201133571 六、發明說明: 【相關申請案之交叉參考】 本申請案主張2010年3月4曰申請之臨時申請案 “Aligning Sucessive Implants with a Soft Mask”的優先權, 其為美國申請案第61/310,431戒,所述申請案全文併入本 案以供參考。 【發明所屬之技術領域】 本發明是有關於一種太陽能電池,且特別是有關於一 種利用離子植入而形成的太陽能電池。 【先前技術】 離子植入(ion implantation)是用於將更改導電性之 雜質(conductivity-altering impurities )引入工件 (workpiece)的標準技術。所欲之雜質材料在離子源(i〇n source)中被離子化,離子經加速而形成具有指定能量之 離子束(ion beam),且此離子束被導向工件的表面。離 子束中的高能離子(energetic i〇n)穿透進工件材料的主體 (bulk )中,並且被嵌入工件材料的晶格(crystamne lattice ) 裡,以形成具有所欲之導電性的區域。 太%此電池疋使用硬工件(silicon workpiece)之裝置 的一個實例。任何有關高效能太陽能電池之生產成本的降 低或效率的提升對於全球太陽能電池之推行均會產生積極 的影響。此舉將令這項綠能技術達成更為廣闊的可利用性。 太%爿b電池通常由p-n半導體接面(semjc〇n(juct〇r junction)組成。圖1是指叉背接觸式(interdigitatedback 201133571 contact,IBC)太陽能電池的剖視圖。在ibc太陽能電池 205中,所述接面位於背面或未照光面(non-iiiUminated surface)上。在此特定實施例中,ibc太陽能電池205具 有η型基底(n-type base) 206、n+前表面電場(n+ front surface field) 207、鈍化層(passivating iayer) 208 與抗反 射塗層(anti_reflective coating ’ ARC ) 209。在一實施例中, 鈍化層208可為Si〇2,然其他介電質(dielectric)亦可被 使用。如箭號所示,光子214穿透上表面(或照光表面) 進入IBC太陽能電池205。這些光子214通過ARC 209, ARC 209用以將從IBC太陽能電池205反射而離開的光子 214的數目減到最少。在一實施例中,ARC 209可由SiNx 層所組成。光子214穿透n+前表面電場207。具有足夠能 量的光子214 (大於半導體的能帶間隙(bandgap))能夠 將位於半導體材料之價電帶(valence band)裡的電子提升 到導電帶(conduction band )。與此自由電子相關聯的是 在價電帶中會形成一相對應的帶有正電的電洞(h〇ie)。 在IBC太陽能電池205背面的是射極區域(emitter region) 215。在此特定實施例中,射極區域215的掺雜圖 案(doping pattern )交替佈置了 p型與η型的摻雜區(d〇pant region )。n+ 背表面電場(n+ back surface field ) 204 可以 是大約450微米(μιη)寬,並且摻雜著磷或其他^型摻雜 劑。Ρ+射極203可以是大約1450 μιη寬,並且摻雜著硼或 其他Ρ型摻雜劑。此摻雜(doping)可使得IBC太陽能電 池205裡的接面(junction)得以運作或者增進效率。ibc 4201133571 VI. INSTRUCTIONS: [CROSS REFERENCE TO RELATED APPLICATIONS] This application claims the priority of the provisional application "Aligning Sucessive Implants with a Soft Mask" filed March 3, 2010, which is US Application No. 61/ 310, 431, the entire application of which is incorporated herein by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a solar cell, and more particularly to a solar cell formed by ion implantation. [Prior Art] Ion implantation is a standard technique for introducing conductivity-altering impurities into a workpiece. The desired impurity material is ionized in an ion source, and the ions are accelerated to form an ion beam having a specified energy, and the ion beam is directed to the surface of the workpiece. The energetic ions in the ion beam penetrate into the bulk of the workpiece material and are embedded in the crystamne lattice of the workpiece material to form regions of desired conductivity. Too much of this battery is an example of a device that uses a silicon workpiece. Any reduction in the production cost of high-efficiency solar cells or an increase in efficiency will have a positive impact on the implementation of global solar cells. This move will enable this green energy technology to achieve greater availability. A battery of too 爿b is usually composed of a pn semiconductor junction (segjc〇n (juct〇r junction). Fig. 1 is a cross-sectional view of an interdigitated back 201133571 contact (IBC) solar cell. In the ibc solar cell 205, The junction is on a non-iiiUminated surface. In this particular embodiment, the ibc solar cell 205 has an n-type base 206, n+ front surface field (n+ front surface field) 207, passivating iayer 208 and anti-reflective coating 'ARC 209. In an embodiment, the passivation layer 208 may be Si〇2, but other dielectrics may also be used. As indicated by the arrows, photons 214 penetrate the upper surface (or illuminated surface) into the IBC solar cell 205. These photons 214 pass through the ARC 209, ARC 209 to reduce the number of photons 214 that are reflected off the IBC solar cell 205. In an embodiment, the ARC 209 may be composed of a SiNx layer. The photon 214 penetrates the n+ front surface electric field 207. The photon 214 has sufficient energy (greater than the band gap of the semiconductor (ba) Ndgap)) is capable of elevating electrons in the valence band of the semiconductor material to a conduction band. Associated with this free electron is a corresponding positive band in the valence band. Electrical hole (h〇ie). On the back of the IBC solar cell 205 is an emitter region 215. In this particular embodiment, the doping pattern of the emitter region 215 is alternately arranged. The n-back surface field 204 may be about 450 microns wide and doped with phosphorus or other dopants. The + emitter 203 can be approximately 1450 μηη wide and doped with boron or other germanium-type dopants. This doping allows the junctions in the IBC solar cell 205 to function or enhance efficiency. 4
A 201133571 太陽能電池205也包括純化層212、p型接點指(contact finger) 210、η型接點指211以及穿過鈍化層212的接觸 孔(contact hole) 213。 為形成IBC太陽能電池,可能需要用到至少兩個圖案 化摻雜(patterned doping)步驟。這些圖案化摻雜步驟必 須被對準(aligned),以防止p+射極2〇3與n+背表面電 場204重疊。在一實施例中,對準必須在大約5到5〇 之間。不良的對準或重疊可藉由在ρ+射極2〇3與η+背表 面電場2〇4之間預留間隙來防止,但這樣可能會讓ιβ〇太 陽能電池的效能降低(依間隙大小)。甚至在適當 這樣的圖案轉雜可能會耗費巨大的製造成本。例如,微 =硬罩幕(例如’氧化物)可以被使用,但 印貴且需要額外的處理步驟。此外,使用長 ^目田匕 ^啊)來建雜罩幕(shadGw _k)可能很困難觸= ,利用硼植入。因此,此技術領域 一 【發明内容】 本發明概念的第一個態樣提供—種 第-包=== 地摻雜於工件,《形成至二 阻=第二物種。接著,軟草= 單幕 ^明概念的第二個態樣提供-種製造I件的方法,A 201133571 solar cell 205 also includes a purification layer 212, a p-type contact finger 210, an n-type contact finger 211, and a contact hole 213 through the passivation layer 212. To form an IBC solar cell, at least two patterned doping steps may be required. These patterned doping steps must be aligned to prevent the p+ emitter 2〇3 from overlapping the n+ back surface electric field 204. In an embodiment, the alignment must be between about 5 and 5 。. Poor alignment or overlap can be prevented by leaving a gap between the ρ+ emitter 2〇3 and the η+ back surface electric field 2〇4, but this may reduce the performance of the ιβ〇 solar cell (depending on the gap size) ). Even the appropriate patterning of such patterns can be costly to manufacture. For example, a micro = hard mask (e.g., 'oxide) can be used, but it is expensive and requires additional processing steps. In addition, the use of long ^mu Tianyu ^ ah) to build a mask (shadGw _k) may be difficult to touch =, using boron implants. Accordingly, this technical field is a first aspect of the present invention to provide a first-package === doping to a workpiece, "forming to a second resistance = a second species. Then, Soft Grass = Single Screen The second aspect of the concept of Ming provides the method of manufacturing the I piece.
201133571 I r X 其包括透過定義出至少一個隙縫的罩幕將n型物種植入工 件。罩幕被配置於離工件一距離處。n型物種形成至少一 個第一植入區。軟罩幕被施加於第一植入區。型4 植入工件讀種形成至少一個第二植入區 幕阻擋部分P型物種。接著,軟罩幕被移除。 本發明概念的第二個態樣提供一種製造工件的方法, 其包括透過定義出至少一個隙縫的罩幕將p型物種植入工 件。罩幕被配置於離工件一距離處。P型物種形成至少一 個第一植入區。軟罩幕被施加於第一植入區。η型物種被 植入工件。η型物種形成至少一個第二植入區,並且軟罩 幕阻擋部分η型物種。接著,軟罩幕被移除。 為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 ν ° 【實施方式】 本方法的各實施例說明如下並且與離子植入器(ion lmplanter )有關。光束線離子植入器(beamline i〇n :Planter)、電漿掺雜離子植入器(plasma doping ion p anter )聚焦電漿系統(focused plasma system )、電 漿鞘凋控系統(system that m〇dulates a 此從也)或 者ϋ式離子植入器(n〇〇di〇nimpianter)均可使用。然 ^ 氣體擴散(gase〇us diffusion )、爐擴散(furnace ^fUS1〇n)、雷射摻雜(laser doping)、其他電漿處理工 、或者熟知此技藝者所知道的其他方法亦可被用作為毯覆 201133571 °1lxoplf 式(blanket)或選擇性的植入或者摻雜步驟。雖然特定的 η型與p型摻雜劑被列示於此,但亦可改用其他n型或p 型摻雜劑。這裡的實施例並不侷限於本說明書所列示的摻 雜劑。此外,雖然太陽能電池的一個特定實施例被具體列 示出來,但此方法的實施例亦可應用於其他的太陽能電池 設計,或甚至其他工件,例如,半導體晶圓(semic〇nduct〇r wafer)或者平面面板(flatpanel)。因此,本發明並不侷 限於下述之特定實施例。 圖2A〜圖2E是根據本發明實施例所繪示的形成ΙΒ〇 太陽能電池的第一種方式的相關剖視圖。在圖2A中,提 供工件1〇〇〇工件100可以是(例如)即將被形成到太陽 能電池中的石夕基板(silicon substrate )。在圖2B中,η型 物種103的離子被植入工件1〇〇,然而,其他的選擇性掺 雜(selective doping)方法亦可被使用。在此實施例中,η 型物種103透過罩幕1〇4的隙縫1〇5被植入。罩幕104可 以是(例如)模板罩幕(stencil mask)或蔭罩幕(shadow mask),並且可配置於離工件1〇〇 —段距離處。罩幕ι〇4 也可配置在工件100上。罩幕104阻止η型物種1〇3被植 入工件100上的η+背表面電場204以外的區域。在一實施 例中,η型物種103是磷或砷,並且被植入的劑量大約是 lxlO14/平方公分到2xl〇16/平方公分。在一實施例中, 這樣的植入可能讓工件100在η+背表面電場204處的晶格 (crystal lattice)發生非晶化(amorphize)。如果非晶化 發生’ n+背表面電場204可被人眼或者圖案辨識系統 201133571 (pattern recognition system)看到。在另一實施例中,非 晶化未發生’但是n+背表面電場2〇4仍可透過特定圖案辨 識系統而被看到。這些圖案辨識系統可使用(例如)紫外 光(UV)或紅外光(IR)範圍的光線,或者不同顏色的光 線’來尋找n+背表面電場2〇4。 在圖2C中,軟罩幕1〇1 (可以是塗佈於工件1〇〇上的 有機材料)被對準到n+背表面電場204。在一實施例中, 軟罩幕101是墨水、臘或環氧樹脂(epoxy)。例如,聚乙 稀醋酸鹽(polyvinyl acetate,PVA)、聚(曱基丙稀酸酯) (poly(methyl methacrylate),PMMA)、聚(曱基戊二醜亞 胺)(poly(methyl glutarimide),PMGI)、苯盼-曱酸樹脂 (phenol-formaldehyde resin )(像是雙氮基奈 / 盼搭 (DNQ/Novolac) )、SU-8 環氧樹脂(SU-8epoxy)或者 光阻劑(photoresist)均可被使用。軟罩幕101的塗佈可利 用(例如)喷墨印表機(inkjet printer)、網版印刷機(screen printer)、平版印刷(offset lithography)或橡膠壓印(rubber stamp)來達成。在一實施例中’軟罩幕101的塗佈是在單 一步驟中完成的。這樣的話,軟罩幕可被塗佈成n+ 背表面電場204的確切形狀’而不需要額外的圖案化 (patterning)步驟。熱固化(thermal curing)或紫外線固 化(UV curing)可讓軟罩幕1〇1硬化。然而’在其他實施 例中,軟罩幕玎透過乾燥或冷卻而硬化。在另外的實 施例中,軟罩幕1〇1是一面具有黏性的膠帶或者以膠水塗 敷。 8 201133571. J / / ιοριι w軟罩幕101可在工件_的表面上具有大約1 μιη的 ^。在其他實施例中,軟罩幕1〇1在工件1〇〇的表面上 =大約1〇〇奈米(nm)到5〇μπι之間或者不至丨】i〇〇nm _早度。某些餘軟轉1G1的材料可能紐印刷成小於 ⑽的厚度而無損於其邊緣保真度(啦制物),然 而其他材料可印刷成這樣的厚度。 在特疋實施例中,非晶化的n+背表面電場204的位 置以光學方式測量’且軟罩幕1〇1僅被塗佈在工件100上 已被植入而形《n+背表面電場2〇4的區域。這項測量可利 用(例如)電荷耦合裝置(charge c〇upled device,CCD ) 攝影機或其他攝職系絲完成。反射雷射纽(reflective laSersystem)、發光二極體(light emitting diode,LED ) 反射系統或者紅外線系統(IRsystem)亦可被使用。工件 100上的一些位置的影像可被取得,而圖案辨識系統可用 以藉由(例如)工件100的非晶化區域或一基準點來找出 背表面電場204的位置。 在圖2D中,ρ型物種1〇6的離子被植入工件1〇〇。在 一實施例中,ρ型物種1〇6是硼、鋁或鎵。軟罩幕1〇1防 止η+背表面電場204被植入一部分ρ型物種106。反之, Ρ型物種106改而形成ρ+射極203。被軟罩幕1〇1阻擋的 這部分ρ型物種106可超過50%、超過75%、超過90%或 者達到100%。軟罩幕101在圖2Ε中被移除。此移除可為 濕處理(wetprocess)、清洗(rinse)、餘刻步驟(etching step)、灰化步驟(ashing step)或者電漿增強型化學處理 201133571 J / / Ιΰρΐχ (plasma-enhanced chemical process )。在一實施例中,軟 罩幕101透過以稀酒精(dilute alcohol)清洗而移除,例 如使用異丙醇(isopropyl alcohol)。p+射極203與n+背表 面電場204是互補的(complementary)或者透過這種方式 對準的。 雖然特定實施例已揭露於圖2A〜圖2E,但反向處理亦 可實行。因此,p+射極203可先被植入,而軟罩幕1〇1可 配置於這些p+射極203上。圖3A〜圖3E是形成IBC太陽 能電池的第二種方式的相關剖視圖。 在圖3A中,提供工件1〇〇。工件ι〇〇可以是(例如) 即將被形成到太陽能電池中的矽基板。在圖3B中,p型物 種106的離子被植入工件1〇〇。p型物種透過罩幕j〇4 的隙縫105被植入。罩幕1〇4可以是(例如)模板罩幕或 蔭罩幕,並且可配置於離工件100 一段距離處。罩幕1〇4 也可配置在工件100上。此罩幕1〇4阻止p型物種1〇6被 植入工件100上的p+射極203以外的區域。在一實施例 中,P型物種106的植入劑量大約是lxl〇i4/平方公分到 2xl〇 /平方公分。在一實施例中,這樣的植入可能讓工 件100在p+射極203處的晶格發生非晶化。如果非晶化發 生,P+射極203可被人眼或者圖案辨識系統看到。在另二 實施例中,非晶化未發生,但是p+射極2〇3仍可透過特定 圖案辨識系統而被相。這些圖案_系統可制 紫外光(UV)或紅外光(IR)範圍的光線,或者不同顏色 的光線’來尋找p+射極203。 " 201133571 ^ / /ispir 在圖3C中’軟罩幕1〇1(可以是塗佈於工件loo上的 有機材料)被對準到P+射極203。軟罩幕的塗佈可利 用(例如)喷墨印表機、網版印刷機、平版印刷或橡膠壓 印來達成。在一實施例中,軟罩幕101的塗佈是在單一步 驟中完成的。這樣的話’軟罩幕101可被塗佈成P+射極 203的確切形狀,而不需要額外的圖案化步驟。熱固化或 紫外線固化可讓軟罩幕101硬化。然而,在其他實施例中, 軟罩幕101可透過乾燥或冷卻而硬化。 在一特定實施例中,非晶化的p+射極203的位置以光 學方式測量,且軟罩幕101僅被塗佈在工件1〇〇上已被植 入而形成p+射極203的區域。這項測量可利用(例如)電 荷耦合裝置攝影機或其他攝影機系統來完成。反射雷射系 統、發光二極體反射系統或者紅外線系統亦可被使用。工 件100上的一些位置的影像可被取得,而圖案辨識系統可 用以藉由(例如)工件1〇〇的非晶化區域或一基準點來找 出P+射極203的位置。 在圖3D中’ η型物種1〇3的離子被植入工件100。軟 罩幕101防止ρ+射極203被植入一部分η型物種103。反 之’ η型物種103改而形成η+背表面電場204。被軟罩幕 101阻播的這部分η型物種1〇3可超過50%、超過75%、 超過90。/〇或者達到1〇〇%。軟罩幕1〇1在圖3Ε中被移除。 此移除可為濕處理、清洗、蝕刻步驟、灰化步驟或者電漿 增強型化學處理。Ρ+射極203與η+背表面電場204是互補 的或者透過這種方式對準的。 201133571 圖2A〜圖2E與圖3A〜圖3E的實施例能夠摻雜彼此互 補的η型區域與p型區域。在此所描述的實施例使得^型 區域與ρ型區域的對準成為可能,即使這些區域的寬度極 其微小。因此,η型與ρ型區域被對準,而且ρ_η接面(ρ η junction)可以是狹窄的,因為此接面的任何一側的摻雜濃 度均很高。在一特定實施例n型區域和ρ型區域可直 接相鄰彼此平行或彼此區隔。在另一實施例中,在n型 和P型區域之間存在著少於大約100 μιη的隙縫。軟罩幕 1〇1可處理這樣的隙縫。 雖然這裡繪示的是彼此區隔的ρ+射極203與η+背表 面電場204,但ρ+射極203與η+背表面電場2〇4之間可存 ,某種重疊。在一實施例中,此重疊可大約是5〇 μπι,這 旎夠透過調整罩幕1〇4的隙縫1〇5的尺寸、軟罩幕1〇1的 佈置或兩者皆調整而達成。 雖然植入(implantation)特別被描述,但這裡所提到 的某些步㈣可湘其他絲綠(dGpingmethGd)來達 成。例如,氣體擴散、爐擴散可應用於某些步驟。在另一 實施例中,雷射摻雜可被應用在選擇性摻雜的步驟中,代 替透過罩幕植入離子的方式。雷射摻雜可選擇性地加熱塗 敷在工件上的膏料(paste),以形成特定圖案的捧雜區。 物種的選擇性植人也可利用聚焦離子束(f讎ed i〇n beam)來兀成’聚焦離子束可使用或不使用類似罩幕刚 那樣的罩幕。因此,其他為技術領域中具通常知識者所知 道的方法亦可被使用。 12 201133571 ·; / / 1 opi£ 圖4A〜圖4E是根據本發明實施例所繪示的形成IBC 太陽旎電池的第三種方式的相關剖視圖。 圖4A〜圖4E類 似於圖2A〜圖2E的實施例,除了在圖4B中,工件1〇〇透 過使用η型物種103的離子而被選擇性地摻雜。在此實施 例中’η+背表面電場2〇4可利用雷射摻雜、聚焦離子束或 電漿鞘調控系統而形成。雖然特定實施例揭露於圖4Α〜圖 4Ε ’但反向處理亦可實行。因此,ρ+射極203可透過雷射 換雜、聚焦離子束或電漿鞘調控系統而先被摻雜(類似圖 3Α〜圖3Ε),並且軟罩幕1〇1可配置於這些ρ+射極2〇3 上。 —雖然本發明已啸佳實_猶如上織並非用以 限,本發明,任何熟,此技藝者,在賴離本發明之精神 圍内’當可作些許之更動制飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為對本發明概念之揭露取得更加瞭解,請參考本說明 書所附圖式: 圖1是IBC太陽能電池的剖視圖。 圖2Α〜圖2Ε是根據本發明實施例所繪示的 太陽忐電池的第一種方式的相關剖視圖。 圖3Α〜圖3Ε是根據本發明實施例所綠示的 太陽迠電池的第二種方式的相關剖視圖。 圖4Α〜圖4Ε是根據本發明實施例所繪示的形 c 太陽忐電池的第三種方式的相關剖視圖。 13 201133571 【主要元件符號說明】 100 :工件 101 :軟罩幕 103 : η型物種 104 :罩幕 105 :隙縫 106 : ρ型物種 203 : ρ+射極 204 : η+背表面電場 206 : η型基底 207 : η+前表面電場 208、212 :鈍化層 209 :抗反射塗層 210 : ρ型接點指 211 : η型接點指 213 :接觸孔 214 :光子 215 :射極區域201133571 I r X This involves implanting an n-type species into a workpiece through a mask defining at least one slit. The mask is placed at a distance from the workpiece. The n-type species form at least one first implanted region. A soft mask is applied to the first implanted area. The Type 4 implanted workpiece reads at least one second implanted area barrier portion of the P-type species. Then, the soft mask is removed. A second aspect of the inventive concept provides a method of making a workpiece comprising implanting a p-type species into a workpiece through a mask defining at least one slit. The mask is placed at a distance from the workpiece. The P-type species form at least one first implanted region. A soft mask is applied to the first implanted area. The n-type species are implanted into the workpiece. The n-type species forms at least one second implanted region and the soft mask blocks a portion of the n-type species. Then, the soft mask is removed. The above and other objects, features and advantages of the present invention will become more <RTIgt; ν ° [Embodiment] Various embodiments of the method are described below and are related to an ion implanter (ion lmplanter). Beamline ion implanter (beamline i〇n: planter), plasma doping ion implanter (focused plasma system), plasma sheath control system (system that m 〇dulates a This is also a) or a 离子-type ion implanter (n〇〇di〇nimpianter) can be used. However, gas diffusion, furnace diffusion, laser doping, other plasma processing, or other methods known to those skilled in the art may also be used As a blanket, 201133571 °1lxoplf (blanket) or selective implantation or doping steps. Although specific n-type and p-type dopants are listed herein, other n-type or p-type dopants may be used instead. The examples herein are not limited to the dopants listed in this specification. Moreover, although a particular embodiment of a solar cell is specifically listed, embodiments of the method can be applied to other solar cell designs, or even other workpieces, such as semiconductor wafers (semic〇nduct〇r wafer). Or flat panel (flatpanel). Therefore, the invention is not limited to the specific embodiments described below. 2A to 2E are related cross-sectional views showing a first mode of forming a germanium solar cell according to an embodiment of the invention. In Fig. 2A, the workpiece 1 is provided. The workpiece 100 may be, for example, a silicon substrate to be formed into a solar cell. In Fig. 2B, ions of the n-type species 103 are implanted into the workpiece 1 然而, however, other selective doping methods can also be used. In this embodiment, the n-type species 103 is implanted through the slits 1〇5 of the mask 1〇4. The mask 104 can be, for example, a stencil mask or a shadow mask, and can be disposed at a distance from the workpiece. The cover ι 4 can also be disposed on the workpiece 100. The mask 104 prevents the n-type species 1〇3 from being implanted into areas other than the n+ back surface electric field 204 on the workpiece 100. In one embodiment, the n-type species 103 is phosphorus or arsenic and is implanted at a dose of about lxlO14/cm 2 to 2 x 16 / 16 / cm ^ 2 . In one embodiment, such implantation may cause the workpiece 100 to amorphize the crystal lattice at the n + back surface electric field 204. If amorphization occurs, the 'n+ back surface electric field 204 can be seen by the human eye or pattern recognition system 201133571 (pattern recognition system). In another embodiment, amorphization does not occur 'but the n+ back surface electric field 2〇4 is still visible through the particular pattern recognition system. These pattern recognition systems can use, for example, ultraviolet (UV) or infrared (IR) light, or light of different colors to find the n+ back surface electric field 2〇4. In Figure 2C, a soft mask 1〇1 (which may be an organic material applied to the workpiece 1) is aligned to the n+ back surface electric field 204. In one embodiment, the soft mask 101 is ink, wax or epoxy. For example, polyvinyl acetate (PVA), poly(methyl methacrylate) (PMMA), poly(methyl glutarimide), (poly(methyl glutarimide), PMGI), phenol-formaldehyde resin (like DNQ/Novolac), SU-8 epoxy (SU-8epoxy) or photoresist (photoresist) Can be used. The coating of the soft mask 101 can be achieved, for example, by an inkjet printer, a screen printer, an offset lithography, or a rubber stamp. In one embodiment, the application of the flexible mask 101 is accomplished in a single step. In this case, the soft mask can be coated as the exact shape of the n+ back surface electric field 204 without the need for an additional patterning step. Thermal curing or UV curing can harden the soft mask 1〇1. However, in other embodiments, the soft mask curtain is hardened by drying or cooling. In another embodiment, the soft mask 1〇1 is a sticky tape on one side or is applied with glue. 8 201133571. J / / ιοριι w Soft mask 101 can have a ^ of about 1 μηη on the surface of the workpiece_. In other embodiments, the soft mask 1〇1 is on the surface of the workpiece 1 大约 = between about 1 nanometer (nm) and 5 〇μπι or not 〇〇 〇〇 _ early. Some soft-to-1G1 materials may be printed to a thickness less than (10) without compromising their edge fidelity, but other materials may be printed to such a thickness. In a particular embodiment, the position of the amorphized n+ back surface electric field 204 is optically measured 'and the soft mask 1〇1 is only coated on the workpiece 100 and has been implanted to form the n+ back surface electric field 2 〇4 area. This measurement can be done, for example, by a charge c〇upled device (CCD) camera or other camera line. A reflective laSersystem, a light emitting diode (LED) reflection system, or an infrared system (IRsystem) can also be used. An image of some locations on the workpiece 100 can be taken, and the pattern recognition system can be used to find the position of the back surface electric field 204 by, for example, an amorphized region of the workpiece 100 or a reference point. In Fig. 2D, ions of the p-type species 1〇6 are implanted into the workpiece 1〇〇. In one embodiment, the p-type species 1〇6 is boron, aluminum or gallium. The soft mask 1〇1 prevents the η+ back surface electric field 204 from being implanted in a portion of the p-type species 106. Conversely, the scorpion species 106 is modified to form the ρ+ emitter 203. The portion of the p-type species 106 that is blocked by the soft mask 1〇1 may exceed 50%, exceed 75%, exceed 90%, or reach 100%. The soft mask 101 is removed in Figure 2A. This removal may be a wet process, a rinse, an etching step, an ashing step, or a plasma enhanced chemical treatment 201133571 J / / Ιΰρΐχ (plasma-enhanced chemical process) . In one embodiment, the soft mask 101 is removed by washing with dilute alcohol, such as isopropyl alcohol. The p+ emitter 203 and the n+ back surface electric field 204 are complementary or aligned in this manner. Although the specific embodiment has been disclosed in Figures 2A through 2E, reverse processing is also possible. Therefore, the p+ emitter 203 can be implanted first, and the soft mask 1〇1 can be placed on these p+ emitters 203. 3A to 3E are cross-sectional views showing a second mode of forming an IBC solar cell. In Figure 3A, a workpiece 1 is provided. The workpiece ι can be, for example, a ruthenium substrate to be formed into a solar cell. In Fig. 3B, ions of the p-type species 106 are implanted into the workpiece 1〇〇. The p-type species are implanted through the slits 105 of the mask j〇4. The mask 1〇4 can be, for example, a stencil mask or a shadow mask, and can be disposed at a distance from the workpiece 100. The mask 1〇4 can also be disposed on the workpiece 100. This mask 1〇4 prevents the p-type species 1〇6 from being implanted in a region other than the p+ emitter 203 on the workpiece 100. In one embodiment, the implant dose of the P-type species 106 is approximately 1 x l 〇 i4 / square centimeter to 2 x l 〇 / cm ^ 2 . In one embodiment, such implantation may cause the lattice of the workpiece 100 at the p+ emitter 203 to be amorphized. If amorphization occurs, the P+ emitter 203 can be seen by the human eye or pattern recognition system. In the other two embodiments, amorphization does not occur, but p+ emitter 2〇3 can still be phased through a particular pattern recognition system. These pattern systems can produce light in the ultraviolet (UV) or infrared (IR) range, or light of different colors, to find the p+ emitter 203. " 201133571 ^ / /ispir In Fig. 3C, the 'soft mask 1〇1 (which may be the organic material coated on the workpiece loo) is aligned to the P+ emitter 203. The coating of the soft mask can be achieved, for example, by an ink jet printer, a screen printer, lithography or rubber stamping. In one embodiment, the coating of the soft mask 101 is accomplished in a single step. In this case, the soft mask 101 can be applied to the exact shape of the P+ emitter 203 without the need for an additional patterning step. Thermal curing or UV curing can harden the soft mask 101. However, in other embodiments, the soft mask 101 can be hardened by drying or cooling. In a particular embodiment, the position of the amorphized p+ emitter 203 is optically measured, and the soft mask 101 is only coated on the surface of the workpiece 1 that has been implanted to form the p+ emitter 203. This measurement can be done using, for example, a charge coupled device camera or other camera system. Reflective laser systems, light-emitting diode reflection systems, or infrared systems can also be used. An image of some locations on the workpiece 100 can be taken, and the pattern recognition system can be used to find the position of the P+ emitter 203 by, for example, an amorphized region of the workpiece 1 一 or a reference point. The ions of the 'n-type species 1 〇 3 in Fig. 3D are implanted into the workpiece 100. The soft mask 101 prevents the p + emitter 203 from being implanted with a portion of the n-type species 103. The inverse n-type species 103 is modified to form an η+ back surface electric field 204. The portion of the n-type species 1〇3 blocked by the soft mask 101 may exceed 50%, exceed 75%, and exceed 90. /〇 or up to 1%. The soft mask 1〇1 is removed in Figure 3Ε. This removal can be a wet treatment, a cleaning, an etching step, an ashing step, or a plasma enhanced chemical treatment. The Ρ+emitter 203 is complementary to or aligned with the η+ back surface electric field 204. 201133571 The embodiments of Figures 2A to 2E and Figures 3A to 3E are capable of doping n-type regions and p-type regions complementary to each other. The embodiments described herein enable alignment of the ^-type region with the p-type region even if the width of these regions is extremely small. Therefore, the n-type and p-type regions are aligned, and the p_η junction can be narrow because the doping concentration on either side of the junction is high. In a particular embodiment, the n-type region and the p-type region may be directly adjacent to each other in parallel or spaced apart from one another. In another embodiment, there is a gap of less than about 100 μm between the n-type and p-type regions. The soft cover 1〇1 can handle such a slit. Although ρ+ emitter 203 and η+ back surface electric field 204 are separated from each other, there may be some overlap between ρ+ emitter 203 and η+ back surface electric field 2〇4. In one embodiment, the overlap may be approximately 5 〇 μπι, which is achieved by adjusting the size of the slit 1〇5 of the mask 1〇4, the arrangement of the soft mask 1〇1, or both. Although implantation is specifically described, some of the steps mentioned here (4) can be achieved with other silk green (dGpingmethGd). For example, gas diffusion, furnace diffusion can be applied to certain steps. In another embodiment, laser doping can be applied in the step of selectively doping instead of implanting ions through the mask. Laser doping selectively heats the paste applied to the workpiece to form a pattern of doped regions. The selective implantation of species can also be achieved by using a focused ion beam to form a focused ion beam with or without a mask like a mask. Therefore, other methods known to those of ordinary skill in the art may also be used. 12 201133571 ·; / / 1 opi £ FIG. 4A to FIG. 4E are related cross-sectional views showing a third mode of forming an IBC solar cell battery according to an embodiment of the invention. 4A to 4E are similar to the embodiment of Figs. 2A to 2E except that in Fig. 4B, the workpiece 1 is selectively doped by using ions of the n-type species 103. In this embodiment, the 'n + back surface electric field 2 〇 4 can be formed using a laser doped, focused ion beam or plasma sheath control system. Although specific embodiments are disclosed in Figures 4A through 4', reverse processing may also be practiced. Therefore, the ρ+ emitter 203 can be first doped through a laser-exchanged, focused ion beam or plasma sheath control system (similar to FIG. 3A to FIG. 3B), and the soft mask 1〇1 can be configured on these ρ+ The emitter is on 2〇3. - Although the present invention has been exemplified, it is not intended to limit the invention, and any skilled person, skilled in the art, may make some modifications in the spirit of the invention, and thus the present invention The scope of protection is subject to the definition of the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS For a better understanding of the disclosure of the present invention, reference is made to the drawings in the specification: FIG. 1 is a cross-sectional view of an IBC solar cell. 2A-2B are related cross-sectional views of a first mode of a solar cell battery according to an embodiment of the invention. 3A to 3B are related sectional views showing a second mode of a solar cell battery according to an embodiment of the present invention. 4A-4B are related cross-sectional views of a third mode of a c-shaped solar cell according to an embodiment of the invention. 13 201133571 [Description of main component symbols] 100 : Workpiece 101 : Soft mask 103 : η type species 104 : Mask 105 : Slot 106 : ρ type species 203 : ρ + emitter 204 : η + back surface electric field 206 : η type Substrate 207: η+ front surface electric field 208, 212: passivation layer 209: anti-reflection coating 210: p-type contact finger 211: n-type contact finger 213: contact hole 214: photon 215: emitter region