TW201139681A - Napier grass and uses thereof - Google Patents

Napier grass and uses thereof Download PDF

Info

Publication number
TW201139681A
TW201139681A TW100113571A TW100113571A TW201139681A TW 201139681 A TW201139681 A TW 201139681A TW 100113571 A TW100113571 A TW 100113571A TW 100113571 A TW100113571 A TW 100113571A TW 201139681 A TW201139681 A TW 201139681A
Authority
TW
Taiwan
Prior art keywords
medium
sugar
grass
composition
cellulase
Prior art date
Application number
TW100113571A
Other languages
Chinese (zh)
Other versions
TWI537387B (en
Inventor
Su-May Yu
David Tuan-Hua Ho
Jiun-Ly Chir
Hsion-Wen Kuo
Chien-Hung Liu
Original Assignee
Academia Sinica
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academia Sinica filed Critical Academia Sinica
Publication of TW201139681A publication Critical patent/TW201139681A/en
Application granted granted Critical
Publication of TWI537387B publication Critical patent/TWI537387B/en

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Disclosed are culture media, compositions and methods for culturing cellulolytic microbes for cellulase production.

Description

201139681 六、發明說明: 【發明所屬之技術領域】 本申請案係關於用於培養纖維素分解微生物以供產生纖 維素酶的培養基、組合物及方法。 【先前技術】 過去的數十年中’㈣維素酶系统的大部分研究主要 著重於用於產生富能量(ene瞥dch)物質(例如乙醇、氮氣 及甲烧)的纖維素分解生質轉化。因此,已研發許多相關 技術(Sheehan及Himme丨,1999)。此等生物技術的關鍵在於 達成微生物及酶促纖維素水解之實用目標(Lynd等人’ )然而目則可用於將纖維素轉化成生物燃料之生 物技術方法儘管較有前景卻相對缺乏深入研究。此外,使 用天然形成之木質纖維素(源自木材、草、林業廢棄物、 廢紙、城市廢棄物及農業殘餘物,例如玉米秣草及禾桿) 生產纖維素酶的趨勢在世界範圍已顯著增加。在所有原料 中’由於經營成本極低而使農業生質(由超過5〇%纖維素及 半纖..隹素組成)成為生產微生物酶的極佳碳源。降低微生 物酶生產成本已成為當下生物燃料研發與生產的重要研究 - 目標。 ,由於纖維素酶在工業製程(諸如動物飼料、殿粉加工、 製曲及釀酒、穀物酒精潑酵、果實及蔬菜加工、紙漿造紙 業及紡織業)中的廣泛應用潛力(Bhat,2_),大量研究已 著重於纖維素酶。許多產生各種纖維素分解酶之微生物已 研究了數十年(Lynd等人,讀於增加纖維素酶產量 155455.doc 201139681 的培養方法已被廣泛報導,包括浸入式及固態醱酵 (Grajek,1987)、不同類型及濃度的受質(pavarina及 Durrant,2002)、利用碳源及氮源進行調節(L〇ckingt〇n等 人,2002)、進行共同培養來產生纖維素酶(|&%等人, 2006)及菌株改良(Adsul等人,2007)。基於考慮到需要使 用纖維素酶進行纖維素基物質之糖化,因此篩選具有高纖 維素酶活性、不會在水解產物中留下殘餘物(例如纖維二 糖)且具有熱-pH穩定性酶之微生物將為有益的。 在具有適用性、高活性及高生產率之纖維素酶的研發及 生產中成本問題為關鍵。製備培養基之化學物質為生長供 產生纖維素酶的纖維素分解微生物之主要花費。需要一種 成本有效的培養基。 【發明内容】 本發明係關於一種成本效應培養基及一種生長纖維素分 解微生物以供產生纖維素酶的方法。 因此,本發明之一態樣之特徵在於含有狼尾; NP)草(象草pwrpwrewm))之培養基。在一實例 中,培養基包含約0.1¼至5〇/〇(W/v)NP草碎片。培養基可含 有N源。在一實例中,培養基係經滅菌。在另一實例中, 培養基進一步含有抗生素。 在第一態樣中,本發明之特徵在於一種培養纖維素分解 微生物的方法。該方法包括以下步驟:獲得上述培養基; 及在該培養基中於允許纖維素分解微生物之細胞生長的條 件下培養該細胞。纖維素分解微生物之實例包括但不限於 155455.doc 201139681 鐮刀菌屬(FMsar/ww spp.)、曲黴菌屬spp.)及脈 抱菌屬(·Λ^ΜΓ〇·?;?〇Γα spp.)。所用較佳纖維素分解微生物可 為真菌,諸如黑曲黴菌(ApeazV/w·? wz'ger)、菌膜假絲酵母 {Candida /?e"icw/〇ia))、脆壁克魯維酵母(尺/wyveromyces fragilis)、景抱原毛平车菌(Phanerochaete chrysosporium)、 裂褶菌(5^/π·ζ〇ρ/7/ζ>>//μ/« cowiWM«e)及里氏木黴(TWc/zoaferwa reese/);細菌,諸如農桿菌(_4容ro0<3Cier/Mm)ATCC 21400、 解殿粉芽抱桿菌(Sctci/Zws am^y/o/kwe/aciews)、環狀桿菌 (Bacillus circulans)、枯草择菌(Bacillus subtilis)、轰威祐 酸擬桿菌SMCciwogewe·?)、糞肥纖維單胞菌 (CeHumonas fimi)、潮瀑纖維單跑菌(Cellulomonas uda)、 熱纖梭菌(C7〇iirM/ww thermocellum) '非脫叛埃希菌 {Escherichia adecar boxy lata)、菊歐文氏菌(Erwinia c/zrysawiemi)、雙孢小雙孢菌(MicroWsporfl 及高溫 單抱菌FZ(772erwo«c»v〇ra ΓΧ);或獲自諸如黃胸散白蟻 (AeiicMh’iermes //<3v//?e·?)、食木船姐 «y/c>_p/7ag^)、澳洲土 壟家白蟻(Copioiermes /aciews)、黑胸象白蟻(TVaswmermes walkeri)、白蟻(Leucotermes (散白蟻屬 (Reticulitermes))、1 隼大蜗年(Helix pomatia)、穩艮蠘 [Cryptocercus punctulates)、食本蹲辦{Panesthia cribrata)、 桑粒肩天牛(Ca/o/awpra e/e尽α似)及六居緯螂((?e〇icap/7ewi ί/ζ'/αίαίΜ·?)之動物的其他微生物。 在第三態樣中,本發明之特徵在於一種產生纖維素酶之 方法。該方法包括以下步驟:獲得上述培養基且在該培養 155455.doc 201139681 基中於允許表現纖維素酶之條件下培養含有編碼纖維素酶 之核酸的纖維素分解微生物(諸如選自鐮刀㈣、曲徽菌 屬及脈孢菌屬之真菌)之細胞;“所培養之細胞或培養 基純化纖維素酶。 在第四態樣中,本發明之特徵在於一種具有上述培養基 及纖維素分解微生物(諸如選自鐮刀菌屬、曲㈣屬及二 孢菌屬之真菌)之細胞的組合物。上述方法及組合物可用 於自木質纖維素物質產生可醱酵糖及能量。 因而’在第五態樣申,本發明之特徵在於一種自木質纖 、.隹素物質產生可酸酵糖的方法。該方法包括提供具有上述 培養基及纖維素分解微生物之細胞的組合物;及使該組合 物與木質纖維素物質接觸以產生可酿酵糖。在一實例中, 。養基3有約〇.1%至5%,例如工〇%(w/v卿草碎片。可 酵糖可為葡萄糖、木糖、阿拉伯糖、半乳糖、甘露糖、鼠 =糖、薦糖、果糖、乳糖、麥芽糖、海藻糖、纖維二糖: 寡醣(例如纖維寡聚物或木糖寡聚物)或其任意組合。 2素物質之實例包括纖維素性動物廢棄物、城市固體廢 紅立、廢紙、庭院廢棄物、農業殘餘物、林業殘餘物及並 物=。該方法可進一步包含將可礙酵糖轉化成醋酵產 行的4。該轉化步驟可藉由微生物礙酵或酶處理來進 質產生妒:樣巾柄明之特徵在於一種自木質纖維素物 此量的方法。該方法包括:提供上述組合物 組合物與木質纖维辛 Μ 戴,准素物質接觸以產生可輯糖;轉化該可 J55455.doc 201139681 醱酵糖以產生可燃醱酵產物;及燃燒該可燃醱酵產物或水 解固體廢棄物或殘餘物以產生能量。 在第七態樣令,本發明之特徵在於一種飼料或食品添加 劑加工、生物製漿或複合物處理的方法。該方法包括提供 包含培養基及纖維素分解微生物之細胞的上述組合物;及 使該組合物與待加工或處理的物質接觸。 在第八態樣中,本發明之特徵在於一種生物反應器,其 含有木質纖維素物質及上述組合物。 一或多個本發明實施例之細節闡述於隨附圖式及以下描 述中。根據該描述及圖式以及申請專利範圍,本發明之其 他特徵、目標及優勢將顯而易見。 【實施方式】 本發明至少部分基於驚人地發現狼尾草可用作生長產生 纖維素酶的纖維素分解真菌之有效而便宜之主要碳源。 通痕發現於熱帶及亞熱帶地區的狼尾(Np)草(象草)已廣 泛用作反努動物之飼料且其組成、性質及一些基因體資訊 已得到充分研究;然而,尚無報導顯示]^]?草於微生物纖維 素%製備上之運用。本發明提供Np草作為用於生長自稻草 或甘蔗渣堆肥分離之纖維素分解真菌(亦即鐮刀菌屬、曲 黴菌屬及脈孢菌屬)之有效且便宜之c源的新應用。結果顯 示,當使用l%(w/v)NP草作為3種真菌之主要c源時,總纖 維素酶活性(FPase)顯著地增加(對於鐮刀菌屬、曲黴菌屬 及脈孢菌屬分別自0.008增至0.085、自〇增至〇 〇85、自 0.002增至0.124 U/ml)(圖丨)。將所有個別培養條件最佳化 155455.doc 201139681 後,鐮刀菌屬及脈跑菌屬之最佳纖維素酶產量分別為018 至0.22 U/ml及0.14至〇_16 u/m卜在所研究之C源 糖、CMC及NP草)令,含有1%叫之培養基不僅= 佳纖維素分解活性’而且在所有所測試。源中為最便宜之 組合。此發使N P草成為改良必需由纖維素分解微生物產生 纖維素酶的生物燃料、纺織業及其他行業可額外選擇之主 要C源。 例如,纖維素酶自木質纖維素物質產生可酸酵糖及能 量。如本文所使用之術語「木f纖維素物質」係指含有纖 維素及/或半纖維素之物質。一般而言,&等物質亦含有 木聚糖、木質素、蛋白質及碳水化合物,諸如澱粉及糖。 例如’在植物之莖、葉、殼、皮及穗軸或樹木之葉、枝及 木質部。複雜碳水化合物(諸如澱粉、纖維素或半纖維素) 轉化成可醱酵糖之過程在本文中亦稱為「糖化」。如本文 所使用之可醱酵糖係指單糖,諸如葡萄糖、木糖、阿拉伯 糖、半乳糖、甘露糖、鼠李糖、蔗糖、果糖、乳糖、麥芽 糖、海藻糖或纖維二糖。木質纖維素物質可包括原始植物 生質及/或非原始植物生質,諸如農業生物質、商業有機 物、建構物及破壞碎片、城市固體廢棄物、廢紙及庭院廢 棄物。木質纖維素物質之常見形式包括樹、灌木及草、小 麥、小麥秸稈、甘蔗渣、玉米、玉米皮、玉米粒,包括來 穀粒研磨堵如玉米、稻穀、小麥及大麥之榖物(包括 濕式研磨及乾式研磨)之產物及副產物的纖維,以及城市 固體廢棄物、廢紙及庭院廢棄物。木質纖維素物質亦可為 155455.doc 201139681 (但不限於)草本物質、農業殘餘物、林業殘餘物及造紙薇 殘餘物。「農業生質」包括枝、灌木叢、$莖、玉求及玉 米皮、能源作物、森林、果實、花、縠物、草、草、本作 物、葉、樹皮、針狀葉(needle)、原木、根、苗木、短輪 伐期木質作物、灌木、柳枝稷(switch咖)、樹木、蔬 菜、果皮、藤本植物、甜菜柏、小麥麵、燕麥殼、硬木及 =(不包括含有害物質之木材)、農業過程所產生之有機 =物(包括耕種及林業活動,特別包括林業木材廢棄物) 或其混合物。 = 實例包括(但不限於) 枝、灌木叢、工廠廢棄物、城市木材廢棄物、城市 :棄物、砍伐廢棄物、森㈣育間伐、短輪伐期木質作 2、工業廢棄物、小麥、小麥結祥、燕麥稍样、稻草、大 ^样、黑麥財、亞麻转稈、大豆殼、稻殼、燕麥殼、 :王:米、玉米秣草、玉米結稈、玉米麵筋飼料、玉米 皮、玉米粒1粒纖維、大網茅草、鴨茅狀磨擦 纖二:ΓΓ°、狐尾草、甜菜柄、柑桂類水果漿、種殼、 灌木1物廢棄物、草坪修剪物、棉花、耗、樹木、 產物诚古甘庶渣、穀物濕式研磨或乾式研磨之產物及副 農羋殘餘物固體廢棄物、廢紙、庭院廢棄物、草本物質、 業殘餘物、林業殘餘物、城市 聚、造紙礙殘餘物、枝、灌木叢、節莖、::二氏皮紙 能源作物、森林、果實、花 /卡玉水皮、 樹皮、針狀 葉原木、根、苗木、灌木、柳枝稷、樹木、 155455.doc 201139681 蔬菜、果皮、m本植物、甜菜麵、小麥#、燕麥殼、硬木 及軟木、農業過程所產生之有機廢棄物、林業木材廢棄物 或其組合。 在此研究中,用含有狼尾(NP)草(象草)、CMC或葡萄糖 作為主要碳源之培養基培養鐮刀菌屬、曲㈣屬及脈抱菌 屬此等真㈣株來產生細胞外纖維素酶。結果顯示,當使 用P/0(W/V)NP草培養3種分離之真菌時’總纖維素酶活性 (基於.μ量測值)顯著增加,對於曲黴菌屬、鐮刀菌屬及 脈抱菌屬分別自〇(無NP)增至〇 〇85 u/ml〇% Np)、自〇嶋 增至0.085 U/ml及自〇·002增至〇 124 u/ml ;亦即為用 m(wv)CMC培養時之總纖維素酶活性的約i至2玲。在經 最佳化之培養條件下達成最佳纖維素酶活性(對於曲黴菌 屬及脈孢菌屬分別為〇·18至〇 22 u/ml及〇 u至〇Μ U/ml)。此外,自1% Np批料收集之纖維素酶具有良好阳 值及溫度工作範圍’且在廣泛PH值下呈穩定在所有所測 試之C源中’含有㈣之培養基不僅達成最佳纖維素分解 活性’而且為最便宜之組合。此發現使NP草成為改良必需 由纖維素分解真菌產生纖維素酶的生物燃料'紡織業及苴 他行業可額外選擇之主要碳源。 ^ 因此,本文所揭示之培養基、組合物及方法可以美國申 請案 20100047869及 20080131958及美國專利 5232851 、 5677151、6451063、6602700 及 7226773 中所述之方式用於 飼料或食品添加劑加工、生物製漿或複合物處理中,各案 之内容係以引用的方式併入本文中。 ' 155455.doc -10· 201139681 以下特定貫例應解釋為僅具說明性,且不以任何方式限 制本發明之其餘部分。無需進—步闡明,咸信熟習此項技 術者可基於本文之描述最大限度地利用本發明。本文所引 用之所有公開案均以全文引用的方式併入本文中。此外, 下文提出之任何機制不以任何方式限制所主張之本發明的 範疇。 1. 引言 在此研究中,使用3種產生纖維素酶之菌株,鐮刀菌 屬、曲黴菌屬及脈孢菌屬。3種真菌菌株之培養條件經最 佳化以達成最佳纖維素酶活性。將3種不同的天然或人工 碳源(亦即狼尾草、CMC或葡萄糖)補充至培養基中以評估 其在較低成本下增加纖維素酶產量的潛能。 2. 方法 U受質 NP草獲自臺灣畜產試驗所(Taiwan Uvestock Researeh201139681 VI. Description of the Invention: [Technical Field] The present application relates to a medium, a composition and a method for cultivating a cellulose-decomposing microorganism for producing a cellulase. [Prior Art] Most of the research on the '(iv) veganase system in the past decades has focused on the decomposition of cellulose-decomposed biomass for the production of enriched (en)dch materials (such as ethanol, nitrogen and methyl ketone). . Therefore, many related technologies have been developed (Sheehan and Himme丨, 1999). The key to these biotechnologies is the practical goal of achieving microbial and enzymatic cellulose hydrolysis (Lynd et al.), but the biotechnologies that can be used to convert cellulose to biofuels are relatively promising but relatively lacking in-depth research. In addition, the use of naturally occurring lignocellulose (from wood, grass, forestry waste, waste paper, municipal waste and agricultural residues such as corn stalks and straws) to produce cellulase trends has become significant worldwide. increase. In all raw materials, agricultural biomass (consisting of more than 5% cellulose and hemicellulose) is an excellent carbon source for the production of microbial enzymes due to the extremely low operating costs. Reducing the cost of microbial enzyme production has become an important research in the current research and development of biofuels - the goal. Due to the wide application potential of cellulase in industrial processes (such as animal feed, powder processing, koji and wine making, grain alcohol germination, fruit and vegetable processing, pulp and paper, and textiles) (Bhat, 2_), A large number of studies have focused on cellulases. Many microorganisms that produce various cellulolytic enzymes have been studied for decades (Lynd et al., reading methods for increasing cellulase production 155455.doc 201139681 have been widely reported, including immersion and solid fermentation (Grajek, 1987). ), different types and concentrations of substrates (pavarina and Durrant, 2002), using carbon sources and nitrogen sources for regulation (L〇ckingt〇n et al., 2002), co-cultivation to produce cellulase (|&% Et al., 2006) and strain improvement (Adsul et al., 2007). Based on the need to use cellulase for saccharification of cellulose-based materials, screening has high cellulase activity and leaves no residue in the hydrolysate. Microorganisms such as cellobiose and having a thermo-pH stability enzyme will be beneficial. Cost issues are critical in the development and production of cellulases with applicability, high activity and high productivity. The substance is a major expense for growing cellulolytic microorganisms for producing cellulase. A cost-effective medium is required. [Invention] The present invention relates to a Effect of growing medium and microbial cellulose decomposition method for generating cellulase Accordingly, one feature of the aspect of the present invention is characterized by containing a wolf tail;. The NP) grass (Pennisetum purpureum pwrpwrewm)) of the medium. In one example, the culture medium contains about 0.11⁄4 to 5 〇/〇 (W/v) NP grass debris. The medium may contain an N source. In one example, the medium is sterilized. In another example, the medium further contains an antibiotic. In a first aspect, the invention features a method of culturing cellulolytic microorganisms. The method comprises the steps of: obtaining the above medium; and cultivating the cells in the medium under conditions permitting growth of cells of the cellulolytic microorganism. Examples of cellulolytic microorganisms include, but are not limited to, 155455.doc 201139681 Fusarium (FMsar/ww spp.), Aspergillus spp.) and Pseudomonas sp. (·Λ^ΜΓ〇·;?〇Γα spp. ). Preferred cellulolytic microorganisms to be used may be fungi such as Aspergillus niger (ApeazV/w·?wz'ger), Candida utilis {Candida /?e"icw/〇ia), Kluyveromyces cerevisiae (French / wyveromyces fragilis), Phanerochaete chrysosporium, Schizophyllum (5^/π·ζ〇ρ/7/ζ>>//μ/« cowiWM«e) and Richter Wood Mildew (TWc/zoaferwa reese/); bacteria, such as Agrobacterium (_4rongro0<3Cier/Mm) ATCC 21400, Bacillus licheniformis (Sctci/Zws am^y/o/kwe/aciews), ring bacillus (Bacillus circulans), Bacillus subtilis, Bacillus subtilis SMCciwogewe·?), CeHumonas fimi, Cellulomonas uda, Clostridium thermocellum C7〇iirM/ww thermocellum) 'Escherichia adecar boxy lata', Ewinrich c/zrysawiemi, MicroSsporfl and high temperature single bacteria FZ (772erwo«c »v〇ra ΓΧ); or obtained from, for example, the yellow-breasted termites (AeiicMh'iermes //<3v//?e·?), the wooden boat sister «y/c>_p/7ag^), the Australian ridge home Ants (Copioiermes /aciews), Black-breasted termites (TVaswmermes walkeri), Termites (Leucotermes (Reticulitermes), 1 Helix pomatia, Cryptocercus punctulates, 食本蹲{Panesthia cribrata), Mulberry serrata (Ca/o/awpra e/e) and other microbes of the six-spotted scorpion ((e〇icap/7ewi ί/ζ'/αίαίΜ·?) In a third aspect, the invention features a method of producing a cellulase. The method comprises the steps of: obtaining the above medium and culturing in the culture 155455.doc 201139681 in a condition permitting the expression of cellulase a cellulolytic microorganism containing a nucleic acid encoding a cellulase (such as a fungus selected from the group consisting of a sickle (four), a genus of the genus Trichophyton, and a genus Neurospora); "the cultured cell or medium is purified by a cellulase. In the fourth aspect, the present invention is characterized by a composition comprising the above medium and cells of a cellulolytic microorganism such as a fungus selected from the group consisting of Fusarium, Quercus and Fusarium. The above methods and compositions are useful for producing saccharable sugars and energy from lignocellulosic materials. Thus, in the fifth aspect, the present invention is characterized by a method for producing acid-smelling sugar from wood fiber and alizarin substances. The method comprises providing a composition having cells of the above medium and cellulolytic microorganisms; and contacting the composition with a lignocellulosic material to produce a fermentable sugar. In an example, . Nutrient 3 has about 11% to 5%, such as 〇%% (w/v qingcao pieces. The soluble sugar can be glucose, xylose, arabinose, galactose, mannose, rat = sugar, recommended sugar , fructose, lactose, maltose, trehalose, cellobiose: oligosaccharides (such as fiber oligomers or xylose oligomers) or any combination thereof. Examples of 2 substances include cellulosic animal waste, municipal solid waste red Stand, waste paper, yard waste, agricultural residues, forestry residues and mergings. The method may further comprise converting the sugar sugar into vinegar production. 4. The transformation step may be carried out by microorganisms or Enzymatic treatment to produce hydrazine: a sample stalk is characterized by a method of self-lignin cellulosic material. The method comprises: providing a composition of the above composition in contact with a lignocellulosic mulch, a priming substance to produce The sugar is converted; the yeast sugar is converted to produce a combustible yeast product; and the combustible yeast product is burned or the solid waste or residue is hydrolyzed to generate energy. In a seventh aspect, the features of the invention In a feed or food addition A method of processing, biopulping or complex treatment, the method comprising providing the above composition comprising a medium and a cell of a cellulolytic microorganism; and contacting the composition with a substance to be processed or treated. The invention is characterized by a bioreactor comprising a lignocellulosic material and the above composition. The details of one or more embodiments of the invention are set forth in the accompanying drawings and the following description. Other features, objects, and advantages of the present invention will be apparent from the scope of the invention. The present invention is based, at least in part, on the surprisingly finding that Pennisetum can be used as an efficient and inexpensive method for growing cellulolytic enzymes that produce cellulase. Major carbon sources. The wolftail (Np) grass (grass) found in tropical and subtropical regions has been widely used as a feed for anti-animals and its composition, nature and some genetic information have been fully studied; however, No report shows the use of grass in the preparation of microbial cellulose. The present invention provides Np grass for growth from straw or sweet A new application of an effective and inexpensive c source for cellulolytic fungi isolated from bagasse composting (ie, Fusarium, Aspergillus, and Neurospora). The results show that when using l% (w/v) NP grass as When the main c source of the three fungi, the total cellulase activity (FPase) increased significantly (for Fusarium, Aspergillus and Neurospora from 0.008 to 0.085, from 〇85 to 〇〇85, from 0.002 increased to 0.124 U/ml) (Figure 丨). After optimizing all individual culture conditions to 155455.doc 201139681, the optimal cellulase yields of Fusarium and Vibrio were 018 to 0.22 U/ml, respectively. And 0.14 to 〇_16 u/m b in the studied C source sugar, CMC and NP grass), containing 1% called medium not only = good cellulose decomposition activity 'and tested at all. The source is the cheapest combination. This has made N P grass a major C source for the improvement of biofuels that must be produced by cellulolytic microorganisms to produce cellulase, the textile industry and other industries. For example, cellulases produce acid-sweet sugar and energy from lignocellulosic matter. The term "wood f-cellulosic material" as used herein refers to a substance containing cellulose and/or hemicellulose. In general, substances such as & also contain xylan, lignin, protein and carbohydrates such as starch and sugar. For example, 'in the stems, leaves, shells, skins and cobs of plants or leaves, branches and xylem of trees. The process of converting complex carbohydrates, such as starch, cellulose or hemicellulose, into saccharable sugars is also referred to herein as "saccharification." A saccharable sugar as used herein refers to a monosaccharide such as glucose, xylose, arabinose, galactose, mannose, rhamnose, sucrose, fructose, lactose, maltose, trehalose or cellobiose. Lignocellulosic materials may include virgin plant biomass and/or non-primitive plant biomass, such as agricultural biomass, commercial organisms, constructs and destructive debris, municipal solid waste, waste paper, and yard waste. Common forms of lignocellulosic material include trees, shrubs and grasses, wheat, wheat straw, bagasse, corn, corn husks, corn kernels, including stalks of corn, rice, wheat, and barley (including wet Products and by-product fibers of municipal and dry grinding, as well as municipal solid waste, waste paper and yard waste. The lignocellulosic material may also be 155455.doc 201139681 (but not limited to) herbal matter, agricultural residues, forestry residues, and paper pulp residues. "Agricultural biomass" includes branches, bushes, stems, jade and corn husks, energy crops, forests, fruits, flowers, scorpions, grasses, grasses, crops, leaves, bark, needles, Logs, roots, seedlings, short-rotation woody crops, shrubs, switchgrass, trees, vegetables, peels, vines, beet cypress, wheat noodles, oatmeal, hardwood and = (excluding wood containing harmful substances) ), organic substances produced by agricultural processes (including farming and forestry activities, including forestry wood waste in particular) or mixtures thereof. = Examples include (but are not limited to) branches, bushes, factory waste, municipal wood waste, cities: waste, felled waste, forest (four) thinning, short-rotation wood, industrial waste, wheat, Wheat, oats, straw, big, rye, flax, stalk, soybean, rice husk, oat husk, king: rice, corn stalk, corn stalk, corn gluten feed, corn husk , corn grain 1 fiber, big netch grass, duck-like rubbing fiber 2: ΓΓ °, foxtail grass, beet stalk, mandarin quince fruit pulp, seed shell, shrub 1 waste, lawn trim, cotton, consumption , trees, products, Chenggu slag, grain wet or dry grinding products and sub-agricultural residues solid waste, waste paper, yard waste, herbal matter, industrial residues, forestry residues, urban clusters, Papermaking hinders residues, branches, bushes, stalks,:: Ershi paper energy crops, forests, fruits, flowers/kayuskins, bark, needle-like leaves, roots, seedlings, shrubs, switchgrass, trees, 155,455. Doc 201139681 Vegetables, peels , m plants, beet noodles, wheat #, oat hulls, hardwoods and softwoods, organic waste from agricultural processes, forestry wood waste or combinations thereof. In this study, Fusarium, Qufu, and Rhizoctonia were cultured in a medium containing Wolftail (NP) grass (Ceramic), CMC or glucose as the main carbon source to produce extracellular fibers. Enzyme. The results showed that when the three isolated fungi were cultured with P/0 (W/V) NP grass, the total cellulase activity (based on the .μ measurement) increased significantly for Aspergillus, Fusarium and Pulmonary The genus increased from 〇(no NP) to 〇〇85 u/ml〇% Np), increased from 〇嶋 to 0.085 U/ml, and increased from 〇·002 to 〇124 u/ml; Wv) about i to 2 lings of total cellulase activity during CMC culture. The optimum cellulase activity was achieved under optimized culture conditions (〇18 to 22 u/ml and 〇u to 〇Μ U/ml for Aspergillus and Neurospora, respectively). In addition, the cellulase collected from the 1% Np batch has a good positive temperature and temperature operating range' and is stable at a wide pH value. In all C sources tested, the medium containing (4) not only achieves optimal cellulolytics. Active' and the cheapest combination. This discovery makes NP grass a biofuel that is required to improve cellulase production by cellulolytic fungi. The textile industry and other major carbon sources for the industry. Thus, the media, compositions, and methods disclosed herein can be used in feed or food additive processing, biopulping, or compounding in the manner described in U.S. Patent Application Nos. 20,100,047, 869 and 2008, 013, 958, and U.S. Patent Nos. 5,232, 851, 5, 677, 151, 6, 061, 063, 6, 602, and 7, 272, 677. In the context of processing, the contents of each case are incorporated herein by reference. The following specific examples are to be construed as illustrative only and not limiting the remainder of the invention in any way. There is no need to clarify that the skilled artisan can make the most of the present invention based on the description herein. All publications cited herein are hereby incorporated by reference in their entirety. In addition, any mechanism proposed below does not limit the scope of the claimed invention in any way. 1. INTRODUCTION In this study, three cellulase-producing strains, Fusarium, Aspergillus, and Neurospora were used. The culture conditions of the three fungal strains were optimized to achieve optimal cellulase activity. Three different natural or artificial carbon sources (i.e., Pennisetum, CMC or Glucose) were supplemented to the medium to assess their potential to increase cellulase production at lower cost. 2. Method U quality NP grass was obtained from Taiwan Animal Production Laboratory (Taiwan Uvestock Researeh)

Institute)(Hsin-hua,Tainan,Taiwan)。羧甲基纖維素 (CMC)、葡萄糖、β_對萌基-苯基_糖苦(β_ρΝρ〇)、華特曼 (Whatman) 1號紙及此研究中所使用之所有化學物質均靖自 Sigma。CMC、華特曼1號紙及β-pNPG分別為CMCase、β-葡糖苷酶及FPase量測之受質。在3種真菌中,CMC、葡萄 糖及NP草以i%(w/v)之濃度用作碳源以研究纖維素酶的產 生將NP草風乾’使用切碎機切成小片,研磨成較小顆 粒’且接著最後藉由通過0.45 mm篩網加以分離。培養基 之製備係使用通過篩網之部分及市售化學物質。 155455.doc 201139681 u接種及培養條件 在2rc下將Fp及RS_N菌株維持於pDA壤脂上5至7天然 而RS-Α係維持於35°C下,在舲拄„ 丁 v ’、、 在此時間下,孢子形成的狀況良 好:使用來自此培養物之新鮮菌絲作為接種物。藉由用$ ml經滅菌Η2〇洗滌斜面培養物來製備分生抱子懸浮液。使 用血球計對孢子懸浮液進行計數達1〇8個孢子/毫升。將鐮 刀菌屬、曲黴菌屬及脈孢菌屬之2毫升孢子懸浮液在含有 100 ml MR培養基(不含〇1%大豆蛋白脒)的25〇 mi燒瓶中生 長,分別使用1〇/。NP草、1% CMC41%葡萄糖作為碳源來 研究纖維素酶產生。在5天培養期間記錄生長於不同碳源 申之3種真菌的纖維素酶活性。關MNp草之最佳濃度,採 用不同百分比之NP且在各別最佳生長條件下用MR培養基 (不含0.1%大豆蛋白脒)進行培養。 2.3 3種真菌的粗纖維酶製劑 將用1½ NP草培養之鐮刀菌屬、曲黴菌屬及脈孢菌屬的 培養液在8,0〇〇xg下離心20分鐘以移除菌絲及未利用之受 質。上清液經由華特曼1號紙及〇 45 μηι膜進行過濾,且接 著藉由用併有3 kDa膜(Vivaspin 20)之Amicon濃縮裝置過 濾加以濃縮,過濾過程之FPase活性損失小於3% »於上清 液中添加0.01%(v/w)疊氮化鈉(NaN3)以防止微生物生長。 含有0.01% NaN3及〇·〇ΐ〇/0苯基曱烷磺醯氟(pmSF,一種絲 胺酸蛋白酶抑制劑)的經濃縮粗酶製劑可在4°C下儲存,1 週後仍可保留80%的活性。使用粗酶製劑研究酶特徵,包 括最佳pH值、pH值穩定性、最佳溫度及熱穩定性。 155455.doc -12- 201139681 2.4纖維素酶(CMCase、FPase及β-葡糖苷酶)活性檢定 關於奴源活性測试,使用方法中所述之相應1 %受質在 40°C下量測鐮刀菌屬之粗酶萃取物的CMCase、β-葡糠芽 酶及FPase之活性,但對於曲黴菌屬及脈孢菌屬,則在 50 C下進行里測。在200 μΐ反應混合物(j 〇〇 y粗酶及丄〇〇 μΐ於 100 mM NaOAC、 1 〇〇 mM NaCl (PH5.0)中之 2%受質) 中量測於10分鐘内自1% CMC釋放的還原糖來測定 CMCase。使用3 mg 1號(華特曼)遽紙作為受質在2〇〇 ^反 應混合物(如上)中1小時來測定Fpase活性。在添加2〇〇 μ1 一硝基水楊酸(DNS)且在1 〇〇°c下加熱1 〇分鐘後,使用改進 之DNS法測定總釋放還原糖(wood等人,1988)。一個單位 (IU) CMCase及FPase活性定義為,在檢定條件下每分鐘釋 放1 μηιοί葡萄糖(作為還原糖當量)之酶的量。關於ρ·葡糖 苷酶活性’藉由將β-pNPG(最終濃度:1 mM)與在乙酸鈉 緩衝液(100 mM NaOAC、1〇〇 mM Nacn,pH5.0)中製備之 1 0 μΐ酶溶液混合所得到之丨5〇 μ1工作體積來進行3種真菌 之檢定。培育1 〇分鐘後,藉由添加5 〇 μ1 2 Μ碳酸鈉終止反 應。用分光光度計在400 nm下量測3種真菌之反應混合物 的吸光度。基於4-硝基笨酚校準曲線計算β_葡糖苷酶活 性。一個單位之酶活性定義為每分鐘釋放丨μιη〇1 4-硝基苯 紛當量。 3.結果與討論 碳(C)源之影響 諸如培養基複雜性及受質結構複雜性之培養因告可能影 155455.doc 201139681 響絲狀真菌分泌水解酶(Kurchenko等人,2001)。在此研究 中’估計不同的C源(亦即NP草及CMC)改良鐮刀菌屬、曲 黴菌屬及脈孢菌屬之纖維素酶分泌的潛能。結果顯示,3 種真菌在無C源補充劑之培養基中生長下之總纖維素酶活 性(FPase)極低。一旦在存在1%(W/V)NP草後(但在無有機N 條件下培養)(表1及圖1),FPase活性顯著增加約6〇至1〇5倍 (亦即對於鐮刀菌屬、曲黴菌屬及脈孢菌屬而言,分別自〇 增至 0.062 U/ml、自 0.008增至 0.085 U/ml及自 0.002增至 0.124 U/ml),此表示NP草可大量誘導纖維素酶的產生。 CMCase及β-葡糖苷酶活性亦顯示類似提高的現象(表”, 與FPase相比,活性提高之程度更大。此外,用i % Νρ草培 養之批次的FPase活性為用1% CMC培養之批次的約 倍。此等結果表示NP草可用作理想c源以改良此研究中接 種之纖維素分解真菌的纖維素酶之產生。 此外,進一步評估纖維素酶產生之最佳Np草濃度。通 常,對於鐮刀菌屬及脈孢菌屬而言,Fpase活性隨Np草之 量升高而增強’除了5% Np以外(圖2b及圖鐮刀菌 屬、曲黴菌屬及脈抱菌屬分別在2%、5%及3% 草下培 月4至5天後出現FPase最大值;該值比ι〇/〇 之值甚至更 本研九巾所研發之基於Np草之培養基_可節約卿。 培養基成本’而C源花費通常為總培養基成本之一半以上 (表2)。據此推斷,NP莖όΓ炎ra μ , 一 皁了為用於經濟纖維素酶生產之更 J55455.doc -14- 201139681 表1·使用l%(v/w)NP草作為主要C源增強3種真菌之纖維素 (FPase、CMCase及β-葡糖苷酶)產量。 C*源 真菌菌株 酶(mU/ml) FPase CMCase β-葡糖苷酶 無C源 曲黴菌屬 0.8 7.2 19 1%狼尾草 曲黴菌屬 85 1024 217 1%CMC 曲黴菌屬 3.7 132 46 無C源 鐮刀菌屬 0 0 0 Γ/。狼尾草 鐮刀菌屬 62.1 676.8 349.2 1% CMC 錄刀菌屬 13.3 513.6 125.5 無C源 脈孢菌屬 1.9 12.8 1.2 1°/。狼尾草 脈抱菌屬 124 866 214 1% CMC 脈抱函屬 112 928 237 *在各別最佳生長條件下培養5天後,在無大豆蛋白脒之MR培養基中測試各真菌菌 株。 155455.doc -15· 201139681 4噠砩#进。/OOSA^^Sil^要(窭诹爾喵UM3)镑3》^脊03硃密:>嫦^姝^瞎阳^“< 155455.doc (古<<#)喝届·确_丧 節約效率(%) 43-53 (1 τ™Η Ο 總成本(NT$/L) [C源+培養基] 8.71-10.71 16.71 18.71 i 1 j 成本(NT$/L) 6.71 培養基 P? ifttV ^笛 Ο 〜 w ΊΙΪ 1 ^ g磡 s 普 成本(NT$/L) (N Ο C源 1%狼尾草 1% CMC 璣 挪 g •16- 201139681 結論 當使用NP草作為主要碳源時,3種真菌達成FPase活性為 使用1% CMC作為主要碳源時之FPase活性的1.1至23倍; 且為無NP草時之FPase活性的60至105倍。在所研究之C源 (亦即葡萄糖、CMC及NP草)中,使用最佳NP草濃度之培 養基不僅達成最佳纖維素分解活性,而且在所有所測試之 C源中為最便宜之組合。以上性質表示,衍生自RS-A、Fp 及RS-N之纖維素酶可用作自纖維素製備生物乙醇的關鍵 酶。 其他實施例 本說明書中所揭示之所有特徵可組合成任何組合。本說 明書中所揭示之各特徵可由用於相同、等效或類似目的之 替代性特徵置換。因而,除非另外明確陳述,否則所揭示 之各特徵僅為一般等效或類似特徵系列的一個實例。 已描述許多本發明實施例。然而應理解,可在不背離本 發明之精神及範疇下進行各種修改。因此,其他實施例處 於以下申請專利範圍之範_内。 參考文獻.Institute) (Hsin-hua, Tainan, Taiwan). Carboxymethylcellulose (CMC), glucose, β_p-germanyl-phenyl-sugar (β_ρΝρ〇), Whatman paper No. 1 and all the chemicals used in this study were from Sigma. . CMC, Waterman No. 1 paper and β-pNPG were the substrates for CMCase, β-glucosidase and FPase measurements, respectively. Among the three fungi, CMC, glucose and NP grass were used as a carbon source at a concentration of i% (w/v) to study the production of cellulase. The NP grass was air-dried using a chopper to cut into small pieces and ground to a smaller size. The particles 'and then finally separated by passing through a 0.45 mm screen. The medium is prepared using a portion that passes through the screen and a commercially available chemical. 155455.doc 201139681 u Inoculation and culture conditions Maintain Fp and RS_N strains on pDA loam on 5 to 7 natural and RS-lanthanide at 35 °C at 2 rc, in 丁 丁 v v ', here At the time, the sporulation was in good condition: fresh hyphae from this culture was used as the inoculum. The vegetative suspension was prepared by washing the slant culture with $ ml sterilized 。 2 。. Spore suspension using a hemocytometer The liquid was counted up to 1 8 spores/ml. 2 ml of spore suspension of Fusarium, Aspergillus and Neurospora was found in 25 ml containing 100 ml of MR medium (excluding 〇1% soy peptone) Growth in the mi flask, cellulase production was studied using 1 〇 / NP grass, 1% CMC 41% glucose as carbon source. Cellulase activity of three fungi grown in different carbon sources was recorded during 5 days of culture. The optimal concentration of MNp grass is to use different percentages of NP and cultured in MR medium (excluding 0.1% soy peptone) under the optimal growth conditions. 2.3 The crude fiber enzyme preparation of 3 fungi will be used 11⁄2 Fusarium, Aspergillus and veins cultured in NP grass The culture medium of the genus Neurospora was centrifuged at 8,0〇〇xg for 20 minutes to remove the hyphae and the unused material. The supernatant was filtered through the Waterman No. 1 paper and the 〇45 μηι membrane, and then borrowed. It was concentrated by filtration using an Amicon concentrator with a 3 kDa membrane (Vivaspin 20). The FPase activity loss during the filtration process was less than 3%. » Add 0.01% (v/w) sodium azide (NaN3) to the supernatant. Prevents microbial growth. Concentrated crude enzyme preparation containing 0.01% NaN3 and 〇·〇ΐ〇/0 phenyl decane sulfonium fluoride (pmSF, a serine protease inhibitor) can be stored at 4 ° C for 1 week. After still retaining 80% activity. Enzyme characteristics were studied using crude enzyme preparations, including optimal pH, pH stability, optimal temperature and thermal stability. 155455.doc -12- 201139681 2.4 Cellulase (CMCase, FPase and β-glucosidase activity assays for the slave activity test, using the corresponding 1% substrate as described in the method, measuring the CMCase, β-Portuguese extract of the crude enzyme extract of Fusarium at 40 ° C The activity of budase and FPase, but for Aspergillus and Neurospora, the measurement was carried out at 50 C. The reaction at 200 μΐ The compound (j 〇〇y crude enzyme and 丄〇〇μΐ in 2 mM of 100 mM NaOAC, 1 〇〇 mM NaCl (pH 5.0)) was measured for reduction from 1% CMC release in 10 minutes. Sugar was used to determine CMCase. Fpase activity was determined using 3 mg No. 1 (Wartman) crepe paper as the substrate in a 2 〇〇 reaction mixture (as above) for 1 hour. After the addition of 2 μl of mononitrosalicylic acid (DNS) and heating at 1 ° C for 1 min, the total release reducing sugar was determined using the modified DNS method (wood et al., 1988). One unit (IU) CMCase and FPase activity is defined as the amount of enzyme that releases 1 μηιοί glucose (as reducing sugar equivalent) per minute under assay conditions. About ρ-glucosidase activity by using β-pNPG (final concentration: 1 mM) with a 10 μΐ enzyme solution prepared in sodium acetate buffer (100 mM NaOAC, 1 mM Nacn, pH 5.0) Three fungi assays were performed by mixing the resulting 〇5〇μ1 working volume. After 1 minute of incubation, the reaction was terminated by the addition of 5 〇 μ1 2 Μ sodium carbonate. The absorbance of the reaction mixtures of the three fungi was measured at 400 nm using a spectrophotometer. The β-glucosidase activity was calculated based on the 4-nitrophenol phenol calibration curve. The enzyme activity of one unit is defined as the release of 丨μιη〇1 4-nitrobenzene equivalent per minute. 3. Results and discussion The influence of carbon (C) sources such as the complexity of the culture medium and the complexity of the structure of the substrate may be affected. 155455.doc 201139681 The filamentous fungus secretes hydrolase (Kurchenko et al., 2001). In this study, it was estimated that different C sources (i.e., NP grass and CMC) improved the cellulase secretion potential of Fusarium, Aspergillus, and Neurospora. The results showed that the total cellulase activity (FPase) of the three fungi grown in the medium without the C source supplement was extremely low. Once in the presence of 1% (w/v) NP grass (but in the absence of organic N) (Table 1 and Figure 1), FPase activity increased significantly by about 6 to 1.5 times (ie for Fusarium) For Aspergillus and Neurospora, increased from 0.062 U/ml, from 0.008 to 0.085 U/ml and from 0.002 to 0.124 U/ml, respectively, indicating that NP can induce cellulose in large quantities. Enzyme production. The CMCase and β-glucosidase activities also showed a similar increase (Table), and the activity was increased to a greater extent than FPase. In addition, the FPase activity of the batch cultured with i% Νρ grass was cultured with 1% CMC. Approximately double the batch. These results indicate that NP grass can be used as an ideal c source to improve the production of cellulase in the cellulolytic fungi inoculated in this study. In addition, the optimal Np grass for cellulase production is further evaluated. Concentration. Generally, for Fusarium and Neurospora, Fpase activity increases with the increase of Np grass 'except for 5% Np (Fig. 2b and Fusarium, Aspergillus and Pseudomonas) The maximum FPase appeared after 4 to 5 days of 2%, 5%, and 3% of the grass, respectively; this value is even more than the value of ι〇/〇, and the Np-based medium developed by the Institute Qing. The cost of the medium' and the cost of the C source is usually more than one-half of the total cost of the medium (Table 2). It is concluded that NP stem sputum ra μ, a soap for the production of economic cellulase is more J55455.doc - 14- 201139681 Table 1. Enhancing the cellulose of three fungi using l% (v/w) NP grass as the main C source (FPase, CMCase and β-glucosidase) yield. C* source fungal strain enzyme (mU/ml) FPase CMCase β-glucosidase without C source Aspergillus 0.8 7.2 19 1% Pennisetum Aspergillus 85 1024 217 1% CMC Aspergillus 3.7 132 46 No C-derived Fusarium 0 0 0 Γ/. Fusarium oxysporum 62.1 676.8 349.2 1% CMC Recording genus 13.3 513.6 125.5 No C-source genus 1.9 12.8 1.2 1°/. Pennisetum genus 124 866 214 1% CMC genus 112 928 237 * After 5 days of incubation under the optimal growth conditions, test each in MR medium without soy peptone Fungal strains. 155455.doc -15· 201139681 4哒砩#进./OOSA^^Sil^要(窭诹尔喵UM3)£3”^脊03朱密:>嫦^姝^瞎阳^”&lt ; 155455.doc (古<<#) Drinking·Considerable Savings Efficiency (%) 43-53 (1 τTMΗ Ο Total Cost (NT$/L) [C Source + Medium] 8.71-10.71 16.71 18.71 i 1 j Cost (NT$/L) 6.71 Medium P? ifttV ^ Ο 〜 ~ w ΊΙΪ 1 ^ g磡s General cost (NT$/L) (N Ο C source 1% Pennisetum 1% CMC 玑 Move g •16- 201139681 Conclusion When using NP grass as the main carbon When three kinds of fungi reached FPase activity using 1% CMC as the main carbon source activity when FPase 1.1 to 23 times; and 60 to 105 times the grass without NP FPase activity. Among the C sources studied (i.e., glucose, CMC, and NP grass), the best NP grass concentration of the medium was used to achieve not only optimal cellulolytic activity, but also the cheapest combination among all C sources tested. The above properties indicate that cellulases derived from RS-A, Fp and RS-N can be used as key enzymes for the preparation of bioethanol from cellulose. Other Embodiments All of the features disclosed in this specification can be combined in any combination. Features disclosed in this specification may be replaced by alternative features for the same, equivalent or similar purpose. Accordingly, unless expressly stated otherwise, the features disclosed are only one example of a series of generally equivalent or similar features. A number of embodiments of the invention have been described. It will be understood, however, that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims. references.

Bhat, M.K., 2000. Cellulases and related enzymes in biotechnology. 18, 355-83 0Bhat, M.K., 2000. Cellulases and related enzymes in biotechnology. 18, 355-83 0

Grajek, W., 1987. Comparative studies on the production of cellulases by thermophilic fungi in submerged and solid-state fermentation· MicroMo/ 26,126-129。Grajek, W., 1987. Comparative studies on the production of cellulases by thermophilic fungi in submerged and solid-state fermentation. MicroMo/26, 126-129.

Kurchenko, I.M., Zhdanova, N.M., Sokolova, O.V., 2001. Study 155455.doc •17- 201139681 of availability of some hydrolytic and redox enzymes in strains of Fusarium oxysporum (Schlecht.) Snyd. and Hans, isolated from different habitats. Z,63, 34-43。Kurchenko, IM, Zhdanova, NM, Sokolova, OV, 2001. Study 155455.doc •17- 201139681 of availability of some hydrolytic and redox enzymes in strains of Fusarium oxysporum (Schlecht.) Snyd. and Hans, isolated from different habitats. , 63, 34-43.

Lee, M., Hwang, S., Chiou, P.W. 2000. Metabolizable energy of roughage in Taiwan. iSwcj// 36(3),251-259 0Lee, M., Hwang, S., Chiou, P.W. 2000. Metabolizable energy of roughage in Taiwan. iSwcj// 36(3), 251-259 0

Lockington, R.A., Rodbourn, L., Barnett, S., Carter, C.J., Kelly, J.M., 2002. Regulation by carbon and nitrogen sources of a family of cellulases in Aspergillus nidulans. Fungal Genet Biol, 37,190-6。Lockington, R.A., Rodbourn, L., Barnett, S., Carter, C.J., Kelly, J.M., 2002. Regulation by carbon and nitrogen sources of a family of cellulases in Aspergillus nidulans. Fungal Genet Biol, 37, 190-6.

Lynd, L.R., Weimer, P.J., van Zyl, W.H., Pretorius, I.S., 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev, 66, 506-ΊΊ,色錄。Lynd, L.R., Weimer, P.J., van Zyl, W.H., Pretorius, I.S., 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev, 66, 506-ΊΊ, color record.

Pavarina, E.C., Durrant, L.R., 2002. Growth of lignocellulosic-fermenting fungi on different substrates under low oxygenation conditions. 98-100, 663-77 0Pavarina, E.C., Durrant, L.R., 2002. Growth of lignocellulosic-fermenting fungi on different substrates under low oxygenation conditions. 98-100, 663-77 0

Prakash, B., Dhali, A., Mondal, M., Sangtam, M., Khate, K., Rathore, S.S., Rajkhowa, C. 2008. Effect of feeding Lagerstroemia speciosa and conventional fodder based rations on nutrient utilization, ruminal metabolites and body weight gain in mithun (Bos frontalis). J Anim Physiol Anim Nutr (Berl), 92(5), 591-6。Prakash, B., Dhali, A., Mondal, M., Sangtam, M., Khate, K., Rathore, SS, Rajkhowa, C. 2008. Effect of feeding Lagerstroemia speciosa and conventional fodder based rations on nutrient utilization, ruminal Metabolites and body weight gain in mithun (Bos frontalis). J Anim Physiol Anim Nutr (Berl), 92(5), 591-6.

Sheehan, J., Himmel, M., 1999. Enzymes, Energy, and the Environment: A Strategic Perspective on the U.S. Department of Energy's Research and Development Activities for Bioethanol. 155455.doc •18· 201139681Sheehan, J., Himmel, M., 1999. Enzymes, Energy, and the Environment: A Strategic Perspective on the U.S. Department of Energy's Research and Development Activities for Bioethanol. 155455.doc •18· 201139681

Biotecknol Pr〇g,S17-S27。Biotecknol Pr〇g, S17-S27.

Wood,T.M·,Willis,A-W.a.S.T.K” 1988· Preparation of crystalline, amorphous, and dyed cellulase substrates. Method 少mo/. Academic Press,第 19-25 頁。 【圖式簡單說明】 圖la至圖lc為顯示對於3種真菌(a)鐮刀菌屬、(b)曲黴菌 屬及(c)脈孢菌屬而言,與使用1% CMC相比,使用 1 %(w/v)NP草增強總纖維素酶產生(Fpase活性)的圖。所有 菌株在不存在大豆蛋白腺之MR培養基中且以ι% NP*1% CMC作為主要碳源進行培養。在不含上述c源之相同培養 基中培養的菌株指定為對照實驗(亦即無Np) ^ 一般條件為 pH 7.0,25 C至35°C,及150 rpm,以1。/。NP草作為對照實 驗。 圖2a至圖2c為顯示對於3種真菌鐮刀菌屬、曲黴菌 屬及(c)脈孢菌屬而言,Np草顯著增強總纖維素酶產生 (FPase)之最佳濃度的圖。所有菌株在不存在大豆蛋白腺之 MR培養基中以不同百分比之Np作為主要碳源在各別最佳 生長條件下進行培養。一般條件為pH 7 〇,乃它至”它, 及15〇rpm,以1%NP草作為對照實驗。 155455.doc •19·Wood, TM·, Willis, AW.aSTK” 1988· Preparation of crystalline, amorphous, and dyed cellulase substrates. Method Less Mo/. Academic Press, pp. 19-25. [Simplified Schematic] Figure la to Figure lc Shows that for 3 fungi (a) Fusarium, (b) Aspergillus, and (c) Neurospora, 1% (w/v) NP grass is used to enhance total fiber compared to 1% CMC. Map of prime enzyme production (Fpase activity). All strains were cultured in MR medium in the absence of soy protein glands and supplemented with 1% NP*1% CMC as the main carbon source. Cultured in the same medium without the above c source. The strain was designated as a control experiment (ie, no Np) ^ General conditions were pH 7.0, 25 C to 35 ° C, and 150 rpm, with 1.0 NP grass as a control experiment. Figure 2a to Figure 2c show for 3 species For the fungi Fusarium, Aspergillus and (c) Neurospora, Np grass significantly enhances the optimal concentration of total cellulase production (FPase). All strains are in MR medium in the absence of soy protein glands. Different percentages of Np were used as the main carbon source to culture under the optimal growth conditions. The general condition was pH 7 〇, but it was to "it, and 15 rpm, with 1% NP grass as a control experiment. 155455.doc •19·

Claims (1)

201139681 七、申請專利範圍·· 1. 種培養基,其包含狼尾(Napier ; NP)草(象草 (Pennhetum pUrpureum、、。 2·如μ求項1之培養基,其中該培養基包含約0.1%至 5%(w/v)狼尾(ΝΡ)草(象草)碎片。 3. 如喷求項2之培養基,其中該培養基包含約丨%至3%(w/v) 狼尾(NP)草(象草)碎片。 4. 如凊求項1至3中任一項之培養基,其中該培養基經滅 菌。 5·如凊求項!至3中任一項之培養基,其中該培養基進一步 包含抗生素。 6. —種培養纖維素分解微生物的方法,該方法包含: 獲得如請求項丨至5中任一項之培養基;及 在該培養基中於允許纖維素分解微生物之細胞生長之 條件下培養該細胞。 7. 如凊求項6之方法,其中該纖維素分解微生物為一或多 種選自鐮刀菌屬spp·)、曲黴菌屬(柳6邮心 SPP.)及脈孢菌屬spp )之真菌。 8. 一種產生纖維素酶之方法,該方法包含: 獲得如請求項丨至5中任一項之培養基;及 在允許表現纖維素酶之條件下培養含有編碼該纖維素 酶之核酸的纖維素分解微生物之細胞;及 自《亥所培養之細胞或該培養基純化該纖維素酶。 9. 如請求項8之:ίτ法,其中該纖維素分解微生物為一或多 155455.doc 201139681 種選自鐮刀菌屬、曲黴菌屬及脈孢菌屬之真菌。 ίο.-種組合物,其包含如請求項⑴中任—項之培養基及 纖維素分解微生物之細胞。 11.如請求項!!之組合物,其中該纖維素分解微生物為一或 多種選自鐮刀菌屬、曲黴菌屬及脈孢菌屬之真菌。 12· -種自木質纖維素物f產生可醱酵糖的方法,該方 含: 提供包含如請求項1至5中任-項之培養基及纖维素分 解微生物之細胞的組合物; 使該組合物與木質纖維素物質接觸以產生可醱酵糖。 13.如請求項12之方法,其中該可_糖係選自由葡萄糖、 :糖:阿拉伯糖、半乳糖、甘露糖、鼠李糖、薦糖、果 礼糖、㈣糖、海餘、纖維二糖 組合組成之群❶ 乔嗯次,、任意 in::12之方法’其中該木質纖維素物質係選自由纖 棄物、城市固體廢棄物、廢紙、庭院廢棄 15^t物、林#殘餘物及其任意組合組成之群。 15. 如味求項以14中任—項之方法,其進 醱酵糖轉化成醱酵產物。 3將忒了 16. =::法’一步驟係藉由微一 17. 使-亥組合物與該木質纖維素物質接觸以產生可礙酵 155455.doc 201139681 糖; 轉化該可酿酵糖以產生可燃醱酵產物;及 燃燒該可燃醋酵產物或水解固體廢棄物或殘餘物 生能量。 & 18. 19. 一種生物反應器’其含有木質纖維素物質及如請求項1〇 或11之組合物。 -種用於飼料或食品添加劑加工、生物製漿或複合物處 理的方法, 提供包含如請求項m中任一項之培養基及纖維素分 解微生物之細胞的組合物;及 使該組合物與待加工或處理之物質接觸。 155455.doc201139681 VII. Patent application scope · 1. A culture medium containing wolftail (Napier; NP) grass (Pennhetum pUrpureum, 2. The medium of μ1, wherein the medium contains about 0.1% to 5% (w/v) wolftail (ΝΡ) grass (grass) fragments. 3. The medium of spray 2, wherein the medium contains about 丨% to 3% (w/v) wolftail (NP) grass The medium according to any one of items 1 to 3, wherein the medium is sterilized. The medium according to any one of the items 3 to 3, wherein the medium further comprises an antibiotic 6. A method of cultivating a cellulolytic microorganism, the method comprising: obtaining a medium according to any one of claims 5 to 5; and cultivating the medium under conditions allowing cell growth of the cellulolytic microorganism 7. The method of claim 6, wherein the cellulolytic microorganism is one or more selected from the group consisting of Fusarium spp.), Aspergillus (Liu 6 Mail SPP), and Neurospora spp) Fungus. A method for producing a cellulase, the method comprising: obtaining a medium according to any one of claims 5 to 5; and cultivating a cellulose containing a nucleic acid encoding the cellulase under conditions permitting expression of a cellulase Decomposing the cells of the microorganism; and purifying the cellulase from the cells cultured in the colon or the medium. 9. The method according to claim 8, wherein the cellulolytic microorganism is one or more 155455.doc 201139681 is a fungus selected from the group consisting of Fusarium, Aspergillus and Neurospora. A composition comprising the medium of any one of the items (1) and the cell of the cellulolytic microorganism. 11. As requested! ! The composition, wherein the cellulolytic microorganism is one or more fungi selected from the group consisting of Fusarium, Aspergillus and Neurospora. A method for producing a sucrose-derived sugar from a lignocellulosic material f, comprising: a composition comprising a medium according to any one of claims 1 to 5 and a cell of a cellulolytic microorganism; The composition is contacted with a lignocellulosic material to produce a fermentable sugar. 13. The method of claim 12, wherein the saccharide is selected from the group consisting of glucose, sugar: arabinose, galactose, mannose, rhamnose, sucrose, fruit sugar, (iv) sugar, sea uranium, fiber s The group consisting of sugar combinations 乔 次,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, a group of objects and any combination thereof. 15. In the case of the method of 14th, the saccharide is converted into a fermented product. 3 will be smashed 16. =:: method 'one step by micro-17. The hai composition is contacted with the lignocellulosic material to produce sugar 155455.doc 201139681; transforming the fermentable sugar to Producing a combustible fermentation product; and burning the combustible vinegar product or hydrolyzing solid waste or residue to generate energy. & 18. 19. A bioreactor' which contains a lignocellulosic material and a composition as claimed in claim 1 or 11. a method for processing a feed or food additive, a biopulping or a composite treatment, providing a composition comprising a medium according to any one of the claims m and a cell of a cellulolytic microorganism; and allowing the composition to be treated Contact with processed or treated materials. 155455.doc
TW100113571A 2010-04-20 2011-04-19 Napier grass and uses thereof TWI537387B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US32583810P 2010-04-20 2010-04-20

Publications (2)

Publication Number Publication Date
TW201139681A true TW201139681A (en) 2011-11-16
TWI537387B TWI537387B (en) 2016-06-11

Family

ID=46760106

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100113571A TWI537387B (en) 2010-04-20 2011-04-19 Napier grass and uses thereof

Country Status (1)

Country Link
TW (1) TWI537387B (en)

Also Published As

Publication number Publication date
TWI537387B (en) 2016-06-11

Similar Documents

Publication Publication Date Title
Ang et al. Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation
JP5663497B2 (en) Culture liquid formulation
Reddy et al. Cellulase production by Aspergillus niger on different natural lignocellulosic substrates
Marx et al. Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse
Garcia et al. Catalytic properties of cellulases and hemicellulases produced by Lichtheimia ramosa: Potential for sugarcane bagasse saccharification
CA2736602C (en) Beta-glucosidase variants having improved activity, and uses thereof
CN103842515A (en) Method for reducing viscosity in saccharification process
CN108350442A (en) Polypeptide with trehalase activity and its purposes in the method for generating tunning
Sørensen et al. Screening of carbon sources for beta-glucosidase production by Aspergillus saccharolyticus
Nutongkaew et al. Bioconversion of oil palm trunk residues hydrolyzed by enzymes from newly isolated fungi and use for ethanol and acetic acid production under two-stage and simultaneous fermentation
Liu et al. Evaluation of various fungal pretreatment of switchgrass for enhanced saccharification and simultaneous enzyme production
DK2529013T3 (en) Novel beta-glucosidase and uses thereof
Ali et al. Screening and statistical optimization of physiochemical parameters for the production of xylanases from agro-industrial wastes
Garcia-Kirchner et al. Mixed submerged fermentation with two filamentous fungi for cellulolytic and xylanolytic enzyme production
CN102827801B (en) Napier grass (pennisetum purpureum) and application thereof
Nurudeen et al. Cellulase and Biomass Pro duction from Sorghum (Sorghum guineense) Waste by Trichoderma longibrachiatum and Aspergillus terreus
Srivastava et al. Acid tolerant multicomponent bacterial enzymes production enhancement under the influence of corn cob waste substrate
Leghlimi et al. Improvement of fungal cellulase production by solid state fermentation
Cardoso et al. Minimum cocktail of cellulolytic multi-enzyme complexes obtained from white rot fungi via solid-state fermentation
TWI537387B (en) Napier grass and uses thereof
CN104583385A (en) Fungal cells that produce decreased amounts of peptaibols
CN111094562A (en) Polypeptides having trehalase activity and their use in methods of producing fermentation products
Oyedeji et al. Cellulase Production by Penicillium citrinum using Brewers Spent Grain and Pineapple Peels as Cheap, Alternate Substrates
Abdusamatov et al. Trichoderma harzianum 857 is an effective destructor of cellulose-containing raw materials
ANJANA ISOLATION OF CELLULASE ENZYME BY ASPERGILLUS NIGER FROM SUGARCANE BAGASSE

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees