TW201136129A - Power supply system for driving motor and regeneration method using the same - Google Patents

Power supply system for driving motor and regeneration method using the same Download PDF

Info

Publication number
TW201136129A
TW201136129A TW99135438A TW99135438A TW201136129A TW 201136129 A TW201136129 A TW 201136129A TW 99135438 A TW99135438 A TW 99135438A TW 99135438 A TW99135438 A TW 99135438A TW 201136129 A TW201136129 A TW 201136129A
Authority
TW
Taiwan
Prior art keywords
voltage
circuit
power
regenerative
power supply
Prior art date
Application number
TW99135438A
Other languages
Chinese (zh)
Other versions
TWI509976B (en
Inventor
Yuji Ide
Original Assignee
Sanyo Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009253534A priority Critical patent/JP5166389B2/en
Application filed by Sanyo Electric Co filed Critical Sanyo Electric Co
Publication of TW201136129A publication Critical patent/TW201136129A/en
Application granted granted Critical
Publication of TWI509976B publication Critical patent/TWI509976B/en

Links

Abstract

To provide a power unit for motor drive, which stops power regeneration for switching to resistance regeneration without causing any overcurrent even if instantaneous power failure occurs, and also to provide a regeneration method using the power unit for motor drive. A resistance regenerating circuit RR and a power regenerating circuit PR are used in combination. A conductive signal generation circuit SG does not output a conductive signal to the power regenerating circuit PR when a difference [Delta]V between a DC voltage Vdc of a motor control unit MC and a supply voltage wave height value Vp is large. Thus, even if instantaneous power failure occurs, a source current of the power unit becomes excessive, thus preventing damage of transistors Tr1 to Tr6.

Description

201136129 六、發明說明 【發明所屬之技術領域】 本發明是關於一種具備將電動機所發電的回生電力恢 復成電源的回生功能的電動機驅動用電源裝置及使用該電 源裝置的回生方法。 【先前技術】 有將橋接的電晶體利用三相交流電源的相位的1 20°區 間別地予以開關(s w i t c h i n g )進行控制的轉換器(c ο n v e r t e r ) 俾將電動機的回生電力恢復成電源的電動機驅動用電源裝 置。第3圖是表示此種習知的電動機驅動用電源裝置的構 成。電動機驅動用電源裝置是由:AC電抗器ACL與6個 電晶體,6個二極體,以及檢測出三相交流電源的相位的 相位檢測電路與驅動6個電晶體的閘控信號製作電路所構 成,配置於三相交流電源與電動機控制裝置之間。電動機 進行功率運轉時,6個電晶體的閘極是成爲斷開狀態。這 時候,從三相交流電源所輸入的三相交流電流是經並聯連 接於6個電晶體的6個二極體進行著三相全波整流,而有 直流電流被供應至電動機控制裝置。電動機控制裝置是包 括:在功率運轉時將直流電流變換成交流電流,而在回生 時將以電動機Μ所發電的交流電流逆變換成直流電流的 轉換器電路。在回生時,自電動機Μ有電力恢復,當電 動機控制裝置的直流部的電壓上昇,則以利用相位檢測電 路所檢測的三相交流電源的相位作爲基礎,如第4圖所示 -5- 201136129 地依次導通6個電晶體的閘極,而於三相交流電源的各相 流著電流俾將直流部的電力返還至三相交流電源。將6個 電晶體分別作成導通的區間,是關於上側的相(回生電壓 成爲正的相),各相的電源電壓比其他相的電源電壓還要 高1 2 0 °的區間’而關於下側的相(回生電壓成爲負的相), 各相的電源電壓比其他相的電源電壓還要低120°的區間。 又,習知是如日本特開2004- 1 54961號公報(專利文 獻1)所示地,在來自電動機的瞬時回生電力大時,進行 著倂用電源回生與電阻回生的情形。第5圖是表示倂用專 利文獻1所示的電阻回生的電源回生裝置者。在專利文獻 1的裝置中,如第5圖所示地,於電源回生電路26並聯 地設有電阻回生電路28。如此,電動機減速時,當反相 器(inverter)34的直流電壓達到事先設定的第1電壓(VI) 時則把電源回生電路2 6予以動作,而當直流電壓達到比 事先設定的第1電壓(VI)還要高的第2電壓(V2)時則把電 阻回生電路28予以動作。此動作是利用開關控制手段24 來實行。 (先前技術文獻) (專利文獻) 專利文獻1:日本特開2004-154961號公報 【發明內容】 (發明所欲解決之課題) ⑧ -6- 201136129 在倂用如第5圖所示的電阻回生與電源回生的電動機 驅動用電源裝置,於電源回生中發生瞬時停電時,由於交 流電源電壓變低,因此電源回生電流變過大。因此,視狀 況會發生表示過電流的警報,有損壞爲了電源回生而進行 動作的轉換器電路所使用的電晶體的情形。又,在發生瞬 時停電時電阻回生進行動作之狀態下,當電源恢復,則成 爲反相器的直流電壓爲較高的狀態。此時若進行電源回 生,則電源回生電流成爲過大而發生表示過電流的警報, 而有損壞電晶體的情形。 本發明是鑑於此種情形而創作者,本發明的目的是在 於提供一種即使發生瞬時停電時,也不會成爲過電流就停 止電源回生而切換成電阻回生的電動機驅動用電源裝置及 使用該裝置的回生方法。 除上述目的以外,本發明的其他目的是在於提供一種 即使自瞬時停電恢復時,也不會成爲過電流而可從電阻回 生移行至電源回生的電動機驅動用電源裝置及使用該裝置 的回生方法。 (用以解決課題之手段) 本發明的電動機驅動用電源裝置是具備電源電路、及 回生電阻電路、及導通信號發生電路。電源電路是具有: 將來自交流電源的交流電流變換成直流電流而於電動機控 制裝置供應直流電力的整流功能;及將自電動機控制裝置 側被回生的回生電力,使用具備複數半導體開關元件的轉 201136129 換器電路來回生在交流電源的回生功能。回生電阻電路是 構成爲:由回生電阻與開關電路的串聯電路所構成,被設 置於電源電路的直流輸出端子間,利用將開關電路作成導 通狀態俾以上述回生電阻消耗回生電力。導通信號發生電 路是發生在回生時實行電源回生之際用以控制轉換器電路 的第1導通信號、及實行電阻回生之際用以控制開關電路 的導通的第2導通信號。 在本發明中,導通信號發生電路是在回生時,當電動 機控制裝置的直流輸入部間的直流電壓與交流電源的電源 電壓波高値之相差電壓,比以瞬時停電作爲基準而事先決 定的基準電壓還要大時,停止第1導通信號的輸出,而將 轉換器電路作成非動作狀態,當停止第1導通信號的輸出 之期間,是輸出第2導通信號。導通信號發生電路是如此 地輸出第1導通信號與第2導通信號,則在發生瞬時停電 時,電源回生被停止而利用電阻回生來實行回生。所以, 利用瞬時停電,即使電動機控制裝置的輸入側的直流電壓 有上昇,也不會有過電流流在實行電源回生的轉換器電路 的半導體開關元件的情形。又在瞬時停電時來實行電阻回 生之故,因而可提供一種具備高信賴性的回生功能的電動 機驅動用電源裝置。 上述基準電壓是以可阻止過電流流在轉換器電路所使 用的半導體開關元件的方式所決定也可以。具體而言,因 應於所使用的半導體開關元件的性能及電源的規格’來決 定基準電壓也可以。 ⑧ -8 - 201136129 導通信號發生電路的構成是可進行上述的動作者可任 意。例如,導通信號發生電路可由:檢測出直流電壓的直 流電壓檢測部;及檢測出交流電源的電源電壓的相位的相 位檢測部;及檢測出交流電源的電源電壓波高値的電源電 壓波高値檢測部;及求出電源電壓波高値與直流電壓的相 差電壓的相差電壓演算部;及指令發生部;及第1導通信 號發生部及第2導通信號發生部所構成。指令發生部是比 較上述相差電壓與基準電壓,當相差電壓爲基準電壓以下 時輸出指令第1導通信號的輸出的輸出指令。又,當相差 電壓爲比基準電壓還要大時輸出指令第1導通信號的輸出 停止的輸出停止指令。又,第1導通信號發生部是依據相 位檢測部所檢測的電源電壓的相位來發生第1導通指令, 當輸出指令被輸入時,將第1導通信號輸出至轉換器電 路’當輸出停止指令被輸入,則將第1導通信號輸出至轉 換器電路。又’第2導通信號發生部是當直流電壓成爲事 先決定的第1基準直流電壓以上,則輸出第2導通信號, 而當直流電壓成爲比第1基準直流電壓還要低的事先決定 的第2基準直流電壓以下,則停止第2導通信號的輸出。 導通信號發生電路具有上述的構成,則以較簡單的構成就 可發生控制電源回生的第丨導通信號與控制電阻回生的第 2導通信號。 本發明是可把握作爲上述的電動機用驅動裝置的回生 方法。在本發明的方法中,當在回生時發生瞬時停電,則 停止轉換器電路的動作,而在轉換器電路停止動作之期間 -9 - 201136129 是僅利用回生電阻電路進行回生。因此,即使發生瞬時停 電時,也可實現同時進行構成轉換器電路的半導體開關元 件的保護與控制回生。 即使恢復瞬時停電之後,也有處於直流電壓爲較高的 狀態的情形。於是即使恢復瞬時停電之後,電動機控制裝 置的直流輸入部間的直流電壓與交流電源的電源電壓波高 値之相差電壓,爲比以瞬時停電作爲基準而事先決定的基 準電壓還要大時,也不會重開轉換器電路的動作,僅以回 生電阻電路進行回生。作成如此,可確實地防止過電流流 在轉換器電路的半導體開關元件的情形。 又,恢復瞬時停電之後,電動機控制裝置的直流輸入 部間的直流電壓與交流電源的電源電壓波高値之相差電 壓,爲比以瞬時停電作爲基準而事先決定的基準電壓還要 小時,當然也可倂用電源回生。 【實施方式】 第1圖是表示本發明的電動機驅動用電源裝置的實施 形態的一例子的槪略構成的圖式。於三相交流電源AC連 接有AC電抗器ACL,而於其輸出橋接有作爲6個半導體 開關元件的電晶體Trl〜Tr6而構成轉換器電路CV。又在 6個電晶體Trl〜Tr6,分別並聯連接有6個二極體D1〜 D6。6個二極體D1〜D6,是構成橋接的三相整流電路。 利用橋接的電晶體Trl〜Tr6與一極體D1〜D6,構成著電 源回生電路PR。 -10- 201136129 在轉換器電路CV的直流輸出端子間,並聯連接著回 生電阻R與構成開關電路的電晶體Tr7與二極體D7的並 聯電路的串聯電路。此串聯電路構成電阻回生電路RR。 電阻回生電路RR是藉由將電晶體Tr7(開關電路)作成導 通狀態而以回生電阻R消耗回生電力的方式所構成。 又在轉換器電路CV的直流輸出端子間,並聯連接有 平流電容器C。在平流電容器C的兩端,連接有包括反相 器電路的電動機控制裝置MC。此反相器電路是將直流變 換成交流而於三相交流電動機Μ將所定頻率的三相交流 電流提供作爲電動機電流。反相器電路是當電動機Μ減 速而成爲回生狀態時,則作爲將電動機Μ所發電的交流 電流變換成直流電流的轉換器來進行動作。 在被連接於R相、S相及Τ相的AC電抗器ACL的輸 出側,連接有相位檢測部P D與電源電壓波高値檢測部 VHD。又,設有直流電壓檢測部VD,用以測定平流電容 器C的兩端電壓亦即測定電動機控制裝置M C的輸入側的 直流電壓。 直流電壓檢測部VD、及相位檢測部PD、及電源電壓 波高値檢測部VHD的輸出是被輸入至導通信號發生電路 SG。導通信號發生電路SG是在電動機Μ的功率運轉時 及回生時,會發生用以導通構成電源回生電路PR中的轉 換器的6個電晶體Trl〜Tr6的複數第1導通信號S,及 在回生時發生用以將電阻回生電路RR中的電晶體Tr7作 成導通狀態的第2導通信號S ’。在本實施形態中,導通 -11 - 201136129 信號發生電路SG爲在回生時,當電動機控制裝置MC的 直流輸入部間的直流電壓V d c與交流電源A C的電源電壓 波高値Vp之相差電壓△ V比以瞬時停電作爲基準而事先 決定的基準電壓Vr還要大時,則停止第丨導通信號S的 輸出而將電源回生電路PR中的轉換器電路作成非動作狀 態,而在停止第1導通信號S的輸出之期間,是輸出第2 導通信號S’。在導通信號發生電路SG中,第1導通信號 S是在第1導通信號發生部CS1所生成而被輸出,第2 導通信號S’是在第2導通信號發生部CS2所生成而被輸 出。第1導通信號發生部CS1是可發生例如與表示於第 4圖的既有電源回生電路所使用的閘控信號(導通信號)相 同者。又,爲了得到特定的效果,當然也可將與表示於第 4圖的閘控信號(導通信號)相位些微不相同的第1導通信 號S,作成第1導通信號發生部CS1所發生。 在本實施形態中,導通信號發生電路S G是又具備相 差電壓演算部DV與指令發生部CG。相差電壓演算部DV 是求出電源電壓波高値檢測部VHD所檢測的電源電壓波 高値Vp與直流電壓檢測部VD所檢測的直流電壓Vdc之 相差電壓Δν。指令發生部CG是比較相差電壓AV與基 準電壓Vr,當相差電壓AV爲基準電壓Vr以下時,則輸 出指令第1導通信號S的輸出的輸出指令,而當相差電 壓AV比基準電壓Vr還要大,則發生指令第1導通信號 S的輸出停止的輸出停止指令。第1導通信號發生部CS 1是依據相位檢測部PD所檢測的電源電壓的相位來發生 ⑧ -12- 201136129 第1導通指令S,當輸出指令被輸入時,則將第1導通 信號S輸出至轉換器電路,而當輸出停止指令被輸入 時,則停止將第1導通信號S輸出至轉換器電路的方式 所構成。又第2導通指令發生部CS2是當直流電壓Vdc 成爲事先決定的第1基準直流電壓Vrl以上,則輸出第2 導通信號S’,而當直流電壓Vdc成爲比第1基準直流電 壓V r 1還要低的事先決定的第2基準直流電壓V r 2以下, 則停止第2導通信號S,的輸出的方式所構成。 如此地當導通信號發生電路S G輸出第1導通信號 S與第2導通信號S ’在發生瞬時停電時,則電源回生電 路PR的動作被停止而藉由電阻回生電路RR實行著回 生。所以藉由瞬時停電,即使電動機控制裝置MC的輸入 側的直流電壓Vdc上昇,也不會有過電流流在電源回生電 路PR中的轉換器電路CV的電晶體Trl〜Tr6的情形。又 在瞬時停電時,電阻回生電路RR實行回生動作之故,因 而可維持高信賴性的回生控制。 在瞬時停電恢復之後,亦會有處於直流電壓爲較高的 狀態的情形。因此,指令發生部C G是在瞬時停電恢復之 後,電動機控制裝置的直流輸入部間的直流電壓與交流電 源的電源電壓波高値之相差電壓,爲比以瞬時停電作爲基 準而事先決定的基準電壓還要大時也不會重開轉換器電路 CV的動作,僅以回生電阻電路進行回生的方式,繼續發 出停止指令也可以。作成如此,可確實地防止有過電流流 在轉換器電路的半導體開關元件的情形。又,恢復瞬時停 -13- 201136129 電之後,電動機控制裝置的直流輸入部間的直流電壓與交 流電源的電源電壓波高値之相差電壓,比以瞬時停電作爲 基準事先決定的基準電壓還要小時,當然也可倂用電源回 生。在此情形,例如電源電壓波高値Vp與直流電壓檢測 部VD所檢測的直流電壓Vdc之相差電壓AV成爲比基準 電壓Vr還要低的恢復基準電壓以下時,則指令發生部CG 輸出輸出指令,而作成重開轉換器電路CV的動作就可 以。 以下使用第2圖簡單地說明第〗圖的實施形態的動 作。第2圖是假定在急速減速電動機的途中發生瞬時停電 時的動作波形圖。電動機Μ進行功率運轉時,則電晶體 Trl〜Tr6的閘極是成爲斷開。又,自三相交流電源AC經 並聯連接於電晶體Trl〜Tr6的二極體D1〜D6進行著三 相全波整流,而把電力供應於電動機控制裝置MC。電動 機Μ成爲減速狀態,則成爲回生狀態,回生電力從電動 機Μ回到電源側,使電動機控制裝置MC的直流部的電 壓上昇。又,依據在相位檢測部PD所檢測出的三相交流 電壓的相位,電晶體Trl〜Tr6是在藉由導通信號S1〜S6 所指定的導通期間,成爲導通狀態。結果,回生電流流在 各相而將上昇直流部的電壓的回生電力恢復至電源AC。 若未發生瞬時停電時,藉由回生,當直流電壓Vdc上昇, 則重複電源回生動作。因此,在本實施形態中,通常有電 源回生進行動作。 瞬時停電發生於電源回生中時,如第2(B)圖所示 ⑧ -14- 201136129 地,降低電源電壓波高値V P ’如第2 (c)圖所示地,電動 機控制裝置MC的直流部的直流電壓Vdc會上昇。又,當 直流電壓Vdc與電源電壓波高値Vp之相差成爲基準電壓 Vr以上,則電源回生電路PR中對於構成轉換器電路的電 晶體Tr 1〜Tr6的閘控信號(導通信號)之供應被停止(將停 止期間稱爲聯鎖)。第2(D)圖是表示聯鎖的期間。當電動 機控制裝置MC的直流部的直流電壓Vdc超過電阻回生動 作電壓Vr 1,則使電阻回生電路RR進行動作。控制電阻 回生電路RR中的電晶體Tr7的第2導通信號S’是當直 流電壓Vdc成爲第1基準電壓Vrl,則導通電晶體Tr7, 而當直流電壓Vdc成爲比第2基準電壓Vr2還要小,則 將電晶體Tr7作爲非導通。因重複此動作,因此第2(C)圖 的電動機控制裝置的直流電壓Vd c是在聯鎖的期間中變 動。即使恢復瞬時停電,電源電壓波高値Vp與直流電壓 Vdc的相差大之期間,電源回生電路PR對於轉換器電路 CV的第1導通信號S的供應仍然施以聯鎖。當降低電動 機速度,來自電動機的回生電力變小而降低直流電壓Vdc 使得與電源電壓波高値Vp之相差變小,則指令發生部 CG是輸出發出輸出第1導通信號S至電源回生電路PR 的指令的輸出指令。此時,直流電壓Vdc與電源電壓波高 値Vp之相差較小之故,因而不會有成爲過電流的情形。 在本實施形態中,交流電抗器ACL是配置於比相位 檢測部PD的連接點還要後方(電源回生電路PR側)也可 以。 -15- 201136129 依照上述實施形態,在併用電阻回生與電源回生的電 源裝置中,電動機控制裝置的直流電壓Vdc與電源電壓波 高値Vp之相差△ V大時,則在電源回生電路PR的導通 信號施以聯鎖,當相差△ V變小,則作成解除聯鎖。藉 此,即使發生瞬時停電,也不會有電源裝置的電源電流成 爲過大,發生表示過電流的啓報,或是有電晶體Trl〜 Tr6損壞的情形,而可實現高信賴性的電源回生裝置。 (產業上可利用性) 依照本發明中,導通信號發生電路是在回生時,當電 動機控制裝置的直流輸入部間的直流電壓與交流電源的電 源電壓波高値之相差電壓,比以瞬時停電作爲基準而事先 決定的基準電壓還要大時,停止第1導通信號的輸出,而 將轉換器電路作成非動作狀態,當停止第1導通信號的輸 出之期間,是僅進行輸出第2導通信號之故,因而在發生 瞬時停電時,電源回生被停止而僅利用電阻回生來實行回 生。所以,利用瞬時停電,即使電動機控制裝置的輸入側 的直流電壓有上昇,也不會有過電流流在實行電源回生的 轉換器電路的半導體開關元件的情形。又在瞬時停電時實 行電阻回生之故,因而可提供一種具備高信賴性的回生功 能的電動機驅動用電源裝置。 【圖式簡單說明】 第1圖是表示本發明的電動機驅動用電源裝置的實施 •16- 201136129 形態的一例子的槪略構成的圖式。 第2(A)圖至第2(D)圖是使用於用以說明第1圖的實 施形態的動作的動作波形圖。 第3圖是表示習知的電動機驅動用電源裝置的一例子 的槪略構成的圖式。 第4圖是習知的電動機驅動用電源裝置的動作波形 圖。 第5圖是表示習知的其他電動機驅動用電源裝置的槪 略構成的圖式。 【主要元件符號說明】 T r 1〜T r 7 :電晶體 D1〜D7 :二極體 CV :轉換器電路 MC :電動機控制裝置 Μ :電動機 AC :三相交流電源 VD :直流電壓檢測部 PD :相位檢測部 SG :導通信號發生電路 RR :電阻回生電路 P R :電源回生電路 -17-[Technical Field] The present invention relates to a motor drive power supply device including a regenerative function for recovering regenerative electric power generated by a motor to a power source, and a regenerative method using the same. [Prior Art] There is a converter (c ο nverter ) that controls the switching of the transistor using the phase of the three-phase AC power supply in the range of 1 20°, and restores the regenerative electric power of the motor to the electric motor. Drive power supply unit. Fig. 3 is a view showing the configuration of such a conventional motor drive power supply unit. The motor drive power supply device is composed of an AC reactor ACL and six transistors, six diodes, and a phase detection circuit for detecting the phase of the three-phase AC power supply and a gate control signal generation circuit for driving six transistors. The configuration is disposed between the three-phase AC power source and the motor control device. When the motor is operating in power, the gates of the six transistors are turned off. At this time, the three-phase AC current input from the three-phase AC power source is three-phase full-wave rectification through six diodes connected in parallel to six transistors, and a DC current is supplied to the motor control device. The motor control device includes a converter circuit that converts a direct current into an alternating current during power operation and inversely converts an alternating current generated by the motor turns into a direct current at the time of regeneration. At the time of reincarnation, power is restored from the motor, and when the voltage of the DC portion of the motor control device rises, the phase of the three-phase AC power source detected by the phase detecting circuit is used as a basis, as shown in Fig. 4-5-201136129 The gates of the six transistors are sequentially turned on, and the current flows from the phases of the three-phase AC power source, and the power of the DC portion is returned to the three-phase AC power source. The interval in which the six transistors are turned on is the upper phase (the phase in which the regenerative voltage is positive), and the power supply voltage of each phase is higher than the power supply voltage of the other phase by 1 2 0 °. The phase (the regenerative voltage becomes a negative phase), and the power supply voltage of each phase is 120° lower than the power supply voltage of the other phases. Further, as shown in Japanese Laid-Open Patent Publication No. 2004-15461 (Patent Document 1), when the instantaneous regenerative electric power from the electric motor is large, the power supply is regenerated and the electric resistance is regenerated. Fig. 5 is a view showing a person who regenerates the power source of the resistor shown in Patent Document 1. In the device of Patent Document 1, as shown in Fig. 5, a resistance regenerative circuit 28 is provided in parallel with the power regeneration circuit 26. Thus, when the motor is decelerating, when the DC voltage of the inverter 34 reaches the first voltage (VI) set in advance, the power regeneration circuit 26 is operated, and when the DC voltage reaches the first voltage set in advance. (VI) When the second voltage (V2) is higher, the resistance return circuit 28 is operated. This action is performed by the switch control means 24. (Prior Art Document) (Patent Document) Patent Document 1: JP-A-2004-154961 (Summary of the Invention) (Problems to be Solved by the Invention) 8 -6- 201136129 Regeneration of the resistor as shown in Fig. 5 When the power supply device for motor drive that is regenerated with the power supply is in an instantaneous power failure during power regeneration, the power supply regenerative current is excessively large because the AC power supply voltage is low. Therefore, an alarm indicating an overcurrent may occur depending on the condition, and a transistor used for a converter circuit that operates to regenerate the power supply may be damaged. Further, in the state where the resistance is regenerated when the instantaneous power failure occurs, when the power supply is restored, the DC voltage of the inverter is made high. At this time, if power is restored, the power regeneration current becomes too large, and an alarm indicating an overcurrent occurs, and the transistor is damaged. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a motor drive power supply device that switches to a resistance regenerative without stopping an electric current even when an instantaneous power failure occurs, and uses the device. Regeneration method. In addition to the above objects, another object of the present invention is to provide a motor drive power supply device which does not become an overcurrent and recovers from a resistance to a power source returning even when recovering from an instantaneous power failure, and a regenerative method using the same. (Means for Solving the Problem) The power supply device for driving a motor of the present invention includes a power supply circuit, a regenerative resistance circuit, and an on-signal generating circuit. The power supply circuit includes: a rectification function that converts an alternating current from an alternating current power source into a direct current, and supplies a direct current power to the motor control device; and a regenerative power that is returned from the motor control device side, using a relay having a plurality of semiconductor switching elements 201136129 The converter circuit is back and forth in the regenerative function of the AC power supply. The regenerative resistor circuit is composed of a series circuit of a regenerative resistor and a switching circuit, and is disposed between the DC output terminals of the power supply circuit, and uses the switching circuit to be in an on state, and consumes the regenerative electric power by the regenerative resistor. The on-signal generating circuit is a second conduction signal for controlling the first conduction signal of the converter circuit when the power is restored at the time of regenerative control, and for controlling the conduction of the switching circuit when the resistance is regenerated. In the present invention, the on-signal generating circuit is a difference voltage between the DC voltage between the DC input portions of the motor control device and the power supply voltage of the AC power source at the time of regeneration, and is determined in advance based on the instantaneous power failure. When the voltage is larger, the output of the first ON signal is stopped, and the converter circuit is in a non-operating state, and the second ON signal is output while the output of the first ON signal is stopped. When the on-signal generating circuit outputs the first on-signal and the second on-signal as described above, when the instantaneous power failure occurs, the power supply is returned to the original power and the return is generated by the resistance regenerative. Therefore, with the instantaneous power failure, even if the DC voltage on the input side of the motor control device rises, there is no case where an overcurrent flows to the semiconductor switching element of the converter circuit that performs the power regeneration. Further, since the resistance is restored in the event of an instantaneous power failure, it is possible to provide a power source for driving a motor having a highly reliable regenerative function. The reference voltage may be determined in such a manner as to prevent an overcurrent current from flowing through the semiconductor switching element used in the converter circuit. Specifically, the reference voltage may be determined depending on the performance of the semiconductor switching element to be used and the specification of the power supply. 8 -8 - 201136129 The configuration of the on-signal generating circuit is arbitrarily achievable for the above-mentioned actor. For example, the on-signal generating circuit may be: a DC voltage detecting unit that detects a DC voltage; a phase detecting unit that detects a phase of a power source voltage of the AC power source; and a power source voltage wave detection that detects a power source voltage wave of the AC power source And a phase difference voltage calculation unit that obtains a phase difference voltage between the power supply voltage wave height and the DC voltage; and a command generation unit; and a first conduction signal generation unit and a second conduction signal generation unit. The command generating unit outputs an output command for outputting the command of the first ON signal when the phase difference voltage is equal to or lower than the reference voltage. Further, when the phase difference voltage is larger than the reference voltage, an output stop command for instructing the output of the first ON signal to be stopped is output. Further, the first conduction signal generating unit generates the first ON command in accordance with the phase of the power supply voltage detected by the phase detecting unit, and outputs the first ON signal to the converter circuit when the output command is input. When the command is input, the first conduction signal is output to the converter circuit. In addition, when the DC voltage is equal to or higher than the first reference DC voltage determined in advance, the second ON signal generation unit outputs the second ON signal, and the DC voltage is determined to be lower than the first reference DC voltage. When the second reference DC voltage is equal to or lower than the second reference DC voltage, the output of the second ON signal is stopped. The on-signal generating circuit has the above-described configuration, and a second conduction signal for controlling the power-on returning of the second conduction signal and the control resistor can be generated with a relatively simple configuration. According to the present invention, it is possible to grasp the retrospective method as the above-described motor drive device. In the method of the present invention, when an instantaneous power failure occurs at the time of regenerative, the operation of the converter circuit is stopped, and during the period in which the converter circuit is stopped, -9 - 201136129 is regenerated using only the regenerative resistance circuit. Therefore, even when an instantaneous power failure occurs, the protection and control of the semiconductor switching elements constituting the converter circuit can be simultaneously performed. Even after the instantaneous power failure is resumed, there is a case where the DC voltage is high. Therefore, even after the instantaneous power failure is restored, the voltage difference between the DC voltage between the DC input portions of the motor control device and the power supply voltage of the AC power source is greater than the reference voltage determined in advance by the instantaneous power failure. The action of the converter circuit will be re-opened, and only the regenerative resistor circuit will be used for regeneration. In this way, it is possible to surely prevent an overcurrent from flowing in the case of the semiconductor switching element of the converter circuit. Further, after the instantaneous power failure is resumed, the voltage difference between the DC voltage between the DC input portions of the motor control device and the power supply voltage of the AC power source is smaller than the reference voltage determined in advance based on the instantaneous power failure, and of course,回 Regenerate with power. [Embodiment] FIG. 1 is a schematic diagram showing a schematic configuration of an example of an embodiment of a power supply device for driving a motor according to the present invention. The AC reactor ACL is connected to the three-phase AC power source AC, and the converter circuit CV is constructed by bridging the transistors Tr1 to Tr6 as six semiconductor switching elements. Further, six diodes D1 to D6 are connected in parallel to the six transistors Tr1 to Tr6. The six diodes D1 to D6 are three-phase rectifier circuits constituting the bridge. The bridge circuit transistors Tr1 to Tr6 and the pole bodies D1 to D6 constitute a power source regenerative circuit PR. -10- 201136129 A series circuit of a regenerative resistor R and a parallel circuit of a transistor Tr7 and a diode D7 constituting a switching circuit is connected in parallel between DC output terminals of the converter circuit CV. This series circuit constitutes a resistance regenerative circuit RR. The resistance regenerative circuit RR is configured to discharge the regenerative electric power by the regenerative resistor R by turning on the transistor Tr7 (switching circuit). Further, an equalizing capacitor C is connected in parallel between the DC output terminals of the converter circuit CV. At both ends of the smoothing capacitor C, a motor control device MC including an inverter circuit is connected. The inverter circuit converts direct current to alternating current and the three-phase alternating current motor provides a three-phase alternating current of a predetermined frequency as a motor current. The inverter circuit operates as a converter that converts an alternating current generated by the motor 成 into a direct current when the motor Μ is decelerated to be in a regenerative state. A phase detecting portion P D and a power supply voltage wave high detecting portion VHD are connected to the output side of the AC reactor ACL connected to the R phase, the S phase, and the Τ phase. Further, a DC voltage detecting portion VD for measuring the DC voltage across the input side of the motor control device M C, that is, the voltage across the smoothing capacitor C, is provided. The DC voltage detecting unit VD, the phase detecting unit PD, and the output of the power source voltage wave high detecting unit VHD are input to the ON signal generating circuit SG. The conduction signal generating circuit SG generates a plurality of first conduction signals S for turning on the six transistors Tr1 to Tr6 constituting the converter in the power regeneration circuit PR during power operation and regenerative operation of the motor ,, and At the time of reincarnation, a second conduction signal S' for causing the transistor Tr7 in the resistance regeneration circuit RR to be in an on state occurs. In the present embodiment, the conduction -11 - 201136129 signal generation circuit SG is a phase difference voltage Δ V between the DC voltage V dc between the DC input portions of the motor control device MC and the power supply voltage of the AC power source AC 値 Vp at the time of regeneration. When the reference voltage Vr determined in advance is determined to be larger than the instantaneous power failure, the output of the second ON signal S is stopped, and the converter circuit in the power regeneration circuit PR is in a non-operating state, and the first guide is stopped. During the output of the pass signal S, the second on signal S' is output. In the on-signal generating circuit SG, the first on-signal S is generated by the first on-signal generating unit CS1 and output, and the second on-signal S' is generated in the second on-signal generating unit CS2. And is output. The first ON signal generating unit CS1 can generate, for example, the same gating signal (on signal) used in the existing power source regenerative circuit shown in Fig. 4. Further, in order to obtain a specific effect, it is needless to say that the first ON signal S which is slightly different in phase from the gate signal (on signal) shown in FIG. 4 can be generated by the first ON signal generating unit CS1. . In the present embodiment, the on-signal generating circuit S G further includes a phase difference voltage calculating unit DV and a command generating unit CG. The phase difference voltage calculation unit DV obtains a phase difference voltage Δν between the power source voltage wave height 値Vp detected by the power source voltage wave height detecting unit VHD and the DC voltage Vdc detected by the DC voltage detecting unit VD. The command generation unit CG compares the phase difference voltage AV with the reference voltage Vr, and outputs an output command for instructing the output of the first conduction signal S when the phase difference voltage AV is equal to or less than the reference voltage Vr, and when the phase difference voltage AV is greater than the reference voltage Vr. If it is large, an output stop command for instructing the output of the first ON signal S to stop is generated. The first conduction signal generating unit CS 1 generates a first conduction command S according to the phase of the power supply voltage detected by the phase detecting unit PD, and when the output command is input, the first conduction signal S is generated. Output to the converter circuit, and when the output stop command is input, the configuration in which the first conduction signal S is output to the converter circuit is stopped. In addition, when the DC voltage Vdc is equal to or greater than the first reference DC voltage Vr1 determined in advance, the second ON command generation portion CS2 outputs the second ON signal S', and the DC voltage Vdc becomes higher than the first reference DC voltage Vr1. When the second reference DC voltage V r 2 which is determined to be lower than the second is required, the output of the second conduction signal S is stopped. When the first ON signal S and the second ON signal S ′ are outputted by the ON signal generating circuit S G in the event of an instantaneous power failure, the operation of the power regeneration circuit PR is stopped and the return is performed by the resistance regenerative circuit RR. Therefore, even if the DC voltage Vdc on the input side of the motor control device MC rises by the instantaneous power failure, there is no case where the overcurrent flows through the transistors Tr1 to Tr6 of the converter circuit CV in the power supply circuit PR. Further, in the event of an instantaneous power failure, the resistance regenerative circuit RR performs a regenerative operation, thereby maintaining a highly reliable regenerative control. After the instantaneous power failure is restored, there is also a situation in which the DC voltage is high. Therefore, the command generation unit CG is a phase difference voltage between the DC voltage of the DC input unit of the motor control device and the power supply voltage of the AC power source after the instantaneous power failure recovery, and is a reference voltage determined in advance based on the instantaneous power failure. If it is too large, the operation of the converter circuit CV will not be restarted, and the return command may be continuously issued only by the regenerative resistance circuit. By doing so, it is possible to surely prevent the occurrence of an overcurrent flowing in the semiconductor switching element of the converter circuit. In addition, after the instantaneous stop -13-201136129 is restored, the voltage difference between the DC voltage between the DC input portions of the motor control unit and the power supply voltage of the AC power source is lower than the reference voltage determined in advance by the instantaneous power failure. Of course, you can also use the power supply to regenerate. In this case, for example, when the phase difference voltage AV between the power supply voltage wave 値Vp and the DC voltage Vdc detected by the DC voltage detecting unit VD is lower than the reference voltage Vr, the command generating unit CG outputs an output command. The operation of re-opening the converter circuit CV can be performed. The operation of the embodiment of Fig. 1 will be briefly described below using Fig. 2 . Fig. 2 is an operation waveform diagram assuming that an instantaneous power failure occurs in the middle of the rapid reduction motor. When the motor Μ is operated in power, the gates of the transistors Trl to Tr6 are turned off. Further, the three-phase AC power supply AC is connected to the diodes D1 to D6 of the transistors Tr1 to Tr6 in parallel to perform three-phase full-wave rectification, and electric power is supplied to the motor control device MC. When the motor unit is in the deceleration state, it is in the regenerative state, and the regenerative electric power is returned from the motor unit to the power source side, and the voltage of the DC unit of the motor control unit MC is increased. Further, the transistors Tr1 to Tr6 are turned on in accordance with the phase of the three-phase AC voltage detected by the phase detecting unit PD in the conduction period designated by the ON signals S1 to S6. As a result, the regenerative current flows in each phase and the regenerative electric power of the voltage of the rising DC portion is restored to the power source AC. If there is no instantaneous power failure, by regenerative, when the DC voltage Vdc rises, the power regeneration operation is repeated. Therefore, in the present embodiment, power supply is usually returned to operate. When the instantaneous power failure occurs during power regeneration, as shown in Figure 2 (B), the power supply voltage is higher than VP ' as shown in Figure 2 (c), the DC section of the motor control unit MC The DC voltage Vdc will rise. When the difference between the DC voltage Vdc and the power supply voltage wave 値Vp is equal to or greater than the reference voltage Vr, the supply of the gate control signal (on signal) to the transistors Tr1 to Tr6 constituting the converter circuit in the power supply circuit PR is Stop (called the stop period as an interlock). The second (D) diagram shows the period of the interlock. When the DC voltage Vdc of the DC portion of the motor control device MC exceeds the resistance returning voltage Vr1, the resistance regenerative circuit RR operates. The second conduction signal S' of the transistor Tr7 in the resistance regenerative circuit RR is controlled to conduct the crystal Tr7 when the DC voltage Vdc becomes the first reference voltage Vr1, and the DC voltage Vdc is greater than the second reference voltage Vr2. Small, the transistor Tr7 is made non-conductive. Since this operation is repeated, the DC voltage Vd c of the motor control device of Fig. 2(C) is changed during the interlocking period. Even if the instantaneous power failure is resumed, the power supply return circuit PR is interlocked with respect to the supply of the first conduction signal S of the converter circuit CV while the phase difference between the power supply voltage wave 値Vp and the DC voltage Vdc is large. When the motor speed is lowered, the regenerative power from the motor becomes smaller, and the DC voltage Vdc is lowered so that the phase difference from the power source voltage wave 値Vp becomes smaller, the command generating portion CG outputs the output first output signal S to the power regeneration circuit PR. The output instruction of the instruction. At this time, since the difference between the DC voltage Vdc and the power supply voltage wave 値Vp is small, there is no possibility of overcurrent. In the present embodiment, the AC reactor ACL may be disposed rearward of the connection point of the phase detecting portion PD (on the power regeneration circuit PR side). -15- 201136129 According to the above embodiment, in the power supply device in which the resistance regenerative and the power supply are used together, when the DC voltage Vdc of the motor control device is greater than the power supply voltage wave 値Vp by ΔV, the conduction communication in the power regeneration circuit PR is performed. The interlock is applied, and when the phase difference ΔV becomes smaller, the interlock is released. Therefore, even if an instantaneous power failure occurs, the power supply current of the power supply device is not excessively large, and a report indicating overcurrent is generated, or the transistors Tr1 to Tr6 are damaged, and a highly reliable power supply regenerative device can be realized. . (Industrial Applicability) According to the present invention, the conduction signal generating circuit is a phase difference voltage when the DC voltage between the DC input portions of the motor control device and the power supply voltage of the AC power source is higher than that at the time of regeneration. When the reference voltage determined in advance as the reference is larger, the output of the first ON signal is stopped, and the converter circuit is in a non-operating state. When the output of the first ON signal is stopped, only the output is performed. The conduction signal is so that when an instantaneous power failure occurs, the power regeneration is stopped and only the resistance is used to regenerate. Therefore, with the instantaneous power failure, even if the DC voltage on the input side of the motor control device rises, there is no case where an overcurrent flows to the semiconductor switching element of the converter circuit that performs the power regeneration. Further, since the resistor is regenerated in the event of an instantaneous power failure, it is possible to provide a motor drive power supply device having a highly reliable regenerative function. [Brief Description of the Drawings] Fig. 1 is a schematic diagram showing a schematic configuration of an example of the embodiment of the motor-driven power supply device according to the present invention. Figs. 2(A) to 2(D) are operation waveform diagrams for explaining the operation of the embodiment of Fig. 1. Fig. 3 is a schematic diagram showing a schematic configuration of an example of a conventional motor drive power supply device. Fig. 4 is a view showing an operation waveform of a conventional power supply device for driving a motor. Fig. 5 is a view showing a schematic configuration of another conventional motor drive power supply device. [Description of main component symbols] T r 1 to T r 7 : Transistor D1 to D7 : Diode CV : Converter circuit MC : Motor control device Μ : Motor AC : Three-phase AC power supply VD : DC voltage detection unit PD : Phase detecting unit SG: On signal generating circuit RR: Resistance regenerative circuit PR: Power return circuit -17-

Claims (1)

201136129 七、申請專利範圍 1. 一種電動機驅動用電源裝置, 具備: 電源電路,具有:將來自交流電源的交流電流變換成 直流電流而於電動機控制裝置供應直流電力的整流功能; 及將自上述電動機控制裝置側被回生的回生電力,使用具 備複數半導體開關元件的轉換器電路來回生在上述交流電 源的回生功能:及 回生電阻電路,由回生電阻與開關電路的串聯電路所 構成,被設置於上述電源電路的直流輸出端子間,利用將 上述開關電路作成導通狀態俾以上述回生電阻消耗回生電 力;及 導通信號發生電路,發生:在回生時實行電源回生之 際用以控制上述轉換器電路的第1導通信號、及實行電阻 回生之際用以控制上述開關電路的導通的第2導通信號, 其特徵爲: 上述導通信號發生電路是在回生時,當上述電動機控 制裝置的直流輸入部間的直流電壓與上述交流電源的電源 電壓波高値之相差電壓,比以瞬時停電作爲基準而事先決 定的基準電壓還要大時,停止上述第1導通信號的輸出, 而將上述轉換器電路作成非動作狀態,當停止上述第丨導 通信號的輸出之期間,是輸出上述第2導通信號。 2 .如申請專利範圍第〗項所述的電動機驅動用電源 裝置,其中, ⑧ -18- 201136129 上述基準電壓是以可阻止過電流流在上述轉換器電路 所使用的半導體開關元件的方式所決定° 3.如申請專利範圍第1項或第2項所述的電動機驅 動用電源裝置,其中, 上述導通信號發生電路是由以下所構成: 檢測出上述直流電壓的直流電壓檢測部;及 檢測出上述交流電源的電源電壓的相位的相位檢測 部;及 檢測出上述交流電源的上述電源電壓波高値的電源電 壓波高値檢測部;及 求出上述電源電壓波高値與上述直流電壓的相差電壓 的相差電壓演算部;及 比較上述相差電壓與上述基準電壓,當上述相差電壓 爲上述基準電壓以下時輸出指令上述第1導通信號的輸出 的輸出指令,當上述相差電壓爲比上述基準電壓還要大時 輸出指令上述第1導通信號的輸出停止的輸出停止指令的 指令發生部;及 依據上述相位檢測部所檢測的上述電源電壓的相位來 發生上述第1導通指令,當上述輸出指令被輸入時,將上 述桌1導通fs 5虎輸出至上述轉換器電路’當上述輸出停止 指令被輸入,則停止將上述第1導通信號輸出至上述轉換 器電路的第1導通信號發生部;及 當上述直流電壓成爲事先決定的第1基準直流電壓以 上’則輸出上述第2導通信號,而當上述直流電壓成爲比 -19- 201136129 ±$第1基準直流電壓還要低的事先決定的第2基準直流 電壓以下,則停止上述第2導通信號的輸出的第2導通信 號發生部。 4· ~種回生方法, 使用電動機驅動用電源裝置的回生方法,該電動機驅 動用電源裝置具備: 電源電路,具有:將來自交流電源的交流電流變換成 直流電流而於電動機控制裝置供應直流電力的整流功能: 及將自上述電動機控制裝置側被回生的回生電力,使用具 _複數半導體開關元件的轉換器電路來回生在上述交流電 源的回生功能,及 回生電阻電路,由回生電阻與開關電路的串聯電路所 構成,被設置於上述電源電路的直流輸出端子間,利用將 上述開關電路作成導通狀態俾以上述回生電阻消耗回生電 力,其特徵爲: 當在回生時發生瞬時停電,則停止上述轉換器電路的 動作,而在上述轉換器電路停止動作之期間是利用上述回 生電阻電路進行回生。 5.如申請專利範圍第4項所述的回生方法,其中, 即使恢復上述瞬時停電之後,上述電動機控制裝置的 上述直流輸入部間的直流電壓與上述交流電源的電源電壓 波高値之相差電壓,爲比以瞬時停電作爲基準而事先決定 的基準電壓還要大時,也不會重開上述轉換器電路的動 作,僅以上述回生電阻電路進行回生。 ⑧ -20- 201136129 6.如申請專利範圍第4項所述的回生方法,其中, 恢復上述瞬時停電之後,上述電動機控制裝置的上述 直流輸入部間的直流電壓與交流電源的電源電壓波高値之 相差電壓,爲比以瞬時停電作爲基準而事先決定的基準電 壓還要小時重開上述轉換器電路的動作。 -21 -201136129 VII. Patent application scope 1. A power supply device for driving a motor, comprising: a power supply circuit having: a rectifying function for converting an alternating current from an alternating current power source into a direct current and supplying a direct current power to a motor control device; and The regenerative power returned to the control device side is regenerated by the converter circuit having the plurality of semiconductor switching elements, and the regenerative circuit is formed by the series circuit of the regenerative resistor and the switching circuit. Between the DC output terminals of the power circuit, the switching circuit is turned on, and the regenerative power is consumed by the regenerative resistor; and the turn-on signal generating circuit is generated to control the converter circuit when power is restored during the regenerative process. a first conduction signal and a second conduction signal for controlling conduction of the switching circuit when resistance regenerative is performed, wherein the conduction signal generating circuit is a DC input of the motor control device when regenerating DC voltage between the parts When the phase difference voltage of the power supply voltage wave of the AC power source is larger than a reference voltage determined in advance by the instantaneous power failure, the output of the first ON signal is stopped, and the converter circuit is in a non-operating state. The second ON signal is output while the output of the second ON signal is stopped. 2. The motor drive power supply device according to the above-mentioned claim, wherein the reference voltage is determined by means of a semiconductor switching element that can prevent an overcurrent from flowing in the converter circuit. The motor drive power supply device according to the first or second aspect of the invention, wherein the on-signal generating circuit is configured as follows: a DC voltage detecting unit that detects the DC voltage; and detects a phase detecting unit that outputs a phase of the power source voltage of the AC power source; a power source voltage wave high detecting unit that detects the power source voltage wave of the AC power source; and a voltage difference between the power source voltage wave and the DC voltage a phase difference voltage calculation unit; and comparing the phase difference voltage and the reference voltage, and outputting an output command for instructing output of the first ON signal when the phase difference voltage is equal to or less than the reference voltage, wherein the phase difference voltage is greater than the reference voltage The output of the first ON signal is stopped when the large time output command is output a command generating unit for stopping the command; and generating the first ON command based on a phase of the power source voltage detected by the phase detecting unit, and outputting the table 1 to the converter when the output command is input The circuit 'when the output stop command is input, the first conduction signal generating unit that outputs the first ON signal to the converter circuit is stopped; and the DC voltage is equal to or greater than a predetermined first reference DC voltage. And outputting the second on-signal, and stopping the second on-signal when the DC voltage is equal to or lower than a predetermined second reference DC voltage lower than -19-201136129±$ the first reference DC voltage. The second conduction signal generating unit that is output. In the method of regenerating a power supply device for driving a motor, the motor drive power supply device includes: a power supply circuit having: converting an alternating current from an alternating current power source into a direct current and supplying a direct current power to the motor control device; The rectification function: and the regenerative power that is regenerated from the motor control device side, uses a converter circuit with a plurality of semiconductor switching elements to regenerate the regenerative function of the AC power source, and the regenerative resistance circuit, and the regenerative resistor and the switching circuit a series circuit is provided between the DC output terminals of the power supply circuit, and the switching circuit is turned on, and the regenerative electric power is consumed by the regenerative electric resistance. The main circuit is: when an instantaneous power failure occurs during the regenerative period, the conversion is stopped. The operation of the circuit is performed by the regenerative resistor circuit during the period in which the converter circuit is stopped. 5. The method of regenerating according to claim 4, wherein, after recovering the instantaneous power failure, a voltage difference between a DC voltage between the DC input portions of the motor control device and a power supply voltage of the AC power source is higher than When the reference voltage determined in advance is determined to be larger than the instantaneous power failure as a reference, the operation of the converter circuit is not reopened, and only the regenerative resistor circuit is used for regeneration. 6. The regenerative method according to claim 4, wherein after the instantaneous power failure is resumed, a DC voltage between the DC input portions of the motor control device and a power supply voltage of the AC power source are higher. The phase difference voltage is an operation of restarting the converter circuit one hour later than a reference voltage determined in advance based on the instantaneous power failure. -twenty one -
TW099135438A 2009-11-04 2010-10-18 Power supply system for driving motor and regeneration method using the same TWI509976B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009253534A JP5166389B2 (en) 2009-11-04 2009-11-04 Motor drive power supply and regeneration method using the power supply

Publications (2)

Publication Number Publication Date
TW201136129A true TW201136129A (en) 2011-10-16
TWI509976B TWI509976B (en) 2015-11-21

Family

ID=43959391

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099135438A TWI509976B (en) 2009-11-04 2010-10-18 Power supply system for driving motor and regeneration method using the same

Country Status (3)

Country Link
JP (1) JP5166389B2 (en)
CN (1) CN102055370B (en)
TW (1) TWI509976B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI568169B (en) * 2012-09-25 2017-01-21 Sanyo Electric Co Motor control device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101104559B1 (en) * 2011-06-20 2012-01-11 황수명 Moter maneuver circuit for prevention of damage by a fire
JP5260718B2 (en) 2011-11-08 2013-08-14 ファナック株式会社 Servo motor drive device for driving a servo motor connected to the rotating shaft of a movable part of an industrial robot
JP2014207735A (en) 2013-04-10 2014-10-30 ファナック株式会社 Motor control device capable of taking measures against blackout
JP6234869B2 (en) * 2014-03-31 2017-11-22 住友重機械工業株式会社 Injection molding machine
JP5931148B2 (en) 2014-09-10 2016-06-08 ファナック株式会社 PWM rectifier with capacitance calculator
CN106208869B (en) * 2016-07-13 2018-11-27 广东美的制冷设备有限公司 No electrolytic capacitor motor driven systems and its control method, device
WO2019239469A1 (en) * 2018-06-11 2019-12-19 三菱電機株式会社 Converter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188774A (en) * 1984-10-05 1986-05-07 Mitsubishi Electric Corp Controller for elevator
JPS63257484A (en) * 1987-04-15 1988-10-25 Fuji Electric Co Ltd Lowering controller for cargo equipment including crane
JPH0697875B2 (en) * 1987-05-20 1994-11-30 日本オ−チス・エレベ−タ株式会社 Inverter for driving elevator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI568169B (en) * 2012-09-25 2017-01-21 Sanyo Electric Co Motor control device

Also Published As

Publication number Publication date
TWI509976B (en) 2015-11-21
CN102055370A (en) 2011-05-11
JP2011101474A (en) 2011-05-19
CN102055370B (en) 2014-08-20
JP5166389B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
TW201136129A (en) Power supply system for driving motor and regeneration method using the same
KR950015173B1 (en) Ac motor control apparatus
CN105281552B (en) Gate drive under-voltage detection
JP5043915B2 (en) Motor drive power supply
CN101330251A (en) Protection for permanent magnet motor control circuits
TWI568169B (en) Motor control device
JP6150017B2 (en) Driving device, matrix converter and elevator system
JP2018154427A (en) Passenger conveyor
TW201806278A (en) Power conversion system
JP6049468B2 (en) Power converter
EP2716588B1 (en) Control device for elevator
CN202495802U (en) Elevator emergency leveling power supply device with hybrid power supply of alternating current and direct current
JP2007028752A (en) Elevator motor controller
CN109534111A (en) A kind of elevator safety control system and method
WO2014019509A1 (en) Motion and control system
JP4487155B2 (en) Protection device for PWM cycloconverter
JP3864793B2 (en) PWM cycloconverter and PWM cycloconverter protection method
JP6245484B1 (en) Motor control system, initial charging device, and failure detection method
JP5169060B2 (en) Power failure detection device for power regeneration inverter device
JPH10243675A (en) Motor stop circuit
JP2014023180A (en) Control device for inverter
JP2728688B2 (en) Power converter
JPH07154986A (en) Control method of electric motor
JP6264333B2 (en) Motor drive device
JP2560375Y2 (en) Power regeneration device