201134890 六、發明說明: 【發明所屬之技術領威】 [0001]本發明涉及一種奈米碳管漿料及採用該奈米碳官漿料I 備的場發射裝置。 C先前技術3 [0002] 奈米碳管為一種新型碳材料。奈米碳管具有優異的導電 性能,且其具有幾乎接近理論極限的尖端表面積(尖端 表面積愈小,其局部電場愈集中),故’奈米碳管具有 極低的場發射電壓,可傳輸極大的電流密度’並且電流 極穩定,故,养常適合做場發射材料。 [0003] 目前,將奈米碳管用作場發射裝置的方主要有直接生 長法和列印法。其中,直接生艮法通常採用化學氣相沈 積法生長奈米碳管陣列作為發射體。然而,採用化學氣 相沈積法難以做成大面積均勻的發射體,且該方法製備 的發射體與陰極電極之間的結合力較差,在強電場作用 下容易被強電場拔出,從而限制了該發射體的電子發射 能力和壽命。 [0004] 列印法係將奈米碳管漿料列印成圖形,在通過後續處理 方法使奈米碳管從漿料中露出頭來。先前技術中,用於 製備場發射裝置的奈米碳管漿料通常包括奈米碳管、氧 化姻錫奈米顆粒 '玻璃粉及有機載體。其中,選擇氧化 銦錫奈米顆粒作為奈米碳管衆料的組分,其目的為提高 奈米碳管漿料的導電性能,增強奈米碳管漿料和陰極電 極之間的電接觸。 [0005] 099111205 然而,氧化銦錫顆粒的粒度遠小於玻璃粉的粒度 表單編號Α0101 第3頁/共23頁 ,且氧 0992019714-0 201134890 化銦錫的體積百分含量遠大於玻璃粉的含量。故,當將 該採用奈米碳管漿料製備的場發射裝置應用到場發射顯 示器時,奈米碳管漿料中雖有玻璃粉起到固定作用,但 在陰桃間1 0 V /// m南電場強度的長時間作用下 '部分黏結 不牢的氧化銦錫顆粒會脫離列印區域落至柵極上,從而 導致了柵極與陽極之間的異常發光。另,由於氧化銦錫 顆粒的存在會影響奈米碳管與玻璃粉之間的結合力,故 ,奈米碳管在強電場作用下長時間工作容易被強電場拔 出,從而限制了該發射體的電子發射能力和壽命。 【發明内容】 [0006] 有鑒於此,提供一種奈米碳管被牢固固定,且應用到場 發射顯示器時可以避免柵極與陽極之間的異常發光的場 發射裝置及製備該場發射裝置的奈米碳管漿料實為必要 〇 [0007] —種奈米碳管漿料,其中,該奈米碳管漿料由奈米碳管 ,玻璃粉及有機載體組成。 [0008] —種採用該奈米碳管漿料製備的場發射裝置,其包括: 一絕緣基底;一設置於該絕緣基底表面的陰極導電層; 及一設置於該陰極導電層表面的電子發射層,該電子發 射層採用上述奈米碳管漿料製成,且該電子發射層由複 數個奈米碳管和玻璃層組成,且該複數個奈米碳管與該 陰極導電層電連接。 [0009] 與先前技術相比,由於本發明提供的奈米碳管漿料僅由 奈米碳管,玻璃粉及有機載體組成,故,採用該奈米碳 管漿料製備的場發射裝置中不含氧化銦錫顆粒。當將該 099111205 表單編號A0101 第4頁/共23頁 0992019714-0 201134890 [0010] 場發射裝置應用到場發射顯示器時,不會有氧化鋼锡顆 粒脫離列印區域落至柵極上,從而可以避免柵極與陽極 之間的異常發光。另,場發射I置的電子發射層中的奈 米碳管直接和玻璃層相互黏結,其黏結力大大增強,S 會出現奈米碳管從電子發射層表面脫離的現象。 【實施方式】 以下將結合附圖詳細說明本發明實施例提供的奈米碳管 漿料及採用該奈米碳管漿料製備的場發射裝置。 〇 _] 本發明實施例提供一種奈米碳管槳料,其僅由奈米碳管 .. :. ,玻璃粉及有機載體組成β即,所述杳米破管漿料僅為 奈米碳管,玻璃粉和有機載體的混合物,而不含氧化錮 錫等導電顆粒》 [0012] ❹ 所述奈米碳管的質量百分比為2%〜5%,玻璃粉的質量百分 比為2%~5% ’有機栽體的質量百分比為9〇%~96%。優選地 ,所述奈米碳管的質量百分比為2. 5%~3% *玻璃粉的質量 百分比為2. 5%〜3%,有機栽體的質量百分比為94%〜95〇/〇。 可以理解’奈米碳管與玻璃粉的含量過高會導致奈米碳 管漿料的黏度過大,流動性差,不但列印時容易堵塞絲 網而且使列印的圖案邊緣不整齊。而奈米碳管與玻璃粉 的含量過低會導致奈米碳管漿料的可塑性較差且,不但 列印時奈米碳管漿料不易成型且導致列印的圖案中存在 大量孔洞’列印效果差◊本發明實施例通過選擇奈米碳 管漿料中各組分的比例,可以確保奈米碳管漿料具有適 合的黏度和可塑性,以滿足列印的要求。 [⑻ 13] 099111205 所述奈米碳管為單壁奈米碳管、雙壁奈米碳管及多壁奈 表單編號Α0101 第5頁/共23頁 0992019714-0 201134890 米碳管中的一種或多種。所述單壁奈米碳管的直徑為0.5 奈米~50奈米,所述雙壁奈米碳管的直徑為1. 0奈米〜50 奈米,所述多壁奈米碳管的直徑為1.5奈米〜50奈米。所 述奈米碳管的長度大於1微米,優選地,所述奈米碳管的 長度為5微米~15微米。 [0014] 所述玻璃粉為低熔點玻璃粉,其熔點為350°C~600°C。所 述玻璃粉的粒徑小於等於1 0微米,優選地,所述玻璃粉 的粒徑小於等於1微米。 [0015] 所述有機載體為易揮發的有機物,可以通過加熱去除。 所述有機載體包括稀釋劑,穩定劑和增塑劑。其中,所 述稀釋劑為奈米碳管漿料提供必要的流淌性,同時要求 對穩定劑具有較好的溶解性。所述稀釋劑為松油醇。所 述穩定劑通常具有極性較強的基團,可以和增塑劑形成 為網狀或鏈狀結構,用以提高有機載體的黏度和塑性。 所述穩定劑為高分子聚合物,例如:乙基纖維素。所述 增塑劑一般為分子鏈上具有強極性基團的溶劑,其作用 為和穩定劑形成多維網狀結構。所述增塑劑為鄰苯二曱 酸二丁酯或癸二酸二丁酯等。優選地,所述增塑劑為癸 二酸二丁酯。所述癸二酸二丁酯的沸點為344°C,熱揮發 特性好,且癸二酸二丁酯分子鏈上具有強極性的酯基, 可以與乙基纖維素形成多維網狀結構。由於癸二酸二丁 酯的分子鏈上不含苯環,癸二酸二丁酯為一種綠色環保 的增塑劑。所述癸二酸二丁酯價格低廉,符合絲網列印 之大規模低成本生產要求。進一步,所述有機載體還可 以包括少量的表面活性劑,如司班。 099111205 表單編號A0101 第6頁/共23頁 0992019714-0 201134890 [0016] Ο201134890 VI. Description of the Invention: [Technical Leadership of the Invention] [0001] The present invention relates to a carbon nanotube slurry and a field emission device using the nanocarbon official slurry. C Prior Art 3 [0002] The carbon nanotube is a new type of carbon material. The carbon nanotubes have excellent electrical conductivity and have a tip surface area close to the theoretical limit (the smaller the tip surface area, the more concentrated the local electric field), so the 'nano carbon tube has a very low field emission voltage and can be transmitted extremely. The current density 'and the current is extremely stable, so it is often suitable for field emission materials. [0003] At present, the use of a carbon nanotube as a field emission device mainly includes a direct growth method and a printing method. Among them, the direct oyster method generally uses a chemical vapor deposition method to grow a carbon nanotube array as an emitter. However, it is difficult to form a uniform emitter with a large area by chemical vapor deposition, and the bonding force between the emitter and the cathode electrode prepared by the method is poor, and is easily pulled out by a strong electric field under the action of a strong electric field, thereby limiting the limitation. The electron emission capability and lifetime of the emitter. [0004] The printing method prints a carbon nanotube slurry into a pattern, and the carbon nanotubes are exposed from the slurry by a subsequent treatment method. In the prior art, the carbon nanotube slurry used for preparing the field emission device generally includes a carbon nanotube, a oxidized sinnite particle, a glass frit, and an organic vehicle. Among them, indium tin oxide particles are selected as components of the carbon nanotubes, and the purpose thereof is to improve the electrical conductivity of the carbon nanotube slurry and enhance the electrical contact between the carbon nanotube slurry and the cathode electrode. [0005] 099111205 However, the particle size of the indium tin oxide particles is much smaller than the particle size of the glass powder. Form No. Α0101 Page 3 of 23, and oxygen 0992019714-0 201134890 The volume percentage of indium tin is much larger than the glass powder content. Therefore, when the field emission device prepared by using the carbon nanotube slurry is applied to the field emission display, although the glass powder in the carbon nanotube slurry plays a fixed role, it is between the peaches and the 1 0 V // / m South electric field strength for a long time under the 'partially weakly bonded indium tin oxide particles will fall off the printing area to the gate, resulting in abnormal illumination between the gate and the anode. In addition, since the presence of indium tin oxide particles affects the bonding force between the carbon nanotubes and the glass frit, the carbon nanotubes are easily pulled out by the strong electric field under the action of a strong electric field for a long time, thereby limiting the emission. The electron emission capability and lifetime of the body. SUMMARY OF THE INVENTION [0006] In view of the above, there is provided a field emission device in which a carbon nanotube is firmly fixed, and an abnormal light emission between a gate and an anode can be avoided when applied to a field emission display, and a field emission device is prepared. The carbon nanotube slurry is really necessary [0007] - a carbon nanotube slurry, wherein the carbon nanotube slurry is composed of a carbon nanotube, a glass powder and an organic carrier. [0008] A field emission device prepared using the carbon nanotube slurry, comprising: an insulating substrate; a cathode conductive layer disposed on a surface of the insulating substrate; and an electron emission disposed on a surface of the cathode conductive layer a layer, the electron emission layer is made of the above carbon nanotube slurry, and the electron emission layer is composed of a plurality of carbon nanotubes and a glass layer, and the plurality of carbon nanotubes are electrically connected to the cathode conductive layer. [0009] Compared with the prior art, since the carbon nanotube slurry provided by the present invention is composed only of a carbon nanotube, a glass powder and an organic carrier, the field emission device prepared by using the carbon nanotube slurry is not Contains indium tin oxide particles. When the field emission device is applied to the field emission display by the 099111205 form number A0101 page 4/23 page 0992019714-0 201134890 [0010], no oxidized steel tin particles fall off the printing area to the gate, thereby avoiding Abnormal illumination between the gate and the anode. In addition, the carbon nanotubes in the electron-emitting layer of the field emission I are directly bonded to the glass layer, and the bonding force thereof is greatly enhanced, and the phenomenon that the carbon nanotubes are detached from the surface of the electron-emitting layer occurs. [Embodiment] Hereinafter, a carbon nanotube slurry provided by an embodiment of the present invention and a field emission device prepared by using the carbon nanotube slurry will be described in detail with reference to the accompanying drawings. 〇 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ a mixture of glass frit and an organic carrier, and does not contain conductive particles such as antimony tin oxide. [0012] ❹ The mass percentage of the carbon nanotubes is 2% to 5%, and the mass percentage of the glass powder is 2% to 5%. 'The mass percentage of organic carriers is 9〇%~96%. Preferably, the mass percentage of the carbon nanotubes is 2.5% to 3%. * The mass percentage of the glass frit is 2.5%~3%, and the mass percentage of the organic carrier is 94%~95〇/〇. It can be understood that the excessive content of the carbon nanotubes and the glass powder causes the viscosity of the carbon nanotube slurry to be too large, and the fluidity is poor, and it is easy to block the screen and print the edges of the printed pattern. If the content of the carbon nanotubes and the glass powder is too low, the plasticity of the carbon nanotube slurry is poor, and the carbon nanotube slurry is not easily formed at the time of printing, and a large number of holes are formed in the printed pattern. The effect of the present invention can ensure that the carbon nanotube slurry has suitable viscosity and plasticity by selecting the proportion of each component in the carbon nanotube slurry to meet the printing requirements. [(8) 13] 099111205 The carbon nanotubes are one of a single-walled carbon nanotube, a double-walled carbon nanotube and a multi-walled form number Α0101, page 5 of 23, 0992019714-0 201134890 A variety. The single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm, and the double-walled carbon nanotube has a diameter of 1.0 nm to 50 nm, and the diameter of the multi-walled carbon nanotube For 1.5 nm ~ 50 nm. The length of the carbon nanotubes is greater than 1 micrometer, and preferably, the length of the carbon nanotubes is from 5 micrometers to 15 micrometers. [0014] The glass frit is a low melting glass frit having a melting point of 350 ° C to 600 ° C. The glass frit has a particle diameter of 10 μm or less, and preferably, the glass frit has a particle diameter of 1 μm or less. [0015] The organic vehicle is a volatile organic substance and can be removed by heating. The organic vehicle includes a diluent, a stabilizer, and a plasticizer. Among them, the diluent provides the necessary flowability for the carbon nanotube slurry, and requires good solubility to the stabilizer. The diluent is terpineol. The stabilizer generally has a more polar group and can be formed into a network or chain structure with a plasticizer to increase the viscosity and plasticity of the organic carrier. The stabilizer is a high molecular polymer such as ethyl cellulose. The plasticizer is generally a solvent having a strong polar group on the molecular chain, and functions to form a multidimensional network structure with the stabilizer. The plasticizer is dibutyl phthalate or dibutyl sebacate. Preferably, the plasticizer is dibutyl sebacate. The dibutyl sebacate has a boiling point of 344 ° C, good thermal volatility, and a highly polar ester group on the molecular chain of dibutyl sebacate, which can form a multidimensional network structure with ethyl cellulose. Since dibutyl sebacate does not contain a benzene ring in the molecular chain, dibutyl sebacate is a green plasticizer. The dibutyl sebacate is inexpensive and meets the large-scale, low-cost production requirements for screen printing. Further, the organic vehicle may also include a small amount of a surfactant such as a squad. 099111205 Form No. A0101 Page 6 of 23 0992019714-0 201134890 [0016] Ο
、&例中,所述奈米碳管為直徑小於等於10奈米且長 為5微米〜15微米的多壁奈米碳管。所述破璃粉為粒徑 ;等於10微米的低熔點玻璃粉。所述有機載體包括乙 基纖維素、松㈣、癸二酸二丁及司班,且所述乙基 U維素松油醇、癸二酸二丁醋和司班的質量比為 18〇: 10:2。本實施例分別製備了四組不同比例的奈 米碳營漿料樣品,如表1所示: 表1不同比例的奈米碳管漿料樣品 ~~~—_ 樣品編號 奈米碳管含童In the example, the carbon nanotubes are multi-walled carbon nanotubes having a diameter of 10 nm or less and a length of 5 μm to 15 μm. The glass frit is a particle size; a low melting glass powder equal to 10 microns. The organic carrier comprises ethyl cellulose, pine (tetra), dibutyl sebacate and spartan, and the mass ratio of the ethyl ursolic oleyl alcohol, sebacic acid dibutyl vinegar and sban is 18 〇: 10:2. In this example, four sets of different proportions of carbon camp slurry samples were prepared, as shown in Table 1: Table 1 Samples of different proportions of carbon nanotube slurry ~~~—_ Sample number Nano carbon tube containing children
低熔點玻璃粉 含量 〇. 3(克) 〇.4(克) 〇. 5(克) 〇. 4(克) 有機載體含量 1〇(克) 1〇(克) 1〇(克) [0019] ΓΓΓΓΤ--克) 10(克) 、明實施 力別進行點度測試。本發明實施例提供的奈米碳管衆料 在剪切速率為10/秒時的黏度為13pa · s i6pa · s。請參 Z圖1,為本發明實施例提供的奈米碳管漿料樣品A的黏 ^果。由圖1可見,本發明實施例提供的奈米碳管 ==度隨著剪切速率的增大而減小,故,該奈米碳 ^料為假,非常適合聊的要求。 本發明實施例對上述四組不同比例的奈米碳管 时分別進行場發射性能職,測試條件如下表2所 示·· 099111205 表單編號A0101 第7頁/共23頁 0992019714-0 201134890 [0020] 表2對奈米碳管漿料樣品測試的條件 .....--------- 測試參數 數值 加電方式 二極型 陽極材料 氧化銦錫玻璃 陰極材料 銀電極上列印的奈米碳管漿料 圖案 陰陽間距 1毫米(mm) 陽極脈衝頻率 100赫兹(Hz) 陽極脈衝脈寬 10微秒(μ s) 本實施例進行測試時,陰極串聯一5〇歐姆的無感電阻, 用示波器測試其兩端電壓,並計丨算得到不同樣品的場發 射電流大小’實驗結果參見下表3所示: [0022]表3不同奈米碳管漿料樣品的測試結果Low melting point glass powder content 〇. 3 (g) 〇.4 (g) 〇. 5 (g) 〇. 4 (g) organic carrier content 1 gram (gram) 1 gram (gram) 1 gram (gram) [0019] ΓΓΓΓΤ--g) 10 (g), Ming implementation force to carry out the point test. The viscosity of the carbon nanotubes provided by the embodiment of the present invention at a shear rate of 10/sec is 13 Pa · s i6pa · s. Please refer to FIG. 1 , which is a graph of the viscosity of the carbon nanotube slurry sample A provided by the embodiment of the present invention. It can be seen from Fig. 1 that the carbon nanotubes of the embodiment of the present invention have a == degree decreasing with the increase of the shear rate. Therefore, the nanocarbon material is false, which is very suitable for the requirements of the chat. In the embodiment of the present invention, the field emission performance is performed separately for the above four sets of carbon nanotubes with different proportions, and the test conditions are as shown in Table 2 below. · 099111205 Form No. A0101 Page 7 / Total 23 Page 0992019714-0 201134890 [0020] Table 2 Conditions for testing the carbon nanotube slurry sample.....--------- Test parameter value Power-on mode Dipolar anode material Indium tin oxide glass cathode material Silver electrode printed on Nano carbon tube slurry pattern Yin and Yang spacing 1 mm (mm) Anode pulse frequency 100 Hz (Hz) Anode pulse pulse width 10 microseconds (μ s) In this example, the cathode is connected in series with a 5 ohm non-inductive resistor. Test the voltage at both ends with an oscilloscope and calculate the field emission current of different samples. The experimental results are shown in Table 3 below: [0022] Table 3 Test results of different carbon nanotube slurry samples
樣品編號 陽極2. OkV的 陽極2. 5kV的 陽極3. OkV的 發射電流 發射電彘 發射電流 A 8mA 40mA 153.6mA B ::Λ - 12mA 48mA 200mA C 6mA 28mA 120mA D 2. 4mA 33.6mA 169.6mA 進一步’本發明實施例將奈米碳管漿料樣品B的場發射性 能與先前技術中含有氧化銦錫的奈米碳管漿料的場發射 性能進行對比。其中,含有氧化銦錫的奈米碳管漿料中 的奈米碳管,氧化銦錫顆粒,低熔點玻璃粉及有機載體 的質量比為1:2:1:20。請參閱圖2,本發明實施例提供 的奈米碳管漿料樣品B的場發射電流密度要大於先前技術 0992019714-0 099111205 表單編號A0101 第8頁/共23頁 201134890 [0024] Ο [0025] [0026] 〇 [0027] 中含有氧化銦錫的奈米碳管漿料的場發射電流密度。由 此可見’去除氧化銦錫齡後的奈米碳”料的場發射 性能不但沒有降低,反而提高了。 請參閱圖6 ’本發明實施例提供―種採用該奈米碳管装料 製備的場發射裝置100。所述場發射裝置1〇〇包括一絕緣 基底102,一 6χ置於該絕緣基底1〇2表面的陰極導電声 104,及一設置於該陰極導電層1〇4表面的電子發射層 116。 所述絕緣基底102的材料可以為玻璃、陶瓷、石英、二氧 化矽,塑膠或聚合物。所述絕緣基底1〇2的形狀與厚度不 限,可以根據實際需要選擇1優選地,所述絕緣基底1〇2 的形狀為正方形或矩形。本實施例中,所述絕緣基底ι〇2 為一邊長為50毫米,厚度為丨毫米的正方形玻璃板。 所述陰極導電層104可以為金屬層、氧化銦錫層、摻雜矽 或導電漿料層等。所述金屬可以為銅、鋁、金或銀等。 所述導電漿料包括金屬粉、低锋點玻螭粉和黏結劑。所 述陰極導電層104的厚度為5〇微米〜500微米。本實施例 中,陰極導電層104為厚度為100微米的鋁金屬層。 所述電子發射層116僅由一玻璃層114和複數個奈米碳管 1〇8組成’且該複數個奈米碳管1〇8與陰極導電層1〇4電 速接。所述玻璃層114為一熔煉後呈玻璃態的玻璃層,且 該破璃層114將該複數個奈米碳管丨〇8固定於所述陰極導 電層104的表面。所述複數個奈米碳管1〇8的至少一端從 破璃層114中露出,以發射電子。 099111205 表單編號Α0101 第9頁/共23頁 0992019714-0 201134890 [0028] 請參閱圖7和圖8,由於奈米碳管漿料中不再含有氧化銦 錫顆粒,電子發射層中的奈米碳管直接和玻璃粉相互黏 結,其黏結力大大增強,不會出現奈米碳管從奈米碳管 漿料表面脫離的現象,而且氧化銦錫顆粒的消失使更多 的奈米碳管從玻璃層露出。先前技術中加入氧化銦錫顆 粒的目的為增強奈米碳管漿料的導電性,進一步降低奈 米碳管漿料的工作電壓,然而,當將氧化銦錫顆粒完全 從奈米碳管漿料中除去時,電子發射層116的工作電壓不 但沒有升高反而降低了。其中,工作電壓降低的原因為 由於電子發射層116表面氧化銦錫顆粒的消失引起電子發 射層116表面電場分佈變化所致,即氧化銦錫顆粒在電子 發射層116表面的電場屏蔽作用消失所致。 [0029] 請參閱圖3至圖6,本發明實施例提供的場發射裝置100的 製備方法具體包括以下步驟: [0030] 步驟一,提供一絕緣基底102。 [0031] 本實施例中,所述絕緣基底102為一邊長為50毫米,厚度 為1毫米的正方形玻璃板。 [0032] 步驟二,在所述絕緣基底1 02的表面形成一陰極導電層 104 ° [0033] 所述陰極導電層104可以通過絲網列印、電鍍,化學氣相 沈積、磁控濺射、熱沈積等方法製備。本實施例採用蒸 鍍方法在玻璃板表面一銘金屬層。 [0034] 步驟三,在所述陰極導電層104表面形成一奈米碳管漿料 層106,從而得到一場發射裝置預製體。 099111205 表單編號A0101 第10頁/共23頁 0992019714-0 201134890 [0035] [0036] Ο [0037] ❹ [0038] 099111205 第11頁/共23頁 所述奈米碳管衆料層106可以通過滴壤、喷塗、絲網歹^ 、旋塗或刷塗等方式形成於陰極導電層1〇4表面。P 米碳管漿料層!婦由奈米碳管⑽,破璃粉ιΐ2和有機τ、 载體11G組成。本實施例通過絲網列印在陰極導電層 表面形成一奈米碳管漿料層1〇6。 步驟四,將所述場發射裝置預製體在3〇〇t: ~6〇〇1條件 下進行烘乾和焙燒,在陰極導電層1()4表面形成—電子件 射層116,從而得到一場發射裝置1〇〇。 發 所述供乾和培燒通常在真空環境下進行或者在洪乾和择 燒過程巾通人雜氣體錢氣加,勤止烘乾和師 時發生氧化反應。其中,㈣的叫在於使奈米碳管^ 料層106中的有機載體110揮發。培燒的目的在於使奈米 碳管漿料層106中的玻璃粉112熔融從而形成一玻璃態的 玻璃層114以將奈米碳管⑽黏結固定於陰極導電層叫 表面,從而形成一電子發射層116。 本實施例中’所述供乾和培燒的方法具體包括以下步驟 .:先,在真空環境或通人惰性_或氮氣加 以保護的 環境下加熱至-定溫度保溫一段時間,優選加熱至約35〇 C,保溫約20分鐘;^後,升溫至—定溫度再保溫一段 時間’優選升溫至約刪,保溫約3〇分鐘;最後降至室 溫。 為進一步料電子發射層116的場發射雜,在經過洪乾 和培燒過程之後,可對電子發射層ii6的表面進行處理。 所述對U碳管襞料層進行表面處理的方法包括表面摩 表單煸號A0101 0992019714-0 [0039] 201134890 擦法、電漿刻蝕法、鐳射照射或膠帶黏結等。本實施例 中通過膠帶黏結的方法將電子發射層116表面稀鬆的一層 奈米碳管去除,剩下的奈米碳管1〇8分散性好,基本直立 且和玻璃層114牢固結合。所述分散性好且基本直立的奈 米碳管108有效降低了奈米碳管1〇8之間的場屏蔽作用, 從而使本實施例的場發射裝置具備良好的場發射性能。 [0040] [0041] [0042] 099111205 由於本發明實施例提供的奈求碳轉料僅由奈米碳管, 玻璃粉及有機載體組成,故,採用該奈米唆管聚料製備 的場發射裝置中不含氧化銦錫顆粒。不含氡化_顆粒 f 的場發射裝置’具有以下優點:第一、當將該場發射裝 置應用到場發射顯示ϋ時’不會有氧化銦錫顆粒脫離列 印區«至栅極上’從而可㈣免栅極與陽極之間的異 常發光。第二、場發射裝置的電子發射層中的奈米碳管 直接和玻璃粉相互黏結’其黏結力大大增強不會出現 奈米碳管從電子發射層表面脫離的現象。第三、氧化姻 錫顆粒的消失使〇的奈米料從玻璃|露出。第四、 由於氧化娜驗中_元素切有元素,氧化娜顆 t 粒的消失進一步降低了場發射装置的成本。 綜上所述’本發明讀已符合發明專利之要件,遂依法提 出專射請。惟’以上料者㈣本發明之較佳實施例 ’自不能減限制本案之巾料職®。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本發明實施例提供的奈米碳管衆料的黏度測試結果 0992019714-0 表單編號A0101 第12頁/共23頁 201134890 [0043] [0044] [0045] ❹ [0046] [0047] [0048] [0049] Q [0050] [0051] [0052] [0053] [0054] [0055] 圖2為本發明實施例提供的不含氧化銦錫顆粒的奈米碳管 漿料與先前技術中含有氧化銦錫的奈米碳管漿料的場發 射性能測試結果對比圖。 圖3至圖6為本發明實施例提供的場發射裝置的製備方法 的工藝流程圖。 圖7為先前技術中含有氧化銦錫顆粒的電子發射層的掃描 電鏡照片。 圖8為本發明實施例製備的不含氧化銦錫顆粒的電子發射 層的掃描電鏡照片。 【主要元件符號說明】 場發射裝置:100 絕緣基底:102 陰極導電層:104 奈米碳管漿料層:106 奈米碳管:108 有機載體:110 玻璃粉:112 玻璃層:114 電子發射層:116 099111205 表單編號A0101 第13頁/共23頁 0992019714-0Sample No. Anode 2. OkV Anode 2. 5kV Anode 3. OkV Emission Current Emission Electron Emission Current A 8mA 40mA 153.6mA B ::Λ - 12mA 48mA 200mA C 6mA 28mA 120mA D 2. 4mA 33.6mA 169.6mA Further The embodiment of the present invention compares the field emission performance of the carbon nanotube slurry sample B with the field emission performance of the prior art indium tin oxide containing carbon nanotube slurry. Among them, the mass ratio of the carbon nanotubes, the indium tin oxide particles, the low melting point glass powder and the organic carrier in the indium tin oxide-containing carbon nanotube slurry is 1:2:1:20. Referring to FIG. 2, the field emission current density of the carbon nanotube slurry sample B provided by the embodiment of the present invention is greater than that of the prior art 0992019714-0 099111205. Form No. A0101 Page 8 of 23 201134890 [0024] [0025] [0026] The field emission current density of the indium tin oxide-containing carbon nanotube slurry. It can be seen that the field emission performance of the 'removed indium tin oxide-independent nano-carbon' material is not reduced, but is improved. Please refer to FIG. 6 'provided by the embodiment of the present invention, which is prepared by using the carbon nanotube charge. The field emission device 100. The field emission device 1 includes an insulating substrate 102, a cathode conductive sound 104 disposed on the surface of the insulating substrate 1〇2, and an electron disposed on the surface of the cathode conductive layer 1〇4. The material of the insulating substrate 102 may be glass, ceramic, quartz, cerium oxide, plastic or polymer. The shape and thickness of the insulating substrate 1 〇 2 are not limited, and may be selected according to actual needs. The insulating substrate 1 〇 2 has a square or rectangular shape. In the embodiment, the insulating substrate ι 2 is a square glass plate having a side length of 50 mm and a thickness of 丨 mm. The cathode conductive layer 104 may be The metal layer, the indium tin oxide layer, the doped germanium or the conductive paste layer, etc. The metal may be copper, aluminum, gold or silver, etc. The conductive paste includes metal powder, low-point glass powder and bonding. Agent The thickness of the cathode conductive layer 104 is 5 〇 micrometers to 500 micrometers. In this embodiment, the cathode conductive layer 104 is an aluminum metal layer having a thickness of 100 micrometers. The electron emission layer 116 is composed of only one glass layer 114 and a plurality of nanometers. The carbon tube 1〇8 is composed of 'and the plurality of carbon nanotubes 1〇8 are electrically connected to the cathode conductive layer 1〇4. The glass layer 114 is a glazed glass layer in a glass state, and the glass layer is The plurality of carbon nanotubes 8 are fixed to the surface of the cathode conductive layer 104. At least one end of the plurality of carbon nanotubes 1 8 is exposed from the glass layer 114 to emit electrons. Form No. 1010101 Page 9 of 23 0992019714-0 201134890 [0028] Please refer to Figure 7 and Figure 8. Since the carbon nanotube slurry no longer contains indium tin oxide particles, the carbon nanotubes in the electron emission layer Directly bonded to the glass powder, the adhesion is greatly enhanced, and the phenomenon that the carbon nanotubes are detached from the surface of the carbon nanotube slurry does not occur, and the disappearance of the indium tin oxide particles causes more carbon nanotubes to pass from the glass layer. Exposed. The purpose of adding indium tin oxide particles in the prior art is to enhance The conductivity of the carbon nanotube slurry further reduces the operating voltage of the carbon nanotube slurry. However, when the indium tin oxide particles are completely removed from the carbon nanotube slurry, the working voltage of the electron emission layer 116 is not The increase is decreased, wherein the decrease in the operating voltage is caused by the change in the electric field distribution of the surface of the electron-emitting layer 116 due to the disappearance of the indium tin oxide particles on the surface of the electron-emitting layer 116, that is, the indium tin oxide particles are on the surface of the electron-emitting layer 116. The method for preparing the field emission device 100 according to the embodiment of the present invention specifically includes the following steps: [0030] Step 1 provides an insulating substrate 102. [0029] Referring to FIG. 3 to FIG. [0031] In the present embodiment, the insulating substrate 102 is a square glass plate having a side length of 50 mm and a thickness of 1 mm. [0032] Step 2, forming a cathode conductive layer 104 on the surface of the insulating substrate 102. [0033] The cathode conductive layer 104 can be screen printed, electroplated, chemical vapor deposited, magnetron sputtering, Prepared by methods such as thermal deposition. In this embodiment, a metal layer is formed on the surface of the glass plate by an evaporation method. [0034] Step 3, forming a carbon nanotube slurry layer 106 on the surface of the cathode conductive layer 104, thereby obtaining a field emission device preform. 099111205 Form No. A0101 Page 10 of 23 0992019714-0 201134890 [0036] [0037] ❹ [0038] 099111205 Page 11 of 23 The carbon nanotube bulk layer 106 can be dropped It is formed on the surface of the cathode conductive layer 1〇4 by means of soil, spray coating, wire mesh coating, spin coating or brushing. P m carbon tube slurry layer! The woman consists of a carbon nanotube (10), a granule ιΐ2, an organic τ, and a carrier 11G. In this embodiment, a carbon nanotube slurry layer 1〇6 is formed by screen printing on the surface of the cathode conductive layer. Step 4, drying and roasting the field emission device preform under the condition of 3〇〇t: ~6〇〇1, forming an electron ejection layer 116 on the surface of the cathode conductive layer 1()4, thereby obtaining a field The transmitting device is 1 〇〇. The drying and simmering are usually carried out in a vacuum environment or in the process of squirting and simmering in the process of venting the gas and gas, and drying and the oxidation reaction occurs. Among them, (4) is to volatilize the organic carrier 110 in the carbon nanotube layer 106. The purpose of the calcination is to melt the glass frit 112 in the carbon nanotube slurry layer 106 to form a glassy glass layer 114 to bond the carbon nanotubes (10) to the surface of the cathode conductive layer to form an electron emission. Layer 116. In the present embodiment, the method for supplying and simmering comprises the following steps: first, heating to a constant temperature for a period of time in a vacuum environment or an environment protected by inert gas or nitrogen, preferably heating to about 35 〇 C, heat preservation for about 20 minutes; ^, the temperature is raised to - a certain temperature and then kept for a period of time 'preferably, the temperature is raised to about 删, the heat is about 3 〇 minutes; finally, it is lowered to room temperature. To further investigate the field emission of the electron-emitting layer 116, the surface of the electron-emitting layer ii6 may be processed after passing through the flooding and firing process. The method for surface-treating the U-carbon tube coating layer includes a surface pattern No. A0101 0992019714-0 [0039] 201134890 rubbing method, plasma etching method, laser irradiation or tape bonding, and the like. In this embodiment, a thin layer of carbon nanotubes on the surface of the electron-emitting layer 116 is removed by a method of tape bonding, and the remaining carbon nanotubes 1〇8 are well dispersed, substantially upright and firmly bonded to the glass layer 114. The well-distributed and substantially upright carbon nanotubes 108 effectively reduce the field shielding between the carbon nanotubes 1 and 8, so that the field emission device of the present embodiment has good field emission performance. [0042] 099111205 Since the carbon feed provided by the embodiment of the present invention is composed only of a carbon nanotube, a glass powder and an organic carrier, the field emission device prepared by using the nano tube polymerization material It does not contain indium tin oxide particles. The field emission device without deuteration _particle f has the following advantages: first, when the field emission device is applied to the field emission display ', there is no indium tin oxide particles coming out of the printing region «to the gate" (4) Abnormal illumination between the gate and the anode. Second, the carbon nanotubes in the electron-emitting layer of the field emission device are directly bonded to the glass frit. The adhesion is greatly enhanced, and the phenomenon that the carbon nanotubes are detached from the surface of the electron-emitting layer does not occur. Third, the disappearance of the oxidized chert tin particles causes the enamel nanomaterial to be exposed from the glass. Fourth, the disappearance of the oxidized nanoparticle t-particle further reduces the cost of the field emission device due to the tangential element in the oxidized phase. In summary, the reading of the present invention has met the requirements of the invention patent, and the special shot is requested according to law. However, the above preferred embodiment (4) is a preferred embodiment of the present invention. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a viscosity test result of a carbon nanotube bulk material provided by an embodiment of the present invention. 0992019714-0 Form No. A0101 Page 12 of 23 201134890 [0043] [0044] [0045] [0049] FIG. 2 is a carbon nanotube containing no indium tin oxide particles according to an embodiment of the present invention. [0055] FIG. A comparison of the field emission performance test results of the slurry with the prior art indium tin oxide containing carbon nanotube slurry. 3 to FIG. 6 are process flow diagrams of a method of fabricating a field emission device according to an embodiment of the present invention. Fig. 7 is a scanning electron micrograph of an electron-emitting layer containing indium tin oxide particles in the prior art. Figure 8 is a scanning electron micrograph of an electron-emitting layer containing no indium tin oxide particles prepared according to an embodiment of the present invention. [Main component symbol description] Field emission device: 100 Insulation substrate: 102 Cathode conductive layer: 104 Carbon nanotube slurry layer: 106 Carbon nanotube: 108 Organic carrier: 110 Glass powder: 112 Glass layer: 114 Electron emission layer :116 099111205 Form No. A0101 Page 13 of 23 0992019714-0