TW201136008A - Composition for electrode of non-aqueous electrolyte secondary battery, electrode and battery - Google Patents

Composition for electrode of non-aqueous electrolyte secondary battery, electrode and battery Download PDF

Info

Publication number
TW201136008A
TW201136008A TW099141760A TW99141760A TW201136008A TW 201136008 A TW201136008 A TW 201136008A TW 099141760 A TW099141760 A TW 099141760A TW 99141760 A TW99141760 A TW 99141760A TW 201136008 A TW201136008 A TW 201136008A
Authority
TW
Taiwan
Prior art keywords
electrode
drying
aqueous electrolyte
resin
polyamine
Prior art date
Application number
TW099141760A
Other languages
Chinese (zh)
Inventor
Kazutaka Kusunoki
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW201136008A publication Critical patent/TW201136008A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

In conventional compositions for the electrodes of non-aqueous electrolyte secondary batteries, the binder resin inside the electrode rises to the surface of the electrode and electrode peeling and cracking occur if the drying phase is carried out rapidly at high temperatures. Thus, there is a need to carry out drying by gradually increasing the temperature from a low temperature. Also, because of the necessity to complete drying in a restricted drying zone when continuously manufacturing electrodes, there is a difficulty whereby a long period of time is required for the drying phase, with manufacturing line speeds of even 10m/min. The use of the disclosed composition for the electrodes of non-aqueous electrolyte secondary batteries, which contains an electrode active material, a binder resin, a liquid material, and a polymer exhibiting cationic properties in the liquid material, enables: the reduction of time for the drying phase; the inhibition of the rising of the binder resin to the surface of the electrode even when rapidly drying at high temperatures; and the improvement of the productivity for electrodes due to the possibility to significantly increase the speed of the manufacturing line.

Description

201136008 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種非水電解液蓄電池電極用組合物、電 極及電池。 【先前技術】 於曰本專利特開昭62-90863號公報中揭示有包含電極活 性物質、黏合劑樹脂及液狀物質之非水電解液蓄電池負極 用組合物;或包含電極活性物質、黏合劑樹脂、導電性碳 及液狀物質之非水電解液蓄電池正極用組合物。 【發明内容】 本發明係提供: Π]—種非水電解液蓄電池電極用組合物,其包含電極活性 物質、黏合劑樹脂、液狀物質及於該液狀物質中呈陽離子 性之高分子; [2] —種電極,其係藉由將如上述π]之非水電解液蓄電池 電極用組合物塗佈於集電體上,自所得之塗佈物除去液狀 物質而獲得; [3] —種非水電解液蓄電池,其特徵在於包含如上述口]之 電極與非水電解液。 【實施方式】j 本發明之非水解液蓄電池電極用組合物係包含電極活 性物質、黏合劑卜脂'液狀物質及於該液狀物質中呈陽離 子性之高分子下簡稱為陽離子性高分子)。 作為電極活性物^^宜為可吸藏及釋出經離子之活性物 152565.doc 201136008 質。電極活性物質有負極活性物質與正極活性物質,作為 負極活性物質,可例舉各種碳質物質及金屬複合氧化物, 作為正極活性物質,可例舉金屬複合氧化物,宜為含有鋰 與選自由鐵、鈷、鎳及錳所組成群中之丨種以上之金屬的 金屬複合氧化物。 作為負極活性物質,以例舉:非晶形碳、石墨、天然石 墨、MCMB(Mesocarb〇n Microbeads,中間相碳微球)、瀝 青系碳纖維、多並苯等碳質材料為佳;以及以AxMy〇p表示 之複合金屬氧化物(式中,A表示Li,M表示選自由c〇、 Νι、A卜Sn及Μη所組成群中之至少一種,〇表示氧原子; X表不滿足1.1〇2Χ2〇·05之數,丫表示滿足4 〇〇^2〇 85之 數’ Ρ表示滿足5·0〇2ρ^;1.5之數)。 作為正極活性物質,以例舉:含有LixM〇2(式中,!^表 示1種以上之過渡金屬,宜為Co、Μη或Ni中之至少一種, X表示滿足1.10>χ>0.05之數),&LixM2〇4(式中’ M表示1種 以上之過渡金屬,宜為河11,\表示滿足i 1〇>χ>〇 〇5之數) 之活性物質為佳,具體可例舉:LiC〇〇2、LiNi〇2、BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composition, an electrode and a battery for a nonaqueous electrolyte battery electrode. [Previous Art] A composition for a non-aqueous electrolyte battery negative electrode comprising an electrode active material, a binder resin, and a liquid material, or an electrode active material, a binder, is disclosed in Japanese Laid-Open Patent Publication No. SHO-62-90863 A composition for a non-aqueous electrolyte battery positive electrode of a resin, a conductive carbon, and a liquid material. SUMMARY OF THE INVENTION The present invention provides: a non-aqueous electrolyte battery electrode composition comprising an electrode active material, a binder resin, a liquid material, and a polymer which is cationic in the liquid material; [2] An electrode obtained by applying a composition for a nonaqueous electrolyte battery electrode such as the above π] to a current collector, and removing the liquid material from the obtained coating material; [3] A non-aqueous electrolyte storage battery characterized by comprising an electrode as described above and a non-aqueous electrolyte. [Embodiment] The composition for non-hydrolyzed liquid battery electrode of the present invention comprises an electrode active material, a binder liquid, a liquid substance, and a polymer which is cationic in the liquid substance, and is simply referred to as a cationic polymer. ). As the electrode active material, it is suitable to occlude and release the active substance of the ion 152565.doc 201136008. The electrode active material includes a negative electrode active material and a positive electrode active material, and examples of the negative electrode active material include various carbonaceous materials and metal composite oxides, and the positive electrode active material may, for example, be a metal composite oxide, preferably containing lithium and optionally A metal composite oxide of a metal of more than one of iron, cobalt, nickel, and manganese. As the negative electrode active material, carbonaceous materials such as amorphous carbon, graphite, natural graphite, MCMB (Mesocarb® microbeads, mesocarbon microbeads), pitch-based carbon fibers, and polyacene are preferable; and AxMy〇 a composite metal oxide represented by p (wherein A represents Li, M represents at least one selected from the group consisting of c〇, Νι, Ab, Sn, and Μη, and 〇 represents an oxygen atom; X represents an insufficiency of 1.1〇2Χ2〇) · The number of 05, 丫 indicates that the number of 4 〇〇 ^ 2 〇 85 is satisfied ' Ρ indicates that 5·0 〇 2 ρ ^; 1.5 number). The positive electrode active material is exemplified by LixM〇2 (wherein, ^ represents one or more kinds of transition metals, preferably at least one of Co, Μη or Ni, and X represents a number of 1.10> χ > 0.05 ), &LixM2〇4 (wherein M represents one or more transition metals, preferably river 11, \ represents satisfies the number of i 1〇>χ>〇〇5), and specific examples thereof Lift: LiC〇〇2, LiNi〇2

LlxNlyC〇(丨-y)〇2(式中’ X為滿足1.10>X>0.05之數,y為滿足 l>y>0之數)、及LiMn204。 作為點合劑樹脂,可例舉:氟化聚合物、二烯系聚合 物、烯烴系聚合物、苯乙烯系聚合物、丙烯酸酯系聚合 物、聚醯胺系或聚醯亞胺系聚合物、酯系聚合物、氯乙烯 系聚合物、乙酸乙烯酯系聚合物及纖維素系聚合物。 作為氟化聚合物’可例舉:聚偏二氟乙烯。 152565.doc 201136008 作為二烯系聚合物,可例舉:聚丁二烯、聚異戊二烯、 異戊一烯-異丁烯共聚物、天然橡膠、笨乙烯-丨,3 丁二烯 共聚物、苯乙烯-異戊二烯共聚物、1,3-丁二烯-異戊二烯· 丙烯腈共聚物、苯乙烯-1,3_ 丁二烯_異戊二烯共聚物、1,3-丁二烯_丙烯腈共聚物、笨乙烯-丙烯腈-丨,3_ 丁二烯_曱基丙 烯酸甲酯共聚物、笨乙烯-丙烯腈4,3-丁二烯_衣康酸共聚 物、苯乙烯-丙烯腈_1,3_ 丁二烯_甲基丙烯酸曱酯-反丁烯二 酸共聚物、笨乙烯_1,3-丁二烯_衣康酸_曱基丙烯酸甲酯-丙 烯腈共聚物、丙烯腈-1,3-丁二烯-曱基丙烯酸-甲基丙烯酸 甲酯共聚物、苯乙浠-1,3-丁二烯_衣康酸_甲基丙烯酸甲醋-丙烯腈共聚物、及苯乙烯-丙烯腈-1,3_ 丁二烯-曱基丙烯酸 甲酯-反丁烯二酸共聚物。 作為烯烴系聚合物,可例舉:乙烯-丙浠共聚物、乙烯-丙烯-二烯共聚物、聚苯乙烯、聚乙烯、聚丙烯、乙烯-乙 酸乙烯酯共聚物、乙烯系離子聚合物、聚乙烯醇、乙酸乙 烯酯聚合物、乙烯-乙烯醇共聚物、氣化聚乙烯、聚丙烯 腈、聚丙烯酸、聚曱基丙烯酸、及氣磺化聚乙稀。 作為苯乙烯系聚合物,可例舉:苯乙烯-乙烯-丁二烯共 聚物、苯乙烯-丁二烯-丙烯共聚物、苯乙烯-異戊二烯共聚 物、苯乙烯-丙烯酸正丁酯-衣康酸-曱基丙烯酸甲酯-丙烯 腈共聚物、及苯乙烯-丙烯酸正丁酯-衣康酸-曱基丙烯酸曱 酯-丙稀腈共聚物。 作為丙烯酸酯系聚合物,可例舉:聚曱基丙烯酸曱酯、 聚丙烯酸甲酯、聚丙烯酸乙酯、聚丙烯酸丁酯、丙稀酸 152565.doc 201136008 酯-丙烯腈共聚物、及丙烯酸2-乙基己酯-丙烯酸甲醋_丙歸 酸-甲氧基聚乙二醇單曱基丙烯酸酯。 作為聚醯胺系或聚醢亞胺系聚合物,可例舉:聚酿胺 6、聚醯胺66、聚醯胺11、聚醯胺12、芳香族聚醯胺、及 聚醯亞胺。 作為酯系聚合物,可例舉:聚對苯二曱酸乙二酯、及聚 對苯二曱酸丁二酯。 作為纖維素系聚合物’可例舉:羧甲基纖維素、叛乙基 纖維素、乙基纖維素、羥甲基纖維素、羥丙基纖維素、羧 乙基甲基纖維素’該等之録鹽、驗金屬鹽等鹽。 進而,作為黏合劑樹脂,可例舉:苯乙烯_丁二烯嵌段 共聚物、苯乙烯-丁二烯-苯乙烯嵌段共聚物、苯乙烯-乙 烯-丁烯-苯乙烯嵌段共聚物、苯乙烯_異戊二烯嵌段共聚 物、苯乙烯乙烯-丙烯-苯乙烯嵌段共聚物等嵌段共聚物; 乙烯_氣乙_共聚物;乙烤_乙酸乙稀醋共聚物、及其他之 甲基丙烯酸曱酯聚合物。 該等聚合物可單獨使用,亦可混合使用2種以上。 該黏合劑樹脂宜為粒子,其粒徑宜為〇〇〇5〜i〇〇 ,更 佳為〇.(Η〜50哗’尤佳為〇.〇5〜3〇叫。此處,所謂「黏合 劑樹月g之粒徑」,係、指使用電子顯微鏡測定藉由將本發明 之非水電解液蓄電池電極用組合物乾燥而獲得的黏合劑樹 脂粒子中之ΠΚ)個長#與短㈣得值之平均值。 ;發月中所明「液狀物質」,係指於常溫及常壓下 呈液狀之物質。作為液狀物質,可例舉含有水及/或常壓 152565.doc 201136008 下彿點為50〜35(TC之含氧有機化合物之物質。藉由使用含 有弗點為50 350 C之含氧有機化合物之非水電解液蓄電池 電極用組合物,可操作性更佳地製造電極,並可容易地形 《更為均勻的電極活性物質層。於不引起非水電解液蓄電 池電極用組合物之塗佈性下降或所得電池之性能下降之範 圍内,液狀物質可包含除含氧有機化合物以夕卜之液狀有機 物質》 作為常壓下沸點為50〜350°C之含氧有機化合物,可例 舉.甲醇、乙醇、正丙醇、異丙醇、正丁醇、異丁醇、第 二丁醇、戊醇、異戊醇 '甲基異丁基甲醇、2_乙基丁醇、 2-乙基己醇、環己醇、糠醇、四氫糠醇、乙二醇、己二 醇、甘油等含有醇性經基之化合物;二丙喊、二異丙趟、 二丁醚、二異丁醚、二正戊醚、二異戊醚、曱基丁醚、曱 基異丁謎、甲基正戊謎、曱基異戊喊、乙基丙醚、乙基異 丙喊、乙基丁鍵、乙基異丁趟、乙基正戊趟、乙基異戊蝴 等飽和脂肪族醚化合物;二烯丙醚、乙基烯丙醚等不飽和 脂肪族醚化合物;苯曱醚、苯乙醚、苯醚、苄醚等芳香族 醚化合物;四氫呋喃、四氫吡喃、二哼烷等環狀醚化合 _ 物;乙二醇單曱醚、乙二醇單乙醚、乙二醇單丁醚、二乙 - 二醇單曱醚、二乙二醇單乙醚、二乙二醇單丁醚等乙二醇 醚化合物;甲酸、乙酸、無水乙酸、丙烯酸、檸檬酸、丙 酸、丁酸等單羧酸化合物;曱酸丁酯、曱酸戊酯、乙酸丙 酯、乙酸異丙酯、乙酸丁酯、乙酸第二丁酯、乙酸戊酯、 乙酸異戊酯、乙酸2-乙基己酯、乙酸環己酯、乙酸丁基環 152565.doc 201136008 己酿、丙酸乙酯、丙酸丁酯、丙酸戊酯、丁酸丁酯、碳酸 二乙醋、草酸二乙酯、乳酸甲酯、乳酸乙酯、乳酸丁酯、 鱗酸二乙酯等叛酸酯化合物;丙酮、曱乙鲷、甲丙酮、曱 丁酮、甲基異丙基酮、甲基異丁基酮、二異丁基酮、乙醯 基丙酮、雙丙酮醇、環己酮、環戊酮、甲基環己酮、環庚 酮等酮化合物;琥珀酸、戊二酸、己二酸、十一烧二酸、 丙嗣酸、轉康酸等二羧酸化合物;糠醛;及N•曱基吡咯烷 酮,宜為N-甲基u比略院_。 作為液狀物質,宜為水及N•甲基吡咯烷酮。 作為液狀物質’亦可使用水與含氧有機化合物之混合 物,該混合物中含氧有機化合物之量相對於水1〇〇重量 份’宜為0.1〜1〇〇重量份, 1〜20重量份。 更佳為0.5〜50重量份,尤佳為 可列舉分子内含有氮原子之高分LlxNlyC〇(丨-y)〇2 (wherein X is 1.00 gt; X > 0.05, y is 1 > y > 0), and LiMn204. The point compound resin may, for example, be a fluorinated polymer, a diene polymer, an olefin polymer, a styrene polymer, an acrylate polymer, a polyamine or a polyimide polymer, An ester polymer, a vinyl chloride polymer, a vinyl acetate polymer, and a cellulose polymer. The fluorinated polymer 'is exemplified by polyvinylidene fluoride. 152565.doc 201136008 As the diene polymer, polybutadiene, polyisoprene, isoprene-isobutylene copolymer, natural rubber, stupid ethylene-ruthenium, 3 butadiene copolymer, Styrene-isoprene copolymer, 1,3-butadiene-isoprene·acrylonitrile copolymer, styrene-1,3-butadiene-isoprene copolymer, 1,3-butyl Diene-acrylonitrile copolymer, stupid ethylene-acrylonitrile-oxime, 3-butadiene-methyl methacrylate copolymer, stupid ethylene-acrylonitrile 4,3-butadiene-itaconic acid copolymer, styrene -Acrylonitrile_1,3_Butadiene_Methyl methacrylate-fumaric acid copolymer, stupid ethylene_1,3-butadiene_itaconic acid_Methyl methacrylate-acrylonitrile copolymer , acrylonitrile-1,3-butadiene-mercaptoacrylic acid-methyl methacrylate copolymer, styrene-1,3-butadiene-itaconic acid_methyl methacrylate-acrylonitrile copolymer And a styrene-acrylonitrile-1,3-butadiene-methyl methacrylate-fumaric acid copolymer. Examples of the olefin-based polymer include an ethylene-propylene copolymer, an ethylene-propylene-diene copolymer, polystyrene, polyethylene, polypropylene, an ethylene-vinyl acetate copolymer, and an ethylene-based ionomer. Polyvinyl alcohol, vinyl acetate polymer, ethylene-vinyl alcohol copolymer, vaporized polyethylene, polyacrylonitrile, polyacrylic acid, polyacrylic acid, and gas sulfonated polyethylene. The styrene-based polymer may, for example, be a styrene-ethylene-butadiene copolymer, a styrene-butadiene-propylene copolymer, a styrene-isoprene copolymer or a styrene-n-butyl acrylate. - itaconic acid-methyl methacrylate-acrylonitrile copolymer, and styrene-n-butyl acrylate-itaconic acid-mercapto acrylate-acrylonitrile copolymer. The acrylate-based polymer may, for example, be polydecyl methacrylate, polymethyl acrylate, polyethyl acrylate, polybutyl acrylate or acryl 152565.doc 201136008 ester-acrylonitrile copolymer, and acrylic acid 2 - Ethylhexyl ester - methacrylate - glycerol - methoxy polyethylene glycol monodecyl acrylate. The polyamidamide-based or polyamidimide-based polymer may, for example, be a polyamine 6, a polyamine 66, a polyamine 11, a polyamine 12, an aromatic polyamine or a polyimine. The ester-based polymer may, for example, be polyethylene terephthalate or polybutylene terephthalate. The cellulose polymer 'may be carboxymethyl cellulose, stearyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, carboxyethyl methyl cellulose', etc. Record salt, metal salt and other salts. Further, examples of the binder resin include a styrene-butadiene block copolymer, a styrene-butadiene-styrene block copolymer, and a styrene-ethylene-butylene-styrene block copolymer. a block copolymer such as a styrene-isoprene block copolymer or a styrene ethylene-propylene-styrene block copolymer; an ethylene-gas-ethylene copolymer; a bake-ethylene acetate copolymer; Other methacrylate polymers. These polymers may be used singly or in combination of two or more. The binder resin is preferably a particle, and the particle size thereof is preferably 〇〇〇5~i〇〇, more preferably 〇. (Η~50哗' is particularly good for 〇.〇5~3 〇. Here, the so-called "The particle size of the binder tree g" is a measurement of the length of the binder resin particles obtained by drying the composition for a non-aqueous electrolyte battery electrode of the present invention by an electron microscope. The average value of the value. The term "liquid substance" as used in the month of the month refers to a substance which is liquid at normal temperature and normal pressure. The liquid substance may, for example, be a substance containing an oxygen-containing organic compound having water and/or atmospheric pressure of 152565.doc 201136008, and having an oxygen-containing organic compound of TC. By using an oxygen-containing organic compound having an atomic point of 50,350 C. The non-aqueous electrolyte battery electrode composition of the compound can be used to produce an electrode more operably, and the "more uniform electrode active material layer can be easily formed. It does not cause coating of the non-aqueous electrolyte battery electrode composition. The liquid substance may include a liquid organic substance other than an oxygen-containing organic compound as an oxygen-containing organic substance having a boiling point of 50 to 350 ° C under normal pressure, in the range of a decrease in the properties of the obtained battery or a decrease in the performance of the obtained battery. Methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, second butanol, pentanol, isoamyl alcohol 'methyl isobutyl methanol, 2-ethylbutanol, 2- Ethylhexanol, cyclohexanol, decyl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, hexanediol, glycerin, etc., containing an alcoholic base; dipropylene, diisopropyl hydrazine, dibutyl ether, diisobutyl ether , di-n-pentyl ether, diisoamyl ether, decyl butyl ether, fluorenyl dibutyl mystery, methyl a saturated aliphatic ether compound such as glutinous eclipse, sulfhydryl hydrazine, ethyl propyl ether, ethyl isopropyl sulfonate, ethyl butyl bond, ethyl isobutyl hydrazine, ethyl n-pentamidine, ethyl isopentyl bromide; An unsaturated aliphatic ether compound such as allyl ether or ethyl allyl ether; an aromatic ether compound such as phenyl ether, phenethyl ether, phenyl ether or benzyl ether; or a cyclic ether compound such as tetrahydrofuran, tetrahydropyran or dioxane. _; ethylene glycol monoterpene ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoterpene ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether and other glycol Ether compound; monocarboxylic acid compound such as formic acid, acetic acid, anhydrous acetic acid, acrylic acid, citric acid, propionic acid, butyric acid; butyl phthalate, amyl citrate, propyl acetate, isopropyl acetate, butyl acetate, acetic acid Second butyl ester, amyl acetate, isoamyl acetate, 2-ethylhexyl acetate, cyclohexyl acetate, butyl ring 152565.doc 201136008 Brewed, ethyl propionate, butyl propionate, propionic acid Amyl ester, butyl butyrate, diethylene carbonate, diethyl oxalate, methyl lactate, ethyl lactate, butyl lactate, diethyl sulphate Etoxacinate compound; acetone, acetonide, methyl ketone, acetobutyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, diisobutyl ketone, acetyl ketone, diacetone alcohol, cyclohexyl a ketone compound such as a ketone, a cyclopentanone, a methylcyclohexanone or a cycloheptanone; a dicarboxylic acid compound such as succinic acid, glutaric acid, adipic acid, undecanoic acid, propionic acid or trans-coconic acid; And N• decyl pyrrolidone, preferably N-methyl ub. _. As a liquid substance, it is preferably water and N•methylpyrrolidone. As a liquid substance, water and oxygenated organic compounds can also be used. The mixture, the amount of the oxygen-containing organic compound in the mixture is preferably 0.1 to 1 part by weight, and 1 to 20 parts by weight, more preferably 0.5 to 50 parts by weight, based on 1 part by weight of water. High scores of nitrogen atoms in the molecule

軟體計算得出之值。The value calculated by the software.

作為陽離子性高分子, 子化合物。陽離子性;I; A mPa.s~3000 mPa/s 〇 此As a cationic polymer, a sub-compound. Cationic; I; A mPa.s~3000 mPa/s 〇

作為陽離子性高分子,可例舉: 陽離子性高分子之黏度通常為^ 處’黏度係將陽離子性高分子與水 152565.doc 201136008 聚乙烯聚胺或聚丙烯聚胺等聚胺樹脂; 聚胺樹脂之改性物; 聚醯胺聚脲樹脂; 胺酯樹脂; 三聚氰胺-甲醛樹脂、脲-甲醛樹脂、聚醯胺聚脲·曱醛樹 脂; 含有二級或三級胺基或者四級敍基之丙烯酸系聚合物及該 等之丙烯醯胺之共聚物; 聚乙烯胺、聚乙烯脒、雙氰胺-曱醛共聚物等二氰系陽離 子性化合物; 雙氰胺-聚乙烯胺共聚物等聚胺系陽離子性化合物; 表氯酵-二曱基胺共聚物; 一稀丙基二曱基敍- S〇2縮聚產物; 二烯丙基胺鹽-so2縮聚產物; 氣化二烯丙基二甲基銨聚合物、氣化二烯丙基二曱基錢_ 丙烯醯胺共聚物; 烯丙基胺鹽之共聚物; (曱基)丙烯酸二烷基胺基乙酯四級鹽共聚物; 丙烯醯胺-二烯丙基胺共聚物; 二曱胺基丙基丙稀醯胺聚合物;及 具有5員環脒結構之陽離子性樹脂。 進而’作為於液狀物質中呈陽離子性之高分子,亦可例 舉: 聚酿胺胺-表氯醇樹脂(參照國際公開第2008/024444號,日 152565.doc . 〇. 201136008 本專利特表第2010-501670號公報及日本專利特開平 2-170825 號公報); 二稀丙基胺鹽酸鹽-丙稀酿胺共聚物(參照日本專利特開平 6-184246號公報); 使藉由聚伸烷基聚胺與脲、二元羧酸反應所得之產物,與 醛化合物、表齒醇化合物及/或醇化合物反應, 而獲得之水溶性聚合物(參照日本專利特公昭44-11667號公 報、曰本專利特公昭56_28929號公報、日本專利特公昭 61-42931號公報及日本專利特開昭62-101621號公報); 使藉由聚伸烷基聚胺與脲縮合反應而獲得之產物,與醛化 合物、表画醇化合物及/或α,γ_二齒_β_醇化合物反應,而獲 得之水溶性聚合物(參照日本專利特開平4_1〇〇997號公 報); 使藉由氨或聚胺與丙烯酸化合物或甲基丙烯酸化合物等經 極化之α,β·不飽和單體之麥可加成(Michael additi〇n)反應 而獲得之產物,進一步分別與聚胺、α,β_*飽和單體逐次 反應,而獲得之高度分枝的聚醯胺胺化合物(所謂的星爆 樹枝狀聚合物,參照日本專利特表昭6〇_5〇〇295號公報); 使具有特定之醯胺胺結構之化合物與脲類或氰酸反應而獲 得之聚醯胺聚脲樹脂(參照日本專利特開昭55_3丨837號公 報); 使二異氰酸酯化合物或聚異氰酸酯化合物與分子内具有三 級胺基與至少2個羥基之羥基化合物反應,而獲得之水溶 性樹脂(參照曰本專利特開平6_166993號公報); )52565.doc -10- 201136008 使具有一級或二級胺基之胺化合物與分子内具有至少2個 環氧基之環氧化合物反應,而獲得之聚胺樹脂之改性物 (參照曰本專利特開2〇〇 1 _ 181996號公報); 使U)選自由伸烷基二胺及聚伸烷基聚胺所組成群中之至少 —種、(b)脲化合物、(c)選自由具有芳香環之一級或二級 胺化合物及芳香族環氧化合物所組成群中之至少一種芳香 族化合物、及(d)選自由醛化合物、表南醇化合物及α,γ_: _-β-醇化合物所組成群中之至少一種化合物發生反應,而 獲知之水各性樹脂(參照曰本專利特開平號公 報);及 使(a)選自由伸烷基二胺及聚伸烷基聚胺所組成群中之至少 -種、⑻脲化合物、及⑷選自由醛化合物、表鹵醇化合 物及α’γ-二齒_β_醇化合物所組成群中之至少一種化合物反 應而獲得之水溶性樹脂(參照日本專利特開平7_丨57997號 公報)。 ' 本發明之非水電解液蓄電池電極用組合物可包含二種上 上之陽離子性高分子。 作為陽離子性高分子,宜為聚酿胺胺·表氣醇樹脂、二 烯丙基胺鹽酸鹽-丙烯醯胺共聚物、聚胺樹脂之改性物2 聚醯胺聚脲樹脂,更佳為聚醯胺胺_表氯醇樹脂、二烯P 基胺鹽酸鹽丙烯醯胺共聚物及聚胺樹脂之改性物。 本發明之非水電解液蓄電池電極用組合物係包含電極月 性物質、#合騎〗旨、液狀物質及陽離子性高分子。本每 明之非水電解液蓄電池電極用組合物根據需要,可進一歩 I52565.doc 201136008 含有其他添加物。作為其他添加物,可例舉:於液狀物質 中溶解或膨潤之黏度調整劑、黏合劑助劑'石墨或乙快黑 等導電性碳、金屬粉末等導電材料及水溶性聚合物。於電 極活性物質為負極活性物質之情形時,本發明之非水電解 液蓄電池電極用組合物宜為含有於液狀物質令溶解或膨满 之黏度調整劑。於電極活性物質為正極活性物質之情形 時,本發明之非水電解液蓄電池電極用組合物宜為含有導 2h。於液狀物質為水之情形時’本發明之非水電解液 蓄電池電極用組合物宜為含有水溶性聚合物。 本發明之非水電解液蓄電池電極合物之製造方法並 無限制。作為具體的製造法方法,可列舉以下方法:將電 極活性物質與黏合劑樹脂、陽離子性高分子混合,向所得 =合物中添加液狀物質之方法;將電極活性物質與液狀 ^陽離子性高分子混合’向所得之混合物中添加黏合 ▲、月曰之方法;將電極活性物質、黏合劑樹脂、陽離子性 液狀物質同時混合之方法;以及’將黏合劑樹脂 '、液狀物質、陽離子性高分子混合,向所得之混合物中加 性物質之方法。陽離子性高分子可預先與電極活 狀1Γ合,亦可預先與黏合劑樹脂混合,還可預先與液 人物質混合。亦可將陽離子性高分子與電極活性物質、黏 八::月曰及液狀物質之混合物混合。尤其是將陽離子性高 二。電極活性物質、黏合劑樹脂及液狀 合較為有效率。 σ物混 本發明之非水電解液蓄電池電極用組合物中之陽離子性 152565.doc 12 201136008 尚分子之含量並無限制,陽離 計,相對於點合劑樹脂宜為001 ln ^子里以重量基準 曰且為°·01〜10倍,更佳為0.05〜5倍, 尤佳為G.1〜1倍’特佳為Q 2〜〇 5倍。 本發明之非水電解液蓄電池 物W > X田 冤極用組合物中之電極活性 物質之3置並無限制,電極 ^ A ^切買量以重置基準計,相 對於黏合劑樹脂宜為卜^⑻倍, 3〜300倍,特佳為5〜200倍。。…2 50(H。’尤佳為 :發明之非水電解液蓄電池電極用組合物中之液狀物質 之含量亦無限制,液狀物皙 _ 質^重量基準計,相對於黏合 讀脂宜為卜嶋倍,更佳為2〜5⑼倍,尤佳為3〜3〇〇倍, 特佳為5〜200倍。 藉由將電極活性物質與黏合劑樹脂、於液狀物質中呈陽 離子吐之间分子及液狀物質混合,而可容易獲得均句的非 水電解液蓄電池電極用組合物’藉由使用球磨機、砂磨機 等分散機、超音波分散機、均化器等進行進一步混合,而 可獲得更均句的非水電解液f電池電極用組合物。 本發明之電極係藉由將本發明之非水電解液蓄電池電極 用組合物塗佈於集電體上’使所得之塗佈物(形成有组合 物層之集電體)乾燥’除去液狀物質而製造,在形成於集 電體表面之基質中固定了電極活性物質的電極活性物質層 形成於集電體上。若集電體包含導電性材料則無限制,宜 為鐵、銅、鋁、鎳、不鏽鋼等金屬製造。其形狀亦無限 制’宜為厚度0.001〜0.5 mm左右之薄片狀。 將非水電解液蓄電池電極用組合物塗佈於集電體之塗佈 152565.doc 13 201136008 方法亦無限制。例如使用狹縫模塗法 逆輥塗佈法、直接鎔發佑法,、]刀去、浸潰法、 潰、刷塗等,而將非欠雷M凹法、擠出塗佈法、浸 集電體上非 電池電極用組合物塗佈於 ^ 。電解液蓄電池電極用組合物之塗佈量亦盔 限制’以藉由乾燥除去液狀物質 亦.,,、 之屋许—达。 ^取又電極活性物質層 又且為0.005〜5 mm,更佳為〇〇5〜2 塗佈量。 _之方式’調整 將電極乾燥之步驟(以下簡稱為「乾燥步驟」)中 方法並無限制,例如可例舉:使用 ’、 弘,π . * 便历暖風、熱風 '低濕風之 “ s空乾燥;使用(遠)紅外線或電子束等之照射之乾 ?、。至於乾燥條件,通常於不引起應力集中而使電極活性 物質層產生龜裂、或者電極活性物質層不自集電體上剝離 ,乾燥速度範圍中,以黏合劑樹脂不產生浮升之方式進行 調整。乾燥溫度並無制限,宜為6〇〜2〇〇t:下,更佳為 C 150 c下’—面階段性的升溫—面進行乾燥。若使用 本發明之非水電解液蓄電池電極用組合物,則不必自低溫 向高溫階段性的升溫而進行乾燥’可實施高溫(例如 100C〜150。〇下之急速乾燥,由於亦可抑制黏合劑樹脂向 電極表面之浮升,故與使用先前之非水電解液蓄電池電極 用組合物之情形相比,電極之生產性更加提高。 於連續製造電極之情形時,該生產線之線速度亦無限 制。若使用本發明之非水電解液蓄電池電極用組合物,即 便以例如 0.5 m/min〜100 m/min,宜為2〇 m/min〜1〇〇 m/min 之線速度進行乾燥,亦不會使電極活性物質層產生龜裂, I52565.doc 201136008 或者電極活性物質層不會自集電體上剝離。 本發明之非水電解液蓄電池係包含電解液與本發明之電 極。電解液係包含電解f與電解液溶劑,且可根據電極活 性物質之種類而選擇發揮作為電池之功能者。作為電解 質,可使用公知之鋰鹽。具體可例舉:ucl〇4、LiBFe、 LiPF6、LiCF3S〇3、LiCF3C〇2、LUsF6、^ 、The cationic polymer may, for example, be a cationic polymer having a viscosity of usually a poly-resin such as a polyether resin such as a polyethylene polyamine or a polypropylene polyamine; Modified resin; polyamine polyurea resin; amine ester resin; melamine-formaldehyde resin, urea-formaldehyde resin, polyamine polyurea/furfural resin; containing secondary or tertiary amine group or four-stage a copolymer of an acrylic polymer and the above acrylamide; a dicyano cationic compound such as a polyvinylamine, a polyethylene hydrazine or a dicyandiamide-furaldehyde copolymer; a dicyandiamide-polyvinylamine copolymer or the like Polyamine-based cationic compound; epichlorohydrin-didecylamine copolymer; monopropyl propyl hydrazino-S〇2 polycondensation product; diallylamine salt-so2 polycondensation product; gasified diallyl Dimethylammonium polymer, vaporized diallyl dimercapto _ acrylamide copolymer; copolymer of allylamine salt; dialkylaminoethyl acrylate tetrabasic salt copolymer ; acrylamide-diallylamine copolymer; diammonium propyl propyl Amides polymer; 5 and a cationic resin having an amidine structure of the ring. Further, 'the polymer which is cationic in the liquid substance may, for example, be a polystyrene-epichlorohydrin resin (refer to International Publication No. 2008/024444, 152565.doc. 〇. 201136008) JP-A-2010-501670 and Japanese Patent Laid-Open No. Hei 2-170825); di-propylamine hydrochloride-acrylamide copolymer (refer to Japanese Patent Laid-Open No. Hei 6-184246); a product obtained by reacting a polyalkyleneamine with urea or a dicarboxylic acid, and reacting with an aldehyde compound, a cogand alcohol compound and/or an alcohol compound to obtain a water-soluble polymer (refer to Japanese Patent Publication No. Sho 44-11667) The product obtained by condensation reaction of a polyalkylene polyamine with urea is disclosed in Japanese Patent Publication No. Sho 61-42931, Japanese Patent Publication No. Sho 61-42931, and Japanese Patent Laid-Open No. SHO 62-101621. a water-soluble polymer obtained by reacting with an aldehyde compound, a surface-alcohol compound, and/or an α,γ-dental-β-alcohol compound (refer to Japanese Patent Laid-Open No. Hei 4_1〇〇997); Or polyamines and acrylic compounds a product obtained by a Michael additix reaction of a polarized α,β·unsaturated monomer such as a methacrylic acid compound, and further reacted with a polyamine, α,β_* saturated monomer, respectively. The highly branched polyamidoamine compound obtained (the so-called starburst dendrimer, refer to Japanese Patent Laid-Open Publication No. SHO-6-5295); A polyamine polyurea resin obtained by a reaction of a urea or a cyanic acid (refer to Japanese Laid-Open Patent Publication No. SHO 55-A No. 837); a diisocyanate compound or a polyisocyanate compound having a tertiary amino group and at least two hydroxyl groups in the molecule The water-soluble resin obtained by the reaction of the hydroxy compound (refer to Japanese Patent Laid-Open No. Hei 6-166993); 52565.doc -10- 201136008 The amine compound having a primary or secondary amine group has at least 2 rings in the molecule. The epoxy compound of the oxy group is reacted to obtain a modified product of the polyamine resin (refer to Japanese Patent Laid-Open Publication No. Hei 2 〇〇 181996); U) is selected from the group consisting of alkylenediamine and polyalkylene Polyamine At least one of the groups, (b) a urea compound, (c) is selected from at least one aromatic compound having a group consisting of a primary ring or a secondary amine compound and an aromatic epoxy compound, and (d) Selecting at least one compound selected from the group consisting of an aldehyde compound, a pronol compound, and an α,γ_: _-β-alcohol compound, and obtaining a water-reactive resin (refer to Japanese Patent Laid-Open Publication No.); (a) at least one selected from the group consisting of alkylenediamines and polyalkylene polyamines, (8) urea compounds, and (4) selected from the group consisting of aldehyde compounds, epihalohydrin compounds, and α'γ-dental A water-soluble resin obtained by reacting at least one compound of a group consisting of a β-alcohol compound (refer to Japanese Laid-Open Patent Publication No. Hei 7-57997). The composition for a nonaqueous electrolyte battery electrode of the present invention may contain two kinds of the above cationic polymers. As the cationic polymer, it is preferably a polystyrene amine gas, a diallylamine hydrochloride-propyleneamine copolymer, a polyamine resin modified product 2 polyamine polyurea resin, preferably It is a modification of polyamidoamine-epichlorohydrin resin, diene P-amine hydrochloride hydrochloride acrylamide copolymer and polyamine resin. The composition for a non-aqueous electrolyte battery electrode according to the present invention comprises an electrode monthly substance, a #合骑, a liquid substance, and a cationic polymer. The composition of the non-aqueous electrolyte battery electrode of the present invention can be further advanced as needed. I52565.doc 201136008 contains other additives. The other additives may, for example, be a viscosity adjusting agent dissolved or swollen in a liquid substance, a conductive agent such as graphite or B-black, or a conductive material such as a metal powder or a water-soluble polymer. In the case where the electrode active material is a negative electrode active material, the composition for a non-aqueous electrolyte battery electrode of the present invention is preferably a viscosity adjusting agent which is dissolved or filled in a liquid substance. In the case where the electrode active material is a positive electrode active material, the composition for a non-aqueous electrolyte battery electrode of the present invention preferably contains a lead 2h. When the liquid material is water, the nonaqueous electrolyte battery electrode composition of the present invention preferably contains a water-soluble polymer. The method for producing the nonaqueous electrolyte battery electrode composition of the present invention is not limited. Specific examples of the production method include a method in which an electrode active material is mixed with a binder resin or a cationic polymer, and a liquid material is added to the obtained compound; and the electrode active material and the liquid compound are cationic. Polymer mixing 'method of adding ▲, ruthenium to the obtained mixture; method of simultaneously mixing electrode active material, binder resin, and cationic liquid substance; and 'bonding resin', liquid substance, cation A method in which a polymer is mixed and an additive is added to the obtained mixture. The cationic polymer may be previously mixed with the electrode active material, may be mixed with the binder resin in advance, or may be mixed with the liquid substance in advance. The cationic polymer may also be mixed with an electrode active material, a mixture of gluten and a liquid substance. In particular, the cationicity is higher. Electrode active materials, binder resins and liquids are more efficient. The σ substance is mixed with the cationic substance in the composition for non-aqueous electrolyte battery electrode of the present invention. 152565.doc 12 201136008 The content of the molecule is not limited, and the cation is preferably 001 ln ^ by weight relative to the resin of the point compound. The reference is °01·10 to 10 times, more preferably 0.05 to 5 times, and particularly preferably G.1 to 1 times 'extra good for Q 2 to 〇 5 times. The non-aqueous electrolyte battery material of the present invention has no limitation on the electrode active material in the X-ray electrode composition, and the electrode is preferably used on a reset basis, and is preferably relative to the binder resin. For Bu ^ (8) times, 3 to 300 times, especially good for 5 to 200 times. . ... 2 50 (H. 'Youjia is: the content of the liquid substance in the composition for the non-aqueous electrolyte battery electrode of the invention is also not limited, and the liquid substance 皙 _ _ mass basis, relative to the adhesive reading It is preferably 2 to 5 (9) times, more preferably 3 to 3 times, and particularly preferably 5 to 200 times. By using an electrode active material and a binder resin, it is a cationic spit in a liquid substance. The composition for non-aqueous electrolyte battery electrode, which can be easily mixed with a molecule and a liquid substance, can be further mixed by using a disperser such as a ball mill or a sand mill, an ultrasonic disperser, a homogenizer or the like. Further, a non-aqueous electrolyte f battery electrode composition can be obtained. The electrode of the present invention is obtained by applying the composition for a non-aqueous electrolyte battery electrode of the present invention to a current collector. The coating material (the current collector in which the composition layer is formed) is dried and produced by removing the liquid material, and the electrode active material layer in which the electrode active material is fixed to the substrate formed on the surface of the current collector is formed on the current collector. If the collector contains conductive materials, then The limitation is preferably made of a metal such as iron, copper, aluminum, nickel or stainless steel, and the shape thereof is not limited to a sheet having a thickness of about 0.001 to 0.5 mm. The non-aqueous electrolyte battery electrode composition is applied to the current collection. Coating 152565.doc 13 201136008 The method is also not limited. For example, using the slit die coating method, the reverse roll coating method, the direct squeezing method, the knife knives, the dipping method, the smashing, the brushing, etc. The composition of the non-battery electrode on the non-under-expanded M-cavity method, the extrusion coating method, and the immersion collector is applied to the coating composition of the composition for the electrolyte battery electrode, which is also limited by the helmet to remove the liquid by drying. The material is also.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (hereinafter referred to as "drying step") There is no limitation on the method. For example, use ', 弘, π. * Let's use warm air, hot air 'low humidity' s dry; use (far) infrared or Drying of electron beam, etc. As for drying conditions, usually does not cause stress Concentration causes the electrode active material layer to be cracked, or the electrode active material layer is not peeled off from the current collector, and the drying speed is adjusted so that the binder resin does not rise. The drying temperature is not limited, and is preferably 6 〇~2〇〇t: It is more preferable to dry the surface of the surface of the C-150 c. The surface composition of the non-aqueous electrolyte battery electrode of the present invention does not have to be from a low temperature to a high temperature stage. Drying at a high temperature and performing high temperature (for example, 100 C to 150. Rapid drying under the nipple, since the adhesion of the binder resin to the surface of the electrode can also be suppressed, the composition for the non-aqueous electrolyte battery electrode is used. In comparison with the case, the productivity of the electrode is further improved. In the case of continuous electrode fabrication, the line speed of the line is also unlimited. When the composition for a non-aqueous electrolyte battery electrode of the present invention is used, it is dried at a linear velocity of, for example, 0.5 m/min to 100 m/min, preferably 2 〇m/min to 1 〇〇m/min, or Cracking of the electrode active material layer may occur, and the electrode active material layer may not be peeled off from the current collector. The nonaqueous electrolyte secondary battery of the present invention comprises an electrolytic solution and an electrode of the present invention. The electrolytic solution contains the electrolytic solution f and the electrolytic solution solvent, and can be selected to function as a battery depending on the type of the electrode active material. As the electrolyte, a known lithium salt can be used. Specific examples are: ucl〇4, LiBFe, LiPF6, LiCF3S〇3, LiCF3C〇2, LUsF6, ^,

LiB10Cl10、LiAICl4、UC1、以玢、LiB(c2HA CF3S〇3Li ' CH3S〇3Li、UCF3S〇3、uC4F9S〇3LiB10Cl10, LiAICl4, UC1, 玢, LiB(c2HA CF3S〇3Li 'CH3S〇3Li, UCF3S〇3, uC4F9S〇3

Li(CF3S〇2)2N、及低級脂肪酸羧酸鋰e 右電解液溶劑為非水電解液蓄電池領域中通常所使用者 則無限制。具體可列舉:碳酸丙二酯、碳酸乙二醋、碳酸 丁二酯、碳酸二曱酯、碳酸二乙酯、碳酸曱基乙酯等碳酸 醋溶劑;γ_ 丁内酯等内酯溶劑;三甲氧基曱烷、丨,2-二甲 氧基乙烷 '二乙醚、2·乙氧基乙烷、四氫呋喃、2甲基四 氫呋喃等醚溶劑;二曱基亞颯等亞砜溶劑;丨,3_二氧戊 環、4-曱基_1,3-二氧戊環等氧戊環溶劑;乙腈或硝基甲烷 等含氮溶劑;曱酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丁 醋、丙酸甲酯、丙酸乙酯等有機酸酯溶劑;磷酸三酯或碳 酉文一甲酿、碳酸一乙酯、碳酸二丙醋等碳酸二酯等無機酸 面曰’谷劑;二乙二醇二甲喊溶劑;三乙二醇二甲越溶劑;環 丁砜溶劑;3-甲基-2-哼唑烷酮等α号唑烷酮溶劑;丨,3_丙烷 磺内酯、1,4- 丁烷磺内酯、萘磺内酯等磺内酯溶劑等之單 獨或二種以上之混合溶劑。 本發明之非水電解液蓄電池除電解液及本發明之電極 152565.doc •15· 201136008 外,還包含分隔件等零件,可根據通常方法而製造。例如 使正極與負極介隔分隔件而重合形成積層體,將該積層體 藉由捲曲、摺疊等操作,形成與電池形狀相對應之形狀 後,放入電池容器中,於該容器内注入電解液後,使用封 口板或安全閥封 (Expand Metal)、 口。進而根據需要亦可將膨脹金屬 保險絲、PTC(Positive TemperatureLi(CF3S〇2)2N and the lower fatty acid lithium carboxylate e right electrolyte solvent are generally used in the field of nonaqueous electrolyte batteries. Specific examples thereof include a propylene carbonate solvent such as propylene carbonate, ethylene carbonate, butylene carbonate, dinonyl carbonate, diethyl carbonate or decyl carbonate; a lactone solvent such as γ-butyrolactone; Ether solvent such as decane, hydrazine, 2-dimethoxyethane 'diethyl ether, 2. ethoxyethane, tetrahydrofuran, 2 methyltetrahydrofuran; sulfoxide solvent such as dimercaptoarthene; hydrazine, 3_ Dioxolane, 4-mercapto-1,3-dioxolane and other oxolane solvents; nitrogen-containing solvents such as acetonitrile or nitromethane; methyl decanoate, methyl acetate, ethyl acetate, butyl acetate , an organic acid ester solvent such as methyl propionate or ethyl propionate; a mineral acid glutinous gluten-based granule such as a phosphate triester or a carbonic acid diester such as a carbonic acid, a monoethyl carbonate or a dipropylene vinegar; Ethylene glycol dimethyl solvate; triethylene glycol dimethyl solvate; sulfolane solvent; 3-methyl-2-oxazolidinone and other alpha oxazolidinone solvent; hydrazine, 3_ propane sultone, 1, A single or a mixture of two or more of a sultone solvent such as 4-butane sultone or naphthalene lactone. The non-aqueous electrolyte secondary battery of the present invention contains, in addition to the electrolytic solution and the electrode of the present invention, 152565.doc •15·201136008, and includes a separator and the like, and can be manufactured according to a usual method. For example, the positive electrode and the negative electrode are separated by a separator to form a laminated body, and the laminated body is formed into a battery container by being subjected to curling, folding, or the like to form a shape corresponding to the shape of the battery, and an electrolyte is injected into the container. After that, use a sealing plate or a safety valve seal (Expand Metal). In addition, as needed, the expanded metal fuse and PTC (Positive Temperature)

Coefficient ’正溫度係數)元件等過電流保護元件,導板等 放入電池容器内,使電池内部之壓力上升,防止過充放 電。電池之形狀並無限制,可列舉:硬幣型、紐扣型、薄 片型、圓筒型、方型、扁平型等。 先則之非水電解液蓄電池電極用組合物於乾燥步驟中, 若以高溫進行急速㈣,則電極内之黏合懸脂會向電極 表面浮升,引起電極剝離或破裂,因此必需自較低溫度階 段性地升溫而進行乾燥’又,於連續製造電極之情形時, 存在以下問通.由於必需於有限之乾燥區域内完成乾燥, 故生產線之線速度亦為1() m/min左右,而使乾燥步驟需要 較長時間,但藉由使用本發明之非水電解液蓄電池電極用 組合物:而可縮短乾燥步驟之時間,即便於高溫(例如 100〜150C)下進行急速乾燥,亦可抑制黏合劑樹脂向電極 表面之浮升’並且亦可大幅度增加生產線速度,從而提高 電極之生產性。 ^ 實施例 、以下’藉由實施例it一步詳細地說明本發日月,但本發明 並不限定於該等實施例。 152565.doc 201136008 (陽離子性高分子之pKa值) 陽離子性高分子之pKa值係使用ACD/Labs(富士通股份 有限公司製造)之pKa值預測軟體而計算。 (ΕΡΜΑ面分析) ΕΡΜΑ面分析係使用下述方法進行測定。 於乾燥器内放入盛有2%锇水溶液之培養皿、與剖面經 剖面拋光機(cross section polisher)加工之負極。將乾燥器 密封,將負極於2%餓水溶液之蒸氣中暴露2晝夜,進行黏 合劑樹脂之鐵染色。 使用電解放射型電子束微量分析儀(ΕΡΜΑ)(商品名: JXA-8500F,日本電子製造),進行染色後之負極剖面之元 素色彩面分析觀察,確認負極内之锇分佈狀態。可知锇分 佈狀態良好者係黏合劑樹脂向負極表面之浮升較少(〇), 不良好者係產生黏合劑樹脂向負極表面浮升(X)。 (黏度) 使用Β型黏度計測定於液狀物質中呈陽離子性之高分子 之水溶液(固體成分濃度如表1所記載)於25°C下之黏度。將 結果示於表1。 [表1] 於液狀物質中呈陽離子性之高分子 固體成分濃度 (重量%) 黏度 (mPa.s) 聚醯胺胺-表氯醇樹脂A1 25 30〜300 二烯丙基胺鹽酸鹽-丙烯醯胺共聚物A2 30 700〜2000 聚胺樹脂之改性物A3 45 3〜15 聚醯胺聚脲樹脂A4 30 5〜30 5 152565.doc •17- 201136008 實施例1 於LiCo02(本荘化學公司(Honjo Chemical Corporation)製 造;製品名「HLC-22」)90重量份、乙炔黑(電氣化學公司 製造:HS-100)5重量份、聚酿胺聚腺樹脂1重量份及聚偏 二氟乙烯4重量份之混合物中,以固體成分含量成為6〇0/〇 之方式’添加N-甲基吡咯烷酮。使用行星式混合機攪拌所 得之混合物,獲得均勻的正極用漿料。使用多功能實驗室 用塗佈機(Multi-Lab Coater)將該正極用漿料均勻地塗佈於 紹箔(厚度為20 μηι)上,使用乾燥機於12〇。〇下乾燥所得之 塗佈物’獲得非水電解液蓄電池用正極。 實施例2 於碳(TIMCAL公司製造:商品名「SFG44」)95重量份、 苯乙烯-1,3-丁二烯共聚物3重量份、羥甲基纖維素之鈉鹽1 重里份及聚酿胺聚腺樹脂1重量份之混合物中,以固體成 分含量成為60°/。之方式添加水。使用行星式混合機攪拌所 得之混合物,獲得均勻的負極用漿料。使用多功能實驗室 用塗佈機將該負極用漿料均勻地塗佈於銅箔(厚度為2〇 μιη)上,使用乾燥機m12〇〇c下乾燥所得之塗佈物,獲得非 水電解液蓄電池用負極。 參考比較例1 於貫施例1中,除了不添加聚醯胺聚脲樹脂以外,以與 實施例1相同之方式獲得鋰離子蓄電池用正極,但乾燥所 需之時間比實施例1長。 參考比較例2 152565.doc 201136008 於實施例2中’除了不添加聚醯胺聚脲樹脂以外,以與 實施例2相同之方式獲得鋰離子蓄電池用負極,但乾燥所 需之時間比實施例2長。 實施例3 於猛酸锂(寶泉股份有限公司製造;製品名「HLB-0711216」) 92重量份、乙炔黑(電氣化學公司製造:HS-100)5重量 伤、經曱基纖維素之鈉鹽1重篁份、說樹脂(Kynar Aquatec 製造,PVDF :聚偏二氟乙烯)2重量份及聚醯胺胺_表氣醇 樹指Al(pKa值:8.57)0.3重量份之混合物中,以固體成分 含量成為55%之方式添加水。使用薄膜旋轉型高速混合機 (FILMIX)(PRIMIX股份有限公司製造)攪拌所得之混合物, 獲付均勻的正極用漿料。使用多功能實驗室用塗佈機將所 得之正極用漿料均勻地塗佈於厚度為2〇 pm之鋁箔上,將 所得之塗佈物於25t下乾燥,而獲得非水電解液f電池用 正極。乾燥所需之時間為45分鐘。乾燥所需之時間係藉由 目視觀察正極表面之乾燥狀態而判斷。 實施例4 於實施例3中,除了使用二缚丙基胺鹽酸鹽丙稀酿胺共 =物(pKa值.1() 49)() 3重量份代替聚酿胺胺表氣醇樹 卜以與實施例3相同之方式進行實施,而獲得非 水電解液蓄電池用正極。乾 乾备所南之時間為45分鐘。乾燥 所需之時間係藉由目視觀 矾硯察正極表面之乾燥狀態而判斷。 實施例5 ;、η中’除了使用聚胺樹脂之改性物A3(改性聚胺 152565.doc -19· 201136008 樹脂,pKa值·· 8.98)0.3重量份代替聚醯胺胺-表氯醇樹脂 A1以外,以與實施例3相同之方式進行實施,而獲得非水 電解液蓄電池用正極。乾燥所需之時間為55分鐘。乾燥所 需之時間係藉由目視觀察正極表面之乾燥狀態而判斷。 實施例6 於實施例3中,除了使用聚醯胺聚脲樹脂A4(pKa值:-0.99) 0.3重量份代替聚醯胺胺-表氣醇樹脂A1以外,以與實施例 3相同之方式進行實施,而獲得非水電解液蓄電池用正 極。乾燥所需之時間為6 0分鐘。乾燥所需之時間係藉由目 視觀察正極表面之乾燥狀態而判斷。 參考比較例3 於實施例3中,除了使用聚乙烯吡咯烷酮(pKa值:-0.41) 0.3重量份代替聚醯胺胺-表氣醇樹脂A1以外,以與實施例 3相同之方式進行實施,而獲得非水電解液蓄電池用正 極。乾燥所需之時間為60分鐘。乾燥所需之時間係藉由目 視觀察正極表面之乾燥狀態而判斷。 [表2] 於液狀物質中呈陽離子性之高分子 乾燥時間(分鐘) 實施例3 聚醯胺胺-表氣醇樹脂A1 45 實施例4 二烯丙基胺鹽酸鹽-丙烯醯胺共聚物A2 45 實施例5 聚胺樹脂之改性物A3 55 實施例6 聚醯胺聚脲樹脂A4 60 參考比較例3 聚乙烯吡咯烷酮 60 實施例7 152565.doc -20- 201136008 於碳(住友金屬工業製造;商品名「swFi5p2j)剛重 量份、苯乙烯-1,3-丁二烯丑平鉍 邱/、聚物3重篁份、羥f基纖維素 之納鹽1重量份&聚酿胺胺_表氯醇樹脂ai响值: 8.·57)0.3重量份之混合物中,以间辦士、八a旦 Τ以固體成分含量成為60¼之方 式添加水。使用薄膜旋輕刑古、古 疋得型间速混合機(FILMIX)攪拌所得 之混合物,獲得均匂的g Μ,丨 負極用漿料。使用多功能實驗室用 塗佈機將所得之負極用维斗;^ +Λι A , L ^ 貝極用漿科均勻地塗佈於厚度為20 μιη之 銅落上,以與實施例3相同之方式乾燥所得之塗佈物,獲 得非水電解液蓄電池用負極。將藉由目視觀㈣㈣Μ 乾燥狀態而判斷出之乾燥時間示於表3。 實施例8 ;實7中& 了使用二稀丙基胺鹽酸鹽-丙稀酿胺共 聚物A2(pKa值:1G.49)G3重量份代替聚酿胺胺.表氣醇樹 脂A1以外,以與實施例7相同之方式進行實施,而獲得非 水電解液蓄電池用負極。將藉由目視觀察負極表面之乾燥 狀態而判斷出之乾燥時間示於表3。 實施例9 ^ 例7中,除了使用聚胺樹脂之改性物A3 (改性聚胺 樹月曰’ pKa值:8.98)〇3重量份代替聚醢胺胺-表氯醇樹脂 A1以外’以與實施例7相同之方式進行實施,而獲得非水 電解液蓄電池用負極。將藉由目視觀察負極表面之乾燥狀 態而判斷出之乾燥時間示於表3。 實施例1 〇 ; 彳7中,除了使用聚醯胺聚腺樹脂A4(pKa值:_〇 99) 152565.doc -21- 201136008 0.3重量份代替聚醯胺胺-表氯醇樹脂A1以外,以與實施例 7相同之方式進行實施,而獲得非水電解液蓄電池用負 極。將藉由目視觀察負極表面之乾燥狀態而判斷出之乾燥 時間示於表3。 參考比較例4 於實施例7中,除了不使用聚醯胺胺-表氯醇樹脂A1以 外,以與實施例7相同之方式進行實施,而獲得非水電解 液蓄電池用負極。將藉由目視觀察負極表面之乾燥狀態而 判斷出之乾燥時間示於表3。 [表3] 於液狀物質中呈陽離子性之高分子 乾燥時間(分鐘) 實施例7 聚醯胺胺-表氣醇樹脂Α1 48 實施例8 二烯丙基胺鹽酸鹽-丙烯醢胺共聚物Α2 47 實施例9 聚胺樹脂之改性物A3 75 實施例10 聚醯胺聚脲樹脂Α4 58 參考比較例4 - 80 實施例11 於碳(住友金屬工業製造;商品名「SWF15P2」)100重 量份、苯乙烯-1,3-丁二烯共聚物3重量份、羥甲基纖維素 之鈉鹽1重量份及聚醯胺胺-表氯醇樹脂Al(pKa值: 8.57)0.3重量份之混合物中,以固體成分含量成為60%之方 式添加水。使用薄膜旋轉型高速混合機(FILMIX)攪拌所得 之混合物,獲得均勻的負極用漿料。使用多功能實驗室用 塗佈機將所得之負極用漿料均勻地塗佈於厚度為20 μιη之 152565.doc -22- 201136008 銅箱上,於120t下急速乾燥所得之塗佈物,獲得非水電 解液蓄電池用負極。將藉由目視觀察負極表面之乾燥狀態 而判斷出之乾燥時間示於表4。肖由EPMA面分析觀察所得 ,非水電解液蓄電池用負極之剖面之黏合劑樹脂的分佈狀 態。將結果不於表4。 實施例12 於實施例^中,除了使用二稀丙基胺鹽酸鹽_丙稀酿胺 共聚物A2(pKa值:Η).49)().3重量份代替聚醯胺胺表氣醇 樹脂Am外,以與實施例u相同之方式進行實施,而獲得 非水電解液蓄電池用負極。將藉由目視觀察負極表面之乾 燥狀態而判斷出之乾燥日寺間示於表4。藉由EpMA面分析觀 察黏合劑樹脂之分佈狀態。將結果示於表4。 實施例13 於實施例"中,除了使用聚胺樹脂之改性物A3(改性聚 胺樹脂,响值:8.98)〇·3重量份代替聚酿胺胺-表氯醇樹 脂幻以外’以與實施mi相同之方式進行實施,而獲得非 水電解液蓄電池用負極。將藉由目視觀察負極表面之乾燥 狀態而判斷出之乾燥時間示於表4。藉由epma面分析觀察 黏合劑樹脂之分佈狀態。將結果示於表4。 實施例14 : -0.99) 〇·3重量份代替聚醯胺胺-表氯醇樹脂M以外,α盥實施例 U相同之方式進行實施,而獲得非水電解液蓄電池:負 極。將藉由目視觀察負極表面之乾燥狀態而判斷出之乾燥 152565.doc -23- 201136008 時間示於表4。藉由ΕΡΜΑ面分析觀察黏合劑樹脂之分佈狀 態。將結果示於表4。 參考比較例5 於實施例11中,除了不使用聚醯胺胺-表氯醇樹脂Α1以 外,以與實施例11相同之方式進行實施,而獲得非水電解 液蓄電池用負極。將藉由目視觀察負極表面之乾燥狀態而 判斷出之乾燥時間示於表4。藉由ΕΡΜΑ面分析觀察黏合劑 樹脂之分佈狀態。將結果示於表4。 [‘表 4]An overcurrent protection element such as a Coefficient ‘positive temperature coefficient element, a guide plate, etc. are placed in the battery case to increase the pressure inside the battery and prevent overcharge and discharge. The shape of the battery is not limited, and examples thereof include a coin type, a button type, a sheet type, a cylinder type, a square type, and a flat type. In the drying step, if the composition for the non-aqueous electrolyte battery electrode is rapidly heated at a high temperature (four), the adhesive suspension in the electrode will rise to the surface of the electrode, causing the electrode to peel or rupture, so it is necessary to lower the temperature. The temperature is gradually increased and dried. In addition, in the case of continuous electrode fabrication, the following problems exist. Since the drying must be completed in a limited drying area, the line speed of the production line is also about 1 (m/min). The drying step takes a long time, but by using the composition for a non-aqueous electrolyte battery electrode of the present invention, the drying step can be shortened, and even if it is rapidly dried at a high temperature (for example, 100 to 150 C), it can be suppressed. The adhesion of the binder resin to the surface of the electrode can also greatly increase the line speed, thereby improving the productivity of the electrode. ^ EXAMPLES Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited to the examples. 152565.doc 201136008 (pKa value of cationic polymer) The pKa value of the cationic polymer is calculated using the pKa value prediction software of ACD/Labs (manufactured by Fujitsu Co., Ltd.). (Kneading analysis) The kneading analysis was carried out by the following method. A petri dish containing 2% hydrazine aqueous solution and a negative electrode processed by a cross section polisher were placed in a desiccator. The desiccator was sealed, and the negative electrode was exposed to a 2% aqueous solution of hydrogen for 2 days and night for iron dyeing of the binder resin. The elemental color surface analysis of the negative electrode section after dyeing was carried out by using an electrolytic radiation type electron beam microanalyzer (trade name: JXA-8500F, manufactured by JEOL Ltd.), and the distribution state of the ruthenium in the negative electrode was confirmed. It is understood that the adhesion of the binder resin to the surface of the negative electrode is less (〇) in the case where the distribution state is good, and the adhesion of the binder resin to the surface of the negative electrode (X) occurs when the adhesion is not good. (Viscosity) The viscosity at 25 ° C of an aqueous solution (solid content concentration as shown in Table 1) of a polymer which is cationic in a liquid substance was measured using a Β-type viscometer. The results are shown in Table 1. [Table 1] Polymeric solid content concentration (% by weight) in a liquid substance. Viscosity (mPa.s) Polyamine amine-epichlorohydrin resin A1 25 30~300 Diallylamine hydrochloride - acrylamide copolymer A2 30 700~2000 Polyamine resin modification A3 45 3~15 Polyamide polyurea resin A4 30 5~30 5 152565.doc • 17- 201136008 Example 1 in LiCo02 (Benyi Chemical Manufactured by the company (Honjo Chemical Corporation); product name "HLC-22") 90 parts by weight, acetylene black (manufactured by Electric Chemical Co., Ltd.: HS-100) 5 parts by weight, 1 part by weight of polyamine resin, and polyvinylidene fluoride In a mixture of 4 parts by weight of ethylene, N-methylpyrrolidone was added as a solid content of 6 〇 0 / 〇. The obtained mixture was stirred using a planetary mixer to obtain a uniform slurry for the positive electrode. This positive electrode slurry was uniformly applied to a foil (thickness of 20 μηι) using a multi-purpose laboratory coater (Multi-Lab Coater), and dried at 12 ° using a dryer. The coating material obtained by drying under the crucible was taken to obtain a positive electrode for a nonaqueous electrolyte battery. Example 2 95 parts by weight of carbon (manufactured by TIMCAL Co., Ltd.: trade name "SFG44"), 3 parts by weight of styrene-1,3-butadiene copolymer, 1 part by weight of sodium salt of hydroxymethylcellulose, and a blend of In a mixture of 1 part by weight of the amine polyabsorbent, the solid content was 60 ° /. Add water in a way. The obtained mixture was stirred using a planetary mixer to obtain a uniform slurry for a negative electrode. The slurry for negative electrode was uniformly applied to a copper foil (thickness: 2 μm) using a multi-functional laboratory coater, and the obtained coating material was dried using a dryer m12〇〇c to obtain a nonaqueous electrolytic solution. A negative electrode for liquid batteries. Reference Example 1 In the first embodiment, a positive electrode for a lithium ion secondary battery was obtained in the same manner as in Example 1 except that the polyamine polyurea resin was not added, but the drying time was longer than that of the first embodiment. Reference Example 2 152565.doc 201136008 In Example 2, a negative electrode for a lithium ion secondary battery was obtained in the same manner as in Example 2 except that the polyamine polyurea resin was not added, but the time required for drying was shorter than that of Example 2. long. Example 3 Lithium citrate (manufactured by Baoquan Co., Ltd.; product name "HLB-0711216") 92 parts by weight, acetylene black (manufactured by Electric Chemical Co., Ltd.: HS-100), 5 weight loss, sodium by sulfhydryl cellulose 1 part by weight of a salt, 2 parts by weight of a resin (manufactured by Kynar Aquatec, PVDF: polyvinylidene fluoride), and a mixture of polyamidoamine-gas alcohol tree means Al (pKa value: 8.57) 0.3 parts by weight, Water was added in such a manner that the solid content was 55%. The resulting mixture was stirred using a film rotary high speed mixer (FILMIX) (manufactured by PRIMIX Co., Ltd.) to obtain a uniform slurry for a positive electrode. The obtained slurry for a positive electrode was uniformly applied onto an aluminum foil having a thickness of 2 μm using a multi-functional laboratory coater, and the obtained coating material was dried at 25 t to obtain a non-aqueous electrolyte f battery. positive electrode. The time required for drying is 45 minutes. The time required for drying was judged by visually observing the dry state of the surface of the positive electrode. Example 4 In Example 3, in addition to the use of di- propylamine hydrochloride acrylamide (pKa value of 1 () 49) () 3 parts by weight instead of polyamine amine gas alcohol The same procedure as in Example 3 was carried out to obtain a positive electrode for a nonaqueous electrolyte battery. The dry time is 45 minutes. The time required for drying is judged by visually observing the dry state of the surface of the positive electrode. Example 5; η in 'in addition to the polyamine resin modified A3 (modified polyamine 152565.doc -19·201136008 resin, pKa value · 8.98) 0.3 parts by weight instead of polyamine amine - epichlorohydrin The positive electrode for a nonaqueous electrolyte battery was obtained in the same manner as in Example 3 except for the resin A1. The time required for drying was 55 minutes. The time required for drying was judged by visually observing the dry state of the surface of the positive electrode. Example 6 In the same manner as in Example 3 except that the polyamine amine-urea resin A4 (pKa value: -0.99) was used in an amount of 0.3 part by weight instead of the polyamine amine-gas alcohol resin A1. The positive electrode for a non-aqueous electrolyte battery is obtained. The time required for drying is 60 minutes. The time required for drying was judged by visually observing the dry state of the surface of the positive electrode. Reference Example 3 In Example 3, the same procedure as in Example 3 was carried out except that 0.3 part by weight of polyvinylpyrrolidone (pKa value: -0.41) was used instead of the polyamine amine-gas alcohol resin A1. A positive electrode for a nonaqueous electrolyte battery was obtained. The time required for drying is 60 minutes. The time required for drying was judged by visually observing the dry state of the surface of the positive electrode. [Table 2] Polymer drying time in the liquid material (minutes) Example 3 Polyamine amine-gas alcohol resin A1 45 Example 4 Diallylamine hydrochloride-acrylamide copolymerization A2 45 Example 5 Modification of Polyamine Resin A3 55 Example 6 Polyamide Polyurea Resin A4 60 Reference Comparative Example 3 Polyvinylpyrrolidone 60 Example 7 152565.doc -20- 201136008 in Carbon (Sumitomo Metal Industry) Manufactured; trade name "swFi5p2j" as a part by weight, styrene-1,3-butadiene 丑 / 、, / 3 篁 、, hydroxyf-based cellulose nano-salt 1 part by weight & Amine-epichlorohydrin resin AI: 6.·57) In a mixture of 0.3 parts by weight, water is added as a solid content of 601⁄4. The resulting mixture was stirred by a Chad-type intermixer (FILMIX) to obtain a uniform g Μ, a slurry for the negative electrode. The obtained negative electrode was used for a multi-purpose laboratory coater; ^ + Λι A , The L ^ shellfish was uniformly coated on a copper drop having a thickness of 20 μm, and dried in the same manner as in Example 3. The obtained coating material was used to obtain a negative electrode for a non-aqueous electrolyte battery. The drying time determined by visual observation of (4) (4) 干燥 dry state is shown in Table 3. Example 8; Real 7 & Hydrochloride-acrylic acid amine copolymer A2 (pKa value: 1 G.49) G3 parts by weight was used in the same manner as in Example 7 except that the polyanisole A1. The negative electrode for electrolyte battery. The drying time determined by visually observing the dry state of the surface of the negative electrode is shown in Table 3. Example 9 ^ Example 7, except that modified product A3 of polyamine resin (modified polyamine) was used.树月曰' pKa value: 8.98) 〇 3 parts by weight instead of polyamine amine-epichlorohydrin resin A1 was carried out in the same manner as in Example 7 to obtain a negative electrode for a non-aqueous electrolyte battery. The drying time judged by visually observing the dry state of the surface of the negative electrode is shown in Table 3. Example 1 〇; In 彳7, except for the polyamine polyamine resin A4 (pKa value: _〇99) 152565.doc -21- 201136008 0.3 parts by weight in place of polyamine amine-epichlorohydrin resin A1 The same procedure as in Example 7 was carried out to obtain a negative electrode for a non-aqueous electrolyte battery. The drying time determined by visually observing the dry state of the surface of the negative electrode is shown in Table 3. Reference Example 4 In Example 7, The negative electrode for a non-aqueous electrolyte battery was obtained in the same manner as in Example 7 except that the polyamine amine-epichlorohydrin resin A1 was not used. The dry state of the surface of the negative electrode was visually observed. The drying time is shown in Table 3. [Table 3] Polymer drying time in a liquid substance (minutes) Example 7 Polyamine amine-gas alcohol resin Α1 48 Example 8 Diallylamine hydrochloride-acrylamide copolymerization Example 2 47 Example 9 Modification of Polyamine Resin A3 75 Example 10 Polyamide Polyurea Resin Α 4 58 Reference Comparative Example 4 - 80 Example 11 In Carbon (manufactured by Sumitomo Metal Industries; trade name "SWF15P2") 100 Parts by weight, 3 parts by weight of styrene-1,3-butadiene copolymer, 1 part by weight of sodium salt of hydroxymethylcellulose, and 0.3 parts by weight of polyamidoamine-epichlorohydrin resin Al (pKa value: 8.57) In the mixture, water was added so that the solid content was 60%. The resulting mixture was stirred using a film rotary type high speed mixer (FILMIX) to obtain a uniform slurry for a negative electrode. The obtained slurry for negative electrode was uniformly coated on a copper box of 152565.doc -22-201136008 having a thickness of 20 μm using a multi-purpose laboratory coater, and the obtained coating material was rapidly dried at 120 tons to obtain a non- A negative electrode for a water electrolyte battery. The drying time judged by visually observing the dry state of the surface of the negative electrode is shown in Table 4. The distribution state of the binder resin in the cross section of the negative electrode for the non-aqueous electrolyte battery was observed by EPMA surface analysis. The results will not be as shown in Table 4. Example 12 In Example 2, except that di-propylamine hydrochloride-acrylic acid copolymer A2 (pKa value: Η).49) (). 3 parts by weight was used instead of polyamine amine gas The resin was used in the same manner as in Example u except for the resin Am, and a negative electrode for a non-aqueous electrolyte battery was obtained. The dry day temples judged by visually observing the dry state of the surface of the negative electrode are shown in Table 4. The distribution state of the binder resin was observed by EpMA surface analysis. The results are shown in Table 4. Example 13 In the Example " except that the modified A3 (modified polyamine resin, loud value: 8.98) 〇·3 parts by weight of the polyamine resin was used instead of the polyaminamine-epichlorohydrin resin The same was carried out in the same manner as in the practice of mi to obtain a negative electrode for a nonaqueous electrolyte battery. The drying time judged by visually observing the dry state of the surface of the negative electrode is shown in Table 4. The distribution state of the binder resin was observed by epma surface analysis. The results are shown in Table 4. Example 14: -0.99) 3·3 parts by weight In place of the polyamine amine-epichlorohydrin resin M, the α 盥 Example U was carried out in the same manner to obtain a non-aqueous electrolyte battery: a negative electrode. The dryness of the surface of the negative electrode was visually observed to be dry. 152565.doc -23-201136008 The time is shown in Table 4. The distribution state of the binder resin was observed by kneading. The results are shown in Table 4. Reference Example 5 In the same manner as in Example 11 except that the polyamidoamine-epichlorohydrin resin Α1 was not used, the negative electrode for a nonaqueous electrolyte battery was obtained. The drying time judged by visually observing the dry state of the surface of the negative electrode is shown in Table 4. The distribution state of the binder resin was observed by kneading. The results are shown in Table 4. ['Table 4]

於液狀物質中呈陽離子性之高分子 乾燥時間 (秒) 分佈 狀態 實施例11 聚醯胺胺-表氯醇樹脂A1 20 〇 實施例12 二烯丙基胺鹽酸鹽-丙烯醯胺共聚物A2 18 〇 實施例13 聚胺樹脂之改性物A3 50 〇 實施例14 聚醯胺聚脲樹脂A4 45 〇 參考比較例5 60 X <電池評價> 將實施例7〜1 0及參考比較例4中所得之負極分別切割出 直徑為1 5 mm之圓形物,製作圓形之負極。將經製作之圓 形負極與正極之鋰箔以各自之活性物質層相互相對之方式 進行配置,於負極與正極之間,插入直徑為1 8 mm,厚度 為25 μηι之圓形之包含聚丙烯製多孔膜之分隔件,而形成 積層體。將該積層體放入不鏽鋼製之硬幣型包裝容器(直 徑為20 mm,高度為1.8 mm,不鏽鋼厚度為0.25 mm)内, 使正極接觸該容器之底面。於負極之銅猪上放入膨脹金 152565.doc • 24· 201136008 屬。使用於將碳酸乙二酯與碳酸二乙酯以體積比1 : 1混合 而得之混合溶劑中,溶解電解質LiPF0而獲得之電解液 (LlPF6濃度:1莫耳/升)充滿該容器内部。將聚丙烯製襯墊 置於谷器上部後’使用厚度為0.2 mm之不鏽鋼蓋進行密 封’製作直控為20 mm ’厚度為2 mm之硬幣型電池。 使用東洋系統(Toyo Systems)(股)製造之TOSCAT-3 1〇〇充 放電#價裝置,測定所製作之硬幣型電池之充放電容量, 進行電池之評價。 將所製作之硬幣型電池於25t:、6〇 mA/g之電流密度 下,進行恆定電流充電直至電壓值達到〇〇〇5 v為止。其 後,以0.005 V之電壓值進行恆定電壓充電。以使恆定電 流充電時間與恆定電壓充電時間之合計為12小時之方式進 行充電。測疋恆定電壓充電結束後之充電容量(mAh/g)(以 下簡稱為初次充電容量)。 恆定電壓充電後,於60 mA/g之電流密度下,進行恆定 電流放電直至電壓值達到1>5 v為止。測定恆定電流放電 結束後之充電容量[mAh/g](以下簡稱為初次放電容量)。 將初次放電容量(mAh/g)除以初次充電容量(mAh/g),將 所得之值乘以100而得之值作為初次充放電效率(%)。將結 果示於表5。 將結束初次之充放電的上述硬幣型電池再重複4次與上 述相同之充放電。測定第4次充電結束後之充電容量 (mAh/g)(以下_為第5週期之充電容量)與第*次放電結束 後之放電容量(mAh/g)(以下簡稱為第5週期之放電容量)。 152565.doc -25- 201136008 將結果示於表5。 [表5] 初次充電 容量 (mAh/g) 初次放電 容量 (mAh/g) 初次充放電 效率(%) 第5週期 充電容量 (mAh/g) 第5週期 放電容量 (mAh/g) 實施例7 372 352 95 349 347 實施例8 372 352 95 361 360 實施例9 381 359 94 351 349 實施例10 378 357 94 353 351 參考比較例4 379 358 95 358 357 產業上之可利用性 根據本發明,可縮短電極製造中之乾燥步驟之時間,因 此可提高電極之生產性。 152565.doc -26-Polymer drying time in liquid substance (seconds) Distribution state Example 11 Polyamine amine-epichlorohydrin resin A1 20 〇 Example 12 Diallylamine hydrochloride-acrylamide copolymer A2 18 〇 Example 13 Modification of polyamine resin A3 50 〇 Example 14 Polyamide polyurea resin A4 45 〇 Reference Comparative Example 5 60 X <Battery evaluation> Examples 7 to 10 and reference were compared The negative electrode obtained in Example 4 was cut into a circular shape having a diameter of 15 mm to prepare a circular negative electrode. The prepared circular negative electrode and the lithium foil of the positive electrode are disposed in such a manner that the respective active material layers are opposed to each other, and a circular polypropylene having a diameter of 18 mm and a thickness of 25 μm is inserted between the negative electrode and the positive electrode. A separator of the porous film is formed to form a laminate. The laminated body was placed in a stainless steel coin-shaped packaging container (having a diameter of 20 mm, a height of 1.8 mm, and a stainless steel thickness of 0.25 mm) so that the positive electrode was in contact with the bottom surface of the container. Put the expansion gold on the copper pig of the negative pole 152565.doc • 24· 201136008 Genus. The electrolytic solution (LlPF6 concentration: 1 mol/liter) obtained by dissolving the electrolyte LiPF0 was used to fill the inside of the vessel in a mixed solvent obtained by mixing ethylene carbonate and diethyl carbonate in a volume ratio of 1:1. A polypropylene gasket was placed in the upper portion of the trough and sealed with a stainless steel lid having a thickness of 0.2 mm to make a coin-type battery with a direct control of 20 mm' thickness of 2 mm. The TOSCAT-3 1 〇〇 charge and discharge # valence device manufactured by Toyo Systems Co., Ltd. was used to measure the charge and discharge capacity of the produced coin type battery, and the battery was evaluated. The coin-type battery produced was subjected to constant current charging at a current density of 25 Torr: 6 mA/g until the voltage value reached 〇〇〇 5 v. Thereafter, constant voltage charging is performed at a voltage of 0.005 V. The charging was performed in such a manner that the total of the constant current charging time and the constant voltage charging time was 12 hours. The charging capacity (mAh/g) after the end of the constant voltage charging is measured (hereinafter referred to as the initial charging capacity). After constant voltage charging, a constant current discharge was performed at a current density of 60 mA/g until the voltage value reached 1 > 5 v. The charge capacity [mAh/g] after the end of the constant current discharge was measured (hereinafter referred to as the initial discharge capacity). The initial discharge capacity (mAh/g) was divided by the initial charge capacity (mAh/g), and the value obtained by multiplying the obtained value by 100 was used as the initial charge and discharge efficiency (%). The results are shown in Table 5. The coin-type battery in which the first charge and discharge were completed was repeated four times in the same manner as described above. The charge capacity (mAh/g) after the end of the fourth charge (the following is the charge capacity of the fifth cycle) and the discharge capacity after the end of the *th discharge (mAh/g) (hereinafter referred to as the discharge of the fifth cycle) capacity). 152565.doc -25- 201136008 The results are shown in Table 5. [Table 5] Initial charge capacity (mAh/g) Initial discharge capacity (mAh/g) Initial charge/discharge efficiency (%) Cycle charge capacity (mAh/g) Cycle discharge capacity (mAh/g) Example 7 372 352 95 349 347 Example 8 372 352 95 361 360 Example 9 381 359 94 351 349 Example 10 378 357 94 353 351 Reference Comparative Example 4 379 358 95 358 357 Industrial Applicability According to the present invention, it can be shortened The time of the drying step in the electrode manufacturing, thus improving the productivity of the electrode. 152565.doc -26-

Claims (1)

201136008 七、申請專利範圍: 1 · 一種非水電解液蓄電池電極用組合物,其包含電極活性 物質、黏合劑樹脂、液狀物質及於該液狀物質中呈陽離 子性之高分子。 2 · 一種電極’其係藉由將如請求項1之非水電解液蓄電池 電極用組合物塗佈於集電體上,自所得之塗佈物除去液 狀物質而獲得。 3. —種非水電解液蓄電池,其特徵在於包含如請求項二之 電極與非水電解液。 152565.doc 201136008 四、指定代表圖: (一) 本案指定代表圖為:(無) (二) 本代表圖之元件符號簡單說明·· 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無) 152565.doc201136008 VII. Patent application scope: 1 . A non-aqueous electrolyte battery electrode composition comprising an electrode active material, a binder resin, a liquid substance, and a polymer having a cationic property in the liquid substance. 2. An electrode which is obtained by applying a composition for a non-aqueous electrolyte battery electrode according to claim 1 to a current collector and removing the liquid material from the obtained coating material. A nonaqueous electrolyte secondary battery comprising the electrode of claim 2 and a nonaqueous electrolyte. 152565.doc 201136008 IV. Designation of representative drawings: (1) The representative representative of the case is: (none) (2) A brief description of the symbol of the representative figure·· 5. If there is a chemical formula in this case, please reveal the characteristics that best show the invention. Chemical formula: (none) 152565.doc
TW099141760A 2009-12-02 2010-12-01 Composition for electrode of non-aqueous electrolyte secondary battery, electrode and battery TW201136008A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009274311 2009-12-02

Publications (1)

Publication Number Publication Date
TW201136008A true TW201136008A (en) 2011-10-16

Family

ID=44115083

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099141760A TW201136008A (en) 2009-12-02 2010-12-01 Composition for electrode of non-aqueous electrolyte secondary battery, electrode and battery

Country Status (3)

Country Link
JP (1) JP2011138760A (en)
TW (1) TW201136008A (en)
WO (1) WO2011068243A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210054989A (en) * 2019-11-06 2021-05-14 주식회사 엘지에너지솔루션 Binder for lithium secondary battery electrode, positive electrode for lithium secondary battery and lithium secondary battery comprising the same
CN114597344B (en) * 2022-03-07 2023-12-15 惠州市赛能电池有限公司 Preparation method of silicon negative plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134111A (en) * 2000-10-25 2002-05-10 Kawasaki Steel Corp Carbon material for lithium ion secondary battery negative electrode and lithium ion secondary battery
JP4887653B2 (en) * 2005-03-25 2012-02-29 日本ゼオン株式会社 Nonaqueous electrolyte secondary battery electrode binder, binder composition, electrode composition, and electrode
FR2916905B1 (en) * 2007-06-04 2010-09-10 Commissariat Energie Atomique NOVEL COMPOSITION FOR THE PRODUCTION OF ELECTRODES, ELECTRODES AND BATTERIES RESULTING THEREFROM.
JP4561843B2 (en) * 2008-02-26 2010-10-13 ソニー株式会社 Nonaqueous electrolyte battery and negative electrode
JP5320972B2 (en) * 2008-10-16 2013-10-23 東洋インキScホールディングス株式会社 Positive electrode mixture paste for lithium secondary battery

Also Published As

Publication number Publication date
WO2011068243A1 (en) 2011-06-09
JP2011138760A (en) 2011-07-14

Similar Documents

Publication Publication Date Title
TWI713944B (en) Undercoating foil for electrode of energy storage device
EP2282364B1 (en) Porous film and secondary cell electrode
CN103053063B (en) It is coated with the positive electrode collector of priming paint and comprises the Mg secondary cell of described positive electrode collector
EP3758108B1 (en) Thermally crosslinkable binder aqueous solution for lithium-ion battery, thermally crosslinkable slurry for lithium-ion battery negative electrode, negative electrode for lithium-ion battery, lithium-ion battery negative electrode material, and lithium-ion battery and method for producing the same
TW201214846A (en) Negative electrode for secondary battery, and process for production thereof
JP2019057487A (en) Binder aqueous solution for lithium ion battery, slurry for lithium ion battery, manufacturing methods thereof, electrode for lithium ion battery, separator for lithium ion battery, separator/electrode laminate for lithium ion battery, and lithium ion battery
JPWO2005029614A1 (en) Lithium ion secondary battery
CN111200112A (en) Positive pole piece and electrochemical device
WO2018083917A1 (en) Electrode for cell, and cell
CN108028387B (en) Composition for lithium secondary battery electrode
CN110062972B (en) Film and undercoat foil for energy storage device electrode
JP2021082584A (en) Conductive carbon material dispersant for lithium ion battery, slurry for lithium ion battery electrode, electrode for lithium ion battery, and lithium ion battery
CN101847708B (en) Cathode for lithium-ion secondary battery, method for producing same and lithium-ion secondary battery using same
CN101877394B (en) Lithium ion secondary battery cathode, preparation method thereof and lithium ion secondary battery
EP3550646B1 (en) Undercoat layer for energy storage device, and undercoat foil for energy storage device electrode
CN115084467A (en) Composite negative electrode material, preparation method thereof and lithium ion battery
JP5123486B2 (en) Method for producing positive and negative electrode bonded lithium polymer battery
CN112736247A (en) Water-based composite binder, negative electrode slurry and preparation method thereof, negative electrode sheet, lithium ion battery cell, lithium ion battery pack and application thereof
JP7110986B2 (en) conductive composition
CN106797031B (en) Composition for lithium secondary battery electrode
TW201136008A (en) Composition for electrode of non-aqueous electrolyte secondary battery, electrode and battery
JP6075753B2 (en) Method for producing positive electrode for lithium ion secondary battery and method for producing lithium ion secondary battery
CN115394955A (en) Electrode plate and gel battery
JP2007273381A (en) Lithium ion secondary battery negative electrode material
TWI631754B (en) The 3d network structure binder and the anode materials included it for lithium ion batteries