TW201140005A - Incident solar power detecting method, apparatus and application thereof - Google Patents

Incident solar power detecting method, apparatus and application thereof Download PDF

Info

Publication number
TW201140005A
TW201140005A TW99114741A TW99114741A TW201140005A TW 201140005 A TW201140005 A TW 201140005A TW 99114741 A TW99114741 A TW 99114741A TW 99114741 A TW99114741 A TW 99114741A TW 201140005 A TW201140005 A TW 201140005A
Authority
TW
Taiwan
Prior art keywords
solar
light
power
radiation
angle
Prior art date
Application number
TW99114741A
Other languages
Chinese (zh)
Other versions
TWI408346B (en
Inventor
Yong-Nong Chang
Chen-Sheng Ting
Xin-Zhe Zhan
Original Assignee
Univ Nat Formosa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Formosa filed Critical Univ Nat Formosa
Priority to TW99114741A priority Critical patent/TWI408346B/en
Publication of TW201140005A publication Critical patent/TW201140005A/en
Application granted granted Critical
Publication of TWI408346B publication Critical patent/TWI408346B/en

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

The present invention related to an Incident solar power detecting apparatus which comprises a base, multiple light sensors and a process module. The base has multiple non-coplanar surfaces and the light sensors are mounted on the surfaces respectively. The process module calculates a transparency, a maximum power of the incident light, a direct incident light power and a scattered light power from detecting results of the light sensors, the angles between the surfaces and a solar location information.

Description

201140005 六、發明說明: 【發明所屬之技術領域】 本發明是-種太陽光之輕射輸出功率的判斷裝置 【先前技術】 再生能源之利用早為世界各地之 方向,太陽能板被視為取代石化 隨暖化問題日益嚴重, 未來科技發展及應用之重點 燃料發電之主流技術之一。201140005 VI. Description of the Invention: [Technical Field] The present invention is a device for judging the light output power of sunlight [Prior Art] The use of renewable energy has long been in the direction of the world, and solar panels are regarded as replacing petrochemicals. With the growing problem of warming, one of the mainstream technologies for fuel power generation in the future development and application of technology.

然而,太陽能板之主要問題為能源轉換效率。 =本身的光電轉換效率的限制,另—個主要影響能源轉換 >率的因素為太陽能板與入射光線無法保持正向入 、 球之自轉與公轉的因素,安裝在地球上的某個特定點的太 陽^板無法持續與太陽光人射角度維持直射的㈣,因此, 太陽能板所能吸收的太陽光輻射隨著時間持續變異,無法於 長時間都處於高效率之光電轉換狀態下。 為了解决固疋式之太陽能板的光電轉換效率受到地球 自轉A轉限制之情形’遂有許多的廠商及研究單位爭相推 出可以追蹤太陽方位的-追光太陽能裝置,讓太陽能板能夠 持’戈保持與太陽入射方向垂直,藉以提昇能量轉換效率。 然而,目前用來追蹤光線的一追光元件,通常僅能找到 入射太陽光的方位而不具備考慮氣候因素之後的太陽光功 率之判斷功能,使利用該追光元件追蹤太陽光方向的太陽能 板經常在光線不足或天候不佳的狀況下誤判太陽光入射方 向而失去追蹤效能。 3 201140005 【發明内容】 為了解決既有之追光元件不且備从玄 士人认“ 干不具備功率判斷之功能,導致 所、,,。&的太陽能板之追蹤誤判的 ^ ^ ^ «i - ^ . 問嘁,本發明利用複數 個先感應7C件結合座標轉換及數 職女数值運异’域予光感測器具備 判斷太%方位及太陽光功率之 ^ φ 此達到補助太陽能板具備 更佳的追蹤效果,更可賦予固定 又式太除旎板具有及轉換效率 正確性之自檢測之目的。 配合解決前述技術問題及達成 心取赞/3目的,本發明提供 一種太陽光功率判斷裝置,装 .a, 00 置其包含—座體、複數個光 感測益及一運算模組,其中: 該座體為一立體座體,其包含 〃匕3複數照射面係為非共平 面,兩兩相鄰的照射面之間存在一角度轉換關係; 各該光感測器分別對應且固定設於該照射面表面,每一 光感測器於接受一太陽光源日3射時逄 '、耵矸產生一電訊號輸出至該 運算模組; 該運算模組以接收各光感測器接收之電訊號、各光感 測^角度轉換關係及一太陽方位資訊,經一轉換估測方 法估算該太陽光源-穿透率、一最大可利用光功率、一直 達輻射與一散漫輻射’該轉換估測方法係以該太陽方位資 訊取得該太陽光源與各光感測器之方位與角度關係,再以 各光感應器感應該太陽光源之光輸出功率與轉換角度關 係,以及依據所得之該穿透率及一天候判斷基準比較資 料,估算各光感測器受該太陽光源垂直直射時之該最大可 利用光功率以及該直達輻射、該散漫輻射。 m 其中,該座體為一四邊平頂錐體,其包含一頂面以及 4 201140005 四個側壁面’且該頂面及四個側壁面分別固定設有—光感 測器。 其令’該運算模組由一時間輸入及一經緯度輸入,以 一萬年層計算公式計算該太陽光源及各光感測器之位置關 係0However, the main problem with solar panels is energy conversion efficiency. = the limitation of its own photoelectric conversion efficiency, and another factor that mainly affects the energy conversion rate is the fact that the solar panel and the incident light cannot maintain the forward direction, the rotation and revolution of the ball, and are installed at a certain point on the earth. The solar panel cannot sustain continuous direct sunlight (4). Therefore, the solar radiation absorbed by the solar panel continues to mutate with time and cannot be in a high-efficiency photoelectric conversion state for a long time. In order to solve the situation that the photoelectric conversion efficiency of the solid-state solar panel is limited by the rotation of the Earth's rotation, there are many manufacturers and research units competing to introduce a solar-powered solar device that can track the sun's position, so that the solar panel can hold the 'go. Maintaining energy conversion efficiency by maintaining it perpendicular to the direction of sun incidence. However, a chasing element currently used to track light usually only finds the orientation of the incident sunlight without the judgment function of the solar power after considering the climatic factor, so that the solar panel using the chasing element to track the direction of the sunlight is used. The tracking effect is often lost by misjudging the direction of sunlight when there is insufficient light or bad weather. 3 201140005 [Summary of the Invention] In order to solve the problem that the existing chasing elements are not prepared from the Xuanshi people, "there is no power judgment, and the solar panels of the institutes are misjudged ^ ^ ^ « i - ^ . Question, the present invention utilizes a plurality of first sensing 7C pieces combined with coordinate conversion and a number of female numerical values. The 'domain pre-photosensor has the judgment of too % azimuth and solar power ^ φ The utility model has the advantages of better tracking effect, and can also provide the self-detection purpose of the fixed and the slabs with the correct conversion efficiency. The present invention provides a solar power with the aim of solving the aforementioned technical problems and achieving the best. The judging device is provided with a body, a plurality of light sensing benefits and a computing module, wherein: the seat body is a three-dimensional seat body, and the plurality of illuminating surface systems are non-common In the plane, there is an angle conversion relationship between the adjacent illumination surfaces; each of the photo sensors is correspondingly and fixedly disposed on the surface of the illumination surface, and each of the photo sensors receives a solar light source on a daily basis. ',耵矸Generating an electrical signal to the computing module; the computing module receives the electrical signal received by each photosensor, each light sensing angle conversion relationship, and a solar orientation information, and estimates the sun through a conversion estimation method Light source-transmission rate, a maximum available optical power, up to radiation and a diffuse radiation'. The conversion estimation method obtains the orientation and angle relationship between the solar light source and each light sensor by using the solar orientation information, and then Each light sensor senses a relationship between the light output power of the solar light source and a conversion angle, and estimates the maximum value of each light sensor when the light source is vertically directed according to the obtained transmittance and the comparison data of the daytime reference. Using the optical power and the direct radiation, the diffuse radiation. m wherein the base is a four-sided flat-topped cone comprising a top surface and four 201140005 four side wall surfaces, and the top surface and the four side wall surfaces respectively Fixedly provided with a light sensor. The 'operational module' is input by a time input and a latitude and longitude input, and the solar light source and each light sensor are calculated by a 10,000-year layer calculation formula. Opposed relationship 0

其中’該運算模組包含一中央處理單元、分別與該中 ,處理單元電性連接之一類比數位轉換器、一太陽方位計 算早兀及一顯示單元,以及複數個放大器,其中,各放大 益與各光感測器電性連接,每—放大器放大所連接之該光 感測器的電訊號後輸出至該類比數位轉換器,該類比數位 轉換器再將電訊號數位化後輸出至該中央處理單元,該中 央處理單亥太陽方位資訊及角度轉換關係透過執行該 轉換估測方法言十笪%· 丄γ , m 异省取大可利用光功率、該直達輻射及該 散漫輻射並顯示於該顯示單元。 其中,該經緯廋給人&丨、, ., 又翰入係以一全球衛星定位系統輸入經 該轉換估測方法将|收々 , ,、先將各感測器所感測的光功率排片 後’以一已知的天候龙丨齡 '斷基準比較資料判斷該穿透率及-天候狀況’並以一太陽輻〃 ¥田耵A A §十异晴天時的該最大光政 率及該直達輻射理論值, ή 而換异各光感應器所感應的該i 達輻射及該散漫輻射 本發明在提供一種太 η兮士阻i 太陽先功率判斷之程式產品,當電 私載入该太險光功率判斷 ^ %式產品並執行後,可完成一 太陽光功率判斷方法。 藉此,本發明具有如下優點: 201140005 資訊’諸如入射方位、 、直射輻射強度、散射、 1·可偵測、計算太陽光源的多種 角度、檢測位置的最大可利用光功率 漫射強度等。 2.本發明可達成的咸測纟士罢,-τ 可以作為—可追光太陽能 面板追光之重要參考,不僅可以讓太陽能光電板藉此得 °入,向而提向能源轉換效率,更可讓整體系統比較太陽 能先電板最終的能源轉換是否符合預期,讓维護人員可以遠Wherein the computing module comprises a central processing unit, an analog-to-digital converter electrically connected to the processing unit, a solar azimuth calculation and a display unit, and a plurality of amplifiers, wherein each of the amplification amplifiers Electrically connected to each of the photo sensors, each amplifier amplifies the electrical signal of the connected photosensor and outputs the electrical signal to the analog digital converter, and the analog digital converter digitizes the electrical signal and outputs the signal to the central The processing unit, the central processing unit, the solar position information and the angle conversion relationship are performed by performing the conversion estimation method, and the optical power, the direct radiation and the diffuse radiation are displayed on the The display unit. Wherein, the latitude and longitude latitude is given to the person & 丨,, ., and the input system of the global satellite positioning system is input by the conversion estimation method, and the optical power sensed by each sensor is first arranged. After the 'comparison of a known weather dragon's age' reference data to determine the penetration rate and - weather conditions 'and a solar radiation 〃 耵 耵 耵 耵 § ten different sunny days of the maximum light rate and the direct radiation The theoretical value, ή, and the different radiation induced by the respective light sensors and the diffused radiation. The present invention provides a program product that is too η 兮 阻 i 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳After the power is judged and the % product is executed, a solar power judgment method can be completed. Thereby, the present invention has the following advantages: 201140005 Information such as incident orientation, direct radiation intensity, scattering, 1·detectability, calculation of various angles of the solar light source, maximum available optical power diffusion intensity of the detected position, and the like. 2. The measurable gentleman of the invention can be achieved, and the -τ can be used as an important reference for chasing the light of the solar panel, which not only allows the solar photovoltaic panel to get in, but also provides energy conversion efficiency. Allows the overall system to compare the final energy conversion of the solar panels to meet expectations, so that maintenance personnel can

端即時監控太陽能光電板運算正常與否,λ為節省人力成 本。 3.本發明之光功率感測數據與結果,亦可作為固定式太 陽能板的光功牟感測自我檢測之參考;其可讓固定式太陽能 板之維護者可以具以瞭解該固^式太陽能板是否卫作正常。 【實施方式】 請參考第-圖、第二圖及第三圖,其為本發明之太陽光 功率判斷裝置之較佳實施例,其包含—座體1〇、複數個光 感測器20及一運算模組3〇。 該座體10為一立體座體,其包含複數照射面係為非共 平面,該座體10於白晝具太陽光線時,至少有一照射面接 受入射太陽光之照射。由於每一照射面為非此 卜^、十面,即兩兩 相鄰的照射面之間存在一角度轉換關係,其中 丁 °茨角度轉換關 係至少包含方位角及仰傾角關係。該座體彳〇 <坦式不限 定’其可以為半球狀之座體、半球狀多面體、容 夕用錐體、圓 錐體、立體梯型等。本實施例之該座體10為—! τ 句 四邊平頂錐 體’其包含一頂面(U for up)以及四個側壁面(R ^ 201140005 for left、B for back ' F for front),各側壁面分別與該頂面 存在前述的角度轉換關係。 各遠光感測器2 0分別對應且固定設於該照射面表面, 母一光感測器2 0於接受來自一太陽光源s之照射,產生一 電訊號輸出至該運算模組30,其中該電訊號與該太陽光源S 所產生一太陽輻射之強度有關,該太陽輻射包含一直達輻射 PD及一散 >更輕射psky。其中,該直達輕射pD是各光感測器 20直接接收到自太陽光源s之入射方向的太陽輻射,所以 • 該直達輻射Ρ〇與各光感測器20與太陽光源s的入射角度關 係有關,且與大氣環境狀態有關(如氣候);修正各光感測 器20的角度關係後,該直達輕射之一垂直分量可以表示 為:& cos夹。 月文/又輕射P s k y則是光感測器2 0接收到太陽光源s被大 氣環境狀態或周遭建築物反射、散射後已經改變原始入射方 向而改由從四面八方散射、漫射的太陽輻射,因此散漫輻射The terminal monitors the solar photovoltaic panel operation normally or not, and λ saves manpower costs. 3. The optical power sensing data and results of the present invention can also be used as a reference for the optical power sensation self-detection of the stationary solar panel; the maintenance of the stationary solar panel can be understood to understand the solid solar energy Whether the board is normal. [Embodiment] Please refer to the first, second and third figures, which are preferred embodiments of the solar power judging device of the present invention, comprising: a body 1 〇, a plurality of photo sensors 20 and A computing module 3〇. The base body 10 is a three-dimensional base body, and the plurality of illumination surfaces are non-coplanar, and the base body 10 receives at least one illumination surface to receive the incident sunlight when the white light has solar rays. Since each illumination surface is not the same, the ten sides, that is, there is an angle conversion relationship between the adjacent illumination surfaces, wherein the angle conversion relationship includes at least an azimuth angle and a tilt angle relationship. The body 彳〇 <tan is not limited' can be a hemispherical seat, a hemispherical polyhedron, a ceremonial cone, a round cone, a stereoscopic ladder, and the like. The seat body 10 of the present embodiment is a “! τ sentence four-sided flat-topped cone” which includes a top surface (U for up) and four side wall surfaces (R ^ 201140005 for left, B for back 'F for front), Each of the side wall faces has the aforementioned angular conversion relationship with the top surface. Each of the high-beam sensors 20 is correspondingly and fixedly disposed on the surface of the illumination surface, and the mother-photo sensor 20 receives illumination from a solar source s, and generates an electrical signal output to the operation module 30, wherein The electrical signal is related to the intensity of a solar radiation generated by the solar source S, the solar radiation comprising up to the radiation PD and a dispersion > lighter shot psky. Wherein, the direct light pD is the solar radiation directly received by each photo sensor 20 from the incident direction of the solar light source s, so the direct radiation Ρ〇 and the incident angle relationship between each photo sensor 20 and the solar light source s Related to, and related to the state of the atmospheric environment (such as climate); after correcting the angular relationship of each photosensor 20, one of the vertical components of the direct light shot can be expressed as: & cos clip. The moon/light shot P sky is the light sensor 20 receiving the solar light source s after being reflected or scattered by the atmospheric environment or surrounding buildings, and has changed the original incident direction instead of scattering and diffusing solar radiation from all directions. Diffuse radiation

Psky與各光感測器20與太陽光源S的入射角度相對較無關 • 係。 該運算模組30由各光感測器20讀取接收該電訊號,再 配合各光感測器20之該角度轉換關係及一太陽方位資訊 40 ’經一轉換估測方法估算一穿透率、一最大可利用光功率 與該直達輻射和該散漫射之比例。該太陽方位資訊4〇與一 ,測點地理位置(經緯度)以及一量測時間有關,因此,該運 算模組30由外部或自行檢測、產生該檢測點地理位置及該 S測時間,作為估算該最大可利用光功率之參數。該穿透率 為-即時量測光功率對一光功率基礎之比值,該最大可利用 201140005 光功率為任-個該光感測器20、—太陽能面板或光能檢測 凡件垂直於太陽光入射方向所感測之太陽輸出光功率。 3亥運算模組3〇為一單晶片電路、一可程式邏輯電路或 類似的具備獨立運算能力之電路模組,本實施例之該運算模 組30包含一中央處理單元31、分別與該中央處理單元31 電性連接之一類比數位轉換器33、一太陽方位計算單元以 及一顯示單元37’以及複數個放大器35,其中,各放大器 35與該光感測器2〇電性連接,其放大所連接之光感測器The Psky is relatively independent of the angle of incidence of each of the photosensors 20 and the solar source S. The operation module 30 reads and receives the electrical signal from each photosensor 20, and then uses the angle conversion relationship of each photosensor 20 and a solar orientation information 40' to estimate a transmittance through a conversion estimation method. a ratio of the maximum available optical power to the direct radiation and the diffuse radiation. The solar orientation information 4〇 is related to the geographic location (latitude and longitude) of the measurement point and a measurement time. Therefore, the operation module 30 detects the geographical position of the detection point and the S measurement time by external or self-test, as an estimation. The parameter of the maximum available optical power. The penetration rate is the ratio of the instantaneous measurement optical power to an optical power basis, and the maximum can be used as the 201140005 optical power for any of the optical sensors 20, the solar panel or the light energy detecting device is perpendicular to the sunlight. The solar output optical power sensed by the incident direction. The 3H computing module 3 is a single-chip circuit, a programmable logic circuit or the like, and has a circuit module with independent computing capability. The computing module 30 of the embodiment includes a central processing unit 31 and a central unit respectively. The processing unit 31 is electrically connected to an analog-to-digital converter 33, a solar position calculation unit, a display unit 37', and a plurality of amplifiers 35, wherein each amplifier 35 is electrically connected to the photo sensor 2, and is amplified. Connected light sensor

的電訊號後輸出至該類比數位轉換器33,該類比數位轉換 器33則再將電訊號數位化後輸出至該中央處理#元31。該 太陽方位計算單元34讀取該太陽方位資訊4〇之時間與經緯 度亚據以計算一即時太陽位置輸予該中央處理單元31。該 中央處理單元31依據所讀取的該即時太陽位置及數位化之 電訊號,利用該轉換估測方法計算該最大可利用光功率以及 該直達輻射和該散漫射之比例。本實施例之該太陽方位計算 單疋34係由一外部時鐘晶片與一經緯度輸入單元(可以手動 輸入方式或讀取自一全球衛星定位裝置之感測結果)取得時 間及經緯度,並以内儲之一萬年曆公式參照運算得到即時太 陽位置。 在該轉換估測方法方面,由於各光感測器2〇相對於該 太陽光源S之位置關係均不同,因此其所分別感測之太陽光 源S之直達輻射及散漫輻射之比例各有不同;易言之,某個 或某些與太陽光源S入射方向垂直或具有垂直投影分量的 光感測器20在一般的天候狀況下,可以感測到相對較大的 直達輻射之比例,而背對太陽光源s之光感測器2〇的感測 8 201140005 結果可能僅包含散漫輕射。所以,該些光感測器20可以依 據太陽光源S之光輸出轄射的感應結果以及各光感剛器 之角度轉換關係’經過座標轉換、代數運算及資料庫 斷等方式取得該太陽光源s在感測當時的環境天候下,^来 感,器20所能接收、取得的最大可利用光功率(為各光感 測為20於該太陽光源垂直直射路徑時之光功率)。因此:The electrical signal is output to the analog-to-digital converter 33, and the analog-to-digital converter 33 digitizes the electrical signal and outputs it to the central processing #元31. The solar position calculation unit 34 reads the time and latitude and longitude data of the solar position information 4 to calculate an instantaneous solar position and sends it to the central processing unit 31. The central processing unit 31 uses the conversion estimation method to calculate the maximum available optical power and the ratio of the direct radiation to the diffuse radiation according to the read instantaneous solar position and the digitized electrical signal. The solar orientation calculation unit 34 of the embodiment obtains time, latitude and longitude from an external clock chip and a latitude and longitude input unit (which can be manually input or read from a global satellite positioning device), and is stored therein. The 10,000-year calendar formula refers to the operation to get the instantaneous sun position. In the aspect of the conversion estimation method, since the positional relationship of each of the photosensors 2 〇 with respect to the solar light source S is different, the ratios of the direct radiation and the diffuse radiation of the solar light source S respectively sensed are different; In other words, some or some of the photosensors 20 that are perpendicular to the incident direction of the solar source S or have a vertical projection component can sense a relatively large proportion of direct radiation under normal weather conditions, while facing away Sensing of the solar sensor s photo sensor 2 8 8 201140005 The result may only contain diffuse light shots. Therefore, the light sensors 20 can obtain the solar light source according to the sensing result of the light output of the solar light source S and the angle conversion relationship of each light-sensing device by coordinate conversion, algebraic operation, and database break. In the sense of the environmental environment at the time, the maximum available optical power that can be received and obtained by the device 20 (the optical power when the light is sensed to be 20 in the vertical direct path of the solar light source). therefore:

當一可追光太陽能板裝置採用本實施例時’理論上與該可追 :太陽能板裝置之一太陽能板擺設方位一致之任一光感測 器20也可偵測到太陽能板所應接收到之光功率,所以本實 施例之計算結果不僅可以讓該追光太陽能板作為追光的參 考,本實施例更可以提供該可追光太陽能板裝置、或一固定 式太陽能板判斷其光電轉換之結果是否符合預期。 為更詳盡說明透過角度轉換關係及光功率運算的過 程X本月施例之四邊平頂錐體為範例說明各光感測器2〇 之座標轉換、轉換估測方法,如后: (1)向量幾何空間 使用向量幾何空間的方式,得到太陽光源s相對於水平 感測器20(U)的入射角度φ與方位角度α,如第二圖所示, 其中: Φ:太陽光源入射角(太陽光源S與ζ軸之夾角) α:太陽光源方位角(χγ平面上投影與χ軸之夾角) R :太陽光源與原點之距離。 X = Rsin^coscr -Ϋ = Rsin^sina ; Z = Rcos^ 且’太陽光源S之座標軸可以表示為 [S] 由於太陽光源s對地球的距離(即R值)視同無窮遠,因 9 201140005 X = sin^cosa * Ϋ = sin彡sinor Z = cos^ 此可將上列太陽光源s之座標軸表示為 (2)座標轉換When a light-receivable solar panel device adopts the embodiment, any light sensor 20 that is theoretically consistent with the solar panel arrangement of the solar panel device can also detect the light that the solar panel should receive. Power, so the calculation result of the embodiment can not only make the light-following solar panel as a reference for tracking, but the present embodiment can further provide the light-receiving solar panel device or a fixed solar panel to determine whether the photoelectric conversion result is In line with expectations. In order to explain in more detail the process of translating the angle conversion relationship and the optical power calculation X. The four-sided flat-topped cone of this month's example is an example to illustrate the coordinate conversion and conversion estimation methods of each photosensor, as follows: (1) The vector geometric space uses the vector geometric space to obtain the incident angle φ and the azimuth angle α of the solar light source s relative to the horizontal sensor 20 (U), as shown in the second figure, where: Φ: solar light source incident angle (the sun) The angle between the light source S and the x-axis) α: the azimuth of the solar source (the angle between the projection on the χγ plane and the x-axis) R: the distance between the sun source and the origin. X = Rsin^coscr -Ϋ = Rsin^sina ; Z = Rcos^ and 'the coordinate axis of the sun source S can be expressed as [S] Since the distance of the sun source s to the earth (ie the R value) is treated as infinity, because 9 201140005 X = sin^cosa * Ϋ = sin彡sinor Z = cos^ This can represent the coordinate axis of the solar light source s listed above as (2) coordinate transformation

使用旋轉座標的方式先繞位於水平面之光感測器20(u) 的Z軸旋轉Θ:角度,如第四圖,得到水平面座標逆時針旋轉 後的新座標軸x1、y1肖z1,其中z1的角度為該水平光感 測器20(U)的入射角方程式;繞χ1軸旋轉&角度,可得到 x2、y2與z2的座標軸,而z2為右面之光感測器2〇(r)的入 射角方程式’左面之光感測器2Q(L)的人射角方程式則是繞 x1軸旋轉戈角度即可得到;繞y1軸旋轉&角度,可得到a、 y3與z3的座標軸,而z3為後面之光感測器2〇(B)的入射角 方程式。其中,前面之光感測器2〇(F)的入射角方程式則是 繞x1軸旋轉Λ角度即可得到,座標軸轉換過程如下所示: ⑴繞Ζ軸轉角度,可得新的座標軸&、^與ζ 'χΓ cos θζ -sin^2 0 X' sin《cos a cos - sin 夕 sin a sing· yi ζ1」 sin cos 0 2 2 0 0 1 Y z sin φ cos a sin 9Z + sin^ sin a cos 9Z . cos 多 Ο) 水平面之光感測器20(υ)之入射角為繞Ζ軸旋轉Α角,求得 右面之光感測器20(R)與太陽光源s間之關係式(a): zl=cos/=cos 么(A) (ii)繞x1軸轉屺角度’可得新的座標軸Χ2、“與z2: 10 201140005 χ2 Ί ο 0 ' "χΓ sin^cosacos0. -sin^sinasin^. ~ y2 = 0 cost -sin θχ yi = (sin 彡 cos a sin + sin多 sin a cos 0r)cos & - cos#sin & (2) z2 0 sin^T COS0X zl (sin 沴cos or sin 义 + sin 彡 sin a cos 0Jsin + cos 彡 cos 見 右面光感測器2 Ο (R)之入射角為繞x 1軸向右旋轉& 角,求得右面光感測器20(R)與太陽光源S間之關係式(B): z2=(sin彡cosasin^ +sin沴sinacosA)sin《+cos彡cos《 =cosA (B) 左面之光感測器20(L)之入射角為繞χ1轴向左旋轉 角,求得左面之光感測器(L)與太陽光源S間之關係式(C): z2=-(sin^coscirsin^ +sin(z)sinacos^)sin^ +cos^cos6>x = cos^ (〇 (iii)繞y1軸轉^角度,可得新的座標軸x3、y3與z3: x3' cos & 0 sin 0y "χΓ (sin ^ cos or cosO: - sin^ sin a sin ^,) cos ^ + cos^sin 0y y3 = 0 1 0 yi = sin ¢5 cos or sin & + sin诊 sin a cos z3 -sin 6y 0 cos^ zl -(sin^cosa cos^ -sin^sin a sin ^r)sin ^ +cos^cos^y 後面之光感測器20(B)之入射角為繞yi抽向右旋轉义 角’求得右面之光感測器(R)與太陽光源S間之關係式(D): z3=-(sin^cosacos^ -sin^sinasin<92)sin^+c〇Siz5cos^ = cos^ (D) 月1J面之光感測器2 0 ( F )之入射角為繞y 1抽向左旋轉·& 角’求得前面之光感測器(F)與太陽光源s間之關係式: z3=(sin ^ cos a cos- srn^ sin a sin ) sin 0 + c〇s^ cosGy = cos^ (E) (3>各光感測器20的入射角度(¾、义與為任意角度) 201140005 整理(A)〜(E)式後可得各個光感測器20的太陽光源S之 八射角度: ^υ-φ (4-1) Φκ ~cos_1 ((sin φ cos a sin θζ + sin^ sin a cos Θζ )sin 0x + cos^ cos Θχ) (4-2) ^ ^cos-1 (-(sin 0 cos a sin <9Z + sin# sin a cos θζ )sin 必 + cos# cos ) (4-3) ΦΒ ~cos-1 (-(sin φ cos a cos θζ ~ sin^ sin a sin θζ) sin 6y + cos^ cos 0y)(“) ^^cos^CCsin^cosacos^ -sin^sinasin^Jsin^ +cos^cos^) (4.5) 其中, .為太陽光源(同水平面)入射角’其可由該太陽方位計算 翠元34計算而得。 α :為太陽光源(同水平面)方位角,亦為由該太陽方位計算 單為34取得。 义·水平旋轉該座體1 〇及各光感測器2〇的方位角度。 的傾斜 * % .前面、後面、左面與右面光感測器2〇所擺放 由前列(4-1)〜(4-5)式中即可分別求得: A :水平感測器之入射角; 么:右方感測器之入射角; 么:左方感測器之入射角; A :後方感測器之入射角; 咚:前方感測器之入射角。 (4)五方位光感測器之方程式 如前述,各光感測考9 可以 $ 20接收該太陽光源S之韓射 201140005 分成4 (直達輻射)與'(散射、漫射)兩個主要成分。如果考 慮太陽光源s之輸出輻射含有&的五個光感測器2〇的 方程式如下列(5-1)〜(5-5)式。 pu =Po cos 4 + ^sky,u (5-1) PR- =PD COS + ^sky,R (5-2) PL- -Po C0S^L + ^sky,L (5-3) PB- -Po cos 4 + ^sky.B (5-4) pF- -p〇 cos 4 f Psky,F (5-5) 換5之,每個光感測器2 〇之感測結果都可能包含直達 輻射PD、散漫輻射^兩種輻射(i=u、R、L、.B及F),因此, 由上列公式(5_1卜(5·5)可知,透過前述的轉換及各光感測器 2〇之感測結果(即Pu、Pr、Pl、Ρβ、ρρ),即可以轉換估測 方法換算或推估該太陽光源…。、〜兩種輕射之含量, 藉以推估該最大可利用光功率。 _ 千以本只施例為例,該中央處Rotate the Z-axis of the photosensor 20(u) at the horizontal plane by using the rotary coordinate: angle, as shown in the fourth figure, obtain the new coordinate axis x1, y1, z1, after the counterclockwise rotation of the horizontal coordinate, where z1 The angle is the angle of incidence equation of the horizontal photosensor 20(U); the rotation axis of the χ1 axis is rotated, and the coordinate axis of x2, y2 and z2 is obtained, and z2 is the photo sensor of the right side 2〇(r) The angle equation of the incident angle equation 'the left-side photosensor 2Q(L) is obtained by rotating the angle of the circle around the x1 axis; rotating the angle of the y1 axis to obtain the coordinate axes of a, y3 and z3, and Z3 is the incident angle equation of the rear photosensor 2 〇 (B). The front angle equation of the front light sensor 2 〇 (F) is obtained by rotating the Λ angle around the x1 axis, and the coordinate axis conversion process is as follows: (1) The angle around the Ζ axis can be obtained, and a new coordinate axis & ,^ and ζ 'χΓ cos θζ -sin^2 0 X' sin "cos a cos - sin sin a sing· yi ζ1" sin cos 0 2 2 0 0 1 Y z sin φ cos a sin 9Z + sin^ sin a cos 9Z . cos multi-Ο) The incident angle of the horizontal light sensor 20 (υ) is the rotation angle around the Ζ axis, and the relationship between the right-side photo sensor 20 (R) and the solar source s is obtained ( a): zl=cos/=cos (A) (ii) 屺 around the x1 axis' can get a new coordinate axis Χ2, “and z2: 10 201140005 χ2 Ί ο 0 ' "χΓ sin^cosacos0. -sin ^sinasin^. ~ y2 = 0 cost -sin θχ yi = (sin 彡cos a sin + sin multi sin a cos 0r)cos & - cos#sin & (2) z2 0 sin^T COS0X zl (sin 沴Cos or sin + sin 彡sin a cos 0Jsin + cos 彡cos See right photosensor 2 Ο (R) The incident angle is the right rotation around the x 1 axis & angle, find the right photo sensor 20 ( Relationship between R) and solar source S (B): z2=(sin彡cosasin^ + Sin沴sinacosA)sin "+cos彡cos" =cosA (B) The angle of incidence of the left-side light sensor 20(L) is the left-hand rotation angle around the χ1 axis, and the left-side light sensor (L) and the sun are obtained. The relationship between the light sources S (C): z2=-(sin^coscirsin^ +sin(z)sinacos^)sin^ +cos^cos6>x = cos^ (〇(iii) turns the angle around the y1 axis, New coordinate axes x3, y3 and z3: x3' cos & 0 sin 0y "χΓ (sin ^ cos or cosO: - sin^ sin a sin ^,) cos ^ + cos^sin 0y y3 = 0 1 0 yi = sin ¢5 cos or sin & + sin diagnosis sin a cos z3 -sin 6y 0 cos^ zl -(sin^cosa cos^ -sin^sin a sin ^r)sin ^ +cos^cos^y The incident angle of the sensor 20 (B) is the relationship between the light sensor (R) and the solar light source S that is obtained by pulling the right angle around the yi to the right (z): z3=-(sin^cosacos ^ -sin^sinasin<92)sin^+c〇Siz5cos^ = cos^ (D) The incident angle of the 1J surface light sensor 2 0 (F) is rotated around y 1 to the left · & angle ' Find the relationship between the front photosensor (F) and the solar source s: z3=(sin ^ cos a cos- srn^ sin a sin ) sin 0 + c〇s^ cosGy = cos^ (E) ( 3> each photosensor 20 Shooting angle (3⁄4, meaning and arbitrary angle) 201140005 After finishing (A)~(E), the angle of the sun source S of each photosensor 20 can be obtained: ^υ-φ (4-1) Φκ ~ Cos_1 ((sin φ cos a sin θζ + sin^ sin a cos Θζ )sin 0x + cos^ cos Θχ) (4-2) ^ ^cos-1 (-(sin 0 cos a sin <9Z + sin# sin a cos θζ )sin must + cos# cos ) (4-3) ΦΒ ~cos-1 (-(sin φ cos a cos θζ ~ sin^ sin a sin θζ) sin 6y + cos^ cos 0y)(") ^ ^cos^CCsin^cosacos^ -sin^sinasin^Jsin^ +cos^cos^) (4.5) where , is the angle of incidence of the sun source (same level), which can be calculated from the solar azimuth calculation. α: is the azimuth of the solar light source (same horizontal plane), which is also obtained by the solar azimuth calculation. The horizontal direction of the body 1 and the respective photosensors 2〇 are rotated horizontally. Tilting * %. The front, rear, left and right photosensors 2〇 are placed by the front row (4-1)~(4-5) respectively: A: incident of the horizontal sensor Angle: What is the angle of incidence of the right sensor; What is the angle of incidence of the left sensor; A: the angle of incidence of the rear sensor; 咚: the angle of incidence of the front sensor. (4) The equation of the five-azimuth photosensor is as described above, and each photo-sensing test 9 can receive the solar radiation source S of the solar radiation source 201140005 into two main components: 4 (direct radiation) and '(scattering, diffusing) . If the output of the solar light source s is considered to contain & the five photosensors 2〇, the equations are as follows (5-1) to (5-5). Pu =Po cos 4 + ^sky,u (5-1) PR- =PD COS + ^sky,R (5-2) PL- -Po C0S^L + ^sky,L (5-3) PB- - Po cos 4 + ^sky.B (5-4) pF- -p〇cos 4 f Psky,F (5-5) For 5, the sensing result of each photo sensor 2 可能 may contain direct radiation PD, diffuse radiation ^ two kinds of radiation (i = u, R, L, .B and F), therefore, from the above formula (5_1 bu (5·5), through the aforementioned conversion and each photosensor 2 The sensing result (ie, Pu, Pr, Pl, Ρβ, ρρ), which can be converted or estimated by the conversion method, can be used to estimate the maximum available light. Power. _ Thousands of this example, the central office

:早:/1使用公式(4-”,5)算出各光感測器20之入射 取後便可由以上資訊得知太陽光源s之 大可利用功率(含/>、p忐八、^ 回度最 °吻刀,並將光功率之計算結果顯示 於_單元37。進-步地,該中央處理單元31也可進 步由 > .、之比例估測量測時之天::31也了進-且氐、主目 』里利時之天候狀況(陰雲、晴、 肖=晨等),並且將各資訊顯示於咖營幕上。 在使用時,本實施例之任— 定式太陽能板之㈣角… 測器2〇可以與-固 2〇之感測姓果依據前述可知,該光感測器 器20之残·、則姓里 】用先功率,因此該光感測 果可以作為判斷該固定式太陽能板之光功率 201140005 感測是否正常之依據。由於 太陽能板與太陽*…“㈣測裔20與固定式 度—致,因此,系統管理者可以 感應太陽光之光Γ丰否正1 該固定式太陽能板所 陽能板是否正常工作=技藉此達到遠端檢測固定式太 工作之技術功效。舉例說明之,該固定 陽能板可能受到遮I外力撞擊破損或辦污遮蔽等因辛,使 感佩功率與最大可利用光功率有差異,此時,配合比較: Early: /1 Using the formula (4-", 5) to calculate the incident of each photosensor 20, the maximum available power of the solar source s can be obtained from the above information (including />, p忐8, ^ The return degree is the most kiss knife, and the calculation result of the optical power is displayed in the _ unit 37. Further, the central processing unit 31 can also progress by the ratio of the measurement time of the measurement:: 31 In addition, the weather conditions (Yinyun, Qing, Xiao, Chen, etc.) of Lili and the main eyes are displayed, and the information is displayed on the screen of the coffee camp. In use, the solar energy of this embodiment The angle of the board (four)... The sensor 2 〇 can be compared with the - 2 Sense of the surname. According to the above, the photo sensor 20 is disabled, and the surname is used first, so the light sensation can be As a basis for judging whether the optical power of the fixed solar panel 201140005 is normal or not, since the solar panel and the sun*... "(4) Sense 20 and fixed degree, the system administrator can sense the light of the sun. No positive 1 Whether the solar panel of the fixed solar panel works normally = technology to achieve remote detection and fixed For example, the fixed yang board may be affected by the impact of the external force, such as damage or smear, so that the power of the sensation and the maximum available optical power are different.

:光感心之感測結果’遠端監控者即可得知污損或毁 抽狀^兄’藉此派員維修,而可達到節省維護成本之功效。進 步洋述及轉換估測方法,請參考第五圖,其步驟包含: (STEP 〇)讀取地理位置、時間及各光感測器2〇之角度 ,係,:如第五圖之流程步驟小〜<5>,進行轉換估測方法之 刖,必須先取得必要的輸入參數以及簡單的校正,諸如: 一 <1>先輸入當地地理位置:可以手動輸入經緯度、高度 等資訊或GPS衛星定位取得之; < 2 >才父正時鐘晶片的日期和時間; <3>輸入各感測器2〇之擺放資訊:設定&、&與必角度; <4>(使該太陽方位計算單元34)讀取完成日期與時間,· <5>依據流程步驟<1;>〜<4>之參數輸入與取得,該太陽 方位計算單元34計算得知太陽入射角、方位角,其中該太 陽方位計算單元34可能是内儲電子萬年曆程式之單晶片電 路。 (STEP1)計算太陽光源對配置於不同方位的光感測器 之入射角度關係及讀取各光感測器之光功率: 依據(STEP0)之計算結果,該中央處理單元31可依據【u 14 201140005 下列流程步驟計算角度關係及光功率: <6>由前述公式(4 —彳)~(4_5)計算得到各個光感測器2〇 之入射角度; <7>讀取各光感測器2〇所接收到的光功率; <STEP2)依據不同方位之光感測器感測的光功率及各 光感測器的方位角度關係’估測計算天候狀況: <8>將各光感測器20之光功率作大小排序:本實施例 中,該中央處理單元31將不同方位所感應之光功率與各光 感測器20相對於太陽光源s之入射角進行大小排序。理論 上,入射角最小者的該光感測器20所偵測的光功率為最 大;入射角最大的該光感測器20所偵測的光功率為最小, 即是式(6-1)所代表的狀況: Φι>φ2>φ3>^>^^(ρ^ΡΦι)>(Ρ2=Ρ,2)>(Ρ,=ρφί)>^=Ρφ)>(Ρ5=Ρ^ , 於此,ΡΦ 1〜ρφ 5為本實施例之五個光感測器2〇,具有 最小到最大入射角之光感測器2〇的排序關係;Ρι〜ρ5則為 本只施例之五個光感測器2 Q實際量測的光功率排序大小。 一雖然理論上光功率之大小排序應該與光感測器與太陽 光源S之入射角度具有順序性的對應關係(如上列公式() =述)’但是,此一順序性的對應關係可能因為氣候或其他 衣境因素(雲、霧等)而有所改變,例如式(6-2): φ,>Φ2>^>^>^^(ρι=ρφ>)>(ρ2=ρ,3)>{ρ3=ρ^>(Ρ4=ρ^>(Ρ5 = ρ^ {6_2) t :即代表具有Φ 2入射角關係的光感測器2〇所接收的光 功率'可能開始遭受到雲層遮蔽太陽的影響’使其應可感測 的光功率順位降低。之後’由下一步驟<9>進行太陽直達輻 射之穿透率判別。 201140005 <9>判斷天候狀況:該中央處理單元31可以前述的光 感測器20人射角計算與其光功率讀取值,依據下表】所列 的一天候判斷基準比較資料估測計算感測當時之不同天候 狀況與'穿透率⑻,其中,該穿透率(Π,或稱太陽直達輻射 穿透率)為太陽直達韓射穿透雲層後,地面(或光感測器2〇 位置)所接收到之直達輻射之修正值。: Sensing results of light sensation 'The remote monitor can know the fouling or ruining ^ brother's to send personnel to repair, and can achieve the effect of saving maintenance costs. For the advancement and conversion estimation method, please refer to the fifth figure. The steps include: (STEP 〇) reading the geographical position, time and angle of each photo sensor, system: Steps of the process as shown in Figure 5 Small ~ <5>, after the conversion estimation method, you must first obtain the necessary input parameters and simple corrections, such as: a <1> first enter the local geographic location: you can manually enter the latitude and longitude, altitude and other information or GPS The satellite positioning obtained; < 2 > the date and time of the parent clock chip; <3> input the information of each sensor 2: setting && and the necessary angle; <4> (Making the solar azimuth calculating unit 34) read the completion date and time, <5> According to the parameter input <1;>~<4> parameter input and acquisition, the solar azimuth calculating unit 34 calculates The incident angle of the sun and the azimuth angle, wherein the solar azimuth calculation unit 34 may be a single-chip circuit in which the electronic storage system is stored. (STEP1) Calculate the incident angle relationship of the solar light source to the light sensors disposed in different orientations and read the optical power of each light sensor: According to the calculation result of (STEP0), the central processing unit 31 can be based on [u 14 201140005 The following process steps calculate the angular relationship and optical power: <6> The incident angle of each photosensor 2〇 is calculated by the above formula (4—彳)~(4_5); <7> reading each light sensing 2) the received optical power; <STEP2) according to the optical power sensed by the light sensor of different orientations and the azimuth angle relationship of each photosensor 'estimate the calculation of the weather condition: <8> The optical power of the photo sensor 20 is sorted by size: in the embodiment, the central processing unit 31 sorts the optical power induced by the different orientations and the incident angle of each photosensor 20 with respect to the solar light source s. Theoretically, the optical power detected by the photo sensor 20 having the smallest incident angle is the largest; the optical power detected by the photo sensor 20 having the largest incident angle is the smallest, that is, the formula (6-1) The situation represented: Φι>φ2>φ3>^>^^(ρ^ΡΦι)>(Ρ2=Ρ,2)>(Ρ,=ρφί)>^=Ρφ)>(Ρ5=Ρ ^ , Ρ Φ 1 ρ φ 5 is the five photosensors 2 为本 of the embodiment, and has the order relationship of the photo sensor 2 最小 with the smallest to the maximum incident angle; Ρι 〜ρ5 is the only example The optical power sequencing of the actual measurement of the five photosensors 2 Q. Although the order of the optical power should theoretically have a sequential correspondence with the incident angle of the photosensor and the solar source S (such as the formula above) () = described) 'However, this sequential correspondence may change due to climate or other clothing factors (clouds, fog, etc.), for example, (6-2): φ, > Φ2 >^>^>^^(ρι=ρφ>)>(ρ2=ρ,3)>{ρ3=ρ^>(Ρ4=ρ^>(Ρ5 = ρ^ {6_2) t : that means Φ 2 incident angle relationship of the light sensor 2 〇 received optical power 'may start Influenced by the cloud to shield the sun', the optical power that should be sensed is reduced. After that, the penetration rate of the direct solar radiation is determined by the next step <9>. 201140005 <9> Judging the weather condition: the central The processing unit 31 can calculate the optical power reading value of the photosensor 20 and the optical power reading value thereof, and estimate the different weather conditions and the penetration rate at the time of sensing according to the one-day judgment reference comparison data listed in the following table. (8), wherein the penetration rate (Π, or the direct solar radiation penetration rate) is the correction value of the direct radiation received by the ground (or the position of the photosensor 2〇) after the sun reaches the cloud through the cloud. .

如果滿足表1之(7-1)與(7-9)式目丨丨士丨!^ 丸「 V W則判斷為感測當時天候 為陰天」’其穿透率η = 0〜〇_1 ;滿万/7 兩足(7·2)〜(7-6)與(7-10) 式為不同程度之「多雲」氣候(視天空 "又雲層掩蔽之程度而 疋),其穿透率η = 0_1〜0.8 (隨雲層漸少复 曰啊^其穿透率η相對漸 16 201140005 增);滿足(7-7)與(7-11)式為「薄雲」氣候,其穿透率 η = 〇.8〜Ο.9;滿足(7-8)與(7-12)式為「晴天」氣候,其穿透 率 η=1。 表1及上列所述之分級,僅為範例,使用者當然可以依 據自己的判斷基準與經驗規劃,重新設定公式(7_彳)〜 (7-1 2 )’或者’甚至可以做更細緻的分類。另外,清晨與 黃昏之情況則可搭配太陽光源S之高度角決定 (STEP 3}:計算直達輻射晴天理論值並求解最大可利 用光功率、直達輻射及散漫輻射 <1〇>由一太陽輻射公式計算「晴天」時,垂直該太陽光 源S入射方向之最大可利用之光功率 達輕射4成分之一直達輻射(晴天)理論值Pb。其中,本 實施例所使用的太陽輻射公式主要係由 Kreith&Kreider(1978)提出,說明如下: (1) _推求一大氣層外太陽輻射量p〇 P0 =1367 +38 sin(—-^9 + £>)) (8-1) 365 其中,1367為太陽常數;D為一年中該曰的曰序。 (2) .由大氣層外太陽輻射量p〇計算出一大氣層内垂直 於太陽入射方向之平面的一太陽直達輻射理論值pb: M(0, h) = [1229 + (614 · sinh)2 ],/2 - 614 · sinh (8 - 2) Μ(ζ,Η) = Μ(0^)^- (8-3) p(〇)If you meet the (7-1) and (7-9) styles in Table 1, you can see the gentleman! ^ Pill "VW is judged to be the day when the weather is cloudy" 'The penetration rate η = 0~〇_1; Man Wan / 7 two feet (7·2) ~ (7-6) and (7-10 The formula is a different degree of "cloudy" climate (depending on the degree of the sky " and the degree of cloud cover), its penetration rate η = 0_1~0.8 (with the cloud layer gradually less 曰 ^ its penetration rate η relatively 16 201140005 increase); satisfy (7-7) and (7-11) as the "thin cloud" climate, the penetration rate η = 〇.8~Ο.9; meet (7-8) and (7-12) The formula is a "sunny" climate with a penetration rate of η=1. The classifications listed in Table 1 and above are only examples. Users can of course re-set the formula (7_彳)~(7-1 2 )' or even more detailed according to their own judgment criteria and experience planning. Classification. In addition, the morning and dusk conditions can be determined by the height angle of the sun source S (STEP 3}: calculating the theoretical value of the direct radiation sunny day and solving the maximum available optical power, direct radiation and diffuse radiation <1〇> by a sun When the radiation formula calculates "clear day", the maximum available optical power perpendicular to the incident direction of the solar light source S reaches the theoretical value Pb of the radiation (sunny day) of the light-emitting component 4, wherein the solar radiation formula used in the present embodiment is mainly It is proposed by Kreith & Kreider (1978) and is described as follows: (1) _ Estimate the amount of solar radiation outside the atmosphere p〇P0 =1367 +38 sin(—-^9 + £>)) (8-1) 365 , 1367 is the solar constant; D is the order of the cockroach in a year. (2) Calculate the theoretical value of a direct solar radiation from the plane of the solar radiation outside the atmosphere, p〇: M(0, h) = [1229 + (614 · sinh)2 ] ,/2 - 614 · sinh (8 - 2) Μ(ζ,Η) = Μ(0^)^- (8-3) p(〇)

Tatm=()-5(e~〇65'M(Z'h) +e~°mM{z-h) (8-4)Tatm=()-5(e~〇65'M(Z'h) +e~°mM{z-h) (8-4)

Pb = P〇^aim (8-5) 201140005 其中’ M(0,h):海平面上的大氣質量; M (z,h):海平面起算z處的大氣質量; h:太陽光源S高度角 Γ咖··晴天的大氣傳達度(Transmittance) 以該太陽輻射公式計算的晴天時垂直太陽光源的最大 可利用太陽光功率Pv(v for vertical)中的直達輻射理論值 丨,並以針對不同天候情況下所建立的穿透率η作理論值忍 的修正,即= //><八,代入公式中,計算該座體 1 〇之各面上的光感測器20的直達輻射pD與,.值,且由太 陽穿透率η也可以得知Pv的與^的比例成分,即可從已 修正的&理論值推箅出p V的〜,進而得知即時p V值。 < 11 >將前述之計算結果輪出顯示:將所有太陽光源s 的資訊顯示(天候狀況、位置、光功率、直達輻射、散漫輻 射、最大可利用太陽光功率pv於顯示單元37 上。 進一步地,也可將本實施例之最後運算結果傳給可追光 太陽能板裝置,讓該可追光太陽能板裝置可以依據本實施例 之感應、計算結果’調整太陽能板的方向而達到追光功效, 同時,可以比較由本實施例所讀取的最大可利用太陽光功率 比較本身之太陽能板所感測的光功率,藉以判斷該太陽能板 是否正常工作或發生故障。因此,本實施例不僅可以讓太陽 能板藉此得知太陽光源S的方位而提高能源轉換效率,更可 讓整體系統比較太陽能光電板最終的能源轉換是否符合預 期’讓維護人員可以遠端即時監控太陽能光電板運算正常與 18 201140005 否’大為節省人力成本。 【圖式簡單說明】 第圖為本發明較佳實施例之透視立體示意圖。 第一圖為本發明較佳實施例之座標系統示意圖。 第二圖為本發明較佳實施例之電路方塊示意圖。 第四圖為本發明較佳實施例之轉換角度示意圖。 第五圖為本發明較佳實施例之流程塊示意圖。 【主要元件符號說明】 10座體 20光感測器 3〇運算模組 31中央處理單 3 3類比數位轉換器 34太陽方位計算單元 35放大器 37顯示單元 40太陽方位資訊 s太陽光源 [S1 19Pb = P〇^aim (8-5) 201140005 where ' M(0,h): air mass at sea level; M (z,h): sea level from the air mass at z; h: solar source S height Transmittance of the Γ Γ · 晴天 晴天 晴天 晴天 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以The penetration rate η established in the weather case is corrected for the theoretical value, that is, = //><8, substituted into the formula, and the direct radiation of the photosensor 20 on each face of the block 1 is calculated. The value of pD and ,., and the ratio of Pv to ^ can also be known from the solar transmittance η, and the p of the p V can be derived from the corrected & theoretical value, and the instantaneous p V value is known. . < 11 > The above calculation result is displayed in turn: the information of all the solar light sources s is displayed (weather condition, position, optical power, direct radiation, diffuse radiation, maximum available solar power pv on the display unit 37). Further, the final calculation result of the embodiment can be transmitted to the traceable solar panel device, so that the traceable solar panel device can adjust the direction of the solar panel according to the induction and calculation result of the embodiment to achieve the chasing light. Efficacy, at the same time, the optical power of the solar panel can be compared with the maximum available solar power read by the present embodiment, so as to judge whether the solar panel is working normally or malfunctioning. Therefore, this embodiment can not only make The solar panel learns the orientation of the solar light source S to improve the energy conversion efficiency, and allows the overall system to compare whether the final energy conversion of the solar photovoltaic panel meets the expectations. 'Let the maintenance personnel can remotely monitor the solar photovoltaic panel operation normally and 18 201140005 No' greatly saves labor costs. [Simple diagram of the diagram] BRIEF DESCRIPTION OF THE DRAWINGS The first drawing is a schematic diagram of a coordinate system according to a preferred embodiment of the present invention. The second drawing is a block diagram of a preferred embodiment of the present invention. The fifth diagram is a schematic diagram of a flow block according to a preferred embodiment of the present invention. [Main component symbol description] 10 body 20 optical sensor 3 〇 computing module 31 central processing single 3 3 analog digital converter 34 Solar azimuth calculation unit 35 amplifier 37 display unit 40 solar orientation information s solar light source [S1 19

Claims (1)

201140005 七、申請專利範圍: 其包含一座體、複數個光 1 _ 一種太陽光功率判斷裝置 感測器及一運算模組,其中: 該座體為一立體庙薇,甘a A m度體,其包含複數照射面係為非共平 面’兩兩相鄰的照射面之間存在一角度轉換關係; 各該光感測器分別對應且固定設於該照射面表面,每一 光感測器於接受-太陽光源照射時產生一電訊號輸出至該 運算模組; • 該運算模組以接收各光感測器接收之電訊號、各光感測 器之角度轉換關係及-太陽方位資訊’經—轉換估測方法估 算該太陽光源一穿透率、一最大可利用光功率、一直達輻射 與一散漫輻射,該轉換估測方法係以該太陽方位資訊取得該 太陽光源與各光感測器之方位與角度關係’再以各光感應器 感應該太陽光源之光輸出功率與轉換角度關係,以及依據所 得之該穿透率及一天候判斷基準比較資料’估算各光感測器 爻該太陽光源垂直直射時之該最大可利用光功率以及該直 鲁 達輪射、該散漫輻射。 2·如申請專利範圍第1項所述的太陽光功率判斷裝 置,該座體為一四邊平頂錐體,其包含一頂面以及四個側 壁面’且該頂面及四個側壁面分別固定設有一光感測器。 3 ·如申凊專利範圍第1或2項所述的太陽光功率判斷 裝置’該運算模組由一時間輸入及一經緯度輸入,以一萬 年曆什算公式計算該太陽光源及各光感測器之位置關係。 4.如申請專利範圍第3項所述的太陽光功率判斷袭 置,該運算模組包含一中央處理單元、分別與該中央處理 20 201140005 單元電性連接之—類比數位轉換器、—太陽方位計算單元 及一顯示單元,以及複數個放大器,其中,各放大器與各 光感測器電性連接,每一放大器放大所連接之該光感測器 的電訊號後輸出至該類比數位轉換器,該類比數位轉換器 ^將電訊號數位化後輸出至該中央處理單元,該中央處$ 單元以該太陽方位資訊及角度轉換關係透過執行該轉換估 測方法計算該最大可利用光功率、該直達賴射及該散漫輕 射並顯示於該顯示單元。 5·如申請專利範圍第4項所述的太陽光功率判斷裝 置,其中: 該經緯度輸入係以-全球衛星定位系統輸入經緯度; 及 該轉換估測方法係先將各感測器所感測的光功率排序 後,以-已知的天候判斷基準比較資料判斷該穿透率及一 :候狀況,並以一太陽輕射公式計算晴天時的該最大光功 2該直達輕射理論值’而換算各光感應器所感應的該直 達輻射及該散漫輻射。 種太陽光功率判斷方法,其步驟包含: 3十异複數個相對位於一太@τ m 之入场先源不同方位的光感測器 之入射角度關係及方位關係; 項取各光感應器所感測的光功率; 比較排列各光感應器所感測之光功率大小順序; =入射角度關係及方位關係、各光感測器之光功率 透主 计异比對—天候判斷基準比較資料,判斷—穿 [S3 透率及一天候狀況後,以一太陽輕射公式計算晴天時之 21 201140005 最大可利用光功率理論值,及直達輻射及散漫輻射。 7.如申請專利範圍第6項之太陽光功率判斷方法,其 中:以該天候判斷基準比較資料判斷天候及穿透率係以各 光感測器所感結果之最大差距對平均值之數值的大小判斷 天候及穿透率。。 7項之太陽光功率判斷方法,其中 晨或黃昏係透過該太陽光源之一201140005 VII. Patent application scope: It includes a body, a plurality of lights 1 _ a solar power judgment device sensor and an operation module, wherein: the seat body is a three-dimensional temple, a a a degree body, The plurality of illumination surfaces are non-coplanar and there is an angle conversion relationship between the two adjacent illumination surfaces; each of the photo sensors is correspondingly and fixedly disposed on the surface of the illumination surface, and each photo sensor is Receiving a signal output to the computing module when receiving the sunlight source; • the computing module receives the electrical signals received by the respective photo sensors, the angular conversion relationship of each photosensor, and the solar orientation information - a conversion estimation method for estimating the solar light source penetration rate, a maximum available optical power, up to the radiation and a diffuse radiation, the conversion estimation method obtaining the solar light source and the respective photo sensors with the solar orientation information The relationship between the orientation and the angle', and then the light output power of the solar light source and the conversion angle relationship are sensed by the respective light sensors, and the comparison data is obtained according to the obtained penetration rate and the judgment index of the day. ' Estimating the maximum available optical power of each of the photosensors when the solar source is directly directed, and the direct radar, the diffuse radiation. 2. The solar power judging device according to claim 1, wherein the seat body is a four-sided flat-topped cone comprising a top surface and four side wall surfaces, and the top surface and the four side wall surfaces A light sensor is separately fixed. 3. The solar power judging device according to claim 1 or 2, wherein the computing module calculates the solar light source and each photo sensor by a time input and a latitude and longitude input. The positional relationship. 4. The solar power power determination method according to claim 3, wherein the computing module comprises a central processing unit, an analog-to-digital converter electrically connected to the central processing unit 20 201140005, and a solar azimuth. a computing unit and a display unit, and a plurality of amplifiers, wherein each of the amplifiers is electrically connected to each of the photo sensors, and each amplifier amplifies the electrical signal of the connected photosensor and outputs the signal to the analog to digital converter. The analog-to-digital converter converts the electrical signal to the central processing unit, and the central unit calculates the maximum available optical power by performing the conversion estimation method by using the solar orientation information and the angle conversion relationship. The ray and the diffuse light shot are displayed on the display unit. 5. The solar power judging device according to claim 4, wherein: the latitude and longitude input is input to the latitude and longitude by the global satellite positioning system; and the conversion estimation method is to first sense the light sensed by each sensor. After the power is sorted, the penetration rate and the first-order condition are judged by the known weather comparison reference data, and the maximum light work 2 at the sunny day is calculated by a solar light formula. The direct radiation and the diffuse radiation sensed by the respective light sensors. The solar power power judging method comprises the following steps: 3: a plurality of different incident angle relationships and azimuth relations of the photosensors located at different orientations of the first source @τ m; the items are taken by the respective light sensors Measured optical power; compare the order of the optical powers sensed by each light sensor; = incident angle relationship and azimuth relationship, optical power of each light sensor through the master-slave comparison - weather comparison benchmark comparison data, judgment - After wearing [S3 penetration rate and day-to-day conditions, calculate the maximum available optical power of 21 201140005 on a sunny day using a solar light formula, and direct radiation and diffuse radiation. 7. The method for judging solar power according to item 6 of the patent application, wherein: judging the comparison data by the weather judgment criterion, determining the weather and the penetration rate by the maximum difference of the results of the respective sensors and the value of the average value Determine the weather and penetration rate. . 7 solar power judgment methods, in which morning or dusk is transmitted through one of the solar light sources 8 ·如申請專利範圍第 估測計算天候狀況之一清 南度角決定。 9.如申請專利範圍筮 圍苐8項之太陽光功率判斷方法,其 進一步包含將該最大可利用* 方法具 及天候狀況予以顯示。“率、直達輻射、散漫輻射 —種太陽光功率匈斷 太陽光功率判斷之浐斗 征八座。σ ’虽電腦載入該 圍第6項之方法。 執灯後’可元成申請專利範 φ 八、圖式:(如次頁) [S] 228 · If the patent application scope is estimated, one of the weather conditions is determined. 9. The solar power power judging method of claim 8 circumstance 8 further includes displaying the maximum available* method and the weather condition. "Rate, direct radiation, diffuse radiation - a kind of solar power power Hungary's solar power power judgment of the levy of eight. σ 'Although the computer is loaded into the sixth item of the method. After the light, 'Yuan Yuancheng applied for a patent φ 八, pattern: (such as the next page) [S] 22
TW99114741A 2010-05-10 2010-05-10 Incident solar power detecting method, apparatus and application thereof TWI408346B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99114741A TWI408346B (en) 2010-05-10 2010-05-10 Incident solar power detecting method, apparatus and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99114741A TWI408346B (en) 2010-05-10 2010-05-10 Incident solar power detecting method, apparatus and application thereof

Publications (2)

Publication Number Publication Date
TW201140005A true TW201140005A (en) 2011-11-16
TWI408346B TWI408346B (en) 2013-09-11

Family

ID=46760197

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99114741A TWI408346B (en) 2010-05-10 2010-05-10 Incident solar power detecting method, apparatus and application thereof

Country Status (1)

Country Link
TW (1) TWI408346B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291368A (en) * 2017-01-17 2019-09-27 迈卡赛斯公司 The assessment of multisensor irradiation level
TWI804255B (en) * 2022-03-28 2023-06-01 國立陽明交通大學 A polyhedron light sensing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140052A (en) * 1995-11-17 1997-05-27 Matsushita Electric Ind Co Ltd Photovoltaic power generator
CN1135340C (en) * 2000-04-13 2004-01-21 南京春辉科技实业有限公司 Sunlight tracking sensor and its solar rangh appliance
CN1304796C (en) * 2003-04-15 2007-03-14 张耀明 Large type wind proof light collecting device with capability of automatic tracking sun
CN100449316C (en) * 2006-08-13 2009-01-07 重庆大学 Arrangement structure of sensing elements of six-axle acceleration transducer
TW200827974A (en) * 2006-12-18 2008-07-01 Ming-Hsin Sun Power tracking system of solar energy system and the method thereof
JP5098678B2 (en) * 2008-02-06 2012-12-12 大同特殊鋼株式会社 Solar tracking device and tracking method for solar tracking device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291368A (en) * 2017-01-17 2019-09-27 迈卡赛斯公司 The assessment of multisensor irradiation level
TWI804255B (en) * 2022-03-28 2023-06-01 國立陽明交通大學 A polyhedron light sensing device
US11777442B1 (en) 2022-03-28 2023-10-03 National Yang Ming Chiao Tung University Polyhedron device for sensing light rays

Also Published As

Publication number Publication date
TWI408346B (en) 2013-09-11

Similar Documents

Publication Publication Date Title
US11748946B2 (en) Solar access measurement
US7873490B2 (en) Solar access measurement device
Kelly et al. Improved photovoltaic energy output for cloudy conditions with a solar tracking system
Li et al. Determining the optimum tilt angle and orientation for solar energy collection based on measured solar radiance data
CN103353769B (en) A kind of photovoltaic based on GPS location follows the trail of electricity-generating method
Huld et al. Comparison of potential solar electricity output from fixed‐inclined and two‐axis tracking photovoltaic modules in Europe
US20180081022A1 (en) Sensor arrangement and method for operating a sensor arrangement
Ziar et al. A comprehensive albedo model for solar energy applications: Geometric spectral albedo
US11983813B2 (en) Method and system for determining solar access of a structure
Cellura et al. A photographic method to estimate the shading effect of obstructions
TW201140005A (en) Incident solar power detecting method, apparatus and application thereof
CN111596381B (en) Method for estimating direct irradiation proportion by using double radiometers
Kesler et al. A low cost shading analyzer and site evaluator design to determine solar power system installation area
CN105403217B (en) A kind of imitative compound eye structural sun sensor towards microsatellite
CN110535436A (en) Calculate the method and system of solar energy conversion component solar absorption amount
CN101551245B (en) Lighting structure of light source azimuth detector
Kumar et al. Estimation of average solar radiation on horizontal and tilted surfaces for vijayawada location
Dammeier et al. The contribution of water surface Fresnel reflection to BIPV yield
Russo et al. Characterization of diffuse anisotropic illumination effects to the output of bifacial and holographic planar concentrating photovoltaic panel configurations
CN201434679Y (en) Daylighting structure for light-source azimuth detector
TWI383170B (en) Incident light direction and power detecting apparatus and application thereof
CN104090310A (en) Method for fitting relation between sunshine radiation value and sunshine duration in southern Tibet area
Verkou et al. Simulating Interior Radiant Energy for the Design and Prototyping of an Indoor Solar PV Lamp
TWI457546B (en) Apparatus for measuring solar illumination and the method thereof
Lurwan et al. Solar radiation prediction model for solar panel and thermal collectors in Malaysia

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees