TW201137061A - Paste for electron emitting source, electron emitting source using the same and method for producing them - Google Patents

Paste for electron emitting source, electron emitting source using the same and method for producing them Download PDF

Info

Publication number
TW201137061A
TW201137061A TW100104256A TW100104256A TW201137061A TW 201137061 A TW201137061 A TW 201137061A TW 100104256 A TW100104256 A TW 100104256A TW 100104256 A TW100104256 A TW 100104256A TW 201137061 A TW201137061 A TW 201137061A
Authority
TW
Taiwan
Prior art keywords
electron
paste
compound
group
electron source
Prior art date
Application number
TW100104256A
Other languages
Chinese (zh)
Inventor
Takejiro Inoue
Kazuki Shigeta
Hironobu Sadakuni
Kazuki Goto
Sun-Kyu Park
Original Assignee
Toray Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries filed Critical Toray Industries
Publication of TW201137061A publication Critical patent/TW201137061A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Conductive Materials (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

By means of using a paste composition capable of generating cracks on a surface of electron emitting source, an activating treatment step for exposing carbon nanotubes on the surface of electron emitting source can be omitted, while, an electron emitting source capable of emitting electron under low voltage and emitting light uniformly can be obtained.

Description

201137061 六、發明說明: 【發明所屬之技術領域】 本發明關於電子放射源用糊、使用其之電子放射源及 電子放射元件及此等之製造方法。 【先前技術】 以碳奈米管、碳奈米纖維、碳奈米角、碳奈米線圈、 碳奈米牆等爲代表的碳系材料,不僅物理.化學的耐久性 優異’而且具有適合於電場放射的尖銳之頂端形狀與大的 縱橫比。因此,以碳系材料爲電子放射源的電場放射型顯 示器(FED)、使用電場放射的液晶用背光單元(LCD-BLU) 、照明機器、X射線源等的各式各樣之應用硏究係旺盛地 進行。 作爲使用碳系材料的電子放射源之製作方法的一個, 有將碳系材料(例如碳奈米管)糊化,塗布於陰極基板上之 方法。作爲此方法的一例,係在陰極電極上形成含碳奈米 管的糊之塗膜,進行熱處理後,對膜表面進行膠帶剝離法 、雷射照射法等的活性化處理者。作爲此方法所用的糊材 料’已知在含碳奈米管的糊中含有玻璃粉末者(例如參照 專利文獻1 )、含有碳酸鹽者(例如參照專利文獻2)、或含 有金屬碳酸鹽者(例如參照專利文獻3)等。又,當爲使用 黏結劑樹脂的糊時,藉由焙燒以去除黏結劑樹脂。因此, 亦有提出殘渣不易殘留,利用比較低溫之加熱消滅性的材 料之技術(例如參照專利文獻4)。 201137061 還有,上述步驟中的活性化處理係爲了得到良好的電 子放射特性,使碳奈米管在電子放射源的表面上起毛等而 露出者。然而,若可省略活性化處理,則可更大幅地幫助 成本的減低。作爲即使不進行起毛處理也得到良好的電子 放射特性者,有提出多孔性的電子放射源,電子放射材料 自其孔壁突出者(例如參照專利文獻5)。此電子放射源係 在含碳奈米管的糊中混入聚甲基丙烯酸甲酯等的塑膠粒子 ,於熱處理步驟中使塑膠粒子燃燒,藉由在其存在的區域 中製作李隙,而形成連續孔者。由於碳奈米管自孔壁突出 ,故不需要活性化處理。 先前技術文獻 專利文獻 專利文獻1:特開2007-115675號公報 專利文獻2 :特開2003 -242898號公報 專利文獻3:特開2008-243789號公報 專利文獻4:特開2006-107835號公報 專利文獻5:特開2004-87304號公報 【發明內容】 發明所欲解決的問題 然而,於專利文獻5所記載的方法中,有電子放射所 需要的電壓增加之問題。又,亦有發光均勻性不良之問題 〇 本發明係著眼於上述問題,目的在於提供一種可省略 201137061 使碳奈米管露出電子放射源表面的活性化處理步驟,同時 可在低電壓進行電子放射,得到均勻發光的電子放射源用 糊,以及一種使用其之電子放射源。 解決問題的手段 即,本發明係一種電子放射源用糊,其含有(A)電子 放射材料、(B)熱分解型發泡劑及(C)在熱分解時產生收縮 應力的成分。又,本發明的另一態樣係一種電子放射源用 糊’其含有(A)電子放射材料及(D)作爲熱分解型發泡劑之 機能且具有乙烯性不飽和基的熱聚合引發劑。 發明的效果 依照本發明,因爲可省略使碳奈米管露出電子放射源 表面之活性化處理步驟,故可削減電子放射源之製造時的 活性化處理步驟所必要的裝置、材料等之成本。又,依照 本發明,儘管不需要活性化處理,也可在低電壓進行電子 放射’可獲得能得到均勻發光的電子放射源。 【實施方式】 實施發明的形態 本發明的電子放射源用糊係含有(A)電子放射材料、 (B)熱分解型發泡劑及(C)在熱分解時產生收縮應力的成分 。又,本發明的電子放射源用糊之另一態樣係含有(A)電 子放射材料及(D)作爲熱分解型發泡劑之機能且具有乙烯 性不飽和基的熱聚合引發劑。還有,本發明關於一種使用 其所得之電子放射源及電子放射元件及此等之製造方法。 201137061 若使用本發明的電子放射源用糊,則可不進行膠帶剝離法 、雷射照射法等的活性化處理,能以低電壓進行電子放射 ,與陰極電極的黏著性亦優異,可獲得能得到均勻發光的 電子放射源。 可不進行活性化處理而以低電壓進行電子放射的理由 推測係如下。再者,於以下的說明中舉出碳奈米管當作 f (A)電子放射材料之例,惟如後述,電子放射材料係不受 此所限定,其它材料亦同樣適用。 若觀察將本發明的電子放射源用糊塗布於基板上,熱 處理所得之電子放射源,則可知在電子放射源產生龜裂, 碳奈米管自龜裂處突出。因此,茲認爲即使不進行活性化 處理,也可由自龜裂處突出的碳奈米管得到電子放射。於 龜裂發生的過程中,茲認爲在電子放射源內部由於龜裂所 產生的截面(龜裂面)中,於略垂直方向拉出碳奈米管的力 係起作用。因此,碳奈米管的突出長度變長,縱橫比變大 。結果,容易在碳奈米管發生電場集中,可將電子放射所 需要的電壓保持低。爲了以實用水平的低電壓進行電子放 射,碳奈米管自龜裂面突出的長度較佳爲0.5μιη以上,更 佳爲1·0μιη以上,尤佳爲3.0μπι以上,特佳4.0μπι以上, 最佳爲5.0 μιη以上。若使用本發明的電子放射源用糊則可 達成此。所突出的碳奈米管之長度只要爲不與閘電極或陽 極電極接觸而短路的長度,則碳奈米管的突出長度係愈長 愈可將電子放射所需要的電壓保持低。也有所突出的碳奈 201137061 米管會將龜裂間架橋而存在,但可含有那樣者。 於龜裂的發生中’茲認爲(B)熱分解型發泡劑係有大 幅幫助。本說明書中的熱分解型發泡劑,就是進行熱分解 而放出氣體,在電子放射源用糊塗膜內產生氣泡的物質。 茲認爲此氣泡係成爲龜裂的起點,而容易產生許多的龜裂 。龜裂的數目若增加,則所露出的電子放射材料係增加, 故發光均勻性升高。 又’於前述龜裂的發生中,茲認爲(C)在熱分解時產 生收縮應力的成分亦有大幅幫助。茲認爲由於(C)成分的 影響,在熱分解時對電子放射源施加大的收縮應力,所發 生的龜裂進行成長。 作爲(C)在熱分解時產生收縮應力的成分之一例'例 如可舉出金屬鹽、有機金屬化合物、金屬錯合物、矽烷偶 合劑或鈦偶合劑等的化合物。此等係因加熱而分解。但是 ,此等係不會如前述專利文獻5中記載的塑膠粒子因燃燒 或分解而完全燒掉者,而是具有最終作爲金屬氧化物或矽 化合物殘留之特徵。於本說明.書的以下說明中,將(C)成 分中具有即使加熱到糊焙燒溫度也不會完全消失的特徵之 物質總稱爲「殘留性化合物」。此殘留性化合物由於在熱 分解時收縮,故在電子放射源用糊塗膜內產生收縮應力, 可於焙燒後的電子放射源內形成龜裂。由於此收縮應力大 ,若龜裂的寬度變大,則在電子放射源內可得到突出長度 長的碳奈米管,電子放射所需要的電壓係變低。 201137061 又,作爲(C)在熱分解時產生收縮應力的成分之另一 例,亦可舉出熱聚合引發劑與含乙烯性不飽和基的化合物 之組合成分。熱聚合引發劑係因加熱分解而產生自由基, 用於交聯含乙烯性不飽和基的化合物的雙鍵部分。由於雙 鍵部分被交聯,而在熱分解時對電子放射源施加大的收縮 應力。茲認爲於該情況下,若在電子放射源中有缺陷,則 以其爲起點發生龜裂,進行成長。結果,與前述「殘留性 化合物」同樣,可減低電子放射所需要的電壓。 還有,茲認此等成分係在電子放射源用糊的焙燒後分 解•消失者。如此地,將(C)成分中若加熱至糊焙燒溫度 則消失的物質總稱爲「消失性龜裂產生劑」。再者,消失 性龜裂產生劑的具體例係不受此等所限,只要顯示同樣的 性質者即可。 又,上述各成分亦可在1個物質具備氣體的放出、交 聯的促進、含有乙烯性不飽和基中之複數的性質。藉由如 此,可減少所混合的物質之種類,使系統變單純。 具體地’作爲(C)在熱分解時產生收縮應力的成分的 其它態樣,可舉出含有乙烯性不飽和基的熱聚合引發劑。 此亦含於消失性龜裂產生劑中。又,分別代替(B)成分與 (C)成分,可舉出使用(D)作爲熱分解型發泡劑之機能且含 有乙烯性不飽和基的熱聚合引發劑之情況。於此等情況下 ’由於各糊中含有前述3個要素,故得到同樣的效果。再 者,所謂(D)作爲熱分解型發泡劑之機能且含有乙烯性不 201137061 飽和基的熱聚合引發劑,就是含有乙烯性不飽和基的熱聚 合引發劑,兼任作爲(B)熱分解型發泡劑之任務者。 再者,作爲消失性龜裂產生劑的再另一例,可舉出使 用兼具熱分解型發泡劑與熱聚合引發劑之性質的物質,與 含乙烯性不飽和基的化合物,或使用含有乙烯性不飽和基 的熱分解型發泡劑與熱聚合引發劑之情況。此等由於具備 熱分解型發泡劑之任務,故可與(B)成分一起使用,亦可 省略(B )成分。 另外,於(C)在熱分解時產生收縮應力的成分中,亦 可含矽氧烷材料或聚矽氧材料等。 (C)成分較佳爲在電子放射源用糊的焙成溫度以下產 生收縮應力者。於一般的顯示器或照明等的發光裝置用途 中’由於使用便宜的鈉鈣玻璃當作基板,故(C)成分較佳 爲在100°c以上500°c以下的溫度產生收縮應力者。再者 ,下限更佳爲150°C以上,尤佳爲200°C以上。又,上限 更佳爲450°C以下,尤佳爲400°C以下。可爲任一較佳的 下限値或任一較佳的上限値之組合。(C)成分產生收縮應 力的溫度若在前述範圍內,則由於與熱分解型發泡劑所產 生的起點之相乘效果,可形成良好的龜裂。上述消失性龜 裂產生劑由於係在電子放射源用糊的焙燒後消失者,故相 當於在前述範圍內的溫度產生收縮應力的成分。殘留性化 合物的詳細係如後述。 再者’於本說明書中,某一成分例如在1 00 °C以上 201137061 5 00 °C以下的溫度產生收縮應力者,就是指滿足以下的條 件。首先,對於該成分,於惰性氣體環境下,以升溫速度 爲 10°C/min 的條件進行 TGA(Thermogravimetric[Technical Field] The present invention relates to a paste for an electron source, an electron source using the same, an electron emitting element, and a method for producing the same. [Prior Art] Carbon-based materials typified by carbon nanotubes, carbon nanofibers, carbon nanohorns, carbon nanotube coils, and carbon nanowalls are not only excellent in physical and chemical durability, but also suitable for The sharp tip shape of the electric field radiates with a large aspect ratio. Therefore, various types of application systems such as an electric field radiation type display (FED) using a carbon-based material as an electron emission source, a liquid crystal backlight unit (LCD-BLU) using an electric field emission, an illumination device, and an X-ray source are used. Exuberant. As one of methods for producing an electron source using a carbon-based material, there is a method of pasting a carbon-based material (for example, a carbon nanotube) onto a cathode substrate. As an example of such a method, a coating film of a paste containing a carbon nanotube is formed on a cathode electrode, and after heat treatment, the surface of the film is subjected to activation treatment such as a tape peeling method or a laser irradiation method. The paste material used in this method is known to contain glass powder in a paste containing a carbon nanotube (for example, refer to Patent Document 1), a carbonate-containing one (for example, refer to Patent Document 2), or a metal carbonate (for example). For example, refer to Patent Document 3) and the like. Further, when a paste using a binder resin is used, the binder resin is removed by baking. For this reason, there has been proposed a technique in which a residue is less likely to remain and a relatively low-temperature heat-eliminating material is used (for example, see Patent Document 4). Further, in the above-described step, in order to obtain good electron emission characteristics, the carbon nanotubes are exposed to the surface of the electron source to be exposed. However, if the activation treatment can be omitted, the cost can be reduced more greatly. In the case where a good electron emission characteristic is obtained without performing the raising treatment, a porous electron emitting source is proposed, and the electron emitting material protrudes from the pore wall (see, for example, Patent Document 5). The electron source is a plastic particle such as polymethyl methacrylate mixed in a paste containing a carbon nanotube, and the plastic particles are burned in the heat treatment step, and a continuous gap is formed in the region where it exists to form a continuous shape. Hole. Since the carbon nanotubes protrude from the pore walls, no activation treatment is required. CITATION LIST Patent Literature Patent Literature No. JP-A-2007-124789 (Patent Document 3): JP-A-2008-243789 [Problem to be Solved by the Invention] However, in the method described in Patent Document 5, there is a problem that the voltage required for electron emission increases. Further, there is a problem that the uniformity of light emission is poor. The present invention has been made in view of the above problems, and an object thereof is to provide an activation treatment step which can omit the surface of the electron nanotube from being uncovered by 201137061, and can perform electron emission at a low voltage. A paste for an electron emission source that uniformly emits light, and an electron emission source using the same. Means for Solving the Problem The present invention relates to a paste for an electron emission source comprising (A) an electron emitting material, (B) a thermally decomposable foaming agent, and (C) a component which generates a shrinkage stress upon thermal decomposition. Further, another aspect of the present invention is a paste for an electron source comprising a (A) electron emitting material and (D) a thermal polymerization initiator having a function as a thermally decomposable foaming agent and having an ethylenically unsaturated group. . Advantageous Effects of Invention According to the present invention, since the activation step of exposing the carbon nanotube to the surface of the electron emission source can be omitted, the cost of the apparatus, materials, and the like necessary for the activation treatment step in the production of the electron emission source can be reduced. Further, according to the present invention, electron emission can be obtained at a low voltage, although activation treatment is not required, and an electron emission source capable of obtaining uniform illumination can be obtained. [Embodiment] The paste for electron emission source of the present invention contains (A) an electron emitting material, (B) a thermally decomposable foaming agent, and (C) a component which generates shrinkage stress during thermal decomposition. Further, another aspect of the paste for an electron source according to the present invention comprises (A) an electron emitting material and (D) a thermal polymerization initiator having a function as a thermally decomposable foaming agent and having an ethylenically unsaturated group. Further, the present invention relates to an electron emission source and an electron emission element obtained by using the same, and a method of manufacturing the same. In the case of using the paste for an electron emission source of the present invention, it is possible to perform electronization at a low voltage without performing an activation treatment such as a tape peeling method or a laser irradiation method, and it is excellent in adhesion to a cathode electrode, and can be obtained. A uniform source of electron emission. The reason why electron emission can be performed at a low voltage without performing activation treatment is presumed as follows. Further, in the following description, a carbon nanotube is exemplified as the f (A) electron emitting material. However, as will be described later, the electron emitting material is not limited thereto, and other materials are also applicable. When the paste for electron source of the present invention is applied to a substrate and the electron source obtained by heat treatment is observed, it is understood that cracks occur in the electron source, and the carbon nanotubes protrude from the crack. Therefore, it is considered that electron emission can be obtained from a carbon nanotube protruding from a crack even without activation treatment. In the course of cracking, it is considered that the force of pulling out the carbon nanotube in a slightly vertical direction in the cross section (crack surface) generated by the crack inside the electron source is effective. Therefore, the protruding length of the carbon nanotubes becomes long, and the aspect ratio becomes large. As a result, electric field concentration in the carbon nanotubes is easy, and the voltage required for electron emission can be kept low. In order to carry out electron emission at a practically low voltage, the length of the carbon nanotube protruding from the crack surface is preferably 0.5 μm or more, more preferably 1.0 μm or more, particularly preferably 3.0 μm or more, and particularly preferably 4.0 μm or more. The best is 5.0 μιη or more. This can be achieved by using the paste for an electron emissive source of the present invention. The length of the protruding carbon nanotubes is long as long as it is short-circuited without contact with the gate electrode or the anode electrode, and the longer the protruding length of the carbon nanotubes, the lower the voltage required for electron emission. There is also a prominent carbon naphthalene 201137061 meter tube will exist in the cracked bridge, but can contain that. In the occurrence of cracks, it is considered that (B) thermal decomposition type foaming agent has a large amount of help. The thermally decomposable foaming agent in the present specification is a substance which is thermally decomposed to emit a gas and which generates bubbles in the paste film of the electron source. It is believed that this bubble is the starting point of the crack and is prone to many cracks. If the number of cracks increases, the exposed electron-emitting material increases, so that the uniformity of light emission increases. Further, in the occurrence of the above-mentioned cracks, it is considered that (C) a component which generates shrinkage stress at the time of thermal decomposition also contributes greatly. It is considered that due to the influence of the component (C), a large contraction stress is applied to the electron source during thermal decomposition, and the generated crack grows. An example of the component (C) which causes shrinkage stress at the time of thermal decomposition is, for example, a compound such as a metal salt, an organometallic compound, a metal complex, a decane coupling agent or a titanium coupling agent. These are decomposed by heating. However, these are not characterized in that the plastic particles described in the above Patent Document 5 are completely burned by combustion or decomposition, but have a characteristic of eventually remaining as a metal oxide or a ruthenium compound. In the following description of the present specification, the substance having the feature that the component (C) does not completely disappear even when heated to the paste baking temperature is collectively referred to as "residual compound". Since this residual compound shrinks during thermal decomposition, shrinkage stress is generated in the paste film for electron source, and cracks can be formed in the electron source after firing. Since the shrinkage stress is large, if the width of the crack is increased, a carbon nanotube having a long protruding length can be obtained in the electron source, and the voltage required for electron emission is lowered. Further, as another example of the component (C) which causes shrinkage stress during thermal decomposition, a combination of a thermal polymerization initiator and a compound containing an ethylenically unsaturated group may be mentioned. The thermal polymerization initiator generates a radical due to decomposition by heating, and is used for crosslinking a double bond portion of a compound containing an ethylenically unsaturated group. Since the double bond portion is crosslinked, a large shrinkage stress is applied to the electron source during thermal decomposition. It is considered that in this case, if there is a defect in the electron source, cracking occurs as a starting point and growth is performed. As a result, as in the case of the above-mentioned "residual compound", the voltage required for electron emission can be reduced. Further, it is recognized that these components are decomposed and disappeared after the baking of the paste for electron source. In this case, the substance which disappears when the component (C) is heated to the paste baking temperature is collectively referred to as a "disappearing crack generating agent". Further, specific examples of the vanishing cracking agent are not limited thereto, and any one of the same properties may be used. Further, each of the above-mentioned components may have a property of releasing a gas, promoting crosslinking, and containing a plurality of ethylenically unsaturated groups in one substance. Thereby, the type of the substance to be mixed can be reduced, and the system can be simplified. Specifically, as another aspect of the component (C) which generates shrinkage stress at the time of thermal decomposition, a thermal polymerization initiator containing an ethylenically unsaturated group may be mentioned. This is also included in the vanishing cracking agent. In addition, in place of the component (B) and the component (C), a thermal polymerization initiator containing (D) as a thermal decomposition type foaming agent and containing an ethylenically unsaturated group may be used. In this case, the same effect is obtained because the above three elements are contained in each paste. In addition, (D) a thermal polymerization initiator which is a function of a thermal decomposition type foaming agent and which contains an ethylenic non-201137061 saturated group, is a thermal polymerization initiator containing an ethylenically unsaturated group, and serves as (B) thermal decomposition. The task of the type of foaming agent. In addition, as another example of the disappearing crack generating agent, a substance having a property of a thermal decomposition type foaming agent and a thermal polymerization initiator, a compound containing an ethylenically unsaturated group, or a use-containing compound may be used. The case of a thermally decomposable foaming agent having an ethylenically unsaturated group and a thermal polymerization initiator. Since these have the task of thermally decomposing a foaming agent, they can be used together with the component (B), or the component (B) can be omitted. Further, in the component (C) which generates shrinkage stress at the time of thermal decomposition, a cerium oxide material or a polyfluorene oxide material may be contained. The component (C) is preferably one in which shrinkage stress is generated at a temperature below the baking temperature of the paste for an electron source. In the use of a light-emitting device such as a general display or illumination, since the inexpensive soda lime glass is used as the substrate, the component (C) preferably has a shrinkage stress at a temperature of 100 ° C or more and 500 ° C or less. Further, the lower limit is more preferably 150 ° C or more, and particularly preferably 200 ° C or more. Further, the upper limit is more preferably 450 ° C or less, and particularly preferably 400 ° C or less. It may be a combination of any of the preferred lower limits or any preferred upper limit. When the temperature at which the component (C) causes a shrinkage stress is within the above range, a good crack can be formed due to the synergistic effect with the starting point of the thermally decomposable foaming agent. Since the above-mentioned vanishing cracking agent disappears after firing of the paste for electron source, it is equivalent to a component which generates shrinkage stress at a temperature within the above range. The details of the residual compound will be described later. Further, in the present specification, when a component is subjected to a contraction stress at a temperature of, for example, 100 ° C or more, and the temperature is less than or equal to the following, it means that the following conditions are satisfied. First, for this component, TGA (Thermogravimetric) was carried out under an inert gas atmosphere at a temperature increase rate of 10 ° C / min.

Analysis)的熱重量分析。將由其結果所得之TGA曲線的 斜率變成負之點當作該成分的熱分解溫度。而且,熱分解 溫度以後的斜率爲負之溫度區域若含於100°C以上500°C 以下之範圍,則該成分係在100°C以上500°C以下的溫度 產生收縮應力者。此係因爲熱分解溫度以後的TGA曲線 之斜率爲負時,即重量減少時,表示該材料繼續熱分解。 又,作爲(C)成分,即便使用「殘留性化合物」或「 消失性龜裂產生劑」中的任一者時,最終也在電子放射源 內幾乎沒有殘留有機殘渣,可得到良好的電子放射特性而 較佳。 如以上,於本發明中,推測熱分解型發泡劑所致的氣 泡發生,與殘留性化合物或消失性龜裂產生劑所致的收縮 應力之發生,係在熱處理步驟中階段地或同時並行地發生 ,促進龜裂的發生與成長。 於上述之中,本發明的電子放射源用糊之更佳態樣係 以下者。 (I) 一種電子放射源用糊,其含有(A)電子放射材料、 (B)熱分解型發泡劑及作爲(C)成分的選自由金屬鹽、有機 金屬化合物、金屬錯合物、矽烷偶合劑及鈦偶合劑所組成 之群組中的至少一種以上之物質。 . -10- 201137061 (II) —種電子放射源用糊,其含有(A)電子放射材料、 (B)熱分解型發泡劑、及作爲(c)成分的熱聚合引發劑及含 乙烯性不飽和基的化合物。 (III) 一種電子放射源用糊,其含有(A)電子放射材料 、(B)熱分解型發泡劑、及作爲(C)成分的含乙烯性不飽和 基的熱聚合引發劑。 (IV) —種電子放射源用糊,其含有(A)電子放射材料 及(D)作爲熱分解型發泡劑之機能且具有乙烯性不飽和基 的熱聚合引發劑。 另一方面,於如前述專利文獻5記載,使碳奈米管自 塑膠粒子所形成的連續孔之孔壁突出時,由於塑膠粒子的 燒掉所致的收縮應力係弱,故碳奈米管的突出長度變短, 縱橫比變小。結果,在碳奈米管的尖端不易發生電場集中 ,電子放射所需要的電壓會增加。 本發明的電子放射源之龜裂,就是指如第1圖所示, 在電子放射.源中形成的裂縫,寬度爲〇·5μιη以上者。又, 所謂龜裂的寬度,就是指如第1圖的符號3所示,測定電 子放射源的表面部分中之裂縫的寬度者。龜裂的深度亦可 達到陰極基板,也可不達到。 作爲一例,第2圖中顯示使用鹼式碳酸鎂當作殘留性 化合物,使用偶氮二甲醯胺當作熱分解型發泡劑的電子放 射源表面之龜裂的電子顯微鏡照片,第3圖中顯示自龜裂 面突出的碳奈米管之電子顯微鏡照片。又,第4圖中顯示 -11 - 201137061 使用第三丁基過氧月桂酸酯與四丙二醇二甲基丙烯酸酯當 作消失性龜裂產生劑,使用偶氮二甲醯胺當作熱分解型發 泡劑的電子放射源表面之龜裂的光學顯微鏡照片,第5圖 中顯示自龜裂面突出的碳奈米管之電子顯微鏡照片。 以下更詳細說明本發明的電子放射源用糊。 一般地,於電場放射型顯示器等所用的(A)電子放射 材料中,有以鉬爲代表的金屬材料,或以碳奈米管、碳奈 米纖維、碳奈米角、碳奈米線圈、碳奈米扭曲(carbon nanotwist)等針狀碳、鑽石、鑽石似碳、石墨、碳黑、富 樂烯、石墨烯爲代表的碳系材料。本發明中,可使用此等 的任一者,從因低功函數特性而可低電壓驅動來看,較佳 爲使用針狀碳。於針狀碳之中,更佳爲碳奈米管,因爲高 縱橫比而具有良好的電放射特性。以下,以使用碳奈米管 當作針狀碳的代表之電子放射源用糊作爲一例說明。 於碳奈米管中,有單層者或2層、3層等的多層者, 皆可較佳地使用。亦可使用層數不同的碳奈米管之混合物 。.未精製碳奈米管粉末由於含有非晶形碳或觸媒金屬等的. 雜質,故亦可藉由進行酸處理等的精製來提高純度而使用 。又’爲了調整碳奈米管的長度’亦可用超音波 '球磨機 或珠磨機等來粉碎碳奈米管粉末。 相對於電子放射源用糊全體,(A)電子放射材料的含 量較佳爲0 . 1〜2 0重量%。又’更佳爲〇. 1〜1 〇重量%,尤 佳爲0.1〜5.0重量%。電子放射材料的含量若爲前述範圍 -12- 201137061 內,則可得到電子放射源用糊的良好分散性、印刷性及圖 案形成性。 (B)熱分解型發泡劑較佳爲在50〜300 °C的範圍分解 而放出氣體者,更佳爲在100〜250°C分解而放出氣體者 ,尤佳爲在150〜250 °C分解而放出氣體者。藉由使用在 前述溫度範圍產生氣體者,於電子放射源用糊塗膜的製作 時之乾燥步驟中不會產生氣泡,可在龜裂形成時的熱處理 步驟中使充分產生龜裂。再者,於本說明書中,例如所謂 在50〜3 00t的範圍分解,就是指前述TGA測定所得之熱 分解溫度在50〜300 °C的範圍 (B)熱分解型發泡劑的具體例,例如是偶氮二甲醯胺 、偶氮雙異丁腈等的偶氮化合物、二亞硝基五亞甲基四胺 、N,N’-二亞硝基-N,N’-二甲基對苯二甲醯胺等的亞硝基 化合物、對甲苯磺醯肼、p,p’-氧基雙(苯磺醯肼)、伸肼基 二甲醯胺等的醯肼化合物、對甲苯磺醯基疊氮等的疊氮化 合物、丙酮對磺醯基腙等的腙化合物、蜜胺、尿素、二氰 胺等等,惟不受此等所限定。於此等之中,特佳爲使用偶 氮化合物、亞硝基化合物、醯肼化合物時,因爲在電子放 射源用糊塗膜的製作時之乾燥步驟中不產生氣泡,熱分解 時的氣體放出量亦多,故在龜裂形成時的熱處理步驟中使 充分發生龜裂的效果大。 (B)熱分解型發泡劑若在電子放射源用糊中當作粒子 存在,則可促進龜裂的形成而較佳。如此的熱分解型發泡 -13- 201137061 劑粒子係平均粒徑的下限較佳爲1 .Ομιη以上,更佳爲 3·0μιη以上,尤佳爲6·0μιη以上。又,上限較佳爲25μπι 以下,更佳爲20μιη以下,尤佳爲15μιη以下。可爲任一 較佳的下限値或任一較佳的上限値之組合。熱分解型發泡 劑粒子的平均粒徑若爲前述的下限値以上,則更促進龜裂 的形成,可減低電子放射所需要的電壓。又,若爲前述上 限値以下,則可減少電子放射源的表面凹凸,形成均勻的 龜裂,故可得到良好的發光均勻性。 此處所謂的平均粒徑係指累積50%粒徑(D5Q)。此係 將一個粉體的集團之全體積當作100%,求得體積累積曲 線時,表示該體積累積曲線成爲5 0%之點的粒徑,作爲累 積平均徑,利用作爲一般評價粒度分布的參數之1個。再 者,熱分解型發泡劑粒子的粒度分布之測定係可藉由微軌 跡法(日機裝(股)製微軌跡雷射繞射式粒度分布測定裝置的 方法)進行測定。 相對於電子放射源用糊全體,(B)熱分解型發泡劑的 含量之下限較佳爲1 .0重量%以上,更佳爲2.0重量%以上 ’尤佳爲3 · 0重量%以上,特佳爲5.0重量%以上,尤特佳 爲1 〇重量%以上。又,上限較佳爲3 0重量%以下,更佳 爲2 5重量%以下。可爲任一較佳的下限値或任一較佳的 上限値之組合。又,相對於由電子放射源用糊中去除溶劑 後的固體成分全體,熱分解型發泡劑的含量之下限較佳爲 1.0重量%以上,更佳爲3.0重量%,尤佳爲5.0重量%以 -14- 201137061 上,特佳爲1 〇重Μ %以上。又,上限較佳爲5 0重量%以 下,更佳爲40重量%以下,尤佳爲35重量%以下》熱分 解型發泡劑的含量若爲前述範圍內,則可在電子放射源塗 膜內形成均勻的氣泡。 說明(C)在熱分解時產生收縮應力的成分之一例的殘 留性化合物之具體例。再者,由於殘留性化合物係隨著種 類而熱分解溫度不同,故較佳爲適宜選擇與所使用的溫度 配合的化合物。 所謂的金屬鹽,就是指碳酸鹽、硫酸鹽、硝酸鹽、氫 氧化物鹽、碳酸氫鹽、醋酸鹽、鹵化物鹽等。作爲金屬碳 酸鹽,例如可使用碳酸鉀、碳酸鈣、碳酸鈉、碳酸鋇、碳 酸鎂、碳酸鋰、碳酸銅(II)、碳酸鐵(II)、碳酸銀(I)、碳 酸鎳、水滑石等。作爲金屬硫酸鹽,例如可舉出硫酸鋅、 硫酸鋁、硫酸鉀、硫酸鈣、硫酸銀、硫酸氫鉀、硫酸鉈、 硫酸鐵(II)、硫酸鐵(III)、硫酸銅(I)、硫酸銅(II)、硫酸 鈉、硫酸鎳、硫酸鋇、硫酸鎂、鉀明礬、鐵明礬等的明礬 類等。作爲金屬硝酸鹽,可舉出硝酸鎂、硝酸鋅、硝酸鋁 、硝酸雙氧鈾、硝酸氯、硝酸鉀、硝酸鈣、硝酸銀、硝酸 胍、硝酸鈷、硝酸鈷(II)、硝酸鈷(III)、硝酸鉋、硝酸鈽 銨、硝酸鐵、硝酸鐵(II)、硝酸鐵(III)、硝酸銅(II)、硝酸 鈉、硝酸鉛(II)、硝酸鋇、硝酸铷等。作爲金屬氫氧化物 鹽’可舉出氫氧化鈣、氫氧化鎂、氫氧化錳、氫氧化鐵 (Π)、氫氧化鋅、氫氧化銅(II) '氫氧化鑭、氫氧化鋁、氫 -15- 201137061 氧化鐵(III)等。作爲金屬碳酸氫鹽,例如可舉出碳酸氫鈉 、碳酸氫鉀、碳酸氫鈣等。金屬鹵化物鹽表示鹼金屬、鹼 土類金屬等的金屬與氟、氯、溴、碘等的鹵素間所形成之 鹽’例如可舉出氟化鈉、氟化鉀、氟化鈣、氟化鋰、氯化 鈉、氯化鉀' 氯化鎂、氯化鈣、溴化鋰、溴化鈉、溴化鉀 、碘化鉀、碘化鈉等。作爲金屬醋酸鹽,可舉出醋酸鈉、 醋酸鉀、醋酸鈣、醋酸鎂等。此等金屬鹽可使用無水物或 水合物中的任一者。 作爲有機金屬化合物,可舉出具有金屬-碳鍵結的化 合物。作爲構成有機金屬化合物的金屬元素,可舉出錫 (Sn)、銦(In)、銻(Sb)、鋅(Zn)、金(Au)、銀(Ag)、銅(Cu) 、鈀(Pd)、鋁(A1)、鈦(Ti)、鎳(Ni)、鉑(Pt)、錳(Μη).、鐵 (Fe)、鈷(Co)、鉻(Cr)、锆(Zr)等。又.,作爲與金屬_元素鍵 結合而形成有機金屬化合物的有機鏈中所含有的基,有乙 醯基、烷基、烷氧基、胺基、醯胺基、酯基、醚基、環氧 基、苯基、鹵基等。作爲前述有機金屬化合物的具體例, 可舉出三甲基銦、三乙基銦、三丁氧基銦、三甲氧基銦、 三乙氧基銦、四甲基錫、四乙基錫、四丁基錫、四甲氧基 錫、四乙氧基錫、四丁氧基錫、四苯基錫、三苯基銻、三 苯基銻二乙酸酯、三苯基銻氧化物、三苯基銻鹵化物等。 作爲金屬錯合物,可舉出以在有機金屬化合物所列舉 的金屬元素爲中心而在周圍配位有配位子的構造者。作爲 形成金屬錯合物的配位子,可舉出胺基、膦基 '羧基、羰 -16 - 201137061 基'硫醇基、羥基、醚基、酯基、醯胺基、氰基、鹵素基 、硫氰基、吡啶基、菲基等之具有孤立電子對者。作爲前 述配位子的具體例,可舉出三苯膦、硝酸離子、鹵化物離 子' 氫氧化物離子、氰化物離子、硫氰離子、氨 ' —氧化 碳、乙醯丙酮化物、吡啶、乙二胺、聯吡啶、菲繞啉、 BINAP、兒茶酌化物(catecholate)、三吡卩定、乙二胺四醋 酸、卟啉、環蘭(cyc Um)、王冠醚類等。作爲金屬錯合物 的具體例,可舉出乙醯丙酮銦錯合物 '銦乙二胺錯合物、 銦乙二胺四醋酸錯合物、乙醯丙酮錫錯合物、錫乙二胺錯 合物、錫乙二胺四醋酸等。 作爲矽烷偶合劑,可舉出具有烷氧基、鹵素、乙醯氧 基等的水解性矽烷基者。通常較宜使用烷氧基,尤其甲氧 基或乙氧基。又,作爲矽烷偶合劑所具有的有機官能基, 可舉出胺基、甲基丙稀酸基(methacryl group)、丙嫌酸基 (acryl group)、乙烯基、環氧基、毓基、烷基 '烯丙基等 。具體地可舉出N-β(胺乙基)γ-胺基丙基三甲氧基矽烷、 Ν-β(胺乙基)γ -胺基丙基甲基二甲氧基矽烷、Ν -苯基-γ -胺 基丙基三甲氧基矽烷、γ -胺基丙基三甲氧基矽烷、γ_二丁 基胺基丙基三甲氧基矽烷、γ -脲基丙基三乙氧基矽烷、Ν-β-(Ν-乙烯基苄基胺基甲基胺基丙基三甲氧基矽烷.鹽 酸鹽、γ-甲基丙烯醯氧基丙基三甲氧基矽烷、γ-甲基丙烯 醯氧基丙基三乙氧基矽烷、γ -甲基丙烯醯氧基丙基甲基二 甲氧基矽烷、乙烯基三甲氧基矽烷、乙烯基三乙氧基矽烷 -17- 201137061 、乙烯基三乙醯氧基矽烷、乙烯基三氯矽烷、 (β -甲氧基乙氧基)矽烷' γ·環氧丙氧基丙基三甲 、γ-環氧丙氧基丙基甲基二乙氧基矽烷、β-(3,4-己基)乙基三甲氧基矽烷、γ-锍基丙基三甲氧基矽 丙基三甲氧基矽烷、甲基三甲氧基矽烷、甲基三 烷、二甲基二甲氧基矽烷、二甲基二乙氧基矽烷 三甲氧基矽烷、異丁基三甲氧基矽烷、正己基三 烷、正癸基三甲氧基矽烷、正十六基三甲氧基矽 三甲氧基矽烷、二苯基二甲氧基矽烷等。於本發 單獨使用由此等偶合劑中所選出的1種類,也可 類以上使用。又,亦可使用採用上述1種偶合劑 物或組合2種以上的異種縮合物。 作爲鈦偶合劑,可舉出矽烷偶合劑的矽烷部 鈦者。 於此等之中,較宜使用金屬鹽。使用含金屬 放射源用糊所得之電子放射源,係電子放射源內 龜裂尺寸大,碳奈米管的突出長度亦長。而且, 舉動,且發光均勻性良好。推測此係因爲在無機 屬鹽之熱分解時所產生的收縮應力係比在有機成 解時所產生的收縮應力還大。其中’從在100 一 低溫區域進行熱分解之點來看,較佳爲金屬碳酸 硝^鹽或金屬硫酸鹽。其中更佳爲金屬碳酸鹽’ 最容易發生。再者,若使用含鎂的金屬碳酸鹽’ 烯基三 基矽烷 環氧基環 烷、γ-氯 乙氧基矽 、正丙基 甲氧基矽 院、苯基 明中,可 組合2種 的自縮合 分置換成 鹽的電子 所發生的 可低電壓 成分的金 分之熱分 / 5 00°C 的 鹽、金屬 因爲龜裂 則經由熱 -18- 201137061 分解所生成的MgO係發揮二次電子放射材料的作用,電 子放射源可低電壓驅動而特佳。 殘留性化合物的平均粒徑較佳爲0.5〜1 0 μηι。殘留性 化合物的平均粒徑若爲〇.5μιη以上,則由於熱分解時所產 生的收縮應力,可使龜裂發生,藉由10 μιη以下,可減少 發射體表面凹凸而得到良好的發光均勻性。此處所謂的平 均粒徑係指累積50%粒徑(D5Q),可藉由與熱分解型發泡劑 粒子之情況同樣的方法來測定。 相對於電子放射源用糊全體,殘留性化合物的含量之 下限較佳爲1.0重量%以上,更佳爲5.0重量%以上,尤佳 爲1 0重量%以上。又,上限較佳爲3 0重量%以下,更佳 爲 2 5重量%以下。可爲任一較佳的下限値或任一較佳的 上限値之組合。又,相對於由電子放射源用糊中去除溶劑 後的固體成分全體,殘留性化合物的含量之下限較佳爲 1.0重量%以上,更佳爲5.0重量%以上,尤佳爲10重量% 以上。又,上限較佳爲60重量%以下,更佳爲50重量% 以下,尤佳爲40重量%以下,特佳爲3 5重量%以下。殘 留性化合物的含量若爲前述範圍內,則可在電子放射源塗 膜內形成均勻的龜裂。 說明(C)在熱分解時產生收縮應力的成分之一例的消 失性龜裂產生劑之具體例。 熱聚合引發劑例如於偶氮系中可舉出2,2’-偶氮雙(2_ 甲基丙腈)、2,2’-偶氮雙(2-甲基丁腈)、1,1’-偶氮雙(環己 -19- 201137061 烷-1-甲腈)、1-[(1·氰基-1-甲基乙基)偶氮]甲醯胺(2_(胺甲 醯基)異丁腈)、2,2’-偶氮雙{2-甲基- Ν-[2-(卜羥基丁基)]丙 醯胺}、2,2’-偶氮雙[2-甲基-Ν-(2-羥基乙基)-丙醯胺]、 2,2’-偶氮雙[Ν-(2-丙烯基)-2 -甲基丙醯胺]、2,2’-偶氮雙 (N-丁基-2-甲基丙醯胺)、2,2’-偶氮雙(N-環己基-2-甲基丙 醯胺)、2,2’-偶氮雙(2,4,4-三甲基戊烷)(偶氮二第三辛烷) 等。又,於過氧化物系中可舉出第三丁基過氧三甲基乙酸 酯、第三己基過氧-2-乙基己酸酯、1,1-雙(第三丁基過氧)-2-甲基環己烷、1,1-雙(第三己基過氧)·3,3,5-三甲基環己 烷、1,1_雙(第三己基過氧)環己烷、1,1-雙(第三丁基過氧 )-3, 3,5-三甲基環己烷、1,1-雙(第三丁基過氧)環己烷、 2,2-雙(4,4-二丁基過氧環己基)丙烷、1,1-雙(第三丁基過 氧)環十二烷、第三己基過氧異丙基單碳酸酯、第三丁基 過氧馬來酸、第三丁基過氧_3,5,5-三甲基己酸酯、第三丁 基過氧月桂酸酯、二苯甲醯基過氧化物、2,5·二甲基·2,5-二(間甲苯醯基過氧)己烷、第三丁基過氧異丙基單碳酸酯 、第三丁基過氧-2-乙基己基單碳酸酯、第三己基過氧苯 甲酸酯、2,5-二甲基-2,5-二(苯甲醯基過氧)己烷、第三丁 基過氧乙酸酯、2,2-雙(第三丁基過氧)丁烷、第三丁基過 氧苯甲酸酯、正丁基-4,4-雙(第三丁基過氧)戊酸酯、二第 三丁基過氧間苯二甲酸酯、α,α’_雙(第三丁基過氧)二異丙 基苯、二異丙苯基過氧化物、2,5-二甲基-2,5-二(第三丁 基過氧)己烷、第三丁基異丙苯基過氧化物等。 -20- 201137061 作爲含有乙烯性不飽和基的成分, 、稀丙基、丙嫌醯基(acryloyl group)、 特佳爲具有丙烯醯基或甲基丙烯醯基者 作爲具有丙烯醯基或甲基丙烯醯基 ,可舉出丙烯酸甲酯、丙烯酸乙酯、丙 酸異丙酯、丙烯酸正丁酯、丙烯酸第二 酯、丙烯酸第三丁酯、丙烯酸正戊酯、 烯酸苄酯、丙烯酸丁氧基乙酯、丁氧基 、丙烯酸環己酯、丙烯酸二環戊酯基丙 丙烯酸2 -乙基己酯、四丙二醇二甲基丙 又,作爲具有乙烯性不飽和基的成 內具有1個乙烯性不飽和基的單官能性 上的多官能性單體,例如2官能性單體 4官能性單體、5官能性單體、6官能 分解性良好之點來看,可較佳地使用1Analysis) Thermogravimetric analysis. The point at which the slope of the TGA curve obtained as a result becomes negative is taken as the thermal decomposition temperature of the component. Further, when the temperature after the thermal decomposition temperature is negative and the temperature region is in the range of 100 ° C or more and 500 ° C or less, the component is subjected to shrinkage stress at a temperature of 100 ° C or more and 500 ° C or less. This is because the slope of the TGA curve after the thermal decomposition temperature is negative, that is, when the weight is decreased, it indicates that the material continues to thermally decompose. In addition, when any of the "residual compound" or the "disappearing cracking agent" is used as the component (C), almost no organic residue remains in the electron source, and good electron emission can be obtained. Features are preferred. As described above, in the present invention, it is presumed that the occurrence of bubbles by the thermally decomposable foaming agent and the occurrence of shrinkage stress by the residual compound or the vanishing cracking agent are in the step of heat treatment or in parallel at the same time. Occurrence occurs to promote the occurrence and growth of cracks. Among the above, a more preferable aspect of the paste for an electron emissive source of the present invention is as follows. (I) A paste for an electron source comprising (A) an electron emitting material, (B) a thermally decomposable foaming agent, and (C) as a component selected from the group consisting of a metal salt, an organometallic compound, a metal complex, and decane At least one or more of the group consisting of a coupling agent and a titanium coupling agent. -10- 201137061 (II) A paste for electron source, which comprises (A) an electron emitting material, (B) a thermally decomposable foaming agent, and a thermal polymerization initiator as component (c) and an ethylenic property. An unsaturated group of compounds. (III) A paste for an electron emissive source comprising (A) an electron emitting material, (B) a thermally decomposable foaming agent, and a thermal polymerization initiator containing an ethylenically unsaturated group as the component (C). (IV) A paste for an electron emission source comprising (A) an electron emitting material and (D) a thermal polymerization initiator having a function as a thermally decomposable foaming agent and having an ethylenically unsaturated group. On the other hand, as described in the above Patent Document 5, when the carbon nanotubes are protruded from the pore walls of the continuous pores formed by the plastic particles, the shrinkage stress due to the burning of the plastic particles is weak, so the carbon nanotubes are weak. The protruding length becomes shorter and the aspect ratio becomes smaller. As a result, electric field concentration is less likely to occur at the tip end of the carbon nanotube, and the voltage required for electron emission increases. The crack of the electron emission source of the present invention means a crack formed in an electron emission source as shown in Fig. 1, and has a width of 〇·5 μm or more. Further, the width of the crack is the width of the crack in the surface portion of the electron source as measured by the reference numeral 3 in Fig. 1 . The depth of the crack can also reach the cathode substrate or not. As an example, Fig. 2 shows an electron micrograph of the crack of the surface of an electron source using carbazolyl as a residual compound and azomethamine as a thermal decomposition type foaming agent, Fig. 3 An electron micrograph showing a carbon nanotube protruding from the crack surface. Further, in Fig. 4, it is shown that -11 - 201137061 uses t-butyl peroxylaurate and tetrapropylene glycol dimethacrylate as a vanishing cracking agent, and uses azomethicamine as a thermal decomposition type. An optical micrograph of the crack of the surface of the electron emitting source of the foaming agent, and an electron micrograph of the carbon nanotube protruding from the cracked surface is shown in Fig. 5. The paste for an electron emissive source of the present invention will be described in more detail below. Generally, in the (A) electron emitting material used for an electric field radiation type display or the like, there is a metal material represented by molybdenum, or a carbon nanotube, a carbon nanofiber, a carbon nanohorn, a carbon nano coil, or Carbon-based materials such as carbon nanotwist, such as needle carbon, diamond, diamond-like carbon, graphite, carbon black, fullerene, and graphene. In the present invention, any of these may be used, and it is preferable to use needle-shaped carbon from the viewpoint of low voltage function due to low work function characteristics. Among the acicular carbons, carbon nanotubes are more preferred because of their high electrical and solar characteristics. Hereinafter, a paste for an electron radiation source using a carbon nanotube as a representative of acicular carbon will be described as an example. Among the carbon nanotubes, a single layer or a multilayer of two or three layers can be preferably used. Mixtures of carbon nanotubes with different layers can also be used. Since the unrefined carbon nanotube powder contains impurities such as amorphous carbon or catalytic metal, it can be used by purifying by acid treatment or the like to improve the purity. Further, in order to adjust the length of the carbon nanotubes, the carbon nanotube powder can be pulverized by an ultrasonic 'ball mill or a bead mill. The amount of the (A) electron emitting material is preferably from 0.1 to 2% by weight based on the entire paste for the electron source. Further, it is preferably 〇. 1 to 1% by weight, particularly preferably 0.1 to 5.0% by weight. When the content of the electron emitting material is within the above range -12 - 201137061, good dispersibility, printability, and pattern formation property of the paste for an electron source can be obtained. (B) The thermally decomposable foaming agent is preferably one which decomposes in the range of 50 to 300 ° C to release gas, more preferably decomposes at 100 to 250 ° C to release gas, and more preferably 150 to 250 ° C. Decompose and release gas. By using a gas generated in the above temperature range, bubbles are not generated in the drying step in the production of the paste film for electron source, and cracking can be sufficiently caused in the heat treatment step at the time of crack formation. In the present specification, for example, the decomposition in the range of 50 to 300 ton means that the thermal decomposition temperature obtained by the TGA measurement is in the range of 50 to 300 ° C. (B) A specific example of the thermally decomposable foaming agent. For example, an azo compound such as azodimethylamine or azobisisobutyronitrile, dinitrosopentamethylenetetramine, N,N'-dinitroso-N,N'-dimethyl a nitroso compound such as p-xylyleneamine, p-toluenesulfonate, p,p'-oxybis(phenylsulfonate), anthracene dimethylamine or the like, p-toluene An azide compound such as a mercapto azide, an anthracene compound such as acetone or sulfonylhydrazine, melamine, urea, dicyanamide or the like is not limited thereto. Among these, it is particularly preferable to use an azo compound, a nitroso compound, or a ruthenium compound because no bubbles are generated in the drying step at the time of preparation of the paste film for electron source, and the amount of gas released during thermal decomposition Since there are many, the effect of sufficiently generating cracks in the heat treatment step at the time of crack formation is large. (B) The thermally decomposable foaming agent is preferably used as a particle in the paste for an electron source to promote the formation of cracks. The thermal decomposition type foaming-13-201137061 agent particle system has a lower limit of the average particle diameter of preferably 1. Ομηη or more, more preferably 3·0 μmη or more, and particularly preferably 6.8 μm or more. Further, the upper limit is preferably 25 μm or less, more preferably 20 μm or less, and still more preferably 15 μm or less. It may be a combination of any of the preferred lower limits or any preferred upper limit. When the average particle diameter of the thermally decomposable foaming agent particles is at least the above lower limit 値, the formation of cracks is further promoted, and the voltage required for electron emission can be reduced. Further, when the upper limit is less than or equal to the above, the surface unevenness of the electron emission source can be reduced, and uniform cracks can be formed, so that excellent light emission uniformity can be obtained. The average particle diameter referred herein means the cumulative 50% particle diameter (D5Q). In this case, the total volume of a group of powders is taken as 100%, and when the volume accumulation curve is obtained, the particle diameter at which the volume cumulative curve becomes 50% is used as the cumulative average diameter, which is used as a general evaluation of the particle size distribution. One of the parameters. Further, the measurement of the particle size distribution of the thermally decomposable foaming agent particles can be carried out by the microtrack method (method of a micro-track laser diffraction type particle size distribution measuring apparatus manufactured by Nikkei Co., Ltd.). The lower limit of the content of the (B) thermally decomposable foaming agent is preferably 1.0% by weight or more, more preferably 2.0% by weight or more, and particularly preferably 3% by weight or more, based on the entire paste for electron source. It is particularly preferably 5.0% by weight or more, and particularly preferably 1% by weight or more. Further, the upper limit is preferably 30% by weight or less, more preferably 25 % by weight or less. It can be any preferred lower limit or any combination of preferred upper limits. In addition, the lower limit of the content of the thermally decomposable foaming agent is preferably 1.0% by weight or more, more preferably 3.0% by weight, and particularly preferably 5.0% by weight based on the total solid content of the solvent removed from the paste for electron source. On -14-201137061, the best is 1% and more than %. Further, the upper limit is preferably 50% by weight or less, more preferably 40% by weight or less, and particularly preferably 35% by weight or less. When the content of the thermally decomposable foaming agent is within the above range, the coating film can be applied to an electron source. A uniform bubble is formed inside. (C) A specific example of a residual compound which is one example of a component which generates shrinkage stress at the time of thermal decomposition. Further, since the residual compound differs in thermal decomposition temperature depending on the species, it is preferred to suitably select a compound which is blended with the temperature to be used. The term "metal salt" means carbonate, sulfate, nitrate, hydroxide salt, hydrogencarbonate, acetate, halide salt and the like. As the metal carbonate, for example, potassium carbonate, calcium carbonate, sodium carbonate, cesium carbonate, magnesium carbonate, lithium carbonate, copper (II) carbonate, iron (II) carbonate, silver carbonate (I), nickel carbonate, hydrotalcite, or the like can be used. . Examples of the metal sulfate include zinc sulfate, aluminum sulfate, potassium sulfate, calcium sulfate, silver sulfate, potassium hydrogen sulfate, barium sulfate, iron (II) sulfate, iron (III) sulfate, copper (I) sulfate, and sulfuric acid. Alum such as copper (II), sodium sulfate, nickel sulfate, barium sulfate, magnesium sulfate, potassium alum, and iron alum. Examples of the metal nitrate include magnesium nitrate, zinc nitrate, aluminum nitrate, uranyl nitrate, chlorine nitrate, potassium nitrate, calcium nitrate, silver nitrate, cerium nitrate, cobalt nitrate, cobalt (II) nitrate, and cobalt (III) nitrate. , nitric acid planing, ammonium cerium nitrate, ferric nitrate, iron (II) nitrate, iron (III) nitrate, copper (II) nitrate, sodium nitrate, lead nitrate (II), barium nitrate, barium nitrate and the like. Examples of the metal hydroxide salt include calcium hydroxide, magnesium hydroxide, manganese hydroxide, iron hydroxide (strontium), zinc hydroxide, copper (II) hydroxide, barium hydroxide, aluminum hydroxide, and hydrogen. 15- 201137061 Iron (III) oxide, etc. Examples of the metal hydrogencarbonate include sodium hydrogencarbonate, potassium hydrogencarbonate, and calcium hydrogencarbonate. The metal halide salt is a salt formed between a metal such as an alkali metal or an alkaline earth metal and a halogen such as fluorine, chlorine, bromine or iodine, and examples thereof include sodium fluoride, potassium fluoride, calcium fluoride, and lithium fluoride. , sodium chloride, potassium chloride 'magnesium chloride, calcium chloride, lithium bromide, sodium bromide, potassium bromide, potassium iodide, sodium iodide and the like. Examples of the metal acetate include sodium acetate, potassium acetate, calcium acetate, and magnesium acetate. As the metal salt, any of an anhydrate or a hydrate can be used. As the organometallic compound, a compound having a metal-carbon bond can be mentioned. Examples of the metal element constituting the organometallic compound include tin (Sn), indium (In), antimony (Sb), zinc (Zn), gold (Au), silver (Ag), copper (Cu), and palladium (Pd). ), aluminum (A1), titanium (Ti), nickel (Ni), platinum (Pt), manganese (Mn), iron (Fe), cobalt (Co), chromium (Cr), zirconium (Zr), and the like. Further, as a group contained in the organic chain in which an organometallic compound is bonded to a metal element, there are an ethyl fluorenyl group, an alkyl group, an alkoxy group, an amine group, a decylamino group, an ester group, an ether group, and a ring. An oxy group, a phenyl group, a halogen group or the like. Specific examples of the organometallic compound include trimethylindium, triethylindium, tributoxide indium, trimethoxyindium, triethoxyindium, tetramethyltin, tetraethyltin, and tetra. Butyltin, tetramethoxytin, tetraethoxytin, tetrabutoxytin, tetraphenyltin, triphenylsulfonium, triphenylphosphonium diacetate, triphenylsulfonium oxide, triphenylsulfonium Halogen and the like. The metal complex is a structure in which a ligand is coordinated around the metal element exemplified as the organometallic compound. Examples of the ligand forming the metal complex include an amine group, a phosphino group, a carboxyl group, a carbonyl-16 - 201137061-based 'thiol group, a hydroxyl group, an ether group, an ester group, a decyl group, a cyano group, and a halogen group. An isolated electron pair such as thiocyano, pyridyl or phenanthryl. Specific examples of the ligand include triphenylphosphine, nitrate ion, halide ion ' hydroxide ion, cyanide ion, thiocyanate ion, ammonia'-oxygen carbon, acetoacetate, pyridine, and B. Diamine, bipyridyl, phenanthroline, BINAP, catecholate, tripyridin, ethylenediaminetetraacetic acid, porphyrin, cyc Um, and crown ether. Specific examples of the metal complex include an indoleacetone indium complex, an indium ethylenediamine complex, an indium ethylenediaminetetraacetate complex, an indoleacetone tin complex, and a tin ethylenediamine. The complex compound, tin ethylenediamine tetraacetic acid, and the like. The decane coupling agent may, for example, be a hydrolyzable alkyl group having an alkoxy group, a halogen or an ethoxy group. Alkoxy groups, especially methoxy or ethoxy groups, are generally preferred. Further, examples of the organic functional group of the decane coupling agent include an amine group, a methacryl group, an acryl group, a vinyl group, an epoxy group, a decyl group, and an alkyl group. Base 'allyl and the like. Specific examples thereof include N-β (aminoethyl) γ-aminopropyltrimethoxydecane, Ν-β(aminoethyl)γ-aminopropylmethyldimethoxydecane, and fluorenyl-phenylene. - γ-aminopropyltrimethoxydecane, γ-aminopropyltrimethoxydecane, γ-dibutylaminopropyltrimethoxydecane, γ-ureidopropyltriethoxydecane, hydrazine -β-(Ν-vinylbenzylaminomethylaminopropyltrimethoxydecane. hydrochloride, γ-methylpropenyloxypropyltrimethoxydecane, γ-methylpropenyloxy Propyltriethoxydecane, γ-methacryloxypropylmethyldimethoxydecane, vinyltrimethoxydecane, vinyltriethoxydecane-17- 201137061, vinyltriethylhydrazine Oxydecane, vinyl trichlorodecane, (β-methoxyethoxy)decane 'γ·glycidoxypropyltrimethyl, γ-glycidoxypropylmethyldiethoxydecane, --(3,4-hexyl)ethyltrimethoxydecane, γ-mercaptopropyltrimethoxyphosphonium propyltrimethoxydecane, methyltrimethoxydecane, methyltrioxane, dimethylformene Oxydecane, dimethyldiethoxy oxime Trimethoxydecane, isobutyltrimethoxydecane, n-hexyltrioxane, n-decyltrimethoxydecane, n-hexadecyltrimethoxyphosphonium trimethoxydecane, diphenyldimethoxydecane, etc. In the present invention, one type selected from the above-mentioned coupling agents may be used alone or in combination of two or more kinds. The above-mentioned one coupling agent or a combination of two or more kinds of heterogeneous condensates may be used. The decane moiety titanium of the decane coupling agent is used. Among them, the metal salt is preferably used. The electron source obtained by using the paste containing the metal source is a large crack size in the electron source, and the carbon nanotube The length of the protrusion is also long. Moreover, the behavior is good, and the uniformity of illumination is good. It is presumed that the shrinkage stress generated when the inorganic salt is thermally decomposed is larger than the shrinkage stress generated when the organic solution is formed. From the viewpoint of thermal decomposition at a low temperature region of 100, a metal carbonate or a metal sulfate is preferred. Among them, a metal carbonate is more likely to occur. Further, if a metal carbonate containing magnesium is used, 'ene Trimethylnonane epoxy cycloalkane, γ-chloroethoxy hydrazine, n-propyl methoxy fluorene, phenylamine, a low voltage that can be combined with two kinds of electrons which are self-condensed to replace a salt The gold content of the component is divided into 5/00 °C salt and metal, and the MgO system generated by the decomposition of heat -18-201137061 acts as a secondary electron emitting material, and the electron source can be driven by a low voltage. Preferably, the average particle diameter of the residual compound is 0.5 to 10 μm. When the average particle diameter of the residual compound is 〇.5 μm or more, cracking may occur due to shrinkage stress generated during thermal decomposition. From 10 μmη or less, the surface unevenness of the emitter can be reduced to obtain good luminescence uniformity. Here, the average particle diameter means a cumulative 50% particle diameter (D5Q), which can be measured by the same method as in the case of the thermally decomposable foaming agent particles. The lower limit of the content of the residual compound is preferably 1.0% by weight or more, more preferably 5.0% by weight or more, and still more preferably 10% by weight or more based on the entire paste for electron source. Further, the upper limit is preferably 30% by weight or less, more preferably 25% by weight or less. It can be any preferred lower limit or any combination of preferred upper limits. In addition, the lower limit of the content of the residual compound is preferably 1.0% by weight or more, more preferably 5.0% by weight or more, and still more preferably 10% by weight or more based on the total solid content of the solvent removed from the paste for electron source. Further, the upper limit is preferably 60% by weight or less, more preferably 50% by weight or less, still more preferably 40% by weight or less, and particularly preferably 35% by weight or less. When the content of the residual compound is within the above range, uniform cracks can be formed in the electron source coating film. (C) A specific example of the destructive crack generating agent which is one example of a component which generates shrinkage stress at the time of thermal decomposition. Examples of the thermal polymerization initiator include 2,2'-azobis(2-methylpropionitrile), 2,2'-azobis(2-methylbutyronitrile), and 1,1' in the azo system. -Azobis(cyclohexyl-19-201137061 alkene-1-carbonitrile), 1-[(1·cyano-1-methylethyl)azo]carbamamine (2_(aminocarbamimidyl)) Butyronitrile), 2,2'-azobis{2-methyl-indole-[2-(dihydroxybutyl)]propanamine}, 2,2'-azobis[2-methyl-indole -(2-hydroxyethyl)-propionamide], 2,2'-azobis[Ν-(2-propenyl)-2-methylpropionamide], 2,2'-azobis ( N-butyl-2-methylpropanamide), 2,2'-azobis(N-cyclohexyl-2-methylpropionamide), 2,2'-azobis (2,4, 4-trimethylpentane) (azobistrioctane) and the like. Further, examples of the peroxide system include tert-butylperoxytrimethylacetate, third hexylperoxy-2-ethylhexanoate, and 1,1-bis(t-butylperoxy). -2-methylcyclohexane, 1,1-bis(Third hexylperoxy)·3,3,5-trimethylcyclohexane, 1,1-bis (trihexylperoxy)cyclohexane Alkane, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-butylperoxy)cyclohexane, 2,2- Bis(4,4-dibutylperoxycyclohexyl)propane, 1,1-bis(t-butylperoxy)cyclododecane, third hexylperoxyisopropylmonocarbonate, tert-butyl Peroxymaleic acid, tert-butylperoxy_3,5,5-trimethylhexanoate, tert-butylperoxylaurate, benzhydryl peroxide, 2,5·2 Methyl 2,5-di(m-tolylperylperoxy)hexane, tert-butylperoxyisopropylmonocarbonate, tert-butylperoxy-2-ethylhexylmonocarbonate, third Hexylperoxybenzoate, 2,5-dimethyl-2,5-bis(benzimidyl peroxy)hexane, tert-butyl peroxyacetate, 2,2-double (third Butyl peroxy)butane, tert-butylperoxybenzoate Acid ester, n-butyl-4,4-bis(t-butylperoxy)valerate, di-tert-butylperoxyisophthalate, α,α'_bis (t-butyl) Oxygen) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, tert-butyl cumene Oxide, etc. -20- 201137061 As a component containing an ethylenically unsaturated group, a propyl group, a acryloyl group, and a propylene group or a methyl methacrylate group as a propylene group or a methyl group Examples of the acrylonitrile group include methyl acrylate, ethyl acrylate, isopropyl propionate, n-butyl acrylate, second acrylate, tert-butyl acrylate, n-amyl acrylate, benzyl acrylate, butoxy acrylate. Ethyl ethyl ester, butoxy group, cyclohexyl acrylate, 2-cyclopentyl acrylate 2-ethylhexyl acrylate, tetrapropylene glycol dimethyl propyl, and, as an ethylenically unsaturated group, have one ethylene The monofunctional polyfunctional monomer of the unsaturated group, for example, a bifunctional monomer, a 4-functional monomer, a 5-functional monomer, and a 6-functional decomposability are preferably used.

SB 単體。 作爲單官能性單體之具體例,使戶 甲基)丙烯酸酯。具體地可舉出丙烯酸 康酸、巴豆酸、馬來酸、富馬酸、醋酸 、丙烯酸甲酯、丙烯酸乙酯、丙烯酸正 酯、丙烯酸正戊酯、丙烯酸第二丁酯、 烯酸正丁酯、丙烯酸第三丁酯、丙烯酸 丁氧基乙二醇丙烯酸酯、丁氧基三乙二 例如可舉出乙烯基 甲基丙烯醯基等。 〇 的化合物之具體例 烯酸正丙酯、丙烯 丁酯、丙烯酸異丁 丙烯酸烯丙酯、丙 三乙二醇丙烯酸酯 烯酸二環戊烯酯、 烯酸酯等。 分,可舉出1分子 單體、具有2個以 、3官能性單體、 性單體等,但從熱 官能性或2官能性 目(甲基)丙烯酸或( '甲基丙烯酸、伊 乙嫌酯或此等酸酐 丙酯、丙烯酸異丙 丙烯酸異丁酯、丙 2-正丁氧基乙酯、 醇丙烯酸酯、丙烯 -21 - 201137061 酸2-乙基己酯、甘油丙烯酸酯、丙烯酸十七氟癸酯、丙烯 酸2-羥乙酯、丙烯酸2-羥丙酯、丙烯酸2-甲氧基乙酯、 丙烯酸異癸酯、丙烯酸異辛酯、丙烯酸月桂酯、甲氧基乙 二醇丙烯酸酯、甲氧基二乙二醇丙烯酸酯、丙烯酸八氟乙 酯、丙烯酸三氟乙酯、丙烯酸十八酯、二新戊四醇六丙烯 酸酯、二新戊四醇單羥基五丙烯酸酯、貳三羥甲基丙烷四 丙烯酸酯、甘油丙烯酸酯、新戊二醇丙烯酸酯、丙二醇丙 烯酸酯、丙烯醯胺、丙烯酸胺基乙酯、苯乙烯、α -甲基苯 乙烯、丙烯酸烯丙酯、丙烯酸苄酯、丙烯酸環己酯、丙烯 酸二環戊酯、二環戊烯基丙烯酸酯及前述化合物的分子內 之丙烯酸酯的一部分或全部變成甲基丙烯酸酯之化合物等 〇 作爲2官能性單體的具體例,可舉出二乙烯基苯等的 芳香族二乙烯基單體、乙二醇二(甲基)丙烯酸酯、丙二醇 二(甲基)丙烯酸酯、1,4-丁二醇二(甲基)丙烯酸酯' 1,6-己 二醇二(甲基)丙烯酸酯等的烷二醇二(甲基)丙烯酸酯、二 乙二醇二(甲基)丙烯酸酯、三乙二醇二(甲基)丙烯酸酯、 四丙二醇二(甲基)丙烯酸酯等的聚烷二醇二(甲基)丙烯酸 酯、胺甲酸酯二(甲基)丙烯酸酯、或聚酯二(甲基)丙烯酸 酯等。 本發明中的含有乙烯性不飽和基的成分係不受此等所 限定。又,可使用1種或2種類以上的此等。 作爲含有乙烯性不飽和基的熱聚合引發劑,可舉出含 -22- 201137061 有乙烯基、烯丙基、丙烯醯基、甲基丙烯醯基的熱聚合引 發劑等。具體地,例如可舉出二烯丙基過氧二碳酸酯、雙 (2-甲基-2-丙烯基)過氧二碳酸酯、雙(2-乙基-2-丙烯基)過 氧二碳酸酯、雙(1-甲基-2-丙烯基)過氧二碳酸酯、雙(2-甲基-2-丁烯基)過氧二碳酸酯、雙(2-甲基-2-丙烯氧基乙 基過氧)二碳酸酯等。 兼具熱分解型發泡劑與熱聚合引發劑之性質的物質, 係兼具熱分解型發泡劑藉由熱而促進交聯之任務。作爲如 此的成分,可舉出偶氮系的熱聚合引發劑。具體地,例如 可舉出2,2’-偶氮雙(2-甲基丙腈)、2,2’-偶氮雙(2-甲基丁 腈)、1,1’-偶氮雙(環己烷-1-甲腈)、卜[U-氰基-1-甲基乙 基)偶氮]甲醯胺(2-(胺甲醯基)異丁腈)' 2,2’-偶氮雙{2-甲 基-N-[2-(l-羥基丁基)]-丙醯胺}、2,2’-偶氮雙[2-甲基-N-(2-羥基乙基)-丙醯胺]、2,2’-偶氮雙[Ν-(2·丙烯基)-2-甲基 丙醯胺]、2,2’-偶氮雙(N-丁基-2-甲基丙醯胺)、2,2’-偶氮 雙(N-環己基-2-甲基丙醯胺)、2,2’-偶氮雙(2,4,4·三甲基戊 烷)(偶氮二第三辛烷)等。 作爲含有乙烯性不飽和基的熱分解型發泡劑,可舉出 含有乙烯基、烯丙基、丙烯醯基、甲基丙烯醯基的偶氮化 合物,或亞硝基化合物、醯肼化合物等。具體地例如可舉 出苯基偶氮丙烯腈、N-甲基-N-亞硝基烯丙基胺、高烯丙 基醯肼等。 (D)作爲熱分解型發泡劑之機能且含有乙烯性不飽和 -23- 201137061 基的熱聚合引發劑,較佳爲在50〜300 t的範圍分解而放 出氣體者’更佳爲在100〜250 °C分解而放出氣體者,尤 佳爲在150〜250°C分解而放出氣體者。如此的化合物係 偶氮化合物、亞硝基化合物、醯肼化合物、疊氮化合物、 腙化合物,較佳爲含有乙烯性不飽和基的熱聚合引發劑。 具體地’例如可舉出偶氮系的熱聚合引發劑,其爲含有乙 烯性不飽和基的2,2’-偶氮雙[N-(2-丙烯基)-2-甲基丙醯胺] 等。 (D)作爲熱分解型發泡劑之機能且含有乙烯性不飽和 基的熱聚合引發劑,係平均粒徑的下限較佳爲Ι.Ομηι以上 ’更佳爲3.0μιη以上,尤佳爲6.0μιη以上。又,上限較佳 爲25μηι以下,更佳爲20μπι以下,尤佳爲15μιη以下》可 爲任一較佳的下限値或任一較佳的上限値之組合。前述 (D)作爲熱分解型發泡劑之機能且含有乙烯性不飽和基的 熱聚合引發劑之平均粒徑若爲前述下限値以上,則更促進 龜裂的形成,可減低電子放射所需要的電壓。又,若爲前 述上限値以下,則可減少電子放射源的表面凹凸,形成均 句的龜裂,故可得到良好的發光均勻性。 作爲(C)成分,亦可倂用消失性龜裂產生劑與殘留性 化合物。特佳爲倂用由金屬鹽、有機金屬化合物、金屬錯 合物.、矽烷偶合劑及鈦偶合劑所組成之群組中選出的1種 或若干種類之組合者。藉由更含有此等成分,在熱處理電 子放射源用糊時所產生的龜裂係增大,突出長度長的碳奈 -24- 201137061 米管係增加。因此,得到電子放射特性更良好的 源。 相對於電子放射源用糊全體,消失性龜裂產 量之下限較佳爲1.0重量%以上,更佳爲3.0重量 尤佳爲5.0重量%以上。又,上限較佳爲50重量 更佳爲4 0重量%以下’尤佳爲3 0重量%以下。 較佳的下限値或任一較佳的上限値之組合。又, 電子放射源用糊中去除溶劑後的固體成分全體, 裂產生劑的含量之下限較佳爲1 ·〇重量%以上,1 重量%以上,尤佳爲1 〇重量。/〇以上。又,上限車 重量%以下,更佳爲50重量%以下,尤佳爲40重 ,特佳爲3 0重量%以下》消失性龜裂產生劑的 前述範圍內,則可在電子放射源塗膜內形成均勻 本發明的電子放射源用糊可含有無機粉末。 只要是達成作爲黏著劑的角色則皆可使用。若考 管的耐熱性爲500〜600°C,使用鈉鈣玻璃(軟化 左右)當作基板玻璃等,則無機粉末的燒結溫 5 00°C以下,更佳爲45 0 °C以下。藉由使用具有 溫度的無機粉末,可抑制碳奈米管的燒毀,而且 鈣玻璃等的便宜基板玻璃。作爲如此的無機粉末 ,可舉出銀、銅、鎳、合金 '焊料等的金屬粉末 末、或混合有彼等者等。由於金屬粉末會有因催 促進碳奈米管的燒毀之情況,故在本發明的電子 電子放射 生劑的含 :%以上, %以下, 可爲任一 相對於由 消失性龜 ί佳爲5.0 交佳爲 60 :量%以下 含量若爲 的龜裂。 無機粉末 慮碳奈米 點 5.0 (TC 度較佳爲 前述燒結 可使用鈉 之具體例 、玻璃粉 化作用而 放射源用 -25- 201137061 糊中較宜使用玻璃粉末。 表示玻璃粉末的燒結溫度之玻璃軟化點,由於係隨著 玻璃組成而不同,故可藉由玻璃組成的選擇來控制。作爲 本發明的電子放射源用糊中所含有的玻璃粉末,較宜使用 Bi2〇3系玻璃、驗系玻璃、S11O-P2O5系玻璃、SnO-B2〇3系 玻璃等。若使用前述玻璃粉末,因爲可將玻璃軟化點控制 在300 °C〜450 °C的範圍而較佳。 電子放射源用糊中所含有的(A)電子放射材料與無機 粉末之比,係相對於100重量份的電子放射材料而言,無 機粉末較佳爲200〜8000重量份。若爲200重量份以上則 可得到充分的黏著性,若爲8 000重量份以下則電子放射 源用糊係成爲適度的黏度。 無機粉末的平均粒徑較佳爲 2.Ομιη以下,更佳爲 1.0 μιη以下。無機粉末的平均粒徑若爲2.0 μιη以下,則可 得到微細電子放射源圖案的形成性及電子放射源與陰極電 極的黏著性。此處所謂的平均粒徑係指累積50%粒徑(D50) ,可藉由與熱分解型發泡劑粒子的情況同樣的方法來測定 〇 本發明的電子放射源用糊較佳爲含有導電性粒子。由 於電子放射源用糊含有導電性粒子,電子放射源內部的電 阻値降低,可由電子放射源以低電壓進行電子放射。前述 導電性粒子只要是導電性者則沒有特別的限定,較佳爲含 導電性氧化物的粒子,或於氧化物表面的一部分或全部上 -26- 201137061 塗覆有導電性材料的粒子。因爲金屬係催化活性高,藉由 焙燒或電子放射而成爲高溫時,會使電子放射材料劣化。 作爲導電性氧化物’較佳爲氧化銦.錫(IT0)、氧化錫、 氧化粹等。又,較佳爲於氧化鈦、氧化矽等的氧化物表面 之一部分或全部上塗覆有ΙΤΟ、氧化錫、氧化鋅、金、鉑 、銀、銅、鈀、鎳、鐵、鈷等者。於此情況下,作爲導電 性材料的塗覆材料,較佳爲ΙΤΟ、氧化錫、氧化鋅等的導 電性氧化物。 於電子放射源用糊中含有導電性粒子時,其含量相對 於1.0重量份的電子放射材料而言,導電性粒子較佳爲 0.1〜100重量份,更佳爲0.5〜50重量份。導電性粒子的 含量若爲前述範圍內,則電子放射材料與陰極電極的電接 觸變更良好而特佳。 導電性粒子的平均粒徑較佳爲0.1〜Ι.Ομιη,更佳爲 0.1〜0·6μπι。導電性粒子的平均粒徑若爲前述範圍內,則 電子放射源內部的電阻値均勻性係良好,更得到表面平坦 性,故可以低電壓由表面得到均勻的電子放射。此處所謂 的平均粒徑係指累積5 0 %粒徑(D 5 Q ),可藉由與熱分解型發 泡劑粒子的情況同樣的方法來測定。 爲了藉由網版印刷或噴墨塗布等的一般印刷法來賦予 圖案形成性能,本發明的電子放射源用糊可含有有機黏結 劑、溶劑、分散劑。再者,爲了提高糊特性,亦可含有可 塑劑、增黏劑、抗氧化劑、有機或無機的沈澱防止劑或均 -27- 201137061 平劑等的添加劑。又,藉由微影術進行圖案形成時,可藉 由含有具乙烯性不飽和基的樹脂、光硬化性單體、光聚合 引發劑、紫外線吸收劑、聚合抑制劑、增感劑等而賦予感 光性。 作爲有機黏結劑,可舉出纖維素系樹脂(乙基纖維素 、甲基纖維素、硝基纖維素、乙醯纖維素、纖維素丙酸酯 、羥丙基纖維素、丁基纖維素、苄基纖維素、改性纖維素 等)、丙烯酸系樹脂(由丙烯酸、甲基丙烯酸、丙烯酸甲酯 、甲基丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸乙酯、丙烯 酸丙酯、甲基丙烯酸丙酯、丙烯酸異丙酯、甲基丙烯酸異 丙酯、丙烯酸正丁酯、甲基丙烯酸正丁酯、丙烯酸第三丁 酯、甲基丙烯酸第三丁酯、丙烯酸2-羥乙酯、甲基丙烯酸 2-羥乙酯、丙烯酸2-羥丙酯、甲基丙烯酸2-羥丙酯、丙烯 酸苄酯、甲基丙烯酸苄酯、丙烯酸苯氧基乙酯、甲基丙烯 酸苯氧基乙酯、丙烯酸異冰片酯、甲基丙烯酸異冰片酯、 環氧丙基甲基丙烯酸酯、苯乙烯、α-甲基苯乙烯、3-甲基 苯乙烯、4-甲基苯乙烯、丙烯醯胺、甲基丙烯醯胺、丙稀 腈' 甲基丙烯腈等單體中的至少一種所成的聚合物)、乙 烯-醋酸乙烯酯共聚合物樹脂、聚乙烯縮丁醛、聚乙烯醇 、丙二醇、胺甲酸酯系樹脂、蜜胺系樹脂、酚樹脂 '醇酸 樹脂等。 作爲溶劑,較佳爲溶解黏結劑樹脂等有機成分者。例 如,可舉出以乙二醇或丙三醇爲代表的二醇或三醇等的多 -28- 201137061 元醇、將醇醚化及/或酯化的化合物(乙二醇單烷基醚 二醇二烷基醚、乙二醇烷基醚乙酸酯、二乙二醇單烷 乙酸酯、二乙二醇二烷基醚、丙二醇單烷基醚、丙二 烷基醚、丙二醇烷基醚乙酸酯)等。更具體地,使用 醇、乙二醇單甲基醚、乙二醇單乙基醚、乙二醇單丙 、乙二醇單丁基醚、二乙二醇二甲基醚、二乙二醇二 醚、乙二醇二丙基醚、二乙二醇二丁基醚、甲基溶纖 酸酯 '乙基溶纖劑乙酸酯、丙基溶纖劑乙酸酯、丁基 劑乙酸酯、丙二醇單甲基醚乙酸酯、丙二醇單乙基醚 酯、丙二醇單丙基醚乙酸酯、2,2,4-三甲基-1,3-戊烷 單異丁酸酯'丁基卡必醇乙酸酯等或含有此等中的1 上之有機溶劑混合物。 作爲本發明的電子放射源用糊之製作方法,可舉 添加電子放射材料、熱分解型發泡劑及在熱分解時產 縮應力的成分,更且視需要的無機粉末、有機黏結劑 散劑、溶劑等各種成分以使得成爲指定的組成後,藉 磨機、行星式球磨機、珠磨機、超級硏磨機、混合機 輥、均化器等的混煉機或使用超音波進行均質分散之 。糊黏度係按照玻璃粉末、增黏劑、溶劑、可塑劑及 防止劑等的添加比例而調整,但取決於印刷手法,糊 要的黏度範圍係不同,故糊黏度係適宜調整。例如藉 模塗布機或網版印刷法形成圖案時,黏度較佳爲 2〇〇Pa*s。又,藉由旋塗法、噴霧法或噴墨法形成圖 、乙 基醚 醇二 ?£品 基醚 乙基 劑乙 溶纖 乙酸 二醇 種以 出在 生收 、分 由球 、三 方法 沈澱 所需 由縫 2〜 案時 -29- 201137061 ,黏度較佳爲0.001〜5Pa*s。 以下’說明使用本發明的電子放射源用糊之電子放射 源及電子放射元件的製作方法。再者,電子放射源及電子 放射元件的製作亦可使用其它眾所周知的方法,不受後述 的製作方法所限定。 首先,說明電子放射源的製作方法。電子放射源係如 以下說明’將使用本發明的電子放射源用糊之圖案形成在 基板上後’進行焙燒而得。首先,使用本發明的電子放射 源用糊,在基板上形成電子放射源的圖案。作爲基板,只 要可固定電子放射源,則可爲任何者,可舉出玻璃基板、 陶瓷基板、金屬基板、薄膜基板等。較佳爲在基板上形成 具有導電性的膜。作爲在基板上形成電子放射源的圖案之 方法,較宜使用一般的網版印刷法、噴墨法等印刷法。又 ,若使用已賦予感光性的電子放射源用糊,則可藉由微影 術成批地形成微細的電子放射源之圖案而較佳。具體地, 藉由網版印刷法或縫模塗布機等,在基板上印刷本發明之 已賦予感光性的電子放射源用糊後,用熱風乾燥機進行乾 燥而得到電子放射源用糊的塗膜。可對前述塗膜,自上面 (電子放射源用糊側)通過光罩照射紫外線後,以鹼顯像液 或有機顯像液等進行顯像而形成電子放射源圖案。接著, 焙燒電子放射源的圖案。焙燒環境係大氣中或氮等的惰性 氣體環境中,焙燒溫度爲在400〜5 00°C的溫度焙燒。 其次,說明電子放射元件的製作方法。電子放射元件 -30- 201137061 係可藉由將由本發明的電子放射源用糊所成的電子放射源 形成在陰極電極上,以製作背面板,使與具有陽極電極與 螢光體的正面板呈相對向而得。以下,詳細說明二極體型 電子放射元件的製作方法與三極體型電子放射元件的製作 方法。 於二極體型電子放射元件的製作方法中,首先在玻璃 基板上形成陰極電極。陰極電極係可藉由濺鍍法等在玻璃 基板上將ITO或鉻等的導電性膜成膜。於陰極電極上,藉 由前述方法,使用本發明的電子放射源用糊來製作電子放 射源’得到二極體型電子放射元件用的背面板。其次,於 玻璃基板上形成陽極電極。陽極電極係可藉由濺鍍法等在 玻璃基板上將ITO等的透明導電性膜成膜。於玻璃基板上 所形成的陽極電極上,印刷螢光體,而得到二極體型電子 放射元件的正面板。二極體型電子放射元件用背面板及正 面板係以電子放射源與螢光體呈相對向的方式夾持間隔物 而貼合’藉由連接於容器的排氣管進行真空排氣,於內部 的真空度爲1 X 10_3Pa以下的狀態下熔黏,而得到二極體 型電子放射元件。爲了確認電子放射狀態,藉由對陽極電 極供應1〜5k V的電壓,由碳奈米管放出電子而撞擊螢光 體,可得到螢光體的發光。 於三極體型電子放射元件的製作方法中,首先在玻璃 基板上製作陰極電極。陰極電極係可藉由濺鍍法等將ITO 或鉻等的導電性膜成膜。其次,於陰極電極上製作絕緣層 -31 - 201137061 。絕緣層係可藉由印刷法或真空蒸鍍法等,以膜厚3〜 2〇μιη左右製作絕緣材料。接著,於絕緣層上製作閘電極 層。閘電極層係藉由真空蒸鍍法等形成鉻等的導電性膜而 得。其次,於絕緣層製作發射孔。發射孔的製作方法係首 先在閘電極上以旋塗法等塗布光阻材料,進行乾燥,通過 光罩照射紫外線而轉印圖案後,以鹼顯像液等顯像。藉由 顯像’由開口的部分中蝕刻閘電極及絕緣層,可在絕緣層 形成發射孔。接著,藉由前述方法,使用本發明的電子放 射源用糊’於發射孔內部製作電子放射源,得到三極體型 電子放射元件用的背面板。其次,於玻璃基板上形成陽極 電極。陽極電極係可藉由濺鑛法等在玻璃基板上將I TO等 的透明導電性膜成膜。於玻璃基板上所形成的陽極電極上 印刷螢光體,而得到三極體型電子放射元件的正面板。三 極體型電子放射元件用背面板及正面板係以電子放射源與 螢光體呈相對向的方式夾持間隔物而貼合,藉由連接於容 器的排氣管進行真空排氣,於內部的真空度爲1.0 XI (T3Pa 以下的狀態下熔黏,而得到二極體型電子放射元件。爲了 確認電子放射狀態,藉由對陽極電極供應1〜5kV的電壓 ,對閘電極供應20〜150V的電壓,由碳奈米管放出電子 而撞擊螢光體,可得到螢光體的發光。 使用本發明的電子放射源用糊所製作的電子放射源, 例如藉由掃描型電子顯微鏡(S-4 8 00)中所組合的能量分散 型X射線分析裝置(EMAX ENERGY EX-250)等’可分析其 -32- 201137061 組成。作爲使用前述方法的具體分析方法,首先使用掃描 型電子顯微鏡來觀察電子放射源,由各成分的形狀來大槪 鑑定出例如具有纖維狀構造的電子放射材料、粒子狀的導 電性氧化物及作爲基質的玻璃成分。再者,藉由使用能量 分散型X射線分析裝置進行各成分的元素分析,可鑑定組 成。惟,電子放射源的分析,只要是可鑑定電子放射源的 組成者,則亦可使用任何方法,不受此等方法所限定。 再者,若使用本發明的電子放射源用糊,則例如可製 作如以下的電子放射源。其爲具有龜裂,在龜裂的內部電 子放射材料突出之電子放射源,電子放射源的最短長度爲 1 .0mm以下,而且龜裂部佔電子放射源的比例爲10%以上 之電子放射源。 如此地,具有微小但以高密度形成的龜裂之電子放射 源,在作爲裝置使用時,係可使高解像度且良好的電子放 射特性並存之電子放射源。 電子放射源的平面形狀係沒有特別的制限,從發光均 句性爲良好之點來看,較宜使用正方形、長方形、平行四 邊形、梯形、圓形、三角形' 四角形、橢圓、扇形、正η 角形(η爲5以上的整數)或以彼等爲準的形狀。 電子放射源的最短長度係藉由以下的方法求得。首先 ’由與基板呈略垂直方向觀看電子放射源時,考慮與基板 略平行的平面圖形。此時,依照一般的平面圖形之重心求 得方式,決定電子放射源的重心。再者,通過此重心的直 -33- 201137061 線與電子放射源的平面圖形相交的2點之距離,係選最短 的直線。將當時的該交點間之長度當作電子放射源的最短 長度。此方法所求得的電子放射源之最短長度,在平面圖 形爲正方形時係等於一邊的長度,在長方形時等於短邊的 長度,在圓形時等於直徑的長度。電子放射源的最短長度 較佳爲1.0mm以下,更佳爲0.5mm以下,尤佳爲0.3mm 以下。電子放射源的最短長度若爲前述範圍,則可得到更 高解像度的裝置。 其次,龜裂部佔電子放射源的比例係藉由以下的方法 求得。與前述方法同樣地,若將電子放射源想像爲平面圖 形時,將龜裂所發生的面積佔平面圖形全體的面積當作「 龜裂佔電子放射源的比例」,以百分率(%)表示。作爲前 述面積的計算方法之一例,將電子放射源的平面圖形當作 掃描型電子顯微鏡或光學顯微鏡的影像數據輸入,使用一 般的影像處理軟體,例如MATLAB(MathWorks公司製)進 行計算。龜裂部佔電子放射源的比例較佳爲1 〇%以上,更 佳爲15%以上,尤佳爲2〇 %以上。龜裂部佔電子放射源的 比例若爲前述範圍,則電子放射所需要的電壓低,可得到 發光均勻性優異的電子放射源。 實施例 以下,藉由實施例更具體說明本發明。惟,本發明不 受此等所限定。各實施例及比較例中所用的電子放射材料 '無機粉末及有機成分以及各實施例及比較例中的評價j頁 -34- 201137061 目之評價方法係如下。 (A )成分 <電子放射材料> 碳奈米管1: 2層碳奈米管(深圳奈米港公司製製) 碳奈米管2:多層碳奈米管(東麗(股)製)。 (B)成分 <熱分解型發泡劑> 熱分解型發泡劑1:偶氮二甲醯胺 分解溫度 200°C( 三協化成(股)’’Cellmic C 1 2 1 ” ’平均粒徑1 2μπ〇 熱分解型發泡劑2:二亞硝基五亞甲基四胺 分解溫度 20 5 °C (三協化成(股)”CelImic Α”經日清工程(股)製”Turbo Classifier”乾式離心分級者,平均粒徑1 5 μm) 熱分解型發泡劑3 : p,p’-氧基雙(苯磺醯肼)分解溫度 1 60°C (三協化成(股)”Cellmic S”,平均粒徑13μπι) 熱分解型發泡劑1的平均粒徑Ι.Ομηι品(三協化成(股 )”Cellmic C-2”經日清工程(股)製”Turbo Classifier”乾式離 心分級者) 熱分解型發泡劑1的平均粒徑6·0μιη品(三協化成(股 )’’Cellmic CE”) 熱分解型發泡劑1的平均粒徑18μπι品(三協化成(股) ,’ C e 11 m i c C -1 9 1 ”) 熱分解型發泡劑1的平均粒徑25 μιη品(永和化成工業( 股)’,Vinyfor AC#K3”)。 -35- 201137061 (C)成分 <殘留性化合物> 金屬碳酸鹽1 :鹼式碳酸鎂,重質(和光純藥工業(股))( 熱分解溫度:25 0°C、400°C ) 金屬碳酸鹽2:碳酸鈉十水合物(和光純藥工業(股))(熱 分解溫度:200°C ) 金屬碳酸鹽3 :碳酸氫鈉(和光純藥工業(股))(熱分解溫 度:3 00°C ) 金屬硝酸鹽:硝酸鎂六水合物(和光純藥工業(股))(熱分 解溫度:400°C ) 金屬硫酸鹽:硫酸鎂七水合物(和光純藥工業(股))(熱分 解溫度:2 0 0 °C ) 金屬氫氧化物鹽:氫氧化鎂(和光純藥工業(股))(熱分解 溫度:3 5 0°C ) 有機金屬化合物:Nikka Octhix錫(日本化學產業(股))( 熱分解溫度:3 5 0 °C ) 金屬錯合物1 : Nacem錫(日本化學產業(股))(熱分解溫 度:200°C ) 金屬錯合物2:雙(乙醯丙酮)鋅(11)(日本化學產業(股))( 熱分解溫度:150°C ) 矽烷偶合劑:“KBE-04”(信越聚矽氧(股))(熱分解溫度 :1 5 〇 °C ) 鈦偶合劑:“Orgatix TA30”(MATSUMOTO精密化學(股 -36- 201137061 ))(熱分解溫度:1 5 0 °c )。 <熱聚合引發劑>SB carcass. As a specific example of the monofunctional monomer, a methyl group acrylate is used. Specific examples thereof include acrylic acid, crotonic acid, maleic acid, fumaric acid, acetic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, n-amyl acrylate, dibutyl acrylate, and n-butyl acrylate. Examples of the tert-butyl acrylate, the butylene glycol acrylate, and the butoxy-triethylene group include a vinyl methacryl fluorenyl group. Specific examples of the ruthenium compound are n-propyl acrylate, butyl acrylate, isobutyl acrylate, propylene glycol acrylate, dicyclopentenyl enoate, enoate, and the like. The fraction may be one molecule, two or three functional monomers, a monomer, etc., but from a thermofunctional or bifunctional (meth)acrylic acid or ('methacrylic acid, Ib An ester or such an anhydride propyl ester, isobutyl acrylate, propylene 2-n-butoxyethyl ester, alcohol acrylate, propylene-21 - 201137061 2-ethylhexyl acrylate, glycerin acrylate, acrylic acid Heptafluorodecyl ester, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-methoxyethyl acrylate, isodecyl acrylate, isooctyl acrylate, lauryl acrylate, methoxy ethylene glycol acrylate , methoxy diethylene glycol acrylate, octafluoroethyl acrylate, trifluoroethyl acrylate, octadecyl acrylate, dipentaerythritol hexaacrylate, dipentaerythritol monohydroxy pentoxide, 贰 three Hydroxymethylpropane tetraacrylate, glycerin acrylate, neopentyl glycol acrylate, propylene glycol acrylate, acrylamide, aminoethyl acrylate, styrene, α-methyl styrene, allyl acrylate, benzyl acrylate Ester, cyclohexyl acrylate, bicyclic acrylate The ester, the dicyclopentenyl acrylate, and a compound in which a part or all of the acrylate in the molecule of the above-mentioned compound is a methacrylate compound, and the like. Specific examples of the bifunctional monomer include divinylbenzene and the like. Aromatic divinyl monomer, ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate' 1,6-hexanediol Alkanediol di(meth)acrylate such as di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetrapropylene glycol di(methyl) a polyalkylene glycol di(meth)acrylate such as an acrylate, a urethane di(meth)acrylate, or a polyester di(meth)acrylate, etc. The ethylenic unsaturation in the present invention The component of the group is not limited to these. One or two or more types may be used. Examples of the thermal polymerization initiator containing an ethylenically unsaturated group include a vinyl group of -22-201137061. Thermal polymerization of allyl, acrylonitrile and methacryl Specific examples thereof include diallyl peroxydicarbonate, bis(2-methyl-2-propenyl)peroxydicarbonate, and bis(2-ethyl-2-propenyl). Peroxydicarbonate, bis(1-methyl-2-propenyl)peroxydicarbonate, bis(2-methyl-2-butenyl)peroxydicarbonate, bis(2-methyl-) 2-propenyloxyethyl peroxy)dicarbonate, etc. A substance having both the properties of a thermally decomposable foaming agent and a thermal polymerization initiator, and a thermally decomposable foaming agent which promotes crosslinking by heat The azo-based thermal polymerization initiator is exemplified as such a component. Specific examples thereof include 2,2'-azobis(2-methylpropionitrile) and 2,2'-azo. Bis(2-methylbutyronitrile), 1,1'-azobis(cyclohexane-1-carbonitrile), Bu [U-cyano-1-methylethyl)azo]carbamamine ( 2-(Aminomethylmercapto)isobutyronitrile) 2,2'-azobis{2-methyl-N-[2-(l-hydroxybutyl)]-propanamide}, 2,2' -azobis[2-methyl-N-(2-hydroxyethyl)-propanamide], 2,2'-azobis[Ν-(2·propenyl)-2-methylpropionamide ], 2,2'-azobis(N-butyl-2-methylpropionamidine) ), 2,2'-azobis(N-cyclohexyl-2-methylpropionamide), 2,2'-azobis(2,4,4.trimethylpentane) (azo) Third octane) and so on. Examples of the thermally decomposable foaming agent containing an ethylenically unsaturated group include an azo compound containing a vinyl group, an allyl group, an acrylonitrile group, or a methacryl fluorenyl group, or a nitroso compound or an anthracene compound. . Specific examples thereof include phenyl azo acrylonitrile, N-methyl-N-nitrosoallylamine, and high allylic hydrazine. (D) as a thermal decomposition type foaming agent and containing an ethylenic unsaturated -23-201137061-based thermal polymerization initiator, preferably in the range of 50 to 300 t, and the gas is released, preferably at 100. Those who decompose at ~250 °C to release gas, especially those that decompose at 150~250 °C and release gas. Such a compound is an azo compound, a nitroso compound, an anthracene compound, an azide compound or a ruthenium compound, and is preferably a thermal polymerization initiator containing an ethylenically unsaturated group. Specifically, for example, an azo-based thermal polymerization initiator which is an 2,2'-azobis[N-(2-propenyl)-2-methylpropanamide containing an ethylenically unsaturated group is mentioned. ] Wait. (D) The thermal polymerization initiator which is a function of a thermal decomposition type foaming agent and contains an ethylenically unsaturated group, and the lower limit of the average particle diameter is preferably Ι.Ομηι or more, more preferably 3.0 μmη or more, and particularly preferably 6.0. Ιιη or more. Further, the upper limit is preferably 25 μm or less, more preferably 20 μm or less, and particularly preferably 15 μm or less, which may be any combination of a preferred lower limit or any preferred upper limit. When the average particle diameter of the thermal polymerization initiator containing the ethylenically unsaturated group as the function of the thermal decomposition type foaming agent is at least the above lower limit ,, the formation of cracks is further promoted, and the electron emission can be reduced. Voltage. Further, if it is less than or equal to the above upper limit 値, the surface unevenness of the electron emission source can be reduced, and the crack of the uniform sentence can be formed, so that good luminescence uniformity can be obtained. As the component (C), a vanishing cracking agent and a residual compound can also be used. It is particularly preferred to use one or a combination of ones selected from the group consisting of metal salts, organometallic compounds, metal complexes, decane coupling agents, and titanium coupling agents. By further containing these components, the cracking system generated when the paste for heat treatment of the electron source is heat-treated is increased, and the carbon nanotubes having a long protruding length are increased. Therefore, a source having better electron emission characteristics is obtained. The lower limit of the vanishing crack yield is preferably 1.0% by weight or more, more preferably 3.0% by weight or more, and 5.0% by weight or more based on the entire paste for electron source. Further, the upper limit is preferably 50% by weight, more preferably 40% by weight or less, and particularly preferably 30% by weight or less. A preferred lower limit 値 or a combination of any of the preferred upper limits 。. In addition, the lower limit of the content of the crack generating agent is preferably 1% by weight or more, 1% by weight or more, and particularly preferably 1% by weight, based on the entire solid content of the solvent for removing the solvent. /〇 above. Further, the upper limit weight is not more than 50% by weight, more preferably 50% by weight or less, even more preferably 40% by weight, particularly preferably 30% by weight or less. In the above range of the disappearing crack generating agent, the coating film can be applied to the electron source. The paste for electron emission source of the present invention may be uniformly contained therein. It can be used as long as it is a role as an adhesive. When the heat resistance of the test is 500 to 600 ° C and the soda lime glass (softening or so) is used as the substrate glass or the like, the sintering temperature of the inorganic powder is 500 ° C or less, more preferably 45 ° C or less. By using an inorganic powder having a temperature, it is possible to suppress the burning of the carbon nanotubes and the inexpensive substrate glass such as calcium glass. Examples of such inorganic powders include silver, copper, nickel, alloys, metal powders such as solder, and the like. Since the metal powder may cause the burning of the carbon nanotubes, the content of the electron-electronic radioactive agent of the present invention is: % or more, % or less, and may be any one with respect to the disappearing turtle. The cross is preferably 60: The amount of the content is less than or equal to the crack. The inorganic powder is considered to have a carbon nano-dots 5.0 (the TC degree is preferably a specific example of the use of sodium for the above-mentioned sintering, and glass pulverization is used for the radioactive source - 25-201137061. It is preferable to use a glass powder in the paste. Since the glass softening point differs depending on the glass composition, it can be controlled by the selection of the glass composition. As the glass powder contained in the paste for electron emission sources of the present invention, Bi2〇3-based glass is preferably used. Glass, S11O-P2O5-based glass, SnO-B2〇3-based glass, etc. If the glass powder is used, it is preferable to control the softening point of the glass in the range of 300 ° C to 450 ° C. The ratio of the electron emitting material (A) to the inorganic powder contained in the (A) is preferably 200 to 8000 parts by weight based on 100 parts by weight of the electron emitting material, and is sufficient if it is 200 parts by weight or more. When the adhesiveness is 8,000 parts by weight or less, the paste for the electron source is moderately viscous. The average particle diameter of the inorganic powder is preferably 2. Ομηη or less, more preferably 1.0 μηη or less. When the average particle diameter of the final layer is 2.0 μm or less, the formability of the fine electron source pattern and the adhesion between the electron source and the cathode electrode can be obtained. Here, the average particle diameter means the cumulative 50% particle diameter (D50). In the same manner as in the case of the thermally decomposable foaming agent particles, the paste for an electron source of the present invention preferably contains conductive particles. The paste for electron source contains conductive particles and an electron source. The internal resistance 値 is lowered, and electron emission can be performed at a low voltage by the electron emission source. The conductive particles are not particularly limited as long as they are electrically conductive, and are preferably particles containing a conductive oxide or a part of the surface of the oxide. Or all of the particles coated with the conductive material -26-201137061. Since the metal has high catalytic activity and is heated to a high temperature by firing or electron emission, the electron emitting material is deteriorated. Indium oxide, tin (IT0), tin oxide, oxidized, etc. Further, it is preferably coated on part or all of the oxide surface of titanium oxide, cerium oxide or the like. ΙΤΟ, tin oxide, zinc oxide, gold, platinum, silver, copper, palladium, nickel, iron, cobalt, etc. In this case, as a coating material for the conductive material, bismuth, tin oxide, zinc oxide is preferred. When the conductive particles are contained in the paste for electron source, the content of the conductive particles is preferably 0.1 to 100 parts by weight, more preferably 0.5, based on 1.0 part by weight of the electron emitting material. When the content of the conductive particles is within the above range, the electrical contact between the electron emitting material and the cathode electrode is preferably changed. The average particle diameter of the conductive particles is preferably 0.1 to Ι.Ομιη, more preferably It is 0.1~0·6μπι. When the average particle diameter of the conductive particles is within the above range, the uniformity of the electric resistance in the electron source is good, and surface flatness is obtained, so that uniform electron emission can be obtained from the surface at a low voltage. Here, the average particle diameter means a cumulative 50% particle diameter (D 5 Q ), which can be measured by the same method as in the case of the thermally decomposable foaming agent particles. In order to impart patterning performance by a general printing method such as screen printing or inkjet coating, the paste for an electron source of the present invention may contain an organic binder, a solvent, and a dispersant. Further, in order to improve the paste characteristics, a plasticizer, a tackifier, an antioxidant, an organic or inorganic precipitation preventive agent, or an additive such as a -27-201137061 flat agent may be contained. Further, when the pattern is formed by lithography, it can be imparted by containing a resin having an ethylenically unsaturated group, a photocurable monomer, a photopolymerization initiator, an ultraviolet absorber, a polymerization inhibitor, a sensitizer, or the like. Photosensitive. Examples of the organic binder include cellulose resins (ethyl cellulose, methyl cellulose, nitrocellulose, acetaminophen, cellulose propionate, hydroxypropyl cellulose, butyl cellulose, Benzyl cellulose, modified cellulose, etc.), acrylic resin (from acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, methacrylic acid Propyl ester, isopropyl acrylate, isopropyl methacrylate, n-butyl acrylate, n-butyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate, 2-hydroxyethyl acrylate, methyl 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, benzyl acrylate, benzyl methacrylate, phenoxyethyl acrylate, phenoxyethyl methacrylate, acrylic acid Isobornyl ester, isobornyl methacrylate, glycidyl methacrylate, styrene, α-methylstyrene, 3-methylstyrene, 4-methylstyrene, acrylamide, methyl Acrylamide, acrylonitrile 'methacrylonitrile a polymer formed by at least one of the monomers), an ethylene-vinyl acetate copolymer resin, polyvinyl butyral, polyvinyl alcohol, propylene glycol, a urethane resin, a melamine resin, a phenol resin Alkyd resin, etc. As the solvent, it is preferred to dissolve an organic component such as a binder resin. For example, a poly--28-201137061 alcohol such as a glycol or a triol represented by ethylene glycol or glycerin, and a compound which etherifies and/or esterifies an alcohol (ethylene glycol monoalkyl ether) Glycol dialkyl ether, ethylene glycol alkyl ether acetate, diethylene glycol monoalkane acetate, diethylene glycol dialkyl ether, propylene glycol monoalkyl ether, propylene dialkyl ether, propylene glycol Ethyl ether acetate) and the like. More specifically, an alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl, ethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol is used. Diether, ethylene glycol dipropyl ether, diethylene glycol dibutyl ether, methyl fumarate 'ethyl cellosolve acetate, propyl cellosolve acetate, butyl acetate Ester, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether ester, propylene glycol monopropyl ether acetate, 2,2,4-trimethyl-1,3-pentane monoisobutyrate A carbamide alcohol acetate or the like or a mixture of organic solvents on the one of these. The method for producing the paste for an electron emission source of the present invention may be an electron-emitting material, a thermally decomposable foaming agent, and a component which generates and contracts stress during thermal decomposition, and optionally an inorganic powder or an organic binder powder. After the various components such as a solvent are brought into a predetermined composition, they are uniformly dispersed by a kneader such as a mill, a planetary ball mill, a bead mill, a super honing machine, a mixer roll, a homogenizer, or the like using ultrasonic waves. The paste viscosity is adjusted according to the addition ratio of the glass powder, the tackifier, the solvent, the plasticizer, and the preventive agent. However, depending on the printing method, the viscosity range of the paste is different, so the paste viscosity is appropriately adjusted. For example, when the pattern is formed by a die coater or a screen printing method, the viscosity is preferably 2 〇〇 Pa * s. Further, a spin coating method, a spray method, or an inkjet method is used to form a graph, and an ethyl ether alcohol bis-ethyl ether ethyl ethane lysine acetate diol is precipitated in a raw, divided, and precipitated manner. It is required by the seam 2~ case -29-201137061, the viscosity is preferably 0.001~5Pa*s. Hereinafter, a method of producing an electron emission source and an electron emitting element using the paste for an electron emissive source of the present invention will be described. Further, the electron radiation source and the electron emitting element can be produced by other well-known methods and are not limited by the production method described later. First, a method of fabricating an electron radiation source will be described. The electron emission source is obtained by calcining a pattern in which the pattern of the paste for an electron emission source of the present invention is formed on a substrate. First, using the paste for an electron emission source of the present invention, a pattern of an electron source is formed on a substrate. As the substrate, any of the electron emitting sources can be fixed, and examples thereof include a glass substrate, a ceramic substrate, a metal substrate, and a film substrate. It is preferred to form a film having conductivity on the substrate. As a method of forming a pattern of an electron emission source on a substrate, a general printing method such as a screen printing method or an inkjet method is preferably used. Further, when a paste for electron source which has been provided with photosensitivity is used, it is preferable to form a pattern of a fine electron source in a batch by lithography. Specifically, the photosensitive electron source paste of the present invention is printed on a substrate by a screen printing method or a slit die coater, and then dried by a hot air dryer to obtain a paste for an electron source. membrane. The coating film is irradiated with ultraviolet rays from the upper surface (on the side of the paste for electron source) through a mask, and then developed by an alkali developing solution or an organic developing solution to form an electron source pattern. Next, the pattern of the electron source is fired. The calcination atmosphere is in an atmosphere of an inert gas such as the atmosphere or nitrogen, and the calcination temperature is calcined at a temperature of 400 to 500 °C. Next, a method of fabricating an electron emitting element will be described. Electron emitting element-30-201137061 The electron emitting source formed by the paste for electron emissive source of the present invention can be formed on a cathode electrode to form a back surface plate so as to be opposite to a front panel having an anode electrode and a phosphor. Relatively. Hereinafter, a method of fabricating a diode-type electron emitting element and a method of fabricating a triode-type electron emitting element will be described in detail. In the method of fabricating a diode-type electron emitting device, first, a cathode electrode is formed on a glass substrate. In the cathode electrode, a conductive film such as ITO or chromium can be formed on a glass substrate by a sputtering method or the like. On the cathode electrode, an electron-emitting source was produced by using the paste for an electron source of the present invention on the cathode electrode to obtain a back sheet for a diode-type electron emitting element. Next, an anode electrode is formed on the glass substrate. In the anode electrode, a transparent conductive film of ITO or the like can be formed on a glass substrate by a sputtering method or the like. A phosphor is printed on the anode electrode formed on the glass substrate to obtain a front panel of the diode-type electron emitting element. In the back panel and the front panel of the diode-type electron emitting device, the spacer is sandwiched so that the electron emitting source and the phosphor face each other, and the vacuum is exhausted by the exhaust pipe connected to the container. The vacuum degree is melted in a state of 1 X 10_3 Pa or less, and a diode-type electron emitting element is obtained. In order to confirm the electron emission state, by supplying a voltage of 1 to 5 kV to the anode electrode, electrons are emitted from the carbon nanotubes and collide with the phosphor, whereby the phosphor is emitted. In the method of fabricating a triode-type electron emitting device, a cathode electrode is first formed on a glass substrate. The cathode electrode can be formed into a film of a conductive film such as ITO or chromium by a sputtering method or the like. Next, an insulating layer is formed on the cathode electrode -31 - 201137061. The insulating layer can be made of an insulating material at a film thickness of about 3 to 2 μm by a printing method, a vacuum deposition method, or the like. Next, a gate electrode layer is formed on the insulating layer. The gate electrode layer is formed by forming a conductive film such as chromium by a vacuum deposition method or the like. Next, an emission hole is formed in the insulating layer. In the method of producing the emission hole, the photoresist is applied to the gate electrode by spin coating or the like, dried, and the pattern is transferred by irradiation with ultraviolet rays through the mask, and then developed with an alkali developing solution or the like. An emission hole can be formed in the insulating layer by developing the gate electrode and the insulating layer by the developing portion. Then, an electron source is formed inside the emission hole by using the paste for electron emission source of the present invention by the above method, and a back sheet for a triode-type electron emitting element is obtained. Next, an anode electrode is formed on the glass substrate. In the anode electrode, a transparent conductive film such as I TO can be formed on a glass substrate by a sputtering method or the like. A phosphor is printed on the anode electrode formed on the glass substrate to obtain a front panel of the triode-type electron emitting element. The back panel and the front panel of the triode-type electron emitting device are bonded to each other with the electron source and the phosphor facing each other, and are vacuum-exhausted by an exhaust pipe connected to the container. The vacuum degree is 1.0 XI (the viscosity is less than T3Pa, and a diode-type electron emitting element is obtained. In order to confirm the electron emission state, a voltage of 1 to 5 kV is supplied to the anode electrode, and the gate electrode is supplied with 20 to 150 V. The electrons are emitted from the carbon nanotubes and collide with the phosphor to obtain the luminescence of the phosphor. The electron source prepared by using the paste for electron source of the present invention is, for example, a scanning electron microscope (S-4). The energy dispersive X-ray analyzer (EMAX ENERGY EX-250) combined in 8 00 can be analyzed as -32-201137061. As a specific analysis method using the above method, first, a scanning electron microscope is used to observe electrons. The source of the radiation greatly identifies, for example, an electron emitting material having a fibrous structure, a particulate conductive oxide, and a glass component as a matrix. The composition can be identified by elemental analysis of each component using an energy dispersive X-ray analyzer. However, the analysis of the electron source may be any method as long as it is a component of the identifiable electron source. In addition, when the paste for an electron emission source of the present invention is used, for example, an electron source such as the following can be produced, which is an electron emission having a crack and protruding inside the electronic emission material of the crack. The source, the shortest length of the electron source is 1.0 mm or less, and the crack source accounts for an electron source of 10% or more of the electron source. Thus, the electron source having a small but high density crack is formed. When used as a device, it is an electron radiation source that can coexist with high resolution and good electron emission characteristics. The planar shape of the electron radiation source is not particularly limited, and it is preferable from the viewpoint that the uniformity of the light emission is good. Use square, rectangle, parallelogram, trapezoid, circle, triangle 'tetragonal, ellipse, fan, positive η angle (η is an integer of 5 or more) The shape of the electron emitter is determined by the following method. First, when viewing the electron source in a direction slightly perpendicular to the substrate, a plane pattern slightly parallel to the substrate is considered. According to the method of finding the center of gravity of the general plane pattern, the center of gravity of the electron source is determined. Furthermore, the distance between the straight line of the center of gravity and the plane of the electron source is 2 points, and the shortest line is selected. The length between the intersections at that time is taken as the shortest length of the electron source. The shortest length of the electron source obtained by this method is equal to the length of one side when the plane figure is square, and equal to the short side when the plane is rectangular. The length is equal to the length of the diameter in the case of a circle. The shortest length of the electron source is preferably 1.0 mm or less, more preferably 0.5 mm or less, and particularly preferably 0.3 mm or less. If the shortest length of the electron source is within the above range, a device having a higher resolution can be obtained. Next, the proportion of the cracked portion to the electron source is obtained by the following method. In the same manner as the above-described method, when the electron source is imaged as a plan view, the area where the crack occurs is the area of the entire flat pattern as "the ratio of the crack to the electron source", expressed as a percentage (%). As an example of the calculation method of the above-described area, the planar pattern of the electron emission source is input as image data of a scanning electron microscope or an optical microscope, and is calculated using a general image processing software such as MATLAB (manufactured by MathWorks Co., Ltd.). The proportion of the cracked portion to the electron source is preferably 1% or more, more preferably 15% or more, and particularly preferably 2% or more. When the proportion of the cracked portion to the electron source is within the above range, the voltage required for electron emission is low, and an electron source having excellent light emission uniformity can be obtained. EXAMPLES Hereinafter, the present invention will be more specifically described by way of examples. However, the invention is not limited by the terms. Electron radiation materials used in the respective examples and comparative examples 'Inorganic powders and organic components, and evaluations in the respective examples and comparative examples, the evaluation methods are as follows. (A) Component <Electron Radiation Material> Carbon Nanotube 1: Two-layer carbon nanotube (manufactured by Shenzhen Nano Port Co., Ltd.) Carbon nanotube 2: Multi-layer carbon nanotube (Dongli Co., Ltd.) ). (B) component <thermal decomposition type foaming agent> Thermal decomposition type foaming agent 1: azomethicin decomposition temperature 200 ° C (San Xiehuacheng (share) ''Cellmic C 1 2 1 ” 'Average Particle size 1 2μπ〇 Thermal decomposition type foaming agent 2: Dinitrosopentamethylenetetramine decomposition temperature 20 5 °C (San Xiehuacheng (share) "CelImic Α" by Nissin Engineering Co., Ltd." Turbo Classifier" dry centrifugal grader, average particle size 15 μm) Thermally decomposable foaming agent 3 : p,p'-oxybis(phenylsulfonate) decomposition temperature 1 60 ° C (San Xiehuacheng (share)" Cellmic S", average particle size 13μπι) The average particle size of the thermally decomposable foaming agent 1 Ι.Οηηι品(三协化成(股)"Cellmic C-2" by the Nissin Engineering Co., Ltd. "Turbo Classifier" dry type Centrifugal grader) The average particle size of the thermally decomposable foaming agent 1 is 6·0 μηη (San Xiehuacheng (share) ''Cellmic CE') The average particle size of the thermally decomposable foaming agent 1 is 18 μπι (San Xiehuacheng ( Share), 'C e 11 mic C -1 9 1 ”) The average particle size of the thermally decomposable foaming agent 1 is 25 μηη (Yonghe Chemical Industry Co., Ltd., Vinyfor AC#K3 -35- 201137061 (C) Component <Residual compound> Metal carbonate 1 : Basic magnesium carbonate, heavy (Wako Pure Chemical Industries, Ltd.) (thermal decomposition temperature: 25 0 ° C, 400 ° C) Metal carbonate 2: sodium carbonate decahydrate (Wako Pure Chemical Industries, Ltd.) (thermal decomposition temperature: 200 ° C) Metal carbonate 3 : sodium bicarbonate (Wako Pure Chemical Industries, Ltd.) (thermal decomposition) Temperature: 3 00 ° C) Metal nitrate: Magnesium nitrate hexahydrate (Wako Pure Chemical Industries, Ltd.) (thermal decomposition temperature: 400 ° C) Metal sulfate: magnesium sulfate heptahydrate (Wako Pure Chemical Industries Co., Ltd. )) (thermal decomposition temperature: 200 ° C) Metal hydroxide salt: magnesium hydroxide (Wako Pure Chemical Industries, Ltd.) (thermal decomposition temperature: 350 ° C) Organometallic compound: Nikka Octhix tin ( Japanese chemical industry (shares)) (thermal decomposition temperature: 305 °C) Metal complex 1 : Nacem tin (Japan Chemical Industry Co., Ltd.) (thermal decomposition temperature: 200 ° C) Metal complex 2: double (acetonitrile) zinc (11) (Japan Chemical Industry Co., Ltd.) (thermal decomposition temperature: 150 ° C) Agent: "KBE-04" (Shinjuku Polyoxane (stock)) (thermal decomposition temperature: 15 〇 °C) Titanium coupling agent: "Orgatix TA30" (MATSUMOTO Precision Chemicals (Fe-36-201137061)) (thermal decomposition Temperature: 1 50 °c). <Thermal polymerization initiator>

熱聚合引發劑1:第三丁基過氧月桂酸酯 10小時半衰 期溫度 9 8 °CThermal polymerization initiator 1: tert-butylperoxylaurate 10 hour half-life temperature 9 8 °C

熱聚合引發劑2:第三乙基過氧-2-乙基己酸酯 10小 時半衰期溫度 72 °C 熱聚合引發劑3:二苯甲醯基過氧化物 10小時半衰期 溫度 7 4 °C。 <含乙烯性不飽和墓的化合物> 含乙烯性不飽和基的化合物1 :四丙二醇二甲基丙烯酸 酯 含乙烯性不飽和基的化合物2:丙烯酸環己酯 含乙烯性不飽和基的化合物3:丙烯酸正丁酯。 <含乙烯性不飽和基的熱聚合引發劑>Thermal polymerization initiator 2: Third ethyl peroxy-2-ethylhexanoate 10 hour half-life temperature 72 ° C Thermal polymerization initiator 3: benzoyl hydrazine peroxide 10 hour half life Temperature 7 4 °C. <Compound containing ethylenically unsaturated tomb> Compound containing ethylenically unsaturated group 1: Tetrapropylene glycol dimethacrylate Compound containing ethylenically unsaturated group 2: Cyclohexyl acrylate containing ethylenically unsaturated group Compound 3: n-butyl acrylate. <Thermionic polymerization initiator containing an ethylenically unsaturated group>

含乙烯性不飽和基的熱聚合引發劑1 :雙(2 -甲基-2 -丙 烯基)過氧二碳酸酯 10小時半衰期溫度 39°CThermal polymerization initiator containing ethylenically unsaturated group 1: bis(2-methyl-2-propenyl)peroxydicarbonate 10 hour half-life temperature 39 ° C

含乙烯性不飽和基的熱聚合引發劑2:二烯丙基過氧二 碳酸酯 10小時半衰期溫度 39°C 含乙烯性不飽和基的熱聚合引發劑3:雙(2 -甲基-2-丙 烯氧基乙基過氧)二碳酸酯 1〇小時半衰期溫度 44 °C。 (D)成分 &lt;兼任熱分解型發泡劑之含乙烯性不飽和基的熱聚合引發 劑&gt; -37- 201137061 2,2 -偶氮雙[N-(2 -丙稀基)-2 -甲基丙醯胺]小時半 衰期溫度 96它。 其它成分 &lt;無機成分&gt; 玻璃粉末:SnO-P2〇5系玻璃“KF9079,’(旭硝子(股)製), 軟化點3 40°C,平均粒徑〇.2μιη 導電性粒子:白色導電性粉末“ET-500W,,(以球狀的氧 化鈦爲核心’被覆有SnC^/Sb導電層者,石原產業(股)製) ’比表面積6.9m2/g’密度4.6g/cm3,平均粒徑〇.2μιη。 &lt;有機成分&gt; 黏結劑:聚(甲基丙嫌酸異丁醋)fine powder, [h] = 0.60( 和光純藥工業(股)公司製) 聚苯乙烯粒子:Megabeads NIST可追蹤粒徑標準粒子 ,1 0 · 0 μιη 溶劑:萜品醇(和光純藥工業(股)公製)。 評價方法 &lt;電子放射源表面龜裂寬度的觀察&gt; 使用光學顯微鏡,確認電子放射源表面有無龜裂。再 者,藉由掃描型電子顯微鏡(日立製作所股份有限公司製 S4800),以倍率1,〇〇〇〜20,000倍進行電子放射源的觀察 ,測定龜裂寬度。龜裂寬度係所觀察的龜裂之寬度最廣的 部分。 &lt;由在電子放射源產生的龜裂面來觀察碳奈米管的突出長 -38- 201137061 度&gt; 藉由掃描型電子顯微鏡(日立製作所股份有限公司製 S4800),以倍率1,000〜20,000倍來觀察,在任意20點測 定自龜裂面突出的碳奈米管之長度,算出其平均突出長度 〇 &lt;電場強度的測定&gt; 使於真空度爲5.0xl0_4Pa的真空室內,形成有電子放 射源的基板,與在形成有ITO薄膜的鈉鈣玻璃基板上形成 有厚度5μιη的螢光體層(P22,化成OPTONIX(股)公司製) 之基板,呈相對向而夾住ΙΟΟμηι的間隔物,藉由電壓施 加裝置(菊水電子工業(股)製耐電壓/絕緣電阻試驗器 TOS920 1 ),以10V/秒施加電壓。由所得之電流電壓曲線( 最大電流値l〇mA/cm2)中求出電流密度達到指定的電流値 之電場強度。指定的電流値係各實施例及比較例中記載的 値。 &lt;發光的均勻性觀察&gt; 使於真空度爲5.〇xl(T4Pa的真空室內,在ITO基板 上形成有Icmxlcm見方的電子放射元件之背面基板,與 在ITO基板上形成有厚度5μιη的螢光體層(P22)之正面基 板,呈相對向而夾住1 〇 〇 μ m的間隔物,藉由電壓施加裝 置(菊水電子工業(股)製耐電壓/絕緣電阻試驗器TOS9201) ,施加成爲指定電流値的電壓,以使正面基板發光。指定 的電流値係各實施例及比較例中記載的値。發光面積係藉 -39- 201137061 由CCD照相機輸入發光影像,測定lcmx lcm見方的電子 放射元件內之發光部分比例,進行數値化。此時,將發光 面積爲80%以上者當作最佳(A),將50%以上且低於80% 者當作良(B),將30%以上且低於50%者當作可(C),將低 於3 0%者當作不可(D)。 &lt;殘留性化合物的粒徑調整&gt; 本發明的電子放射源用糊中所用的金屬鹽係藉由以下 的方法進行粒徑的調整。於容積5 00ml的氧化锆製容器中 ,坪量20g金屬鹽、80g溶劑後,於其中添加0.3mm(|)的 氧化銷珠(東麗(股)製TorayCeram(商品名)),在行星式球 磨機(FRITSCH日本(股)製行星型球磨機P-5)中粉碎。將 已去掉氧化銷珠的粉碎溶液乾燥,而得到平均粒徑1〜 3 μιη的金屬鹽。 實施例1 藉由使用直徑3mm的氧化鉻球之球磨機將2層碳奈 米管粉碎,以表1中所示的組成比添加有機黏結劑、溶劑 、玻璃粉末、導電性粒子、殘留性化合物、熱分解型發泡 劑,以三輥進行混煉,製作電子放射源用糊。 其次,於玻璃基板上藉由濺鍍法將ITO成膜,而形 成陰極電極。於該陰極電極上,藉由使用SUS200網眼的 網版之網版印刷法,將電子放射源用糊印刷成1 cm X 1 cm 見方的塗膜後,於熱風乾燥機中以100°C乾燥5分鐘。將 所得之電子放射源用糊塗膜在大氣中以450 °C焙燒,而得 -40- 201137061 到電子放射源。所得之電子放射源的龜裂寬度爲1 0.5 μιη ,碳奈米管的突出長度爲2.9μιη。又,達到ImA/cm2的電 場強度爲3.5ν/μηι,當時的發光面積爲82%。 實施例2〜1 6 與實施例1同樣地,製作表1〜2中所示的組成比之 電子放射源用糊及電子放射源。表1〜2中顯示龜裂寬度 、碳奈米管的突出長度、達到lmA/cm2的電場強度及發光 面積之測定結果。實施例2〜1 0係改變殘留性化合物的種 類者,實施例11與12係改變熱分解型發泡劑的種類者, 實施例1 3與14係改變殘留性化合物的含量者,實施例 I5與16係使用複數的殘留性化合物者。任一情況皆可在 電子放射源表面看到龜裂及自龜裂面突出的長度爲〇.5μπι 以上之碳奈米管,可於沒有活性化步驟下看到電子放射。 再者,不論(Β)熱分解型發泡劑粒子或(C)成分的種類爲何 ’也得到良好的結果,但使用金屬鹽當作(C)成分的殘留 性化合物時之結果係更良好,使用金屬碳酸鹽時之結果係 特別良好。 比較例1 藉由使用直徑3mm的氧化锆球之球磨機將2層碳奈 米管粉碎,以表3中所示的組成比添加有機黏結劑、溶劑 、玻璃粉末、導電性粒子、熱分解型發泡劑,以三輥進行 混煉,製作電子放射源用糊。 其次’於玻璃基板上藉由漉鍍法將ITO成膜,而形 -41 - 201137061 成陰極電極。於該陰極電極上,藉由使用SUS200網眼的 網版之網版印刷法,將電子放射源用糊印刷成1 cm X 1 cm 見方的塗膜後,於熱風乾燥機中以100 °C乾燥5分鐘。將 所得之電子放射源用糊塗膜在大氣中以450 °C焙燒,而得 到電子放射源。沒有看到所得之電子放射源的龜裂及碳奈 米管的突出。又,達到ImA/cm2的電場強度爲係超過 15ν/μιη,當時的發光面積爲3%。 比較例2〜5 與比較例1同樣地,製作表3中所示的組成比之電子 放射源用糊及電子放射源。表3中顯示龜裂寬度、碳奈米 管的突出長度、達到ImA/cm2的電場強度及發光面積之測 定結果。比較例2〜4係不添加熱分解型發泡劑而僅使用 殘留性化合物者,龜裂的寬度小,碳奈米管的突出長度亦 短。而且,達到1 mA/cm2的電場強度高,發光的均勻性亦 不太良好。又’比較例5係加有聚苯乙烯粒子者,於電子 放射源內形成孔連續相連的空隙。因此,比較例5的龜裂 寬度係測定空隙的寬度者。看起來的龜裂寬度大,但碳奈 米管的突出長度短。而且,達到ImA/cm2的電場強度筒, 發光的均勻性亦不太良好。 實施例1 7 用以下的要領製作電子放射源用糊。於容積500ml的 氧化鉻製容器中’秤量lg多層碳奈米管、8g玻璃粉末、 6g導電性粒子、20g黏結劑、65g溶劑後,於其中添加 •42- 201137061 0·3πιηιφ的氧化鉻珠(東麗(股)製 Torayceram(商品名)),在 行星式球磨機(FRITSCH日本(股)製行星型球磨機P-5)中 以1 OOrpm進行預備分散。以三輥混煉已去掉氧化锆珠的 混合物。其次,以成爲表4中所示組成比的方式,添加熱 分解型發泡劑1、熱聚合引發劑1及含乙烯性不飽和基的 化合物1 ’再以三輥混煉,而成爲電子放射源用糊。此等 係在電子放射源用糊中合倂成爲 6wt%。接著,將所製作 的電子放射源用糊,在形成有ITO薄膜的鈉鈣玻璃基板上 ,使用SUS3 25網眼的網版,印刷成爲5mmx5mm的方型 圖案。於100 °C乾燥10分鐘後,在大氣中以450 °C焙燒而 得到電子放射源。在所得之電子放射源表面可看到龜裂及 自龜裂面突出的長度爲0.5 μιη以上之碳奈米管,可於沒有 活性化步驟下看到電子放射。又,達到0.1mA/cm2的電場 強度爲6.6V/μιη,當時的發光均勻性爲最佳(A)。 實施例1 8〜2 3 與實施例1 7同樣地,進行表4中所示的組成比之電 子放射源用糊及電子放射源的製作與各評價。實.施例1 8 〜19中使用(B)熱分解型發泡劑與(C)成分的熱聚合引發劑 及含乙烯性不飽和基的化合物。實施例2 0〜2 2中使用(B ) 熱分解型發泡劑與(C)成分之含乙烯性不飽和基的熱聚合 引發劑。實施例23中使用(D)成分之兼任熱分解型發泡劑 之含乙烯性不飽和基的熱聚合引發劑。此等係合倂電子放 射源用糊中的含量成爲6wt%。任一情況皆在電子放射源 -43- 201137061 表面可看到龜裂及自龜裂面突出的長度爲〇·5μιη以上之碳 奈米管,可^沒有活性化步驟下看到電子放射。電場強度 與發光的均勻性之評價結果係如表4。 實施例24〜38 與實施例1 7同樣,進行表5〜7中所示的組成比之電 子放射源用糊及電子放射源的製作與各評價。實施例24 〜28中使用(B)熱分解型發泡劑與(C)成分之熱聚合引發劑 、含乙烯性不飽和基的化合物及殘留性化合物。實施例 29〜33中使用(B)熱分解型發泡劑與(C)成分之含乙烯性不 飽和基的熱聚合引發劑及殘留性化合物。實施例 34〜38 中使用(C)成分之殘留性化合物及(D)成分之兼任熱分解型 發泡劑之含乙烯性不飽和基的熱聚合引發劑。於此等之中 ,殘留性化合物以外的成分係合倂電子放射源用糊中的含 量爲6wt%。又,殘留性化合物係以糊中的含量成爲9wt% 的方式添加。任一情況皆在電子放射源表面可看到龜裂及 自龜裂面突出的長度爲0.5 μιη以上之碳奈米管,可於沒有 活性化步驟下看到電子放射。電場強度與發光的均勻性之 評價結果係如表5〜7。 比較例6 用以下的要領製作電子放射源用糊。於容積500ml的 氧化鉻製容器中,秤量lg多層碳奈米管、8g玻璃粉末、 6 g導電性粒子、2 0 g黏結劑、6 5 g溶劑後,於其中添加 0·3πιιηφ的氧化銷珠(東麗(股)製 Torayceram(商品名)),在 -44- 201137061 行星式球磨機(FRITSCH日本(股)製行星型ϊ 以lOOrpm進行預備分散。以三輥混煉已去 混合物。其次,添加熱分解型發泡劑1,以 用糊中的含量成爲6 wt%,再以三輥混煉, 射源用糊。接著,將所製作的電子放射源用 ITO薄膜的鈉鈣玻璃基板上,使用SUS325 印刷成爲5mmx5mm的方型圖案。於100°C章 ,在大氣中以45 0 °C焙燒而得到電子放射源 放射源表面係僅能看到自空隙的壁面所突出 突出長度低於0.1 μηι的碳奈米管。又,達到 電場強度爲12.5ν/μιη。 比較例7〜1 0 與比較例6同樣,進行表8中所示的組 射源用糊及電子放射源的製作與各評價。比 不使用(Β)熱分解型發泡劑及(D)作爲熱分解 能且具有乙烯性不飽和基的熱聚合引發劑之 比較例9及10中,僅看到自焙燒所形 面突出的碳奈米管之突出長度低於0.1 μιη的 然得到電子放射,但是達到O.lmA/cm2的電 比較例7及8中,即使施加16ν/μιη的電場 到電子放射》 實施例3 9〜4 9 與實施例1同樣地,數作表9〜1 0中所 求磨機Ρ-5)中 掉氧化銷珠的 使電子放射源 而成爲電子放 糊,在形成有 網眼的網版, 乞燥1 0分鐘後 。所得之電子 的碳奈米管之 0 · 1 m A/cm2 的 成比之電子放 較例7〜1 0中 型發泡劑之機 任一者。 成的空隙之壁 碳奈米管,雖 場強度係大。 強度,也得不 示的組成比之 -45- 201137061 電子放射源用糊及電子放射源。表9〜10中顯示龜裂寬度 、碳奈米管的突出長度、達到ImA/cm2的電場強度及發光 面積之測定結果。實施例3 9〜‘43係改變(B)熱分解型發泡 劑及(C)成分的殘留性化合物之量者,實施例44〜45係改 變(C)成分的種類者,實施例46〜49係改變(B)熱分解型 發泡劑粒子的平均粒徑者。任一情況皆可在電子放射源表 面看到龜裂及自龜裂面突出的長度爲〇.5μιη以上之碳奈米 管,可於沒有活性化步驟下看到電子放射。再者,不論 (Β )熱分解型發泡劑粒子的平均粒徑爲何,也得到良好的 結果,但6.0 μιη以上20 μπι以下時之結果係更良好。 實施例5 0 將實施例42所用電子放射源用糊,在形成有ΙΤΟ薄 膜的鈉鈣玻璃基板上,使用SUS325網眼的網版,印刷成 爲200μηιχ1000μιη的微細圖案。於1〇〇。(3乾燥1〇分鐘後 ’在大氣中以4 5 0 °C焙燒而得到電子放射源。自與基板略 垂直方向’以500倍的倍率’用SEM觀察所得之電子放 射源’第6圖顯示照片。由前述照片,使用MAT LAB,計 算相當於200μιη&gt;&lt;200μπι的電子放射源內之龜裂部的比例 ’結果爲12.6% »又,達到ImA/cm2的電場強度爲 1 · 7 V / μ m,即使於微細圖案中亦可得到良好的電子放射特 性。 -46- 201137061 φ__ 【16 實施例10 〇 Η 1000 3000 850 200 〇 in 實施例9 〇 1000 3000 850 i 200 500 實施例8 ο Η 1000 3000 850 | 200 500 實施例7 ο 1000 3000 850 | 200 500 實施例6 ο Η 1000 3000 850 200 500 實施例5 ο 1000 3000 〇〇 200 500 實施例4 Ο 1000 1 3000 850 200 〇 實施例3 Ο 1000 3000 850 | 200 500 實施例2 Ο 1000 3000 850 200 500 實施例1 ο 1000 3000 〇 〇〇 200 500 2層碳奈米管 . I 有機黏結劑 溶劑 玻璃粉末 導電性粒子 金屬碳酸鹽1 金屬碳酸鹽2 金屬碳酸鹽3 金屬硫酸鹽 金屬硝酸鹽 金屬氫氧化物鹽 有機金屬化合物 金屬錯合物1 矽烷偶合劑 鈦偶合劑 (Α薦子放射材料 有機成分 無機粉末 (C)中的殘留性化合物 -/,寸, 201137061 200 &lt;N ψ· &lt; VO B(59) 200 m (N 寸 v〇 B(60) 200 On ν〇 2 B(62) 200 〇〇 VO 寸· m B(63) 200 2 o (N v-i B(70) 200 (N od CN &lt;N On — B(71) 200 〇\ &lt;N B(70) 200 o 〇\ (N p — B(74) 200 uo (N as — B(75) 200 10.5 On CN cn A(82) 熱分解型發泡劑1 熱分解型發泡劑2 熱分解型發泡劑3 龜裂(μηι) 碳奈米管突出長度(μηι) m -tni 瓣 S «Ν a ο 1 m m 發光均勻性(%) (B)熱分解型發泡劑 201137061 Φ&gt;Μ 【3S 實施例16 〇 1000 3000 850 200 500 500 實施例15 〇 1000 3000 〇 〇〇 200 〇 〇 實施例14 Ο 1000 3000 850 | 200 2000 實施例13 Ο *-Η 1 1000 3000 ! i 850 j 200 1000 實施例12 Ο 1000 3000 850 200 500 實施例11 Ο 1000 3000 850 200 500 2層碳奈米管 有機黏結劑 溶劑 玻璃粉末 導電性粒子 金屬碳酸鹽1 金屬碳酸鹽2 金屬碳酸鹽3 金屬硫酸鹽 金屬硝酸鹽 1 i金屬氫氧化物鹽 — 有機金屬化合物 1 ____ _ . _ 金屬錯合物1 矽烷偶合劑 駄偶合劑 (Α)電子放射材料 有機成分 無機粉末 (C)中的殘留性化合物 -6寸— 201137061Thermal polymerization initiator containing ethylenically unsaturated group 2: diallyl peroxydicarbonate 10 hour half-life temperature 39 ° C Thermal polymerization initiator containing ethylenically unsaturated group 3: bis(2-methyl-2 - propyleneoxyethyl peroxy) dicarbonate 1 hour half-life temperature 44 °C. (D) Component &lt; Thermal polymerization initiator containing an ethylenically unsaturated group as a thermally decomposable foaming agent&gt; -37- 201137061 2,2-Azobis[N-(2-propylidene)-2 -Methylpropionamine] hour half-life temperature 96 it. Other components &lt;Inorganic component&gt; Glass powder: SnO-P2〇5-based glass "KF9079," (made by Asahi Glass Co., Ltd.), softening point 3 40 ° C, average particle diameter 〇.2 μιη Conductive particle: white conductivity Powder "ET-500W, (coated with spherical titanium oxide as the core 'coated with SnC^/Sb conductive layer, manufactured by Ishihara Sangyo Co., Ltd.) 'Specific surface area 6.9m2/g' density 4.6g/cm3, average particle Trail 〇.2μιη. &lt;Organic ingredients&gt; Adhesive: poly(methyl propylene succinic acid) fine powder, [h] = 0.60 (made by Wako Pure Chemical Industries, Ltd.) Polystyrene particles: Megabeads NIST traceable particle size Standard particle, 1 0 · 0 μιη Solvent: Terpineol (Wako Pure Chemical Industries, Ltd.). Evaluation method &lt;Observation of surface crack width of electron emission source&gt; Using an optical microscope, it was confirmed whether or not the surface of the electron emission source was cracked. Further, the electron emission source was observed at a magnification of 1, 〇〇〇 to 20,000 times by a scanning electron microscope (S4800, manufactured by Hitachi, Ltd.), and the crack width was measured. The crack width is the widest part of the crack observed. &lt;Looking at the protruding length of the carbon nanotube by the crack surface generated by the electron source-38-201137061 degree&gt; By a scanning electron microscope (S4800 manufactured by Hitachi, Ltd.), the magnification is 1,000~ When the temperature was 20,000 times, the length of the carbon nanotubes protruding from the crack surface was measured at any 20 points, and the average protruding length 〇 was measured. <Measurement of electric field strength> In a vacuum chamber having a degree of vacuum of 5.0 x 10 4 Pa, a vacuum chamber was formed. A substrate of an electron emission source and a phosphor layer (P22, manufactured by OPTONIX Co., Ltd.) having a thickness of 5 μm formed on a soda lime glass substrate on which an ITO thin film is formed, and a spacer sandwiching the ΙΟΟμηι The voltage was applied at 10 V/sec by a voltage application device (Chrysanthemum Electronics Industrial Co., Ltd. to withstand voltage/insulation resistance tester TOS920 1 ). From the obtained current-voltage curve (maximum current 値l mA/cm 2 ), the electric field intensity at which the current density reaches a predetermined current 求出 is obtained. The specified current is the enthalpy described in each of the examples and the comparative examples. &lt;Performance of uniformity of light emission&gt; The back surface of an electron emitting element having an Icm x 1 cm square was formed on the ITO substrate in a vacuum chamber of 〇xl (T4Pa), and a thickness of 5 μm was formed on the ITO substrate. The front substrate of the phosphor layer (P22) is sandwiched by a spacer of 1 μm in the opposite direction, and is applied by a voltage application device (tolerance voltage/insulation resistance tester TOS9201 manufactured by Kikusui Electronics Co., Ltd.). The voltage of the current 値 is specified so that the front substrate emits light. The specified current is the enthalpy described in each of the examples and the comparative examples. The light-emitting area is -39-201137061 The luminescence image is input by the CCD camera, and the electron emission of 1 cm x 1 cm square is measured. The proportion of the light-emitting portion in the device is digitized. In this case, the light-emitting area is 80% or more as the best (A), and 50% or more and less than 80% is regarded as good (B), and 30 is used. % or more and less than 50% are considered as (C), and those below 30% are regarded as not (D). &lt;Particle size adjustment of residual compound&gt; Used in paste for electron emission source of the present invention Metal salt is obtained by the following method In a container of zirconia having a volume of 50,000 ml, 20 g of a metal salt and 80 g of a solvent are added, and 0.3 mm (|) of oxidized pin (TorayCeram (trade name) manufactured by Toray Co., Ltd.) is added thereto. The planetary ball mill (FRITSCH Japan planetary ball mill P-5) was pulverized. The pulverized solution from which the oxidized pin beads had been removed was dried to obtain a metal salt having an average particle diameter of 1 to 3 μm. A 3 mm diameter chrome ball ball mill pulverizes two carbon nanotube tubes, and adds an organic binder, a solvent, a glass powder, a conductive particle, a residual compound, a thermally decomposable foaming agent at a composition ratio shown in Table 1. The mixture was kneaded by three rolls to prepare a paste for an electron source. Next, ITO was formed on the glass substrate by sputtering to form a cathode electrode. On the cathode electrode, a mesh using SUS200 mesh was used. In the screen printing method, the paste for electron source is printed into a coating film of 1 cm X 1 cm square, and then dried in a hot air dryer at 100 ° C for 5 minutes. The obtained electron source is used in a paste film at atmospheric atmosphere. Roasting at 450 °C, and getting -40- 201137061 To the electron source. The obtained electron source has a crack width of 1 0.5 μm, and the carbon nanotube has a protrusion length of 2.9 μm. Further, the electric field intensity of ImA/cm2 is 3.5 ν/μηι, and the luminous area at that time. In the same manner as in the first embodiment, the paste for electron emission source and the electron emission source shown in Tables 1 to 2 were prepared. The crack width and carbon are shown in Tables 1 and 2. The protruding length of the nanotube, the electric field strength of lmA/cm2, and the measurement result of the illuminating area. In the examples 2 to 10, the type of the residual compound was changed, and the examples 11 and 12 were changed in the type of the thermally decomposable foaming agent, and the examples 13 and 14 were used to change the content of the residual compound. Example I5 A plurality of residual compounds are used with the 16 series. In either case, cracks and carbon nanotubes with a length of 〇.5μπι or more protruding from the crack surface can be seen on the surface of the electron source, and electron emission can be seen without the activation step. In addition, good results were obtained regardless of the type of (Β) thermally decomposable foaming agent particles or (C) components, but the results were better when a metal salt was used as the residual compound of the component (C). The results when using metal carbonates were particularly good. Comparative Example 1 Two layers of carbon nanotubes were pulverized by using a ball mill having a diameter of 3 mm of zirconia balls, and organic binder, solvent, glass powder, conductive particles, and thermally decomposable hair were added at a composition ratio shown in Table 3. The foaming agent was kneaded by three rolls to prepare a paste for an electron source. Next, ITO was formed on the glass substrate by a ruthenium plating method, and a shape of -41 - 201137061 was used as a cathode electrode. On the cathode electrode, the paste for electron source was printed into a coating film of 1 cm X 1 cm square by a screen printing method using a screen of SUS200 mesh, and then dried at 100 ° C in a hot air dryer. 5 minutes. The obtained electron source was baked at 450 ° C in the atmosphere to obtain an electron source. No cracks in the obtained electron source and protrusion of the carbon nanotubes were observed. Further, the electric field intensity at which ImA/cm2 was reached was more than 15 ν/μηη, and the illuminating area at that time was 3%. Comparative Examples 2 to 5 In the same manner as in Comparative Example 1, the paste for an electron emission source and the electron emission source having the composition ratios shown in Table 3 were prepared. Table 3 shows the measurement results of the crack width, the protruding length of the carbon nanotubes, the electric field strength up to ImA/cm2, and the illuminating area. In Comparative Examples 2 to 4, when a thermal decomposition type foaming agent was not added and only a residual compound was used, the width of the crack was small, and the protruding length of the carbon nanotube was also short. Further, the electric field intensity of 1 mA/cm2 is high, and the uniformity of luminescence is also not good. Further, in Comparative Example 5, in which polystyrene particles were added, voids in which pores were continuously connected were formed in the electron source. Therefore, the crack width of Comparative Example 5 is a measure of the width of the void. It appears that the crack width is large, but the carbon nanotubes have a short protruding length. Moreover, the uniformity of light emission is also not good even when the electric field strength cylinder of ImA/cm2 is reached. Example 1 7 A paste for an electron source was produced in the following manner. After weighing lg multi-layer carbon nanotubes, 8 g of glass powder, 6 g of conductive particles, 20 g of binder, and 65 g of solvent in a chrome oxide container having a volume of 500 ml, a chromium oxide bead of 42-201137061 0·3πιηιφ was added thereto. Torayceram (trade name) manufactured by Toray Industries Co., Ltd. was preliminarily dispersed at 100 rpm in a planetary ball mill (FRITSCH Japan planetary ball mill P-5). The mixture of zirconia beads has been removed by three rolls. Then, the thermal decomposition type foaming agent 1, the thermal polymerization initiator 1, and the ethylenically unsaturated group-containing compound 1' were added in a manner of the composition ratio shown in Table 4, and then mixed by a three-roller to become an electron emission. Source paste. These were combined in a paste for an electron source to be 6 wt%. Next, the prepared paste for an electron source was printed on a soda lime glass substrate on which an ITO film was formed, and a square pattern of 5 mm x 5 mm was printed using a screen of SUS3 25 mesh. After drying at 100 ° C for 10 minutes, it was baked at 450 ° C in the atmosphere to obtain an electron source. On the surface of the obtained electron emission source, a carbon nanotube having a length of 0.5 μm or more protruding from the crack surface can be seen, and electron emission can be seen without an activation step. Further, the electric field intensity of 0.1 mA/cm2 was 6.6 V/μm, and the uniformity of light emission at that time was the best (A). [Example 1] 8 to 2 3 In the same manner as in the case of Example 1, the preparation and evaluation of the paste for an electron source and the electron source of the composition ratio shown in Table 4 were carried out. In the examples 18 to 19, (B) a thermal decomposition type foaming agent, a thermal polymerization initiator of the component (C), and a compound containing an ethylenically unsaturated group are used. Example 2 0 to 2 2 A thermal polymerization initiator containing (B) a thermally decomposable foaming agent and an ethylenically unsaturated group of the component (C) was used. In Example 23, an ethylenically unsaturated group-containing thermal polymerization initiator which is a thermally decomposable foaming agent of the component (D) is used. The content in these pastes for the electron-emitting source was 6 wt%. In either case, the surface of the electron radioactive source -43- 201137061 can be seen on the surface of the carbon nanotubes with a length of 〇·5μιη or more protruding from the crack surface, and the electron emission can be seen without the activation step. The evaluation results of electric field strength and uniformity of luminescence are shown in Table 4. Examples 24 to 38 In the same manner as in Example 1-7, the preparation and evaluation of the paste for an electron source and the electron source of the composition ratios shown in Tables 5 to 7 were carried out. In Examples 24 to 28, (B) a thermally decomposable foaming agent and a thermal polymerization initiator of the component (C), a compound containing an ethylenically unsaturated group, and a residual compound were used. In Examples 29 to 33, (B) a thermally decomposable foaming agent and a thermopolymerization initiator containing an ethylenically unsaturated group of the component (C) and a residual compound were used. In Examples 34 to 38, a residual polymer of the component (C) and a thermal polymerization initiator containing an ethylenically unsaturated group as a thermally decomposable foaming agent of the component (D) were used. Among these, the content of the component other than the residual compound in the paste for electron source is 6 wt%. Further, the residual compound was added so that the content in the paste was 9 wt%. In either case, a carbon nanotube having a length of 0.5 μm or more protruding from the crack surface can be seen on the surface of the electron source, and electron emission can be seen without the activation step. The evaluation results of electric field strength and uniformity of luminescence are shown in Tables 5 to 7. Comparative Example 6 A paste for an electron source was produced by the following method. In a container of chromic oxide having a volume of 500 ml, weigh lg multi-layer carbon nanotubes, 8 g of glass powder, 6 g of conductive particles, 20 g of binder, and 65 g of solvent, and then add 0·3πιηηφ of oxidized beads. (Torayceram (trade name) of Toray Co., Ltd.), in -44-201137061 Planetary ball mill (FRITSCH Japan Co., Ltd. planetary type ϊ Pre-dispersion at 100 rpm. Mixing the mixture with three rolls. Second, add The thermally decomposable foaming agent 1 was pulverized to a content of 6 wt%, and then kneaded in a three-roller to form a source paste. Then, the produced electron source was used on a soda lime glass substrate of an ITO film. It is printed in a square pattern of 5mm x 5mm using SUS325. It is baked at 45 °C in the atmosphere at 100 °C to obtain an electron source. The surface of the source is only visible from the wall of the void. The length of the protrusion is less than 0.1 μηι. Further, the electric field strength was 12.5 ν / μηη. Comparative Examples 7 to 1 0 In the same manner as in Comparative Example 6, the preparation and evaluation of the group source paste and the electron source shown in Table 8 were performed. More than (Β) thermal decomposition foaming And (D) In Comparative Examples 9 and 10 which are thermal decomposition initiators having a thermal decomposition energy and having an ethylenically unsaturated group, only the carbon nanotubes protruding from the surface of the calcined surface were observed to have a protruding length of less than 0.1 μm. In the electric comparative examples 7 and 8 in which the electron emission was obtained, the electric field of 16 ν/μηη was applied to the electron emission. In the same manner as in the first embodiment, the number is shown in Table 9~ In the mill Ρ-5), the oxidized pin was removed, and the electron source was turned into an electron paste. After the screen was formed with a mesh, it was dried for 10 minutes. The resulting electron carbon nanotubes have a ratio of 0·1 m A/cm2 of electrons compared to any of the examples 7 to 1 0 medium-sized foaming agents. The wall of the gap is made of carbon nanotubes, although the field strength is large. The strength is also not shown in the composition ratio -45- 201137061 Electronic source paste and electron source. Tables 9 to 10 show the measurement results of the crack width, the protruding length of the carbon nanotubes, the electric field strength at which ImA/cm2 was reached, and the light-emitting area. Example 3 9 to '43 are those in which (B) the thermally decomposable foaming agent and the residual compound of the component (C) are changed, and the examples 44 to 45 are those in which the component (C) is changed, and Example 46~ The 49 system changes (B) the average particle diameter of the thermally decomposable foaming agent particles. In either case, a crack and a carbon nanotube having a length of 〇.5 μm or more protruding from the crack surface can be seen on the surface of the electron source, and electron emission can be seen without an activation step. Further, good results were obtained regardless of the average particle diameter of the (Β) thermally decomposable foaming agent particles, but the results were better when the ratio was 6.0 μm or more and 20 μπι or less. Example 5 The paste for an electron source used in Example 42 was printed on a soda lime glass substrate on which a tantalum film was formed, and printed into a fine pattern of 200 μm to 1000 μm using a screen of SUS325 mesh. At 1〇〇. (3) After drying for 1 minute, it was calcined at 450 ° C in the atmosphere to obtain an electron source. The electron source was observed by SEM at a magnification of 500 times from the substrate 'Fig. 6'. Photograph. From the above photograph, using MAT LAB, the ratio of the crack portion in the electron source corresponding to 200 μm&gt;&lt;200 μm was calculated as '12.6%» Further, the electric field intensity reaching 1 mA/cm 2 was 1 · 7 V / μ m, good electron emission characteristics can be obtained even in fine patterns. -46- 201137061 φ__ [16 Example 10 〇Η 1000 3000 850 200 〇in Example 9 〇1000 3000 850 i 200 500 Example 8 ο Η 1000 3000 850 | 200 500 Example 7 ο 1000 3000 850 | 200 500 Example 6 ο Η 1000 3000 850 200 500 Example 5 ο 1000 3000 〇〇 200 500 Example 4 Ο 1000 1 3000 850 200 〇 Example 3 Ο 1000 3000 850 | 200 500 Example 2 Ο 1000 3000 850 200 500 Example 1 ο 1000 3000 〇〇〇200 500 2-layer carbon nanotube. I organic binder solvent glass powder conductive particles metal carbonate 1 metal carbonate 2 metal carbonate 3 metal sulfate metal nitrate metal hydroxide salt organometallic compound metal complex 1 decane coupling agent titanium coupling agent Sub Radical Material Organic Compound Inorganic Powder (C) Residual Compound -/, inch, 201137061 200 &lt;N ψ· &lt; VO B(59) 200 m (N inch v〇B(60) 200 On ν〇2 B(62) 200 〇〇 VO inch · m B(63) 200 2 o (N vi B(70) 200 (N od CN &lt;N On — B(71) 200 〇\ &lt;NB(70) 200 o 〇\ (N p — B(74) 200 uo (N as — B(75) 200 10.5 On CN cn A(82) Thermal decomposition type foaming agent 1 Thermal decomposition type foaming agent 2 Thermal decomposition type foaming agent 3 Crack (μηι) Carbon nanotube protruding length (μηι) m -tni flap S «Ν a ο 1 mm Luminous uniformity (%) (B) Thermal decomposition type foaming agent 201137061 Φ&gt;Μ [3S Example 16 〇 1000 3000 850 200 500 500 Example 15 〇1000 3000 〇〇〇200 〇〇Example 14 Ο1000 3000 850 | 200 2000 Implementation Example 13 Ο *-Η 1 1000 3000 ! i 850 j 200 1000 Example 12 Ο 1000 3000 850 200 500 Example 11 Ο 1000 3000 850 200 500 2 layers of carbon nanotube organic binder solvent glass powder conductive particles metal carbonate Salt 1 metal carbonate 2 metal carbonate 3 metal sulfate metal nitrate 1 i metal hydroxide salt - organometallic compound 1 ____ _ . _ metal complex 1 decane coupling agent 駄 coupling agent (Α) electron radioactive material organic Residual compound in the inorganic powder (C)-6 inch - 201137061

201137061 φ__ 【i 比較例5 〇 1000 3000 850 200 比較例4 〇 1000 3000 850 | 200 500 比較例3 〇 1000 3000 00 〇 CN 500 比較例2 〇 1000 3000 850 200 500 比較例1 〇 1000 3000 00 〇 CS 2層碳奈米管 有機黏結劑 溶劑 玻璃粉末 導電性粒子 金屬碳酸鹽1 金屬碳酸鹽2 金屬碳酸鹽3 金屬硫酸鹽 金屬硝酸鹽 i 金屬氫氧化物鹽 有機金屬化合物 金屬錯合物1 矽烷偶合劑 鈦偶合劑 (A)電子放射材料 有機成分 無機粉末 (C)中的殘留性化合物 丨Ις_ 201137061 1300 (Ν CN C(30) 口 10.3 C(33) rn — ν〇 od ! C(39) οο C(45) 200 摧 1 &gt;15 D(3) 熱分解型發泡劑1 熱分解型發泡劑2 熱分解型發泡劑3 聚苯乙烯粒子 龜裂(μτη) 碳奈米管突出長度(μιη) N i έ m KTVf 缌 s &lt;N 6 1 M 糊 發光均勻性(%) ⑻熱分解型發泡劑 201137061201137061 φ__ [i Comparative Example 5 〇1000 3000 850 200 Comparative Example 4 〇1000 3000 850 | 200 500 Comparative Example 3 〇1000 3000 00 〇CN 500 Comparative Example 2 〇1000 3000 850 200 500 Comparative Example 1 〇1000 3000 00 〇CS 2 layers of carbon nanotubes organic binder solvent glass powder conductive particles metal carbonate 1 metal carbonate 2 metal carbonate 3 metal sulfate metal nitrate i metal hydroxide salt organometallic compound metal complex 1 decane coupling agent Titanium coupling agent (A) Electron radiation material Organic component Inorganic powder (C) Residual compound 丨Ις _ 201137061 1300 (Ν CN C(30) 口 10.3 C(33) rn — ν〇od ! C(39) οο C (45) 200 灭1 &gt;15 D(3) Thermal decomposition type foaming agent 1 Thermal decomposition type foaming agent 2 Thermal decomposition type foaming agent 3 Polystyrene particle cracking (μτη) Carbon nanotube protruding length ( Ιηη) N i έ m KTVf 缌s &lt;N 6 1 M paste luminescence uniformity (%) (8) Thermal decomposition type foaming agent 201137061

【寸巡 發光的 均勻性 &lt; &lt; C &lt; &lt; &lt; &lt; ΓΜ I u 1锻? 〇 n &gt; m g 棚 VO 〇6 00 〇0 00 VO 〇〇 〇〇 〇 物質名/糊中濃度 偶氮二甲醯胺/2wt% 第三丁基過氧月桂酸酯/2wt% 四丙二醇二甲基丙烯酸酯/2wt% 二亞硝基五亞甲基四胺/2wt% 第三己基過氧-2-乙基己酸酯/2wt% -1 丙烯酸環己酯/2wt% 叩’-氧基雙(苯磺醯肼)/2^^% 二苯甲醯基過氧化物/2wt% 丙烯酸正丁酯/2wt% 雙(2-甲基-2-丙烯基)過氧二碳酸酯/3wt% 偶氮二甲醯胺/3 wt% 二烯丙基過氧二碳酸酯/3wt% 二亞硝基五亞甲基四胺/3wt% 雙(2-甲基-2-丙烯氧基乙基過氧)二碳酸酯/3wt% ρ,ρ’-氧基雙(苯擴醯肼)/3wt% 2,2’-偶氮雙[1^(2-丙烯基)-2-甲基丙醯胺]/6评【% 種類 (B)熱分解型發泡劑 (C)中的熱聚合引發劑 (C)中的含乙烯性不飽和基的化合物 (B)熱分解型發泡劑 (C)中的熱聚合引發劑 -1 (C)中的含乙烯性不飽和基的化合物 (B)熱分解型發泡劑 (C)中的熱聚合引發劑 (C)中的含乙烯性不飽和基的化合物 (C)中的含乙烯14不飽和基的熱聚合引發劑 (B)熱分解型發泡劑 (C)中的含乙烯性不飽和基的熱聚合引發劑 (B)熱分解型發泡劑 (C)中的含乙烯性不飽和基的熱聚合引發劑 (B)熱分解型發泡劑 (D)兼任熱分解型發泡劑之含乙烯性不飽和基的熱聚 合引發劑 實施例 卜 00 〇\ (N — e1? 201137061 【5嗽】 發光的 均勻性 &lt; &lt; &lt; &lt; &lt; . ΐ| iu SI s» as 〇 — — 〇\ 寸 00 — 物質名/糊中濃度 偶氮二甲醯胺/2wt% 第三丁基過氧月桂酸酯/2wt% 四丙二醇二甲基丙烯酸酯/2wt% 雙(乙醯丙酮)辞(H)/9Wt% 偶氮二甲醯胺/2wt% 第三丁基過氧月桂酸酯/2wt% 四丙二醇二甲基丙烯酸酯/2wt% 鹼式碳酸鎂、重質/9wt% 偶氮二甲醯胺/2wt% 第三丁基過氧月桂酸酯/2wt% 四丙二醇二甲基丙烯酸酯/2wt% 硝酸鎂六水合物/9wt% 偶氮二甲醯胺/2wt% !第三丁基過氧月桂酸酯/2wt% i四丙二P二甲基丙烯酸酯/2wt% 硫酸鎂七水合物/9wt% 偶氮二甲醯胺/2wt% 第三丁基過氧月桂酸酯/2wt°/〇 四丙二醇二甲基丙烯酸酯/2wt% 氫氧化鎂/9wt°/〇 種類 (B)熱分解型發泡劑 (C)中的熱聚合引發劑 (C)中的含乙烯性不飽和基的化合物 (C)中的殘留性化合物 (B)熱分解型發泡劑 (C)中的熱聚合引發劑 (C)中的含乙烯性不飽和基的化合物 (C)中的殘留性化合物 (B)熱分解型發泡劑 (C)中的熱聚合引發劑 (C)中的含乙烯性不飽和基的化合物 (C)中的殘留性化合物 !(B)熱分解型發泡劑 /C)中的熱聚合引發劑 (C)中的含乙烯性不飽和基的化合物 (C)中的殘留性化合物 (B)熱分解型發泡劑 (C)中的熱聚合引發劑 (C)中的含乙烯性不飽和基的化合物 (C)中的殘留性化合物 實施例 00 &lt;s 201137061 【9® 發光的 均勻性 &lt; &lt; &lt; &lt; &lt; s fN a O O 面 删 電場強度(ν/μΙΏ) uS Os P 寸· 、 卜 寸 物質名/糊中濃度 雙(2-甲基-2-丙烯基)過氧二碳酸酯/3wt% 偶氮二甲醯胺/3wt% 雙(乙醯丙酮煎II)/9wt% 雙(2_甲基^_過氧二碳酸酯/3wt% 偶氮二甲醒胺/3 wt% 鹼式碳酸鎂、重質/9wt% 雙(2-甲基-2-丙稀基)過氧二碳酸酯/3wt% 偶氮二甲醯胺/3 wt% 硝酸鎂六水合物/9wt% 雙(2-甲基-2-丙烯基)過氧二碳酸酯/3wt% 偶氮二甲醯胺/3wt% 硫酸鎂七水合物/9wt% 雙(2-甲基-2-丙烯基)過氧二碳酸酯/3wt% 偶氮二甲醯胺/3wt% 氫氧化鎂/9wt% 種類 (C)中的含乙烯性不飽和基的熱聚合引發劑 (B)熱分解型發泡劑 (C)中的殘留性化合物 (C)中的含乙烯性不飽和基的熱聚合引發劑 (B)熱分解型發泡劑 (C)中的殘留性化合物 (C)中的含乙烯性不飽和基的熱聚合引發劑 (B)熱分解型發泡劑 (C)中的殘留性化合物 (C)中的含乙烯性不飽和基的熱聚合引發劑 (B)熱分解型發泡劑 (C)中的殘留性化合物 (C)中的含乙烯性不飽和基的熱聚合弓丨發劑 (B)熱分解型發泡劑 (C)中的殘留性化合物 實施例 3 &lt;N m ώ- 201137061[Inch luminescence uniformity &lt;&lt; C &lt;&lt;&lt;&lt; ΓΜ I u 1 forging? 〇n &gt; mg shed VO 〇6 00 〇0 00 VO 〇〇〇〇〇 substance name / paste concentration azo dimethyl hydrazine / 2 wt% t-butyl peroxy laurate / 2 wt% tetrapropylene glycol Acrylate/2wt% dinitrosopentamethylenetetramine/2wt% third hexylperoxy-2-ethylhexanoate/2wt% -1 cyclohexyl acrylate / 2wt% 叩'-oxyl double (Benzene sulfonium)/2^^% Dibenylhydrazine peroxide/2wt% n-butyl acrylate/2wt% bis(2-methyl-2-propenyl)peroxydicarbonate/3wt% Nitromime/3 wt% diallyl peroxydicarbonate/3 wt% dinitrosopentamethylenetetramine/3 wt% bis(2-methyl-2-propoxyethyl peroxyl) Dicarbonate/3wt% ρ,ρ'-oxybis(benzene dilatide)/3wt% 2,2'-azobis[1^(2-propenyl)-2-methylpropionamide] /6 evaluation [% type (B) thermal decomposition type blowing agent (C) in the thermal polymerization initiator (C) containing ethylenically unsaturated group-containing compound (B) thermal decomposition type blowing agent (C) Thermal polymerization initiator-1 (C) ethylenically unsaturated group-containing compound (B) thermal decomposition type blowing agent (C) thermal polymerization initiator (C) containing ethylenically unsaturated group Compound (C) Thermal polymerization initiator containing ethylene 14 unsaturated group (B) Thermal decomposition initiator containing ethylenic unsaturated group in thermal decomposition type foaming agent (C) (B) Thermal decomposition type foaming agent (C) Thermal polymerization initiator containing ethylenically unsaturated group (B) Thermal decomposition type foaming agent (D) Thermal reaction initiator containing ethylenically unsaturated group as thermal decomposition type foaming agent Example 00 〇\ ( N — e1? 201137061 【5嗽】 Uniformity of luminescence&lt;&lt;&lt;&lt;&lt; . ΐ| iu SI s» as 〇 — — 〇 00 — substance name / paste concentration azo dimethyl hydrazine Amine / 2 wt% T-butyl peroxylaurate / 2 wt% Tetrapropylene glycol dimethacrylate / 2 wt% Bis (acetamidine) Word (H) / 9 Wt% Azodimethylamine / 2 wt% Third Butylperoxylaurate/2wt% tetrapropylene glycol dimethacrylate/2wt% basic magnesium carbonate, heavy/9wt% azomethicamine/2wt% tert-butylperoxylaurate/2wt % Tetrapropylene glycol dimethacrylate/2wt% Magnesium nitrate hexahydrate / 9wt% azo dimethyl hydrazine / 2wt% ! Third butyl peroxylaurate / 2wt% i tetrapropylene di P methacrylic acid Ester/2wt% magnesium sulfate heptahydrate / 9wt% Nitromimeamine/2wt% Tert-butylperoxylaurate/2wt°/〇tetrapropylene glycol dimethacrylate/2wt% Magnesium hydroxide/9wt°/〇 type (B) Thermal decomposition type foaming agent Residual compound in the ethylenically unsaturated group-containing compound (C) in the thermal polymerization initiator (C) (B) Thermal polymerization initiator in the thermal decomposition type blowing agent (C) (C) Residual compound in the ethylenically unsaturated group-containing compound (C) (B) The ethylenically unsaturated group-containing compound in the thermal polymerization initiator (C) in the thermally decomposable foaming agent (C) Residual compound in (C)! (B) Residual compound (C) in the ethylenically unsaturated group-containing compound (C) in the thermal polymerization initiator (C) in the thermal decomposition type foaming agent /C) Residual compound in the ethylenically unsaturated group-containing compound (C) in the thermal polymerization initiator (C) in the thermal decomposition type foaming agent (C) Example 00 &lt;s 201137061 [9® Uniform luminescence Sex &lt;&lt;&lt;&lt;&lt;&lt;&lt; s fN a OO Face-cut electric field strength (ν / μΙΏ) uS Os P inch ·, Bu inch substance name / paste concentration bis (2-methyl-2-propenyl) Oxydicarbonate / 3wt% azomethamine / 3wt% bis (acetamidine acetone II) / 9wt% bis (2_methyl^_peroxydicarbonate / 3wt% azomethine / 3 wt% basic magnesium carbonate, heavy/9wt% bis(2-methyl-2-propyl)peroxydicarbonate/3wt% azomethicamine/3 wt% magnesium nitrate hexahydrate/ 9wt% bis(2-methyl-2-propenyl)peroxydicarbonate/3wt% azomethicamine/3wt% magnesium sulfate heptahydrate/9wt% bis(2-methyl-2-propenyl) Peroxydicarbonate/3wt% azomethicamine/3wt% Magnesium hydroxide/9wt% Thermal polymerization initiator containing ethylenically unsaturated group in type (C) (B) Thermal decomposition type foaming agent The ethylenic unsaturated group-containing thermal polymerization initiator in the residual compound (C) (B) The ethylenic property in the residual compound (C) in the thermally decomposable foaming agent (C) Thermal polymerization initiator of saturated group (B) Thermal polymerization initiator containing ethylenically unsaturated group in residual compound (C) in thermal decomposition type foaming agent (C) (B) Thermal decomposition type foaming agent ( Residue in the thermal decomposition-type foaming agent (C) containing an ethylenically unsaturated group in the residual compound (C) in C) Compound of Example 3 &lt; N m ώ- 201137061

【卜® 發光的 均勻性 &lt; &lt; &lt; &lt; &lt; S 2 1 1 &gt; 5联 Jg ϋ in 〇\ 00 ΓΟ 寸· ν〇 rS 物質名/糊中濃度 2,2’-偶氮雙[^2-丙烯基)-2-甲基丙醯胺]/6研% 雙(乙醯丙酮)鋅(II)/9wt% 2,2’-偶氮雙[N-(2-丙烯基)-2-甲基丙醯胺]/6wt% 鹼式碳酸鎂,重質/9wt% 2,2’-偶氮雙[N-(2-丙烯基)-2-甲基丙醯胺]/6wt% 硝酸鎂六水合物/9wt% 2,2’-偶氮雙[Ν-(2-丙烯基)-2-甲基丙醯胺]/6wt% 硫酸鎂七水合物/9wt% 2,2’-偶氮雙[N-(2-丙烯基)-2-甲基丙醯胺]/6wt% 氫氧化鎂/9wt% 種類 · S 稍 &lt;55 Κ~ m 轂 K) 蘅 餾 到 5 m δ π ϊ &lt;ίπ 赞齡 w ^ (C)中的殘留性化合物 S 稍 &lt;5S K- KI 蘅 饀 到 Φ | 瘉一 UJ on $ (C)中的殘留性化合物 S &lt;5s If K) 釦 蘅 餾 到 |1 山on 2 4q 變與 0/ ^ (C)中的殘留性化合物 S 拍 &lt;to κ~ 线 Κ] &lt;(rn 蘅 餾 到 11 t跋 (C)中的殘留性化合物 S JSD tv a Κ] &lt;ra 蘅 m 副 山nr&gt; ϊ| w綠 (C)中的殘留性化合物 實施例 «Ο m v〇 00 CO -9ς- 201137061[Bu® uniformity of luminescence &lt;&lt;&lt;&lt;&lt; S 2 1 1 &gt; 5 Jg ϋ in 〇 00 ΓΟ 寸 · ν〇rS substance name / paste concentration 2,2'-azo Bis[^2-propenyl]-2-methylpropanamide]/6 research % bis(acetonitrile)zinc(II)/9wt% 2,2'-azobis[N-(2-propenyl) )-2-methylpropionamide]/6wt% basic magnesium carbonate, heavy/9wt% 2,2'-azobis[N-(2-propenyl)-2-methylpropionamide]/ 6wt% magnesium nitrate hexahydrate/9wt% 2,2'-azobis[Ν-(2-propenyl)-2-methylpropionamide]/6wt% magnesium sulfate heptahydrate/9wt% 2,2 '-Azobis[N-(2-propenyl)-2-methylpropionamide]/6wt% Magnesium hydroxide/9wt% Species · S Slightly &lt;55 Κ~ m Hub K) Distillation to 5 m δ π ϊ &lt;ίπ 赞度 w ^ (C) Residual compound S Slightly &lt;5S K- KI 蘅饀 to Φ | More than UJ on $ (C) Residual compound S &lt;5s If K ) Derivative distillation to |1 mountain on 2 4q change and 0/ ^ (C) Residual compound S 拍&lt;to κ~ Κ] &lt;(rn retort to 11 t跋(C) Compound S JSD tv a Κ] &lt;ra 蘅m deputy mountain nr> ϊ| implementation of residual compounds in w green (C) «Ο m v〇 00 CO -9ς- 201137061

s i? Q Q Q U ο 餾 ϋ s (N a O &gt; 5. &gt; (N &gt;16 IT) VO rn i m ^H Λ ί—&lt; o •ίΠί SR 面 删 &gt; VO ε _ ο ο 屮 &amp; 寒 % VO Sf m 1 i w m Ό i 氍 域 砮 % m i 氍 氍 遐 53 氍 助 K ti E v〇 爾 m 盤 祕 &amp; g 祕 a- m 11 ΚΛ 11 E- I | 稍 鮏 1 1 S m U&gt; \ \ 臧 ΠΙ 1 1 r CO HI II E mI7&gt; TO. 她 a 濉 a 鬆 4π &lt;ίπ 駿 timil 蘅 4β 稍 W 蘅 蘅 J5Q &lt;5ϊ 餾 an &lt;55 m κ~ 到 Κ- HF 毖 &lt;Π 迪 &lt;Sn 褰 Φ Ν3 i= K) m &lt;ffl 鎰 卜 〇〇 OS Ο J_J 201137061 φ__ 【6^】 實施例45 〇 1000 3000 〇 〇〇 200 1000 〇 900 1000 19.9 (Ν Α(93) 實施例44 〇 1000 3000 00 200 1000 〇 1—^ 〇 σ\ 18.6 Os 寸· oo Α(90) 實施例43 〇 1000 3000 〇 00 200 2000 〇 17.9 — (Ν CN Α(90) 實施例42 Ο 1000 i 1 3000 沄 00 200 2000 2000 22.5 Os 寸 Α(96) 實施例41 Ο 1000 3000 850 j 200 1500 1500 20.1 々 Α(94) ! 實施例40 ο 1000 3000 〇〇 200 1000 1000 1 19.3 Ο oi Α(93) 實施例39 ο ψ-^ 1000 3000 850 200 500 1000 17.8 — m &lt;Ν Α(91) 2層碳奈米管 有機黏結劑 溶劑 玻璃粉末 導電性粒子 熱分解型發泡劑1 12μπι品 熱聚合引發劑1 含乙烯性不飽和基的化合物1 金屬碳酸鹽1 龜裂(μιη) 碳奈米管突出長度(μτη) /—Ν ί -tni ϋ1 £ &lt;Ν ε ο 1 面 删 發光均勻性(%) (Α)電子放射材料 有機成分 無讎末 (Β)熱分解型發泡劑 (C)中的消失性龜裂產生劑 (C)中的殘留性化合物 201137061 iw01 s 實施例49 〇 1000 3000 850 200 200 500 29.1 OO CN cn C(47) 實施例48 〇 1000 3000 850 l 200 200 500 21.4 卜 &lt;N ν〇 ΓΛ B(72) 實施例47 〇 1000 3000 oo 200 200 〇 cn σ; CN Ο — A(81) 實施例46 〇 1000 3000 850 200 200 500 κη OO A(80) 2層碳奈米管 有機黏結劑 溶劑 玻璃粉末 導電性粒子 熱分解型發泡劑1 Ι.Ομηι品 熱分解型發泡劑1 6.0μη品 熱分解型發泡劑1 18μηι品 熱分解型發泡劑1 25μηι品 金屬碳酸鹽1 龜裂(μηι) 碳奈米管突出長度(μιη) /—Ν ί Ε m m 豳 n s ΓΊ B O ί 删 發光均勻性(%) (A)電子放射材料 ί I 1 1 (Β)熱分解型發泡劑 (C)中的殘留性化合物 -6W-I- 201137061 【圖式簡單說明】 第1圖係本發明的電子放射源之截面模型圖。 第2圖係已發生龜裂的電子放射源之電子顯微鏡照片 〇 第3圖係突出本發明的電子放射源所產生的龜裂面之 碳奈米管的電子顯微鏡照片。 第4圖係已發生龜裂的電子放射源之光學顯微鏡照片 〇 第5圖係突出本發明的電子放射源所產生的龜裂面之 碳奈米管的電子顯微鏡照片。 第6圖係已發生龜裂的電子放射源之電子顯微鏡照片 〇 【主要元件符號說明】 1 在電子放射源所產生的龜裂 2 突出的碳奈米管 3 龜裂寬度 4 電子放射源 5 陰極基板 6 龜裂 7 突出的碳奈米管 _ · -60-Si? QQQU ο ϋ ϋ s (N a O &gt; 5. &gt; (N &gt; 16 IT) VO rn im ^H Λ ί—&lt; o • ίΠί SR face deletion &gt; VO ε _ ο ο 屮 &amp; %% VO Sf m 1 iwm Ό i 氍域砮% mi 氍氍遐53 K助 K ti E v〇尔 m disk secret &amp; g secret a- m 11 ΚΛ 11 E- I | 鮏1 1 S m U&gt ; \ \ 臧ΠΙ 1 1 r CO HI II E mI7&gt; TO. She a 濉a 松4π &lt;ίπ 骏 timil 蘅4β Slightly W 蘅蘅J5Q &lt;5ϊ Distillation an &lt;55 m κ~ to Κ- HF 毖&lt;Π迪&lt;Sn 褰Φ Ν3 i= K) m &lt;ffl 镒 〇〇 OS Ο J_J 201137061 φ__ [6^] Example 45 〇1000 3000 〇〇〇200 1000 〇900 1000 19.9 (Ν Α( 93) Example 44 〇1000 3000 00 200 1000 〇1—^ 〇σ\ 18.6 Os inch·oo Α(90) Example 43 〇1000 3000 〇00 200 2000 〇17.9 — (Ν CN Α(90) Example 42 Ο 1000 i 1 3000 沄00 2 00 2000 2000 22.5 Os inch (96) Example 41 Ο 1000 3000 850 j 200 1500 1500 20.1 々Α (94) ! Example 40 ο 1000 3000 〇〇200 1000 1000 1 19.3 Ο oi Α (93) Example 39 ο ψ-^ 1000 3000 850 200 500 1000 17.8 — m &lt;Ν Α(91) 2 layers of carbon nanotubes organic binder solvent glass powder conductive particles thermal decomposition type foaming agent 1 12μπι thermal polymerization initiator 1 Ethylene-unsaturated compound 1 metal carbonate 1 crack (μιη) carbon nanotube protrusion length (μτη) /—Ν ί -tni ϋ1 £ &lt;Ν ε ο 1 face-cut uniformity (%) (Α Residual compound in the disappearing crack generating agent (C) in the organic component of the electron-emitting material without the end-cracking (Β) thermal decomposition type foaming agent (C) 201137061 iw01 s Example 49 〇1000 3000 850 200 200 500 29.1 OO CN cn C(47) Example 48 〇1000 3000 850 l 200 200 500 21.4 卜&lt;N ν〇ΓΛ B(72) Example 47 〇1000 3000 oo 200 200 〇cn σ; CN Ο — A(81 Example 46 〇1000 3000 850 200 200 500 κη OO A(80) 2-layer carbon nanotube organic Peptide solvent glass powder conductive particles thermal decomposition type foaming agent 1 Ι.Οηηι thermal decomposition type foaming agent 1 6.0μη thermal decomposition type foaming agent 1 18μηι thermal decomposition type foaming agent 1 25μηι metal carbonate 1 Crack (μηι) Carbon nanotube protrusion length (μιη) /—Ν ί Ε mm 豳ns ΓΊ BO ί Emission uniformity (%) (A) Electron radiation material ί I 1 1 (Β) Thermal decomposition type Residual compound in the foaming agent (C)-6W-I-201137061 [Simplified description of the drawings] Fig. 1 is a cross-sectional model diagram of the electron emitting source of the present invention. Fig. 2 is an electron micrograph of an electron emission source in which cracks have occurred. Fig. 3 is an electron micrograph showing a carbon nanotube of a crack surface generated by the electron emission source of the present invention. Fig. 4 is an optical micrograph of an electron emission source in which cracking has occurred. Fig. 5 is an electron micrograph showing a carbon nanotube which protrudes from a crack surface generated by the electron emission source of the present invention. Fig. 6 is an electron micrograph of an electron source that has cracked. [Key element symbol description] 1 Crack generated in an electron source 2 Carbon nanotubes protruding 3 Crack width 4 Electron source 5 Cathode Substrate 6 Crack 7 protruding carbon nanotube _ · -60-

Claims (1)

201137061 七、申請專利範圍: 1. 一種電子放射源用糊,其含有(A)電子放射材料、(8)熱 分解型發泡劑及(C)在熱分解時產生收縮應力的成分。 2. 如申請專利範圍第1項之電子放射源用糊,其中該(C) 成分係在l〇〇°C以上5 00°C以下熱分解的化合物。 3 ·如申請專利範圍第1或2項之電子放射源用糊,其中該 (C)成分含有選自由金屬鹽、有機金屬化合物、金屬錯 合物、矽烷偶合劑及鈦偶合劑所組成之群組中的至少一 種以上之物質。 4 ·如申請專利範圍第1或2項之電子放射源用糊,其中該 (C)成分含有熱聚合引發劑及含乙烯性不飽和基的化合 物。 5 .如申請專利範圍第1或2項之電子放射源用糊,其中該 (C)成分含有含乙烯性不飽和基的熱聚合引發劑。 6. —種電子放射源用糊,其含有(A)電子放射材料及(D)作 爲熱分解型發泡劑之機能且具有乙烯性不飽和基的熱聚 合引發劑。 7. 如申請專利範圍第1至6項中任一項之電子放射源用 糊,其係用於製作具有龜裂的電子放射源。 8. 如申請專利範圍第1至7項中任一項之電子放射源用 糊,其更含有無機粉末。 9. 如申請專利範圍第1至5、7或8項中任一項之電子放 射源用糊,其中該(B)熱分解型發泡劑的熱分解溫度爲 50 ~ 3 00 °C ° -61- 201137061 10·如申請專利範圍第1至5或7至9項中任—項之電子 放射源用糊,其中該(Β)熱分解型發泡劑的平均粒徑爲 1.0 〜25μπι。 11·如申請專利範圍第1至5或7至10項中任一項之電子 放射源用糊,其中該(Β)熱分解型發泡劑係選自由偶氮 化合物、亞硝基化合物、醯肼化合物、疊氮化合物、 腙化合物、蜜胺、尿素及二氰胺所組成之群組中的1 或2種以上之物質。 12.如申請專利範圍第6項之電子放射源用糊,其中孽(D) 作爲熱分解型發泡劑之機能且含有乙烯性不飽和基的 熱聚合引發劑之熱分解溫度爲50〜3 00 °C。 1 3 .如申請專利範圍第6項之電子放射源用糊,其中該(D) 作爲熱分解型發泡劑之機能且含有乙烯性不飽和基的 熱聚合引發劑之平均粒徑爲1.0〜25μηι。 14. 如申請專利範圍第6項之電子放射源用糊,其中該(D) 作爲熱分解型發泡劑之機能且含有乙烯性不飽和基的 熱聚合引發劑係選自由偶氮化合物、亞硝基化合物、 酸肼化合物、疊氮化合物、腙化合物所組成之群組中 的1或2種以上之物質。 15. 如申請專利範圍第4至I*項中任一項之電子放射源用 糊’其更含有選自由金屬鹽、有機金屬化合物、金屬 錯合物 '砂烷偶合劑及鈦偶合劑所組成之群組中的至 少一種以上之物質。 -62- 201137061 中 項之電子放射源用糊’其 1 6項之電子放射源用糊 1 6 .如申請專利範圍第3或1 5 該金屬鹽含有金屬碳酸鹽。 1 7 .如申請專利範圍第3、1 5 $ 其中該金屬鹽含有鎂。 18· 一種電子放射源’其係將如申請專利範圍第i至 中任一 I頁2電子放射源用_冑處理而製冑2電子放射 源,具有龜裂,電子放射材料自龜裂面突出。 1 9 . 一種電子放射元件,其係將λ 將如申請專利範圍第1至17 項中任一項之電子放射源闲細 % @用糊熱處理而製造之電子放 射元件’具有龜裂,雷子协紐 电于放射材料自龜裂面突出。 2 0 . 一種製造電子放射游今卡吐 源之方法’其係將如申請專利範圍 第1至17項中任〜項 貝之電子放射源用糊熱處理,而具 有龜裂,電子放射材料自龜裂面突出。 -63-201137061 VII. Patent application scope: 1. A paste for an electron source comprising (A) an electron emitting material, (8) a thermally decomposable foaming agent, and (C) a component which generates a shrinkage stress upon thermal decomposition. 2. The paste for an electron source according to the first aspect of the patent application, wherein the component (C) is a compound which is thermally decomposed at a temperature above 100 ° C and below 500 ° C. 3. The paste for an electron source according to claim 1 or 2, wherein the component (C) contains a group selected from the group consisting of a metal salt, an organometallic compound, a metal complex, a decane coupling agent, and a titanium coupling agent. At least one or more substances in the group. 4. The paste for an electron emissive source according to claim 1 or 2, wherein the component (C) contains a thermal polymerization initiator and a compound containing an ethylenically unsaturated group. 5. The paste for an electron source according to claim 1 or 2, wherein the component (C) contains a thermal polymerization initiator containing an ethylenically unsaturated group. A paste for an electron source comprising (A) an electron emitting material and (D) a thermal polymerization initiator having a function as a thermally decomposable foaming agent and having an ethylenically unsaturated group. 7. The paste for an electron source according to any one of claims 1 to 6, which is used for producing an electron source having cracks. 8. The paste for an electron source according to any one of claims 1 to 7, which further contains an inorganic powder. 9. The paste for an electron emissive source according to any one of claims 1 to 5, 7 or 8, wherein the thermal decomposition temperature of the (B) thermally decomposable foaming agent is 50 to 300 ° C ° - The paste for an electron source according to any one of claims 1 to 5 or 7 to 9, wherein the (Β) thermally decomposable foaming agent has an average particle diameter of 1.0 to 25 μm. The paste for an electron source according to any one of claims 1 to 5 or 7 to 10, wherein the (Β) thermally decomposable foaming agent is selected from the group consisting of an azo compound, a nitroso compound, and an anthracene. One or more of the group consisting of a ruthenium compound, an azide compound, an anthraquinone compound, melamine, urea, and dicyanamide. 12. The paste for an electron source according to claim 6, wherein the thermal decomposition temperature of the thermal polymerization initiator having the function of the thermal decomposition type foaming agent and containing an ethylenically unsaturated group is 50 to 3 00 °C. 1 3 . The paste for an electron source according to claim 6, wherein the (D) is a thermal decomposition type foaming agent and the average particle diameter of the thermal polymerization initiator containing an ethylenically unsaturated group is 1.0 to 1. 25μηι. 14. The paste for an electron emissive source according to claim 6, wherein the (D) is a thermal decomposition type blowing agent and the thermal polymerization initiator containing an ethylenically unsaturated group is selected from the group consisting of an azo compound, and a sub One or two or more substances selected from the group consisting of a nitro compound, an acid hydrazine compound, an azide compound, and an oxime compound. 15. The paste for an electron emission source according to any one of claims 4 to 4, which further comprises a metal salt, an organometallic compound, a metal complex, a squalane coupling agent and a titanium coupling agent. At least one or more substances in the group. -62- 201137061 The paste for electron source of the present invention is a paste of the electron source of the group of 16. The metal salt of the metal salt is contained in the metal salt of the metal salt. 1 7. As claimed in the patent scope 3, 1 5 $ wherein the metal salt contains magnesium. 18· An electron radiation source' is a method for preparing an electron emission source by using an electron emission source according to any one of the first to second pages of the patent application range, having a crack, and the electron emission material protrudes from the crack surface. . 1 9 . An electron emitting element which is characterized in that the electron emitting element of the electron emitting source of any one of claims 1 to 17 of the patent application has an irregularity. The neon electrons protrude from the cracked surface of the radioactive material. 2 0. A method for manufacturing an electron-emitting radioactive card source, which is heat-treated with a paste for an electron source according to any one of claims 1 to 17 of the patent application, and has cracks and electron-emitting materials from the turtle The crack is prominent. -63-
TW100104256A 2010-03-02 2011-02-09 Paste for electron emitting source, electron emitting source using the same and method for producing them TW201137061A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010045036 2010-03-02
JP2010074297 2010-03-29

Publications (1)

Publication Number Publication Date
TW201137061A true TW201137061A (en) 2011-11-01

Family

ID=44542004

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100104256A TW201137061A (en) 2010-03-02 2011-02-09 Paste for electron emitting source, electron emitting source using the same and method for producing them

Country Status (3)

Country Link
JP (1) JPWO2011108338A1 (en)
TW (1) TW201137061A (en)
WO (1) WO2011108338A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400076A (en) * 2018-01-30 2018-08-14 华东师范大学 A method of vacuum filtration improves field emission performance of carbon nano tube film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101564456B1 (en) * 2013-11-28 2015-10-29 고려대학교 산학협력단 Field emitter device, method for fabricating paste, and method for forming thin film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4069532B2 (en) * 1999-01-11 2008-04-02 松下電器産業株式会社 Carbon ink, electron-emitting device, method for manufacturing electron-emitting device, and image display device
JP4043153B2 (en) * 1999-07-30 2008-02-06 双葉電子工業株式会社 Electron emission source manufacturing method, emitter substrate manufacturing method, electron emission source, and fluorescent light emitting display
JP5272349B2 (en) * 2007-02-26 2013-08-28 東レ株式会社 Electron emission source paste and electron-emitting device
KR20100036920A (en) * 2008-09-30 2010-04-08 삼성전자주식회사 Composition for forming electron emission source, emitter formed therefrom, manufacturing method thereof, and field emission device employing the same
CN102473564B (en) * 2009-08-11 2015-09-02 东丽株式会社 Paste for electron emission source and electron emission source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400076A (en) * 2018-01-30 2018-08-14 华东师范大学 A method of vacuum filtration improves field emission performance of carbon nano tube film

Also Published As

Publication number Publication date
WO2011108338A1 (en) 2011-09-09
JPWO2011108338A1 (en) 2013-06-24

Similar Documents

Publication Publication Date Title
TWI499647B (en) Transparent conductive ink and production method of transparent conductive pattern
US7449082B2 (en) Process for improving the emissions of electron field emitters
JP5006756B2 (en) CNT emitter manufacturing method
US20050231091A1 (en) Process for improving the emission of electron field emitters
CN1805099A (en) Photosensitive paste composition, PDP electrode manufactured using the composition, and PDP including the PDP electrode
JP5272349B2 (en) Electron emission source paste and electron-emitting device
TW200800400A (en) Method for producing powders by using grinding media
JP2005183370A (en) Forming method of carbon nanotube emitter
CN1702805A (en) Method for forming electron emission source for electron emission device and electron emission device using the same
JP2008243789A5 (en)
JP4096186B2 (en) Field electron emission electrode ink and method of manufacturing field electron emission film, field electron emission electrode and field electron emission display device using the same
JP2010519416A (en) Method for electrochemical deposition of carbon nanotubes
TW201137061A (en) Paste for electron emitting source, electron emitting source using the same and method for producing them
TWI550674B (en) Electron emission source, electron emission device and method for manufacturing electron emission source
JP2009062524A (en) Conductive ink for offset printing and method for manufacturing electrode substrate for plasma display panel using it
TWI494271B (en) Paste for electron emission source, electron emission source using the same and electron emission element and method for producing the same
TW201810294A (en) Method of forming transparent conductive pattern
JP2009205943A (en) Manufacturing method of electron emission source
JP2009117360A (en) Boron nitride nanotube paste composition, electron emitting source manufactured using the same, electron emitting element including the same, and backlight device and electron emitting display device applying the same
JP2012124086A (en) Method for manufacturing electron emitting element and light emitting deceive including the same
JP2011204675A (en) Paste for electron emission source, electron emission source and electron emission element using the same, and these manufacturing methods
KR20140142200A (en) Carbon nanotube paste for field emission device, Emitter using the same and Field emission device using the same
JP2005302607A (en) Conductive paste for high temperature sintering, conductive adhesion film, and field emission display
JP2012074270A (en) Electron emission source paste
KR20060029733A (en) Emitter structure using edge curl buffer layer and menufacturing method