極 CT11的間隙、第丨信號線路乩丨丨之後側部分之下表面與連 接端子Tcall之上表面的間隙、以及第2信號線路让12之前 側部分之下表面與連接端子Tcal22上表面的間隙大致相 同,故可藉由桿FL11之位移部FLllb之上方位移,而於使 接點電極CT11之上表面接觸於第i信號線路乩丨丨之後側部 刀之下表面及第2 k號線路SL12之.前側部分之下表面的大 150772.doc 201140637 致同時,使第1可變電容器CA11之連接端子Tcaii之上表面 接觸並電性連接於第丨信號線路SL1丨之後側部分之下表 面,且,使第2可變電容器CA12之連接端子Tcal2之上表 面接觸並電性連接於第2信號線路SL12之前側部分之下表 面。 如此,可僅於第1信號線路SL11及第2信號線路SL12經 由接點電極CT11而成為導通狀態時,將第丨可變電容器 CAil連接於第1信號線路SL11 ’且,將第2可變電容器 CA12連接於第2信號線路SL12而進行所期待之特性阻抗調 整。 於一實施形態中’藉由使接點電極CT11之上表面高度較 連接端子Tcall之上表面高度及連接端子Tcai2之上表面高 度僅高0.01 μιη〜0.5 μηι左右’可使第1信號線路SL11之後 側部分之下表面及第2信號線路S L12之前側部分之下表面 與接點電極CT11的接觸電壓高於第1信號線路sl 11之後側 部分之下表面與連接端子Teal 1之上表面的接觸電壓、及 第2信號線路SL12之前側部分之下表面與連接端子Tca 12之 上表面的接觸電壓’故開關之導通狀態之穩定性提高。 (4)於本發明之一實施形態之MEMS開關SD10中,使施加 至偏壓電壓輸入端子Til lb中之偏壓電壓經由高電阻線路 HRL11而施加至第1可變電容器CA11之介電質層24,且, 使施加至偏壓電壓輸入端子Til 2b中之偏壓電壓經由高電 阻線路HRL12而施加至第2可變電容器CA12之介電質層 27,故可抑制高頻信號自第1信號線路SL11洩漏至高電阻 150772.doc •16· 201140637 線路HRLl 1側,以及,可抑制高頻信號自第2信號線路 SL12洩漏至高電阻線路HRL12側。藉此,可防止經由第j 信號線路SL11、接點電極CT11及第2信號線路SL12而流動 之高頻信號之特性劣化。 (5) 於本發明之一實施形態之MEMS開關SD10中,於處在 接點電極CT11接觸於第1信號線路SL11及第2信號線路 SL12,且,第1可變電容器CA11之連接端子Tcall接觸或 接近於第1信號線路SL11’第2可變電容器CA12之連接端 子Teal2接觸或接近於第2信號線路SL12之狀態時,自各連 接端子Tcall及Tcal2對各可變電容器CA1^ CA12施加偏 壓電壓’藉此於第1信號線路SL11與第1可變電容器c A11 之下部電極層23之間會產生靜電引力’且,於第2信號線 路SL12與第2可變電容器CA12之下部電極層26之間會產生 靜電引力。因此,可除了藉由桿FL11之壓電力(位移部 FLllb之上方位移力)以外還藉由該靜電引力而使接點電極 ctii與兩條信號線路SL11&SL12牢固地接觸,故開關之 導通狀態之穩定性提高。又,利用成為即便僅以靜電引力 接觸亦繼續之鎖存狀態之情況’以於開關之導通狀態中未 使用桿FL11之壓電力之態樣,亦可使用發明之一實施形態 之MEMS開關SD10。 (6) 亦可視本發明之一實施形態之MemS開關SD10為具有 滤波功能之元件。可使特性阻抗可變之情況係指可使濾波 功能可變。接點電極CT11之兩旁所具備之2個可變電容器 CA11及CA12接地連接,故可藉由使該等可變電容器CA11 150772.doc -17- 201140637 及CA12與高頻信號所通過之第1信號線路SUl及第2信號 線路SL12之電感成分組合而構成低通滤波器。若使各可變 電容器CA11及CA12之容量變化,則可調整截止頻率。 作為本發明之一實施形態之MEMS開關SD10,表示有分 別以PZT而形成有如下各層者’該各層為構成各驅動部 FLlla之壓電體層18、虛設壓電體層21,構成第1可變電容 器CA11之介電質層24’及構成第2可變電容器CA12之介電 質層2 7 ’然而可使用錯酸鉛、鈦酸鉛 '鎂鈮酸鉛、鎳銳酸 船、鈦酸鎖、欽酸納絲、銳酸卸鈉、及组酸錄絲等來代替 PZT ° 於本發明之一實施形態之MEMS開關SD1 0中,第1電極 層15、第2電極層16、構成各驅動部FLlla之第3電極層 17、第4電極層19、虛設電極層20及22、接點電極CT11、 構成第1可變電容器CA11之下部電極層23及上部電極層 25、連接端子Teal 1、構成第2可變電容器CA12之下部電極 層26及上部電極層28、連接端子Tcal2、第1信號線路 SL11、第2^5说線路SL12、接地端子Tgll及Tgl2、驅動電 壓輸入端子Till a及Til 2a、以及偏壓電壓輸入端子Ti lib及 Til2b ’分別包含將Ti層與Pt層積層而成之Ti/Pt或將Ti層與 Au層積層而成之Ti/Au之任一者。於本發明之其他實施形 態中,可使用Cr層、Zr層、TiN層或Ti02層之任一者來代 替Ti/Pt及/或Ti/Au之Ti層。又,可使用Au合金層、Cu層或 Ag層之任一者來代替Ti/Pt之pt層。此外,可使用Au合金 層、Cu層、或Ag層之任一者來代替Ti/Au之au層。又,於 150772.doc 201140637 本發明之其他實施形態中,亦可使用包含Pt層、Au層、Au 合金層、Cu層或Ag層之單一之層來代替Ti/pt或Ti/Au。 又’於本發明之一實施形態中,可使Ti層、Cr層、Zr層、shape. Further, the driving voltage input terminal Til2a is made of T;/A 匕 3 U/Au, and the right end of the fourth electrode layer 19 of the driving portion FMU on the right side is formed in a substantially rectangular shape in plan view. The bias voltage input terminal Tillb includes Ti/Au, and is formed so that the upper surface of the left side of the base 3811 is substantially rectangular in plan view and spaced apart from the driving voltage input terminal Ti 11 a . Further, the bias voltage input terminal Til2b includes Ti/Au' and is formed on the upper right surface of the base body bsi 1 so as to have a substantially rectangular shape in plan view, and is arranged at a distance from the driving voltage input terminal Til 2a. Further, the bias voltage input terminal Ti 11 b and the second electrode layer 6 on the front side are connected by the mutual resistance line HRL11, and the bias voltage input terminal τ丨i2b and the second electrode layer 16 on the rear side are used by The high resistance line HRL12 is connected. The high-resistance lines HRL11 and HRL12 include a high-resistance material such as TaN, and have a higher resistivity than the first signal line SL11 and the second signal line SL12. Hereinafter, a method and a function of using the MEMS switch SD10 according to an embodiment of the present invention will be described with reference to Figs. 4 and 5'. At the time of use, as shown in Fig. 4, the MEMS switch SD10 is mounted on a circuit board or the like. Further, the positive side of the first variable DC power source DC 11 a is connected to the driving voltage input terminal Til la ', and the positive side of the second variable DC power source DC1 lb is connected to the bias voltage input terminal Ti 11 b, and two Variable DC power 150772.doc -11 · 201140637 Source 0 (:113 and 0 (:1113, the negative side is connected to the ground terminal 7^11〇, and the positive side of the third variable DC power supply DC 12a is connected to the driving voltage The input terminal Til 2a' connects the positive side of the fourth variable DC power source DC lib to the bias voltage input terminal Til2b' and connects the negative side of the two variable DC power supplies DC 12a and DC12b to the ground terminal Tg11. Since the driving voltages applied to the driving voltage input terminals Til ia and 2a are the same value, in one embodiment, one variable DC power source can be shared as a driving voltage application. The bias voltages in the bias voltage input terminals Tillb and Til2b are the same value. Therefore, in one embodiment, a variable DC power source different from the driving voltage application power source can be applied as a bias voltage. Sharing. In one embodiment, the variable DC power supply may be replaced by a DC voltage input line provided in a circuit board or the like as long as the voltage application described below can be performed in the same manner. The high frequency provided in the circuit board or the like The signal path (input side) is connected to the first signal line SL11, and the high-frequency signal route (output side) is connected to the second signal line SL12. Conversely, the high-frequency signal route (input side) can be connected to the second signal. The line SL12 is connected to the first signal line SL11 by the high-frequency signal line (output side). In use, a DC voltage of a specific value is applied to the driving voltage input terminal Til la from the first variable DC power source DC 11 a (hereinafter , referred to as the driving voltage), and 'the driving voltage is applied to the driving voltage input terminal D1i2 from the third variable DC power supply DC12a. Also, the bias voltage is input from the second variable DC power supply DC1 lb. The terminal Til lb applies a DC voltage of a specific value I50772.doc 12 201140637 (hereinafter referred to as a bias voltage), and from the fourth variable DC power source DC 12b to the bias voltage input terminal Til 2b A bias voltage having the same value is applied thereto. The driving voltage applied to the driving voltage input terminal Ti 11 a is applied to the driving portion FL 11a via the fourth electrode layer 19 constituting the driving portion FL11 a on the left side of the rod FL11. The piezoelectric layer 18 and the driving voltage applied to the driving voltage input terminal Ti 12a are applied to the piezoelectric layer of the driving portion fl 11a via the fourth electrode layer 19 constituting the driving portion FL1 la on the right side of the rod fl 11 18 ° by this, as shown in FIG. 5, the piezoelectric layer 18 constituting the two driving portions FL11a generates shrinkage caused by the piezoelectric effect. By the contraction of the piezoelectric layer 18, the hinge portions FL 11 c of the two driving portions FL 11 a are laterally upwardly slid, so that the displacement portion FL lib of the rod FL11 is displaced upward by the upward tilt, and by The upper surface is displaced while the upper surface of the contact electrode CT11 is in contact with the lower surface of the rear side portion of the first signal line SL11 and the lower surface of the front side portion of the second signal line SL i 2 . With this contact, the two signal lines and children's children? The contact electrode ct 11 is turned on. In other words, the 咼frequency is number input to the i-th signal line SLi 1 is output from the second signal line SL 12 via the first signal line SL 丨, the contact electrode Ct 11 and the second signal line SL12. Further, the first variable capacitor CA11 and the second variable capacitor CA12 are disposed on the displacement portion FL11b of the rod FL11, and the first signal line is behind the side surface of the side knife and the front side of the second signal line 12 Part of the lower surface and the contact electrode CT11 gap, the first! a gap between the lower surface of the rear side portion of the signal line SL丨丨 and the upper surface of the connection terminal Tea 11 , and a surface between the lower surface of the rigid side portion of the second signal line SL12 and the upper surface of the connection terminal Tcai2 150772.doc 13 201140637 It is substantially the same, so that the contact electrode (the upper surface of the butt 11 is in contact with the lower surface of the rear side portion of the t-th signal line SL11 and the lower surface of the front side portion of the second signal line SLn, the second variable capacitor CA112 The upper surface of the connection terminal Tcall is in contact with and electrically connected to the lower surface of the rear side portion of the first signal line ' and the upper surface of the connection terminal Tcal2 of the second variable capacitor CA12 is in contact with and electrically connected to the second signal. The lower surface of the front side portion of the line 12. On the other hand, the bias voltage applied to the bias voltage input terminal Tillb is via the high resistance line HRL11, the second electrode layer 16 on the front side, the first signal line SL11, and the connection terminal. Teal 1 and the first variable capacitor CA11 upper electrode layer 25 are applied to the dielectric layer 24 of the first variable capacitor ca 11 and are applied to the bias voltage input terminal Til2b. The voltage is applied to the second variable capacitor CA12 via the high resistance line HRL12, the second electrode layer 16 on the rear side, the second signal line SL12, the connection terminal Tcal2, and the upper electrode layer 28 of the second variable capacitor CA12. Dielectric layer 27. By this, the dielectric constants of the dielectric layers 24 and 27 of the two variable capacitors CA11 and CA12 vary, and the capacitances of the two variable capacitors CA11 and CA11 change. 'The characteristic impedance of the MEMS switch SD1 0 changes with this change. That is, the characteristic impedance (for example, 50 Ω or 75 Ω, etc.) of the MEMS switch SD10 mounted on a circuit board or the like is disturbed by external influences. When the capacitances of the two variable capacitors CA11 and CA11 are changed by the bias voltage in order to cancel the disorder, the characteristic impedance can be adjusted to an optimum value. 150772.doc -14. 201140637 Next 'Yes The effect obtained by the MEMS switch SD10 according to the embodiment of the present invention will be described. (1) In the MEMS switch SD10 of the embodiment of the present invention, the two variable capacitors CA11 and CA11 are biased by the bias voltage. Capacitance change, borrow This can adjust the characteristic impedance by canceling the disorder of the characteristic impedance generated during use, thereby ensuring that the MEMS switch SD10 is optimal in characteristic impedance, thereby avoiding an increase in transmission loss caused by the disturbance of the characteristic impedance or (2) In the mEmS switch SD10 according to the embodiment of the present invention, the first variable capacitor CA11 is provided corresponding to the first signal line SL11, and is provided corresponding to the second signal line SL12. Since the second variable capacitor CA12 is provided, it is possible to efficiently perform the entire line (the first signal line, the contact electrode C T11, and the second line s L1 2) through which the frequency signal flows. Characteristic impedance adjustment. (3) In the mEms switch SD10 according to the embodiment of the present invention, the first variable electric grid unit CA11 and the second variable capacitor CA 12 are disposed on the displacement portion FL11b of the rod FL·11, and the first a lower surface of the rear side portion of the signal line, a gap between the lower surface of the front side portion of the second signal line SL12 and the contact electrode CT11, a lower surface of the rear side portion of the second signal line 与, and a connection terminal Tcall The gap between the upper surface and the second signal line have substantially the same gap between the lower surface of the front side portion of the 12 and the upper surface of the connection terminal Tcal22, so that the contact electrode CT11 can be displaced by the displacement of the displacement portion FL11b of the rod FL11. The upper surface is in contact with the lower surface of the side of the ith signal line 乩丨丨 and the upper surface of the front side portion of the 2kth line SL12 is 150772.doc 201140637, and the first variable capacitor CA11 is simultaneously The upper surface of the connection terminal Tcaii is in contact with and electrically connected to the lower surface of the rear side portion of the second signal line SL1, and the upper surface of the connection terminal Tcal2 of the second variable capacitor CA12 is contacted and electrically connected to the second signal. Line SL 12 below the front side of the surface. In this manner, when the first signal line SL11 and the second signal line SL12 are turned on via the contact electrode CT11, the second variable capacitor CAil can be connected to the first signal line SL11' and the second variable capacitor can be connected. The CA 12 is connected to the second signal line SL12 to perform the desired characteristic impedance adjustment. In one embodiment, the height of the upper surface of the contact electrode CT11 is higher than the height of the upper surface of the connection terminal Tcall and the height of the upper surface of the connection terminal Tcai2 is only about 0.01 μm to 0.5 μηιη, which can be after the first signal line SL11. The contact surface voltage between the lower surface of the side portion and the lower surface of the front side portion of the second signal line S L12 and the contact electrode CT11 is higher than the contact between the lower surface of the rear side portion of the first signal line sl11 and the upper surface of the connection terminal Teal 1 The voltage and the contact voltage between the lower surface of the front side portion of the second signal line SL12 and the upper surface of the connection terminal Tca 12 are improved, so that the stability of the on state of the switch is improved. (4) In the MEMS switch SD10 according to the embodiment of the present invention, the bias voltage applied to the bias voltage input terminal Til lb is applied to the dielectric layer of the first variable capacitor CA11 via the high resistance line HRL11. 24, the bias voltage applied to the bias voltage input terminal Til 2b is applied to the dielectric layer 27 of the second variable capacitor CA12 via the high resistance line HRL12, so that the high frequency signal can be suppressed from the first signal. The line SL11 leaks to the high resistance 150772.doc •16·201140637 line HRL1 1 side, and can suppress the high frequency signal from leaking from the second signal line SL12 to the high resistance line HRL12 side. Thereby, deterioration of the characteristics of the high-frequency signal flowing through the j-th signal line SL11, the contact electrode CT11, and the second signal line SL12 can be prevented. (5) In the MEMS switch SD10 according to the embodiment of the present invention, the contact electrode CT11 is in contact with the first signal line SL11 and the second signal line SL12, and the connection terminal Tcall of the first variable capacitor CA11 is in contact. Or when the connection terminal Teal2 of the second variable capacitor CA12 of the first signal line SL11' is in contact with or close to the second signal line SL12, a bias voltage is applied to each of the variable capacitors CA1 to CA12 from the respective connection terminals Tcall and Tcal2. 'There is an electrostatic attraction between the first signal line SL11 and the lower electrode layer 23 of the first variable capacitor c A11 and the second electrode line SL12 and the second variable capacitor CA12. Electrostatic attraction occurs between the two. Therefore, in addition to the piezoelectric power of the rod FL11 (displacement force above the displacement portion FL11b), the contact electrode ctii is firmly brought into contact with the two signal lines SL11 & SL12 by the electrostatic attractive force, so that the switch is turned on. The stability is improved. Further, the MEMS switch SD10 according to an embodiment of the present invention can be used in a case where the latch state continues even if it is contacted only by electrostatic attraction. The voltage of the lever FL11 is not used in the on state of the switch. (6) It is also possible that the MemS switch SD10 according to an embodiment of the present invention is an element having a filtering function. The case where the characteristic impedance can be made variable means that the filtering function can be made variable. The two variable capacitors CA11 and CA12 provided on both sides of the contact electrode CT11 are grounded, so that the first signal can be passed by the variable capacitors CA11 150772.doc -17- 201140637 and CA12 and the high frequency signal. The inductance components of the line SU1 and the second signal line SL12 are combined to form a low-pass filter. When the capacity of each of the variable capacitors CA11 and CA12 is changed, the cutoff frequency can be adjusted. The MEMS switch SD10 according to the embodiment of the present invention is characterized in that each of the layers is formed by PZT. The respective layers are the piezoelectric layer 18 and the dummy piezoelectric layer 21 constituting each of the driving portions FL11a, and constitute a first variable capacitor. The dielectric layer 24' of CA11 and the dielectric layer 27' constituting the second variable capacitor CA12 can be used, however, lead acid lead, lead titanate 'lead magnesium niobate, nickel sulphuric acid boat, titanate lock, chin In place of PZT ° in the MEMS switch SD1 0 of one embodiment of the present invention, the first electrode layer 15 and the second electrode layer 16 constitute the respective driving portions FL11a. The third electrode layer 17, the fourth electrode layer 19, the dummy electrode layers 20 and 22, the contact electrode CT11, the lower electrode layer 23 and the upper electrode layer 25 of the first variable capacitor CA11, and the connection terminal Teal 1 are formed. 2 variable capacitor CA12 lower electrode layer 26 and upper electrode layer 28, connection terminal Tcal2, first signal line SL11, second circuit line SL12, ground terminals Tg11 and Tgl2, driving voltage input terminals Till a and Til 2a, And the bias voltage input terminals Ti lib and Til2b ' respectively include Any of Ti/Pt laminated with Ti layer and Pt or Ti/Au formed by laminating Ti layer and Au layer. In other embodiments of the invention, any of the Cr layer, the Zr layer, the TiN layer or the TiO 2 layer may be used instead of the Ti layer of Ti/Pt and/or Ti/Au. Further, any of the Au alloy layer, the Cu layer or the Ag layer may be used instead of the pt layer of Ti/Pt. Further, any of the Au alloy layer, the Cu layer, or the Ag layer may be used instead of the Ti/Au au layer. Further, in another embodiment of the present invention, a single layer including a Pt layer, an Au layer, an Au alloy layer, a Cu layer or an Ag layer may be used instead of Ti/pt or Ti/Au. Further, in an embodiment of the present invention, a Ti layer, a Cr layer, a Zr layer, or the like may be used.

TiN層或TiO〗層之膜厚為1 nm~100 nm,且可使pt層、Au 層、Au合金層、Cu層或Ag層之膜厚為0.1 μηι〜30 μηι。熟 • ^本技藝者可明確,構成本發明之各種實施形態之mems 開關SD3 0中所包含之各要素的材料’並不限定於本說明書 中所明示地闡述者,於不脫離本發明之範圍的範圍中,可 進行適當變更。 於本發明之一實施形態之MEMS開關SD10中,如上所 述’為了使接點電極CT11之上表面高度與連接端子Tcall 及Tcal2之上表面高度一致,而於位移部FLllb上形成虛設 電極層20、虛設壓電體層21及虛設電極層22,且於其上形 成接點電極CT11。於其他實施形態中,亦可於虛設電極層 20上形成如下接點電極CT11來代替該虛設壓電體層21及虛 設電極層22,上述接點電極CT11具有將該虛設壓電體層以 及虛設電極層22之厚度相加而得之厚度,或者將該虛設壓 電體層21及虛設電極層22之厚度相加而得之厚度進而加上 0.0 1 μηι〜0 · 5 μηι左右而得之厚度。又,於一實施形態中, • 可於帶狀絕緣體層14a上形成如下接點電極CT11來代替虛 設電極層20、虛設壓電體層21及虛設電極層22,上述接點 電極CT11具有將虛設電極層20、虛設壓電體層21及虛設電 極層22之厚度相加而得之厚度。 於本發明之一實施形態之MEMS開關SD10中,如上所 150772.doc ίο 201140637 述’將1個接地端子Tgll作為左側之驅動部FLUa及第1可 變電容器CA11之接地端子而加以共用,且,將另丨個接地 端子Tgl2作為右側之驅動部FLUa及第2可變電容器cai2 之接地端子而加以共用。於其他實施形態中,亦可另行設 置第1可變電容器C A11專用之接地端子並利用專用線路將 其與第1可變電容器CA11之下部電極層23連接,且另行設 置第2可變電谷器CA12專用之接地端子並利用專用線路將 其與第2可變電容器CA12之下部電極層26連接。 若如此,則可使施加至第1可變電容器CA11之介電質層 24中之偏壓電壓與施加至第2可變電容器ca 12之介電質層 27中之偏壓電壓不同。即’由於可使以第1信號線路儿“ 側作為對象之特性阻抗調整與以第2信號線路SL 12側作為 對象之特性阻抗調整個別地進行,故可整體地進行更細微 之特性阻抗調整。 [第2實施形態] 圖6及圖7係表示本發明(MEMS開關)之第2實施形態。此 處之說明中,為了方便說明,與關於圖1之說明同樣地, 將圖6之左、右、下、上、近前及内部與其他圖之相當於 該等之方向分別記載為前、後、左、右、上及下。 首先,引用圖6對MEMS開關SD20之構成進行說明。 圖6所示之MEMS開關SD20具有使用眾所周知之薄膜形 成方法而製成之多層構造。於一實施形態中,該MEMS開 關SD20係構成為前後尺寸約為1.〇 mm,左右尺寸約為1.2 mm ’且上下尺寸約為0.5 mm。 150772.doc •20· 201140637 該MEMS開關SD20係與上述MEMS開關SD10於如下方面 使構成不同: .使用較之基體BS11左右尺寸更小之基體BS11,; •使用較之第1貫通孔PH11及第2貫通孔PH12左右尺寸更 小之第1貫通孔PH11'及第2貫通孔PH12',且使第2貫通孔 PH12'之俯視輪廓為大致!7字形; •使用將桿FL11之右側之驅動部FLlla及鉸鏈部FLllc去 除者作為桿FL11·; •將設置於基體BS11之右側之第1電極層15、驅動電壓輸 入端子Til2a、偏壓電壓輸入端子i2b、接地端子Tg 12及 高電阻線路HRL12去除’將成為偏壓電壓輸入端子i2b 之代替之偏壓電壓輸入端子Ti 11c設置於基體BSir之左 側,且將成為高電阻線路HRL12之代替之高電阻線路 HRL1 2'設置於第2信號線路SL12之左側。 由於MEMS開關SD20之其他構成與上述MEMS開關SD10 相同,故省略其說明。 以下’參照圖7 ’對本發明之一實施形態之MEMS開關 SD20之使用方法及功能進行說明。 於使用時’如圖7所示,將MEMS開關SD20搭載於電路 - 基板等。又,將第1可變直流電源DC 11 a之正極側連接於驅 動電壓輸入端子Tilla ’將第2可變直流電源DCllb之正極 側連接於偏壓電壓輸入端子Ti 11 b,將第3可變直流電源 DC 11c之正極側連接於偏壓電壓輸入端子Tillc,且將該等 可變直流電源0(:113、0(:1113及0(:11〇之負極側連接於接 150772.doc •21 201140637 地端子Tgll。 如下所述,施加至偏壓電壓輸入端子TilIb&TiUc_之 偏壓電Μ為同一值,故於一實施態樣中,可將1個可變直 流電源作為偏壓電壓施加用而加以共用。又,於一實施態 樣中,只要下述之電壓施加可同樣地進行,則亦可由設置 於電路基板等中之直流電壓輸入線路來代替該可變直流電 源。 又,將設置於電路基板等中之高頻信號路線(輸入側)連 接於第1信號線路SL11 ’且將高頻信號路線(輸出侧)連接 於第2信號線路SL12。亦可將高頻信號路線(輸入側)連接 於第2信號線路SL12,且將高頻信號路線(輸出側)連接於 第號線路SL11。 於使用時’自第1可變直流電源DC 1 la對驅動電壓輸入 端子Ti 11 a施加特定值之直流電壓(以下,稱為驅動電壓)。 又,自第2可變直流電源DCUb對偏壓電壓輸入端子TiUb 施加特定值之直流電壓(以下,稱為偏壓電壓),且,自第3 可變直流電源DC 11 c對偏壓電壓輸入端子Ti 11 c施加與其為 同一值之偏壓電壓。 MEMS開關SD20中之動作及作用效果與MEMS開關sm〇 中之動作及作用效果相同。 [第3實施形態] 圖8〜圖12係表示本發明之第3實施形態。此處之說明 中’為了方便說明,與關於圖1之說明同樣地,將圖8之 左、右、下、上、近前及内部與其他圖之相當於該等之方 150772.doc -22- 201140637 向分別5己載為則、後、左、右、上及下。 首先,參照圖8〜圖1〇,對MEMS開關SD3〇之構成進行說 明。 圖8〜圖10所示之MEMS開關SD3〇具有使用眾所周知之薄 膜形成方法而製成之多層構造。於一實施形態中,該 MEMS開關SD3 0係構成為前後尺寸約為丨〇 mm,左右尺寸 約為1.20 mm,且上下尺寸約為05mm。 該MEMS開關SD30包括:基體BS31、桿FL31、接點電 極CT31、第1可變電容器CA31、連接端子Tca3i、第2可變 電容器CA32、連接端子Tca32、第1信號線路SL3 1、第2信 號線路SL32、接地端子Tg3 1、驅動電壓輸入端子Ti3丨a、 偏壓電壓輸入端子Ti31b及Ti31c。 基體BS31包括.第1基體層31,其包含si等;第1絕緣體 層32,其包含Si〇2等,且形成於第!基體層31上;第2基體 層33’其包含Si等,且形成於第3絕緣體層31上;及第2絕 緣體層34 ’其包含Si〇2等,且形成於第2基體層33上。 於第1基體層3 1及第1絕緣體層32形成有俯視輪廓為大致 矩形之第1貫通孔PH31。又,於第2基體層33及第2絕緣體 層34形成有俯視輪廓為大致字形之第2貫通孔ph32,且 於該第2貫通孔PH32之内侧存在成為桿FL31之母材之帶狀 基體層33a及帶狀絕緣體層34a。 於基體BS3 1之左側上表面形成有包含Ti/Pt、且俯視輪 廓為大致矩形之第1電極層35。又,於基體BS11之前側上 表面及後側上表面,以與第1電極層3 5相同之厚度形成有 150772.doc -23- 201140637 包含Τι/Pt、且俯視輪廓為大致矩形之第2電極層36。 桿FL31包括:驅動部FL31a、位於驅動部FL31a之自由 端之位移部FL3 1 b、及將驅動部FL3丨&與位移部FL3丨b連結 之鉸鏈部FL31c。 驅動部FL3 la係以上文所述之帶狀基體層33a及帶狀絕緣 體層34a之左側部分作為其母材。於該左側部分上,以與 第1電極層35相同之厚度且與該第}電極層35連續地形成有 包含Ti/Pt、且俯視輪廓為大致矩形之第3電極層37。又, 於第3電極層37上,形成有包含PZT等、且俯視輪廟與第3 電極層37相同之壓電體層38 ^進而,於壓電體層38上形成 有包含Ti/Pt、且俯視輪廓與壓電體層38相同之第4電極層 39 ° 位移部FL3 1 b係以上文所述之帶狀基體層33a及帶狀絕緣 體層34a之右端部分作為其母材。於該帶狀基體層33 a及帶 狀絕緣體層34a之右端部分上,以與第3電極層37相同之厚 度形成有包含Ti/Pt、且俯視輪廓為大致矩形之虛設電極層 40。又,於虛設電極層40上,形成有包含Ti/Au、且俯視 輪廓與虛設電極層40相同之接點電極CT3 1。 鉸鏈部F L 3 1 c係以夾持於上文所述之帶狀基體層3 3 a及帶 狀絕緣體層34a之左側部分及右端部分之部分作為其母 材。藉由於該等母材形成貫通孔(無符號),而對鉸鏈部 FL3 1 c賦予發揮鉸鏈之功能之可撓性。 於基體BS31上之第.2貫通孔PH32之前侧,以與第3電極 層37相同之厚度形成有包含Ti/Pt、且俯視輪廓為大致矩形 150772.doc -24- 201140637 之下部電極層41。x,於下部電極層41上,以與壓電體層 Μ相同之厚度形成有包含ρζτ等、且俯視輪廓與下部電極 層41相同之介電質層42。進而,於介電質層上,以與第 4電極層39相同之厚度形成有包含Ti/Pt、且俯視輪靡與介 電質層42相同之上部電極層43。此處之下部電極層μ、介 電質層42及上部電極層43構成第丨可變電容器ca3卜且該 第1可變電容器CA31係配置於基體BS31上。進而,於第】 可變電容器CA31之上部電極層43上,形成有包含η—、 且俯視輪廓與上部電極層43相同之連接端子Ted〗。由圖 9(SU)可知,該連接端子Tea3i之上表面係密接並電性連接 於第1信號線路SL31之後側部分之下表面。 又,於基體BS31上之第2貫通孔pH32之後側,以與第] 電極層3 7相同之厚度形成有包含了丨他、且俯視輪廓為大致 矩形之下部電極層44。又,於下部電極層料上,以與壓電 體層38相同之厚度形成有包含ρζτ等、且俯視輪扉與下部 電極層44相同之介電質層45。進而,於介電質層45上,以 與第4電極層39相同之厚度形成有包含Ti/Pt、且俯視輪廓 與’丨電質層45相同之上部電極層46。此處之下部電極層 44、介電質層44及上部電極層45構成第2可變電容器 CA32 ’且該第2可變電容器CA32係配置於基體BS31上。 進而,於第2可變電容器CA32之上部電極層446上,形成 有包s Ti/Au、且俯視輪廓與上部電極層46相同之連接端 子Tca32。*圖9(S13)可知,該連接端子Tea31之上表面係 密接並電性連接於第2信號線路SL32之前側部分之下表 150772.doc -25- 201140637 面。 第Hs號線路SL31及第2信號線路儿32係包含Ti/Au,且 分別具有使平坦之母材材料f曲9()度,進而向相反方向彎 曲90度之剖面形狀。第!信號線路SL3丨之前側部分之下表 面係連接於前侧之第2電極層36之上表面,且第2信號線路 SL32之後側部分之下表面係連接於後側之第2電極層“之 上表面。由於第^言號線路SL31及第2信號線路儿32係形 成為相對於S16-S16線而於前後方向成為線對稱,故而第丄 信號線路SL3 1之後侧部分之上下表面與第2信號線路几32 之刖側部分之上下表面成為同一平面。 又,由圖8可知,第i信號線路儿31及第2信號線路紅32 之左右尺寸大於接點電極CT3 1與兩個連接端子Tca3丨及 Tca32之左右尺寸。進而,第!信號線路SL3丨之後側部分及 第2 k號線路S L 3 2之則側部分延伸至接點電極CT3]之卜方 為止,且於該後側部分與該前側部分之間設置有用以使第 1 k號線路SL3 1與第2信號線路SL32為非導通的間隙ga。 進而’於第1信號線路S L 3 1之後側部分之下表面及第2信號 線路SL32之前側部分之下表面與接點電極[Τ3 1之間,形 成有具有特定之上下尺寸的間隙(無符號)。 接地端子Tg31係包含Ti/Au ’且於第1電極層35上形成為 俯視輪廓為大致矩形。又,驅動電壓輸入端子Ti3 la係包 含Ti/Au ’且於驅動部FL3 la之第4電極層39上之左端形成 為俯視輪廓為大致矩形。偏壓電壓輸入端子Ti31b係包含 Ti/Au,且於基體BS3 1之左前側上表面形成為俯視輪廓為 150772.doc •26· 201140637 大致矩l ’且與接地端子Tg31隔開間隔而排列。偏壓電壓 輸入端子Ti31c係包含Ti/Au,且於基體BS11之左後側上表 面形成為俯視輪廓為大致矩形,且與驅動電壓輸入端子 Ti3 la隔開間隔而排列。 又,偏壓電壓輸入端子Ti31b與前側之第2電極層36係藉 由高電阻線路HRL31而連接,且偏壓電壓輸入端子丁131(:與 後側之第2電極層36係藉由高電阻線路HRL32而連接。該 等高電阻線路HRL31及HRL32係包含TaN等高電阻材料, 且電阻率與第1信號線路SL3 1及第2信號線路SL32相比較 南。 以下,參照圖U及圖12,對上述MEMS開關SD30之使用 方法及功能等進行說明。 於使用時’如圖11所示,將MEMS開關SD30搭載於電路 基板等。又,將第1可變直流電源DC31a之正極側連接於 驅動電壓輸入端子Ti3 1 a,將第2可變直流電源DC3 1 b之正 極側連接於偏壓電壓輸入端子Ti3 1 b,將第3可變直流電源 DC31c之正極側連接於偏壓電壓輸入端子Ti31c,且將該等 可變直流電源DC31a、DC31b及DC31c之負極側連接於接 地端子T g 3 1。 圖式中雖表示有3個可變直流電源DC31a、DC31b及 DC31c,然而如下所述,施加至偏壓電壓輸入端子Ti31b及 Ti31c中之偏壓電壓為同一值,故於一實施態樣中,可將1 個可變直流電源作為驅動電壓施加用而加以共用。又,於 一實施態樣中,只要下述之電壓施加可同樣地進行,則亦 150772.doc •27- 201140637 可由設置於電路基板等中之直流電壓輸入線路來代替該可 變直流電源。 又,將設置於電路基板等中之高頻信號路線(輸入側)連 接於第1信號線路SL3 1,且將高頻信號路線(輸出側)連接 於第2信號線路SL32。亦可將高頻信號路線(輸入側)連接 於第2信號線路SL32,且將高頻信號路線(輸出側)連接於 第1信號線路SL31。 於使用時,自第1可變直流電源DC31a對驅動電壓輸入 端子Ti3 1 a施加特定值之直流電壓(以下,稱為驅動電壓)。 又’自第2可變直流電源DC31b對偏壓電壓輸入端子Ti31b 施加特定值之直流電壓(以下,稱為偏壓電壓),且,自第3 可變直流電源DC31c對偏壓電壓輸入端子Ti31c施加與其為 同一值之偏壓電壓。 施加至驅動電壓輸入端子Ti31a中之驅動電壓係經由構 成才干FL31之驅動部FL31a之第4電極層39而施加至該驅動部 FL31a之壓電體層38。 藉此,如圖12所示,於構成驅動部FL3 la之壓電體層38 產生由壓電效應所引起之收縮。藉由該壓電體層38之收 縮,而驅動部FL31a之鉸鍵部FL31c側向上方上輕,藉由該 上翹而桿FL3 1之位移部FL3 1 b向上方位移,藉由該上方位 移而接點電極CT3 1之上表面接觸於第1信號線路SL3丨之後 側部分之下表面及第2信號線路SL32之前側部分之下表 面,藉由該接觸而兩條信號線路SL3 1及SL32經由接點電 極CT31成為導通狀態。即,輸入至第1信號線路几31中之 I50772.doc • 28 · 201140637 高頻信號經由該第1信號線路SL3 1、接點電極CT3 1及第2 信號線路SL32而自該第2信號線路SL32輸出。 另一方面,施加至偏壓電壓輸入端子Ti31b中之偏壓電 壓係經由高電阻線路HRL3 1、前側之第2電極層36、第1信 號線路SL3 1、連接端子Tca3 1及第1可變電容器cA3 1之上 部電極層43而施加至該第1可變電容器CA3 1之介電質層 42。又,施加至偏壓電壓輸入端子Ti3 1 c中之偏壓電壓係 經由高電阻線路HRL32、後側之第2電極層36、第2信號線 路SL32、連接端子Tca32及第2可變電容器CA32之上部電 極層46而施加至該第2可變電容器CA32之介電質層45。 藉此’兩個可變電容器CA31及CA32之介電質層42及45 之比介電係數會變化’藉由該變化而兩個可變電容器 CA3 1及CA3 1之電容會變化,且藉由該變化而mems開關 SD30之特性阻抗會變化。 即’即便於搭載於電路基板等中之MEMS開關SD30之特 性阻抗(例如50 Ω或75 Ω等)因外部影響而錯亂之情形時, 只要藉由偏壓電壓而使兩個可變電容器C A3 1及C A3 1之電 容變化以抵消該錯亂’則即可將該特性阻抗調整為最佳之 值。 其次’對藉由本發明之一實施形態之MEMS開關SD30而 獲得之效果進行說明。 (1)於本發明之一實施形態之MEMS開關SD30中,藉由偏 壓電壓而使兩個可變電容器CA3 1及CA3 1之電容變化,藉 此可以抵消使用時所產生之特性阻抗之錯亂的方式來調整 150772.doc •29· 201140637 該特性阻抗,故可確保MEMS開關SD30為最佳之特性阻 抗’藉此可避免由特性阻抗之錯亂所引起之傳輸損失增加 或絕緣性降低等特性惡化。 (2) 於本發明之一實施形態之MEMS開關SD30中,對應於 第1信號線路SL3 1而設置有第1可變電容器c A3 1,且,對 應於第2信號線路几32而設置有第2可變電容器ca32,因 此可對於高頻信號所流經之線路整體(第1信號線路SL3 1、 接點電極CT3 1及第2信號線路SL32)有效地進行所期待之特 性阻抗調整。 (3) 於上述MEMS開關SD30中,將第1可變電容器CA31及 第2可變電容器CA32配置於基體BS31上,並且,第1可變 電合器C A3 1上之連接端子Tca3丨之上表面接觸並電性連接 於第Ik號線路SL31之後側部分之下表面,且,第2可變電 谷器CA32上之連接端子Tca32之上表面接觸並電性連接於 第2信號線路SL32之前側部分之下表面,故可使第i可變電 容器CA31及連接端子Tca31發揮支撐並保持第號線路 SL31之後側部分的支柱之作用,且可使第2可變電容器 CA32及連接端子Tca32發揮支撐並保持第2信號線路SL32 之前側部分的支柱之作用。 如此,可強化接點電極CT31所接觸之第丨信號線路讥31 之後側部分及第2信號線路SL32之前側部分’故即便接點 電極CT31相對於該等部分反覆接觸及其解除,該部分亦難 以產生變形…可防止以變形為原因而可能產生之接觸 不良。 150772.doc -30- 201140637 (4) 於本發明之一實施形態之MEMS開關SD30中,使施加 至偏壓電壓輸入端子Ti3 lb中之偏壓電壓經由高電阻線路 HRL3 1而施加至第1可變電容器CA3 1之介電質層42,又, 使施加至偏壓電壓輸入端子Ti3 1 c中之偏壓電壓經由高電 阻線路HRL32而施加至第2可變電容器CA32之介電質層 45 ’故可抑制高頻信號自第1信號線路SL3丨洩漏至高電阻 線路HRL3 1側’以及,可抑制高頻信號自第2信號線路 S L 3 2 )¾漏至尚電阻線路HRL 3 2側。藉此,可防止經由第1 信號線路SL31、接點電極CT31及第2信號線路SL32而流動 之高頻信號之特性劣化。 (5) 亦可視本發明之一實施形態之MEMS開關SD30為具有 濾波功能之元件。可使特性阻抗可變之情況即係指可使濾 波功能可變。接點電極CT3 1之兩旁所具備之2個可變電容 器CA31及CA32接地連接,故可藉由使可變電容器CA31及 CA32與高頻信號所通過之第1信號線路SL31及第2信號線 路SL32之電感成分組合而構成低通遽波器。若使各可變電 容器CA31及CA32之容量變化,則可調整截止頻率。 作為本發明之一實施形態之MEMS開關SD30,表示有分 別以PZT而形成如下各層者,該各層為構成驅動部fL3 1 a 之壓電體層38,構成第1可變電容器CA31之介電質層42, 及構成第2可變電容器CA32之介電質層45,然而可使用锆 酸鉛、鈦酸鉛、鎂鈮酸鉛、鎳鈮酸鉛、鈦酸鋇、鈦酸鈉 鉍、鈮酸鉀鈉、及鈕酸锶鉍等來代替PZT。 又’於本發明之一實施形態之MEMS開關SD30中,第1 150772.doc 201140637 電極層35、第2電極層36、構成驅動部FLU a之第3電極層 37及第4電極層39、虛設電極層40、接點電極CT31、構成 第ί可變電容器CA31之下部電極層41及上部電極層43、連 接端子Tca31、構成第2可變電容器CA32之下部電極層44 及上部電極層46、連接端子Tca32、第1信號線路SL3 1、第 2信號線路SL32、接地端子Tg3 1、驅動電壓輸入端子 Ti31a、以及偏壓電壓輸入端子Ti31b及Ti31c,分別包含將 Ti層與Pt層積層而成之Ti/Pt或者將Ti層與Au層積層而成之 Tl/Au之任一者。於本發明之其他實施形態中,可使用Cr 層、Zr層、TiN層或Ti02層之任一者來代替Ti/Pt及/或Ti/Au 之Ti層。又,可使用Au合金層、Cu層或Ag層之任一者來 代替Ti/Pt之Pt層。進而,可使用Au合金層、Cu層、或Ag 層之任一者來代替Ti/Au之Au層。又,於本發明之其他實 施形態中’亦可使用包含Pt層、Au層、Au合金層、Cu層 或Ag層之單一之層來代替Ti/pt或Ti/Au。又,於本發明之 一實施形態中’可使Ti層、Cr層、Zr層、TiN層或Ti02層 之膜厚為1 nm~l 〇〇 nm,且可使Pt層、Au層、Au合金層、 Cu層或Ag層之膜厚為〇.1 μιη〜30 μπι。熟習本技藝者可明 確’構成本發明之各種實施形態之MEMS開關SD30中所包 含之各要素的材料,並不限定於本說明書中所明示地闡述 者’於不脫離本發明之範圍的範圍中,可進行適當變更。 作為本發明之一實施形態之MEMS開關SD30,表示有以 1個接地端子Tg31作為驅動部FL31a、第1可變電容器CA31 及第2可變電容器Ca32之接地端子而加以共用者,然而亦 150772.doc -32· 201140637 可另行設置第1可變電容器CA31專用之接地端子並利用專 用線路將其與第1可變電容器C A3 1之下部電極層41連接, 且另行設置第2可變電容器CA32專用之接地端子並利用專 用線路將其與第2可變電容器C A3 2之下部電極層44連接。 如此’可使施加至第1可變電容器CA3 1之介電質層42中 之偏壓電壓與施加至第2可變電容器CA32之介電質層45中 之偏壓電壓不同。即,由於可使以第1信號線路SL3丨側為 對象之特性阻抗調整與以第2信號線路SL32側為對象之特 性阻抗調整個別地進行,故可整體地進行更細微之特性阻 抗調整。 【圖式簡單說明】 圖1係本發明之第1實施形態之MEMS開關之俯視圖。 圖2(S 1)係沿著圖1之s 1-S1線之剖面圖,圖2(S2)係沿著 圖1之S2-S2線之剖面圖,圖2(S3)係沿著圖1之S3-S3線之剖 面圖’圖2(S4)係沿著圖1iS4-S4線之剖面圖,圖2(S5)係 沿著圖1之S5-S5線之剖面圖。 圖3(S6)係沿著圖1之S6-S6線之剖面圖,圖3(S7)係沿著 圖1之S7-S7線之剖面圖,圖3(S8)係沿著圖1之S8-S8線之剖 面圖’圖3(S9)係沿著圖1之S9-S9線之剖面圖,圖3(S10)係 沿著圖1之S10-S10線之剖面圖。 圖4係圖1所示之MEMS開關之使用方法及功能等之說明 圖。 圖5係圖1所示之MEMS開關之使用方法及功能等之說明 圖。 150772.doc •33· 201140637 圖6係本發明之第2實施形態之MEMS開關之俯視圖。 圖7係圖6所示之MEMS開關之使用方法及功能等之說明 圖。 圖8係本發明之第3實施形態之MEMS開關之俯視圖。 圖9(S11)係沿著圖8之Sii_sil線之剖面圖,圖9(s12)係 沿著圖8之S12-S12線之剖面圖,圖9(S13)係沿著圖8之S13- S13線之剖面圖。 圖10(S14)係沿著圖8之S14-S14線之剖面圖,圖i〇(si5) 係沿著圖8之S15-S15線之剖面圖,圖10(S16)係沿著圖8之 S16-S16線之剖面圖’圖10(817)係沿著圖8之317-817線之 剖面圖,圖10(S18)係沿著圖8之S18-S18線之剖面圖。 圖11係圖8所示之MEMS開關之使用方法及功能等之說 明圖。 圖12係圖8所示之MEMS開關之使用方法及功能等之說 明圖。 【主要元件符號說明】 11、31 第1基體層 12、32 第1絕緣體層 13 ' 33 第2基體層 13a ' 33a 帶狀基體層 14、34 第2絕緣體層 14a ' 34a 帶狀絕緣體層 15 ' 35 第1電極層 16、36 第2電極層 150772.doc -34- 201140637 17、37 第3電極層 18 ' 38 壓電體層 19、39 第4電極層 20 、 22 ' 40 虛設電極層 21 虛設壓電體層 23 、 26 ' 41 、 44 下部電極層 24 ' 27 ' 42 ' 45 介電質層 25 、 28 、 43 ' 46 上部電極層 BS11、BS11,、BS31 基體 CA11、CA31 第1可變電容器 CA12、CA32 第2可變電容器 CT11、CT31 接點電極 DClla〜DCllc、 DC31a 〜DC31c 可變直流電源 FL11、FLir、FL31 桿 FLlla、FL31a 驅動部 FL1lb 、 FL31b 位移部 FLllc 、 FL31c 鉸鍵部 GA 間隙 HRL11、HRL12、 HRL12’、HRL3 1、HRL32 高電阻線路 PH11、PH12、ΡΗ1Γ、 PH12'、PH31、PH32 貫通孔 S1-S18 線 150772.doc -35- 201140637 SD10、 SL11、 SL12、 TcallThe film thickness of the TiN layer or the TiO layer is 1 nm to 100 nm, and the film thickness of the pt layer, the Au layer, the Au alloy layer, the Cu layer or the Ag layer may be 0.1 μηι to 30 μηι. It is to be understood by those skilled in the art that the materials constituting the respective elements included in the MEMS switch SD3 0 of the various embodiments of the present invention are not limited to those explicitly stated in the present specification, without departing from the scope of the present invention. The scope can be changed as appropriate. In the MEMS switch SD10 according to the embodiment of the present invention, as described above, the dummy electrode layer 20 is formed on the displacement portion FL11b in order to make the height of the upper surface of the contact electrode CT11 coincide with the height of the upper surface of the connection terminals Tcall and Tcal2. The piezoelectric layer 21 and the dummy electrode layer 22 are dummy, and the contact electrode CT11 is formed thereon. In other embodiments, the dummy electrode layer 21 may be formed on the dummy electrode layer 20 instead of the dummy piezoelectric layer 21 and the dummy electrode layer 22, and the contact electrode CT11 has the dummy piezoelectric layer and the dummy electrode layer. The thickness obtained by adding the thickness of 22 or the thickness of the dummy piezoelectric layer 21 and the dummy electrode layer 22 is further increased by a thickness of about 0.01 μm to 0. 5 μηι. Further, in one embodiment, the contact electrode CT11 may be formed on the strip-shaped insulator layer 14a instead of the dummy electrode layer 20, the dummy piezoelectric layer 21, and the dummy electrode layer 22, and the contact electrode CT11 has a dummy electrode The thickness of the layer 20, the dummy piezoelectric layer 21, and the dummy electrode layer 22 are added to each other. In the MEMS switch SD10 according to the embodiment of the present invention, as described above, the one ground terminal Tg11 is used as the ground terminal of the left drive unit FLUa and the first variable capacitor CA11, and is also referred to as 150722.doc. The other ground terminal Tgl2 is shared by the drive unit FLUa on the right side and the ground terminal of the second variable capacitor cai2. In other embodiments, a ground terminal dedicated to the first variable capacitor CA11 may be separately provided and connected to the lower electrode layer 23 of the first variable capacitor CA11 by a dedicated line, and a second variable electric valley may be separately provided. The ground terminal dedicated to the CA12 is connected to the lower electrode layer 26 of the second variable capacitor CA12 by a dedicated line. Thus, the bias voltage applied to the dielectric layer 24 of the first variable capacitor CA11 can be made different from the bias voltage applied to the dielectric layer 27 of the second variable capacitor ca12. In other words, the characteristic impedance adjustment for the "first signal line" side and the characteristic impedance adjustment for the second signal line SL12 side can be individually performed, so that finer characteristic impedance adjustment can be performed as a whole. [Second Embodiment] Fig. 6 and Fig. 7 show a second embodiment of the present invention (MEMS switch). In the description of the present invention, for convenience of explanation, similarly to the description of Fig. 1, the left side of Fig. 6 will be described. The directions corresponding to the right, the lower, the upper, the front, and the inside and the other figures are described as front, back, left, right, up, and down, respectively. First, the configuration of the MEMS switch SD20 will be described with reference to Fig. 6. The MEMS switch SD20 is shown as having a multilayer structure formed by a well-known film forming method. In one embodiment, the MEMS switch SD20 is configured to have a front and rear dimension of about 1. 〇mm and a left and right dimension of about 1.2 mm. The upper and lower dimensions are about 0.5 mm. 150772.doc •20· 201140637 The MEMS switch SD20 is different from the above MEMS switch SD10 in the following aspects: • The base BS11 having a smaller size than the base BS11 is used; The first through hole PH11' and the second through hole PH12' having a smaller size than the first through hole PH11 and the second through hole PH12 are formed, and the plan view of the second through hole PH12' is substantially a figure of 7 characters; • The drive unit FL11a and the hinge portion FLllc on the right side of the lever FL11 are used as the lever FL11·; • The first electrode layer 15 provided on the right side of the base BS11, the drive voltage input terminal Til2a, and the bias voltage input terminal i2b, The ground terminal Tg 12 and the high-resistance line HRL12 are removed. The bias voltage input terminal Ti 11c, which will be replaced by the bias voltage input terminal i2b, is disposed on the left side of the base BSir, and will be replaced by the high-resistance line HRL12. 2' is disposed on the left side of the second signal line SL12. Since the other configuration of the MEMS switch SD20 is the same as that of the above-described MEMS switch SD10, description thereof will be omitted. Hereinafter, a method of using the MEMS switch SD20 according to an embodiment of the present invention will be described with reference to FIG. And the function is explained. In the case of use, the MEMS switch SD20 is mounted on a circuit-substrate, etc. as shown in Fig. 7. Further, the positive side of the first variable DC power supply DC 11a is connected to the drive power. The input terminal Tilla ' connects the positive side of the second variable DC power source DC11b to the bias voltage input terminal Ti 11 b , and connects the positive side of the third variable DC power source DC 11c to the bias voltage input terminal Tilec, and Equal variable DC power supply 0 (: 113, 0 (: 1113 and 0 (: 11 〇 negative side connected to 150772.doc • 21 201140637 ground terminal Tgll. As described below, since the bias voltages applied to the bias voltage input terminals TilIb & TiUc_ are the same value, in one embodiment, one variable DC power supply can be shared as a bias voltage application. Further, in an embodiment, the voltage application can be similarly performed, and the variable DC power source may be replaced by a DC voltage input line provided in a circuit board or the like. Further, the high-frequency signal path (input side) provided in the circuit board or the like is connected to the first signal line SL11' and the high-frequency signal line (output side) is connected to the second signal line SL12. The high-frequency signal route (input side) may be connected to the second signal line SL12, and the high-frequency signal route (output side) may be connected to the first line SL11. At the time of use, a DC voltage of a specific value (hereinafter referred to as a driving voltage) is applied to the driving voltage input terminal Ti 11 a from the first variable DC power source DC 1 la. Further, a DC voltage of a specific value (hereinafter referred to as a bias voltage) is applied to the bias voltage input terminal TiUb from the second variable DC power source DCUb, and a bias voltage is input from the third variable DC power source DC 11c. The terminal Ti 11 c applies a bias voltage of the same value. The action and effect of the MEMS switch SD20 are the same as those of the MEMS switch sm〇. [Third Embodiment] Figs. 8 to 12 show a third embodiment of the present invention. In the description herein, for the sake of convenience of explanation, as in the description of FIG. 1, the left, right, lower, upper, near, and inner portions of FIG. 8 are equivalent to those of the other figures 150772.doc -22- 201140637 is divided into 5, then, left, right, up and down. First, the configuration of the MEMS switch SD3〇 will be described with reference to Figs. 8 to 1B. The MEMS switch SD3 shown in Figs. 8 to 10 has a multilayer structure which is formed by a well-known film forming method. In one embodiment, the MEMS switch SD3 0 is configured such that the front and rear dimensions are approximately 丨〇 mm, the left and right dimensions are approximately 1.20 mm, and the upper and lower dimensions are approximately 05 mm. The MEMS switch SD30 includes a base BS31, a lever FL31, a contact electrode CT31, a first variable capacitor CA31, a connection terminal Tca3i, a second variable capacitor CA32, a connection terminal Tca32, a first signal line SL3 1, and a second signal line. SL32, ground terminal Tg3 1, driving voltage input terminal Ti3丨a, bias voltage input terminals Ti31b and Ti31c. The base BS 31 includes a first base layer 31 including si or the like, and a first insulator layer 32 containing Si〇2 or the like and formed in the first! The second base layer 33' includes Si or the like and is formed on the third insulator layer 31. The second insulator layer 34' includes Si〇2 or the like and is formed on the second base layer 33. A first through hole PH31 having a substantially rectangular outline in plan view is formed in the first base layer 31 and the first insulator layer 32. Further, in the second base layer 33 and the second insulator layer 34, a second through hole ph32 having a substantially U-shaped outline is formed, and a strip-shaped base layer which is a base material of the rod FL31 is present inside the second through hole PH32. 33a and a strip insulator layer 34a. A first electrode layer 35 including Ti/Pt and having a substantially rectangular outline is formed on the upper left surface of the base BS3 1 . Further, on the front side upper surface and the rear upper surface of the base BS11, a second electrode having a thickness of 150772.doc -23- 201140637 including Τι/Pt and having a substantially rectangular outline is formed in the same thickness as the first electrode layer 35. Layer 36. The lever FL31 includes a drive portion FL31a, a displacement portion FL3 1 b located at a free end of the drive portion FL31a, and a hinge portion FL31c that connects the drive portion FL3 and the displacement portion FL3 丨b. The drive portion FL3 la is a base material of the strip-shaped base layer 33a and the strip-shaped insulator layer 34a described above. On the left side portion, a third electrode layer 37 including Ti/Pt and having a substantially rectangular outline in plan view is formed continuously to the same thickness as the first electrode layer 35. Further, on the third electrode layer 37, a piezoelectric layer 38 including PZT or the like and having the same shape as that of the third electrode layer 37 is formed. Further, Ti/Pt is formed on the piezoelectric layer 38 and is formed in a plan view. The fourth electrode layer 39° displacement portion FL3 1 b having the same profile as the piezoelectric body layer 38 is the base material of the strip-shaped base layer 33a and the strip-shaped insulator layer 34a described above. On the right end portion of the strip-shaped base layer 33a and the strip-shaped insulator layer 34a, a dummy electrode layer 40 containing Ti/Pt and having a substantially rectangular outline in plan view is formed to have the same thickness as the third electrode layer 37. Further, on the dummy electrode layer 40, a contact electrode CT3 1 including Ti/Au and having the same plan view as the dummy electrode layer 40 is formed. The hinge portion F L 3 1 c is a base member sandwiched between the strip-shaped base layer 3 3 a and the left and right end portions of the strip-shaped insulator layer 34a described above. By forming the through holes (unsigned) in the base material, the hinge portion FL3 1 c is provided with flexibility to function as a hinge. On the front side of the second through hole PH32 of the base BS31, a lower electrode layer 41 including Ti/Pt and having a rectangular shape in a plan view of a substantially rectangular shape 150772.doc -24-201140637 is formed in the same thickness as the third electrode layer 37. x, on the lower electrode layer 41, a dielectric layer 42 including ρζτ or the like and having the same profile as that of the lower electrode layer 41 is formed to have the same thickness as the piezoelectric layer. Further, on the dielectric layer, the upper electrode layer 43 including Ti/Pt and the top surface of the ferrule and the dielectric layer 42 is formed in the same thickness as the fourth electrode layer 39. Here, the lower electrode layer μ, the dielectric layer 42, and the upper electrode layer 43 constitute a second variable capacitor ca3, and the first variable capacitor CA31 is disposed on the base BS31. Further, on the upper electrode layer 43 of the first variable capacitor CA31, a connection terminal Ted including η- and having the same outline as that of the upper electrode layer 43 is formed. As is apparent from Fig. 9 (SU), the upper surface of the connection terminal Tea3i is in close contact with each other and electrically connected to the lower surface of the rear side portion of the first signal line SL31. Further, on the side after the second through-hole pH 32 of the base BS 31, the electrode layer 44 including the dam and having a substantially rectangular lower surface in plan view is formed to have the same thickness as the first electrode layer 377. Further, on the lower electrode layer, a dielectric layer 45 including ρζτ or the like and having the same rib and lower electrode layer 44 as the plan view is formed to have the same thickness as the piezoelectric layer 38. Further, on the dielectric layer 45, the upper electrode layer 46 including Ti/Pt and having the same plan view as the '丨 dielectric layer 45 is formed in the same thickness as the fourth electrode layer 39. Here, the lower electrode layer 44, the dielectric layer 44, and the upper electrode layer 45 constitute the second variable capacitor CA32', and the second variable capacitor CA32 is disposed on the base BS31. Further, on the upper electrode layer 446 of the second variable capacitor CA32, a connection terminal Tca32 having the same shape as that of the upper electrode layer 46 and having a package shape of s Ti/Au is formed. * Fig. 9 (S13) shows that the upper surface of the connection terminal Tea31 is closely connected and electrically connected to the surface of the front side portion of the second signal line SL32 under the surface 150772.doc - 25 - 201140637. The Hs line H31 and the second signal line 32 include Ti/Au, and each has a cross-sectional shape in which the flat base material f is bent by 9 (degrees) and further bent by 90 degrees in the opposite direction. The first! The lower surface of the front side portion of the signal line SL3 is connected to the upper surface of the second electrode layer 36 on the front side, and the lower surface of the rear side portion of the second signal line SL32 is connected to the second electrode layer on the rear side. Since the second signal line SL31 and the second signal line 32 are formed to be line-symmetric with respect to the S16-S16 line in the front-rear direction, the upper surface and the second signal of the rear side portion of the second signal line SL3 1 are formed. The upper surface of the upper side portion of the line portion 32 becomes the same plane. Further, as can be seen from Fig. 8, the left and right sizes of the ith signal line 31 and the second signal line red 32 are larger than the contact electrode CT3 1 and the two connection terminals Tca3. And the left and right dimensions of the Tca32. Further, the side portion of the second signal line SL3丨 and the second side of the second k line SL3 2 extend to the contact electrode CT3], and the rear side portion and the rear side portion A gap ga for making the first k-th line SL3 1 and the second signal line SL32 non-conductive is provided between the front side portions. Further, the lower surface of the rear side portion of the first signal line SL 3 1 and the second signal line SL32 are provided. Surface underneath the front side A gap (unsigned) having a specific upper and lower dimensions is formed between the contact electrodes [Τ3 1 . The ground terminal Tg31 includes Ti/Au ' and is formed in a substantially rectangular shape in a plan view on the first electrode layer 35. The driving voltage input terminal Ti3 la includes Ti/Au ' and the left end of the fourth electrode layer 39 of the driving portion FL3 la is formed in a substantially rectangular shape in a plan view. The bias voltage input terminal Ti31b includes Ti/Au and is provided on the substrate. The upper front surface of the BS3 1 is formed to have a top view profile of 150772.doc •26·201140637 and a substantially moment l′ and is spaced apart from the ground terminal Tg31. The bias voltage input terminal Ti31c includes Ti/Au and is in the base BS11. The upper left side upper surface is formed in a substantially rectangular shape in plan view and arranged at intervals from the driving voltage input terminal Ti3 la. Further, the bias voltage input terminal Ti31b and the front second electrode layer 36 are connected by a high resistance line. The HRL 31 is connected, and the bias voltage input terminal 131 (the second electrode layer 36 on the rear side is connected by the high resistance line HRL32. The high resistance lines HRL31 and HRL32 include a high resistance material such as TaN. The resistivity is compared with the first signal line SL3 1 and the second signal line SL32. Hereinafter, a method of using the MEMS switch SD30, a function, and the like will be described with reference to FIGS. As shown in the figure, the MEMS switch SD30 is mounted on a circuit board, etc. Further, the positive side of the first variable DC power supply DC31a is connected to the drive voltage input terminal Ti3 1 a, and the positive side of the second variable DC power supply DC3 1 b is connected. The positive side of the third variable DC power source DC31c is connected to the bias voltage input terminal Ti31c at the bias voltage input terminal Ti3 1 b, and the negative side of the variable DC power sources DC31a, DC31b, and DC31c is connected to the ground terminal. T g 3 1. Although three variable DC power sources DC31a, DC31b, and DC31c are shown in the drawing, the bias voltages applied to the bias voltage input terminals Ti31b and Ti31c are the same as described below. Therefore, in one embodiment, One variable DC power supply can be shared as a driving voltage application. Further, in one embodiment, as long as the voltage application described below can be performed in the same manner, the variable DC power supply can be replaced by a DC voltage input line provided in a circuit board or the like. Further, the high-frequency signal path (input side) provided in the circuit board or the like is connected to the first signal line SL3 1, and the high-frequency signal line (output side) is connected to the second signal line SL32. The high-frequency signal route (input side) may be connected to the second signal line SL32, and the high-frequency signal route (output side) may be connected to the first signal line SL31. At the time of use, a DC voltage of a specific value (hereinafter referred to as a driving voltage) is applied to the driving voltage input terminal Ti3 1 a from the first variable DC power source DC 31a. Further, a DC voltage of a specific value (hereinafter referred to as a bias voltage) is applied to the bias voltage input terminal Ti31b from the second variable DC power source DC31b, and a bias voltage input terminal Ti31c is applied from the third variable DC power source DC31c. Apply a bias voltage that is the same value. The driving voltage applied to the driving voltage input terminal Ti31a is applied to the piezoelectric layer 38 of the driving portion FL31a via the fourth electrode layer 39 constituting the driving portion FL31a of the LED FL31. Thereby, as shown in FIG. 12, the piezoelectric layer 38 constituting the driving portion FL3 la is contracted by the piezoelectric effect. By the contraction of the piezoelectric layer 38, the hinge portion FL31c of the driving portion FL31a is lightly upward, and the displacement portion FL3 1 b of the rod FL3 1 is displaced upward by the upward tilt, and the displacement is caused by the upward displacement. The upper surface of the contact electrode CT3 1 is in contact with the lower surface of the rear side portion of the first signal line SL3 and the lower surface of the front side portion of the second signal line SL32, and the two signal lines SL3 1 and SL32 are connected by the contact. The spot electrode CT31 is turned on. That is, the I50772.doc • 28 · 201140637 input to the first signal line 31 is transmitted from the second signal line SL32 via the first signal line SL3 1 , the contact electrode CT3 1 , and the second signal line SL32 . Output. On the other hand, the bias voltage applied to the bias voltage input terminal Ti31b passes through the high resistance line HRL31, the front side second electrode layer 36, the first signal line SL31, the connection terminal Tca3 1 and the first variable capacitor. The upper electrode layer 43 of cA3 1 is applied to the dielectric layer 42 of the first variable capacitor CA3 1 . Further, the bias voltage applied to the bias voltage input terminal Ti3 1 c passes through the high resistance line HRL32, the second electrode layer 36 on the rear side, the second signal line SL32, the connection terminal Tca32, and the second variable capacitor CA32. The upper electrode layer 46 is applied to the dielectric layer 45 of the second variable capacitor CA32. Thereby, the specific dielectric constants of the dielectric layers 42 and 45 of the two variable capacitors CA31 and CA32 are changed, and the capacitances of the two variable capacitors CA3 1 and CA3 1 are changed by the change, and by This characteristic changes the characteristic impedance of the MEMS switch SD30. In other words, even when the characteristic impedance (for example, 50 Ω or 75 Ω, etc.) of the MEMS switch SD30 mounted on a circuit board or the like is disturbed by external influence, the two variable capacitors C A3 are required by the bias voltage. The characteristic impedance of 1 and C A3 1 is changed to cancel the error, and the characteristic impedance can be adjusted to an optimum value. Next, the effect obtained by the MEMS switch SD30 according to an embodiment of the present invention will be described. (1) In the MEMS switch SD30 according to the embodiment of the present invention, the capacitances of the two variable capacitors CA3 1 and CA3 1 are changed by the bias voltage, thereby canceling the disorder of the characteristic impedance generated during use. The way to adjust 150772.doc •29· 201140637 This characteristic impedance, so as to ensure that the MEMS switch SD30 is the best characteristic impedance', thereby avoiding the deterioration of transmission loss or the decrease of insulation caused by the distortion of the characteristic impedance. . (2) In the MEMS switch SD30 according to the embodiment of the present invention, the first variable capacitor c A3 1 is provided corresponding to the first signal line SL3 1 and the second signal line 32 is provided. Since the variable capacitor ca32 is provided, the desired characteristic impedance can be effectively adjusted for the entire line through which the high-frequency signal flows (the first signal line SL3 1 , the contact electrode CT3 1 , and the second signal line SL32 ). (3) In the MEMS switch SD30, the first variable capacitor CA31 and the second variable capacitor CA32 are disposed on the base BS31, and the connection terminal Tca3丨 on the first variator C A31 The surface is in contact with and electrically connected to the lower surface of the rear side portion of the line Ik line SL31, and the upper surface of the connection terminal Tca32 on the second variable electric grid unit CA32 is in contact with and electrically connected to the front side of the second signal line SL32. The lower surface of the portion, so that the i-th variable capacitor CA31 and the connection terminal Tca31 can support and hold the pillars on the rear side portion of the first line SL31, and the second variable capacitor CA32 and the connection terminal Tca32 can be supported and The role of the pillars on the front side portion of the second signal line SL32 is maintained. In this way, the rear side portion of the second signal line 讥31 and the front side portion of the second signal line SL32 which are in contact with the contact electrode CT31 can be reinforced, so that even if the contact electrode CT31 is repeatedly contacted with respect to the portions, the portion is also It is difficult to produce deformation... It can prevent contact failure that may occur due to deformation. 150772.doc -30- 201140637 (4) In the MEMS switch SD30 according to an embodiment of the present invention, the bias voltage applied to the bias voltage input terminal Ti3 lb is applied to the first through the high resistance line HRL31 The dielectric layer 42 of the capacitor CA3 1 and the bias voltage applied to the bias voltage input terminal Ti3 1 c are applied to the dielectric layer 45 ' of the second variable capacitor CA32 via the high resistance line HRL32. Therefore, it is possible to suppress leakage of the high-frequency signal from the first signal line SL3丨 to the high-resistance line HRL3 1 side and to prevent the high-frequency signal from leaking from the second signal line SL 3 2 ) 3⁄4 to the side of the resistance line HRL 3 2 . Thereby, deterioration of the characteristics of the high-frequency signal flowing through the first signal line SL31, the contact electrode CT31, and the second signal line SL32 can be prevented. (5) The MEMS switch SD30, which is also an embodiment of the present invention, is an element having a filtering function. The case where the characteristic impedance can be made variable means that the filtering function can be made variable. Since the two variable capacitors CA31 and CA32 provided on both sides of the contact electrode CT3 1 are connected to the ground, the first signal line SL31 and the second signal line SL32 through which the variable capacitors CA31 and CA32 and the high-frequency signal pass can be passed. The inductance components are combined to form a low-pass chopper. When the capacity of each of the variable capacitors CA31 and CA32 is changed, the cutoff frequency can be adjusted. The MEMS switch SD30 according to an embodiment of the present invention is characterized in that each of the layers is formed by PZT, and each of the layers is a piezoelectric layer 38 constituting the driving portion fL3 1 a to constitute a dielectric layer of the first variable capacitor CA31. 42. And a dielectric layer 45 constituting the second variable capacitor CA32, however, lead zirconate, lead titanate, lead magnesium niobate, lead niobate, barium titanate, sodium titanate, potassium citrate may be used. Sodium, and bismuth citrate are used instead of PZT. Further, in the MEMS switch SD30 according to the embodiment of the present invention, the first electrode layer 35, the second electrode layer 36, the third electrode layer 37 and the fourth electrode layer 39 constituting the driving portion FLUa, and the dummy are provided. The electrode layer 40, the contact electrode CT31, the lower electrode layer 41 and the upper electrode layer 43 constituting the λ variable capacitor CA31, the connection terminal Tca31, the lower electrode layer 44 and the upper electrode layer 46 of the second variable capacitor CA32, and the connection The terminal Tca32, the first signal line SL3 1, the second signal line SL32, the ground terminal Tg3 1 , the driving voltage input terminal Ti31a, and the bias voltage input terminals Ti31b and Ti31c each include a Ti layer formed by laminating a Ti layer and a Pt layer. /Pt or any of Tl/Au formed by laminating a Ti layer and an Au layer. In another embodiment of the present invention, any of the Cr layer, the Zr layer, the TiN layer, or the TiO 2 layer may be used instead of the Ti layer of Ti/Pt and/or Ti/Au. Further, any of the Au alloy layer, the Cu layer or the Ag layer may be used instead of the Pt layer of Ti/Pt. Further, any of the Au alloy layer, the Cu layer, or the Ag layer may be used instead of the Au layer of Ti/Au. Further, in another embodiment of the present invention, a single layer including a Pt layer, an Au layer, an Au alloy layer, a Cu layer or an Ag layer may be used instead of Ti/pt or Ti/Au. Further, in an embodiment of the present invention, the film thickness of the Ti layer, the Cr layer, the Zr layer, the TiN layer or the TiO 2 layer may be 1 nm to 1 〇〇 nm, and the Pt layer, the Au layer, and the Au alloy may be used. The film thickness of the layer, the Cu layer or the Ag layer is 〇.1 μιη to 30 μπι. It will be apparent to those skilled in the art that the materials of the various elements included in the MEMS switch SD30 of the various embodiments of the present invention are not limited to the scope of the present invention. , can be changed as appropriate. The MEMS switch SD30 according to an embodiment of the present invention shows that one ground terminal Tg31 is shared by the drive terminal FL31a, the first variable capacitor CA31, and the second variable capacitor Ca32. However, it is also 150772. Doc -32· 201140637 The ground terminal for the first variable capacitor CA31 can be separately provided and connected to the lower electrode layer 41 of the first variable capacitor C A3 1 by a dedicated line, and the second variable capacitor CA32 is separately provided. The ground terminal is connected to the lower electrode layer 44 of the second variable capacitor C A3 2 by a dedicated line. Thus, the bias voltage applied to the dielectric layer 42 of the first variable capacitor CA3 1 can be made different from the bias voltage applied to the dielectric layer 45 of the second variable capacitor CA32. In other words, the characteristic impedance adjustment for the side of the first signal line SL3 and the characteristic impedance adjustment for the second signal line SL32 side can be individually performed, so that finer characteristic impedance adjustment can be performed as a whole. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view showing a MEMS switch according to a first embodiment of the present invention. 2(S1) is a cross-sectional view taken along line s1-S1 of FIG. 1, FIG. 2(S2) is a cross-sectional view taken along line S2-S2 of FIG. 1, and FIG. 2(S3) is along FIG. A cross-sectional view of the S3-S3 line 'Fig. 2 (S4) is a cross-sectional view taken along line 1iS4-S4 of Fig. 1, and Fig. 2 (S5) is a cross-sectional view taken along line S5-S5 of Fig. 1. 3(S6) is a cross-sectional view taken along line S6-S6 of FIG. 1, FIG. 3(S7) is a cross-sectional view taken along line S7-S7 of FIG. 1, and FIG. 3(S8) is taken along S8 of FIG. -S8 line sectional view 'Fig. 3 (S9) is a cross-sectional view taken along line S9-S9 of Fig. 1, and Fig. 3 (S10) is a sectional view taken along line S10-S10 of Fig. 1. Fig. 4 is an explanatory view showing the use method, function, and the like of the MEMS switch shown in Fig. 1. Fig. 5 is an explanatory view showing the use method, function, and the like of the MEMS switch shown in Fig. 1. 150772.doc • 33· 201140637 Fig. 6 is a plan view showing a MEMS switch according to a second embodiment of the present invention. Fig. 7 is an explanatory view showing the use method, function, and the like of the MEMS switch shown in Fig. 6. Fig. 8 is a plan view showing a MEMS switch according to a third embodiment of the present invention. 9(S11) is a cross-sectional view taken along line Sii_sil of FIG. 8, FIG. 9(s12) is a cross-sectional view taken along line S12-S12 of FIG. 8, and FIG. 9(S13) is taken along S13-S13 of FIG. Sectional view of the line. Figure 10 (S14) is a cross-sectional view taken along line S14-S14 of Figure 8, Figure i (si5) is a cross-sectional view taken along line S15-S15 of Figure 8, Figure 10 (S16) is along Figure 8 A cross-sectional view of the S16-S16 line 'Fig. 10 (817) is a cross-sectional view taken along line 317-817 of Fig. 8, and Fig. 10 (S18) is a cross-sectional view taken along line S18-S18 of Fig. 8. Fig. 11 is an explanatory view showing the use method, function, and the like of the MEMS switch shown in Fig. 8. Fig. 12 is an explanatory view showing the use method, function, and the like of the MEMS switch shown in Fig. 8. [Description of main component symbols] 11, 31 first base layer 12, 32 first insulator layer 13' 33 second base layer 13a '33a strip-shaped base layer 14, 34 second insulator layer 14a' 34a strip-shaped insulator layer 15' 35 first electrode layer 16, 36 second electrode layer 150772.doc -34- 201140637 17, 37 third electrode layer 18' 38 piezoelectric layer 19, 39 fourth electrode layer 20, 22' 40 dummy electrode layer 21 dummy pressure Electrolyte layer 23, 26' 41, 44 lower electrode layer 24' 27 ' 42 ' 45 dielectric layer 25, 28, 43 ' 46 upper electrode layer BS11, BS11, BS31 substrate CA11, CA31 first variable capacitor CA12, CA32 second variable capacitor CT11, CT31 contact electrode DC11a to DCllc, DC31a to DC31c variable DC power supply FL11, FLir, FL31 lever FL11a, FL31a drive unit FL1lb, FL31b displacement unit FLllc, FL31c hinge portion GA gap HRL11, HRL12 , HRL12', HRL3 1, HRL32 high resistance line PH11, PH12, ΡΗ1Γ, PH12', PH31, PH32 through hole S1-S18 line 150772.doc -35- 201140637 SD10, SL11, SL12, Tcall

Tca32 Tgll、 Til la ' Tillb Ti31b SD20 ' SD30 MEMS開關 SL31 第1信號線路 SL32 第2信號線路 、Tcal2 、 Tca31 、 連接電極 Tgl2 、 Tg31 接地端子 ‘ Til2a ' Ti31a 驅動電壓輪入端子 、Til2b 、 Tillc 、 、Ti31c 偏壓電壓輪入端子 150772.doc -36Tca32 Tgll, Til la ' Tillb Ti31b SD20 ' SD30 MEMS switch SL31 1st signal line SL32 2nd signal line, Tcal2, Tca31, connection electrode Tgl2, Tg31 Ground terminal 'Til2a ' Ti31a Drive voltage wheel terminal, Til2b, Tillc, , Ti31c bias voltage wheel terminal 150772.doc -36

Claims (1)

201140637 七、申請專利範圍: 1· 一種微機電系統開關,其係藉由使接點電極接觸於第i 信號線路及第2信號線路而使上述第1信號線路及上述第 2 號線路經由上述接點電極成為導通狀態,且样由使 上述第1信號線路及上述第2信號線路與上述接點電極為 非接觸而使上述第1信號線路及上述第2信號線路為非導 通狀態者;且該微機電系統開關包括: 第1可變電容器,其係對應於上述第丨信號線路而設 置; 第2可變電容器’其係對應於上述第2信號線路而設 置; 第1偏壓電壓輸入端子’其係用以經由上述第1信號線 路及上述第1可變電容器之一電極層側而對上述第1可變 電容器之介電質層施加偏壓電壓;及 第2偏壓電壓輸入端子,其係用以經由上述第2信號線 路及上述第2可變電容器之一電極層側而對上述第2可變 電容器之介電質層施加偏壓電壓。 2.如請求項1之微機電系統開關,其中 上述第1可變電容器及上述第2可變電容器係配置於桿 之位移部上,且上述桿配置有上述接點電極; 於上述接點電極藉由上述位移部之特定方向位移而接 觸於上述第1信號線路及上述第2信號線路時,上述第工 可變電容器之一電極層側與上述第丨信號線路接觸而電 性連接; 150772.doc 201140637 上述第2可變電容器之-電極層側與上述第2信號線路 接觸而電性連接。 3·如清求項1之微機電系統開關,其中 上述第丨可變電容器及上述第2可變電容器係配置於設 置有上述第1彳g號線路及上述第2信號線路之基體上; 上述第1可變電容器之一電極層側係與上述第〗信號線 路電性連接; 上述第2可變電容器之一電極層側係與上述第2信號線 路電性連接。 4·如請求項1至3中任一項之微機電系統開關,其中 上述第1可變電容器用之第丨偏壓電壓輸入端子係經由 電阻率高於上述第1信號線路之高電阻線路而連接於上 述第1信號線路; 上述第2可變電容器用之第2偏壓電壓輸入端子係經由 電阻率问於上述第2信號線路之高電阻線路而連接於上 述第2信號線路。 150772.doc201140637 VII. Patent Application Range: 1. A MEMS switch that connects the first signal line and the second line via the connection by contacting the contact electrode with the ith signal line and the second signal line. The dot electrode is in an on state, and the first signal line and the second signal line are made non-conductive by making the first signal line and the second signal line non-contact with the contact electrode; and the first signal line and the second signal line are in a non-conducting state; The MEMS switch includes: a first variable capacitor that is provided corresponding to the second signal line; a second variable capacitor that is provided corresponding to the second signal line; and a first bias voltage input terminal And a second bias voltage input terminal for applying a bias voltage to the dielectric layer of the first variable capacitor via one of the first signal line and one of the first variable capacitor layers; A bias voltage is applied to the dielectric layer of the second variable capacitor via the second signal line and one of the second variable capacitor electrode layers. 2. The MEMS switch according to claim 1, wherein said first variable capacitor and said second variable capacitor are disposed on a displacement portion of a rod, and said rod is provided with said contact electrode; said contact electrode When the first signal line and the second signal line are contacted by the displacement of the displacement portion in the specific direction, one of the electrode layers of the second variable capacitor is in contact with the second signal line and electrically connected; 150772. Doc 201140637 The electrode layer side of the second variable capacitor is electrically connected to the second signal line. 3. The MEMS switch according to claim 1, wherein the second variable capacitor and the second variable capacitor are disposed on a substrate on which the first 彳g line and the second signal line are provided; One of the electrode layers of the first variable capacitor is electrically connected to the first signal line, and one of the electrode layers of the second variable capacitor is electrically connected to the second signal line. The MEMS switch according to any one of claims 1 to 3, wherein the ninth bias voltage input terminal for the first variable capacitor is via a high resistance line having a higher resistivity than the first signal line The second bias voltage input terminal for the second variable capacitor is connected to the second signal line via a high resistance line of the second signal line. 150772.doc
TW99135787A 2009-11-26 2010-10-20 Mems switch TW201140637A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009268944 2009-11-26

Publications (1)

Publication Number Publication Date
TW201140637A true TW201140637A (en) 2011-11-16

Family

ID=44066295

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99135787A TW201140637A (en) 2009-11-26 2010-10-20 Mems switch

Country Status (3)

Country Link
JP (1) JP5301682B2 (en)
TW (1) TW201140637A (en)
WO (1) WO2011065192A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013118234A (en) * 2011-12-02 2013-06-13 Taiyo Yuden Co Ltd Piezoelectric actuator and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1874955B (en) * 2003-10-31 2011-03-30 爱普科斯公司 A method of manufacturing an electronic device and electronic device
JP4919819B2 (en) * 2007-01-24 2012-04-18 富士通株式会社 Micromachine device drive control method and apparatus
JP2008277743A (en) * 2007-04-05 2008-11-13 Mitsubishi Electric Corp Variable device circuit and method for manufacturing the same

Also Published As

Publication number Publication date
JP5301682B2 (en) 2013-09-25
WO2011065192A1 (en) 2011-06-03
JPWO2011065192A1 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
US7619349B2 (en) Piezoelectric driven MEMS device
JP6330549B2 (en) Optical semiconductor device and manufacturing method thereof
US11211761B2 (en) Laser beam steering device and system including the same
US20140035440A1 (en) Piezoelectric device
JP5399970B2 (en) Ferroelectric device manufacturing method
US9231222B2 (en) Thin film transistor and method of manufacturing the same
JP2005093625A5 (en)
US20080297976A1 (en) Multilayer capacitor
US20210061651A1 (en) Mems microphone
JP2008112956A (en) Capacitor, method of producing same, semiconductor device, and liquid crystal display device
TW201140637A (en) Mems switch
KR102184453B1 (en) Ultrasonic transducer and method of manufacturing ultrasonic transducer
JP2011091319A (en) Power generation device
WO2018083973A1 (en) Capacitor
JP5326100B2 (en) Organic thin film transistor and manufacturing method thereof.
JP5323988B2 (en) MEMS switch
JP4224203B2 (en) Thin film two-terminal element and liquid crystal display device
TWI379140B (en) Pixel structure and active device array substrate
JP5180683B2 (en) Switched capacitor
JP6243821B2 (en) Transistor, transistor array, and method of manufacturing transistor
JPH0743748A (en) Metallic wiring board and thin-film diode array and their production
US20240023448A1 (en) Piezoelectric sensor, fabrication method therefor, and haptic feedback device
JP2007273604A (en) Semiconductor device
JP2010021252A (en) Variable capacitance element, and method of manufacturing the same
JP2009244648A5 (en)