TW201129148A - Priority-based selection of base transceiver stations in a TD-SCDMA wireless communication system - Google Patents

Priority-based selection of base transceiver stations in a TD-SCDMA wireless communication system Download PDF

Info

Publication number
TW201129148A
TW201129148A TW099109675A TW99109675A TW201129148A TW 201129148 A TW201129148 A TW 201129148A TW 099109675 A TW099109675 A TW 099109675A TW 99109675 A TW99109675 A TW 99109675A TW 201129148 A TW201129148 A TW 201129148A
Authority
TW
Taiwan
Prior art keywords
node
location
neighboring node
neighboring
result
Prior art date
Application number
TW099109675A
Other languages
Chinese (zh)
Inventor
Tom Chin
Guangming Shi
Kuo-Chun Lee
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW201129148A publication Critical patent/TW201129148A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Selection of base transceiver stations or Node Bs for handoff in a time division synchronous code division multiple access (TD-SCDMA) wireless communication system is provided by a user equipment (UE) selecting a neighboring Node B based on a priority level, while communicating with a serving Node B, and measuring a signal transmitted by the selected Node B.

Description

201129148 t、發明說明: 相關申請的交叉引用 本專利申請案主張享受2010年1月15曰提出申請的、 標題為「PRIORITY-BASED SELECTION OF BASE TRANSCEIVER STATIONS IN A TD-SCDMA WIRELESS COMMUNICATION SYSTEM」的美國臨時專利申請案第 61/295,544號的權益,該臨時申請案明確地以引用之方式 全部併入本案。 【發明所屬之技術領域】 本案的態樣大體而言係關於無線通訊系統,且更特定言 之,係關於分時-同步分碼多工存取(TD-SCDMA)無線通 訊系統中基於優先順序的基地台收發機選擇。 【先前技術】 為了提供诸如電話、視訊、資料、訊息傳遞、廣播等多 種通訊服務,廣泛部署了無線通訊網路。該等網路通常是 多工存取網路,藉由共享可用的網路資源支援多個使用者 進行通訊。該網路的一個實例是通用陸地無線電存取網路 (UTRAN )。UTRAN是作為通用行動電信系統(UMTS ) 的一部分進行定義的無線電存取網路(RAN ),其中通用行 動電信系統(UMTS)是第三代夥伴合作專案(3GPP)支 援的第三代(3G)行動電話技術。UMTS是行動通訊全球 系統(GSM )技術的後繼,當前支援各種空中介面標準, 诸如寬頻分碼多工存取(W-CDMA)、分時-分碼多工存取 201129148 (TD-CDMA )以及分時-同步分碼多工存取 (TD-SCDMA )。举例而言,中國正在推動td-SCDMA作 為UTRAN體系架構中的底層空中介面,其中現有GSM基 礎結構作為核心網。UMTS亦支援增強的3G資料通訊協 定’例如高速下行鏈路封包資料(HSDPA ),其向相關的 UMTS網路提供更高的資料傳輸速度及更大的容量。 隨著對行動寬頻存取的需求不斷增長,研究及開發持續 在促進UMTS技術的發展,不僅滿足不斷增長的對行動寬 頻存取的需求,亦促進並增強使用者對行動通訊的體驗。 【發明内容】 根據本案的一個態樣,提供了選擇基地台收發機或節點 B以用於在分時-同步分碼多工存取(td-SCDMA)無線通 訊系統中進行交接。在該等系統中,使用者裝備(UE )在 與服務節點B進行通訊時基於優先順序等級來選擇鄰近節 點B,並量測由所選擇的節點b發送的信號。 根據本案的一個態樣,UE接收到與服務節點B及至少 一個鄭近節點B有關的系統資訊。基於該系統資訊,UE 將優先順序等級指派給每個鄰近節點B。UE量測所選擇的 鄰近節點B發送的信號的信號品質。回應於測得的信號品 質滿足信號品質閾值,UE將測得的信號品質發送給服務 節點B以進行交遞處理。 【實施方式】 下文結合附圖提供的詳細描述是意欲作為對各種配置 201129148 的描述,而不欲表示可以實施本案描述的概念的僅有的配 置詳細把述包括為了對各種概念提供透徹理解的特定細 節。然而,對於本領域技藝人士很明顯的是,該等概念的 實施可以無料特定纟4。在—些實射,时塊圖形式 圖示熟知結構及部件,以避免使料概念難於理解。 下文參照圖1’圖示了說明電信系統1〇〇之實例的方塊 圖貫穿本案提出的各種概念可以藉由大量不同的電信系 統、網路架構及通訊標準來實施。舉例而言(但並非限 制)’圖1中圖示的本案的態樣參考利用TD SCDMA標準 的UMTS系統來進行介紹。在該實例中,UMTS系統包括 (無線電存取網路)RAN i 〇2 (例如,UTRAN),其提供 各種無線服務,包括電話、視訊、資料、訊息傳遞、廣播 及/或其他服務。RAN 102可以分成多個無線電網路子系統 (RNSs) ’諸如RNS 1〇7,其中的每一個由無線電網路控 制器(RNC)來控制,諸如RNC 1〇6。為清楚起見,僅圖 示 RNC 106 及 RNS 107 ;然而,除 RNC 106 及 RNS 107201129148 t, Invention Description: CROSS-REFERENCE TO RELATED APPLICATIONS This patent application claims the benefit of the United States Provisional, entitled "PRIORITY-BASED SELECTION OF BASE TRANSCEIVER STATIONS IN A TD-SCDMA WIRELESS COMMUNICATION SYSTEM", filed on January 15, 2010. Patent Application No. 61/295,544, the provisional application is expressly incorporated herein in its entirety by reference. BACKGROUND OF THE INVENTION The present invention relates generally to wireless communication systems and, more particularly, to prioritization in time-division-synchronous code division multiplex access (TD-SCDMA) wireless communication systems. Base station transceiver selection. [Prior Art] In order to provide various communication services such as telephone, video, data, messaging, and broadcasting, a wireless communication network is widely deployed. These networks are typically multiplexed access networks that support multiple users for communication by sharing available network resources. An example of such a network is the Universal Terrestrial Radio Access Network (UTRAN). UTRAN is a Radio Access Network (RAN) defined as part of the Universal Mobile Telecommunications System (UMTS), which is the third generation (3G) supported by the 3rd Generation Partnership Project (3GPP). Mobile phone technology. UMTS is a successor to the Global System for Mobile Communications (GSM) technology and currently supports a variety of null interfacing standards such as Wideband Code Division Multiple Access (W-CDMA), Time Division-Code Division Multiple Access 201129148 (TD-CDMA), and Time-sharing-synchronous code division multiplex access (TD-SCDMA). For example, China is promoting td-SCDMA as the underlying null intermediation in the UTRAN architecture, with the existing GSM infrastructure as the core network. UMTS also supports enhanced 3G data communication protocols such as High Speed Downlink Packet Data (HSDPA), which provides higher data transfer speeds and greater capacity to associated UMTS networks. As the demand for mobile broadband access continues to grow, research and development continue to promote the development of UMTS technology, not only to meet the growing demand for mobile broadband access, but also to promote and enhance the user experience with mobile communications. SUMMARY OF THE INVENTION According to one aspect of the present invention, a base station transceiver or node B is provided for handoff in a time division-synchronous code division multiplex access (td-SCDMA) wireless communication system. In such systems, the user equipment (UE) selects the neighboring node B based on the priority level when communicating with the serving node B, and measures the signal transmitted by the selected node b. According to one aspect of the present invention, the UE receives system information related to the serving Node B and at least one Proximity Node B. Based on the system information, the UE assigns a priority level to each of the neighboring Node Bs. The UE measures the signal quality of the signal transmitted by the selected neighboring Node B. In response to the measured signal quality meeting the signal quality threshold, the UE transmits the measured signal quality to the serving Node B for handover processing. The detailed description provided below with reference to the drawings is intended to be a description of the various configurations 201129148, and is not intended to represent the only configuration that can implement the concepts described in the present invention. The detailed description includes specific details for providing a thorough understanding of the various concepts. detail. However, it will be apparent to those skilled in the art that the implementation of such concepts may be unspecified. In the case of some real shots, the block diagram format shows well-known structures and components to avoid making the material concept difficult to understand. The block diagram illustrating an example of a telecommunications system 1 hereinafter is described with reference to FIG. 1 '. The various concepts presented throughout this disclosure can be implemented by a number of different telecommunications systems, network architectures, and communication standards. For example, but not by way of limitation, the aspect of the present invention illustrated in FIG. 1 is described with reference to a UMTS system utilizing the TD SCDMA standard. In this example, the UMTS system includes (Radio Access Network) RAN i 〇 2 (e.g., UTRAN) that provides various wireless services including telephony, video, data, messaging, broadcast, and/or other services. The RAN 102 can be divided into a plurality of Radio Network Subsystems (RNSs), such as RNS 1〇7, each of which is controlled by a Radio Network Controller (RNC), such as RNC 1〇6. For the sake of clarity, only RNC 106 and RNS 107 are shown; however, except for RNC 106 and RNS 107

之外’ RAN 102亦可以包括任何數量的rnC及RNS。RNC 106是負責對RNS 107内的無線電資源進行指派、重新配 置及釋放以及其他功能的裝置。RNC 106可以使用任何適 當的傳輸網路藉由各種類型的介面(例如直接實體連接、 虛擬網路等等)來互連到RAN 102中的其他RNC (未圖 示)。 RNS 107覆蓋的地理區域可以分成多個細胞服務區,其 中的無線電收發機裝置對每個細胞服務區進行服務。無線 201129148 電收發機裝置在UMTS應用中通常稱作節點B,但是本領 域技藝人士亦可能將其稱作基地台(BS)、基地台收發機 (BTS )、無線電基地台、無線電收發機、收發機功能、基 本服務集(BSS)、擴展服務集(ESS)、存取點(AP),或The out-of-RAN 102 may also include any number of rnCs and RNSs. The RNC 106 is the device responsible for assigning, reconfiguring, and releasing radio resources within the RNS 107, among other functions. The RNC 106 can be interconnected to other RNCs (not shown) in the RAN 102 by any type of interface (e.g., direct physical connection, virtual network, etc.) using any suitable transport network. The geographic area covered by the RNS 107 can be divided into a plurality of cell service areas in which the transceiver device serves each cell service area. Wireless 201129148 electrical transceiver device is commonly referred to as Node B in UMTS applications, but those skilled in the art may also refer to it as a base station (BS), a base station transceiver (BTS), a radio base station, a radio transceiver, and a transceiver. Machine function, basic service set (BSS), extended service set (ESS), access point (AP), or

者一些其他適合的術語。為清楚起見,圖示了兩個節點B 108 ;然而,RNS 107可以包括任何數量的無線節點b。節 點B 108向任何數量的行動裝置提供至核心網ι〇4的無線 存取點。行動裝置的實例包括蜂巢式電話、智慧型電話、 通信期啟動協定(SIP)電話、膝上型電腦、筆記型電腦、 小筆電、智慧型電腦、個人數位助理(pda )、衛星無線電、 全球定位系統(GPS)設備、多媒體設備、視訊設備、數 位音訊播放器(例如,MP3播放器)、照相機、遊戲機、Some other suitable terms. For clarity, two Node Bs 108 are illustrated; however, the RNS 107 can include any number of wireless nodes b. Node B 108 provides wireless access points to the core network ι4 to any number of mobile devices. Examples of mobile devices include cellular phones, smart phones, communication start-up protocol (SIP) phones, laptops, laptops, laptops, smart computers, personal digital assistants (PDAs), satellite radios, global Positioning system (GPS) devices, multimedia devices, video devices, digital audio players (eg, MP3 players), cameras, game consoles,

或者任何其他類似的功能設備。行動裝置通常稱作UMTS 應用中的使用者裝備(UE),但是本領域技藝人士亦可能 將其稱作行動站(MS)、用戶站、行動單元、用戶單元、 無線单元、遠端單元、行動設備、無線設備、無線通訊設 備遠端叹備、行動用戶站、存取終端(Ατ)、行動終端、 無線終端、遠端終端、手持機、終端、使用者代理、行動 戶端客戶端’或—些其他適合的術語。為了便於說明, 圖示了三個UE11Q’其與節點B1G8it行通訊。下行鍵路 )亦稱為則向鏈路,代表自節點B至UE的通訊鏈 μ而上行鍵路(UL),亦稱為反向鍵路,代表自UE至 節點B的通訊鏈路。 如圖所示,核心網 104包括GSM核心網。然而,本領 201129148 域技藝人士將認識到的是’貫穿本案提供的各種概念可以 在RAN或其他適合的存取網路中實施,以向ue提供對除 了 GSM網路之外的各種類型核心網的存取。 在該實例中,核心網1 04支援與行動交換中心(MSC ) 112及閘道MSC(GMSC) 114的電路交換服務。一或多個 RNC (諸如RNC 106)可以連接至MSC 112。MSC 112是 控制撥叫建立、撥叫路由及UE行動性功能的裝置。MSC 112亦包括探訪者位置暫存器(VLr)(未圖示),其包含 UE處於MSC 112覆蓋區域期間的用戶相關資訊。GMSC 114藉由MSC 112為UE提供閘道來存取電路交換網路 116。GMSC 114包括本地暫存器(HLR)(未圖示),其包 含用戶資料,諸如反映特定使用者已訂購的服務的細節的 資料。HLR亦與認證中心(AuC )相關聯,其包含用戶特 定的認證資料。當接收到針對特定UE的撥叫時,GMSC 114 查珣HLR來決定UE的位置,並將撥叫轉發給服務該位置 的特定MSC » 核心網104亦採用服務GPRS支援節點(SGSN ) 118及 閘道GPRS支援節點(GGSN) 12〇來支援封包-資料服務。 GPRS表示通用封包式無線電服務,其設計為提供比標準 GSM電路交換資料服務可用的封包_資料服務具有更高速 度的封包-資料服務》GGSN 120為RAN 102提供至基於封 包的網路122的連接。基於封包的網路122可以是網際網 路、專用資料網路或者其他適當的基於封包的網路^ GGSN 120的主要功能是為UE11〇提供基於封包的網路連接。資 201129148 料封包藉由SGSN 118在GGSN 120及UE 110之間傳輸, 其中SGSN 118在基於封包的域中主要執行與MSC 112在 電路交換域中執行的相同的功能。 UMTS 空中介面是展頻直接序列分碼多工存取 (DS-CDMA)系統。藉由乘以稱作碼片的假性隨機位元序 列,展頻DS-CDMA將使用者資料在寬得多的頻寬上進行 擴展。TD-SCDMA標準以該直接序列展頻技術為基礎,並 且亦要求分時雙工(TDD ),而不是在許多分頻雙工(FDD ) 模式UMTS/W-CDMA系統中使用的FDD。TDD對於節點 B 108及UE 110之間的上行鏈路(UL)及下行鏈路(DL) 使用相同的載波頻率,但將上行鏈路及下行鏈路傳輸分成 載波中不同的時槽。 圖2圖示了 TD-SCDMA載波的訊框結構200。如所示 的,TD-SCDMA載波具有長度為10 ms的訊框202。訊框 202具有兩個5 ms的子訊框204,且每個子訊框204包括 七個時槽TS0至TS6。第一時槽TS0通常分配給下行鏈路 通訊,而第二時槽TS1通常分配給上行鏈路通訊。剩下的 時槽TS2至TS6可以用於上行鏈路或下行鏈路,此使得在 上行鏈路或下行鏈路方向上較高資料傳輸時間期間有更 大的靈活性。下行鏈路引導頻時槽(DwPTS ) 206、保護 週期(GP) 208及上行鏈路引導頻時槽(UpPTS) 210 (亦 稱為上行鏈路引導頻通道(UpPCH))位於TS0及TS1之 間。每個時槽(TS0至TS6 )可以允許在最多16個碼通道 (code channel)上對資料傳輸進行多工處理。碼通道上的 8 201129148 資料傳輸包括由中序信號(midamble) 214隔開的兩個資 料部刀212,之後為保護週期(gp ) 216。中序信號214 可以用於諸如通道估計的功能,而Gp 216可以用於避免 短脈衝間的干擾。 圖3是RAN 300中與UE 35〇進行通訊的節點Β 31〇的 方塊圖,其中RAN 300可以是圖1中的RAN 102,節點B 310可以疋圖1中的節點B108,且UE 350可以是圖!中 的UE 110。在下行鏈路通訊中,發射處理器3 2〇可以自資 料源3 12接收資料並且自控制器/處理器34〇接收控制信 號。發射處理|| 320為該冑料信號、控制信號及參考信號 (例如,引導頻信號)提供各種信號處理功能。例如,發 射處理胃320彳以提供用於錯誤摘測的循環冗餘檢查 (CRC)碼,進行編碼及交錯以便促進前向糾錯 基於各種調制方案(例如’二元移相鍵控(BpsK)、四相 移相鍵控(QPSK)、Μ相-移相鍵控(M_PSK)、μ-正交幅 度調制(M-QAM )等等)映射至信號群集,利用正交可變 展頻因數(〇VSF)進行展頻,並乘以義碼以產生-系列 的符號。纟自通道處理器344的通道估計可由控制器/處理 器340用來決定發射處理器32G的編碼、調制、展頻及/ 或擾頻方案。該等通道估計可以自UE35〇所發送的參考 仏號得到’或者自包含在來自UE 350的中序信號214 (圖 2)中的回饋得到°發射處理器32G產生的符號提供給發 射訊框處理器33G以建立訊框結構。發射訊框處理器33〇 藉由採用來自控制器/處理H 340的中序信號214(圖2) 9 201129148 對符號進行多卫處理來建立該訊桓結構,從而得到一系列 的訊框n將”訊框提供給發射機332,其提供各 種信號調節功能,包括放大、據波並將訊框調制到載波 上’以便藉由智慧天線334在無線媒體上進行下行鍵路傳 輸。智慧天線334可以藉由波束操縱雙向可適性天線陣列 或其他類似的波束技術來實施。 、在UE 350,接收機354藉由天線^接收下行键路傳輸 並對該傳輸進行處理,以恢復調制到餘上的資訊。將接 收機3 54恢復的資訊提供給接收訊框處理器36〇,其對每 個訊框進行解析,並將中序信號214 (圖2)提供給通道 處理器394,並將資料信號、控制信號及參考信號提供給 接收處理器370。隨後,接收處理器37〇執行由節點B3i〇 的發射處理器320所執行處理的相反的處理。更特定言 之,接收處理器370對符號進行解擾頻及解展頻,隨後基 於調制方案來決定由節點B 31〇發送的最有可能的信號群 集點。該等軟決策可以基於通道處理器3 94計算的通道估 。十隨後,對軟性決策進行解碼及解交錯以恢復資料信 號、控制信號及參考信號。隨後,對CR(:碼進行校驗以決 疋訊框的解碼是否成功。隨後將成功解碼的訊框所攜帶的 資料提供給資料槽372,其表示在UE 35〇及/或各種使用 者介面(例如,顯示器)中執行的應用程式。將成功解碼 的訊框攜帶的控制信號提供給控制器/處理器3 9 〇。當接收 機處理器370未對訊框成功進行解碼時,控制器/處理器 39〇亦可以使用確認(ACK)及/或否認(NACK)協定來 201129148 支援對該等訊框的重傳請求。 在上行键路中,將來自資料源378的資料及來自控制器 /處理器390的㈣㈣提供給發射處理器跡資料源⑺ 可以表示S UE 350及各種使用者介面(例如,鍵盤)中 執行的應用程式。與結合由節點B 31()進行下行鏈路傳輸 描述的功能相似’發射處理胃38G提供各種信號處理功 能’包括CRC碼、為促進FEC而進行編碼及交錯、映射 到信號群集、採用0VSF進行展頻以及進行擾頻以產生一 系列符號。通道處理器3 94 έ η& 蛟器394自卽點Β 31〇傳輸的參考信號 或從包含在節點B31G傳輸的中序信號中的回饋而得到的 通道估計,可Μ於選擇適當的編瑪、調制、展頻及/或擾 頻方案。發射處理ϋ 38G產生的㈣將會提供給發射訊框 處理器382以建立訊框結構。發射訊框處理器382藉由採 用來自控制器/處理器刑的t序信號214 (圖2)對符號 進行多工處理來建立該訊框結構,從而得到U訊框。 ,後丄將該等訊框提供給發射機356,其提供各種信號調 節功能,包括放大、濾波及將訊框調制到载波上,以便藉 由天線3 52在無線媒體上進行上行鏈路傳輸。 採用類似於所描述的UE 35〇的接收機功能的方式,在 節點B 310處對上行鏈路傳輸進行處理。接收機藉由 天線 接收上行鍵路傳輸,並對傳輸進行處理以恢復調 制到載波j的資訊。將接收機335恢復的資訊提供給接收 訊框處理器336’其對每個訊框進行解析,並將中序信號 214 (圖2)提供給通道處理器344以及將資料信號、控制 201129148 信號及參考信號提供給接收處理器338。接收處理器338 執行由UE 350中的發射處理器38〇所執行處理的相反的 處理。隨後可以將成功解碼的訊框攜帶的資料信號及控制 信號分別提供給資料槽339及控制器/處理器。若接收處理 器對一些訊框未能成功進行解碼,則控制器/處理器34〇亦 可以使用確認(ACK)及/或否認(NACK)協定來支援對 那些訊框的重傳請求。 控制器/處理器340及控制器/處理器39〇可用於在節點b 310及UE 3 50分別指導操作。例如,控制器/處理器34〇 及控制器/處理器390可以提供各種功能,包括時序、周邊 介面、電壓調節、電源管理及其他控制功能。記憶體342 及3己憶體392的電腦可讀取媒體可以分別為節點b 31〇及 UE 3 50儲存資料及軟體》在節點b 3 1〇的排程器/處理器 346可以用於將資源分配給UE,並為uE排程下行鏈路及 /或上行鏈路傳輸。 隨著各個UE在特定細胞服務區内移動,在某個時間點 UE將會自當前的服務節點B.交遞到鄰近節點b ^在 TD-SCDMA系統中,交遞過程自量測鄰近細胞服務區開 始。該交遞程序的一個通常的量測度量是量測主要共用控 制實體通道(P-CCPCH)的接收信號碼功率(rSCP)。共 用控制通道(例如P-CCPCH)通常分配給時槽TS0。實際 上,P-CCPCH通常指派給TS0時槽中的16個可能的碼通 道中的前兩個碼通道。 在準備交遞或交接的程序中,服務節點B可以發送無線 12 201129148 電資源控制⑽c)訊息,㈣置UE量測若干特定的鄰 近細胞服務區。例如’節點以採用「量測控制系統資 訊」來廣播系統資訊訊息(諸如系統資訊區塊類型u訊 心)從而扣不多載波系統的頻率内及頻率間量測系統資 訊節點B亦可以包括諸如待量測的鄰近細胞服務區的「細 胞服務區參數識別符(ID)」(授頻碼/中序信號碼索引)及 「頻率資訊」(通用陸地無線電存取(UTRA )絕對無線電 頻率通道號(稱為「UARFCN」))的資訊。 在另一實例中,節點B亦可以發送點到點量測控制訊 息,其指揮UE分別採用「頻率内細胞服務區資訊清單」 及「頻率間細胞服務區資訊清單」在多載波系統中執行頻 率内里測或頻率間量測。然而,對於當前該等過程中的每 一個,可能有多個鄰近細胞服務區要進行量測,並且因為 UE被指示在將結果報告給服務節點B之前要量測所有該 等鄰近細胞服務區’所以交遞過程的延遲將會相當的大。 圖4是根據本案的一個態樣圖示無線通訊程序中執,行的 示例性方塊的功能方塊圖40。在方塊400,UE在與服務 節點B進行通訊時基於優先順序等級來選擇鄰近節點b。 隨後在方塊401,UE量測所選擇的節點B發送的信號以用 於交遞目的。因此’藉由對要量測的鄰近節點B的選擇進 行優先順序區分,交遞延遲的過程得以縮短。 不同的準則可以用於將優先順序等級指派給各個鄰近 節點B。圖5是概念性地圖示根據本案所教示的一個態樣 配置的TD-SCDMA無線通訊系統50的方塊圖。服務節點 13 201129148 B 500向細胞服務區502提供TD-SCDMA無線通訊系統50 内的覆蓋。UE 501及UE 508位於節點B 5〇〇的細胞服務 區5 02内,並且當前藉由節點B 500參與到撥叫中。圖5 僅圖示了 TD-SCDMA無線通訊系統50中的六個節點B(亦 即,服務節點B 500及鄰近節點B 503至507 )及兩個UE (亦即,UE 501及UE 508 )。應該注意的是,實際上, TD-SCDMA無線通訊系統50可以包括各種數量的另外的 節點B及除了圖示的UE 501及UE 508以外的另外的UE。 該等代表性的元素僅僅是為了清楚而進行的選擇。 在交遞準備過程中,UE 501配置為基於鄰近節點b的位 置將優先順序等級指派給鄰近節點B 503至507中的每一 個。較尚的優先順序等級指派給鄰近節點B 503至507中 距離UE 501較近的節點b。為了獲得自身位置,ue 501 使用其内部的定位(例如’全球定位衛星(Gps ))接收機 及相應的定位功能。另外,在TD-SCDMA系統(諸如 TD-SCDMA無線通訊系統5〇)中,節點B(諸如服務節點 B 500和鄰近節點B 5〇3至5〇7)廣播大量的系統資訊,包 括節點B之自身位置及鄰近細胞服務區資訊,鄰近細胞服 務區資訊包括相關聯的節點B的位置資訊。進行廣播的節 點!8在系統資訊訊息(諸如系統資訊區塊類型15( SIB_15)) 中發送此類資訊。因此,UE5〇1通常能夠獲得其自身位置 (即使在沒有定位接收機的情形下)並且亦知道鄰近細胞 服務區的節點B的位置β 根據無線系統的特定態樣,該等系統資訊訊息可以包括 14 201129148 資訊元素,諸如UE的觀察到達時間差(〇TD〇A)輔助資 料’其主要提供服務節點B和鄰近節點b的資訊。該資訊 將允許UE 501決定服務節點B 500和鄰近節點B 5〇3至 507的位置’及相應的細胞服務區參數識別符(ID)和頻 率通道資訊。此外,資訊元素(諸如鄰近節點B 5〇3至5〇7 的橢球面、緯度、經度、相對以北、相對以東)亦可以包 括在該系統資訊訊息中。 UE 501使用各種熟知的距離計算演算法來計算自身與 鄰近節點B 503至507之間的距離。UE 501隨後將優先順 序等級指派給鄰近節點B 503至507中的每一個。最高的 優先順序指派給鄰近節點B 504,因為其與UE 501最接 近。UE 501隨後開始對節點B 504主要共用控制實體通道 的接收信號碼功率進行信號量測。為了可用於進行交遞, 節點B504主要共用控制實體通道的接收信號碼功率的值 應該超過一定的信號品質閾值。當UE 501獲得節點B 504 接收信號碼功率的量測,並且該量測超過信號品質閨值 時’ UE 501將量測結果發送給服務節點b 500。現有系統 中,UE 501在將結果發送給服務節點b 500以前將需要量 測鄰近節點B 503至507中每一個的接收信號碼功率,與 現有系統不同的是,根據本案所教示的一個態樣而配置的 UE 501將最高優先順序鄰近細胞服務區(節點b 5 04 )的 信號量測結果發送給服務節點B 500。節點B 500隨後能 夠促進將UE 501更快速地交遞到鄰近節點b 504。 應該注意的是,由於UE 501繼續進行其撥叫,其將繼 15 201129148 續量測鄰近節點B 503及505至507中較低優先順序的節 點B的主要共用控制實體通道的接收信號碼功率。若該等 後續量測中有任何量測超過信號品質閾值,則υΕ 5〇1將 把該結果發送給其當時進行服務的節點B。 應該進一步注意的是,若UE 5〇1不具有定位能力則 UE 501的位置可以藉由其他可用的方法來決定。例如,藉 由知道服務節點B 500或鄰近節點B 5〇3至5〇7中多個節 點B的位置資訊,及知道UE 5 〇 i和其他節點b之間的信 號的OTDOA,UE 501可以相對於其他節點B的已知位置 來估計其相對位置。此外,自其他無線發射機接收到的定 位資訊可以允許UE 501決定對其位置的估計。本案所教 示的各態樣並不限於UE 5()1決定其自身位置的任何特定 的方式。 亦在細胞服務區502内維持撥叫的UE 5〇8不具有定位 能力。然而,UE 508選擇使用服務節點B 5〇〇的位置作為 其近似位置,而不是使用另外的構件來決定其位置。因 此,如上所述’ UE 508藉由節點B 5〇〇廣播的系統資訊訊 息而知道服務節點B 500的位置資訊及鄰近節點B 5〇3至 507的位置資訊。使用熟知的演算法來計算兩個已知位置 之間的距離,uE 508計算自身與鄰近節點B5〇3至5〇7中 的每一個之間的相對距離。 在使用服務節點B 500的位置作為UE 5〇8的近似位置 時,優先順序區分有時沒有UE (諸如UE 5〇1)能夠準確 地獲得其自身位置資訊的情形—般準確。在計算相對距離 16 201129148 後’ UE 508將最高的優先順序等級指派給鄰近節點b 507。UE 508隨後量測鄰近節點B 507的主要共用控制實 體通道的接收信號碼功率,並將該等結果發送給服務節點 B 500。若鄰近節點B 507的接收信號碼功率的值超過信號 品質閾值,則服務節點B 500可以觸發UE 508的交遞過 程。然而’ UE 508和鄰近節點B 507之間的實際距離大於 UE 508和鄰近節點B 506之間的實際距離。由於UE 508 繼續量測較低優先順序鄰近節點B 503至506的主要共用 控制實體通道的接收信號碼功率,隨後其接著量測鄰近節 點B 506的接收信號碼功率。因為該量測亦超過信號品質 閾值’ UE 508將該量測結果發送給服務節點b 500。針對 該實例的目的,UE 508在自服務節點B 500交遞或交接至 鄰近節點B 507發生以前進行量測並發送鄰近節點b 506 的量測結果。因此’接收到新的接收信號碼功率量測以 後’服務節點B 500決定自鄰近節點b 506可以得到更高 的品質信號’並向UE 508發出命令以轉而開始與鄰近節 點B 506進行交遞程序。 圖6是概念性地圖示根據本案所教示的一個態樣配置的 多載波TD-SCDMA無線系統60的方塊圖。多載波 TD-SCDMA無線系統60包括服務節點B 600,其向細胞服 務區601提供無線通訊覆蓋。如為了清楚起見而所圖示, 圖示的多載波TD-SCDMA無線系統60亦具有鄰近節點b 603至605。UE 602位於細胞服務區601内’並藉由服務 節點B 600來維持撥叫。作為多載波系統,Td_ScdmA無 17 201129148 線系統60包括節點B,其藉由與系統中其他節點b不同 的載波信號來進行發送。例如,服務節點B 600及鄰近節 點B 603和605每個皆藉由第一載波頻率進行發送。然而, 鄰近節點B 604藉由第二載波頻率進行發送。 當準備交遞時,UE 602配置為基於載波頻率將優先順序 等級指派給每個鄰近節點B 603至605。為了量測在不同 載波頻率下進行發送的鄰近節點B的信號,UE對其無線 電接收機進行調諧使其離開當前載波頻率,以便接收和量 測新的信號。該調諧過程增加了交遞程序的潛時。根據圖 6圖示的態樣,然而,UE 602配置為將更高的優先順序等 級指派給在與服務節點B 600相同的載波頻率下進行發送 的鄰近節點B 603及605。因此,UE 602量測到自鄰近節 點B 603及6Ό5發送的信號品質。 鄰近節點B 603比鄰近節點b 605要遠離UE 602得多。 在對量測結果進行分析時’ UE 602決定雖然來自鄰近節點 B 605的信號品質滿足或超過信號品質閾值,但是來自鄰 近節點B 603的信號品質並非如此。因此,ue 602僅將鄰 近卽點B 605的量測結果發送給服務節點b 600以進行交 遞處理。 與不進行該優先順序區分的系統相比,根據本案的一個 態樣配置的UE 602藉由以下操作來減少交遞處理的潛時 時間:(1 )減少鄰近節點B信號量測的總次數,及(2 ) 藉由提供UE 602已經調諧到的載波頻率内的信號的初始 量測來減少可能的調諧時間。 18 201129148 在將優先順序量測發送給服務節點B 600之後,UE 602 繼續量測由較低優先順序節點B (諸如鄰近節點B 604 ) 發送的信號品質《得到的鄰近節點B 604所發送信號的信 號量測滿足或超過信號品質閾值。因此,若UE 602仍在 藉由服務節點B 600管理其撥叫,UE 602則將信號量測發 送給服務節點B 600 ’或者,若自服務節點b 600到鄰近 節點B 605的交遞已經發生,則將信號量測發送給鄰近節 點 B 605。 應當注意,根據本案所教示的替代性的態樣,UE 602可 以配置為基於鄰近節點B 603至605的載波頻率及位置來 指派優先順序等級。根據該替代性態樣,UE 602首先優先 對在相同載波頻率上進行發送的節點B進行量測,亦即, 鄰近節點B 603及605。UE 602隨後藉由節點B的位置來 對頻率組進行優先順序區分。因此,UE 602應該將最高的 優先順序等級指派給鄰近節點B 605,並且,一旦其量測 了鄰近節點B 605的信號品質’ UE 602應該將信號量測發 送給服務節點B 600以進行交遞處理。 應該進一步注意的是,根據本案所教示的又一替代性態 樣’ UE 602可以配置為首先基於位置隨後基於頻率來指派 優先順序等級。根據該態樣,UE 602應首先將鄰近節點B 604及603優先作為與UE 602最接近的節點b,且隨後將 第二優先順序等級指派給鄰近節點B 605,作為具有與服 務節點B 600相同的發送載波頻率的位置優先順序節點B 中的一個。 19 201129148 下文參照圖7,圖示了方塊圖70,其概念性地圖示了實 施本案所教示的一個態樣中執行的示例性方塊。在方塊 700,UE接收到與服務節點B及至少一個鄰近節點b有關 的系統資訊。在方塊701 , UE基於系統資訊將優先順序等 級指派給每個鄰近節點B。在方瑰702,ue量測由所選擇 的鄰近節點B發送的信號的信號品質。在方塊7〇3,回應 於測得的信號品質滿足信號品質閾值,UE將測得的信號 品質報告發送給服務節點B以進行交遞處理。 返回圖3,為了實施本案的態樣,uE 350包括儲存在記 憶體392中的軟體模組,其包括優先順序區分模組393。 當由控制器/處理器390執行時,執行的優先順序區分模組 3 93配置UE 3 50當與服務節點b (諸如節點b 3丨〇 )進行 通訊時基於優先順序等級來選擇鄰近節點執行的優先 順序區分模組393進一步配置UE 350量測由選擇的鄰近 節點B發送的信號。如根據圖5及圖6所描述的,執行的 優先順序區分模組393可以基於各種準則(例如距離、頻 率或該兩者)來進行優先順序區分。 在一種配置中,UE 350包括用於在與服務節點B進行通 訊時基於優先順序等級來選擇鄰近節點B的構件,用於量 測所選擇的節點B發送的信號的構件。根據一態樣,前述 構件可以是控制器/處理器390 ’其上儲存有優先順序區分 模組393的記憶體392,智慧天線352,接收機354及發 射機356 ’接收訊框處理器360及發射訊框處理器382, 接收處理器370及發射處理器380,及用於量測信號品質 20 201129148 的通道處理器394,該等元件—同配置為執行前述構件所 述的功能。在另-態樣中,前述構件可以是配置為執行前 述構件所述功能的模組或任何裝置。 本案參考TD-SCDMA系統提供了電信系統的若干態 樣。本領域技藝人士將容易理解的是,貫穿本案描述的各 個態樣可以擴展到其他電㈣統、網路架構及通訊標準。 舉例而言’各態樣可以擴展到其他UMTS系統,諸如 W-CDMA、高速下行鏈路封包存取(HSDpA)、高速上行 鏈路封包存取(HSUPA)、增㈣高速封包存取(HspA+) 及TD-CDMA。各個態樣亦可以擴展到使用長期進化(咖) (在FDD、TDD或該兩種模式中)、LTE高級(lte a八在 FDD、TDD或該兩種模式中)、CDMA2〇〇〇、進化資 化(EV-DO )、超行動寬頻(UMB )、IEEE 8〇2」丄(m )、 !刪 802.16 ( WiMAX)、_E 8〇2 2〇、超寬帶(uwb )、 藍芽的系統,及/或其他適合的系統。所使用的實際電信標 準'網路架構及/或通訊標準將取決於特定的應用及對整個 系統所施加的設計約束條件。 本案結合各種裝置及方法描述了若干處理器。該等處理 器可以使用電子硬體、電腦軟體或其任何組合來實施。至 於該等處冑器是實施成硬體或實施成軟體取決於特定的 應用及對系統所施加的所有設計約束條件。舉例而言,本 案提供的處理器'處理器的任何部分或者處理器的任何組 合可以用微處理器、微控制器、數位信號處理器(Dsp)、 現場可程式閘陣列(FPGA)、可程式邏輯設備(PLD)、狀 21 201129148 態機、閘控邏輯、個別硬體電路及用於執行貫穿本案中描 述的各種功能的其他適合的處理部件來實施^本案中提供 的處理器、處理器的任何部分或者處理器的任何組合㈣ 能可以藉由由微處理器、微控制器、Dsp或其他適合的平 臺執行的軟體來實施。 、指令集、代碼、代碼區 軟體將寬泛地解釋為意謂指令 段、程式碼、程式、副程式、軟體模組、應用程式、軟體 應用程式、套I軟體、常式、子常式、物件、可執行程式、 執行中的線程、程序、函數等,無論其被稱作軟體、韌體、 中介軟體、微代碼、硬體描述語言或者其他的術語。軟體 可以常駐於電腦可讀取媒體上。舉例而言,電腦可讀取媒 體可以包括諸如磁性儲存設備(例如,硬碟、軟碟、磁條) 的記憶體、光碟(例如,壓縮光碟(CD)、數位多功能光 碟(DVD))、智慧卡、快閃記憶體設備(例如,卡、棒、 鍵式磁碟)、隨機存取記憶體(RAM)、唯讀記憶體(r〇m)、 可程式ROM (PROM)、可抹除PR0M (EpR〇M)、電子可 抹除PROM (EEPROM)、暫存器或可移除磁碟。雖然在貫 穿本案提供的各個態樣中所示記憶體與處理器分離,但是 記憶體可以位於處理器的内部(例如,快取記憶體或暫存 器)。 電腦可讀取媒體可以實施在電腦程式產品中。舉例而 言,電腦程式產品可以包括包裝材料中的電腦可讀取媒 體。根據特定的應用及對整個系統所施加的所有設計約束 條件’本領域技藝人士將會認識到如何最好地實施貫穿本 22 201129148 案提供的所述功能。 次^理Γ丨的疋’所揭不的方法中的步驟的特定順序或層 :疋:不例性過程的說明。基於設計偏好,應當理解的 法中的步驟的特定順序或層次可以重新排列。所附 叫求項提供了示例性順序中各個步驟的元素,除非 次。1敍述否則此並非意謂限於所述的特定順序或層 檨為=本領域任何技藝人士能夠實施本案描述的各個態 2提供了上述描述。對於本領域技藝人士而言,對該等 :樣的各種修改皆是顯而易見的,並且,本案定義的一般 太:亦可以適用於其他態樣。因此,請求項並非意欲限於 2圖示的該等態樣,而是與請求項語言的最廣料相一 =中除非特別說明,㈣’單數形式的元素並不意欲Or any other similar functional device. Mobile devices are commonly referred to as User Equipment (UE) in UMTS applications, but those skilled in the art may also refer to them as mobile stations (MS), subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile Equipment, wireless devices, wireless communication devices, remote sighs, mobile subscriber stations, access terminals (Ατ), mobile terminals, wireless terminals, remote terminals, handsets, terminals, user agents, mobile client clients' or - Some other suitable terms. For ease of explanation, three UEs 11Q' are illustrated which communicate with the node B1G8it. The downlink link) is also referred to as a forward link, representing the communication link from the Node B to the UE. The Uplink Key (UL), also known as the reverse link, represents the communication link from the UE to the Node B. As shown, the core network 104 includes a GSM core network. However, those skilled in the art of 201129148 will recognize that the various concepts provided throughout the present disclosure can be implemented in a RAN or other suitable access network to provide ue to various types of core networks other than the GSM network. access. In this example, core network 104 supports circuit switched services with mobile switching center (MSC) 112 and gateway MSC (GMSC) 114. One or more RNCs (such as RNC 106) may be connected to MSC 112. The MSC 112 is a device that controls dialing setup, dialing routing, and UE mobility functions. The MSC 112 also includes a Visitor Location Register (VLr) (not shown) that contains user related information during the UE's coverage of the MSC 112. The GMSC 114 accesses the circuit switched network 116 by providing a gateway to the UE by the MSC 112. The GMSC 114 includes a local register (HLR) (not shown) that contains user profiles, such as information reflecting the details of the services that a particular user has subscribed to. The HLR is also associated with the Certification Authority (AuC), which contains user-specific certification information. Upon receiving a call for a particular UE, the GMSC 114 queries the HLR to determine the location of the UE and forwards the call to the particular MSC serving the location. The core network 104 also employs a Serving GPRS Support Node (SGSN) 118 and Gate. The GPRS Support Node (GGSN) 12〇 supports packet-data services. GPRS stands for General Packet Radio Service, which is designed to provide a packet with a higher speed than the standard GSM circuit switched data service. The GGSN 120 provides the RAN 102 with a connection to the packet based network 122. . The packet-based network 122 can be an internetwork, a private data network, or other suitable packet-based network. The primary function of the GGSN 120 is to provide a packet-based network connection for the UE. The 201122148 packet is transmitted between the GGSN 120 and the UE 110 by the SGSN 118, which in the packet-based domain primarily performs the same functions as the MSC 112 performs in the circuit switched domain. The UMTS null interfacing plane is a spread spectrum direct sequence code division multiplex access (DS-CDMA) system. Spread-spectrum DS-CDMA spreads user data over a much wider bandwidth by multiplying by a pseudo-random bit sequence called a chip. The TD-SCDMA standard is based on this direct sequence spread spectrum technique and also requires time division duplexing (TDD) rather than FDD used in many frequency division duplex (FDD) mode UMTS/W-CDMA systems. TDD uses the same carrier frequency for the uplink (UL) and downlink (DL) between Node B 108 and UE 110, but divides the uplink and downlink transmissions into different time slots in the carrier. Figure 2 illustrates a frame structure 200 of a TD-SCDMA carrier. As shown, the TD-SCDMA carrier has a frame 202 of length 10 ms. Frame 202 has two 5 ms subframes 204, and each subframe 204 includes seven time slots TS0 through TS6. The first time slot TS0 is typically assigned to downlink communications, while the second time slot TS1 is typically assigned to uplink communications. The remaining time slots TS2 through TS6 can be used for the uplink or downlink, which allows for greater flexibility during higher data transmission times in the uplink or downlink direction. A downlink pilot time slot (DwPTS) 206, a guard period (GP) 208, and an uplink pilot time slot (UpPTS) 210 (also referred to as an Uplink Pilot Channel (UpPCH)) are located between TS0 and TS1. . Each time slot (TS0 to TS6) allows multiplex processing of data transmissions on up to 16 code channels. The 8 201129148 data transmission on the code channel includes two data section knives 212 separated by a midamble 214 followed by a guard period (gp) 216. The mid-order signal 214 can be used for functions such as channel estimation, while the Gp 216 can be used to avoid interference between short pulses. 3 is a block diagram of a node Β 31〇 in communication with the UE 35〇 in the RAN 300, where the RAN 300 may be the RAN 102 of FIG. 1, the Node B 310 may be the Node B 108 of FIG. 1, and the UE 350 may be Figure! UE 110 in . In downlink communications, the transmit processor 32 can receive data from the source 3 12 and receive control signals from the controller/processor 34A. The transmit processing || 320 provides various signal processing functions for the data signal, control signal, and reference signal (e.g., pilot frequency signal). For example, the transmit processing stomach 320彳 provides a Cyclic Redundancy Check (CRC) code for error sampling, encoding and interleaving to facilitate forward error correction based on various modulation schemes (eg, 'Binary Phase Shift Keying (BpsK)) Four-phase phase shift keying (QPSK), Μ phase-phase shift keying (M_PSK), μ-quadrature amplitude modulation (M-QAM), etc.) are mapped to signal clusters using orthogonal variable spreading factors ( 〇VSF) Spreads the frequency and multiplies it by the right code to produce the - series symbol. The channel estimate from channel processor 344 can be used by controller/processor 340 to determine the encoding, modulation, spreading, and/or scrambling scheme of transmit processor 32G. The channel estimates may be derived from the reference apostrophe transmitted by the UE 35 ' or from the feedback contained in the intermediate sequence signal 214 ( FIG. 2 ) from the UE 350 to provide the symbols generated by the transmit processor 32G for transmission frame processing. The device 33G establishes a frame structure. The frame processor 33 建立 constructs the symbol structure by using the mid-order signal 214 (Fig. 2) 9 201129148 from the controller/processing H 340 to obtain a series of frames. The frame is provided to the transmitter 332, which provides various signal conditioning functions, including amplifying, modulating, and modulating the frame onto the carrier for downlink transmission on the wireless medium via the smart antenna 334. The smart antenna 334 can The beam is manipulated by a bidirectional adaptive antenna array or other similar beam technology. At the UE 350, the receiver 354 receives the downlink transmission by the antenna and processes the transmission to recover the modulated information. The information recovered by the receiver 3 54 is provided to the receiving frame processor 36, which parses each frame, and provides the intermediate sequence signal 214 (FIG. 2) to the channel processor 394, and the data signal, The control signal and the reference signal are supplied to the receiving processor 370. Subsequently, the receiving processor 37 executes the reverse processing of the processing performed by the transmitting processor 320 of the node B3i. More specifically, the receiving The processor 370 descrambles and despreads the symbols, and then determines the most likely signal cluster points transmitted by the Node B 31 based on the modulation scheme. The soft decisions can be based on channel estimates calculated by the channel processor 3 94. 10. Subsequently, the soft decision is decoded and deinterleaved to recover the data signal, the control signal and the reference signal. Subsequently, the CR (: code is checked to determine whether the decoding of the frame is successful. Then the frame that is successfully decoded is subsequently decoded. The carried data is provided to a data slot 372, which represents an application executing in the UE 35 and/or various user interfaces (eg, displays). The control signals carried by the successfully decoded frame are provided to the controller/processing The controller/processor 39 can also use the acknowledgment (ACK) and/or the negative (NACK) protocol to support the frame 201129148 when the receiver processor 370 has not successfully decoded the frame. Retransmission request. In the uplink mode, the data from the data source 378 and the (four) (4) from the controller/processor 390 are provided to the transmitter processor trace source (7), which may represent the S UE 350 and Applications executed in various user interfaces (eg, keyboards) are similar to those described in connection with downlink transmission by Node B 31(). 'Transmission Processing Stomach 38G provides various signal processing functions' including CRC codes, to facilitate FEC And encoding and interleaving, mapping to signal clustering, spreading with 0VSF, and scrambling to generate a series of symbols. Channel processor 3 94 έ η & 394 卽 卽 31〇 transmitted reference signal or from inclusion The channel estimation obtained by the feedback in the mid-order signal transmitted by the node B31G can be selected to select an appropriate coder, modulation, spread spectrum and/or scrambling scheme. The (four) generated by the transmit process ϋ 38G will be provided to the transmit frame processor 382 to establish a frame structure. The frame processor 382 establishes the frame structure by multiplexing the symbols using the t-sequence signal 214 (Fig. 2) from the controller/processor, thereby obtaining a U frame. The frames are provided to transmitter 356, which provides various signal conditioning functions, including amplification, filtering, and modulation of the frame onto the carrier for uplink transmission over the wireless medium by antennas 352. The uplink transmission is processed at Node B 310 in a manner similar to the described UE 35〇 receiver functionality. The receiver receives the uplink transmission by the antenna and processes the transmission to recover the information modulated to carrier j. The information recovered by the receiver 335 is provided to the receiving frame processor 336' for parsing each frame, and the intermediate sequence signal 214 (FIG. 2) is provided to the channel processor 344 and the data signal, the control 201129148 signal and The reference signal is provided to the receive processor 338. Receive processor 338 performs the inverse of the processing performed by transmit processor 38 in UE 350. The data signals and control signals carried by the successfully decoded frame can then be provided to the data slot 339 and the controller/processor, respectively. If the receiving processor fails to decode some of the frames, the controller/processor 34 can also use an acknowledgment (ACK) and/or a negative (NACK) protocol to support retransmission requests for those frames. Controller/processor 340 and controller/processor 39A can be used to direct operations at node b 310 and UE 350, respectively. For example, controller/processor 34 and controller/processor 390 can provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions. The computer readable medium of the memory 342 and the 3 memory 392 can store data and software for the node b 31〇 and the UE 3 50 respectively. The scheduler/processor 346 at the node b 3 1 can be used to allocate resources. Assigned to the UE and schedules downlink and/or uplink transmissions for the uE. As each UE moves within a particular cell service area, at some point the UE will hand over from the current serving Node B. to the neighboring node b. In the TD-SCDMA system, the handover process self-measures the neighboring cell service. The district begins. A common measurement metric for this handover procedure is to measure the received signal code power (rSCP) of the primary shared control entity channel (P-CCPCH). A common control channel (such as P-CCPCH) is typically assigned to time slot TS0. In practice, the P-CCPCH is typically assigned to the first two code channels of the 16 possible code channels in the TS0 time slot. In the process of preparing for handover or handover, the serving Node B may send a radio 12 201129148 electrical resource control (10) c) message, and (4) set the UE to measure a number of specific neighbor cell service areas. For example, the node uses the "measurement control system information" to broadcast system information messages (such as the system information block type u message heart) so that the intra-frequency and inter-frequency measurement system information nodes B of the multi-carrier system can also include such as Cell Service Area Parameter Identifier (ID) (Frequency Code/Intermediate Signal Code Index) and Frequency Information (Universal Land Radio Access (UTRA) Absolute Radio Frequency Channel Number of the adjacent cell service area to be measured Information (called "UARFCN")). In another example, the Node B may also send a point-to-point measurement control message, which instructs the UE to perform the frequency in the multi-carrier system by using the "intra-frequency cell service area information list" and the "inter-frequency cell service area information list" respectively. Measure or inter-frequency measurement. However, for each of these current processes, there may be multiple neighboring cell service areas to be measured, and because the UE is instructed to measure all of the neighboring cell service areas before reporting the results to the serving Node B' So the delay in the handover process will be quite large. 4 is a functional block diagram 40 illustrating exemplary blocks of a line in a wireless communication program in accordance with an aspect of the present disclosure. At block 400, the UE selects the neighboring node b based on the priority level when communicating with the serving Node B. Then at block 401, the UE measures the signal transmitted by the selected Node B for handover purposes. Therefore, the process of handover delay is shortened by prioritizing the selection of neighboring nodes B to be measured. Different criteria can be used to assign a priority level to each of the neighboring Node Bs. FIG. 5 is a block diagram conceptually illustrating a TD-SCDMA wireless communication system 50 in accordance with an aspect configuration as taught herein. Serving Node 13 201129148 The B 500 provides coverage within the TD-SCDMA wireless communication system 50 to the Cell Service Area 502. The UE 501 and the UE 508 are located in the cell service area 502 of the Node B 5〇〇 and are currently participating in the dialing by the Node B 500. Figure 5 illustrates only six Node Bs (i.e., Serving Node B 500 and Neighbor Nodes B 503 through 507) and two UEs (i.e., UE 501 and UE 508) in the TD-SCDMA wireless communication system 50. It should be noted that in practice, TD-SCDMA wireless communication system 50 may include various numbers of additional Node Bs and additional UEs other than the illustrated UE 501 and UE 508. These representative elements are chosen only for clarity. In the handover preparation process, the UE 501 is configured to assign a priority level to each of the neighboring Node Bs 503 to 507 based on the location of the neighboring node b. The preferred priority level is assigned to the node b of the neighboring Node Bs 503 to 507 that is closer to the UE 501. In order to obtain its own position, the ue 501 uses its internal positioning (eg 'Global Positioning Satellite (Gps)) receiver and corresponding positioning functions. In addition, in a TD-SCDMA system (such as a TD-SCDMA wireless communication system), a Node B (such as the serving Node B 500 and neighboring Node Bs 5〇3 to 5〇7) broadcasts a large amount of system information, including Node B. The location of the self and the neighboring cell service area information, and the information of the neighboring cell service area includes the location information of the associated Node B. The node to broadcast! 8 Send such information in a system information message such as System Information Block Type 15 (SIB_15). Thus, the UE 5〇1 is generally able to obtain its own location (even in the absence of a positioning receiver) and also knows the location β of the Node B of the neighboring cell service area. The system information messages may include, depending on the particular aspect of the wireless system. 14 201129148 Information elements, such as the observation time difference of the UE (〇TD〇A) auxiliary material 'which mainly provides information of the service node B and the neighboring node b. This information will allow the UE 501 to determine the location ' of the serving Node B 500 and the neighboring Node Bs 5〇3 to 507' and the corresponding Cell Service Area Parameter Identifier (ID) and frequency channel information. In addition, information elements (such as ellipsoids, latitudes, longitudes, relative north, and east) of neighboring nodes B 5〇3 to 5〇7 may also be included in the system information message. The UE 501 calculates its own distance from the neighboring Node Bs 503 to 507 using various well-known distance calculation algorithms. The UE 501 then assigns a priority order level to each of the neighboring Node Bs 503 to 507. The highest priority is assigned to the neighboring Node B 504 because it is closest to the UE 501. The UE 501 then begins to signal the received signal code power of the Node B 504 primary shared control entity channel. In order to be available for handover, the value of the received signal code power of the Node B 504 that primarily shares the control entity channel should exceed a certain signal quality threshold. When the UE 501 obtains the measurement of the received signal code power of the Node B 504, and the measurement exceeds the signal quality threshold, the UE 501 transmits the measurement result to the serving node b 500. In the existing system, the UE 501 would need to measure the received signal code power of each of the neighboring Node Bs 503 to 507 before transmitting the result to the serving node b 500, unlike the existing system, according to an aspect taught in the present case. The configured UE 501 transmits the signal measurement result of the highest priority neighboring cell service area (node b 5 04 ) to the serving node B 500. Node B 500 can then facilitate the faster handover of UE 501 to neighboring node b 504. It should be noted that as the UE 501 continues its dialing, it will continue to measure the received signal code power of the primary shared control entity channel of the lower priority node B of the neighboring Node Bs 503 and 505 to 507, following 15 201129148. If any of these subsequent measurements exceeds the signal quality threshold, then υΕ 5〇1 will send the result to Node B, which is currently serving. It should be further noted that if UE 5〇1 does not have positioning capability, the location of UE 501 can be determined by other available methods. For example, by knowing the location information of the plurality of Node Bs in the serving Node B 500 or the neighboring Node Bs 5〇3 to 5〇7, and knowing the OTDOA of the signal between the UE 5 〇i and the other Node b, the UE 501 can be relatively The relative positions of other Node Bs are estimated. In addition, the positioning information received from other wireless transmitters may allow the UE 501 to determine an estimate of its location. The various aspects taught in this case are not limited to any particular way in which UE 5()1 determines its own location. The UE 5〇8, which also maintains dialing within the cell service area 502, does not have positioning capabilities. However, the UE 508 chooses to use the location of the serving node B 5 as its approximate location, rather than using additional components to determine its location. Therefore, as described above, the UE 508 knows the location information of the serving Node B 500 and the location information of the neighboring Nodes B 5〇3 to 507 by the system information broadcasted by the Node B 5〇〇. Using a well-known algorithm to calculate the distance between two known locations, uE 508 calculates the relative distance between itself and each of the neighboring nodes B5〇3 to 5〇7. When the location of the serving Node B 500 is used as the approximate location of the UE 5〇8, the prioritization is generally accurate in the case where no UE (such as UE 5〇1) can accurately obtain its own location information. After calculating the relative distance 16 201129148, the UE 508 assigns the highest priority level to the neighboring node b 507. The UE 508 then measures the received signal code power of the primary shared control entity channel of the neighboring Node B 507 and transmits the results to the serving Node B 500. If the value of the received signal code power of the neighboring Node B 507 exceeds the signal quality threshold, the serving Node B 500 can trigger the handover process of the UE 508. However, the actual distance between the UE 508 and the neighboring Node B 507 is greater than the actual distance between the UE 508 and the neighboring Node B 506. Since the UE 508 continues to measure the received signal code power of the primary shared control entity channel of the lower priority neighboring Node Bs 503 through 506, it then measures the received signal code power of the neighboring Node B 506. Since the measurement also exceeds the signal quality threshold, the UE 508 transmits the measurement result to the serving node b 500. For the purposes of this example, the UE 508 measures and transmits the measurement results of the neighboring node b 506 before the handover from the serving Node B 500 to the neighboring Node B 507 occurs. Therefore, 'after receiving the new received signal code power measurement', the serving Node B 500 decides that a higher quality signal can be obtained from the neighboring node b 506' and issues a command to the UE 508 to begin the handover with the neighboring Node B 506. program. 6 is a block diagram conceptually illustrating a multi-carrier TD-SCDMA wireless system 60 in accordance with an aspect configuration as taught herein. The multi-carrier TD-SCDMA radio system 60 includes a serving Node B 600 that provides wireless communication coverage to the Cell Service Area 601. As illustrated for clarity, the illustrated multi-carrier TD-SCDMA wireless system 60 also has neighboring nodes b 603 through 605. The UE 602 is located within the cell service area 601 and maintains dialing by the serving Node B 600. As a multi-carrier system, Td_ScdmA is not 17 201129148 Line system 60 includes Node B, which transmits by a different carrier signal than the other nodes b in the system. For example, serving Node B 600 and neighboring Nodes B 603 and 605 are each transmitted by a first carrier frequency. However, neighboring Node B 604 transmits by the second carrier frequency. When ready to hand over, the UE 602 is configured to assign a priority level to each of the neighboring Node Bs 603 to 605 based on the carrier frequency. To measure the signals of neighboring Node Bs transmitting at different carrier frequencies, the UE tunes its radio receiver away from the current carrier frequency to receive and measure new signals. This tuning process increases the latency of the handover procedure. According to the aspect illustrated in Fig. 6, however, the UE 602 is configured to assign a higher priority order to the neighboring Node Bs 603 and 605 transmitting at the same carrier frequency as the serving Node B 600. Therefore, the UE 602 measures the signal quality transmitted from the adjacent nodes B 603 and 6Ό5. Neighboring Node B 603 is much more remote from UE 602 than neighboring Node b 605. When analyzing the measurement results, the UE 602 decides that although the signal quality from the neighboring Node B 605 satisfies or exceeds the signal quality threshold, the signal quality from the neighboring Node B 603 is not. Therefore, ue 602 sends only the measurement result of neighboring point B 605 to service node b 600 for handover processing. Compared with a system that does not perform the prioritization, the UE 602 configured according to an aspect of the present invention reduces the latency time of the handover process by: (1) reducing the total number of times of measurement of the neighboring Node B signal, And (2) reducing the possible tuning time by providing an initial measurement of the signal within the carrier frequency to which the UE 602 has tuned. 18 201129148 After transmitting the prioritized measurement to the serving Node B 600, the UE 602 continues to measure the signal quality transmitted by the lower priority Node B (such as the neighboring Node B 604) "the resulting signal transmitted by the neighboring Node B 604" The signal measurement meets or exceeds the signal quality threshold. Therefore, if the UE 602 is still managing its dialing by the serving Node B 600, the UE 602 sends a signal measurement to the serving Node B 600 'or, if the handover from the serving Node b 600 to the Neighbor Node B 605 has occurred Then, the signal measurement is sent to the neighboring Node B 605. It should be noted that in accordance with an alternative aspect taught herein, the UE 602 can be configured to assign a priority order level based on carrier frequencies and locations of neighboring Node Bs 603 through 605. In accordance with this alternative aspect, UE 602 first preferentially measures Node Bs transmitting on the same carrier frequency, i.e., neighboring Node Bs 603 and 605. The UE 602 then prioritizes the frequency groups by the location of the Node B. Therefore, the UE 602 should assign the highest priority level to the neighbor Node B 605, and once it has measured the signal quality of the neighbor Node B 605 'the UE 602 should send a signal measurement to the serving Node B 600 for handover. deal with. It should be further noted that yet another alternative aspect as taught in the present context, UE 602, may be configured to assign a priority order level based on the location based on the frequency and then based on the frequency. In accordance with this aspect, the UE 602 should first prioritize the neighboring Node Bs 604 and 603 as the closest node b to the UE 602, and then assign the second priority order level to the neighboring Node B 605 as having the same identity as the serving Node B 600. The position of the transmit carrier frequency is prioritized in one of the Node Bs. 19 201129148 Referring now to Figure 7, a block diagram 70 is illustrated that conceptually illustrates an exemplary block executed in one aspect of the teachings of the present teachings. At block 700, the UE receives system information related to the serving Node B and at least one neighboring node b. At block 701, the UE assigns a priority order to each of the neighboring Node Bs based on the system information. At Fanggui 702, the signal quality of the signal transmitted by the selected neighboring Node B is measured. At block 〇3, in response to the measured signal quality meeting the signal quality threshold, the UE transmits the measured signal quality report to the serving node B for handover processing. Returning to Fig. 3, in order to implement the aspect of the present invention, the uE 350 includes a software module stored in the memory 392, which includes a prioritization module 393. When executed by the controller/processor 390, the executed priority ordering module 3 93 configures the UE 3 50 to select the neighboring node to perform based on the priority level when communicating with the serving node b (such as the node b 3丨〇) The prioritization module 393 further configures the UE 350 to measure signals transmitted by the selected neighboring Node B. As described in accordance with Figures 5 and 6, the executed prioritization module 393 can prioritize based on various criteria (e.g., distance, frequency, or both). In one configuration, the UE 350 includes means for selecting a neighboring Node B based on a priority order level for communicating with the serving Node B for measuring signals transmitted by the selected Node B. According to one aspect, the foregoing component may be a memory 392 on which the controller/processor 390' stores the prioritization module 393, the smart antenna 352, the receiver 354 and the transmitter 356' receive the frame processor 360 and A transmit frame processor 382, a receive processor 370 and a transmit processor 380, and a channel processor 394 for measuring signal quality 20 201129148, which are configured to perform the functions described in the foregoing components. In other aspects, the aforementioned components may be modules or any device configured to perform the functions recited by the aforementioned components. In this case, several aspects of the telecommunication system are provided with reference to the TD-SCDMA system. Those skilled in the art will readily appreciate that the various aspects described throughout this disclosure can be extended to other electrical (four) systems, network architectures, and communication standards. For example, 'the various aspects can be extended to other UMTS systems, such as W-CDMA, High Speed Downlink Packet Access (HSDpA), High Speed Uplink Packet Access (HSUPA), and (4) High Speed Packet Access (HspA+) And TD-CDMA. Each aspect can also be extended to use long-term evolution (in coffee) (in FDD, TDD or both), LTE advanced (lte a eight in FDD, TDD or both), CDMA2〇〇〇, evolution EV-DO, UBT, IEEE 8〇2丄(m), 802.16 (WiMAX), _E 8〇2 2〇, ultra-wideband (uwb), Bluetooth system, And/or other suitable systems. The actual telecommunications standard 'network architecture and/or communication standard used' will depend on the particular application and design constraints imposed on the overall system. Several processors are described in connection with various apparatus and methods. The processors can be implemented using electronic hardware, computer software, or any combination thereof. As far as these devices are implemented as hardware or as software, it depends on the particular application and all design constraints imposed on the system. For example, the processor provided in this case 'any part of the processor or any combination of processors can be microprocessor, microcontroller, digital signal processor (Dsp), field programmable gate array (FPGA), programmable Logic device (PLD), state 21 201129148 state machine, gate control logic, individual hardware circuits, and other suitable processing components for performing various functions described throughout this disclosure to implement the processor and processor provided in the present application Any combination or combination of any of the processors (4) can be implemented by software executed by a microprocessor, microcontroller, Dsp or other suitable platform. , instruction set, code, code area software will be broadly interpreted as meaning instruction segment, code, program, subprogram, software module, application, software application, set I software, routine, sub-normal, object Executable programs, threads in execution, programs, functions, etc., whether referred to as software, firmware, mediation software, microcode, hardware description languages, or other terms. The software can reside on computer readable media. For example, the computer readable medium may include a memory such as a magnetic storage device (eg, a hard disk, a floppy disk, a magnetic stripe), a compact disc (eg, a compact disc (CD), a digital versatile disc (DVD)), Smart card, flash memory device (eg card, stick, key disk), random access memory (RAM), read-only memory (r〇m), programmable ROM (PROM), erasable PR0M (EpR〇M), electronic erasable PROM (EEPROM), scratchpad or removable disk. Although the memory shown is separate from the processor in the various aspects provided throughout the present disclosure, the memory can be internal to the processor (e.g., a cache or a scratchpad). Computer readable media can be implemented in computer program products. For example, a computer program product may include a computer readable medium in a packaging material. Depending on the particular application and all design constraints imposed on the overall system, one skilled in the art will recognize how best to implement the described functionality provided throughout this disclosure. The specific order or layer of steps in the method disclosed by 次 Γ丨 疋 疋 疋 疋 说明 说明 说明 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Based on design preferences, the specific order or hierarchy of steps in the method should be. The attached request provides elements of each step in the exemplary sequence, unless otherwise. 1 The description is not intended to be limited to the particular order or layer described. Various modifications to the same are apparent to those skilled in the art, and the definition of the present invention is generally too: it can also be applied to other aspects. Therefore, the request item is not intended to be limited to the two aspects of the illustration, but is the most widely used in the language of the request item = unless otherwise stated, (4) the element of the singular form is not intended

Is月一個且只有一摘·,而旦奋#「 外牲, I個」而疋意謂「-或多個」。除非另 、=】說明,否則術語「一些」代表—或多個。提及專案 早#至少一個」的用語是指該等項目的任何組合, =個成員。舉例而言,「㈠或。中的至少-個」意 匕3 .a,b;c;a 及 b;a 及 c;b 及 b 及 〇。 貫穿本案描料各個態樣元素在結構上及功能上對於\ 領域技藝人士已知或以後將會知曉的均等物皆以引用之 方式併入本案’並且是意欲包括在請求項中。此外,本案 ,示的所有内容均不是意欲貢獻給公眾不論該揭示内容 :否在請求項中進行了明確敍述。請求項的任何元素皆不 .、當根據專利法_§112第六款的規定進行解釋,除非該元 23 201129148 素明確地使用用語「用於......的構件」來進行敍述,或者, 在方法請求項的情形下,該元素使用用語「用於......的步 驟」來進行敍述。 【圖式簡單說明】 圖1是概念性地圖示電信系統的實例的方塊圖。 圖2是概念性地圖示電信系統中訊框結構的實例的方塊 圖。 圖3是概念性地圖示電信系統中與UE進行通訊的節點 B的實例的方塊圖。 圖4是根據本案的一個態樣說明無線通訊程序中執行的 示例性方塊的功能方塊圖。 圖5是概念性地圖示根據本案所教示的一個態樣配置的 TD-SCDMA無線通訊系統的方塊圖。 圖6是概念性地圖示根據本案所教示的一個態樣配置的 多載波TD-SCDMA無線系統的方塊圖。 圖7疋概念性地圖示實施本案所教示的一個離樣中執> 的示例性方塊的方塊圖。 【主要元件符號說明】 60 多載波TD-SCDMA無線系統70方塊圖 1〇〇 電信系統 102 無線電存取網路(RAN) 104 核心網 106 無線電網路控制器(RNC) 24 201129148 107 無線電網路子系統(RNS ) 108 節點B 110 使用者裝備(UE ) 112 行動交換中心(MSC) 114 閘道 MSC ( GMSC) 116 電路交換網路 118 服務GPRS支援節點 (SGSN) 120 閘道GPRS支援節點 (GGSN) 122 基於封包的網路 200 訊框結構 202 訊框 204 子訊框 206 下行鏈路引導頻時槽 (DwPTS ) 208 保護週期(GP ) 210 上行鏈路引導頻時槽 212 資料 214 中序信號 216 保護週期(GP ) 300 無線電存取網路(RAN ) 310 節點B 312 資料源 320 發射處理器 330 發射訊框處理器 332 發射機 25 201129148 334 智慧天線 335 接收機 336 接收訊框處理器 338 接收處理器 339 資料槽 340 控制器/處理器 342 記憶體 344 通道處理器 346 排程器/處理器 350 使用者裝備(UE) 352 天線 3 54 接收機 356 發射機 360 接收訊框處理器 370 接收處理器 372 資料槽 378 資料源 380 發射處理器 382 發射訊框處理器 390 控制器/處理器 392 記憶體 393 優先順序區分模組 394 通道處理器 400 方塊 26 201129148 401 方塊Is is one and only one pick, and Dan Fen # "outside, I" and mean "- or more". Unless otherwise stated, the term "some" means - or more. The term "at least one" is used to refer to any combination of such items, = members. For example, "at least one of (a) or ." means 3 .a, b; c; a and b; a and c; b and b and 〇. Throughout the present disclosure, the various aspects of the elements are structurally and functionally equivalent to those skilled in the art and will be incorporated by reference to the present invention and are intended to be included in the claims. In addition, in this case, all the contents shown are not intended to be contributed to the public regardless of the disclosure: No explicit statement is made in the request. Nothing in the request is to be construed as being in accordance with the provisions of paragraph 6 of the Patent Law _§112, unless the element 23 201129148 explicitly uses the term "components for" to describe it. Alternatively, in the case of a method request item, the element is described using the term "step for." BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram conceptually illustrating an example of a telecommunications system. 2 is a block diagram conceptually illustrating an example of a frame structure in a telecommunications system. 3 is a block diagram conceptually illustrating an example of a Node B in communication with a UE in a telecommunications system. 4 is a functional block diagram illustrating exemplary blocks executed in a wireless communication program in accordance with an aspect of the present disclosure. Figure 5 is a block diagram conceptually illustrating a TD-SCDMA wireless communication system in accordance with one aspect of the teachings of the present disclosure. 6 is a block diagram conceptually illustrating a multi-carrier TD-SCDMA wireless system in accordance with an aspect configuration as taught herein. Figure 7 is a block diagram conceptually illustrating an exemplary block of the implementation of the present invention as taught by the present invention. [Major component symbol description] 60 multi-carrier TD-SCDMA wireless system 70 block diagram 1 〇〇 telecommunication system 102 radio access network (RAN) 104 core network 106 radio network controller (RNC) 24 201129148 107 radio network subsystem (RNS) 108 Node B 110 User Equipment (UE) 112 Mobile Switching Center (MSC) 114 Gateway MSC (GMSC) 116 Circuit Switched Network 118 Serving GPRS Support Node (SGSN) 120 Gateway GPRS Support Node (GGSN) 122 Packet-based network 200 frame structure 202 frame 204 subframe 206 downlink pilot time slot (DwPTS) 208 protection period (GP) 210 uplink pilot time slot 212 data 214 medium sequence signal 216 protection period (GP) 300 Radio Access Network (RAN) 310 Node B 312 Data Source 320 Transmit Processor 330 Transmitter Processor 332 Transmitter 25 201129148 334 Smart Antenna 335 Receiver 336 Receive Frame Processor 338 Receive Processor 339 Data slot 340 Controller/Processor 342 Memory 344 Channel Processor 346 Scheduler/Processor 350 User Equipment (UE) 352 Antenna 3 54 Receiver 356 Transmitter 360 Receive Frame Processor 370 Receive Processor 372 Data Slot 378 Data Source 380 Transmit Processor 382 Transmit Frame Processor 390 Controller/Processor 392 Memory 393 Priority Sequence Module 394 Channel Processor 400 Box 26 201129148 401 Block

500 服務節點B 501 使用者裝備(UE) 502 胞服務區500 Service Node B 501 User Equipment (UE) 502 Cell Service Area

503 鄰近節點B503 neighboring node B

504 鄰近節點B504 neighboring node B

505 鄰近節點B505 neighboring node B

506 鄰近節點B506 neighboring node B

507 鄰近節點B 508 使用者裝備(UE)507 Neighbor Node B 508 User Equipment (UE)

600 服務節點B 601 細胞服務區 602 使用者裝備(UE)600 Service Node B 601 Cell Service Area 602 User Equipment (UE)

603 鄰近節點B603 neighboring node B

604 鄰近節點B604 neighboring node B

605 鄰近節點B 700 方塊 701 方塊 702 方塊 703 方塊 27605 adjacent node B 700 square 701 square 702 square 703 square 27

Claims (1)

201129148 七、申請專利範圍: 1. 一種在一TD-SCDMA系統中的無線通訊方法,其包括 以下步驟: 在與一服務節點B進行通訊時基於一優先順序等級來選擇 一鄰近節點B ;及 量測該所選擇的鄰近節點B發送的一信號。 2·如請求項1之方法,其進一步包括以下步驟: 將該量測的結果發送給該服務節點B。 3. 如請求項1之方法,其進一步包括以下步驟: 在不首先量測任何另外的鄰近節點B的情況下將該量測的 一結果發送給談服務節點B。 4. 如請求項1之方法,其進一步包括以下步驟: 回應於該量測的一結果滿足一信號品質閾值,將該結果發 送給該服務節點B » 5·如請求項1之方法,其進一步包括以下步驟: 將該量測的結果發送給該服務節點B ;及 在進行該發送之步驟之後,基於比該所選擇的節點B的該 優先順序等級低的至少一個另外的鄰近節點B的一優先順 序等級’量測由該至少一個另外的鄰近節點B發送的另一 信號。 28 201129148 6. 如請求項1之方法,其中基於以下之一來指派該優先 順序等級: 一載波頻率;及 一 UE的一位置及該鄰近節點b的一位置之間的一距離。 7. 如請求項6之方法,其中藉由以下之一來決定該UE 的該位置: 該UE的一當前位置;及 該服務節點B的一位置。 8. 如請求項1之方法,其中基於一載波頻率及一 UE的一 位置及該鄰近節點B的一位置之間的一距離來指派該優先 順序等級。 •種在—分時-同步分碼多工存取(TD-SCDMA )系統 中的使用者裝備(UE),該UE包括: 至少一個處理器,其配置為: 在與-服務節點B進行通訊時基於—優先順序等級來選擇 一鄰近節點B ;及 里測該所選擇的鄰近節點B發送的一信號。 10·如請求項9 為: 之UE,其中該至少一 個處理器進一步配置 29 201129148 回應於該量測的一結果滿足一信號品質閾值,將該結果發 送給該服務節點B。 11. 如請求項9之UE ’其中基於以下之一來指派該優先順 序等級: 一載波頻率;及 一 UE的一位置及該鄰近節點b的一位置之間的一距離。 12. 如請求項UiUE,其中藉由以下之一來決定該位置: 該UE的一當前位置;及 該服務節點B的一位置。 —種電腦.可讀取媒體,其上記錄有程式碼,該程式妈 包括: 用於在-分時-同步分碼多工存取(TDscdma)彡統中在 與-:務節點B進行通訊時基於一優先順序等級來選擇— 鄰近節點B的程式碼;及 用於量測該所選擇的鄰近節點B發送的一信號的程式碼。 其進一步包括: 14.如請求項13之電腦可讀取媒體, 用於回應於該量測的一結果滿足一信號品質閣值而可執 行以將該結果發送給該服務節點B的程式碼。 其中基於以下之一來 15.如請求項13之電腦可讀取媒體 30 201129148 指派該優先順序等級: 一載波頻率;及 一 UE的一位置及該鄰近節點B的一位置之間的〆距離。 16. 如請求項15之電腦可讀取媒體,其中藉由以下之一來 決定該位置: 該UE的一當前位置;及 該服務節點B的一位置。 17. —種在一 TD-SCDMA系統中的無線通訊裝置,該裝置 包括: 用於在與—服務節點B進行通訊時基於一優先順序等級來 選擇一鄰近節點B的構件;及 用於量測該所選擇的鄰近節點B發送的一信號的構件。 18·如請求項17之裝置,其進一步包括: 用於回應於該量測的一結果滿足一信號品質閾值而可執 行以將該結果發送給該服務節點B的構件。 如吻求項17之裝置,其中基於以下之一來指派該優先 順序等級: 一载波頻率;及 UE的一位置及該鄰近節點b的—位置之間的—距離。 31 201129148 20.如請求項19之裝置,其中藉由以下之一來決定該位置: 該UE的一當前位置;及 該服務節點B的一位置。 32201129148 VII. Patent application scope: 1. A wireless communication method in a TD-SCDMA system, comprising the steps of: selecting a neighboring node B based on a priority order level when communicating with a service node B; A signal sent by the selected neighboring Node B is measured. 2. The method of claim 1, further comprising the step of: transmitting the result of the measurement to the serving node B. 3. The method of claim 1, further comprising the step of: transmitting a result of the measurement to the talk service node B without first measuring any additional neighboring Node Bs. 4. The method of claim 1, further comprising the steps of: responding to a result of the measurement satisfying a signal quality threshold, and transmitting the result to the serving node B » 5 as in the method of claim 1, further The method includes the following steps: transmitting the result of the measurement to the serving node B; and after performing the step of transmitting, based on one of the at least one other neighboring node B lower than the priority order level of the selected node B The priority level 'measures another signal sent by the at least one other neighboring Node B. The method of claim 1, wherein the priority level is assigned based on one of: a carrier frequency; and a distance between a location of a UE and a location of the neighboring node b. 7. The method of claim 6, wherein the location of the UE is determined by one of: a current location of the UE; and a location of the serving Node B. 8. The method of claim 1, wherein the priority level is assigned based on a carrier frequency and a distance between a location of a UE and a location of the neighboring Node B. • User Equipment (UE) in a Time Division-Synchronous Code Division Multiple Access (TD-SCDMA) system, the UE comprising: at least one processor configured to: communicate with the - serving Node B A neighboring Node B is selected based on the priority level; and a signal transmitted by the selected neighboring Node B is measured. 10. If the request item 9 is: the UE, wherein the at least one processor is further configured 29 201129148, a result in response to the measurement satisfies a signal quality threshold, and the result is sent to the serving node B. 11. The UE of claim 9 wherein the priority order is assigned based on one of: a carrier frequency; and a distance between a location of a UE and a location of the neighboring node b. 12. The request item UiUE, wherein the location is determined by one of: a current location of the UE; and a location of the serving Node B. a computer. The readable medium has a code recorded thereon, and the program includes: for communicating with the -: node B in a time division-synchronous code division multiplex access (TDscdma) system The code is selected based on a priority level - a code of the neighboring Node B; and a code for measuring a signal transmitted by the selected neighboring Node B. It further comprises: 14. The computer readable medium of claim 13 for executing a code for transmitting the result to the service node B in response to a result of the measurement satisfying a signal quality value. Wherein based on one of the following: 15. Computer readable medium of claim 13 30 201129148 assigning the priority level: a carrier frequency; and a distance between a location of a UE and a location of the neighboring Node B. 16. The computer readable medium of claim 15 wherein the location is determined by one of: a current location of the UE; and a location of the serving Node B. 17. A wireless communication device in a TD-SCDMA system, the device comprising: means for selecting a neighboring Node B based on a priority order level when communicating with the serving Node B; and for measuring The selected component of a signal transmitted by the neighboring Node B. 18. The apparatus of claim 17, further comprising: means operative to transmit the result to the serving Node B in response to a result of the measurement satisfying a signal quality threshold. The apparatus of claim 17, wherein the priority level is assigned based on one of: a carrier frequency; and a distance between a location of the UE and a location of the neighboring node b. The device of claim 19, wherein the location is determined by one of: a current location of the UE; and a location of the serving Node B. 32
TW099109675A 2010-01-15 2010-03-30 Priority-based selection of base transceiver stations in a TD-SCDMA wireless communication system TW201129148A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29554410P 2010-01-15 2010-01-15
PCT/US2010/028619 WO2011087516A1 (en) 2010-01-15 2010-03-25 Priority-based selection of base transceiver stations in a td-scdma wireless communication system

Publications (1)

Publication Number Publication Date
TW201129148A true TW201129148A (en) 2011-08-16

Family

ID=42734765

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099109675A TW201129148A (en) 2010-01-15 2010-03-30 Priority-based selection of base transceiver stations in a TD-SCDMA wireless communication system

Country Status (3)

Country Link
CN (1) CN102217369A (en)
TW (1) TW201129148A (en)
WO (1) WO2011087516A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2501953B (en) 2012-01-30 2014-11-05 Broadcom Corp Measurement reporting for mobility procedures
US9084126B2 (en) 2013-01-30 2015-07-14 Qualcomm Incorporated Methods and apparatus for determining a location of a mobile station
US20150215802A1 (en) * 2014-01-24 2015-07-30 Qualcomm Incorporated Controlling a rate of forced measurement gap usage
CN108616924B (en) * 2018-03-16 2022-02-01 西安电子科技大学 Large data distribution method based on priority dynamic switching in wireless network
US11789135B2 (en) * 2019-03-29 2023-10-17 Robert Bosch Gmbh Ultra-wideband intelligent sensing system and method for car states detection
CN111586869B (en) * 2020-04-29 2021-03-09 广州技象科技有限公司 Gateway physical layer of narrow-band Internet of things system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7082305B2 (en) * 2002-11-22 2006-07-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for generating a neighbor cell list
JP4819896B2 (en) * 2006-07-28 2011-11-24 京セラ株式会社 Portable terminal device and handoff method
TWI345925B (en) * 2006-12-19 2011-07-21 Inst Information Industry Mobile communication apparatus, method, application program, and computer readable medium thereof for early measuring signal of a base station
CN101325757B (en) * 2007-06-15 2011-07-20 上海摩波彼克半导体有限公司 Method for implementing selection of multiple-band multi-access technique district by wireless communication mobile equipment
KR101360351B1 (en) * 2007-11-09 2014-02-07 삼성전자주식회사 Method of controlling handover and device for eanabling the method
US9148831B2 (en) * 2008-11-14 2015-09-29 Qualcomm Incorporated GPS-assisted cell selection for mobile devices

Also Published As

Publication number Publication date
WO2011087516A1 (en) 2011-07-21
CN102217369A (en) 2011-10-12

Similar Documents

Publication Publication Date Title
TWI471032B (en) Methods and apparatus to perform reference signal measurements in a tdd-lte system from a td-scdma system
TWI484791B (en) System and method of improving redirection in a td-scdma circuit-switched fallback from tdd-lte systems
US8948126B2 (en) Scheduling TDD-LTE measurement in TD-SCDMA systems
KR101506974B1 (en) System and method for single frequency dual cell high speed downlink packet access
TW201228435A (en) System synchronization in TD-SCDMA and TDD-LTE systems
TW201215189A (en) Service-based inter-radio access technology (inter-RAT) handover
JP5933819B2 (en) Apparatus and method for scheduling cell broadcast messages
TW201146039A (en) Method and apparatus for make-before-break handover in a TD-SCDMA system
TW201414335A (en) Intra frequency cell reselection in TD-SCDMA
US20150117399A1 (en) Baton handover with receive diversity in td-scdma
TWI533722B (en) Inter radio access technology (irat) measurement to improve user equipment (ue) battery performance
TW201210396A (en) Effective timing measurements by a multi-mode device
TW201204087A (en) Facilitating baton handover in multi-carrier TD-SCDMA communications systems
TW201129149A (en) Method and apparatus for maintaining communication during a baton handover
TWI513341B (en) Intelligent inter radio access technology measurement reporting
TW201129148A (en) Priority-based selection of base transceiver stations in a TD-SCDMA wireless communication system
JP2016537852A (en) Inter-radio access technology (IRAT) measurements during handover
TWI499321B (en) Irat measurement reporting method in td-scdma
TW201338579A (en) Call recovery in TD-SCDMA handover failure
TW201204111A (en) Method and apparatus of fast system selection in the TD-SCDMA and GSM multimode terminal
KR20160122241A (en) Dch to non-dch state switching of user equipment in umts
TW201210360A (en) Signal measurement in TD-SCDMA multicarrier systems using downlink synchronization codes
TW201132164A (en) Receiving GSM timing information from TD-SCDMA base station to facilitate TD-SCDMA to GSM wireless handover
JP2016500489A (en) Method and apparatus for timing advance selection for synchronous uplink transmission
TW201112820A (en) Method and apparatus for power control during TD-SCDMA baton handover