TW201135272A - Method and apparatus for UE-based position determination in TD-SCDMA multimode terminals - Google Patents
Method and apparatus for UE-based position determination in TD-SCDMA multimode terminals Download PDFInfo
- Publication number
- TW201135272A TW201135272A TW099116536A TW99116536A TW201135272A TW 201135272 A TW201135272 A TW 201135272A TW 099116536 A TW099116536 A TW 099116536A TW 99116536 A TW99116536 A TW 99116536A TW 201135272 A TW201135272 A TW 201135272A
- Authority
- TW
- Taiwan
- Prior art keywords
- cell service
- subset
- candidate cell
- service area
- candidate
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/0009—Transmission of position information to remote stations
- G01S5/0018—Transmission from mobile station to base station
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/10—Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
201135272 六、發明說明: 相關申請的交叉引用 本專利申請案請求於2009年11月20曰提出申請的題為 「METHOD AND APPARATUS FOR UE-BASED POSITION DETERMINATION IN TD-SCDMA MULTIMODE TERMINALS(用於在TD-SCDMA多模終端中進行基於UE 的位置決定的方法和裝置)」的美國臨時專利申請第 61/263,132號的權益,該案以全文引用方式明確併入本文。 【發明所屬之技術領域】 本案的諸態樣大體係關於無線通訊系統’且更特定言之 係關於用於在TD-S.CDMA多模終端中進行基於UE的位置 決定的方法和裝置。 【先前技術】 無線通訊網路被廣泛部署以提供諸如電話、視訊、資 料、訊息接發、廣播等各種通訊服務。通常為多工網路的 此類網路藉由共享可用網路資源來支援多個使用者的通 訊。此類網路的一個實例是通用地面無線電存取網路 (UTRAN )。UTRAN是被定義為通用行動電信系統 (UMTS )的一部分的無線電存取網路(RAN ),UMTS是 第三代夥伴專案(3GPP)支援的第三代(3G)行動電話技 術。作為行動通訊全球系統(GSM )技術的後繼的UMTS 目前支援各種空中介面標準,諸如寬頻分碼多工存取 (W-CDMA)、分時-分碼多工存取(TD-CDMA)以及分時 201135272 -同步分碼多工存取(TD-SCDMA )。例如,中國正推行 TD-SCDMA作為以其現有GSM基礎設施作為核心網路的 UTRAN架構中的底層空中介面。UMTS亦支援諸如高速下 行鏈路封包資料(HSDPA)之類的增強型3g資料通訊協 定,其向相關聯的UMTS網路提供更高的資料傳輸速度和 容量》 隨著對行動寬頻存取的需求持續增長,研究和開發持續 推進UMTS技術以便不僅滿足對行動寬頻存取的增長的需 求’而且提高並增強使用者對行動通訊的體驗。 基於位置的服務是正被提供以增強使用者體驗的風行 服務。然而,為了提供此等服務,希望達成盡可能準確的 位置決定。 【發明内容】 在本案的一態樣中,提供了 一種無線通訊的方法。該方 法包括基於準則來從複數個鄰點細胞服務區中選擇候選 細胞服務區子集,·標識參考細胞服務區;決定與關聯於參 考細胞服務區和候選細胞服務區子集兩者的傳播時間相 關聯的特性,·及基於所決定的特性來設定位置。 在本案的-態樣中,一種用於無線通訊的裝置包括用於 基,準則來從複數個鄰點細胞服務區中選擇候選細胞服 務區子集的構件’用於標識參考細胞服務區的構件·用於 決定與關聯於參考細胞服務區和候選細胞服務區子集兩 者的傳播時間相關聯的特性的構件;及用於基於所決定的 201135272 特性來設定位置的構件。 媒態樣中,一種電腦程式產品包括電腦可讀取 媒體,該電腦可讀取媒體包括用於執行以下動作的代瑪: 基於準則來從複數個鄰點細胞服務區中選擇候選細胞服 務區子集;標識參考細胞服務區;決定與關聯於參考細胞 服務區和候選細胞服務區子集兩者的傳播時間相關聯的 特性;及基於所決定的特性來設定位置。 。在本案的—態樣中,—㈣於無線通訊的裝置包括處理 ° ο處理器被gi置成基於準則來從複數個鄰點細胞服務 :中選擇候選細胞服務區子集;標識參考細胞服務區;決 疋/、關聯於參考細胞服務區和候選細胞服務區子集兩者 的傳播時間相關聯的特性;及基於所決定的特性來設定位 【實施方式】 卜m &附圖闡述的詳細描述旨在作為各種配置的描 述而無意表示可實踐本文中所描述的概念的僅有的配 本詳細描述包括特定細節來提供對各種概念的透徹理 解然而’對於本領域技藝人士明顯的是,沒有此等特定 節亦可實踐此等概念。在一些實例中以方塊圖形式圖 不熟知的結構和元件以便避免模糊此類概念。 現在轉到圖1 ’其圖示說明電信系統1〇〇的實例的方塊 圖本案中通篇提供的各種概念可跨種類繁多的電信系 統、網路架構、和通訊標準來實施。舉例而言(但並非限 201135272 定)’圖1中圖示的本案的態樣是參照採用TD-SCDMA標 準的UMTS系統來提供的。在此實例中,UMTS系統包括 (無線電存取網路)RAN 102 (例如,UTRAN ),其提供 包括電話、視訊、資料、訊息接發、廣播及/或其他服務等 的各種無線服務。RAN 102可被劃分成諸如無線電網路子 系統(RNS) 107之類的數個rnS,每個RNS由諸如無線 電網路控制器(RNC ) 1 〇6之類的RNC來控制。為了清楚 起見’僅圖示RNC 106和RNS 107 ;然而’除了 RNC 106 和RNS 107之外,RAN 102還可包括任何數目個rnc和 RNS。RNC 106是除負責其他功能之外,尤其負責指派、 重配置、和釋放RNS 107内的無線電資源的裝置。RNC; j 〇6 可經由諸如直接實體連接、虛擬網路或諸如此類的各種類 型的介面使用任何適宜的傳輸網路來互連至RAN丨〇2中的 其他RNC (未圖示)。 由RNS 107覆蓋的地理區域可被劃分成數個細胞服務 區,其中無線電收發機裝置服務每個細胞服務區。無線.電 收發機裝置在UMTS應用中通常被稱為B節點,但是亦可 被本領域技藝人士稱為基地台(BS)、基地收發機站 (BTS )、無線電基地台、無線電收發機、收發機功能、基 本服務集(BSS)、擴展服務集(ESS)、存取點(Ap)、或 其他某個適宜的術語。為了清楚起見,圖示兩個B節點 然而,RNS 107可包括任何數目個無線b節點。b節 點108為任何數目個行動裝置提供對核心網路的無線 存取點。行動裝置的實例包括蜂巢式電話、智慧型電話、 201135272 對話啟動協定(SIP )電話、膝上型設備、筆記型設備、小 筆電、智慧型電腦、個人數位助理(PDA )、衛星無線電、 全球定位系統(GPS )設備、多媒體設備、視訊設備、數 位音訊播放器(例如,MP3播放器)、相機、遊戲機、或 任何其他類似的功能設備。行動裝置在UMTS應用中通常 被稱為使用者裝備(UE),但是亦可被本領域技藝人士稱 為行動站(MS)、用戶站、行動單元、用戶單元、無線單 元遠端單元'行動設備、無線設備、無線通訊設備、遠 端設備、行動用戶站、存取終端(AT)、行動終端、無線 終端、遠端終端、手持機、终端、使用者代理、行動用戶 端用戶端、或其他某個合適的術語。出於說明目的,圖 示個UE 110與B即點108處於通訊。亦被稱為前.向鍵 路的下行鏈路(DL)代表從B節點至UE的通訊鏈路,而 亦被稱為反向鏈路的上行鏈路(UL)代表從11£至B節點 的通訊鍵路。 如圖所示’核心網路104包括GSM核心網路。然而, 如本領域技藝人士將認識到的,本案中通篇提供的各種概 念可在RAN、或其他合適的存取網路中實施,以向1;£提 供對除GSM網路之外的其他類型的核心網路的存取。 在此實例中’核心網路1〇4用行動交換中心(MSC) 112 和閘道MSC( GMSC) 114來支援電路交換服務。諸如RNC 106之類的一或多個RNC可被連接至MSC 112。MSC 112 是控制撥叫建立、撥叫路由以及UE行動性功能的裝置。 MSC 112亦包括訪客位置暫存器(VLR)(未圖示),其包 201135272 含UE處於MSC 112的覆蓋區内期間與用戶有關的資訊。 GMSC 114提供經由MSC 112的閘道,以供ue存取電路 父換網路116。GMSC II4包括歸屬位置暫存器(HLR)(未 圖不),HLR包含諸如反映特定使用者已訂閲的服務的詳 情的資料之類的用戶資料„HLR亦與包含因用戶而異的認 證資料的認證中心(AuC)相關聯。當接收到針對特定ue 的撥叫時,GMSC 114查詢HLR以決定該ue的位置並將 撥叫轉發給服務該位置的特定MSC。 核心網路104亦用服務GPRS支援節點(SGSN) 118以 及閘道GPRS支援節點(GGSN)12()來支援封包資料服務。 代表通用封包無線電服務的GpRS被設計成以比標準gsm 電路交換資料服務可用的速度更高的速度來提供封包資 料服務。GGSN120為RAN1〇2提供對基於封包的網路122 的連接。基於封包的網路122可以是網際網路、專有資料 網或其他某種合適的基於封包的網路^ GGSN 120的主 要力能在於向UE 110提供基於封包的網路連通性。資料 封包經由SGSN118在GGSN12〇與UEU〇之間傳輸該 SGSN 118在基於封包的域中執行與Msc ιΐ2在電路交換 域中執行的功能根本上相同的功能。 UMTS冑中介面是展頻直接序列分碼多工存取 (DS-CDMA)系統。展頻DS_CDMA將使用者資料經由乘 以具有稱為碼片的假性隨機位元的序列來擴展到寬得多 的頻寬上〇 TD-SCDMA標準基於此類直接序列展頻技術, 並且另外要求分時雙卫(TDD)’而非如在眾多FDD模式 201135272 的UMTS/W-CDMA系統中所用的分頻雙工(fdd )。tdd 對B節點108與UE 110之間的上行鏈路(ul)和下行鍵 路(DL)兩者使用相同的載波頻率,但是將上行鏈路和下 行鏈路傳輸劃分在載波的不同時槽裏。 圖2圖示TD-SCDMA載波的訊框結構2〇〇。如所圖示, TD-SCDMA載波具有長度為1〇 ms的訊框202。訊框202 具有兩個5 ms的子訊框204’並且每個子訊框2〇4包括七 個時槽TS0到TS6。第一時槽TS0常常被分配用於下行鍵 路通訊’而第一時槽TS1常常被分配用於上行鍵路通气。 其餘時槽TS2到TS6或可被用於上行鏈路或可被用於下行 鍵路’此允許或在上行鏈路方向或在下行鏈路方向上在有 較高資料傳輸的時間期間有更大的靈活性。下行鍵路引導 頻時槽(DwPTS ) 206、保護期(GP ) 208、以及上行鍵路 引導頻時槽(UpPTS) 210 (亦稱為上行鏈路引導頻通道 (UpPCH))位於TS0與TS1之間。每個時槽TS0-TS6可 允許多工在最多16個代碼通道上的資料傳輸。代碼通道 上的資料傳輸包括由中序信號214分隔開的兩個資料部分 212並且繼以保護期(GP) 216。中序信號214可被用於^ 如通道估計之類的功能,而GP 216可被用於避免短脈衝 間干擾。 圖3是RAN 300中B節點310與UE 3 50處於通訊的方 塊圖’其中RAN 300可以是圖2中的RAN 202, B節點31〇 可以是圖2中的B節點208,而UE 350可以是圖2中的 UE 210。在下行鏈路通訊中,發射處理器320可以接收來 201135272 自資料源312的資料和來自控制器/處理器34〇的控制信 號。發射處理器320可為資料和控制信號以及參考信號(例 如,引導頻信號)提供各種信號處理功能。例如,發射處 理器320可提供用於錯誤偵測的循環冗餘檢查(crc)碼、 促成前向糾錯(FEC)的編碼和交錯、基於各種調制方案 (例如,二進位移相鍵控(BPSK)、正交移相鍵控(QpsK)、 Μ移相鍵控(M_PSK)、M正交振幅調制(m_qam)及諸 如此類)向信號群集的映射、用正交可變擴展因數(〇vsf) 進行的擴[以及與授頻碼的相乘以產su符號。來 自通道處理器344的通道估計可被控制器/處理器34〇用來 為發射處理器320決定編碼、調制、擴展及/或擾頻方案。 可從由UE 350傳送的參考信號或從來自UE35〇的中序信 號214 (圖2)中包含的回饋來推導此等通道估計。由發 射處理器320產生的符號被提供給發射訊框處理器以 建立訊框結構。發射訊框處理胃33〇藉由將符號與來自控 制器7處理器340的中序信號214( ® 2)多工來建立此訊 框結構’從而得到―系列訊框。此等訊框隨後被提供給發 射機332,該發射機332 4%供各種信號調節功㊣,包括對 此等訊框進行放大、毅、以及將其㈣到載波上以便經 由一或多個智慧天線334在無線媒體上進行下行鏈路傳 輸該或多個智慧天線334可用波束調向雙向可適性天 線陣列或其他類似的波束技術來實施。 在UE 35〇處,接收機354經由一或多個天線352接收 下行鏈路傳冑’並4理該傳輸以恢復調制到載波上的資 201135272 訊。由接收機354恢復出的資訊被提供給接收訊框處理器 360,該接收訊框處理器解析每個訊框,並將中序信號214 (圖2)提供給通道處理器3 94並且將資料、控制和參考 信號提供給接收處理器370。接收處理器370隨後執行由 B節點310中的發射處理器32〇所執行的處理的逆處理。 更具體而言,接收處理器370解擾並解擴展此等符號,並 且隨後基於調制方案決定B節點31〇最有可能發射的信號 群集點。此等軟判決可以基於由通道處理器394計算出的 通道估計。軟判決隨後被解碼和解交錯以恢復資料、控制 和參考信號。隨後校驗CRC碼以決定此等訊框是否已被成 功解碼。成功地解碼的訊框所攜帶的資料將在隨後被提供 給資料槽372,其代表在UEho*/或各種使用者介面(例 如,顯不器)中執行的應用程式。成功地解碼的訊框所攜 帶的控制信號將被提供給控制器/處理器39〇。當接收機處 理器370解碼訊框不成功時,控制器/處理器39〇亦可使用 確收(ACK)及/或否定確收(NACK)協定來支援對此等 訊框的重傳請求。 在上行鏈路中,來自資料源378的資料和來自控制器/ 處理器390的控制信號被提供給發射處理器38〇。資料源 378可代表在UE35〇和各種使用者介面(例如,鍵盤)中 執行的應用程式。類似於結合B節點31〇所作的下行鏈路 傳送描述的功能,發射處理器38〇提供各種信號處理功 能 ,包括CRC碼、用以促成FEC的編碼和交錯、向信號 群集的映射、用0VSF進行的擴展、以及擾頻以產生一系 11 201135272 列符號。由通道處理器394 &B節點31〇所傳送的參考信 號或者從由B節點310所傳送的中序信號中包含的回饋推 導出的通道估計可被用於選擇合適的編碼、調制、擴展及 /或擾頻方案。由發射處理器380產生的符號將被提供給發 射訊框處理器3 82以建立訊框結構。發射訊框處理器382 藉由將符號與來自控制器/處理器39〇的中序信號214 (圖 2)多工來建立此訊框結構,從而得到一系列訊框。此等 訊框隨後被提供給發射機356,該發射機356提供各種信 號調節功能,包括對此等訊框進行放大、濾波、以及將其 調制到載波上以便經由一或多個天線352在無線媒體上進 行上行鏈路傳輸。 在B節點310處以與結合UE 35〇處的接收機功能所描 述的方式相類似的方式來處理上行鏈路舞輸。接收機335 經由一或多個天線334接收上行鏈路傳輸,並處理該傳輸 以恢復調制到載波上的資訊。由接收機335恢復出的資訊 被提供給接收訊框處理器336,該接收訊框處理器解析每 個訊框’並將中序信號214(圖2)提供給通道處理器344 並且將資料、控制和參考信號提供給接收處理器338。接 收處理器33 8執行由UE 350中的發射處理器380所執行 的處理的逆處理。成功地解碼的訊框所攜帶的資料和控制 信號隨後可被分別提供給資料槽339及/或控制器/處理 器。若接收處理器解碼其中一些訊框不成功,則控制器/ 處理器340亦可使用ACK及/或NACK協定來支援對此等 訊框的重傳請求。 12 201135272 控制器/處理器340和390可被用於分別指導B節點31〇 和UE 350處的操作。例如,控制器/處理器34〇和39〇可 提供各種功能,包括時序、週邊介面、電壓調節功率管 理和其他控制功能。記憶體342和392的電腦可讀取媒體 可分別儲存供B節點310和UE 350用的資料和軟體。B 節點310處的排程器/處理器346可被用於向ue分配資 源,以及為UE排程下行鏈路及/或上行鏈路傳輸。 圖4是圖示可以是UE 11〇的裝置4〇〇的配置的方塊圖。 裝置400可包括無線介面4〇2、處理系統4〇4、和機器可 讀取媒體406。無線介面402可被整合到處理系統4〇4中 或者跨該裝置中的多個實體而分佈。處理系統4〇4可以用 或多個處理器來實施。該一或多個處理器可以用通用微 處理器、微控制器、數位信號處理器(DSPs)、數位信號 處理裝置(DSPDs )、現場可程式閘陣列(FpGAs )、可程 式邏輯裝置(PLDs )、控制器、積體電路(ICs )、特殊應 用IC ( ASICs )、狀態機、閘控邏輯、個別的硬體元件、或 者任何其他能夠執行資訊的演算或其他操縱的適宜實體 的任何組合來實施。 處理系統404被耦合至用於儲存軟體的機器可讀取媒體 4〇6。或者,處理系統4〇4可以自身包括機器可讀取媒體 406。軟體應當被寬泛地解釋成意謂任何類型的指令,無 娜疋被稱作軟體、韌體、中介軟體、微代碼、硬體描述語 。、還疋其他。指令可包括代碼(例如,源代碼格式、二 進位碼格式、可執行代碼格式、或任何其他合適代碼格式 13 201135272 的代碼)。此等和 备由該一或多個處理器執行8# ^ 理系統404執扞LV 现仃時,使處 能。 下描述的各種功能以及各種協定處理功 段等=二介軟趙或微代碼、…或㈣ 的機器可讀取其可被储存在諸如储存元件之類 Μ、盘… 代碼區段可以代表規程、函數、副 式、子常式、模組、套裝軟體、軟體組件、 H结構、或程式語㈣任何 及/”t收資訊、資料、引數、參數、或記憶體内;= 碼區段被輕合到另—代碼區段或硬體電路。可以使用包 :記憶體共享、訊息傳遞、符記傳遞和網路傳輸的任何適 宜的手段來傳遞、轉發、或傳送資訊、引數、參數、及/ 或資料。 對於軟體實施’本文中描述的技術可用執行本文中描述 的功能的模組(例如,規程、函數等等)來實施。軟體代 碼可被儲存在記憶體單元中並由處理器來執行。記憶體單 兀可在處理器内實施或外置於處理器,在後一種情形中其 可經由本領域中所知的各種手段被通訊地耦合到處理器 TD-SCDMA標準使用三種方案來提供不使用Gps的情 況下對UE的位置決定: 1. 細胞服務區ID:使用當前細胞服務區來近似ue的 位置。 2. 受UE辅助的觀察抵達時間.差(〇TD〇A): ue測量 若干細胞服務區的抵達時間差並且將測量結果發信號通 14 201135272 知網路,其中該網路執行位置演算。OTDOA使用鄰點細 胞服務區與參考細胞服務區之間的SFN-SFN (系統訊框號 到系統訊框號)觀察時間差。 3. 基於UE的OTDOA : UE測量若干細胞服務區的抵 達時間差並且亦執行位置演算。最後,UE將定位結果發 信號通知網路。 為了執行基於UE的OTDOA,TD-SCDMA標準規定B 節點(NB )在系統資訊訊息中廣播服務細胞服務區和鄰點 細胞服務區的位置資訊。具體而言,系統資訊區塊類型15.5 (SIB-15.5)包括基於UE的OTDOA辅助資料(OTDOA assistance data for UE-Based)資訊元素(IE)。此 IE 指示 服務細胞服務區和鄰點細胞服務區的位置資訊》具體而 言,包括參考細胞服務區的緯度和經度資訊。在基於UE 的UE定位OTDOA鄰點細胞服務區資訊(UE positioning OTDOA neighbor cell info for UE-based) IE 中,提供鄰點 細胞服務區相對於參考細胞服務區的相對位置。 然而,除了參考基地台之外,基於UE的定位可能還需 要至少三個基地台測量。具體而言,需要三個基地台中的 每個基地台與參考基地台之間的觀察時間差。因為UE可 能不能從TD-SCDMA網路中的足夠數目個基地台接收到 有效信號,所以在本案的一態樣中,多模TD-SCDMA UE 能夠利用CDMA lx網路來改善信號偵測並執行用於UE位 置演算的其他測量。 當TD-SCDMA網路中沒有足夠的具有良好信號品質的 15 201135272 基地台時,可以使用 CDMA lx BS 中的基地台以及 TD-SCDMA網路中的基地台的觀察時間差來估計UE位 置。 3GPP和 3GPP2標準中的系統要求是TD-SCDMA和 CDMA lx系統是同步的。具體而言,長度為 10 ms的 TD-SCDMA與長度為20 ms的CDMA訊框是對齊的。此等 訊框亦與GPS時間對齊。在CDMA lx系統中,服務基地 台(BS )的位置在系統參數訊息(SPM )中指示。 在本案的一個態樣中,對於多模終端而言,藉由作為 TD-SCDMA網路的補充還搜索和測量CDMA lx網路的方 式來支援UE位置估計。因此,多模(TD-SCDMA和CDMA lx)终端不但可以搜尋TD-SCDMA基地台信號,亦可以搜 尋CDMA lx基地台信號以改善UE定位程序的可用性和準 確性。 參照圖6並進一步參照圖7,將描述UE位置決定程序 600,在此在步驟602中,選取UE 702的射程内的稱為鄰 點細胞服務區的細胞服務區(基地台)諸如細胞服務區 710、712、720和722之類以供納入候選基地台群組。在 本案的一個態樣中,信號干擾加雜訊比被選取作為選擇優 選候選基地台的度量,以使得: •可以藉由測量主共用控制實體通道(P-CCPCH )的信 號干擾比(SIR)來決定候選TD-SCDMA NB,該SIR由以 dB計的S_td(i)表示。假定索引i參引具有可用信號測量的 每個可用TD-SCDMA NB。 16 201135272 •可以藉由測量CDMA lx基地台的引導頻信號干擾雜訊 比(SINR)來決定候選CDMA lx基地台,該SINR由以 dB計的S_cd(j)表示。假定索引j參引具有可用信號測量 的每個可用CDMA BS。 因此,多模終端就能夠為基於UE的定位決定程序選取 TD-SCDMA和CDMA lx網路中最佳的Μ個基地台,其中 。 為了針對不同的網路技術進行調整,在選擇基地台時使 用以下調整: • TD-SCDMANB : S_td(i)-Offset_td • CDMA lx BS : S_cd(j)-Offset_cd 以上偏移或調整值即Offset_td、Offset_cd (以dB計) 對於特定的無線電存取技術(RAT )而言是恆定的。 在步驟604中,在本案的一個態樣中,來自以上信號測 量規程中的候選細胞服務區的最強的TD-SCDMA B節點 將被選取作為參考細胞服務區,該參考細胞服務區被標識 為TD參考細胞服務區71 0。 在步驟606中,UE測量從每個鄰點細胞服務區 (TD-SCDMA或CDMA,諸如TD鄰點細胞服務區712、 CDMAlx鄰點細胞服務區B 720、和CDMAlx鄰點細胞服 務區C 722 )至參考細胞服務區(TD參考細胞服務區7 1 0 ) 的時間差。TD-SCDMA網路中的觀察時間差被定義為系統 訊框號(SFN-SFN)觀察時間差。即,UE 702能夠測量鄰 點細胞服務區的收到訊框邊界相對於參考細胞服務區的 17 201135272 收到訊框邊界的延遲。SFN-SFN觀察時間差被定義為 TD-SCDMA/CDMA lx鄰點細胞服務區的訊框邊界相對於 參考細胞服務區的訊框邊界的抵達時間差。若偵測到鄰點 細胞服務區的訊框邊界是在參考細胞服務區的訊框邊界 之後接收到的,則SFN-SFN觀察時間差為正。 可以類似地測量CDMA lx相對於TD-SCDMA參考細胞 服務區7 1 0的觀察時間差,區別僅在於每CDMA訊框就有 兩個TD-SCDMA訊框並且因此使用最接近的TD-SCDMA 訊框邊界。圖5包括訊框時序圖500,其圖示了決定CDMA lx訊框邊界與TD-SCDMA訊框邊界之差的概念。在以上 規程中,對諸如TD鄰點細胞服務區A712、CDMAlx細胞 服務區B 720和CDMAlx鄰點細胞服務區C 722之類的至 少三個鄰點基地台(TD-S*CDMANB或CDMABS)執行相 對於TD-SCDMA參考細胞服務區710的時間差測量。 在步驟 608 中,UE 702 從 SIB-15.5 擷取 TD-SCDMA 參 考細胞服務區710的位置以及諸如TD-SCDMA網路中的 TD鄰點細胞服務區A 712之類的鄰點細胞服務區的位 置。對於諸如CDMAlx鄰點細胞服務區B 720和CDMAlx 鄰點細胞服務區C 722之類的CDMA lx鄰點細胞服務區而 言,UE 702需要擷取此等鄰點細胞服務區中的每個鄰點細 胞服務區的SPM。 在步驟610中,UE 702利用此等基地台的觀察時間差和 位置來估計UE位置。 圖8是圖示.根據本案的一個態樣在進行無線通訊時所執 18 201135272 行的示例性方塊的功能方塊圖8〇〇。方塊8〇2包括基於準 則來從複數個鄰點細胞服務區中選擇候選細胞服務區子 集。另外,方塊804包括標識參考細胞服務區。另外,方 塊806包括決定與關聯於參考細胞服務區和候選細胞服務 區子集兩者的傳播時間相關聯的特性。不僅如此,方塊8〇8 還包括基於所決定的特性來設定位置。 在種配置中,用於無線通訊的裝置350包括用於基於 準則來從複數個鄰點細胞服務區中選擇候選細胞服務區 子集的構件;用於標識參考細胞服務區的構件;用於決定 與關聯於參考細胞服務區和候選細胞服務區子集兩者的 傳播時間相關聯的特性的構件;及用於基於所決定的特性 來认疋位置的構件。在一個態樣中,前述構件可以是配置 成執行由則述構件敍述的功能的處理器。在另一態樣 中’前述構件可以是配置成執行由前述構件敍述的功能的 模組或任何裝置。 已參照TD-SCDMA系統提供了電信系統的若干態樣。如 本領域技藝人士將容易領會,貫穿本案描述的各種態樣可 擴展到其他電㈣統、網路架構和通訊標準。作為實例, 各種態樣可擴展到其他麗TS系統,諸如W-CDMA、高速 ^行鍵路封包存取(HSDPA)、高速上行鍵路封包存取 HSUPA)、高速封包存取+(HspA+)和Μ舰。各 種態樣亦可擴展到採用長期進化(lte)(纟fdd、tdd 0這兩種模式下)、高級LTE ( lte-a)(在FDD、TDD或 這兩種模式下)、CDMA2000、演進資料最佳化㈣刪、 19 201135272 超行動寬頻(UMB)、IEEE 802.11 ( Wi-Fi)、IEEE 802.16 (WiMAX )、IEEE 802.20、超寬頻(UWB )、藍芽的系統 及/或其他合適的系統。所採用的實際的電信標準、網路架 構及/或通訊標準將取決於特定應用以及加諸於系統的整 體設計約束。 已結合各種裝置和方法描述了若干處理器。此等處理器 可使用電子硬體、電腦軟體或其任何組合來實施。此類處 理器是實施為硬體還是軟體將取決於特定應用和加諸於 系統的整體設計約束。作為實例,本案中呈現的處理器、 處理器的任何部分、或處理器的任何組合可用微處理器、 微控制器、數位信號處理器(DSp)、現場可程式閘陣列 (FPGA)、可程式邏輯裝置(pLD)、狀態機、閘控邏輯、 個別的硬體電路、以及配置成執行貫穿本案描述的各種功 能的其他合適的處理元件來實施。本案中呈現的處理器、 處理器的任何部分、或處理器的任何組合的功能可用由微 處理器、微控制器、膽或其他合適的平臺執行的軟體來 軟體應當被寬泛地解釋成意謂指令、指令集、代碼、4 碼區段、程式碼、程式、副程式、軟體模組、應用、軟# 應用、套裝軟體、常式、子常式、物件、可執行播宰、: :的線程、規程、函數等,無論其是用軟體、勒體… 軟體、微代碼、硬體描述語言、還是其他術語來 軟體可常駐在電腦可讀取媒體上。作為實例,電灌 了》取媒討包括記憶體,諸如磁韻存裝置(例如,項 20 201135272 、軟碟磁條)、光碟(例如,塵縮光碟(CD )、數位户 功能光碟(JDVD))、每彗本 數位夕 远上 智慧卡、快閃記憶體設備(例如,記 、、記憶棒、瑜匙型驅動器)、隨機存取記憶體201135272 VI. INSTRUCTIONS: CROSS-REFERENCE TO RELATED APPLICATIONS This application is filed on November 20, 2009, entitled "METHOD AND APPARATUS FOR UE-BASED POSITION DETERMINATION IN TD-SCDMA MULTIMODE TERMINALS (for use in TD- U.S. Provisional Patent Application Serial No. 61/263,132, the disclosure of which is incorporated herein by reference in its entirety in its entirety in the the the the the the the the the the BACKGROUND OF THE INVENTION The present invention is directed to a wireless communication system and, more particularly, to a method and apparatus for UE-based location determination in a TD-S.CDMA multimode terminal. [Prior Art] Wireless communication networks are widely deployed to provide various communication services such as telephone, video, data, messaging, and broadcasting. Such networks, which are typically multiplexed networks, support the communication of multiple users by sharing available network resources. An example of such a network is the Universal Terrestrial Radio Access Network (UTRAN). UTRAN is a Radio Access Network (RAN) defined as part of the Universal Mobile Telecommunications System (UMTS), a third generation (3G) mobile phone technology supported by the Third Generation Partnership Project (3GPP). As a successor to the Global System for Mobile Communications (GSM) technology, UMTS currently supports a variety of null interfacing standards such as Wideband Code Division Multiple Access (W-CDMA), Time Division-Code Division Multiple Access (TD-CDMA), and Time 201135272 - Synchronous code division multiplex access (TD-SCDMA). For example, China is pursuing TD-SCDMA as the underlying air intermediary in the UTRAN architecture with its existing GSM infrastructure as its core network. UMTS also supports enhanced 3G data protocols such as High Speed Downlink Packet Data (HSDPA), which provides higher data transfer speeds and capacities to associated UMTS networks. With the need for mobile broadband access Continued growth, research and development continue to advance UMTS technology to not only meet the growing demand for mobile broadband access, but also enhance and enhance the user experience with mobile communications. Location-based services are popular services that are being offered to enhance the user experience. However, in order to provide such services, it is desirable to achieve the most accurate location decisions possible. SUMMARY OF THE INVENTION In one aspect of the present invention, a method of wireless communication is provided. The method includes selecting a subset of candidate cell service regions from a plurality of neighbor cell service regions based on criteria, identifying a reference cell service region, and determining a propagation time associated with both the reference cell service region and the subset of candidate cell service regions. Associated features, and set the location based on the determined characteristics. In the aspect of the present invention, an apparatus for wireless communication includes means for selecting a subset of candidate cell service regions from a plurality of neighbor cell service areas for use in identifying components of a reference cell service area. Means for determining characteristics associated with propagation times associated with both the reference cell service region and the subset of candidate cell service regions; and means for setting a location based on the determined 201135272 characteristics. In a media aspect, a computer program product includes computer readable media, the computer readable medium including gamma for performing the following actions: selecting a candidate cell service region from a plurality of neighbor cell service areas based on criteria a set; identifying a reference cell service area; determining characteristics associated with propagation times associated with both the reference cell service area and the subset of candidate cell service areas; and setting the location based on the determined characteristics. . In the case of the present case, - (d) the device for wireless communication includes processing ο processor is set to based on criteria to select a subset of candidate cell service regions from a plurality of neighbor cell services: identifying the reference cell service region疋 、 /, associated with the propagation time associated with the reference cell service area and the candidate cell service area subset; and set the bit based on the determined characteristics [embodiment] 卜 m & The description is intended to be illustrative of the various configurations, and is not intended to be construed as a limitation of the invention. These concepts can also be practiced in specific sections. Structures and elements that are not well known are shown in block diagram form in some instances in order to avoid obscuring such concepts. Turning now to Figure 1, a block diagram illustrating an example of a telecommunications system will be implemented across a wide variety of telecommunications systems, network architectures, and communication standards. For example (but not limited to 201135272) the aspect of the present invention illustrated in Figure 1 is provided with reference to a UMTS system employing the TD-SCDMA standard. In this example, the UMTS system includes a (Radio Access Network) RAN 102 (e.g., UTRAN) that provides various wireless services including telephony, video, data, messaging, broadcast, and/or other services. The RAN 102 can be divided into a number of rnSs, such as a Radio Network Subsystem (RNS) 107, each RNS being controlled by an RNC such as Radio Network Controller (RNC) 1 〇6. For the sake of clarity 'only RNC 106 and RNS 107 are illustrated; however 'in addition to RNC 106 and RNS 107, RAN 102 may also include any number of rnc and RNS. The RNC 106 is a device that is specifically responsible for assigning, reconfiguring, and releasing radio resources within the RNS 107 in addition to other functions. RNC; j 〇6 may be interconnected to other RNCs (not shown) in RAN丨〇2 via any suitable transport network via various types of interfaces, such as direct physical connections, virtual networks, or the like. The geographic area covered by the RNS 107 can be divided into a number of cell service areas, with the radio transceiver device serving each cell service area. A wireless transceiver device is commonly referred to as a Node B in UMTS applications, but can also be referred to by those skilled in the art as a base station (BS), a base transceiver station (BTS), a radio base station, a radio transceiver, and a transceiver. Machine function, basic service set (BSS), extended service set (ESS), access point (Ap), or some other suitable term. For clarity, two Node Bs are illustrated. However, the RNS 107 can include any number of wireless b-nodes. Node 108 provides wireless access points to the core network for any number of mobile devices. Examples of mobile devices include cellular phones, smart phones, 201135272 Session Initiation Protocol (SIP) phones, laptops, notebooks, laptops, smart computers, personal digital assistants (PDAs), satellite radios, global A positioning system (GPS) device, a multimedia device, a video device, a digital audio player (eg, an MP3 player), a camera, a gaming machine, or any other similar functional device. Mobile devices are commonly referred to as user equipment (UE) in UMTS applications, but can also be referred to by those skilled in the art as mobile stations (MS), subscriber stations, mobile units, subscriber units, wireless unit remote units 'mobile devices' , wireless device, wireless communication device, remote device, mobile subscriber station, access terminal (AT), mobile terminal, wireless terminal, remote terminal, handset, terminal, user agent, mobile client, or other A suitable term. For purposes of illustration, it is illustrated that UE 110 is in communication with B, point 108. The downlink (DL), also referred to as the forward-to-key path, represents the communication link from the Node B to the UE, and the uplink (UL), also known as the reverse link, represents the £11 to the B-node. Communication key. As shown, the core network 104 includes a GSM core network. However, as will be appreciated by those skilled in the art, the various concepts provided throughout this disclosure can be implemented in the RAN, or other suitable access network, to provide for other than the GSM network. Type of core network access. In this example, the core network 1-4 uses the Mobile Switching Center (MSC) 112 and the Gateway MSC (GMSC) 114 to support circuit switched services. One or more RNCs, such as RNC 106, may be connected to MSC 112. The MSC 112 is a device that controls dialing setup, dialing routing, and UE mobility functions. The MSC 112 also includes a Visitor Location Register (VLR) (not shown), which includes 201135272 containing information about the user during the UE's coverage within the MSC 112. The GMSC 114 provides a gateway through the MSC 112 for the ue access circuit parent to change network 116. The GMSC II4 includes a Home Location Register (HLR) (not shown), and the HLR contains user data such as information reflecting details of services subscribed to by a particular user. The HLR also contains authentication data that varies from user to user. The Authentication Center (AuC) is associated. Upon receiving a call for a particular ue, the GMSC 114 queries the HLR to determine the location of the ue and forwards the call to the particular MSC serving the location. The core network 104 also serves GPRS. Support Node (SGSN) 118 and Gateway GPRS Support Node (GGSN) 12() to support packet data services. GpRS on behalf of the General Packet Radio Service is designed to be faster than the standard gsm circuit switched data service available. A packet data service is provided. The GGSN 120 provides RAN1〇2 with a connection to the packet-based network 122. The packet-based network 122 can be the Internet, a proprietary data network, or some other suitable packet-based network ^ GGSN The primary strength of 120 is to provide packet-based network connectivity to UE 110. The data packet is transmitted between GGSN 12 and UEU by SGSN 118 in the packet-based domain. The functions performed by the Msc ΐ2 in the circuit switched domain are essentially the same. The UMTS胄 interfacing is a spread-spectrum direct sequence code division multiplex access (DS-CDMA) system. Spread spectrum DS_CDMA multiplies user data by A sequence of pseudo-random bits called chips is extended to a much wider bandwidth. The TD-SCDMA standard is based on such direct sequence spread spectrum techniques and additionally requires time-sharing double guard (TDD) instead of Frequency division duplex (fdd) as used in UMTS/W-CDMA systems of numerous FDD modes 201135272. tdd pairs both uplink (ul) and downlink (DL) between Node B 108 and UE 110 The same carrier frequency is used, but the uplink and downlink transmissions are divided into different time slots of the carrier. Figure 2 illustrates the frame structure of the TD-SCDMA carrier. As illustrated, the TD-SCDMA carrier There is a frame 202 having a length of 1 〇 ms. The frame 202 has two 5 ms subframes 204' and each subframe 2 〇 4 includes seven time slots TS0 to TS6. The first time slot TS0 is often assigned Used for downstream keyway communication' while the first time slot TS1 is often assigned for upstream keyway ventilation. The remaining time slots TS2 to TS6 may be used for the uplink or may be used for the downlink key 'this allows or is greater in the uplink direction or in the downlink direction during periods of higher data transmission. The flexibility of the downlink keyway time slot (DwPTS) 206, the guard period (GP) 208, and the uplink key pilot time slot (UpPTS) 210 (also known as the uplink pilot channel (UpPCH)) are located. Between TS0 and TS1. Each time slot TS0-TS6 allows multiplexing of data transfers over up to 16 code channels. The data transfer on the code channel includes two data portions 212 separated by a mid-sequence signal 214 and is followed by a guard period (GP) 216. The mid-order signal 214 can be used for functions such as channel estimation, while the GP 216 can be used to avoid inter-pulse interference. 3 is a block diagram of communication between Node B 310 and UE 3 50 in RAN 300, where RAN 300 may be RAN 202 in FIG. 2, Node B 31 may be Node B 208 in FIG. 2, and UE 350 may be UE 210 in FIG. In downlink communication, the transmit processor 320 can receive the data from the data source 312 and the control signal from the controller/processor 34A. Transmit processor 320 can provide various signal processing functions for data and control signals as well as reference signals (e.g., pilot frequency signals). For example, the transmit processor 320 can provide cyclic redundancy check (crc) codes for error detection, encoding and interleaving that facilitates forward error correction (FEC), based on various modulation schemes (eg, binary shift phase keying (eg, BPSK), Quadrature Phase Shift Keying (QpsK), Phase Shift Keying (M_PSK), M Quadrature Amplitude Modulation (m_qam), and the like, mapping to signal clusters, using orthogonal variable spreading factor (〇vsf) The expansion is performed [and multiplied by the pilot code to produce the su symbol. The channel estimate from channel processor 344 can be used by controller/processor 34 to determine the encoding, modulation, spreading, and/or scrambling scheme for transmit processor 320. These channel estimates can be derived from reference signals transmitted by UE 350 or from feedback contained in UE 35's intermediate sequence signal 214 (Fig. 2). The symbols generated by the transmit processor 320 are provided to the transmit frame processor to establish a frame structure. The frame processing of the stomach 33 is accomplished by multiplexing the symbol with the mid-order signal 214 (> 2) from the processor 340 processor 340 to create the frame structure' resulting in a series of frames. These frames are then provided to a transmitter 332 which is 4% for various signal conditioning functions, including amplifying, arranging, and (4) the frames onto the carrier for passage via one or more Antenna 334 Performs Downlink Transmission on Wireless Media The one or more smart antennas 334 may be implemented with beam steering to a bidirectional adaptive antenna array or other similar beam technology. At UE 35, receiver 354 receives the downlink transmission via one or more antennas 352 and aligns the transmission to recover the modulated 201135272 signal to the carrier. The information recovered by the receiver 354 is provided to the receive frame processor 360, which parses each frame and provides the midamble signal 214 (Fig. 2) to the channel processor 3 94 and the data The control and reference signals are provided to the receive processor 370. The receiving processor 370 then performs the inverse processing of the processing performed by the transmitting processor 32 in the B node 310. More specifically, the receive processor 370 descrambles and despreads the symbols and then determines the signal cluster points that the B node 31 is most likely to transmit based on the modulation scheme. These soft decisions can be based on channel estimates computed by channel processor 394. The soft decisions are then decoded and deinterleaved to recover the data, control, and reference signals. The CRC code is then checked to determine if the frames have been successfully decoded. The data carried by the successfully decoded frame will then be provided to data slot 372, which represents the application executing in UEho*/ or various user interfaces (e.g., display). The control signal carried by the successfully decoded frame will be provided to the controller/processor 39. When the receiver processor 370 decodes the frame unsuccessfully, the controller/processor 39 can also use the acknowledgement (ACK) and/or negative acknowledgement (NACK) protocols to support the retransmission request for this frame. In the uplink, data from data source 378 and control signals from controller/processor 390 are provided to transmit processor 38A. Data source 378 can represent an application executing in UE 35 and various user interfaces (eg, a keyboard). Similar to the functionality described in connection with the downlink transmission description made by Node B 31, Transmit Processor 38 provides various signal processing functions, including CRC codes, encoding and interleaving to facilitate FEC, mapping to signal clusters, and 0 VSF. The extension, as well as the scrambling, to produce a series of 11 201135272 column symbols. The channel signal transmitted by the channel processor 394 & Node B 31 or the channel estimate derived from the feedback contained in the mid-order signal transmitted by the Node B 310 can be used to select the appropriate coding, modulation, spreading and / or scrambling scheme. The symbols generated by the transmit processor 380 will be provided to the transmit frame processor 382 to establish a frame structure. The frame processor 382 creates the frame structure by multiplexing the symbols with the midamble signal 214 (Fig. 2) from the controller/processor 39, resulting in a series of frames. These frames are then provided to a transmitter 356 that provides various signal conditioning functions including amplifying, filtering, and modulating the frames onto a carrier for wireless via one or more antennas 352. Uplink transmission on the media. The uplink dance is handled at Node B 310 in a manner similar to that described in connection with the receiver function at the UE 35〇. Receiver 335 receives the uplink transmission via one or more antennas 334 and processes the transmission to recover the information modulated onto the carrier. The information recovered by the receiver 335 is provided to the receive frame processor 336, which parses each frame 'and provides the intermediate sequence signal 214 (FIG. 2) to the channel processor 344 and the data, Control and reference signals are provided to receive processor 338. The receiving processor 337 performs inverse processing of the processing performed by the transmitting processor 380 in the UE 350. The data and control signals carried by the successfully decoded frame can then be provided to the data slot 339 and/or the controller/processor, respectively. If the receiving processor decodes some of the frames unsuccessfully, the controller/processor 340 may also use the ACK and/or NACK protocol to support retransmission requests for such frames. 12 201135272 Controllers/processors 340 and 390 can be used to direct operations at Node B 31 and UE 350, respectively. For example, the controller/processors 34A and 39〇 provide various functions including timing, peripheral interfaces, voltage regulation power management, and other control functions. The computer readable media of the memories 342 and 392 can store data and software for the Node B 310 and the UE 350, respectively. The scheduler/processor 346 at Node B 310 can be used to allocate resources to the ue and schedule downlink and/or uplink transmissions for the UE. 4 is a block diagram illustrating a configuration of a device 4 that may be a UE 11A. Apparatus 400 can include a wireless interface 〇2, a processing system 〇4, and a machine readable medium 406. The wireless interface 402 can be integrated into the processing system 4〇4 or distributed across multiple entities in the device. Processing system 4〇4 can be implemented with or with multiple processors. The one or more processors can use general purpose microprocessors, microcontrollers, digital signal processors (DSPs), digital signal processing devices (DSPDs), field programmable gate arrays (FpGAs), programmable logic devices (PLDs) , controllers, integrated circuits (ICs), application specific ICs (ASICs), state machines, gated logic, individual hardware components, or any other combination of suitable entities capable of performing information calculations or other manipulations . Processing system 404 is coupled to machine readable media 4〇6 for storing software. Alternatively, processing system 4 4 may itself include machine readable media 406. Software should be interpreted broadly to mean any type of instruction, and no such thing as software, firmware, mediation software, microcode, or hardware descriptors. And others. The instructions may include code (eg, source code format, binary code format, executable code format, or any other suitable code format 13 201135272). These operations are performed by the one or more processors when the system 404 is executed. The various functions described below, as well as various protocol processing power segments, etc., can be read by a machine that can be stored in a storage device such as a storage device. The code segment can represent a procedure, Function, sub-type, sub-routine, module, package software, software component, H structure, or program language (4) any and / / receive information, data, arguments, parameters, or memory; = code segment is Light to another code section or hardware circuit. You can use the package: memory sharing, messaging, token passing, and any suitable means of network transmission to pass, forward, or transmit information, arguments, parameters, And/or data. For software implementations, the techniques described herein may be implemented by modules (eg, procedures, functions, etc.) that perform the functions described herein. Software code may be stored in a memory unit and executed by a processor The memory unit can be implemented within the processor or external to the processor, in the latter case it can be communicatively coupled to the processor TD-SCDMA standard via various means known in the art. Three schemes are provided to determine the location of the UE without using Gps: 1. Cell service area ID: Use the current cell service area to approximate the location of ue 2. Obtained observation time by UE-assisted. Poor (〇TD〇A ): ue measures the arrival time difference of several cell service areas and signals the measurement results to the network, where the network performs position calculation. OTDOA uses SFN-SFN between the neighbor cell service area and the reference cell service area. (System frame number to system frame number) Observe the time difference. 3. UE-based OTDOA: The UE measures the arrival time difference of several cell service areas and also performs location calculation. Finally, the UE signals the positioning result to the network. Based on the UE's OTDOA, the TD-SCDMA standard specifies that the Node B (NB) broadcasts the location information of the serving cell service area and the neighbor cell service area in the system information message. Specifically, the system information block type is 15.5 (SIB-15.5). Includes UE-based OTDOA assistance data for UE-Based information element (IE). This IE indicates the location of the serving cell service area and the neighbor cell service area. Specifically, it includes the latitude and longitude information of the reference cell service area. Provides neighbor cell service in the UE positioning OTDOA neighbor cell info for UE-based IE The relative position of the zone relative to the reference cell service zone. However, in addition to the reference base station, UE-based positioning may require at least three base station measurements. Specifically, each of the three base stations is required with reference. The observation time difference between the base stations. Since the UE may not be able to receive valid signals from a sufficient number of base stations in the TD-SCDMA network, in one aspect of the present case, the multimode TD-SCDMA UE can utilize the CDMA lx network to improve signal detection and execution. Other measurements for UE location calculus. When there is not enough 15 201135272 base station with good signal quality in the TD-SCDMA network, the UE time position can be estimated using the observation time difference between the base station in the CDMA lx BS and the base station in the TD-SCDMA network. The system requirements in the 3GPP and 3GPP2 standards are that TD-SCDMA and CDMA lx systems are synchronized. Specifically, TD-SCDMA with a length of 10 ms is aligned with a 20 ms long CDMA frame. These frames are also aligned with the GPS time. In a CDMA lx system, the location of a serving base station (BS) is indicated in a system parameter message (SPM). In one aspect of the present case, for multimode terminals, UE location estimation is supported by means of searching and measuring CDMA lx networks as a complement to the TD-SCDMA network. Therefore, multimode (TD-SCDMA and CDMA lx) terminals can not only search for TD-SCDMA base station signals, but also search for CDMA lx base station signals to improve the availability and accuracy of the UE positioning procedure. Referring to Figure 6 and with further reference to Figure 7, a UE location determination procedure 600 will be described, where in step 602, a cell service area (base station), such as a cell service area, called a neighbor cell service area within the range of the UE 702 is selected. 710, 712, 720, and 722 are included for inclusion in the candidate base station group. In one aspect of the present case, the signal interference plus noise ratio is selected as a metric for selecting a preferred candidate base station such that: • the signal-to-interference ratio (SIR) of the primary shared control entity channel (P-CCPCH) can be measured by: The candidate TD-SCDMA NB is determined, which is represented by S_td(i) in dB. Assume that index i references each available TD-SCDMA NB with available signal measurements. 16 201135272 • A candidate CDMA lx base station can be determined by measuring the pilot frequency interference noise ratio (SINR) of a CDMA lx base station, which is represented by S_cd(j) in dB. Assume that index j references each available CDMA BS with available signal measurements. Therefore, the multimode terminal can select the best one of the TD-SCDMA and CDMA lx networks for the UE based positioning decision procedure, wherein. In order to adjust for different network technologies, the following adjustments are used when selecting a base station: • TD-SCDMANB: S_td(i)-Offset_td • CDMA lx BS: S_cd(j)-Offset_cd The above offset or adjustment value is Offset_td, Offset_cd (in dB) is constant for a particular Radio Access Technology (RAT). In step 604, in one aspect of the present case, the strongest TD-SCDMA B node from the candidate cell service region in the above signal measurement protocol will be selected as the reference cell service region, which is identified as TD Reference cell service area 71 0. In step 606, the UE measures from each neighbor cell service area (TD-SCDMA or CDMA, such as TD neighbor cell service area 712, CDMA lx neighbor cell service area B 720, and CDMA lx neighbor cell service area C 722) Time difference to the reference cell service area (TD reference cell service area 7 1 0). The observation time difference in the TD-SCDMA network is defined as the system frame number (SFN-SFN) observation time difference. That is, the UE 702 is capable of measuring the delay of the received frame boundary of the neighbor cell service area relative to the reference cell service area. The SFN-SFN observation time difference is defined as the difference in arrival time of the frame boundary of the TD-SCDMA/CDMA lx neighbor cell service area relative to the frame boundary of the reference cell service area. If it is detected that the frame boundary of the neighbor cell service area is received after the frame boundary of the reference cell service area, the SFN-SFN observation time difference is positive. The observed time difference of CDMA lx relative to the TD-SCDMA reference cell service area 710 can be similarly measured, except that there are two TD-SCDMA frames per CDMA frame and thus the closest TD-SCDMA frame boundary is used. . Figure 5 includes a frame timing diagram 500 illustrating the concept of determining the difference between a CDMA lx frame boundary and a TD-SCDMA frame boundary. In the above procedure, at least three neighboring base stations (TD-S*CDMANB or CDMABS) such as TD neighbor cell service area A712, CDMA lx cell service area B 720, and CDMA lx neighbor cell service area C 722 are executed. Time difference measurement relative to TD-SCDMA reference cell service area 710. In step 608, the UE 702 retrieves the location of the TD-SCDMA reference cell service area 710 from SIB-15.5 and the location of the neighbor cell service area, such as the TD neighbor cell service area A 712 in the TD-SCDMA network. . For a CDMA lx neighbor cell service area such as CDMA lx neighbor cell service area B 720 and CDMA lx neighbor cell service area C 722, UE 702 needs to retrieve each neighbor point in these neighbor cell service areas. SPM of the cell service area. In step 610, the UE 702 uses the observed time difference and location of the base stations to estimate the UE location. Figure 8 is a functional block diagram of an exemplary block of the 2011 2011 circuit, which is executed in accordance with an aspect of the present invention. Block 8〇2 includes selecting a subset of candidate cell service regions from a plurality of neighbor cell service regions based on criteria. Additionally, block 804 includes identifying a reference cell service area. In addition, block 806 includes determining characteristics associated with propagation times associated with both the reference cell service region and the subset of candidate cell service regions. Moreover, block 8〇8 also includes setting the position based on the determined characteristics. In an arrangement, means 350 for wireless communication includes means for selecting a subset of candidate cell service regions from a plurality of neighbor cell service regions based on criteria; means for identifying a reference cell service region; for determining A component associated with a characteristic associated with a propagation time of both a reference cell service region and a subset of candidate cell service regions; and means for a put position based on the determined characteristic. In one aspect, the aforementioned means may be a processor configured to perform the functions recited by the means described. In another aspect, the aforementioned means may be a module or any device configured to perform the functions recited by the aforementioned means. Several aspects of the telecommunications system have been provided with reference to the TD-SCDMA system. As will be readily appreciated by those skilled in the art, the various aspects described throughout this disclosure can be extended to other electrical systems, network architectures, and communication standards. As an example, various aspects can be extended to other RIS systems such as W-CDMA, High Speed Rail Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), High Speed Packet Access + (HspA+) and The ship. Various aspects can be extended to use long-term evolution (lte) (纟fdd, tdd 0), LTE-Advanced (lte-a) (in FDD, TDD or both), CDMA2000, evolution data Optimization (4) Delete, 19 201135272 Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Ultra Wideband (UWB), Bluetooth systems and/or other suitable systems. The actual telecommunication standards, network architecture, and/or communication standards used will depend on the particular application and the overall design constraints imposed on the system. Several processors have been described in connection with various apparatus and methods. Such processors can be implemented using electronic hardware, computer software, or any combination thereof. Whether such a processor is implemented as hardware or software will depend on the particular application and the overall design constraints imposed on the system. As an example, the processor, any portion of the processor, or any combination of processors presented in this disclosure may be a microprocessor, a microcontroller, a digital signal processor (DSp), a field programmable gate array (FPGA), a programmable Logic devices (pLDs), state machines, gating logic, individual hardware circuits, and other suitable processing elements configured to perform various functions described throughout this disclosure are implemented. The functions of the processor, any portion of the processor, or any combination of processors presented in this context may be software that can be executed by a microprocessor, microcontroller, biliary or other suitable platform. Software should be interpreted broadly to mean Instruction, instruction set, code, 4 code segment, code, program, subprogram, software module, application, soft# application, package software, routine, subroutine, object, executable broadcast, : : Threads, procedures, functions, etc., whether they are in software, lexicon...software, microcode, hardware description language, or other terminology, software can reside on computer readable media. As an example, electric storage includes memory, such as magnetic storage devices (for example, item 20 201135272, floppy magnetic strip), optical disc (for example, dust-reduced compact disc (CD), digital compact disc (JDVD)) Smart cards, flash memory devices (eg, memory, memory stick, keyless drivers), random access memory
㈣記憶體⑽M)、可程式R〇M(pR〇M)、可抹除pR〇)M EPROM)、電可抹除pR〇M (EEpR〇M)、暫存器、或可 移除磁碟。儘管在貫穿本案呈現的各種態樣中將記憶體示 為與處理器分開,但記憶體可位於處理器内部(例如,快 取記憶體或暫存器)。 電腦可讀取媒體可以實施在電腦程式產品中。作為實 例,電腦程式產品可包括封裝材料中的電腦可讀取媒體。 本湏域技藝人士將意識到如何取決於特定應用和加諸於 整體系統的整體設計約束來最佳地實施本案中通篇提供 的所描述的功能。 應該理解,所揭示的方法中各步驟的特定次序或階層是 示例性程序的說明。基於設計偏好,應該理解,可以重新 編排此等方法中各步驟的特定次序或階層。所附方法請求. 項以示範次序呈現各種步驟的要素,且並不意謂被限定於 所呈現的特定次序或階層,除非在本文中有特別敍述。 提供之前的描述是為了使本領域中的任何技藝人士均 能夠實踐本文中所描述的各種態樣。對此等態樣的各種動 改將容易為本領域技藝人士所明白,並且在本文中所定義 的普適原理可被應用於其他態樣H請求項並非旨在 被限定於本文中所示出的各態樣,而是應被授予與請求項 的語言相-致的全部範圍’其中對要素的單數形式的引述 21 201135272 二旨在表示「有且僅有一個」――除非特別如此聲明, 祖「疋一《在表不「-或多個」。除非特別另外聲明,否則術 -些/某個」指的是一或多個。引述一項目清單中的「至 一個」的用語是指此等 g ^ 等項目的任何組合,包括單個成 員。作為實例,「a、b或C中# _ k . T町主乂 個」旨在涵蓋:a; f —h a和C,b和C;&a、b*c。本案中通篇描 这的各種態樣的要素為本領域—般技藝人士當前或今後 所知的所有結構上和功能上 蚝上的等效方案以引用方式被明 本H意在被巾請專利範圍所涵蓋。此外,本文 ㈣示的任何内容都並非旨在貢獻給公眾—無論該揭示 疋否在申請專利範圍中被顯式地敍述。請求項的任何要素 都不應當在專利法施行細則帛18條第8項的規定下來解 釋――除非該要素是使用用語「用於…·的構件」來明確 敍述的或者在方法請求項情形中該要素是使用用語「用 於......的步驟」來敍述的。 :圖式簡單說明】 圖1是概念地圖示電作备 屯糸統的實例的方塊圖。 圖2是概念地圖示電作备 士 电^糸統中的訊框結構的實例的方塊 圖。 圖3是概念地圖示電作盎 电系統中B節點與UE處於通訊的 實例的方塊圖》 圖4是概念地圖示圖3的UE的處理系統的實例的方塊(4) Memory (10)M), Programmable R〇M(pR〇M), erasable pR〇)M EPROM), electrically erasable pR〇M (EEpR〇M), scratchpad, or removable disk . Although the memory is shown as being separate from the processor throughout the various aspects presented herein, the memory can be internal to the processor (e.g., a memory or a scratchpad). Computer readable media can be implemented in computer program products. As an example, a computer program product may include computer readable media in a packaging material. Those skilled in the art will recognize how to best implement the described functionality provided throughout the present application, depending on the particular application and the overall design constraints imposed on the overall system. It will be understood that the specific order or hierarchy of steps in the disclosed methods is illustrative of the exemplary procedures. Based on design preferences, it is understood that a particular order or hierarchy of steps in the methods can be rearranged. The accompanying method is to be construed as a limitation of the particulars The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to this aspect will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other aspects. The H request item is not intended to be limited to the one shown herein. The various aspects, but should be granted the full scope of the language of the request item 'where the singular form of the element is quoted 21 201135272 2 is intended to mean "there is only one and only one" - unless specifically stated otherwise, The ancestors "疋一" is not "- or more". Unless otherwise stated otherwise, the term "some" or "some" refers to one or more. The phrase "to one" in a list of items refers to any combination of items such as g ^, including individual members. As an example, "a, b or C# _ k . T machi 乂" is intended to cover: a; f - h a and C, b and C; & a, b * c. The various elements of the description in this case are all structural and functional equivalents currently or in the future known to those skilled in the art, and are intended to be patented by reference. Covered by the scope. In addition, nothing in this document is intended to contribute to the public—whether or not the disclosure is explicitly stated in the scope of the patent application. No element of the request shall be construed in accordance with the provisions of Article 18, Item 8 of the Implementing Regulations of the Patent Law, unless the element is explicitly stated in the use of the term “components for...” or in the case of a method request. This element is described using the term "step for...". BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram conceptually illustrating an example of an electric system. Fig. 2 is a block diagram conceptually showing an example of a frame structure in an electrician. 3 is a block diagram conceptually illustrating an example in which a Node B in communication with a UE is in communication. FIG. 4 is a block conceptually illustrating an example of a processing system of the UE of FIG.
圖V 22 201135272 圖5是CDMAlx訊框結構與TD-SCDMA訊框結構相比 的圖示,該圖示說明了觀察時間差決定。 圖6是根據本案的一態樣用於決定UE的位置的程序的 流程圖。 圖7是根據本案的一態樣用於決定UE的位置的程序的 時序圖。 圖8是圖示示例性UE裝置的功能的概念方塊圖。 【主要元件符號說明】 100 電信系統Figure V 22 201135272 Figure 5 is a graphical representation of the CDMAlx frame structure compared to the TD-SCDMA frame structure, which illustrates the observation time difference decision. Figure 6 is a flow diagram of a procedure for determining the location of a UE in accordance with an aspect of the present disclosure. Figure 7 is a timing diagram of a procedure for determining the location of a UE in accordance with an aspect of the present invention. Figure 8 is a conceptual block diagram illustrating the functionality of an exemplary UE device. [Main component symbol description] 100 telecommunication system
102 RAN 104 核心網路102 RAN 104 core network
106 RNC 10-7 無線電網路子系統 108 B節點106 RNC 10-7 Radio Network Subsystem 108 Node B
110 UE 112 行動交換中心(MSC) 114 閘道 MSC ( GMSC) 116 電路交換網路 118 服務GPRS支援節點(SGSN) 120 閘道GPRS支援節點(GGSN) 122 基於封包的網路 202 訊框 204 子訊框 23 201135272 206 下行鏈路引導頻時槽(DwPTS) 208 保護期(GP) 210 上行鏈路引導頻時槽(UpPTS) 212 資料部分 214 中序信號 216 保護期(GP)110 UE 112 Mobile Switching Center (MSC) 114 Gateway MSC (GMSC) 116 Circuit Switched Network 118 Serving GPRS Support Node (SGSN) 120 Gateway GPRS Support Node (GGSN) 122 Packet-based Network 202 Frame 204 Box 23 201135272 206 Downlink Pilot Time Slot (DwPTS) 208 Protection Period (GP) 210 Uplink Pilot Time Slot (UpPTS) 212 Data Section 214 Sequence Signal 216 Protection Period (GP)
300 RAN 310 B節點 312 資料源 320 發射處理器 330 發射訊框處理器 332 發射機 334 智慧天線 335 接收機 336 接收訊框處理器 338 接收處理器 339 資料槽 340 控制器/處理器 342 記憶體 344 通道處理器 346 排程器/處理器 350 裝置 352 天線 354 接收機 24 201135272 356 發射機 360 接收訊框處理器 370 接收處理器 372 資料槽 378 資料源 380 發射處理器 382 發射訊框處理器 390 控制器/處理器 392 記憶體 394 通道處理器 400 裝置 402 無線介面 404 處理系統 406 機器可讀取媒體 500 訊框時序圖 600 程序 602 步驟 604 步驟 606 步驟 608 步驟 610 步驟300 RAN 310 Node B 312 Data Source 320 Transmit Processor 330 Transmitter Processor 332 Transmitter 334 Smart Antenna 335 Receiver 336 Receive Frame Processor 338 Receive Processor 339 Data Slot 340 Controller/Processor 342 Memory 344 Channel Processor 346 Scheduler/Processor 350 Device 352 Antenna 354 Receiver 24 201135272 356 Transmitter 360 Receive Frame Processor 370 Receive Processor 372 Data Slot 378 Data Source 380 Transmit Processor 382 Transmit Frame Processor 390 Control Processor/Processor 392 Memory 394 Channel Processor 400 Device 402 Wireless Interface 404 Processing System 406 Machine Readable Media 500 Frame Timing Diagram 600 Procedure 602 Step 604 Step 606 Step 608 Step 610 Step
702 UE 710 TD-SCDMA參考細胞服務區702 UE 710 TD-SCDMA reference cell service area
712 TD鄰點細胞服務區A 25 201135272 720 CDMAlx 722 CDMAlx 800 功能方塊 802 方塊 804 方塊 806 方塊 808 方塊 細胞服務區B 鄰點細胞服務區C 圖 26712 TD neighbor cell service area A 25 201135272 720 CDMAlx 722 CDMAlx 800 function block 802 block 804 block 806 block 808 block cell service area B neighbor cell service area C Figure 26
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US26313209P | 2009-11-20 | 2009-11-20 | |
PCT/US2010/035689 WO2011062660A1 (en) | 2009-11-20 | 2010-05-20 | Method and apparatus for ue-based position determination in td-scdma multimode terminals |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201135272A true TW201135272A (en) | 2011-10-16 |
Family
ID=42667470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099116536A TW201135272A (en) | 2009-11-20 | 2010-05-24 | Method and apparatus for UE-based position determination in TD-SCDMA multimode terminals |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN102144172A (en) |
TW (1) | TW201135272A (en) |
WO (1) | WO2011062660A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10609629B2 (en) * | 2016-02-01 | 2020-03-31 | Qualcomm Incorporated | Method and apparatus for exploiting radio access technology system information blocks for time transfer based positioning |
AR109331A1 (en) * | 2016-08-12 | 2018-11-21 | Ericsson Telefon Ab L M | CONTROL OF REFERENCE TRANSMISSION POINTS FOR RSTD MEASUREMENTS |
WO2020163983A1 (en) * | 2019-02-11 | 2020-08-20 | Nokia Shanghai Bell Co., Ltd. | Enhanced positioning mechanism based on otdoa |
CN111726858B (en) * | 2019-03-22 | 2021-07-20 | 华为技术有限公司 | Method and device for selecting measurement cell |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6154657A (en) * | 1997-10-21 | 2000-11-28 | Telefonaktiebolaget Lm Ericsson | Smart subdivision of base station candidates for position location accuracy |
GB0000528D0 (en) * | 2000-01-11 | 2000-03-01 | Nokia Networks Oy | Location of a station in a telecommunications system |
CN1909731B (en) * | 2006-07-06 | 2010-12-01 | 广东国笔科技股份有限公司 | Method for collecting position data of base station |
WO2008016944A2 (en) * | 2006-07-31 | 2008-02-07 | Qualcomm Incorporated | Determination of cell rf parameters and user equipment position based on measurements by user equipments |
DE102007027141A1 (en) * | 2007-06-13 | 2008-12-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Device for determining a device position |
CN101933378A (en) * | 2007-11-23 | 2010-12-29 | 中兴通讯股份有限公司 | Locating method for the user plane to observe the reached time difference |
-
2010
- 2010-05-20 CN CN201080000967XA patent/CN102144172A/en active Pending
- 2010-05-20 WO PCT/US2010/035689 patent/WO2011062660A1/en active Application Filing
- 2010-05-24 TW TW099116536A patent/TW201135272A/en unknown
Also Published As
Publication number | Publication date |
---|---|
CN102144172A (en) | 2011-08-03 |
WO2011062660A1 (en) | 2011-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI471032B (en) | Methods and apparatus to perform reference signal measurements in a tdd-lte system from a td-scdma system | |
US8948126B2 (en) | Scheduling TDD-LTE measurement in TD-SCDMA systems | |
TWI454159B (en) | Method and apparatus for enhancement of cell id-based position determination in td-scdma multimode terminals | |
TW201228435A (en) | System synchronization in TD-SCDMA and TDD-LTE systems | |
US20120269172A1 (en) | Apparatus and Method for Providing Handover Trigger Mechanisms Using Multiple Metrics | |
US20120088499A1 (en) | Td-scdma measurement in a dual td-scdma and gsm mobile station | |
TW201210396A (en) | Effective timing measurements by a multi-mode device | |
TW201404212A (en) | Power awareness measurement in time division synchronous code division multiple access | |
US8798030B2 (en) | Facilitating uplink synchronization in TD-SCDMA multi-carrier systems | |
US8874111B2 (en) | Uplink synchronization of TD-SCDMA multiple USIM mobile terminal during handover | |
TW201208288A (en) | Enhancing pilot channel transmission in TD-SCDMA multicarrier systems using secondary carrier frequencies | |
US8971292B2 (en) | Method and apparatus for power control during TD-SCDMA baton handover | |
US9084151B2 (en) | Signal measurement in TD-SCDMA multicarrier systems using downlink synchronization codes | |
TW201338579A (en) | Call recovery in TD-SCDMA handover failure | |
US20150304977A1 (en) | Method and apparatus for timing advance selection for synchronized uplink transmission | |
TW201132164A (en) | Receiving GSM timing information from TD-SCDMA base station to facilitate TD-SCDMA to GSM wireless handover | |
US8885614B2 (en) | Avoidance of synchronization oscillation in TD-SCDMA uplink synchronization | |
EP4418738A1 (en) | Target cell multi-trp operation in l1/l2-triggered mobility | |
TW201414336A (en) | Intelligent inter radio access technology measurement reporting | |
TW201129148A (en) | Priority-based selection of base transceiver stations in a TD-SCDMA wireless communication system | |
TW201135272A (en) | Method and apparatus for UE-based position determination in TD-SCDMA multimode terminals | |
TW201204085A (en) | Method and apparatus for pre-uplink synchronization in TD-SCDMA handover | |
US20120275436A1 (en) | Method and apparatus of processing synchronization shift commands in tdscdma uplink synchronization | |
TW201129006A (en) | Method and apparatus to support HSDPA ACK/CQI operation during baton handover in TD-SCDMA systems | |
TW201431394A (en) | Expanded neighbor list for cell reselection |