TW201138353A - Method and system for wavelength allocation in a WDM/TDM passive optical network - Google Patents

Method and system for wavelength allocation in a WDM/TDM passive optical network Download PDF

Info

Publication number
TW201138353A
TW201138353A TW99122822A TW99122822A TW201138353A TW 201138353 A TW201138353 A TW 201138353A TW 99122822 A TW99122822 A TW 99122822A TW 99122822 A TW99122822 A TW 99122822A TW 201138353 A TW201138353 A TW 201138353A
Authority
TW
Taiwan
Prior art keywords
wavelength channel
onus
alternate
tdm
wavelength
Prior art date
Application number
TW99122822A
Other languages
Chinese (zh)
Inventor
Xiao-Fei Cheng
Yong Kee Yeo
Yi-Xin Wang
Jian Chen
zhao-wen Xu
Original Assignee
Agency Science Tech & Res
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency Science Tech & Res filed Critical Agency Science Tech & Res
Publication of TW201138353A publication Critical patent/TW201138353A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0247Sharing one wavelength for at least a group of ONUs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/002Coherencemultiplexing

Abstract

A method and system for wavelength allocation in a WDM/TDM passive optical network. The method comprises the steps of providing a fixed wavelength channel to a plurality of optical network units (ONUs) In the passive optical network for TDM downlink/uplink data transmission; determining whether the fixed wavelength channel should be switched to an alternative wavelength channel for one or more of the plurality of ONUs; and allocating the alternative wavelength channel to said one or more ONUs.

Description

201138353 六、發明說明: 【曰月户斤 ΦΙΪ3Γ I] 發明領域 本發明大體有關於用以於WDM/TDM被動光學網路實 施波長分配之方法及系統,用以於WDM/TDM被動光學網 路實施資料傳輸之方法,及WDM/TDM被動光學網路。 L· 發明背景 分波多工被動光學網路(WDM-ΡΟΝ)已被證實為寬頻 光學存取網路的下一代解決方案,原因在於它具備數個有 吸引力的特徵,例如容量大、保密、格式透明、網路安全、 以及有升級可基於客戶的彈性。不過,WDM組件通常很 貴,以及WDM-ΡΟΝ解決方案按慣例不被認為是在商業上是 可行的。 本技藝正在找替代及/或改善。例如,最近,大家廣泛 關注混合式分波多工/分時多工被動光學網路(混合式 WDM/TDM-PON)。混合式 WDM/TDM-ΡΟΝ 係結合 WDM-ΡΟΝ的高頻寬容量與TDM-PON的頻寬效率,因而能 夠容納很多個光學網路單元(ONU)同時每個ONU可實質維 持一般高的頻寬。對於可能不久的將來部署來說,人們認 為混合式 WDM/TDM-PON會由 TDM-PON換成 WDM-ΡΟΝ。 同時’在寬頻存取網路,網路流量研究已顯示流量有 爆發特性’亦即’流量會隨著時間明顯起伏,尤其是在有 多個服務聚合的情況下。隨著使用者人數穩定地增加以及 201138353 >勇現頻見使用量大的應用系統,混合式WDM/TDM P〇N之 中的0NU可能需要較佳的服務品質(QoS)以及更多服務等 級的合同(SLAs) ’從而需要超過通道位元率(channel bit rate) 的較高頻寬。 因此’為了解決上述問題中之至少一,亟須提供用以 於WDM/TDM被動光學網路實施録分配之#法及系統。 【明内穷】 發明概要 根據本發明的第一方面,提供一種用以於WDM/TDM 被動光學網路實施波長分配的方法,該方法包含下列步驟: 提供一固定波長通道給該被動光學網路中之多個光學 網路單元(0NU)供TDM下行/上行鏈路資料傳輸用; 判斷是否應切換該固定波長通道至一替代波長通道供 該多個ONU中之—或更多用;以及,分配該替代波長通道 給該一或更多〇Nu。 該方法可進—步包含:通過該經分配之替代波長通道 來發射該一或更多〇NU之下行/上行鏈路資料。 判斷是否應切換該固定波長通道至用於該一或更多 0NU之一替代波長通道的步驟可包含:判斷用於該一成更 多0NU之固定波長通道的一佇列大小是否高於第一閡值。 該方法可進一步包含:如果該替代波長通道上之該〆 或更多0NU的彳宁列大小低於第二閾值,則重新導向下行/> 行鏈路資料傳輸至該固定波長通道。 可經由一分布纖雉同時提供該替代波長通道與該固定 4 201138353 波長一矣該等ONU。 分齡該替代波長通道至該一或更多ONU的步驟可包含: 經由該一分布纖維提供兩個或更多替代波長通道至該 等ONU ;以及 如果雄定應切換該固定波長通道至用於該一或更多 ONU之/替代波長通道,則分配該等替代波長通道中經選 定的一個。 該/戒更多ONU可使用可在該固定波長通道與該替代 波長通道之間改變的一光學開關。 該光學開關的輸入埠可連接至一波長選擇搞合器之不 同輸出。 根據本發明的第二方面,提供一種用以於WDM/TDM 被動光學網路實施波長分配之系統,其係包含: 用於提供一固定波長通道給該被動光學網路中之多個 光學網路單元(ONU)供TDM下行/上行鏈路資料傳輸用的一 構件; 用於判斷是否應切換該固定波長通道至一替代波長通 道供該多個ONU中之一或更多用的一構件;以及 用於分配該替代波長通道至該一或更多ONU的一構件。 該系統可進一步包含:用於通過該經分配之替代波長 通道來發射該一或更多ONU之下行/上行鏈路資料的一構件。 用於判斷是否應切換該固定波長通道至用於該一或更 多ONU之一替代波長通道的該構件可判斷該一或更多〇nu 之該固定波長通道上的佇列大小是否高於第一閾值。 5 201138353 該系統可進-步包含:用於若是該替代波長通道上之 該-或更多ONU的件列大小低於第二閾值則重新導向下行 /上行鏈路資料傳輸至該固定波長通道的—構件。 可經由-分布纖維同時提供該替代波長通道與該固定 波長通道至該等ONU。 用於分配該替代波長通道至該_或更多◦丽的該構件 可經由該一分布纖維提供兩個或更多替代波長通道至該等 ONU ;以及,如果較應城該㈣波長通道至用於該一 或更多ONU之-替似統道’則可分配該㈣代波純 道中經選定的一個。 該-或更多ONU可包含可在該固定波長通道與該替代 波長通道之間改變的一光學開關。 該光學開關的輸入埠可連接至一波長選擇耦合器的不 同輸出。 該一分布纖維中之一端可耦合至一循環陣列波導光栅 (AWG)路由器的一輸出埠,以及另一端連接至該等ONU。 可經由麵合至該循環式AWG路由器之第一輸入埠的第 一饋送纖維(feeder fibre)提供該固定波長通道給該循環式 AWG路由器。 可經由耦合至該循環式AWG路由器之第二輸入埠的第 二饋送纖維提供該替代波長通道給該循環式AWG路由器。 根據本發明的第三方面,提供一種用以於WDM/TDM 被動光學網路實施資料傳輸的方法,該方法包含如第一方 面所提供用以實施波長分配的方法。 201138353 根據本發明的第四方面,提供一種WDM/TDM被動光 學網路,其係包含如第二方面所提供用以實施波長分配的 系統。 圖式簡單說明 本技藝一般技術人員由僅以實例說明及結合下列附圖 的描述可更加理解及明白本發明的具體實施例。 第1A圖的方塊圖係根據一示範具體實施例圖示一混合 式分波多工/分時多工被動光學網路(混合式 WDM/TDM-PON) 〇 第1B圖的方塊圖為第ία圖混合式WDM/TDM-PON之 變體。 第2圖的方塊圖係根據另一具體實施例圖示一混合式 WDM/TDM-PON。 第3圖的方塊圖係根據又一具體實施例圖示一混合式 WDM/TDM-PON。 第4圖圖不適用於示範具體實施例之系統的各種光學 網路單元(ONU)節點架構。 第5圖的流程圖係根據_示範具體實施例圖示用以於 WDM/TDM鶴光學網路實施波長絲的方法。 I:實施方式3 較佳實施例之詳細說明 第1A圖的方塊圖係根據—示範具體實施例圖示混合式 分波多工/分時多工被動光學網路(混合式 WDM/TDM-P〇N)100。第lBg)的方塊圖為第以圖混合式 201138353 WDM/TDM-ΡΟΝ之變體。 由第1A圖可見,在該示範具體實施例的混合式 WDM/TDM-PON 100中,有數個光學網路單元(〇nu)1〇2、 112分別在一子TDM-PON中組成一群。通常,在服務供應 商的中央辦公室140 ’有多個雷射二極體ldi、LD2...用來 各自產生連續波光線。在該示範具體實施例中,每條連續 波光線被分成兩個部份。其中一部份用來作為各自〇NU組 群(例如,子TDM-PON130)的固定(亦即’默認)波長通道以 及送到調變器DO用來攜載該〇NU組群的原始下行鏈絡資 料。另一部份用來作為〇NU組群的替代波長通道(如下文所 述,在該示範具體實施例中,其係以動態方式分配/指定) 供要求較高之服務品質(Q〇S)保證的〇NU用。粗式波長分割 多工轉換(CWDM)耦合器1〇4用來結合一對固定、替代波長 通道,例如\與1〜2+1(在此,N為通道數)。 在該示範具體實施例中,係經由循環式2*N陣列波導光 柵(AWG)多工器1〇6來多路傳輸耦合的固定、替代波長通道 以及分別路由至2*N AWG多工器106的兩個輸出埠1及 N/2+l。表1列出2*N AWG多工器1〇6的示範輸入/輸出表 (N = 8)。 表1201138353 VI. INSTRUCTION DESCRIPTION: [0001] The present invention generally relates to a method and system for implementing wavelength assignment in a WDM/TDM passive optical network for implementation in a WDM/TDM passive optical network. Data transmission method, and WDM/TDM passive optical network. L. BACKGROUND OF THE INVENTION A split-wave multiplexed passive optical network (WDM-ΡΟΝ) has proven to be the next generation solution for broadband optical access networks because of its attractive features such as large capacity, confidentiality, Format transparency, network security, and upgrades are based on customer resiliency. However, WDM components are often expensive, and WDM-ΡΟΝ solutions are not considered commercially viable by convention. This technique is looking for alternatives and/or improvements. For example, recently, extensive attention has been paid to hybrid split-multiplex/time-division multiplexed passive optical networks (hybrid WDM/TDM-PON). Hybrid WDM/TDM-ΡΟΝ combines the high-bandwidth capacity of WDM-ΡΟΝ with the bandwidth efficiency of TDM-PON, so it can accommodate many optical network units (ONUs) while each ONU can maintain a generally high bandwidth. For deployments that may be in the near future, it is believed that hybrid WDM/TDM-PON will be replaced by TDM-PON to WDM-ΡΟΝ. At the same time, in broadband access networks, network traffic research has shown that traffic has burst characteristics, that is, traffic will fluctuate significantly over time, especially in the case of multiple service aggregations. As the number of users increases steadily and 201138353 > sees frequently used applications, the ONU in hybrid WDM/TDM P〇N may require better quality of service (QoS) and more service levels. Contracts (SLAs) 'and thus require a higher bandwidth than the channel bit rate. Therefore, in order to solve at least one of the above problems, it is not necessary to provide a method and system for performing recording assignment for a WDM/TDM passive optical network. SUMMARY OF THE INVENTION According to a first aspect of the present invention, a method for implementing wavelength assignment in a WDM/TDM passive optical network is provided, the method comprising the steps of: providing a fixed wavelength channel to the passive optical network a plurality of optical network units (0NU) for TDM downlink/uplink data transmission; determining whether the fixed wavelength channel should be switched to an alternate wavelength channel for - or more of the plurality of ONUs; The alternate wavelength channel is assigned to the one or more 〇Nu. The method can further include: transmitting the one or more 〇 NU downlink/uplink data through the assigned alternate wavelength channel. Determining whether the fixed wavelength channel should be switched to one of the one or more ONUs for replacing the wavelength channel may include: determining whether a column size of the fixed wavelength channel for the one or more ONUs is higher than the first Depreciation. The method can further include redirecting downlink/>link data transmission to the fixed wavelength channel if the size of the 〆 or more ONUs on the alternate wavelength channel is below a second threshold. The alternate wavelength channel can be provided along with the fixed 4 201138353 wavelength via a distribution fiber. The step of dividing the wavelength channel to the one or more ONUs may include: providing two or more alternative wavelength channels to the ONUs via the one distribution fiber; and if the males should switch the fixed wavelength channels to A selected one of the alternate wavelength channels is assigned to the one or more ONUs/instead of the wavelength channel. The /ON more ONUs can use an optical switch that can be changed between the fixed wavelength channel and the alternate wavelength channel. The input port of the optical switch can be connected to a different output of a wavelength selective combiner. According to a second aspect of the present invention, a system for implementing wavelength assignment in a WDM/TDM passive optical network is provided, the method comprising: providing a fixed wavelength channel to a plurality of optical networks in the passive optical network An element (ONU) for transmitting TDM downlink/uplink data; a component for determining whether to switch the fixed wavelength channel to an alternate wavelength channel for one or more of the plurality of ONUs; A means for assigning the alternate wavelength channel to the one or more ONUs. The system can further include: means for transmitting the row/uplink data of the one or more ONUs through the assigned alternate wavelength channel. The means for determining whether the fixed wavelength channel should be switched to one of the one or more ONUs instead of the wavelength channel can determine whether the size of the queue on the fixed wavelength channel of the one or more 〇nu is higher than A threshold. 5 201138353 The system can further include: redirecting downlink/uplink data to the fixed wavelength channel if the size of the column of the - or more ONUs on the alternate wavelength channel is below a second threshold -member. The alternate wavelength channel and the fixed wavelength channel can be simultaneously provided to the ONUs via the -distribution fibers. The means for assigning the alternate wavelength channel to the _ or more glazing may provide two or more alternative wavelength channels to the ONUs via the one distribution fiber; and, if the (four) wavelength channel is used The selected one of the (four) wave-passing pure tracks may be assigned to the one or more ONUs. The - or more ONUs can include an optical switch that can be changed between the fixed wavelength channel and the alternate wavelength channel. The input port of the optical switch can be connected to a different output of a wavelength selective coupler. One end of the distribution fiber can be coupled to an output port of a cyclic arrayed waveguide grating (AWG) router, and the other end is coupled to the ONUs. The fixed wavelength channel can be provided to the recirculating AWG router via a first feeder fiber that is bonded to the first input port of the recirculating AWG router. The alternate wavelength channel can be provided to the cyclic AWG router via a second feed fiber coupled to a second input port of the recirculating AWG router. According to a third aspect of the present invention, there is provided a method for implementing data transmission in a WDM/TDM passive optical network, the method comprising the method of implementing wavelength assignment as provided by the first aspect. According to a fourth aspect of the invention there is provided a WDM/TDM passive optical network comprising a system as claimed in the second aspect for implementing wavelength assignment. DETAILED DESCRIPTION OF THE INVENTION The specific embodiments of the present invention will be understood and understood by the appended claims The block diagram of FIG. 1A illustrates a hybrid split multiplex/time division multiplex passive optical network (hybrid WDM/TDM-PON) according to an exemplary embodiment. The block diagram of FIG. 1B is the ία diagram. A variant of a hybrid WDM/TDM-PON. The block diagram of Figure 2 illustrates a hybrid WDM/TDM-PON in accordance with another embodiment. The block diagram of Figure 3 illustrates a hybrid WDM/TDM-PON in accordance with yet another embodiment. Figure 4 is not applicable to the various optical network unit (ONU) node architectures of the exemplary embodiment system. The flowchart of Figure 5 illustrates a method for implementing a wavelength filament in a WDM/TDM crane optical network in accordance with an exemplary embodiment. I: Embodiment 3 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The block diagram of FIG. 1A illustrates a hybrid split multiplex/time division multiplex passive optical network (hybrid WDM/TDM-P〇) according to an exemplary embodiment. N) 100. The block diagram of the lBg) is a variant of the first-complex hybrid 201138353 WDM/TDM-ΡΟΝ. As can be seen from Fig. 1A, in the hybrid WDM/TDM-PON 100 of the exemplary embodiment, a plurality of optical network units (〇nu) 1, 2, 112 are respectively grouped in a sub-TDM-PON. Typically, a plurality of laser diodes ldi, LD2... are used in the service provider's central office 140' to generate continuous wave light. In the exemplary embodiment, each successive wave of light is divided into two portions. Some of them are used as fixed (ie, 'default') wavelength channels for their respective NU groups (eg, sub-TDM-PON130) and for the original downlink that is sent to the modulator DO to carry the 〇NU group. Network information. The other part is used as an alternative wavelength channel for the 〇NU group (as described below, in the exemplary embodiment, it is dynamically assigned/specified) for higher quality of service (Q〇S) Guaranteed 〇NU use. The coarse wavelength division multiplexer (CWDM) coupler 1〇4 is used to combine a pair of fixed, alternative wavelength channels, such as \ and 1~2+1 (here, N is the number of channels). In the exemplary embodiment, the coupled fixed, alternate wavelength channels are multiplexed and routed to the 2*N AWG multiplexer 106 via a cyclic 2*N arrayed waveguide grating (AWG) multiplexer 1〇6. The two outputs are 埠1 and N/2+l. Table 1 lists the exemplary input/output tables (N = 8) for the 2*N AWG multiplexer 1〇6. Table 1

201138353 替換地,可用兩個獨立1*N AWG多工器156a、156b取 代CWDM耦合器104與2*N AWG多工器1〇6。如第1B圖所 示’提供固定波長通道給1*N AWG多工器156a,同時提供 替代波長通道給1*N AWG多工器156b。這種組態有助於簡 化網路架構以及降低插入損失(insertion loss)。 此外,在這兩種組態中,有兩個3埠循環器108、110用 於獨立下行鏈路及上行鏈路信號。然後,經多工化的固定、 替代波長通道分別經由兩條饋送纖維送到遠端節點118 :上 饋送纖維116與下饋送纖維114。遠端節點118包含NxN循環 式AWG 120,其係經由例如AWG 120的輸入埠1及N/2+1分 別由中央辦公室140連接至這兩個進入饋送纖維116、114。 在該示範具體實施例,NxN循環式AWG 120的輸出埠均連 接至各自的子TDM-P0N,亦即,0NU組群。來自遠端節點 118的下行信號係經由各自的分布纖維124及耦合器122送 到 ONU102、112。 應瞭解,在替代具體實施例中,中央辦公室140在經部 署之 P0N(例如,Ethernet PON(EPON)或 Gigabit PON(GPON))中可配置及操作NxN循環式AWG 120以便由 TDM-PON升級至混合式WDM/TDM-PON。在此類具體實施 例中,可有效淘汰遠端節點118及其加入中央辦公室140的 功能。 在ONU末端’波長選擇耦合器(例如,CWDM耦合器126) 常用來分開固定、替代波長通道。該示範具體實施例用低 速2x1光學開關128選擇這兩個波長通道中之一個作為下行 9 201138353 /上行鏈路波長通道。進一步把選定的下行鏈路波長通道分 成兩個部份;一部份送到用來接收下行鏈路資料的接收舞 132,另一部份送到用於上行傳輸的發射器134(例如,反射 半導體光學放大器(RSOA),這將詳述於下文。 例如,在圖示於第1A圖、第1B圖的具體實施例中,提 供有波長\的波長通道給ONU組群i作為固定波長通道以發 射下行/上行鏈路資料。該固定波長通道會經由上饋送纖雒 116發射至遠端節點118以及分布至該組群之中每一侧 ONU ’例如0NU 102。在該示範具體實施例中,當〇NU铒 群1中有一或更多ONU需要較高的頻寬用於下行/上行鏈絡 傳輸時,光學線路終端機(OLT)(亦即,中央辦公室14〇)把卞 行/上行鏈路資料由原始波長通道\切換到選定的替代波长 通道λΝ/2+ί(例如,當N = 8時為λ4+ί ;若4+i>8則i=i-8)。結果, 該等ONU形成使用與先前TDM-PON平行之替代波長通道 λΝ/2+i 的子 TDM-PON。 该示範具體實施例的替代波長通道係經由下饋送纖雉 114送到遠端節點118以及分布至Ο N U組群藉此可用一預定 替代波長通道提供給每個ONU組群。此外,在該示範具體 貫施例中’替代波長通道係以動態方式分配給各個〇Nu組 群中需要高QoS保證的ONU。 凊參考苐1A圖、第1B圖’此時根據一示範具體實施 例’描述動態波長分配給0NU的方法。在該示範具體實施 例中’配置於0LT/中央辦公室140的流量排程器(flow Scheduler)150定期用來調整每個ONU的交通狀況。通常把 201138353 流置排程器150搞合至接收器M2及調變器154。例如,如果 指定給特定ONU的當前佇列大小超過第一預設閾值,以及 有共享替代波長通道可用,則動態重新導向該〇NU的流量 至此共享替代波長通道以及由它攜載。一旦在替代波長通 道的佇列大小小於第二閾值時,重新導向流量回到原始的 專屬仵列。 同樣’如果ONU中上行鏈路資料佇列的當前大小超過 第三預設閾值,則該ONU送出信息向〇lt請求替代波長通 道。該OLT選定待指定的相關替代波長通道給該請求藉此 動態重新導向請求ONU的資料流量至選定的替代波長通 道’以及來自該ONU的上行鏈路資料。一旦該〇Nu之替代 波長通道的上行鏈路資料佇列大小小於第四閾值時,重新 導向流量回到原始的專屬仔列。 應瞭解,有其他的方法可用來監視下行/上行鏈路交通 狀況’用來判斷是否應把固定波長通道切換到替代波長通 道供ONU中之一或更多用。此外,取決於服務供應商,第 一閾值可等於第三閾值’以及第二閾值可等於第四閾值。 此外,ONU或者是在遠端的〇LT/中央辦公室140可監視上行 鏈路資料佇列。 第2圖的方塊圖係根據另一具體實施例圖示混合式 WDM/TDM-PON 100。此具體實施例的混合式 WDM/TDM-PON 100包含對應至第1A圖具體實施例的組 件。此外,在遠端節點118配置1x2光學耦合器138於下饋送 纖維114與NxN AWG 120之間用來增強動態波長分配給每 11 201138353 個ONU的能力。在此具體實施例中,3個波長通道(例如β、 心及’其中Ν = 8 ;若i+2>8或4+i >8,則i=i-8)送到每個 ONU組群i,例如子TDM-PON 130。與第1A圖、第1B圖的 具體實施例類似’在此具體實施例中,ONU組群i之中的 ONU在一或更多ONU需要較高的頻寬時可動態選擇替代波 長。此組態可提高動態波長分配/指定的彈性。因此,此具 體實施例可提高動態分配能力以及進一步增加〇NU的 頻寬。 第3圖的方塊圖根據又一具體實施例圖示混合式 WDM/TDM-PON 100。此具體實施例的混合式 WDM/TDM-PON 100包含對應至第1A圖具體實施例的組 件。此外’在遠端節點118配置lx(N-l)光學耦合器148用來 進一步增強動態波長分配能力《在此具體實施例中,所有 可用的波長(亦即,m’义1,4)都送到ONU組群i,例 如子TDM-PON 130。此ONU組群中每個ONU可用最高的彈 性動態選擇替代波長來攜載它的下行鏈路、上行鏈路資 料。換言之,此具體實施例的混合式WDM/TDM-PON有助 於達成完整的波長分配性能。 如上述,在如第2圖及第3圖所示的示範具體實施例 中,提供至少兩個替代波長通道給每個ONU組群,以及〇NU 組群之間共享該等替代波長通道。亦即,在這些示範具體 實施例中’ Ο LT/中央辦公室14 0尋找及選擇適當的替代波長 通道分配給請求的ONU。 該示範具體實施例的混合式WDM/TDM-PON有部份的 12 201138353 保護能力是有利的。例如,如第丨八圖、第1B圖所示,當上 饋送纖維116失效而導致所有ONU損失資料時,或波長心的 雷射二極體或調變器DO損壞而導致〇NU組群丨中之〇nu損 失資料時,波長通道\的下行/上行鏈路資料可切換至替代 波長通道λΝ/^。資料傳輸通道會恢復以及經由下饋送纖維 114通過替代波長通道收發〇NU組群丨的資料。換言之即 使有一個饋送纖維失效,也有助於保持上行鏈路/下行鏈路 資料傳輸。 在上述的各種具體實施例中,提供一種混合式 WDM/TDM被動光學網路架構。該網路架構包含中央辦公 至M0、遠端節點118、多個光學網路單元(〇NU)1〇2、112、 循環式NxN陣列波導光栅(AWG)路由器12〇。在中央辦公室 中,多條連續波光線分成第一部份與第二部份,其中第一 部份係攜載固定下行/上行鏈路波長通道,第二部份攜裁替 代動態波長通道。固定下行/上行鏈路波長通道與替代動態 波長通道經由兩條饋送纖維116、U4送到遠端節點118,以 及經由循環式NxNAWG路由器12〇路由到光學網路單元 (ONU)。固定波長通道與替代動態波長通道係經選定,以 及分開下行鏈路通道以便在〇NU偵測。 第4圖圖示適用於示範具體實施例之系統的各種光學 '同路單元(ONU)節點架構。該等〇NU節點彳以適應方式選 擇一波長通道作為下行/上行鏈路資料傳輸。通常,如第4(a) 圖所示,該ONU包含CWDM耦合器120、光學開關128、接 收器132及發射器134。發射器134的形式通常為費比佩羅 13 3 201138353 (Fabry-Perot)雷射二極體(FpLD)(第4(c)圖至第4⑷圖)、垂直 共振腔表面放射雷射(VESEL)、或反射半導體光學放大器 (RSOA)(第4⑷圖至第4⑻圖)。第4⑻圖至第4⑷圖圖示有兩 個接收器132的〇NU架構14⑻圖圖示同調谓測與適於由 多個下行鏈路波長通道選出波長通道的架構。如第4(e)圖所 示另外提供局部同調波長(local coherent wavelength)146 給ONU使彳*讯5缝長與局部同調波長146可臝過及恢復以 相同波長發射的資料。第4(f)圖圖示使用波長可調雷射142 及波長可調接收器144的架構。 有利的是,上述示範具體實施例的混合式 WDM/TDM-PON架構可提供動態波長通道給下行鏈路與上 行鏈路交通以致於所有的〇腦都有服務品質(Q〇s)保證。此 外,在該等不範具體實施例中,網路中所有的〇冊都可共 子動恶波長資源,藉此可改善動態波長資源利用效率。此 外,在該等示範具體實施例中,最好提供動態波長分配方 案給所有的ONU而不要求中央辦公室有額外的雷射二極 體’從而可降低成本。此外,有利的是,該等示範具體實 施例的混合式WDM/TDM-PON具有部份網路保護能力。 上述示範具體實施例的混合sWDM/TDM被動光學網 路架構可應躲寬頻光學存取網路,特別是分波多工被動 光學網路。 第5圖的流程圖500係根據一示範具體實施例圖示一種 用以於WDM/TDM被動光學網路實施波長分配的方法。在 步驟502,在被動光學網路中提供一固定波長通道給多個光 14 201138353 學網路單元_)供職下行/上行鍵路資料傳輸用 驟504 ’判斷是否應把固定波長 及長通嗄切換到用於多個 之-或更多的替代波長通道。在 W NU中 道至該-或更多藝。 分㈣代波長通 如圖示具體實施例所示,孰技 ^201138353 Alternatively, the CWDM coupler 104 and the 2*N AWG multiplexer 1〇6 can be replaced with two separate 1*N AWG multiplexers 156a, 156b. A fixed wavelength channel is provided to the 1*N AWG multiplexer 156a as shown in Figure 1B, while an alternate wavelength channel is provided to the 1*N AWG multiplexer 156b. This configuration helps to simplify the network architecture and reduce insertion loss. In addition, in both configurations, there are two 3-turn circulators 108, 110 for separate downlink and uplink signals. The multiplexed fixed, alternate wavelength channels are then sent via two feed fibers to the distal node 118: upper feed fibers 116 and lower feed fibers 114, respectively. The remote node 118 includes an NxN cyclic AWG 120 that is connected to the two incoming feed fibers 116, 114 by a central office 140 via inputs 埠 1 and N/2+1, for example, of the AWG 120. In the exemplary embodiment, the output ports of the NxN cyclic AWG 120 are each coupled to a respective sub-TDM-P0N, i.e., an ONU group. The downstream signals from the remote node 118 are sent to the ONUs 102, 112 via respective distribution fibers 124 and couplers 122. It should be appreciated that in an alternate embodiment, the central office 140 can configure and operate the NxN cyclic AWG 120 in a deployed PON (eg, Ethernet PON (EPON) or Gigabit PON (GPON)) for upgrading from TDM-PON to Hybrid WDM/TDM-PON. In such specific embodiments, the remote node 118 and its ability to join the central office 140 can be effectively phased out. At the end of the ONU, a wavelength selective coupler (e.g., CWDM coupler 126) is often used to separately fix and replace wavelength channels. The exemplary embodiment uses low speed 2x1 optical switch 128 to select one of the two wavelength channels as the downstream 9 201138353 /uplink wavelength channel. The selected downlink wavelength channel is further divided into two parts; one portion is sent to the receive dance 132 for receiving downlink data, and the other portion is sent to the transmitter 134 for uplink transmission (eg, reflection) Semiconductor Optical Amplifier (RSOA), which will be described in more detail below. For example, in the specific embodiment illustrated in Figures 1A and 1B, a wavelength channel of wavelength \ is provided to the ONU group i as a fixed wavelength channel. The downlink/uplink data is transmitted. The fixed wavelength channel is transmitted via the upper feed fiber 116 to the remote node 118 and to each of the ONUs of the group, such as the ONU 102. In the exemplary embodiment, When one or more ONUs in 〇NU铒1 require a higher bandwidth for downlink/uplink transmission, the optical line terminal (OLT) (ie, central office 14〇) takes the limp/uplink The path data is switched from the original wavelength channel\ to the selected alternate wavelength channel λΝ/2+ί (for example, λ4+ί when N = 8; i=i-8 if 4+i>8). The ONU forms a sub-TDM-P that uses an alternative wavelength channel λΝ/2+i parallel to the previous TDM-PON The alternate wavelength channel of the exemplary embodiment is sent to the remote node 118 via the lower feed fiber 114 and to the NU NU group so that it can be provided to each ONU group by a predetermined alternate wavelength channel. In the exemplary embodiment, the 'alternative wavelength channel is dynamically allocated to the ONUs in each 〇N group that require high QoS guarantee. 凊Reference 苐1A, FIG. 1B' is described in accordance with an exemplary embodiment. A method of dynamically wavelength assignment to the ONU. In this exemplary embodiment, a flow scheduler 150 configured at the OLT/Central Office 140 is periodically used to adjust the traffic conditions of each ONU. Typically, the 201138353 flow is placed. The processor 150 is coupled to the receiver M2 and the modulator 154. For example, if the current queue size assigned to a particular ONU exceeds a first predetermined threshold and a shared alternate wavelength channel is available, then dynamically redirecting the UI The flow then shares and is carried by the alternate wavelength channel. Once the queue size of the alternate wavelength channel is less than the second threshold, the traffic is redirected back to the original dedicated queue. Similarly, if the current size of the uplink data queue in the ONU exceeds a third preset threshold, the ONU sends a message requesting the alternative wavelength channel to the 〇lt. The OLT selects the relevant alternate wavelength channel to be designated to give the request a dynamic Redirecting the data flow requesting the ONU to the selected alternate wavelength channel' and the uplink data from the ONU. Once the uplink data queue size of the alternate wavelength channel of the 〇N is less than the fourth threshold, redirecting the traffic back To the original dedicated train. It should be understood that there are other ways to monitor the downlink/uplink traffic conditions to determine whether a fixed wavelength channel should be switched to an alternate wavelength channel for one or more of the ONUs. Moreover, depending on the service provider, the first threshold may be equal to the third threshold ' and the second threshold may be equal to the fourth threshold. In addition, the ONU or the remote 〇LT/central office 140 can monitor the uplink data queue. The block diagram of Figure 2 illustrates a hybrid WDM/TDM-PON 100 in accordance with another embodiment. The hybrid WDM/TDM-PON 100 of this particular embodiment includes components corresponding to the specific embodiment of Figure 1A. In addition, a 1x2 optical coupler 138 is disposed at the remote node 118 between the lower feed fiber 114 and the NxN AWG 120 to enhance the ability of dynamic wavelength assignment to each of the 2011 38,353 ONUs. In this particular embodiment, three wavelength channels (e.g., β, heart and 'where Ν = 8; if i+2> 8 or 4+i > 8, then i=i-8) are sent to each ONU group. Group i, such as sub-TDM-PON 130. Similar to the specific embodiment of FIG. 1A and FIG. 1B' In this embodiment, the ONU among the ONU group i can dynamically select the alternate wavelength when one or more ONUs require a higher bandwidth. This configuration increases the dynamic wavelength assignment/specified elasticity. Therefore, this specific embodiment can improve the dynamic allocation capability and further increase the bandwidth of 〇NU. The block diagram of Figure 3 illustrates a hybrid WDM/TDM-PON 100 in accordance with yet another embodiment. The hybrid WDM/TDM-PON 100 of this particular embodiment includes components corresponding to the specific embodiment of Figure 1A. In addition, an lx(N1) optical coupler 148 is configured at the remote node 118 to further enhance the dynamic wavelength assignment capability. In this particular embodiment, all available wavelengths (i.e., m' sense 1, 4) are sent. The ONU group i, such as the sub-TDM-PON 130. Each ONU in this ONU group can use its highest resilient dynamic selection to replace the wavelength to carry its downlink and uplink information. In other words, the hybrid WDM/TDM-PON of this embodiment helps achieve complete wavelength assignment performance. As described above, in the exemplary embodiment as shown in Figures 2 and 3, at least two alternate wavelength channels are provided for each ONU group, and the alternate wavelength channels are shared between the 〇NU groups. That is, in these exemplary embodiments, Ο LT/Central Office 140 finds and selects an appropriate alternate wavelength channel to assign to the requesting ONU. The hybrid WDM/TDM-PON of this exemplary embodiment has some of the 12 201138353 protection capabilities that are advantageous. For example, as shown in FIG. 8 and FIG. 1B, when the upper feed fiber 116 fails to cause all ONUs to lose data, or the wavelength center of the laser diode or modulator DO is damaged, the 〇NU group is defective. When the data is lost, the downlink/uplink data of the wavelength channel\ can be switched to the alternative wavelength channel λΝ/^. The data transmission channel recovers and transmits and receives data of the NU group group via the lower feed fiber 114 through the alternate wavelength channel. In other words, even if one feed fiber fails, it also helps to maintain uplink/downlink data transmission. In various embodiments described above, a hybrid WDM/TDM passive optical network architecture is provided. The network architecture includes a central office to M0, a remote node 118, a plurality of optical network units (〇NU) 1, 2, 112, and a cyclic NxN arrayed waveguide grating (AWG) router 12A. In the central office, a plurality of continuous wave rays are split into a first portion and a second portion, wherein the first portion carries a fixed downlink/uplink wavelength channel and the second portion carries an alternate dynamic wavelength channel. The fixed downstream/uplink wavelength channel and the alternate dynamic wavelength channel are routed to the remote node 118 via two feed fibers 116, U4 and to the optical network unit (ONU) via the cyclic NxNAWG router 12〇. The fixed wavelength channel and the alternate dynamic wavelength channel are selected and the downlink channel is separated for detection at the 〇NU. Figure 4 illustrates various optical 'co-channel unit (ONU) node architectures suitable for use in the exemplary embodiment system. The 〇NU node selects a wavelength channel as a downlink/uplink data transmission in an adaptive manner. Typically, as shown in Figure 4(a), the ONU includes a CWDM coupler 120, an optical switch 128, a receiver 132, and a transmitter 134. The emitter 134 is typically in the form of a Fippero 13 3 201138353 (Fabry-Perot) laser diode (FpLD) (Fig. 4(c) through 4(4)), a vertical cavity surface emitting laser (VESEL). Or a reflective semiconductor optical amplifier (RSOA) (Fig. 4(4) to Fig. 4(8)). Figures 4(8) through 4(4) illustrate a 〇NU architecture 14(8) diagram with two receivers 132 illustrating coherent prediction and an architecture suitable for selecting wavelength channels by multiple downlink wavelength channels. As shown in Fig. 4(e), a local coherent wavelength 146 is additionally provided to the ONU so that the slit length and the local homomorphic wavelength 146 can be naked and recovered at the same wavelength. Figure 4(f) illustrates the architecture using wavelength tunable laser 142 and wavelength tunable receiver 144. Advantageously, the hybrid WDM/TDM-PON architecture of the above-described exemplary embodiments provides dynamic wavelength channels for downlink and uplink traffic so that all campers have quality of service (Q〇s) guarantees. In addition, in these exemplary embodiments, all registers in the network can co-mite the wavelength resources, thereby improving the efficiency of dynamic wavelength resource utilization. Moreover, in these exemplary embodiments, it is preferred to provide a dynamic wavelength assignment scheme to all ONUs without requiring the central office to have additional laser diodes' to reduce cost. Moreover, advantageously, the hybrid WDM/TDM-PON of these exemplary embodiments has partial network protection capabilities. The hybrid sWDM/TDM passive optical network architecture of the above exemplary embodiments can be used to hide broadband optical access networks, especially for split-wave multiplexed passive optical networks. Flowchart 500 of Figure 5 illustrates a method for implementing wavelength assignment for a WDM/TDM passive optical network in accordance with an exemplary embodiment. In step 502, a fixed wavelength channel is provided in the passive optical network to the plurality of lights. The service downlink/uplink key data transmission step 504' determines whether the fixed wavelength and the long overnight switch should be switched. To alternative wavelength channels for multiple - or more. In the W NU, go to the - or more art. Sub-(four) generation wavelength pass as shown in the specific embodiment, this technique ^

9此藝者應瞭解本發明仍 可做出許多變體及/或修改而不 W a * 版離本發明的廣泛精神及 範疇。因此,該等具體實施例在久 、 甲 方面應被視為僅供圖解 說明而不具限定性。 ^ 【圖式簡單説明】 第1A圖的方塊圖係根據一示θ 却•具體實施例圖示一混合 式分波多工/分時多工被私, %先學網路(混合式 WDM/TDM-PON)。It will be appreciated by those skilled in the art that many variations and/or modifications may be made without departing from the spirit and scope of the invention. Therefore, the specific embodiments are to be considered as illustrative only and not limiting. ^ [Simple diagram of the diagram] The block diagram of Figure 1A is based on a θ. • The specific embodiment shows a hybrid split multiplex/time division multiplex. Private, % learn network (hybrid WDM/TDM) -PON).

第1B圖的方塊圖為第1A圖、、? A 吧合式WDM/TDM-PON之 變體。 第2圖的方塊圖係根據另—Iμ 具體實施例圖示一混合式 WDM/TDM-PON。 第3圖的方塊圖係根據又—泡μ 具體實施例圖示一混合式 WDM/TDM-PON。 第4圖圖示適用於示範具體叙 只%例之系統的各種光學 網路單元(ONU)節點架構。 第5圖的流程圖係根據一示給θ 抵具體實施例圖示用以於 WDM/TDM被動光學網路實施波長分配的方去 15 201138353 【主要元件符號說明】 100…混合式分波多工/分時多140…中央辦公室 工被動光學網路(混合式 WDM/TDM-PON) 102,112·.·光學網路單元(〇NU) 104…粗式波長分割多工轉換 (CWDM)耦合器 106. · ·循環式2*N陣列波導光柵 (AWG)多工器 108 ’ 110...3埠循環器 114…下饋送纖維 116·.·上饋送纖維 118…遠端節點The block diagram of Figure 1B is Figure 1A, ? A variant of the WDM/TDM-PON. The block diagram of Figure 2 illustrates a hybrid WDM/TDM-PON according to another embodiment. The block diagram of Figure 3 illustrates a hybrid WDM/TDM-PON in accordance with a further embodiment of the bubble. Figure 4 illustrates the various optical network unit (ONU) node architectures that are suitable for demonstrating a specific example of a system. The flowchart of FIG. 5 is a schematic diagram for implementing wavelength assignment in a WDM/TDM passive optical network according to a specific embodiment. 15 201138353 [Major component symbol description] 100... Hybrid split multiplexing/ Time-sharing 140... Central office work passive optical network (hybrid WDM/TDM-PON) 102,112·.·Optical network unit (〇NU) 104...Clarity wavelength division multiplexing conversion (CWDM) coupler 106. • Cyclic 2*N arrayed waveguide grating (AWG) multiplexer 108 '110...3埠 circulator 114...lower feed fiber 116·.·upper fiber 118...distal node

120…NxN循環式AWG 122…耗合器 124…分布纖維 126*„CWDM耦合器 128···低速2x1光學開關 130 …子 TDM-PON 132…接收器 134…發射器 138·.·1χ2光學耦合器 142…波長可調雷射 144.··波長可調接收器 146.. .局部同調波長 148…lx (Ν-1)光學耦合器 150…流量排程器 152.. .接收器 154.. .調變器 156a,156b·..1*NAWG多工器 500…流程圖 502.··在被動光學網路中提供 一固定波長通道給多個 光學網路單元(ONU)供 TDM下行/上行鏈路資料 傳輸用 504.. .判斷是否應把固定波長 通道切換到用於多個 ONU中之一或更多的替 代波長通道120...NxN circulating AWG 122...consumer 124...distribution fiber 126*„CWDM coupler 128···low speed 2x1 optical switch 130...sub-TDM-PON 132...receiver 134...transmitter 138···1χ2 optical coupling 142... wavelength tunable laser 144. · wavelength tunable receiver 146.. local coherent wavelength 148...lx (Ν-1) optical coupler 150... flow scheduler 152.. receiver 154.. Debugger 156a, 156b·..1*NAWG multiplexer 500... Flowchart 502. Provide a fixed wavelength channel in the passive optical network to multiple optical network units (ONUs) for TDM downlink/upstream The link data transmission uses 504.. to determine whether the fixed wavelength channel should be switched to an alternate wavelength channel for one or more of the plurality of ONUs.

506…分配替代波長通道至該 一或更多ONU 16506... assigning an alternate wavelength channel to the one or more ONUs 16

Claims (1)

201138353 七、申請專利範圍: 1. 一種用於WDM/TDM被動光學網路中的波長分配的方 法,該方法包含下列步驟: 提供一固定波長通道給該被動光學網路中之多個 光學網路單元(ONU)供TDM下行/上行鏈路資料傳輸用; 判斷是否應切換該固定波長通道至一替代波長通 道供該多個ONU中之一或更多用;以及 分配該替代波長通道給該一或更多ONU。 2. 如申請專利範圍第1項的方法,其更包含:通過該經分 配之替代波長通道來發射該一或更多ONU之下行/上行 鍵路貢料。 3. 如申請專利範圍第1項或第2項的方法,其中判斷是否應 切換該固定波長通道至用於該一或更多ONU之一替代 波長通道的步驟包含:判斷用於該一或更多ONU之固定 波長通道的一佇列大小是否高於第一閾值。 4. 如以上所有申請專利範圍中之任一項的方法,其更包 含:如果該替代波長通道上之該一或更多ONU的佇列大 小低於第二閾值,則重新導向下行/上行鏈路資料傳輸至 該固定波長通道。 5. 如以上所有申請專利範圍中之任一項的方法,其中係經 由一分布纖維同時提供該替代波長通道與該固定波長 通道給該等ONU。 6. 如申請專利範圍第5項的方法,其中分配該替代波長通 道至該一或更多ONU的步驟包含: 17 201138353 經由該一分布纖維提供兩個或更多替代波長通道 至該等ONU ;以及 如果確定應切換該固定波長通道至一替代波長通 道以用於該一或更多ONU,則分配該等替代波長通道中 經選定的一個。 7. 如申請專利範圍第5項或第6項的方法,其中該一或更多 ONU使用一光學開關以在該固定波長通道與該替代波 長通道之間做改變。 8. 如申請專利範圍第7項的方法,其中該光學開關的輸入 埠係被連接至來自一波長選擇耦合器的不同輸出。 9. 一種用於WDM/TDM被動光學網路中的波長分配之系 統,其係包含: 用於提供一固定波長通道給該被動光學網路中之 多個光學網路單元(ONU)供TDM下行/上行鏈路資料傳 輸用的一構件; 用於判斷是否應切換該固定波長通道至一替代波 長通道供該多個ONU中之一或更多用的一構件;以及 用於分配該替代波長通道至該一或更多ONU的一 構件。 10. 如申請專利範圍第9項的系統,其更包含通過該經分配 之替代波長通道來發射該一或更多ONU之下行/上行鏈 路資料的一構件。 11. 如申請專利範圍第9項或第10項的系統,其中用於判斷 是否應切換該固定波長通道至一替代波長通道以用於 18 201138353 該一或更多ONU的該構件會判斷在該一或更多ONU之 固定波長通道上的一佇列大小是否高於第一閾值。 12. 如申請專利範圍第9項至第11項中任一項的系統,其更 包含若是該替代波長通道上之該一或更多0NU的佇列 大小低於第二閾值,則用於重新導向下行/上行鏈路資料 傳輸至該固定波長通道的一構件。 13. 如申請專利範圍第9項至第12項中任一項的系統,其中 係經由一分布纖維同時提供該替代波長通道與該固定 波長通道給該等ONU。 14. 如申請專利範圍第13項的系統,其中用於分配該替代波 長通道至該一或更多ONU的該構件經由該一分布纖維 提供兩個或更多替代波長通道給該等ONU ;以及,如果 確定應切換該固定波長通道至一替代波長通道以用於 該一或更多ONU,則分配該等替代波長通道中經選定的 一個。 15. 如申請專利範圍第13項或第14項的系統,其中該一或更 多Ο N U包含一光學開關以在該固定波長通道與該替代 波長通道之間做改變。 16. 如申請專利範圍第15項的系統,其中該光學開關的輸入 埠係被連接至來自一波長選擇耦合器的不同輸出。 17. 如申請專利範圍第13項至第16項中任一項的系統,其中 該一分布纖維在一端係被耦合至一循環式陣列波導光 柵(AWG)路由器的一輸出埠,而另一端則被耦合至該等 ONU。 19 201138353 18. 如申請專利範圍第17項的系統,其中係經由耦合至該循 環式AWG路由器之第一輸入埠的第一饋送纖維提供該 固定波長通道給該循環式AWG路由器。 19. 如申請專利範圍第17項的系統,其中係經由耦合至該循 環式AWG路由器之第二輸入埠的第二饋送纖維提供該 替代波長通道給該循環式AWG路由器。 20. —種用於WDM/TDM被動光學網路中的資料傳輸的方 法,該方法包含如申請專利範圍第1項至第8項中之任一 項所述用於波長分配的方法。 21. —種WDM/TDM被動光學網路,其係包含如申請專利範 圍第9項至第19項中之任一項所述用於波長分配的系 統。 20201138353 VII. Patent Application Range: 1. A method for wavelength assignment in a WDM/TDM passive optical network, the method comprising the steps of: providing a fixed wavelength channel to a plurality of optical networks in the passive optical network An element (ONU) is used for TDM downlink/uplink data transmission; determining whether the fixed wavelength channel should be switched to an alternate wavelength channel for one or more of the plurality of ONUs; and assigning the replacement wavelength channel to the one Or more ONUs. 2. The method of claim 1, further comprising: transmitting the one or more ONU subordinate/uplink tributaries through the assigned alternate wavelength channel. 3. The method of claim 1 or 2, wherein the step of determining whether to switch the fixed wavelength channel to one of the one or more ONUs instead of the wavelength channel comprises: determining for the one or more Whether the size of a column of the fixed wavelength channel of the multiple ONU is higher than the first threshold. 4. The method of any of the preceding claims, further comprising: redirecting the downlink/uplink if the queue size of the one or more ONUs on the alternate wavelength channel is below a second threshold The road data is transmitted to the fixed wavelength channel. 5. The method of any of the preceding claims, wherein the alternate wavelength channel and the fixed wavelength channel are simultaneously provided to the ONUs via a distribution fiber. 6. The method of claim 5, wherein the step of assigning the alternate wavelength channel to the one or more ONUs comprises: 17 201138353 providing two or more alternative wavelength channels to the ONUs via the one distribution fiber; And if it is determined that the fixed wavelength channel should be switched to an alternate wavelength channel for the one or more ONUs, a selected one of the alternate wavelength channels is assigned. 7. The method of claim 5, wherein the one or more ONUs use an optical switch to make a change between the fixed wavelength channel and the alternate wavelength channel. 8. The method of claim 7, wherein the input of the optical switch is coupled to a different output from a wavelength selective coupler. 9. A system for wavelength assignment in a WDM/TDM passive optical network, comprising: providing a fixed wavelength channel to a plurality of optical network units (ONUs) in the passive optical network for TDM downlink a component for uplink data transmission; a means for determining whether the fixed wavelength channel should be switched to an alternate wavelength channel for one or more of the plurality of ONUs; and for assigning the alternate wavelength channel To a component of the one or more ONUs. 10. The system of claim 9, further comprising a component for transmitting the row/uplink data of the one or more ONUs via the assigned alternate wavelength channel. 11. The system of claim 9 or 10, wherein the means for determining whether the fixed wavelength channel should be switched to an alternate wavelength channel for use in 18 201138353 of the one or more ONUs is determined Whether the size of a column on the fixed wavelength channel of one or more ONUs is higher than the first threshold. 12. The system of any one of clauses 9 to 11, further comprising: if the size of the one or more ONUs on the alternate wavelength channel is below a second threshold, then A component that directs downlink/uplink data transmission to the fixed wavelength channel. 13. The system of any one of clauses 9 to 12, wherein the alternate wavelength channel and the fixed wavelength channel are simultaneously provided to the ONU via a distribution fiber. 14. The system of claim 13 wherein the means for distributing the alternate wavelength channel to the one or more ONUs provides two or more alternate wavelength channels to the ONUs via the one distribution fiber; If it is determined that the fixed wavelength channel should be switched to an alternate wavelength channel for the one or more ONUs, the selected one of the alternate wavelength channels is assigned. 15. The system of claim 13 or 14, wherein the one or more Ο N U comprises an optical switch to vary between the fixed wavelength channel and the alternate wavelength channel. 16. The system of claim 15 wherein the input of the optical switch is coupled to a different output from a wavelength selective coupler. 17. The system of any one of clauses 13 to 16, wherein the one distribution fiber is coupled at one end to an output port of a recirculating arrayed waveguide grating (AWG) router, and the other end is Is coupled to the ONUs. The system of claim 17, wherein the fixed wavelength channel is provided to the cyclic AWG router via a first feed fiber coupled to a first input port of the cyclic AWG router. 19. The system of claim 17 wherein the alternate wavelength channel is provided to the cyclic AWG router via a second feed fiber coupled to a second input port of the cyclic AWG router. 20. A method for data transmission in a WDM/TDM passive optical network, the method comprising the method for wavelength assignment as set forth in any one of claims 1 to 8. 21. A WDM/TDM passive optical network comprising a system for wavelength assignment as set forth in any one of clauses 9 to 19. 20
TW99122822A 2009-07-10 2010-07-12 Method and system for wavelength allocation in a WDM/TDM passive optical network TW201138353A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SG200904707 2009-07-10

Publications (1)

Publication Number Publication Date
TW201138353A true TW201138353A (en) 2011-11-01

Family

ID=43429432

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99122822A TW201138353A (en) 2009-07-10 2010-07-12 Method and system for wavelength allocation in a WDM/TDM passive optical network

Country Status (2)

Country Link
TW (1) TW201138353A (en)
WO (1) WO2011005223A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493900B (en) * 2012-05-23 2015-07-21 Huawei Tech Co Ltd Wavelength switching method, system and device for multi - wavelength passive optical network
US9167321B2 (en) 2013-12-27 2015-10-20 Industrial Technology Research Institute Optical router and terminal devices therewith based on dynamic wavelength assignment

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5700601B2 (en) * 2012-01-17 2015-04-15 日本電信電話株式会社 Wavelength band allocation method
KR101585362B1 (en) 2012-01-17 2016-01-13 니폰 덴신 덴와 가부시끼가이샤 Wavelength bandwidth allocation method
EP2989737B1 (en) * 2013-05-16 2018-01-03 Huawei Technologies Co., Ltd. Reconfigurable optical access network architectures
CN104811238B (en) 2014-01-28 2019-05-07 中兴通讯股份有限公司 The timely partial wave division multiplexing system of passageway switching method, device, optical network unit
CN104202082B (en) * 2014-09-25 2017-03-08 重庆邮电大学 A kind of high survivability PON protection structure of low overhead
CN106160840B (en) * 2015-04-08 2019-01-18 东南大学 Wave division multiplexing passive optical network optical fiber link distributed protection device and its guard method
US10230485B2 (en) * 2015-04-22 2019-03-12 Nippon Telegraph And Telephone Corporation Station-side device and wavelength changeover method
FR3091085A1 (en) * 2018-12-21 2020-06-26 Orange Method for allocating a point-to-point channel to a user module of an optical communication network, computer program product, storage medium and corresponding device
CN112235662A (en) * 2019-07-15 2021-01-15 中兴通讯股份有限公司 Method for reducing uplink time delay of passive optical network and related equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490901B1 (en) * 2002-12-02 2005-05-24 한국전자통신연구원 Dynamic Bandwidth Allocation Method and Apparatus based on Class of Service over Ethernet Passive Optical Network
KR101013722B1 (en) * 2004-02-13 2011-02-10 주식회사 케이티 communication channel switching system and method for WDM-PON
JP4704842B2 (en) * 2005-08-01 2011-06-22 株式会社日立製作所 WDM type PON system
KR100775427B1 (en) * 2005-12-12 2007-11-12 삼성전자주식회사 System and Method for Bandwidth Allocation In GPON
JP4410789B2 (en) * 2006-12-08 2010-02-03 株式会社日立コミュニケーションテクノロジー Passive optical network system, optical termination device and optical network unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493900B (en) * 2012-05-23 2015-07-21 Huawei Tech Co Ltd Wavelength switching method, system and device for multi - wavelength passive optical network
US9167321B2 (en) 2013-12-27 2015-10-20 Industrial Technology Research Institute Optical router and terminal devices therewith based on dynamic wavelength assignment

Also Published As

Publication number Publication date
WO2011005223A1 (en) 2011-01-13

Similar Documents

Publication Publication Date Title
TW201138353A (en) Method and system for wavelength allocation in a WDM/TDM passive optical network
KR101879850B1 (en) TWDM passive network with extended reach and capacity
JP6482043B2 (en) Optical port auto-negotiation method, optical module, central office termination device, and termination device
US8041217B2 (en) System and method for managing wavelength drift in an optical network
US20150365172A1 (en) Upstream Optical Transmission Assignment Based on Transmission Power
EP3443693B1 (en) Channel bonding in multiple-wavelength passive optical networks (pons)
JP4006475B2 (en) WDM type PON system
JP2014515221A (en) Wavelength management in multiwavelength passive optical networks
JP2006165953A (en) Optical communication system
JP2009105890A (en) Orthogonal frequency division multiple access based upon virtual passive optical network (vpon)
US20150229431A1 (en) Station-side apparatus and communication method
WO2012065460A1 (en) Passive optical network system and method, optical line terminal and wavelength routing unit
JP5334878B2 (en) Optical communication system, station side device, subscriber side device, and optical communication method
US20080037990A1 (en) Asymmetrical PON with Multiple Return Channels
US9112613B2 (en) Passive optical network reach extender based on wavelength tunable optical module and method thereof
US20090263133A1 (en) Optical communication network system, parent station optical communication device, and child station optical communication device
Maier WDM passive optical networks and beyond: the road ahead
JP2016523043A (en) Method and apparatus for reconfiguring the wavelength of an optical network unit
Zhou et al. Hybrid WDM-TDM PON architectures and DWBA algorithms
WO2016106573A1 (en) Method, device and system for wavelength configuration in passive optical network
JP2016174298A (en) Wavelength demultiplexer, optical communication system, and wavelength demultiplexing method
US9148222B2 (en) AFDX network with a passive optical network
US8917992B1 (en) Optical network remote node for WDM-PON and TDM-PON
US9559802B1 (en) Optical network remote node for G-PON and WDM-PON
WO2012014444A1 (en) Optical communication processing device in optical network, and wavelength conversion method thereof