TW201133037A - Image sensing lens and image sensing module - Google Patents

Image sensing lens and image sensing module Download PDF

Info

Publication number
TW201133037A
TW201133037A TW100105146A TW100105146A TW201133037A TW 201133037 A TW201133037 A TW 201133037A TW 100105146 A TW100105146 A TW 100105146A TW 100105146 A TW100105146 A TW 100105146A TW 201133037 A TW201133037 A TW 201133037A
Authority
TW
Taiwan
Prior art keywords
lens
image
imaging
single lens
imaging lens
Prior art date
Application number
TW100105146A
Other languages
Chinese (zh)
Other versions
TWI434071B (en
Inventor
Norimichi Shigemitsu
Hiroyuki Hanato
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kk filed Critical Sharp Kk
Publication of TW201133037A publication Critical patent/TW201133037A/en
Application granted granted Critical
Publication of TWI434071B publication Critical patent/TWI434071B/en

Links

Landscapes

  • Lenses (AREA)

Abstract

An image sensing lens is arranged such that the image surface is present at a location shifted away from a first location in an optical axis direction by a distance Pdis (where 0 < Pdis), the first location being a location at which an image formed of the object has a resolving power which is maximal at a center of the image, that 0.014 < Pdis/f < 0.035, where f is an overall focal length of the image sensing lens, that 0.18 < d/d2 < 0.30, where d is a thickness at a center of the single lens, and d2 is a length in air from a center of a first surface of the single lens to the image surface, the first surface facing the image surface, and that the concave surface and the first surface of the single lens are each an aspheric surface.

Description

201133037 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種以搭载於便攜終端之數位相機等為目 的之攝像透鏡及攝像模組。 【先前技術】 作為攝像模組,開發有各種内置固體攝像元件小型數位 相機及數位視訊單元等。特別係資訊便攜終端及行動電話 機等之便攜終端普及的近年來,相對於面向新興國家之普 及機之行動電話機中所搭载的相機模組、及便攜終端之攝 像頭中搭載之攝像模組,要求通過簡單構成及製程技術而 實現廉價化。為滿足該要求,對於使用丨個透鏡而構成之 攝像透鏡之需求增大。 於使用1個透鏡構成之攝像透鏡令,作為可實現良好解 像能力之技術’於專利文獻1及2中揭示有一種朝向物體 (被攝體)側及像面(成像面)側之面之兩方均為凸面父攝像 透鏡。 又,於專利文獻3中揭示有一種於將位於物體側之第1面 設為凹面而成之凹凸狀之透鏡本體之物體側配置光闌,且 上述透鏡本體係以滿足以下之條件(A)〜(C)之方式構成的 攝像透鏡。 (A) Y'/flg 0.6 (B) 0.9^ Dt/Dc^ 0.5 (C) 1.0 ^ Ap2/Am2^ 0.9 其中, 154059.doc 201133037 f 1:透鏡系統整體之焦距 Y':最大像高(像高1.0) D「透鏡之包含至少1個光學面之區域中之最薄部分 之厚度[Technical Field] The present invention relates to an imaging lens and an imaging module for a digital camera or the like mounted on a portable terminal. [Prior Art] As a camera module, various compact digital cameras and digital video units with built-in solid-state imaging devices have been developed. In particular, in recent years, mobile terminals such as information portable terminals and mobile phones have been popularized, and camera modules mounted in mobile phones for mobile phones in emerging countries and camera modules mounted in cameras of mobile terminals are required to pass. Simple construction and process technology to achieve cost reduction. To meet this requirement, there is an increasing demand for an image pickup lens constructed using one lens. An image pickup lens using one lens is a technique capable of achieving a good image-capturing capability. In Patent Documents 1 and 2, a surface facing the object (subject) side and the image plane (imaging surface) side is disclosed. Both sides are convex father camera lenses. Further, Patent Document 3 discloses that a diaphragm is disposed on the object side of the lens main body in which the first surface on the object side is a concave surface, and the lens system satisfies the following condition (A). An imaging lens constructed in the manner of ~(C). (A) Y'/flg 0.6 (B) 0.9^ Dt/Dc^ 0.5 (C) 1.0 ^ Ap2/Am2^ 0.9 where 154059.doc 201133037 f 1: focal length of the lens system as a whole Y': maximum image height (image Height 1.0) D "Thickness of the thinnest part of the area of the lens containing at least one optical surface

Dc :透鏡之中心厚度Dc: the center thickness of the lens

Ap2 :像面側第2面之有效半徑(有效光線通過之部分之 最大半徑)Ap2 : effective radius of the second side of the image side (the maximum radius of the portion through which the effective light passes)

Am2 :像面側第2面之最大半徑。 作為使用凹凸透鏡而實現良好之削象能办之技術,另外 可列舉專利文獻4所揭示之攝像透鏡。 [先前技術文獻] [專利文獻] 。[專利文獻1]日本么開專利公報「日本專利特開⑽7% 號公報(2003年12月3日公開)」 [專利文獻2]日本公開相公報「日本相特開平6-_9 號公報(1994年3月29日公開)」 曰本專利特開2003-57538 曰本專利特開2002-98885 [專利文獻3]日本公開專利公報 號公報(2003年2月26日公開 [專利文獻4]曰本公開專利公報 號公報(2002年4月5日公開)」 【發明内容】 [發明所欲解決之問題] 狀、 良好 154059.doc 201133037 地修正畸變’另一方面,若視角變廣,則會產生使物體成 像而形成之像周邊之解像度劣化、或者焦比變得過大而使 像變暗等問題。 如專利文獻1及2所揭示之由兩面為凸形狀之丨個透鏡構 成之攝像透鏡雖可良好地修正畸變,但需要與玻璃材料同 等之光學f數,在塑膠材料水準下難以使{象面一致。由兩 面為凸形狀之1個透鏡構成之攝像透鏡係畸變之修正變得 办易且對廣角有效之基本構成,故可大量實施,但作為面 向便攜終端之攝像透鏡等之、要求52。以上之水平視角之 廣角透鏡,於使物體成像而形成之像之周邊,難以確保弧 矢像面之所需之解像度,故產生實用困難之問題。 專利文獻3所揭示之攝像透鏡係相對於將位於物體側之 第1面設為凹面而成之凹凸狀之透鏡,設定最佳條件 (A)〜(C),但該條件(A)〜(C),對於廣角且小型之光學系統 而言,並非可使物體成像而形成之像周邊獲得良好解像能 力的最佳條件設定。 即,條件(A)係指視角約30。以上,視角約3〇〇以上係相 機模組所必需之規格值,與用以獲得良好之攝像透鏡之條 件相比係攝像透鏡所要求之規格。又,條件(B)係與凹凸 透鏡之凹卩y置相關之規定,但滿足此並不一定能獲得且有 良好之解像能力之攝像透鏡。又,條件(C)與攝像透鏡之 光學特性自身之關聯不大。 如專利文獻3及4所揭示之由1個凹凸透鏡構成之攝像透 鏡’係與由兩面凸形狀之1個透鏡構成的攝像透鏡同樣 154059.docAm2 : The maximum radius of the second side of the image side. As a technique for achieving good image shaving using a meniscus lens, an image pickup lens disclosed in Patent Document 4 can be cited. [Prior Art Document] [Patent Literature]. [Patent Document 1] Japanese Laid-Open Patent Publication (Japanese Laid-Open Patent Publication No. (10) 7% (published on Dec. 3, 2003). [Patent Document 2] Japanese Laid-Open Publication No. Japanese Patent Publication No. Hei 6-_9 (1994)公开 专利 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 Published Patent Gazette No. (published on Apr. 5, 2002) [Summary of the Invention] [Problems to be Solved by the Invention] Shape, Good 154059.doc 201133037 Correcting Distortion' On the other hand, if the angle of view becomes wider, it will be generated. The resolution of the image formed by imaging the object is deteriorated, or the focal length is excessively large, and the image is darkened. The image pickup lens including the two lenses having convex shapes on both sides may be used as disclosed in Patent Documents 1 and 2. Correctly correcting the distortion, but it is necessary to have the same optical f-number as the glass material, and it is difficult to make the {image surface uniform at the level of the plastic material. Correction of the distortion of the imaging lens system composed of one lens having a convex shape on both sides becomes easy and For wide angle Although it is a basic configuration, it can be implemented in a large number of ways. However, as a wide-angle lens that requires 52 or more horizontal viewing angles, it is difficult to ensure the sagittal image surface as an image formed by imaging an object. The imaging lens disclosed in Patent Document 3 sets optimal conditions (A) to (1) with respect to a lens having a concave surface in which the first surface on the object side is concave. C), but the conditions (A) to (C) are not optimal for the wide-angle and small-sized optical system, and the optimum conditions for obtaining a good resolution of the image formed by imaging the object are obtained. The angle of view is about 30. Above, the angle of view is about 3 inches or more, and the specification value necessary for the camera module is the specification required for the image pickup lens compared with the condition for obtaining a good image pickup lens. Further, the condition (B) It is a specification relating to the concave y of the meniscus lens, but an imaging lens which does not necessarily obtain and has good resolution is satisfied. Moreover, the condition (C) is not related to the optical characteristic of the imaging lens itself. As in Patent Documents 3 and 4 disclosed in the imaging lens composed of a meniscus lens 1 'by the lens system and the imaging lenticular lens shape of a similarly configured 154059.doc

201133037 地’難以確保使物體成像而形成之像周邊之所需的解像 度。進而,由丨個凹凸透鏡構成之攝像透鏡產生會”起較 大畸變之問題。 本發明係鑒於上述問題研究而成者,其目的在於提供一 種於使物體成像而形成之像之周邊可獲得良好之解像能力 的攝像透鏡及攝像模組。 [辑決問題之技術手段j 為解決上述問題,本發明之攝像透鏡之特徵在於,其係 自物體側朝向像面側依序具備孔徑光闌及單透鏡、且上述 單透鏡為凹面朝向物體側之凹凸透鏡者,且,將自使物體 成像而形成之像之中心處解像能力成為最大之位置起、於 光軸方向上經移動距離Pdis(其中〇&lt;Pdis)之位置設為上述 像面,且滿足0.014&lt;Pdis/f&lt;〇〇352 關係及〇 〇.3〇之關係’上述單透鏡其朝向物體側之面及朝向像面側 之面之兩方均為非球面。#中’ f係攝像透鏡整體之焦 距’ d係單透鏡之中心之厚度’们係單透鏡之自朝向像面 側之面之中心直至像面為止的空氣換算長度。 根據上述構成,將像面配置為自使物體成像而形成之像 中處解像月b力成為最大的位置起於光軸方向上移動距 離Pdis,藉此可提高像周邊之解像能力。 再者,於Pdls/f為0.014以下之情形時,存纟使物體成像 而形成之像之周邊的解像能力不充分之虞,為〇〇35以上 之It七時’存在像之中心之解像能力不充分之虞。若考慮 4方面,則Pdis/f必須為超過〇〇14且小於〇〇35&lt;5 154059.doc 201133037 又,於d/d2為0.18以下之情形時,單透鏡變得過薄有 可此因可適用之製造程序受限而導致攝像透鏡之生產性下 降,並且難以實現廣角之攝像透鏡,為〇3〇以上之情形 時,存在畸變及散光像差變大且解像能力劣化之虞。若考 慮該等方面,則d/d2必須為超過018且小於〇3〇。 又本發明之攝像模組之特徵在於具備:本發明之攝像 透鏡’·及固體攝像元件,其將利用上述攝像透鏡使物體成 像所形成之像作為光而接收。 根據上述構成,可實現一種具有廣視角、小型且具有良 好之解像能力之數位相機等之攝像模組。 [發明之效果] 如上所述,本發明之攝像透鏡構成為,自物體側朝向像 面側依序具備孔徑光闌及單透鏡,上述單透鏡係凹面朝向 物體側之凹凸透鏡,且將自使物體成像而形成之像之中心 處解像能力成為最大之位置起、於光軸方向上經移動距離 Pdis(其中〇&lt;Pdis)之位置設為上述像面,且滿足〇〇14&lt; PdiS/f&lt;0.035之關係、及〇.18&lt;d/d2&lt;〇 3〇之關係,上述單透 鏡其朝向物體側之面及朝向像面側之面之兩方均為非球 面。其中,f係攝像透鏡整體之焦距,d係單透鏡之中心之 厚度,d2係單透鏡之自朝向像面側之面之中心至像面為止 的空氣換算長度。 因此,本發明貫現於使物體成像而形成之像之周邊可獲 得良好之解像能力的效果。 【實施方式】 154059.doc 201133037 圖1係表*本發明之—實施形態之攝像透鏡1GG之構成之 剖面圖。 圖2係表示本發明之其他實施形態之攝像透鏡2〇〇之構成 之剖面圖。 Θ係表示本發明之進而其他實施形態之攝像透鏡之 構成之剖面圖。 圖4係表示本發明之其他實施形態之攝像透鏡棚之構成 之剖面圖。 攝像透鏡100、攝像透鏡2〇〇、攝像透鏡300、及攝像透 鏡400分別具有以下之基本構成。 再者,以下為便於說明,將攝像透鏡1〇〇、攝像透鏡 2〇〇、攝像透鏡300、及攝像透鏡4〇〇中之任一攝像透鏡稱 為「攝像透鏡1」而進行說明。 [攝像透鏡1之基本構成] 圖1〜圖4均係表示攝像透鏡丨之包含γ(圖紙上下)方向及 ζ(圖紙左右)方向之剖面的圖。ζ方向表示自物體3側朝向 像面S5側之方向、及自像面S5侧朝向物體3側之方向,攝 像透鏡1之光軸La係於該z方向上延伸。與攝像透鏡丨之光 軸La相對之法線方向係自某光軸。上於包含X方向及γ方 向之面上呈一直線地延伸之方向。 攝像透鏡1係自物體3侧朝向像面S5側依序具備孔徑光闌 2、單透鏡L'及護罩玻璃cg而構成者。 體而。,孔徑光闌2係設置於單透鏡l中之朝向物體3 側之面(透鏡物體側面)S1之周圍。設置孔徑光闌2之目的 154059.doc 201133037 ?為使入射至攝像透鏡1之光可適當地通過單透鏡L·, 而限制所入射之光之轴上光束的直徑。 ,物體3係攝像透鏡1成像之對象物,換言之,係作為攝像 ’兄之攝像對象的被攝體。圖丨〜圖4中為便於說明係以物 體3與攝像透鏡1非常接近之方式進行圖示,但實際上物體 3與攝像透鏡1之間隔例如為12〇〇mm左右。 單透鏡L係朝向物體3側之面“為凹面之周知之凹凸透 鏡。因此,單透鏡L之朝向像面S5側之面(透鏡像侧面)S2 為凸面又單透鏡L之面S1及S2之兩面均為非球面。 再者,所謂透鏡之凸面,係指透鏡之球狀表面向外側彎 曲之。P为。所s胃透鏡之凹面,係指透鏡向中空彎曲之部 分、即透鏡向内側彎曲之部分。 攝像透鏡1之光轴La係於將單透鏡L之面S1之中心sl、與 單透鏡L之面S2之中心S2連結之線段上,在z方向上呈大致 一直線地延伸。 護罩玻璃CG係設於單透鏡L與像面S5之間。護罩玻璃 CG藉由覆蓋像面S5而保護像面S5免受物理損傷等者。護 罩玻璃CG具有朝向物體3側之面(物體側面)S3、及朝向像 面S5側之面(像側面)S4。 像面S5係相對於攝像透鏡1之光轴La垂直且形成有像之 面’實像可於像面S5所設之未圖示之螢幕上觀察到。又, 具備攝像透鏡1之攝像模組中,於像面s 5上配置有攝像元 件。 距離d係自中心s 1至中心s2為止之距離,且對應於單透 154059.doc -10- 201133037 鏡L之中心之厚度。 距離d2係自中心2至像面S5為止之距離(空氣換&amp;,且 對應於單透鏡L之自朝向像面S5侧之面S2之中心a至像面 S5為止的空氣換算長度。所謂空氣換算長度,係指介質之 幾何學長度除以該介質之折射率所得之長产。 距離d,係自#透鏡L之面S1之有效孔徑之端部^至單透 鏡L之面S2之有效孔徑之端部e2為止的距離。或者,距離 d’係自單透鏡L之面S1之有效孔徑之端部ea至單透鏡^之面 S2之有效孔徑之端部eb為止的距離。距離士係對應於單透 鏡L之有效孔徑之端部之厚度。 惟實際之攝像透鏡1當然為立體,因此,端部U或者α 相當於面81之有效孔徑之緣(例如圓周)之全體,端部。或 者eb相當於面S2之有效孔徑之緣(例如圓周)之全體。該情 形時,距離d,可解釋為單透鏡[之含有至少丨個光學面^區 域中之最薄部分的Z方向之尺寸。 距離d、d2、及d·均為z方向之距離(尺寸),其單位為 mm(毫米)。 像面S5係配置為在利用攝像透鏡丨使物體3成像所形成之 未圖示之像之中心處解像能力成為最大的位置仏起,於z 方向即光軸La之方向上經移動距離pdis(其中〇&lt;pdis)之位 置。 即,位置Sa可解釋為在相當於像之中心之像高h〇處,攝 像透鏡1之解像能力高於其他像高,且像高h〇之攝像透鏡i 之解像能力高於其他像面位置之位置。自該位置Sa起於z 154059.doc 11 201133037 方向上經位移距離Pdis之位置處’存在攝像透鏡1之像面 S5 ° 而且,上述距離Pdis係與攝像透鏡i整體之焦距f(詳細内 容於下文敍述)之間滿足以下之關係式(1)之值。 0.014&lt;Pdis/f&lt;0.035 … • · · (1) 攝像透鏡1係將像面S5配置為自位置以起於相對於光轴 La平行之Z方向上經移動距離以^者。藉此,於藉由攝像 透鏡1使物體3成像所形成之像之中心處,與將像面S5作為 位置Sa之情形時相比解像能力雖下降,但在像之周邊,與 將像面S5作為位置Sa之情形時相比可提高解像能力。 再者’於Pdis/f為0.014以下之情形時,存在使物體3成 像而形成之像之周邊之解像能力不充分之虞;為〇〇35以 上之情形時,存在像之中心之解像能力不充分之虞。若考 慮該等方面,為使像之中心之解像能力不過度降低且提高 像之周邊的解像能力,Pdis/f必須為超過〇 〇14且小於 0.035 。 又,攝像透鏡1在距離d與距離d2之間滿足以下之關係式 (2)之值。 〇.18&lt;d/d2&lt;0.30 · · . (2) 於d/d2為0.18以下之情形時,單透鏡l會變得過薄,有可 能因可適用之製造程序受限而導致攝像透鏡1之生產性下 降’並且難以實現廣角之攝像透鏡i ;為〇 3〇以上之情形 時’存在畸變及散光像差變大使得解像能力劣化之虞。若 考慮該等方面,則d/d2必須超過〇.18且小於0.3 0。 154059.doc201133037 It is difficult to ensure the resolution required for the image to be formed around the object. Further, the imaging lens composed of a single meniscus lens causes a problem of large distortion. The present invention has been made in view of the above problems, and an object thereof is to provide a good periphery around an image formed by imaging an object. In order to solve the above problems, the imaging lens of the present invention is characterized in that it has an aperture stop sequentially from the object side toward the image surface side. a single lens in which the single lens is a concave-convex lens whose concave surface faces the object side, and a moving distance Pdis (in the optical axis direction from a position at which the resolution at the center of the image formed by imaging the object is maximized) Wherein the position of 〇&lt;Pdis) is set as the image plane, and satisfies the relationship of 0.014 &lt; Pdis/f &lt; 〇〇 352 and 〇〇. 3 ' 'the surface of the single lens facing the object side and the side facing the image side Both sides of the surface are aspherical. The focal length of the entire 'f-type imaging lens' d is the thickness of the center of the single lens, which is the center of the surface of the single lens from the side facing the image surface to the image surface. According to the above configuration, the image plane is arranged such that the position at which the image b is the largest in the image formed by imaging the object is moved by the distance Pdis in the optical axis direction, whereby the image periphery can be improved. In addition, when the Pdls/f is 0.014 or less, the resolution of the periphery of the image formed by imaging the object is insufficient, and it is the image of the existence of It35 or more. The resolution of the center is not sufficient. If considering 4 aspects, Pdis/f must be more than 〇〇14 and less than 〇〇35&lt;5 154059.doc 201133037. When d/d2 is below 0.18, The single lens becomes too thin, which may result in a decrease in the productivity of the image pickup lens due to the limited manufacturing process, and it is difficult to realize a wide-angle image pickup lens. When 〇3〇 or more, there is distortion and astigmatic aberration. In view of the above, the d/d2 must be more than 018 and less than 〇3〇. The camera module of the present invention is characterized by having: the imaging lens of the present invention and solid Image sensor, which will utilize According to the above configuration, an image pickup module that has a wide viewing angle, a small size, and a good resolution can be realized by the image pickup lens. [Effect of the Invention] In the imaging lens of the present invention, the aperture stop and the single lens are sequentially provided from the object side toward the image surface side, and the single lens concave surface faces the concave-convex lens on the object side, and the image formed by imaging the object is formed. The position where the resolution at the center becomes the largest position, and the position of the moving distance Pdis (where 〇&lt;Pdis) is set in the optical axis direction as the image plane, and satisfies the relationship of 〇〇14&lt;PdiS/f&lt;0.035, and 〇.18&lt;d/d2&lt;〇3〇, both of the surface facing the object side and the surface facing the image surface side of the single lens are aspherical surfaces. Here, f is the focal length of the entire imaging lens, d is the thickness of the center of the single lens, and d2 is the air-converted length of the single lens from the center of the surface on the image surface side to the image surface. Therefore, the present invention achieves the effect of obtaining a good resolution ability by the periphery of an image formed by imaging an object. [Embodiment] 154059.doc 201133037 Fig. 1 is a cross-sectional view showing the configuration of an image pickup lens 1GG according to an embodiment of the present invention. Fig. 2 is a cross-sectional view showing the configuration of an image pickup lens 2 according to another embodiment of the present invention. The bismuth system is a cross-sectional view showing the configuration of an imaging lens according to still another embodiment of the present invention. Fig. 4 is a cross-sectional view showing the configuration of an image pickup lens shed according to another embodiment of the present invention. The imaging lens 100, the imaging lens 2, the imaging lens 300, and the imaging lens 400 have the following basic configurations. In the following, for convenience of explanation, any of the imaging lens 1 〇〇, the imaging lens 2 〇〇, the imaging lens 300, and the imaging lens 4 称 will be referred to as "imaging lens 1". [Basic Configuration of Image Pickup Lens] Figs. 1 to 4 are views each showing a cross section including an γ (drawing up and down) direction and a ζ (left and right drawing) direction of the image pickup lens. The ζ direction indicates the direction from the object 3 side toward the image plane S5 side and the direction from the image plane S5 side toward the object 3 side, and the optical axis La of the photographic lens 1 extends in the z direction. The normal direction opposite to the optical axis La of the imaging lens is from an optical axis. The direction extending in a line extending in a direction including the X direction and the γ direction. The imaging lens 1 is configured by sequentially providing an aperture stop 2, a single lens L', and a cover glass cg from the object 3 side toward the image surface S5 side. Body. The aperture stop 2 is disposed around the surface (the side of the lens object) S1 of the single lens 1 facing the object 3 side. The purpose of setting the aperture stop 2 is 154059.doc 201133037. The light incident on the imaging lens 1 can be appropriately passed through the single lens L·, and the diameter of the beam on the axis of the incident light is limited. The object 3 is an object to be imaged by the image pickup lens 1, in other words, an object to be imaged by the camera. In the drawings, the illustration of the object 3 is very close to the imaging lens 1 for convenience of explanation. However, the distance between the object 3 and the imaging lens 1 is, for example, about 12 〇〇mm. The single lens L is a surface-oriented concave-convex lens that faces the object 3 side. Therefore, the surface (the lens image side surface) S2 of the single lens L facing the image surface S5 side is a convex surface and the surfaces S1 and S2 of the single lens L. The convex surface of the lens means that the spherical surface of the lens is bent outward. P is the concave surface of the stomach lens, which means that the lens is bent toward the hollow portion, that is, the lens is bent inward. The optical axis La of the imaging lens 1 is formed on a line segment connecting the center s1 of the surface S1 of the single lens L and the center S2 of the surface S2 of the single lens L, and extends substantially linearly in the z direction. The glass CG is provided between the single lens L and the image surface S5. The cover glass CG protects the image surface S5 from physical damage by covering the image surface S5, etc. The cover glass CG has a surface facing the object 3 side (object S3 and a surface (image side surface) S4 facing the image surface S5 side. The image surface S5 is perpendicular to the optical axis La of the imaging lens 1 and forms an image surface. The real image can be set on the image surface S5. Observed on the screen of the display. Also, in the camera module with the camera lens 1, the image An imaging element is disposed on s 5. The distance d is the distance from the center s 1 to the center s2, and corresponds to the thickness of the center of the lens L. 154059.doc -10- 201133037. The distance d2 is from the center 2 to the image plane The distance to S5 (air change &amp; and corresponds to the air conversion length from the center a to the image plane S5 of the surface S2 on the side toward the image surface S5 side of the single lens L. The air conversion length refers to the geometric length of the medium. The long-term yield obtained by dividing the refractive index of the medium. The distance d is the distance from the end portion of the effective aperture of the surface S1 of the lens L to the end portion e2 of the effective aperture of the surface S2 of the single lens L. The distance d' is the distance from the end ea of the effective aperture of the surface S1 of the single lens L to the end eb of the effective aperture of the surface S2 of the single lens. The distance line corresponds to the end of the effective aperture of the single lens L. The thickness of the portion. The actual image pickup lens 1 is of course three-dimensional. Therefore, the end portion U or α corresponds to the entire edge (for example, the circumference) of the effective aperture of the surface 81, or the end portion, or eb corresponds to the effective aperture of the surface S2. The entire edge (for example, the circumference). In this case, the distance d It can be interpreted as a single lens [the size of the Z direction containing at least the thinnest part of the optical surface area. The distances d, d2, and d· are the distances (sizes) in the z direction, and the unit is mm (mm) The image plane S5 is arranged such that the image forming capability at the center of the image (not shown) formed by imaging the object 3 by the imaging lens 仏 is raised, and is moved in the z direction, that is, the direction of the optical axis La. The position of the distance pdis (where 〇&lt;pdis). That is, the position Sa can be interpreted as the image height h〇 at the center of the image, the resolution of the image pickup lens 1 is higher than other image heights, and the image height h〇 The resolution of the imaging lens i is higher than that of other image plane positions. From the position Sa, z 154059.doc 11 201133037 The position of the displacement lens Pdis in the direction is 'the image plane S5 of the imaging lens 1 exists. Moreover, the above distance Pdis is the focal length f of the entire imaging lens i (details below) The value of the relationship (1) below is satisfied between the narratives. 0.014&lt;Pdis/f&lt;0.035 ... (1) The imaging lens 1 is configured such that the image plane S5 is moved from the position in the Z direction parallel to the optical axis La by a moving distance. Thereby, the center of the image formed by imaging the object 3 by the imaging lens 1 is lower than the resolution when the image surface S5 is set to the position Sa, but the image surface is formed around the image. S5 can improve the resolution as compared to the case of the position Sa. In addition, when Pdis/f is 0.014 or less, there is a problem that the resolution of the periphery of the image formed by imaging the object 3 is insufficient; in the case of 〇〇35 or more, there is a solution of the center of the image. Insufficient capacity. If you consider these aspects, Pdis/f must be greater than 〇 14 and less than 0.035 in order to reduce the resolution of the center of the image and to improve the resolution of the image. Further, the imaging lens 1 satisfies the value of the following relational expression (2) between the distance d and the distance d2. 18.18&lt;d/d2&lt;0.30 · (2) When the d/d2 is 0.18 or less, the single lens 1 may become too thin, and the imaging lens 1 may be caused by a limited manufacturing procedure. The productivity is lowered' and it is difficult to realize the wide-angle imaging lens i; in the case of 〇3〇 or more, 'there is distortion and the astigmatic aberration becomes large, so that the resolution of the image is deteriorated. If these aspects are considered, d/d2 must exceed 〇.18 and be less than 0.30. 154059.doc

S •12· 201133037 又’攝像透鏡1在單透鏡L之距離d與距離d’之間滿足以 下之關係式(3)之值。 0.5&lt;d,/d&lt;0.9 · · · (3) 於d'/d為0.5以下之情形時,單透鏡l會變得過薄,有可 能因可適用之製造程序受限而導致攝像透鏡〗之生產性下 降;為0.9以上之情形時,難以修正像之周邊之解像能 力。若考慮該等方面,則d,/d較佳為超過〇.5且小於09。 又’攝像透鏡1其單透鏡L之有效孔徑之最薄部分之厚度 (圖1〜圖4中為距離d’)較佳為超過150 μιη,藉此,單透鏡L 不會變得過薄,故可實現生產性優異者。 再者,圖1〜圖4中為便於說明,對於單透鏡L僅圖示其有 效孔徑,然而單透鏡L有時於該有效孔徑之外周部形成有 平面。卩,但即便於該情形時,單透鏡L之有效孔徑之最薄 部分之厚度仍較佳為超過150 μιη » 又,攝像透鏡1之焦比較佳為小於;3。攝像透鏡丨之焦比 係以攝像透鏡1之等效焦距除以攝像透鏡1之入射瞳徑所得 “值表示。攝像透鏡1藉由將焦比設為小於3,可增大受光 光夏,且良好地修正色像差,故可獲得較高之解像能力。 又,單透鏡L之與d射線(波長:587 6 nm)相對之折射率 μ。為超過1.4,與d射線相對之阿貝數較佳為超過43。所 :阿貝數係指表示與光之分散相對之折射度之比之光學介 η $數即,所s胃阿貝數係指使不同波長之光向不同方 折折射之程度,高阿貝數之介質相對於不同波長之光線之 之莸度引起的分散變少。藉此,攝像透鏡丨可對單透 154059.doc •13- 201133037 鏡L應用具有低折射率、且高分散值之光學常數之材料, 故可增加構成單透鏡L之材料之選擇項,藉此可實現不受 廉價材料選擇及材料限制之製造程序之應用。關於製造程 序之詳細說明將於下文敍述。 又’構成單透鏡L之材料較佳為熱硬化性樹脂或者 UV(Ultra Voilet,紫外線)硬化性樹脂。熱硬化性樹脂係具 有藉由賦予特定量以上之熱而使狀態自液體變化為固體之 特性的樹脂。UV硬化性樹脂係具有藉由照射特定強度以 上之紫外線而使狀態自液體變化為固體之特性的樹脂。 藉由將單透鏡L構成為含有熱硬化性樹脂或者uv硬化性 樹脂,於攝像模組之製造階段,可將複數之單透鏡L成形 為樹脂,從而製作下述透鏡陣列,進而可對攝像透鏡j進 行回焊安裝。 然而,除此之外單透鏡L亦可為塑膠透鏡或者玻璃透鏡 等。 攝像透鏡100、攝像透鏡200、攝像透鏡3〇〇、及攝像透 鏡400均構成為將自位置Sa起向物體3側移動pdis後之位置 設為像面S5,但亦可構成為將自位置以起向物體3之相反 側移動Pdis後之位置設為像面S5。 [攝像透鏡100之MTF及像差特性] 圖5係表示攝像透鏡! 〇〇之、散焦MTF即縱軸所示之 MTF(單位:無)、與橫軸所示之焦點位移位置(單位: 之關係的曲線。 圖6係表示攝像透鏡100之、縱轴所示之MTF、與橫轴所 154059.doc -14· 201133037 不之空間頻率(單位:lp/mm)之關係的曲線。 圖7係表示攝像透鏡1〇〇之、縱軸所示之MTF、與橫軸所 示之像高(單位:mm)之關係的曲線。 圖8係表示攝像透鏡100之各種像差之特性之曲線,分別 於(a)表示散光像差,於(b)表示_變。 再者,於圖5〜圖7、圖9〜圖11、圖13〜圖15、圖17〜圖19 中分別表示之各像高,係以絕對值表現以利用攝像透鏡1 而使物體3成像所形成之像之中心為基準的像之高度,但 亦可以相對於最大像高之比例進行表現,且絕對值與相對 於最大像高之比例之間分別具有以下之對應關係。 0.0000 mm=像高h0(像之中心) 〇,1400 mm=像高h0.2(相當於最大像高之2〇%之高度) 〇_2800 mm=像高h0.4(相當於最大像高之40%之高度) 0.4200 mm=像高h0.6(相當於最大像高之60%之高度) 0.5 600 mm=像高h0.8(相當於最大像高之80%之高度) 0.7000 mm=像高h 1.0(最大像高) 圖5、及下述圖9、圖13、及圖17均例示有空間頻率為 「奈奎斯特頻率/4」時之、與像高h0、h0.2、h0.4、h0.6、 h0.8、及hl.O之各個相關之切向像面(T)及弧矢像面(S)的各 特性。 圖6、及下述圖1〇、圖14、及圖18均例示有空間頻率為 0~「奈奎斯特頻率/2」時、與像高h0、h0.2、h0.4、 h0.6、Ρι0·8、及hl.O之各個相關之切向像面(T)及弧矢像面 (S)的各特性。 154059.doc • 15· 201133037 圖7、及下述圖11 圖1 5、及圖1 9均例示有空間頻率為 「奈奎斯特頻率/4」及「奈奎斯特頻率/2」時之、與像高 hO〜hl.O相關之切向像面及弧矢像面的各特性。 再者上述$奎斯特頻率係設為與適於與攝像透鏡!組 合之感測器(固體攝像元件)之奈奎斯特頻率相對應之值, 且係根據該感測器之像素間距而計算出之可解像的空間頻 率之值。I體而言’該感測器之奈奎斯特頻率N㈧(單 位:lp/mm)係藉由S • 12· 201133037 Further, the image pickup lens 1 satisfies the value of the following relational expression (3) between the distance d of the single lens L and the distance d'. 0.5&lt;d, /d&lt;0.9 · · · (3) When d'/d is 0.5 or less, the single lens 1 may become too thin, and the imaging lens may be limited due to a limited manufacturing procedure. The productivity of the product is degraded; when it is 0.9 or more, it is difficult to correct the resolution ability of the image around it. If these aspects are considered, d, /d is preferably more than 〇5 and less than 09. Further, the thickness of the thinnest portion of the effective aperture of the single lens L of the imaging lens 1 (distance d' in FIGS. 1 to 4) is preferably more than 150 μm, whereby the single lens L does not become too thin. Therefore, it is possible to achieve excellent productivity. Further, in Fig. 1 to Fig. 4, for convenience of explanation, only the effective aperture is shown for the single lens L. However, the single lens L may have a flat surface formed on the outer periphery of the effective aperture.卩, but even in this case, the thickness of the thinnest portion of the effective aperture of the single lens L is preferably more than 150 μm. Further, the focus of the image pickup lens 1 is preferably less than 3; The focal length of the imaging lens 丨 is expressed by the value obtained by dividing the equivalent focal length of the imaging lens 1 by the incident diameter of the imaging lens 1. The imaging lens 1 can increase the received light summer by setting the focal ratio to less than 3. The chromatic aberration is well corrected, so that a higher resolution can be obtained. Moreover, the refractive index μ of the single lens L and the d-ray (wavelength: 587 6 nm) is more than 1.4, which is opposite to the d-ray. The number is preferably more than 43. The Abbe number refers to the ratio of the optical transmittance of the ratio of the refractive index to the dispersion of light, that is, the s stomach Abe number refers to the refraction of light of different wavelengths to different squares. To a certain extent, the dispersion of the high Abbe number medium with respect to the intensity of the light of different wavelengths becomes less. Thereby, the image pickup lens can have a low refractive index for the single lens 154059.doc •13-201133037 mirror L application, And the material of the optical constant of high dispersion value, so that the selection of the materials constituting the single lens L can be increased, thereby realizing the application of the manufacturing procedure which is not limited by the selection of materials and materials. The detailed description of the manufacturing procedure will be described below. Narrative. Also 'constituting a single lens L The material is preferably a thermosetting resin or a UV (Ultra Voilet) resin. The thermosetting resin has a property of changing a state from a liquid to a solid by imparting a specific amount or more of heat. The resin has a property of changing the state from a liquid to a solid by irradiation with ultraviolet rays having a specific intensity or higher. The single lens L is formed to contain a thermosetting resin or a uv curable resin in the manufacturing stage of the image sensor module. The plurality of single lenses L can be formed into a resin to produce the lens array described below, and the image pickup lens j can be reflowed. However, the single lens L can be a plastic lens or a glass lens. The lens 100, the imaging lens 200, the imaging lens 3A, and the imaging lens 400 are each configured to be the image surface S5 after moving the position from the position Sa toward the object 3, but the position may be from the position. The position after moving Pdis to the opposite side of the object 3 is set to the image plane S5. [MTF and aberration characteristics of the image pickup lens 100] Fig. 5 shows an image pickup lens. The MTF (unit: none) indicated by the axis and the focus displacement position (unit: relationship) shown on the horizontal axis. Fig. 6 shows the MTF of the imaging lens 100, the vertical axis, and the horizontal axis 154059. Doc -14· 201133037 Curve of the relationship between spatial frequency (unit: lp/mm). Fig. 7 shows the MTF indicated by the vertical axis of the imaging lens 1 and the image height indicated by the horizontal axis (unit: Fig. 8 is a graph showing the characteristics of various aberrations of the image pickup lens 100, and shows (a) astigmatic aberration and (b) _ change. Further, Fig. 5 to Fig. 7 The respective image heights shown in FIG. 9 to FIG. 11 , FIG. 13 to FIG. 15 , and FIG. 17 to FIG. 19 are expressed in absolute values, and the center of the image formed by imaging the object 3 by the imaging lens 1 is used as a reference. Like the height, but can also be expressed relative to the ratio of the maximum image height, and the absolute value and the ratio relative to the maximum image height have the following correspondence. 0.0000 mm=image height h0 (center of image) 〇, 1400 mm=image height h0.2 (equivalent to the height of 2最大% of the maximum image height) 〇_2800 mm=image height h0.4 (equivalent to the maximum image height) 40% height) 0.4200 mm=image height h0.6 (equivalent to 60% of the maximum image height) 0.5 600 mm=image height h0.8 (equivalent to 80% of the maximum image height) 0.7000 mm= Image height h 1.0 (maximum image height) Fig. 5, and Fig. 9, Fig. 13, and Fig. 17 below illustrate the case where the spatial frequency is "Nyquist frequency/4" and the image heights h0, h0.2. The characteristics of the tangential image plane (T) and the sagittal image plane (S) of each of h0.4, h0.6, h0.8, and hl. FIG. 6 and FIG. 1 , FIG. 14 , and FIG. 18 below illustrate the case where the spatial frequency is 0 to “Nyquist frequency/2”, and the image heights h0, h0.2, h0.4, and h0. 6. The characteristics of the tangential image plane (T) and the sagittal image plane (S) of each of Ρι0·8 and hl.O. 154059.doc • 15· 201133037 Figure 7 and the following Figure 11 Figure 1 5 and Figure 19 illustrate the spatial frequency of "Nyquist frequency / 4" and "Nyquist frequency / 2" And the characteristics of the tangential image plane and the sagittal image plane related to the height hO~hl.O. Furthermore, the above-mentioned $Quest frequency is set to be suitable for the camera lens! The Nyquist frequency of the combined sensor (solid-state imaging device) corresponds to the value of the spatial frequency of the solvable image calculated from the pixel pitch of the sensor. In terms of body I, the Nyquist frequency N (eight) of the sensor (unit: lp/mm) is

Nyq. = l/(感測器像素間距)/2 而算出。當測定圖5〜圖2G之各特性時,該感測器係應用如 下者.VGA類型,大小為1/13型,像素之大小(像素間距) 為1.75 μηι,D(對角)之大小為uoo mm,H(水平)之大小為 1.120 mm ’ V(垂直)之大小為〇 84〇 mm。 又,為獲得圖5〜圖20所示之各特性,假定物體距離為 500 mm,並且模擬光源(未圖示)係使用利用以下之加權之 (構成白色之各波長之混合比例以如下方式進行調整)白色 光0 404.66 nm=0.13 435.84 nm=0.49 486.1327 nm=l.57 546.07 nm=3.12 587.5618 nm=3.18 656.2725 nm=l .5 1 圖5之曲線51表示與利用攝像透鏡i〇〇使物體3成像而形 154059.doc •16- 201133037 成之像之中心相對應之、像高ho時與-0.1 mm〜o.l mm之焦 點位移位置相對的MTF之關係。 曲線51表示:於0.025 mm之焦點位移位置處具有MTF之 峰值’換言之於該0.025 mm之焦點位移位置處,像高h〇時 可獲得最大之解像能力。該0.025 mm之焦點位移位置相當 於圖1所示之位置Sa。 另一方面’實際之攝像透鏡1〇〇之像面S5(參照圖1)相當 於0 mm之焦點位移位置。而且,據此可明瞭:攝像透鏡 100之Pdis變成〇_〇25 mm(參照表5)。 又,攝像透鏡100之焦距f為〇_853 mm(參照表5)。因此, 攝像透鏡100之Pdis/f變成0.029,成為滿足關係式(丨)之 值。 圖6及圖7表示根據圖5之曲線而決定之像面35之位置之 各特性。 如圖6所示,攝像透鏡ι〇〇具有如下之MTF特性:於超過 70 lp/mm之較南空間頻帶中’像高hi 〇之弧矢像面之mtf 雖略有下降’但其他情形時即便為像高h0〜hl .〇之任意像 高該MTF均較高,作為綜合解像能力,與先前之攝像透鏡 相比’認為自利用攝像透鏡1〇〇而使物體3成像所形成之像 之中心至周邊均具有優異之解像能力。 如圖7所示,攝像透鏡1〇〇針對表示相當於「奈奎斯特頻 率/2」之空間頻率之弧矢像面之MTF的曲線74而言,像高 h0.8(0.56 mm)以上之MTF略有下降。然而,針對表示相當 於「奈奎斯特頻率Μ」之空間頻率之切向像面之MTF之曲 § 154059.doc -17- 201133037 線η及表示同空間頻率之紙矢像面之MTF的曲線72、以及 表示相當於「奈查斯特頻率/2」之空間頻率之切向像面之 MTF的曲線73而言,即便為像高⑽〜Μ 0(()7叫之任意像 高均具有較高之MT卜因此’攝像透鏡⑽之綜合解像能 力與先前之攝像透鏡相比’認為自利用攝像透鏡100而使 物體3成像所形成之像之中心至周邊為止均具有優異的解 像能力。 根據圖8之⑷及⑻所示之各曲線,可知切向像面⑺及 弧矢像面⑻之歹楚留像差量較小(與相對於光轴^之法線方 向相對之各像差之大小偏差較小),故攝像透鏡1〇〇具有良 好之光學特性。 [攝像透鏡200之MTF及像差特性] 圖9係表示攝像透鏡2〇〇之、散焦Μτρ即縱軸所示之 MTF、與橫軸所示之焦點位移位置之關係的曲線,其與圖 5對應而表示攝像透鏡2〇〇之各特性。 圖1 〇係表示攝像透鏡200之、縱轴所示之MTF、與橫軸 所不之空間頻率之關係的曲線,其與圖6對應而表示攝像 透鏡200之各特性。 圖11係表示攝像透鏡2〇〇之、縱軸所示之MTF、與橫軸 所不之像南之關係的曲線’其與圖7對應而表示攝像透鏡 200之各特性。 圖12係表示攝像透鏡200之各種像差之特性之曲線,分 別於表不散光像差,於(b)表示畸變,且分別與圖8之(a) 及(b)對應而表示攝像透鏡2〇〇之各特性。 154059.doc 201133037 圖9之曲線91表示與利用攝像透鏡200而使物體3成像所 形成之像之中心相對應之、像高h0時之與-0· 1 mm〜0_ 1 mm 之焦點位移位置相對的MTF之關係。 曲線91表示:於0.025 mm之焦點位移位置處具有MTF之 峰值,換言之,於該0.025 mm之焦點位移位置處,像高h0 時可獲得最大之解像能力。該0.025 mm之焦點位移位置相 當於圖-2所示之位置Sa。 另一方面,實際之攝像透鏡200之像面S5(參照圖2)相當 於0 mm之焦點位移位置。而且,據此可明暸:攝像透鏡 200之Pdis變成0.025 mm(參照表5)。 又,攝像透鏡200之焦距f為0,853 mm(參照表5)。因此, 攝像透鏡200之Pdis/f變成0·029,成為滿足關係式(1)之 值。 圖1 0及圖11表示根據圖9之曲線而決定之像面S5之位置 的各特性。 如圖10所示,攝像透鏡200於超過70 lp/mm之較高空間 頻帶中,像高hl.O之弧矢像面之MTF雖略有下降’但除此 之外的情況下,即便為像高h0〜hi .0之任意像高均具有較 高MTF特性,且綜合解像能力與先前之攝像透鏡相比,認 為自利用攝像透鏡200使物體3成像所形成之像之中心至周 邊為止具有優異的解像能力。 如圖11所示,攝像透鏡200對於表示相當於「奈奎斯特 頻率/2」.之空間頻率之弧矢像面之MTF的曲線114而言,像 高h0.8(0.56 mm)以上之MTF略有下降。然而,對於表示相 154059.doc •19- 201133037 當於「奈奎斯特頻率/4」之空間頻率之切向像面之MTF的 曲線111及表示同空間頻率之弧矢像面之MTF之曲線丨丨2、 以及表示相當於「奈奎斯特頻率/2」之空間頻率之切向像 面之MTF的曲線113而言,即便為像高h〇〜hl 〇(〇 7 mm)之 任意像高均具有較高之MTF。因此,攝像透鏡2〇〇之综合 解像能力與先前之攝像透鏡相比,認為自利用攝像透鏡 200使物體3成像所形成之像之中心至周邊為止具有優異的 解像能力。 根據圖12之(a)及(b)所示之各曲線,可知切向像面(丁)及 弧矢像面(s)均為殘留像差量較小(與相對於光軸La之法線 方向相對之各像差之大小偏差較小),故攝像透鏡2〇〇具有 良好之光學特性。 [攝像透鏡300之MTF及像差特性] 圖13係表示攝像透鏡3〇〇之 '散焦mtf即縱軸所示之 MTF、與橫軸所示之焦點位移位置之關係的曲線,其對應 於圖5而表示攝像透鏡3〇〇之各特性。 圖14係表示攝像透鏡3〇〇之、縱軸所示之MTF、與橫軸 所示之空間頻率之關係的曲線,其對·應於圖6而表示攝像 透鏡300之各特性。 圖丨5係表示攝像透鏡300之、縱轴所示之MTF、與橫轴 所不之像而之關係之曲線,其對應於圖7而表示攝像透鏡 300之各特性。 圖16係表示攝像透鏡3〇〇之各種像差之特性之曲線,八 別於u)表示散光像差,於(b)表示畸變,且分別對應於圖8 154059.doc •20- 201133037 之(a)及(b)而表不攝像透鏡300之各特性。 圖13之曲線131表示與利用攝像透鏡3〇〇使物體3成像而 形成之像之中心相對應之、像高h〇時之與_〇丨mm〜〇丨mm 之焦點位移位置相對的MTF之關係。 曲線131表示:於0.024 mm之焦點位移位置具有河叮之 峰值,換言之,於該0.024 mm之焦點位移位置,像高汕時 可獲得最大之解像能力。該〇 〇24 mm之焦點位移位置相當 於圖3所示之位置Sa。 另一方面,實際之、攝像透鏡3〇〇之像面S5(參照圖3)相 §於0 mm之焦點位移位置。而且,據此可明瞭攝像透鏡 300之Pdis變成〇.〇24 mm(參照表5)。 又,攝像透鏡300之焦距f為0.872 mm(參照表5)。因此, 攝像透鏡300之Pdis/f變成〇·〇28,成為滿足關係式(1)之 值。 圖14及圖15表示根據圖13之曲線所決定之像面S5之位置 的各特性。 如圖14所示,攝像透鏡3〇〇於超過85.74 lp/mm之較高空 間頻帶中,像高hl.〇之弧矢像面之MTF略有下降,但除此 之外的情況下,即便為像高h〇〜hl 〇之任意像高均具有較 问之MTF特性’且綜合解像能力與先前之攝像透鏡相比, 認為自利用攝像透鏡3〇〇使物體3成像所形成之像之中心至 周邊為止具有優異的解像能力。 圖15所示,攝像透鏡對於表示相當於「奈奎斯特 頻率/2」之空間頻率之弧矢像面之MTF的曲線154而言, 154059.doc 21 201133037 像高h0.85(0.595 mm)以上之MTF略有下降。然而,對於表 示相當於「奈奎斯特頻率/4」之空間頻率之切向像面之 MTF的曲線151及表示同空間頻率之弧矢像面之MTF的曲 線1 52、以及表示相當於「奈奎斯特頻率/2」之空間頻率 之切向像面之MTF的曲線153而言,即便為像高 h0〜hl.0(0.7 mm)之任意像高均具有較高MTF。因此,攝像 透鏡300之综合解像能力與先前之攝像透鏡相比,認為自 利用攝像透鏡300使物體3成像所形成像之中心至周邊為止 具有優異的解像能力。 根據圖16之(a)及(b)所示之各曲線,可知切向像面(T)及 弧矢像面(S)皆殘留像差量較小(對相對於光轴La之法線方 向之各像差之大小偏差較小),故攝像透鏡300具有良好之 光學特性。 [攝像透鏡400之MTF及像差特性] 圖17係表示攝像透鏡400之、散焦MTF即縱轴所示之 MTF、與橫軸所示之焦點位移位置之關係的曲線,顯示對 應於圖5之攝像透鏡400之各特性。 圖18係表示攝像透鏡400之、縱轴所示之MTF、與橫軸 所示之空間頻率之關係的曲線,顯示對應於圖6之攝像透 鏡400之各特性。 圖19係表示攝像透鏡400之、縱轴所示之MTF與橫軸所 示之像高之關係的曲線,顯示對應於圖7之攝像透鏡400之 各特性。 圖20係表示攝像透鏡400之各種像差之特性之曲線,分 154059.doc •22- 201133037 別於(a)表示散光像差,於(b)表示畸變,且各自顯示對應 於圖8之(a)及(b)之攝像透鏡4〇〇之各特性。 圖17之曲線171表示對應於利用攝像透鏡4〇〇使物體3成 像所形成之像之中心之、像高h0處之相對於_〇」mm〜〇」 mm之焦點位移位置的MTF之關係。 曲線171表示:於〇_〇23 mm之焦點位移位置具有MTF之 峰值,換言之,於該0.023 mm之焦點位移位置,在像高汕 處可獲得最大之解像能力。該0〇23 mm之焦點位移位置相 當於圖4所示之位置Sa。 另一方面,實際之攝像透鏡4〇〇之像面S5(參照圖4)相當 於0 mm之焦點位移位置。而由此可明瞭攝像透鏡4〇〇之Nyq. = l/ (sensor pixel pitch) /2 is calculated. When measuring the characteristics of FIG. 5 to FIG. 2G, the sensor is applied as follows: VGA type, size is 1/13 type, pixel size (pixel pitch) is 1.75 μηι, and D (diagonal) is Uoo mm, H (horizontal) size is 1.120 mm 'V (vertical) size is 〇84〇mm. Further, in order to obtain the characteristics shown in Figs. 5 to 20, it is assumed that the object distance is 500 mm, and the analog light source (not shown) is used in the following manner by using the following weighting ratio (the mixing ratio of the respective wavelengths constituting white) Adjust) white light 0 404.66 nm=0.13 435.84 nm=0.49 486.1327 nm=l.57 546.07 nm=3.12 587.5618 nm=3.18 656.2725 nm=l .5 1 Figure 51 curve 51 shows the object 3 with the imaging lens i Imaging and shape 154059.doc •16- 201133037 The center of the image corresponds to the relationship between the height of the ho and the focus displacement position of -0.1 mm~ol mm relative to the MTF. Curve 51 indicates that there is a peak of MTF at a focus displacement position of 0.025 mm. In other words, at the focus displacement position of 0.025 mm, the maximum resolution is obtained at a height h〇. The 0.025 mm focus shift position is equivalent to the position Sa shown in Fig. 1. On the other hand, the image plane S5 (see Fig. 1) of the actual image pickup lens 1 corresponds to a focus shift position of 0 mm. Further, it can be understood from this that the Pdis of the image pickup lens 100 becomes 〇_〇 25 mm (refer to Table 5). Moreover, the focal length f of the imaging lens 100 is 〇_853 mm (refer to Table 5). Therefore, the Pdis/f of the image pickup lens 100 becomes 0.029, which is a value satisfying the relationship (丨). Fig. 6 and Fig. 7 show the characteristics of the position of the image plane 35 determined in accordance with the graph of Fig. 5. As shown in FIG. 6, the image pickup lens ι has the following MTF characteristics: in the south spatial frequency band exceeding 70 lp/mm, the mtf of the sagittal image plane of the image height hi is slightly decreased, but in other cases Even if the MTF is high for any image height of the image height h0 to hl. ,, as the integrated image-capturing ability, it is considered that the image formed by imaging the object 3 by using the image pickup lens 1 is compared with the previous image pickup lens. From the center to the periphery, it has excellent resolution. As shown in FIG. 7, the imaging lens 1 is an image height h0.8 (0.56 mm) or more for the curve 74 indicating the MTF of the sagittal image plane corresponding to the spatial frequency of "Nyquist frequency/2". The MTF dropped slightly. However, for the MTF of the tangential image plane representing the spatial frequency of the Nyquist frequency §, § 154059.doc -17- 201133037 line η and the curve representing the MTF of the paper surface of the same spatial frequency 72. And the curve 73 indicating the MTF of the tangential image plane corresponding to the spatial frequency of the "Nysterst frequency/2", even if the image height is (10) Μ ( 0 (() 7 has an arbitrary image height. Therefore, the overall resolution of the 'imaging lens (10) is superior to that of the previous imaging lens, and it is considered to have excellent resolution from the center to the periphery of the image formed by imaging the object 3 by the imaging lens 100. According to the curves shown in (4) and (8) of Fig. 8, it can be seen that the tangential image plane (7) and the sagittal image plane (8) have a small amount of aberration (the opposite of the normal direction with respect to the optical axis ^). Since the difference in the size of the difference is small, the imaging lens 1 has good optical characteristics. [MTF and aberration characteristics of the imaging lens 200] Fig. 9 shows the vertical axis of the imaging lens 2, which is the defocus Μτρ The relationship between the MTF and the position of the focus displacement indicated by the horizontal axis, and its graph 5 corresponds to each of the characteristics of the image pickup lens 2. Fig. 1 shows a relationship between the MTF indicated by the vertical axis of the image pickup lens 200 and the spatial frequency of the horizontal axis, and corresponds to Fig. 6 Each characteristic of the imaging lens 200 is shown in Fig. 11 which shows the relationship between the MTF indicated by the vertical axis and the image of the horizontal axis of the imaging lens 2, which corresponds to Fig. 7 and shows each of the imaging lenses 200. Fig. 12 is a graph showing characteristics of various aberrations of the image pickup lens 200, showing astigmatic aberrations, and (b) showing distortion, and respectively showing images corresponding to (a) and (b) of Fig. 8 . Each characteristic of the lens 2 is 154059.doc 201133037 The curve 91 of FIG. 9 indicates the image height h0 and -0.1 mm corresponding to the center of the image formed by imaging the object 3 by the imaging lens 200. The relationship between the focus displacement position of 0_ 1 mm and the MTF. Curve 91 indicates that there is a peak of MTF at the focus displacement position of 0.025 mm, in other words, at the focus displacement position of 0.025 mm, the image height h0 is the largest. Resolution capability. The 0.025 mm focus shift position On the other hand, the image plane S5 (see FIG. 2) of the actual image pickup lens 200 corresponds to a focus shift position of 0 mm. Further, it can be understood from this that the Pdis of the image pickup lens 200 In addition, the focal length f of the imaging lens 200 is 0,853 mm (refer to Table 5). Therefore, Pdis/f of the imaging lens 200 becomes 0·029, and the value of the relational expression (1) is satisfied. 10 and 11 show the characteristics of the position of the image plane S5 determined according to the graph of Fig. 9. As shown in FIG. 10, in the higher spatial frequency band of the imaging lens 200 exceeding 70 lp/mm, the MTF of the sagittal image plane of the image height hl. O is slightly decreased, but in other cases, even Any image height of the image height h0~hi.0 has a higher MTF characteristic, and the integrated image decoding capability is considered to be from the center of the image formed by imaging the object 3 to the periphery as compared with the previous image pickup lens. Excellent image resolution. As shown in FIG. 11, the imaging lens 200 has an image height h0.8 (0.56 mm) or more for the curve 114 indicating the MTF of the sagittal image plane corresponding to the spatial frequency of "Nyquist frequency/2". MTF dropped slightly. However, for the curve 111 representing the MTF of the tangential image plane of the spatial frequency of the Nyquist frequency /4 and the curve representing the MTF of the sagittal image plane of the same spatial frequency, the phase 154059.doc •19-201133037丨丨2, and the curve 113 of the MTF indicating the tangential image plane of the spatial frequency corresponding to the "Nyquist frequency/2", even for any image with an image height h〇~hl 〇(〇7 mm) High average has a higher MTF. Therefore, the integrated image-capturing capability of the image pickup lens 2 is superior to that of the conventional image pickup lens, and it is considered to have excellent resolution from the center to the periphery of the image formed by imaging the object 3 by the image pickup lens 200. According to the curves shown in (a) and (b) of FIG. 12, it is understood that the tangential image plane (D) and the sagittal image plane (s) are small in residual aberration amount (and relative to the optical axis La). Since the line direction has a small deviation from the magnitude of each aberration, the imaging lens 2 has good optical characteristics. [MTF and aberration characteristics of the imaging lens 300] FIG. 13 is a graph showing the relationship between the MTF of the vertical axis of the imaging lens 3, that is, the MTF indicated by the vertical axis, and the focus displacement position indicated by the horizontal axis, which corresponds to Fig. 5 shows the characteristics of the image pickup lens 3''. Fig. 14 is a graph showing the relationship between the MTF indicated by the vertical axis of the imaging lens 3 and the spatial frequency indicated by the horizontal axis, and the characteristics of the imaging lens 300 are shown in Fig. 6 . Fig. 5 is a graph showing the relationship between the MTF indicated by the vertical axis of the image pickup lens 300 and the image of the horizontal axis, and shows the characteristics of the image pickup lens 300 corresponding to Fig. 7 . Fig. 16 is a graph showing the characteristics of various aberrations of the imaging lens 3, which is different from u) for astigmatic aberration, and (b) for distortion, and corresponds to Fig. 8 154059.doc • 20-201133037, respectively ( A) and (b) show the characteristics of the image pickup lens 300. A curve 131 of FIG. 13 indicates an MTF which is opposite to the focus displacement position of _〇丨mm to 〇丨mm when the image height h〇 corresponds to the center of the image formed by imaging the object 3 by the imaging lens 3〇〇. relationship. Curve 131 indicates that the peak displacement position at 0.024 mm has a peak of the river ridge, in other words, at the focus displacement position of 0.024 mm, the maximum resolution is obtained when the image is at a high level. The focus displacement position of the 〇 24 mm is equivalent to the position Sa shown in Fig. 3. On the other hand, the image plane S5 (see Fig. 3) of the image pickup lens 3 is actually at a focus shift position of 0 mm. Further, it can be understood from this that the Pdis of the image pickup lens 300 becomes 〇.〇 24 mm (refer to Table 5). Further, the focal length f of the imaging lens 300 is 0.872 mm (refer to Table 5). Therefore, Pdis/f of the image pickup lens 300 becomes 〇·〇28, and the value of the relational expression (1) is satisfied. Fig. 14 and Fig. 15 show the respective characteristics of the position of the image plane S5 determined by the graph of Fig. 13. As shown in FIG. 14, in the higher spatial frequency band of the image pickup lens 3 exceeding 85.74 lp/mm, the MTF of the sagittal image plane of the image height hl. 略 is slightly decreased, but in other cases, even It is considered to have the MTF characteristic of any image height like high h〇~hl '' and the comprehensive resolution is compared with the previous imaging lens, and it is considered that the image formed by imaging the object 3 by the imaging lens 3 is used. Excellent resolution from the center to the periphery. As shown in Fig. 15, the image pickup lens is 154059.doc 21 201133037 image height h0.85 (0.595 mm) for the curve 154 representing the MTF of the sagittal image plane corresponding to the spatial frequency of "Nyquist frequency/2". The above MTF decreased slightly. However, the curve 151 indicating the MTF of the tangential image plane corresponding to the spatial frequency of the Nyquist frequency/4 and the curve 1 52 indicating the MTF of the sagittal image plane of the same spatial frequency, and the equivalent of " The curve 153 of the MTF of the tangential image plane of the spatial frequency of the Nyquist frequency/2" has a higher MTF even for any image height of the image height h0 to hl.0 (0.7 mm). Therefore, the integrated image-capturing capability of the image pickup lens 300 is superior to that of the previous image pickup lens, and it is considered to have excellent resolution from the center to the periphery of the image formed by the image pickup lens 300. According to the curves shown in (a) and (b) of FIG. 16, it can be seen that the tangential image plane (T) and the sagittal image plane (S) have a small residual aberration amount (for the normal to the optical axis La). Since the magnitude of the aberration of the direction is small, the imaging lens 300 has good optical characteristics. [MTF and Aberration Characteristics of Imaging Lens 400] FIG. 17 is a graph showing the relationship between the MTF indicated by the vertical axis and the focus displacement position indicated by the horizontal axis of the defocus MTF of the imaging lens 400, and the display corresponds to FIG. Each characteristic of the imaging lens 400. Fig. 18 is a graph showing the relationship between the MTF indicated by the vertical axis of the imaging lens 400 and the spatial frequency indicated by the horizontal axis, and shows the respective characteristics of the imaging lens 400 corresponding to Fig. 6. Fig. 19 is a graph showing the relationship between the MTF indicated by the vertical axis and the image height indicated by the horizontal axis of the image pickup lens 400, and shows the respective characteristics of the image pickup lens 400 corresponding to Fig. 7. Fig. 20 is a graph showing the characteristics of various aberrations of the image pickup lens 400, and is divided into 154059.doc • 22-201133037. (a) indicates astigmatic aberration, (b) indicates distortion, and each display corresponds to Fig. 8 ( The characteristics of the imaging lens 4 of a) and (b). A curve 171 of Fig. 17 indicates the relationship of the MTF of the focus displacement position with respect to the center of the image h formed by the image pickup lens 4 at the image height h0 with respect to _〇"mm~〇" mm. Curve 171 indicates that the focus displacement position at 〇_〇 23 mm has a peak of MTF, in other words, at the focus displacement position of 0.023 mm, the maximum resolution is obtained at the image height 。. The focus displacement position of 0 〇 23 mm corresponds to the position Sa shown in Fig. 4. On the other hand, the image plane S5 (see Fig. 4) of the actual image pickup lens 4 corresponds to a focus shift position of 0 mm. Therefore, the imaging lens 4 can be understood.

Pdis成為0.023 mm(參照表5)。 又,攝像透鏡400之焦距f*〇891 mm(參照表5)。因此, 攝像透鏡400之Pdis/f變成〇〇26,成為滿足關係式⑴之 值。 圖18及圖19表示根據圖17之曲線而決定之像面S5之位置 的各特性。 如圖18所示,攝像透鏡4〇〇於超過1 〇〇 ip/mm之較高空間 頻帶中,像高hi.0之弧矢像面之河叮雖略有下降,但除此 之外即便為像高h〇〜hi·〇之任意像高均具有較高之MTF特 !·生,且綜合解像能力與先前之攝像透鏡相比,可說自利用 攝像透鏡400使物體3成像所形成之像之中心至周邊為止皆 具有優異的解像能力。 如圖19所示,攝像透鏡4〇〇對於表示相當於「奈奎斯特 頻率/2」之空間頻率之弧矢像面之mTF的曲線194而言, 154059.doc •23· 201133037 像高h0.9(0.63 mm)以上之Μτρ略有下降。然而對於表示 相當於「奈奎斯特頻率/4」之空間頻率之切向像面之MTF 的曲線191及表示同空間頻率之孤矢像面之的曲線 192、以及表示相當於「奈奎斯特頻率/2」之空間頻率之 切向像面之MTF的曲線193而言,即便為像高h〇〜hi 〇(〇7 mm:之任意像高均具有較高之游卜因此,攝像透鏡彻 之综合解像能力與先前之攝像透鏡相比,可說自利用攝像 透鏡_使物體3成像所形成之像之巾^至周邊為止皆具有 優異的解像能力。 根據圖2G之⑷及(b)所示之各曲線,可知切向像面⑺及 弧矢像面⑻均為殘留像差量較小(與相對於光軸^之法線 方向相對之、各像差之大小偏差較小),故攝像透鏡具 有良好之光學特性。 再者,就於攝像透鏡1使物體3成像所形成之像之周邊實 見優異解像旎力之觀點而言,認為攝像透鏡3〇〇優於攝像 透鏡100及200,且攝像透鏡4〇〇亦優於攝像透鏡3〇〇。 [攝像透鏡1之各特性資料] [表1 ]係表示攝像透鏡1 00之設計資料之表。 [表2]係表示攝像透鏡200之設計資料之表。 [表3]係表示攝像透鏡3〇〇之設計資料之表。 [表4]係表示攝像透鏡4〇〇之設計資料之表。 [表5]係表示分別相對於攝像透鏡1〇〇、攝像透鏡2〇〇、 攝像透鏡300、及攝像透鏡4〇〇而於像面S5配置感測器(固 體攝像元件),從而構成攝像模組之情形時的規格之一例 之表。 I54059.docPdis becomes 0.023 mm (refer to Table 5). Further, the focal length f of the imaging lens 400 is f*〇891 mm (refer to Table 5). Therefore, Pdis/f of the image pickup lens 400 becomes 〇〇26, which satisfies the value of the relational expression (1). Fig. 18 and Fig. 19 show the characteristics of the position of the image plane S5 determined based on the graph of Fig. 17. As shown in FIG. 18, the imaging lens 4 is in a higher spatial frequency band of more than 1 〇〇 ip/mm, and the river image of the sagittal image plane of the high hi.0 is slightly decreased, but even if For any image height such as high h〇~hi·〇, it has a higher MTF characteristic, and the comprehensive resolution capability is compared with the previous imaging lens, which can be said to be formed by imaging the object 3 with the imaging lens 400. From the center of the image to the periphery, it has excellent resolution. As shown in FIG. 19, for the image lens 194 representing the mTF of the sagittal image plane corresponding to the spatial frequency of "Nyquist frequency/2", 154059.doc •23·201133037 image height h0 The Μτρ above .9 (0.63 mm) decreased slightly. However, the curve 191 indicating the MTF of the tangential image plane corresponding to the spatial frequency of the Nyquist frequency/4 and the curve 192 indicating the orphan image plane of the same spatial frequency are equivalent to "Nyquis". For the MTF curve 193 of the tangential image plane of the spatial frequency of the special frequency /2", even if the image height h〇~hi 〇 (〇7 mm: any image height has a higher image, the imaging lens Compared with the previous imaging lens, the comprehensive imaging capability can be said to have excellent resolution from the image of the image formed by imaging the image of the object 3 to the periphery. According to (4) and (Fig. 2G) b) For each of the curves shown, it can be seen that the tangential image plane (7) and the sagittal image plane (8) have a small residual aberration amount (relative to the normal direction with respect to the optical axis ^, and the magnitude of each aberration is small. Therefore, the imaging lens has good optical characteristics. Further, in view of the excellent resolution of the image around the image formed by imaging the object 3 by the imaging lens 1, it is considered that the imaging lens 3 is superior to the imaging. The lenses 100 and 200, and the imaging lens 4 is also superior to the imaging lens 3〇 [Table 1] is a table showing design data of the image pickup lens 100. [Table 2] is a table showing design data of the image pickup lens 200. [Table 3] shows the image pickup lens 3 [Table 4] is a table showing design data of the imaging lens 4 。. [Table 5] shows the imaging lens 1 〇〇, the imaging lens 2 〇〇, the imaging lens 300, and A table in which the imaging lens 4 is disposed on the image plane S5 and the sensor (solid-state imaging device) is disposed to form an image sensor module. I54059.doc

•24· 201133037 【ϊ&lt;〕 154059.doc ool^^TW^-^】 Εε05.0^,'γ(Λ)ΙΓ钿Τ · εεο-ι^,'γϊ)^^* εεο§-5Γ、γ(α)¥^- εες-ι 嫦迓这*琏械•踮茛瑤到寂 ν°Λ ,^钵2-:雜莨镯&quot;:?田^友 I 非球面係數 1 VO &lt; 1 I -1.3582464E+12 1 I 4.1680076E+09 1 I 1 &lt; 1 Μ .7585772Ε+11 1 I -9.7944828E408 1 1 I 1 (S &lt; 1 | -8.7369257Ε+09 | | 9.3225962E+07 | 1 I 垂 〇 &lt; • 1 2.2019684Ε+08 | | -4.6398799E+06 | 1 1 1 Μ 1 1 -3.0660223Ε+06 | | 1.3115032E+05 | 1 垂 • 1 [2.3689743Ε+04 | Γ -2.1847802E+03 | • ι 1 • | -9.9305667Ε+01 | | 2.2037641E+01 | ' ' • 1圓錐係數| ' [0.00Ε+00 1 1 0.00E+00 1 • ' 該且 | 0.152 I [0.160 | 1 0.250 | • * • 17心厚度 [mm] | 0.021 I 00 &lt;N Ο | 0.729 | | 0.545 | | 0.050 | 1 • 1 -0.48964076 | | -2.70742185 | 1 1 &lt; vB 1 S ΙΛ C/5 1 -D 1 S ' 1 00 1.516 ' 1礼徑光闌1 8 I感測器1 os^^iik1 1 非球面係數 1 [_ A16 I • I -1.0911299E+12 1 I 4.0872282E+09 1 1 1 1 | A14 J 1 I 1.5535276E+11 1 | -9.7563241E+08 | 1 1 1 1_A12_I 1 | -8.2478268E+09 | | 9.4286154E+07 | 1 • 1 Γ A10_! 1 | 2.1975265E+08 | | -4.7487958E+06 | 1 I 1 00 &lt; 1 | -3.2201249E+06 | I 1.3442932E+05 | 1 I 1 1 | 2.6089023E+04 | Γ-2.ΙΒ71469Ε+03 | 1 1 1 • | -1.1335464E+02 | I 2.0489872E+01 | 1 1 1 I圓錐係數| 1 | O.OOE+OO | I 0.00E+00 | 1 1 1 有效半徑 [mm] | 0.152 I | 0.160 | | 0.251 1 垂 1 1 中心厚度 [mm] 1 0.022 | | 0.282 | | 0.762 | | 0.500 | 0.050 | 1 曲率 [mm·1] • | -0.45255527 | I -2.68170597 | 1 1 ΐΛ m C/3 I 材料 • S • g 〇〇 VO ' 1孔徑光闌1 透銳 Ο u I感測器| ooe塚铕-班【e1 1 非球面係數 | 1 Α16 I I I -1.1387877E+12 I I 4.1770778E+09 I « 1 1 1— AH I I I 1.562513IE+11 I | -9.8339503E+08 | 1 1 1 1_^_I « 1 -8.2224741 E+09 | I 9.4050546E+07 | 1 • 1 1_Α10_I 1 | 2.1938156E+08 | | -4.7257411E-K)6 | 1 t 1 CO • | -3.2303272E+06 | | 1.3567214E+05 | 1 1 1 1 ΓΤ6354085Ε+04 | | -2.3000 丨 20E+03 | 1 1 垂 1 | -1.1597910E+02 | | 2.3075423E-K)! | 1 1 t 1圓錐係數| I 1 O.OOE+OO | 1 0.00E+00 | 1 1 1 1有效半徑| [mm] 1 0.156 1 | 0.163 | | 0.250 | 1 1 垂 1中心厚度 [mm] 1 0.024 1 | 0.278 | | 0.852 | I 0.500 | | 0.050 | 1 餘 菊 _ε 旦 | -0.51575391 | I -2.67902476 | ' • S3 vn Vi | 材料 | *Ό s ' OO § SO »n * 要素 1礼徑光闌ι 透銳 a u I感測器| 0§^^祭%【5】 1 非球面係數 | Ό &lt; • 1 -1.I845780E+12 1 | 4.0932129E+09 | 1 1 1 寸 &lt; 1 | I.56714457E+I1 | [-9.6459493E+08 | 1 1 t ΓΊ &lt; 1 | -8.1733015E+09 | | 9.2865067E+07 | 1 1 • 〇 &lt; ' | 2.I922941E+08 | | -4.7424530E+06 | 1 • 00 &lt; • I -3.2722599E+06 | | 1.4034589E+05 | 1 1 1 ΓΪ7211944Ε+04 | | -2.4860818E+03 | 1 t 垂 ' I -1.2230882 E+02 | | 2.5975736E+01 | 1 1 &lt; I圓錐係ΪΠ ' | O.OOE+OO | | O.OOE+OO | • 1 有效半徑 [mm] | 0.159 1 | 0.166 | | 0.251 | &lt; 1 1 珅£ ^ ε •ί*&quot; | 0.026 | | 0.274 | | 0.955 | | 0.500 | | 0.050 | 1 曲率 [mm'1] * | -0.54648856 | | -2.65467688 | • ' « vS C/5 V» ! •a • S • 2 • 00 VO u-| • 1孔徑光闌| 〇 U ί感測器ι -25- 201133037 [表2] [表5] 攝像透鏡 100 攝像透鏡 200 攝像透鏡 300 攝像透鏡 400 焦比 2.80 2.80 2.80 2.80 焦距f [mm] 0.853 0.853 0.872 0.891 視角[deg] D (對角) 74.6 74.6 69.6 64.7 H (水平) 59.9 59.9 56.0 52.0 V (垂直) 45.2 45.2 42.2 39.3 TV畸變[%] -3.68 -3.71 -3.15 -2.61 周邊光量比[%] 0.6h 88.5 88.4 89.2 90.1 0.8h 81.0 80.7 82.3 83.9 l.Oh 71.7 71.5 73.8 76.2 CRA [deg] 0.6h 16.6 16.5 15.6 14.6 0.8h 21.7 21.6 20.4 19.3 l.Oh 26.6 26.4 25.1 23.6 光學全長(包含CG)[mm] 1.626 1.615 1.704 1.805 CG厚度[mm] 0.545 0.500 0.500 0.500 透鏡中心厚度d [mm] 0.281 0.282 0.278 0.274 透鏡光學有效半徑端部厚度d’ [mm] 0.203 0.203 0.205 0.203 d'/d 0.723 0.721 0.737 0.739 d/d2 0.25 0.25 0.23 0.21 Pdis [mm] 0.025 0.025 0.024 0.023 Pdis/f 0.029 0.029 0.028 0.026 測定[表1]〜[表5]之各資料時,感測器係使用如下者: VGA類型,大小為1/13型,像素之大小(像素間距)為1.75 μιη,D(對角)之大小為1.400 mm,Η(水平)之大小為1.120 mm,V(垂直)之大小為0.840 mm。 又,為獲得[表5]所示之各特性,假定物體距離為500 mm,並且作為模擬光源(未圖示)係使用進行如下之加權 (構成白色之各波長之混合比例以如下方式進行調整)的白 154059.doc -26- 201133037 色光。 404.66 nm=0.13 435.84 nm=0.49 486.1327 nm=l .57 546.07 nm=3.12 587.5618 nm=3.l8 656.2725 nm=l .5 1 [表1]〜[表4]之項目「要素」中,分別於「光鬧」一行表 示孔徑光闌2相關之設計資料,⑨「透鏡」一行表示單透 鏡L相關之設計資料’於「CG」—行表示護罩玻璃⑶相關 之0又0十資料’於「感測器」一行表示配置於像面S5之感測 器相關的設計資料。 [表1]〜[表4]之項目「材料」中,分別為「Nd」表示單透 鏡L及護罩玻璃CG之與d射線相對之折料,「vd」表示單 透鏡L及4罩玻璃CG之與d射線相對之阿貝數。如根據本 項目所明瞭般,攝像透鏡100、攝像透鏡200、攝像透鏡 3〇〇及攝像透鏡400均較佳,單透鏡L·之折射率為超過1 4 之丨·498 ’單透鏡L之阿貝數為超過43之46。 [表Π〜[表4]之項目「面」iS1〜S5分別對應於面S1、面 面S3、面S4、及像面S5’且同行表示與該等各面相關 之設計資料。 [表丨][表4]之項目「曲率」表示單透鏡L之面S1及S2之 曲率。 [表Π〜[表4]之項目「中心厚度」表示對應面之中心至朝 154059.doc • 27- 201133037 光軸La(參照圖丨〜圖 向像面S5側為下一面之中心為止的 4)方向之距離。 [表1]〜[表4]之項目「 單透鏡L之面si及S2之 徑0 有效半徑」表示孔徑光闌2、以及 、可限制光束範圍之圓區域之半 [表1][表4]之項目r非球面係數」表示單透鏡l之面si =各自之構成非球面之非球面式⑷中的、i次之非球面 (1為4以上之偶數)。於非球面式⑷中,Z係光軸方 向(圖1之2方向)之座標’X係與光轴相對之法線方向(圖!之 X方向)之座標,尺係曲率半徑(曲率之反數),κ係圓錐 (conic)係數。 [數1] I…⑷ 如根據[表1]〜[表4]之項目「非球面係數」所明瞭般,攝 像透鏡1GG、攝像透鏡2GG、攝像透鏡3GG、及攝像透鏡400 均對單透鏡L之兩面賦予非球面係數,藉此單透鏡l之兩面 為非球面形狀。藉由使用兩面為非球面之單透鏡L·,攝像 透鏡1中可容易且良好地修正各種像差,故而較佳。 如[表5]所示,攝像透鏡、攝像透鏡2〇〇、攝像透鏡 3〇〇、及攝像透鏡400中由於焦比為小於3之28〇,故均可 獲得較高之解像能力。 [表5]之項目「焦距f」中’攝像透鏡1整體之焦距f係以 154059.doc•24· 201133037 [ϊ&lt;] 154059.doc ool^^TW^-^] Εε05.0^, 'γ(Λ)ΙΓ钿Τ · εεο-ι^, 'γϊ)^^* εεο§-5Γ, γ (α)¥^- εες-ι 嫦迓This *琏机械•踮茛瑶到寂ν°Λ ,^钵2-: Chowder bracelet&quot;:? Tian Youyou I aspheric coefficient 1 VO &lt; 1 I -1.3582464E+12 1 I 4.1680076E+09 1 I 1 &lt; 1 Μ .7585772Ε+11 1 I -9.7944828E408 1 1 I 1 (S &lt; 1 | -8.7369257Ε+09 | | 9.3225962E+07 | 1 I Coveted &lt; • 1 2.2019684Ε+08 | | -4.6398799E+06 | 1 1 1 Μ 1 1 -3.0660223Ε+06 | | 1.3115032E+05 | 1 垂• 1 [2.3689743Ε+04 | Γ -2.1847802E+03 | • ι 1 • | -9.9305667Ε+01 | | 2.2037641E+01 | ' ' • 1 cone coefficient | ' [0.00Ε+00 1 1 0.00 E+00 1 • ' The sum | 0.152 I [0.160 | 1 0.250 | • * • 17 core thickness [mm] | 0.021 I 00 &lt;N Ο | 0.729 | | 0.545 | | 0.050 | 1 • 1 -0.48964076 | -2.70742185 | 1 1 &lt; vB 1 S ΙΛ C/5 1 -D 1 S ' 1 00 1.516 ' 1 ritual light 1 8 I sensor 1 os^^iik1 1 Aspheric coefficient 1 [_ A16 I • I -1.0911299E+12 1 I 4.0872282E+09 1 1 1 1 | A14 J 1 I 1.5535276E+11 1 | -9.7563241E+08 | 1 1 1 1_A12_I 1 | -8.2478268E+09 | | 9.4286154E+07 | 1 • 1 Γ A10_! 1 | 2.1975265E+08 | | -4.7487958E+06 | 1 I 1 00 &lt; 1 | -3.2201249E+06 | I 1.3442932E+05 | I 1 1 | 2.6089023E+04 | Γ-2.ΙΒ71469Ε+03 | 1 1 1 • | -1.1335464E+02 | I 2.0489872E+01 | 1 1 1 I Cone | 1 | O.OOE+OO | 0.00E+00 | 1 1 1 Effective radius [mm] | 0.152 I | 0.160 | | 0.251 1 Vertical 1 1 Center thickness [mm] 1 0.022 | | 0.282 | | 0.762 | | 0.500 | 0.050 | 1 Curvature [mm·1 ] | | -0.45255527 | I -2.68170597 | 1 1 ΐΛ m C/3 I Material • S • g 〇〇 VO ' 1 aperture stop 1 transparent Ο u I sensor | ooe冢铕-班 [e1 1 non Spherical Coefficient | 1 Α16 III -1.1387877E+12 II 4.1770778E+09 I « 1 1 1— AH III 1.562513IE+11 I | -9.8339503E+08 | 1 1 1 1_^_I « 1 -8.2224741 E+09 | I 9.4050546E+07 | 1 • 1 1_Α10_I 1 | 2.1938156E+08 | | -4.7257411EK)6 | 1 t 1 CO • | -3.2303272E+06 | | 1.3567214E+05 | 1 1 1 1 ΓΤ6354085Ε+04 | | -2.3000 丨20E+03 | 1 1 垂1 | -1.1597910E+02 | | 2.3075423EK)! | 1 1 t 1Cone coefficient | I 1 O.OOE+OO | 1 0.00E+00 | 1 1 1 1 Effective radius | [mm] 1 0.156 1 | 0.163 | | 0.250 | 1 1 Vertical 1 center thickness [mm] 1 0.024 1 | 0.278 | 0.852 | I 0.500 | | 0.050 | 1 余菊_ε旦 | -0.51575391 | I -2.67902476 | ' • S3 vn Vi | Materials | *Ό s ' OO § SO »n * Element 1 ceremony light ι 透锐 au I sensor | 0§^^祭%[5] 1 aspheric coefficient | Ό &lt; • 1 -1.I845780E+12 1 | 4.0932129E+09 | 1 1 1 inch&lt; 1 | I.56714457E+I1 [-9.6459493E+08 | 1 1 t ΓΊ &lt; 1 | -8.1733015E+09 | | 9.2865067E+07 | 1 1 • 〇&lt; ' | 2.I922941E+08 | | -4.7424530E+06 | 1 • 00 &lt; • I -3.2722599E+06 | | 1.4034589E+05 | 1 1 1 ΓΪ7211944Ε+04 | | -2.4860818E+03 | 1 t 垂' I -1.2230882 E+02 | | 2.5975736E+01 | 1 &lt; I Cone System ΪΠ ' | O.OOE+OO | | O.OOE+OO | • 1 Effective Radius [mm] | 0.159 1 | 0.166 | | 0.251 | &lt; 1 1 珅£ ^ ε •ί*&quot ; | 0.025 | | 0.274 | | 0.955 | | 0.500 | | 0.050 | 1 Curvature [mm'1] * | -0.54648856 | | -2.65467688 | • ' « vS C/5 V» ! •a • S • 2 • 00 VO u-| • 1 aperture stop | 〇U ί sensor ι -25- 201133037 [Table 2] [Table 5] Camera lens 100 Lens 200 imaging lens 300 imaging lens 400 coke ratio 2.80 2.80 2.80 2.80 focal length f [mm] 0.853 0.853 0.872 0.891 viewing angle [deg] D (diagonal) 74.6 74.6 69.6 64.7 H (horizontal) 59.9 59.9 56.0 52.0 V (vertical) 45.2 45.2 42.2 39.3 TV distortion [%] -3.68 -3.71 -3.15 -2.61 Peripheral light ratio [%] 0.6h 88.5 88.4 89.2 90.1 0.8h 81.0 80.7 82.3 83.9 l.Oh 71.7 71.5 73.8 76.2 CRA [deg] 0.6h 16.6 16.5 15.6 14.6 0.8h 21.7 21.6 20.4 19.3 l.Oh 26.6 26.4 25.1 23.6 Optical full length (including CG) [mm] 1.626 1.615 1.704 1.805 CG thickness [mm] 0.545 0.500 0.500 0.500 Lens center thickness d [mm] 0.281 0.282 0.278 0.274 Lens optical effective radius End thickness d' [mm] 0.203 0.203 0.205 0.203 d'/d 0.723 0.721 0.737 0.739 d/d2 0.25 0.25 0.23 0.21 Pdis [mm] 0.025 0.025 0.024 0.023 Pdis/f 0.029 0.029 0.028 0.026 Determination [Table 1]~[Table For each of the data, the sensor uses the following: VGA type, size 1/13, pixel size (pixel pitch) is 1.75 μιη, D (diagonal) size is 1.400 mm, Η (horizontal ) the size is 1.120 mm V (vertical) size of 0.840 mm. Further, in order to obtain the characteristics shown in [Table 5], it is assumed that the object distance is 500 mm, and as an analog light source (not shown), the following weighting is used (the mixing ratio of each wavelength constituting white is adjusted as follows) ) White 154059.doc -26- 201133037 shades of light. 404.66 nm=0.13 435.84 nm=0.49 486.1327 nm=l .57 546.07 nm=3.12 587.5618 nm=3.l8 656.2725 nm=l .5 1 [Table 1]~[Table 4] The items "Elements" are respectively The line of "Live" indicates the design information related to the aperture stop 2, and the line of 9 "lens" indicates the design data related to the single lens L' in "CG" - the line indicates the 0 and 0 data related to the cover glass (3). The row of the detector indicates the design information related to the sensor disposed on the image plane S5. In the item "Material" of [Table 4], "Nd" indicates that the single lens L and the cover glass CG are opposite to the d-ray, and "vd" indicates the single lens L and the cover glass. The Abbe number of CG versus d-ray. As is apparent from the present item, the imaging lens 100, the imaging lens 200, the imaging lens 3A, and the imaging lens 400 are all preferable, and the refractive index of the single lens L· is more than 1 4 丨·498 'single lens L The number of bets is more than 43 of 46. The items "surfaces" iS1 to S5 of the table [Table 4] correspond to the surface S1, the surface S3, the surface S4, and the image surface S5', respectively, and the design data relating to the respective surfaces are shown in the same direction. The item "curvature" of [Table 4] [Table 4] indicates the curvature of the faces S1 and S2 of the single lens L. [Table Π ~ [Table 4] The item "Center Thickness" indicates the center of the corresponding surface to 154059.doc • 27- 201133037 Optical axis La (refer to Figure 丨 ~ Figure 4 to the image side S5 side as the center of the lower side) The distance from the direction. [Table 1] ~ [Table 4] The item "Side of the single lens L and the effective radius of the diameter of S2" means that the aperture stop 2, and the half of the circular area that can limit the beam range [Table 1] [Table 4] The term "aspherical coefficient" indicates that the surface of the single lens l = the aspherical surface of the aspherical surface (4) constituting each aspheric surface (1 is an even number of 4 or more). In the aspherical type (4), the coordinate of the Z-axis direction (direction 2 of Fig. 1) and the coordinate of the normal direction of the optical axis (the X direction of Fig. 1), the radius of curvature of the ruler (the inverse of the curvature) Number), κ system conic coefficient. [Equation 1] (4) As shown in the item "Aspherical Coefficient" of [Table 1] to [Table 4], the imaging lens 1GG, the imaging lens 2GG, the imaging lens 3GG, and the imaging lens 400 are all directed to the single lens L. The aspherical coefficients are imparted to both sides, whereby the two faces of the single lens 1 have an aspherical shape. It is preferable to use the single lens L· whose both surfaces are aspherical, and it is possible to easily and satisfactorily correct various aberrations in the imaging lens 1. As shown in [Table 5], since the imaging lens, the imaging lens 2, the imaging lens 3, and the imaging lens 400 have a focal length of less than 3, 28 Å, a high resolution can be obtained. In the item "focal length f" of [Table 5], the focal length f of the entire imaging lens 1 is 154059.doc

•28- 201133037 單位:mm表示。 ]之項目視角」中,攝像透鏡1之視角、即可利用 =像透鏡!成像之角度係、以單位:deg(。)分別表示,且係以 =對角)、H(水平)、及V(垂直)之三維參數表示。攝像透鏡 (火平)之視角為52。以上,可用作面向便攜終端之攝 - 像透鏡等之廣角透鏡。 [表5]之項目「周邊光量比」中,表示像高hG.6、像高 _及像间h1.0之各自之攝像透鏡1之各周邊光量比(與 像高h〇之光量相對之光量之比例)。攝像透鏡1係於像高 hl.〇時獲得像高h〇之70。/。以上之較高光量者。 ▲[表5]之項目「CRA」中表示像高h〇6、像高h〇8、及像 Nhl.〇之各自之攝像透鏡!之各主光線角度(Chief尺叮• 28- 201133037 Unit: mm. In the "project perspective", the angle of view of the image pickup lens 1 can be used = image lens! The angle of imaging is expressed in units of deg (.) and is represented by three-dimensional parameters of = diagonal, H (horizontal), and V (vertical). The angle of view of the camera lens (fire level) is 52. The above can be used as a wide-angle lens for a portable terminal, such as a lens. In the item "peripheral light amount ratio" of the table, the peripheral light amount ratio of the image pickup lens 1 of the image height hG.6, the image height_, and the image space h1.0 is shown (relative to the light amount of the image height h〇). The ratio of the amount of light). The image pickup lens 1 is obtained at an image height hl. /. Above the higher amount of light. ▲ [Table 5] The item "CRA" indicates the image lens of height h〇6, image height h〇8, and Nhl.〇! The chief ray angle (Chief ruler)

Angle : CRA)。 ,[表5]之項目「光學全長(包含CG)」中表示自孔徑光閣2 “之。卩刀至像面S 5為止之攝像透鏡1之距離。即,所謂 攝像透鏡丨之光學全長係指對光學特性造成某種影響之所 有構成要素之光軸方向上之尺寸合計。 [表5]之項目「CG厚度」表示光軸方向之護罩玻璃⑶之 厚度。 [表5]之項目「透鏡中心厚度d」表示單透鏡[之中心之 厚度、即單透鏡L之中心sl至中心82之距離。 [表5]之項目「透鏡光學有效半徑端部厚度士」表示單透 鏡L之有效孔徑之端部之厚度、即單透鏡L之端部ei(ea)至 端部e2(eb)為止的距離。特別係攝像透鏡1〇〇、攝像透鏡 154059.doc -29· 201133037 200、攝像透鏡300、及攝像透鏡4〇〇中,單透鏡L之有效孔 徑之最薄部分之厚度均對應於該d,。如根據本項目所明瞭 般’攝像透鏡100、攝像透鏡200、攝像透鏡300、及攝像 透鏡400中作為單透鏡l之有效孔徑之最薄部分之厚度之d, 分別為 0.203 mm、0.203 mm、0.205 mm、0.203 mm ,均超 過〇.150 mm(即150 μιη),故而較佳。 如根據[表5]之項目「dVd」所明瞭般,攝像透鏡1〇〇、 攝像透鏡200、攝像透鏡3〇〇 '及攝像透鏡4〇〇中d,/d均超過 〇·5且小於〇.9,故而成為滿足上述關係式之值。 如根據[表5]之項目rd/d2」所明瞭般,攝像透鏡1〇〇、 攝像透鏡200、攝像透鏡3〇〇、及攝像透鏡4〇()中d/d2均超 過〇·18且小於〇.3〇,故而成為滿足上述關係式(2)之值。 [表5]之項目「pdis」表示Pdis之具體值。 [表5]之項目「pdis/f」表示Pdis/f之具體值《如上所述, 攝像透鏡100、攝像透鏡200、攝像透鏡3〇〇、及攝像透鏡 400中,Pdis/f均為滿足關係式(1)之值。 [攝像模組270之製造方法] 圖21(a)〜(c)係表示攝像模組270之製造方法之剖面圖。 於圖21(a)〜(c)中,表示藉由被稱為晶圓級透鏡製程之製 造程序而製造攝像模組2 7 0之示例。 所謂晶圓級透鏡製程,係指如下製造程序:準備相對於 樹脂等被成形物,於其同一面上成形或造形複數之單透鏡 L,藉此製作透鏡陣列211’進而於同一面上具備複數之感 測器218的感測器陣列217,以各單透鏡L與各感測器218二 154059.doc •30· 201133037 一對應而對向配置之方式,於透鏡陣列211上搭載感測器 陣列217之後,將對向配置之單透鏡L及感測器218之組合 作為單位,以分割線220進行分割,藉此製造攝像模組 27〇。根據該製造程序,可總括地於短時間内製造大量之 攝像模組,故可降低攝像模組之製造成本。 近年來’使用熱硬化性樹脂或者UV硬化性樹脂作為單 透鏡L之材料之所謂耐熱相機模組之開發正不斷進展。此 處說明之攝像模組270係該耐熱相機模組之一種,其使用 熱硬化性樹脂或者UV硬化性樹脂作為單透鏡l之材料。 使用熱硬化性樹脂或者UV硬化性樹脂作為單透鏡l之材 料之理由在於.總括地於短時間内製造大量之攝像模組 2 7 0 ’藉此降低攝像模組2 7 〇之製造成本,以及可對具備攝 像透鏡1之攝像模組270實施回焊。 製造攝像模組270之技術提出有多種β其中代表性技術 為射出成形 '及以下詳細說明之晶圓級透鏡製程。特別係 最近,於攝像模組之製造時間及其他综合見解中,認為更 有利的晶圓級透鏡(可回焊透鏡)製程。 η施日日圓級透鏡製程時,必須抑制因熱而導致單透鏡l 發生塑性變形之情形。根據該必要性,使用即便加熱亦難 以欠形且耐熱性非常優異之熱硬化性樹月旨材料或者硬 化I·生樹丨日材料作為單透鏡L的晶圓級透鏡(透鏡陣列)傷受 關注:具體而t,使用具有即便施加攝氏26〇〜28〇度之熱 、#不塑&amp; $形之程度的耐熱性之熱硬化性樹脂材 料或者U V硬化性樹脂材料之晶圓級透鏡備受關注。 % 154059.doc -31· 201133037 準備於同一面上形成有多 反之凸部的陣列上模212、 於晶圓級透鏡製程中,首先, 個具有與單透鏡L之面S1形狀相 及於同一面上形成有多個具有與單透鏡L之面“形狀相反 之凹部之陣列下模2丨^再者,陣列上模212之各凸部、與 陣列下模213之各凹部係一 一對應,且丨個該凸部、與對應 1個該凸部之1個該凹部為對向配置。 藉由陣列上模212與陣列下模213夾入熱硬化性樹脂或者 UV硬化性樹脂且加熱而使其硬化,製作於同一面上依照 對應之凸部及凹部之組合而成形有單透鏡L的透鏡陣列 211(參照圖 21(a))。 準備於同一面上形成有多個感測器218之感測器陣列 217。感測器陣列217上所形成之各感測器218之間隔係與 透鏡陣列211上成形之各單透鏡l之間隔相同。 如圖21 (b)所示’亦可相對於感測器陣列2丨7而預先以可 總括覆蓋複數之感測器218之程度搭載較大的護罩玻璃 216 *又,於護罩玻璃2丨6或者感測器陣列2丨7、與透鏡陣 列211之間,如圖21 (b)所示,視需要亦可設置用以固定該 等間隔之間隔件215。 於透鏡陣列211上搭載感測器陣列217。此處,係將感測 盗陣列217介隔間隔件215及護罩玻璃216而搭載於透鏡陣 列211。此時,透鏡陣列211與感測器陣列217針對各單透 鏡L與各感測器218而言,係1個感測器218相對於1個單透 鏡L而對向配置(參照圖21(b))。 進而’於圖21(b)所示之步驟中,在透鏡陣列211之成為 154059.doc -32- 201133037 各單透鏡L之面81之各凹部周圍搭載後方變成孔徑光闌2之 遮光構件(光闌)214。遮光構件(光闌)214係以露出透鏡陣 列2 11之各凹部之方式設置於各凹部之外周部分。 作為於透鏡陣列211與感測器陣列217之間進行定位之手 法,可列舉一面攝像一面定位等各種手法又,定位亦受 到晶圓之間距加工精度影響。 經過圖21(b)所示之步驟,將成為陣列狀之多個攝像模 組270以對向配置之單透鏡L及感測器218、以及介於該單 透鏡L及感測器218之間的孔徑光闌2 (遮光構件(光闌)2丨4之 一部分)、間隔件219(間隔件215之一部分)、及護罩玻璃 CG(護罩玻璃216之一部分)為1組之組合單位,換言之將ι 個攝像模組270作為單位而利用分割線22〇進行分割(參照 圖 21(c))。 根據以上之步驟,完成1個攝像模組270。 根據圖21(a)〜(c)所示之晶圓級透鏡製程,總括地製造多 個攝像模組270,藉此可降低攝像模組27〇之製造成本。進 而,將已完成之攝像模組270安裝於基板時,可避免因回 焊產生之熱(最大溫度為攝氏260度左右)導致單透鏡L塑性 變形之情形’故單透鏡L更佳為使用相對於攝氏26〇〜28〇度 之熱具有10秒以上之耐性的熱硬化性樹脂或者uV硬化性 樹脂。藉此’可對攝像模組27〇實施回烊。於晶圓級之製 造步驟中,進而使用具有耐熱性之樹脂材料,藉此可廉價 地製造可支持回焊之攝像模組。 [攝像模組之構成1]Angle : CRA). The item "Optical full length (including CG)" in [Table 5] indicates the distance from the aperture lens 2 to the imaging lens 1 from the boring tool to the image plane S 5. That is, the optical full length of the imaging lens 丨Refers to the total of the dimensions in the optical axis direction of all the components that have some influence on the optical characteristics. The item "CG thickness" in Table 5 indicates the thickness of the cover glass (3) in the optical axis direction. The item "Lens center thickness d" of [Table 5] indicates the thickness of the center of the single lens [i.e., the distance from the center sl to the center 82 of the single lens L. [Item 5] The item "lens optical effective radius end thickness" indicates the thickness of the end portion of the effective aperture of the single lens L, that is, the distance from the end portion ei (ea) of the single lens L to the end portion e2 (eb). . In particular, in the imaging lens 1 〇〇, the imaging lens 154059.doc -29·201133037 200, the imaging lens 300, and the imaging lens 4, the thickness of the thinnest portion of the effective aperture of the single lens L corresponds to the d. As shown in the present item, the thickness d of the thinnest portion of the effective aperture of the single lens 1 in the imaging lens 100, the imaging lens 200, the imaging lens 300, and the imaging lens 400 is 0.203 mm, 0.203 mm, and 0.205, respectively. Mm, 0.203 mm, both exceeding 150.150 mm (ie 150 μηη), is preferred. As is apparent from the item "dVd" of [Table 5], d, /d of the imaging lens 1 〇〇, the imaging lens 200, the imaging lens 3 〇〇 ', and the imaging lens 4 〇 are both more than 〇·5 and smaller than 〇. .9, thus becoming the value of the above relationship. As is apparent from the item rd/d2 of [Table 5], d/d2 of the imaging lens 1 〇〇, the imaging lens 200, the imaging lens 3 〇〇, and the imaging lens 4 〇 () exceeds 〇·18 and is smaller than 〇.3〇, so it becomes the value satisfying the above relation (2). The item "pdis" in [Table 5] indicates the specific value of Pdis. The item "pdis/f" in [Table 5] indicates the specific value of Pdis/f. As described above, in the imaging lens 100, the imaging lens 200, the imaging lens 3, and the imaging lens 400, Pdis/f is satisfied. The value of formula (1). [Manufacturing Method of Camera Module 270] FIGS. 21(a) to 21(c) are cross-sectional views showing a method of manufacturing the camera module 270. 21(a) to (c) show an example in which the image pickup module 270 is manufactured by a manufacturing process called a wafer level lens process. The wafer-level lens process is a manufacturing process in which a plurality of single lenses L are formed or formed on the same surface with respect to a molded object such as a resin, thereby producing a lens array 211' and having a plurality of pixels on the same surface. The sensor array 217 of the sensor 218 is equipped with a sensor array on the lens array 211 in such a manner that each single lens L is disposed opposite to each of the sensors 218 154059.doc • 30·201133037. After 217, the combination of the single lens L and the sensor 218 arranged in the opposite direction is divided into units by the dividing line 220, whereby the camera module 27A is manufactured. According to this manufacturing procedure, a large number of camera modules can be manufactured in a short time, so that the manufacturing cost of the camera module can be reduced. In recent years, development of a so-called heat-resistant camera module using a thermosetting resin or a UV curable resin as a material of the single lens L has been progressing. The camera module 270 described here is one of the heat-resistant camera modules, and a thermosetting resin or a UV curable resin is used as the material of the single lens 1. The reason why a thermosetting resin or a UV curable resin is used as the material of the single lens 1 is to collectively manufacture a large number of camera modules 207 in a short time, thereby reducing the manufacturing cost of the camera module 27, and The image pickup module 270 including the image pickup lens 1 can be reflowed. The technique for manufacturing the camera module 270 proposes a plurality of types of β which are representative of the injection molding process and the wafer level lens process described in detail below. Special Series Recently, a more favorable wafer level lens (reflowable lens) process was considered in the manufacturing time of the camera module and other comprehensive findings. In the case of the η-day-circle lens process, it is necessary to suppress the plastic deformation of the single lens 1 due to heat. According to this necessity, it is necessary to use a thermosetting dendritic material which is hard to be formed by heating and which is excellent in heat resistance, or a wafer-level lens (lens array) which is a single lens L as a single lens L. : Specifically, t, a wafer-level lens having a heat-curable resin material or a UV-curable resin material having a heat resistance of a temperature of 26 〇 to 28 ° C, a degree of heat resistance, or a UV curable resin material attention. % 154059.doc -31· 201133037 Prepare an array upper mold 212 having a convex portion on the same surface. In the wafer level lens process, first, the surface has the same shape as the surface S1 of the single lens L. A plurality of array lower molds having a concave shape opposite to the surface of the single lens L are formed thereon, and the convex portions of the array upper mold 212 are in one-to-one correspondence with the concave portions of the array lower mold 213, and One of the convex portions is disposed opposite to one of the concave portions corresponding to the one convex portion. The array upper mold 212 and the array lower mold 213 are sandwiched with a thermosetting resin or a UV curable resin and heated to be heated. After hardening, a lens array 211 having a single lens L formed on the same surface in accordance with a combination of the corresponding convex portion and concave portion is formed (see FIG. 21(a)). A sense of forming a plurality of sensors 218 on the same surface is prepared. The detector array 217. The spacing of the sensors 218 formed on the sensor array 217 is the same as the spacing of the single lenses 1 formed on the lens array 211. As shown in Fig. 21 (b), The sensor array 2丨7 is pre-set with a level that can collectively cover the plurality of sensors 218 The larger cover glass 216* is also disposed between the cover glass 2丨6 or the sensor array 2丨7 and the lens array 211, as shown in FIG. 21(b), and may be provided for fixing as needed. The spacer array 215 is mounted on the lens array 211. Here, the sensing array 217 is mounted on the lens array 211 via the spacer 215 and the cover glass 216. The lens array 211 and the sensor array 217 are disposed opposite to each of the single lenses L and the respective sensors 218 with respect to one single lens L (see FIG. 21(b)). Further, in the step shown in FIG. 21(b), a light-shielding member which becomes the aperture stop 2 is mounted around each concave portion of the surface 81 of each lens L of the lens array 211 which is 154059.doc -32-201133037.遮光) 214. The light shielding member (the aperture) 214 is disposed on the outer peripheral portion of each concave portion so as to expose the concave portions of the lens array 2 11. As a method of positioning between the lens array 211 and the sensor array 217, List a variety of methods such as positioning on the side of the camera, and positioning is also processed by wafer spacing. After the steps shown in FIG. 21(b), the plurality of camera modules 270 in an array form are disposed in opposite directions, and the single lens L and the sensor 218 are disposed, and the single lens L and the sensor are interposed therebetween. The aperture stop 2 (one part of the light shielding member 2丨4) between the 218, the spacer 219 (one part of the spacer 215), and the cover glass CG (one part of the cover glass 216) are one set The combination unit, in other words, the ι camera module 270 as a unit is divided by the dividing line 22 (see Fig. 21 (c)). According to the above steps, one camera module 270 is completed. According to the wafer level lens process shown in Figs. 21(a) to (c), a plurality of image pickup modules 270 are collectively manufactured, whereby the manufacturing cost of the image pickup module 27 can be reduced. Further, when the completed camera module 270 is mounted on the substrate, the heat generated by the reflow (the maximum temperature is about 260 degrees Celsius) can be prevented from being plastically deformed by the single lens L. Therefore, the single lens L is preferably used relatively. A thermosetting resin or a uV curable resin having a resistance of 20 Torr to 28 deg. In this way, the camera module 27 can be implemented. In the wafer-level manufacturing step, a heat-resistant resin material is further used, whereby an image pickup module capable of supporting reflow can be manufactured at low cost. [Composition of camera module 1]

SS 154059.doc •33· 201133037 圖22係表示攝像模組27〇之構成之剖面圖。攝像模組27〇 係與圖21(a)〜(c)所示之藉由晶圓級透鏡製程所製造者相 同0 攝像模組270具備孔徑光闌2、單透鏡L、間隔件219、護 罩玻璃CG、及感測器218。其中,孔徑光闌2、單透鏡 及護罩玻璃CG構成攝像透鏡丨(參照圖丨〜圖4),且具有與攝 像透鏡1相同之各構成及機能,故省略詳細說明。 間隔件219載置於護罩玻璃CG且載置有單透鏡^,對應 於間隔件219之尺寸,將單透鏡L、與搭載有護罩玻璃CG 之感測器218之間隔固定為所需間隔。 感測器(固體攝像元件)218係配置於作為攝像模組27〇之 構成要素之攝像透鏡1的像面S5(參照圖丨〜圖4),將利用攝 像透鏡1使物體3成像所形成之像作為光信號而接收,並將 該光信號轉換為電氣信號。感測器218係由周知之電子攝 像元件等構成。 此處,感測器218較佳為VGA類型之攝像元件,藉此可 實現具有良好之解像能力之攝像模組27〇 ,並且可將透鏡 之片數減少至1個單透鏡L,從而削減可能發生製造公差之 要因’故可實現製造簡單之攝像模組27〇。 又,感測器218之像素之大小(像素間距)較佳為丄5 ^瓜以 下,藉此可實現有效利用攝像透鏡丨之解像能力之攝像模 組270 ’且藉由使感測器218小型化亦可使攝像透鏡1、進 而使攝像模組270小型化’故可實現更小型之數位相機等 之攝像模組270。 I54059.doc -34 - 201133037 感測器218輕#估田/ , , _ 較佳使用例如用以獲得上述各種特性 VGA類型、大小為1/13 uni、像素之大小(像素間距)為1·75 、·角)之大小為Η(水平)之大小為i 12〇 mm V(垂直)之大小為0.840 mm者。 攝像模組270並不具備用以調整攝像透鏡!之焦點位置之 機構。 由於攝像透鏡1具有於使物體3成像所形成之像之周邊可 獲得良好之解像能力這一特長,故為能夠實現之構成。 即’攝像模組270無須對攝像透鏡1之光轴La方向之與最良 像面位置相對之感測器218之位置進行調整,故可省略為 進行㈣“於先前必需m調整攝像透鏡i之焦點 之機構而且,藉由省略該機構,攝像模組270可降 低製造成本。 又,根據上述構成,攝像模組27〇可省略鏡筒及/或者透 鏡固持器,故可實現製造步驟之削減及構成零件之削減, 從而可實現低成本化。 [攝像模組之構成2] 圖23係表示攝像模組270之變形例之、攝像模組28〇之構 成的剖面圖。 攝像模組280係與攝像模組270於以下方面不同之構成。 與攝像模組270不同,攝像模組280不使用間隔件219。 另一方面’與攝像松組2 7 0不同,攝像模組2 8 〇係於單透 鏡L上形成向像面S5側突出之透鏡側面231。再者,透鏡側 面231係相當於單透鏡L中之有效孔徑之外周部分的區域。 154059.doc -35- 201133037 向像面S5側突出之透鏡側面23 1載置於護罩玻璃CG,且 與單透鏡L 一體地形成’且具有與間隔件219相同之功能, 即對應於透鏡側面231之突出尺寸,將單透鏡l、與搭載有 護罩玻璃CG之感測β218之間隔固定為所需間隔。 除此以外’攝像模組2 8 0之構成與攝像模組2 7 〇相同。 攝像模組280中無需間隔件219,且藉由設為不使用間隔 件219之構成可進一步實現製造步驟之削減及構成零件之 削減,從而可實現進一步的低成本化。 [攝像模組之構成3] 圖24係表示攝像模組270之其他變形例之、攝像模組290 之構成的剖面圖。 攝像模組290係與攝像模組270於以下方面不同之構成。 與攝像模組270不同,攝像模組290不使用間隔件219 » 另一方面’與攝像模組270不同,攝像模組290之單透鏡 L係插入及固定於護罩玻璃cg所載置之透鏡筒241。 透鏡筒241係載置於護罩玻璃cG,且固定所插入之單透 鏡L ’具有與間隔件219相同之功能,即將單透鏡l、與搭 載有護罩玻璃CG之感測器21 8之間隔固定為所需間隔。 又’孔徑光闌2係作為透鏡筒241之一部分而形成。 除此外,攝像模組290之構成係與攝像模組27〇相同。 攝像模組270、攝像模組280、及攝像模組29〇均具有廣 視角,且小型,進而具有良好之解像能力且較佳用作數位 相機等之攝像模纟且。 又,本發明之攝像透鏡之特徵在於,上述單透鏡係以滿 154059.docSS 154059.doc •33· 201133037 FIG. 22 is a cross-sectional view showing the configuration of the camera module 27〇. The camera module 27 is the same as that produced by the wafer level lens process shown in FIGS. 21(a) to (c). The camera module 270 is provided with an aperture stop 2, a single lens L, a spacer 219, and a protector. Cover glass CG, and sensor 218. Among them, the aperture stop 2, the single lens, and the cover glass CG constitute an imaging lens 丨 (see Fig. 4 to Fig. 4), and have the same configurations and functions as those of the imaging lens 1, and therefore detailed description thereof will be omitted. The spacer 219 is placed on the cover glass CG and has a single lens mounted thereon, and the interval between the single lens L and the sensor 218 on which the cover glass CG is mounted is fixed to a desired interval in accordance with the size of the spacer 219. . The sensor (solid-state imaging device) 218 is disposed on the image plane S5 (see FIG. 4 to FIG. 4 ) of the imaging lens 1 which is a component of the imaging module 27 , and is formed by imaging the object 3 by the imaging lens 1 . Receive as an optical signal and convert the optical signal into an electrical signal. The sensor 218 is constituted by a well-known electronic imaging element or the like. Here, the sensor 218 is preferably a VGA type imaging element, whereby the camera module 27A having good resolution can be realized, and the number of lenses can be reduced to one single lens L, thereby reducing The cause of manufacturing tolerances may occur, so that a camera module 27 that is simple to manufacture can be realized. Moreover, the size (pixel pitch) of the pixels of the sensor 218 is preferably 丄5 μ or less, whereby the camera module 270 ′ that effectively utilizes the image capturing capability of the imaging lens 可 can be realized and by the sensor 218 In the miniaturization, the imaging lens 1 and the imaging module 270 can be miniaturized, so that the imaging module 270 such as a smaller digital camera can be realized. I54059.doc -34 - 201133037 Sensor 218 light # estimating field / , , _ is preferably used, for example, to obtain the above various characteristics VGA type, size is 1/13 uni, pixel size (pixel pitch) is 1.75 The size of the angle is Η (horizontal) and the size of i 12〇mm V (vertical) is 0.840 mm. The camera module 270 is not provided to adjust the camera lens! The focal point of the organization. Since the imaging lens 1 has a feature of obtaining a good resolution of the image formed by imaging the object 3, it is possible to realize the configuration. That is, the camera module 270 does not need to adjust the position of the sensor 218 in the optical axis La direction of the imaging lens 1 with respect to the position of the most excellent image surface, so that it can be omitted (4) "Adjust the focus of the imaging lens i before the m necessary. Further, by omitting the mechanism, the camera module 270 can reduce the manufacturing cost. Further, according to the above configuration, the camera module 27 can omit the lens barrel and/or the lens holder, so that the manufacturing steps can be reduced and configured. Fig. 23 is a cross-sectional view showing a configuration of a camera module 28, which is a modification of the camera module 270. The camera module 280 is coupled to the camera. The module 270 is different in the following aspects. Unlike the camera module 270, the camera module 280 does not use the spacer 219. On the other hand, the camera module 28 is different from the camera lens group 270. A lens side surface 231 that protrudes toward the image plane S5 side is formed on L. Further, the lens side surface 231 corresponds to a region of the outer peripheral portion of the effective aperture in the single lens L. 154059.doc -35- 201133037 protrudes toward the image plane S5 side Lens side 23 1 is placed on the cover glass CG and integrally formed with the single lens L and has the same function as the spacer 219, that is, corresponding to the protruding size of the lens side surface 231, the single lens 1 and the cover glass are mounted thereon. The interval of the CG sensing β 218 is fixed to the required interval. In addition, the configuration of the camera module 280 is the same as that of the camera module 277. The spacer 219 is not required in the camera module 280, and is not set by The configuration of the spacer 219 can further reduce the number of manufacturing steps and reduce the number of components, thereby achieving further cost reduction. [Configuration of Camera Module 3] FIG. 24 shows another modification of the camera module 270. A cross-sectional view of the camera module 290. The camera module 290 is different from the camera module 270 in that it is different from the camera module 270, and the camera module 290 does not use the spacer 219. Unlike the module 270, the single lens L of the camera module 290 is inserted and fixed to the lens barrel 241 mounted on the cover glass cg. The lens barrel 241 is placed on the cover glass cG, and the inserted single lens L is fixed. 'With and spacer The same function of 219 is to fix the interval between the single lens 1 and the sensor 21 8 on which the cover glass CG is mounted at a desired interval. Further, the aperture stop 2 is formed as a part of the lens barrel 241. The camera module 290 has the same configuration as the camera module 27. The camera module 270, the camera module 280, and the camera module 29 have a wide viewing angle and are small, and have good resolution and are preferably used. The image pickup lens of the present invention is characterized in that the image pickup lens of the present invention is characterized in that the single lens system is 154059.doc.

• 36 - 201133037 足 0.5&lt;d’/d&lt;0.9之關係之古 _ν· &amp; # _l、。 〈關係之方式而構成。其中,d•係單透鏡之 有效孔徑之端部之厚度。 於d’/d為0.5以下之情形時,單透鏡變得過薄,有可能因 能夠應用之製造程序受到限制而導致攝像透鏡之生產性下 降’為G.9以上時難以修正像周邊之解像能力。若考慮該 等方面,則cT/d較佳為超過〇5且小於〇9。 又’本發明之攝像透鏡之特徵在於’上述單透鏡之有效 孔控之最薄部分之厚度超過i 5 〇 。 根據上述構成’由於單透鏡不會變得過薄,故可實現生 產性優異之攝像透鏡。 又,本發明之攝像透鏡之特徵在於焦比小於3。 根據上述構成,由於焦比小於3,故可增大受光光量, 且可良好地修正色像差,故可獲得較高之解像能力。里 又’本發明之攝像透鏡之特徵在於,上述單透鏡之折射 率超過1.4、阿貝數超過43。 根據上述構成,可對單透鏡應用具有較低折射率、且較 高分散值之光學常數之材料,故可增加構成單透鏡之材料 之選擇項,藉此可應用不受廉價#料選擇及材料限制的製 造程序。 又,本發明之攝像透鏡之特徵在於,上述單透鏡係由熱 硬化性樹脂或者紫外線硬化性樹脂形成。 藉由構成為使單透鏡由熱硬化性樹脂或者uv(uhra Violet:紫外線)硬化性樹脂形成,於本發明之攝像模組之 製造階段,可將複數之單透鏡成形為樹脂而製作上述透鏡 154059.doc •37· 201133037 陣列,進而可對攝像透鏡進行回焊安事。 又,本發明之攝像模組之特徵在於,上述㈣攝像元件 係VGA(Vide。Graphics Array:視頻圖形陣列)類型之攝像 元件。 根據上述構成,可將VGA類型之攝像元件應用為固體攝 像元件,藉此可實現具有良好之解像能力之攝像模組,並 且可減少透鏡之片數,從而可削減有可能發生製造公差之 要因’故可實現製造簡單之攝像模組。 又’本發明之攝像模組之特徵在於,上述固體攝像元件 之像素之大小為2.5 μιη以下。 根據上述構成,可實現有效利用本發明之攝像透鏡之解 像能力之攝像模組。又,藉由使固體攝像元件小型化,可 使攝像透鏡、進而使攝像模組小型化,故可實現更小型之 數位相機等之攝像模組。 又,本發明之攝像模組之特徵在於,不具備用以調整上 述攝像透鏡之焦點位置之機構。 本發明之攝像透鏡具有於使物體成像而形成之像之周邊 可獲得良好之解像能力這—特長。據此,本發明之攝像模 組無須對光軸方向之與最良像面位置相對之固體攝像元件 之位置進行調整,故可省略為進行該調整而於先前必需之 用以調整攝像透鏡之焦點位置的機構。而且,藉由省略該 機構’本發明之攝像模組可降低製造成本。 又’本發明之攝像模組之特徵在於,準備於同一面上具 備複數之上述單透鏡之透鏡陣列、及於同一面上具備複數 J54059.doc• 36 - 201133037 Foot 0.5&lt;d’/d&lt;0.9 The relationship between _ν· &amp;# _l,. <The structure of the relationship. Where d• is the thickness of the end of the effective aperture of the single lens. When the d'/d is 0.5 or less, the single lens becomes too thin, and the productivity of the image pickup lens may be degraded due to the limitation of the applicable manufacturing procedure. When it is G.9 or more, it is difficult to correct the solution around the image. Like ability. If these aspects are considered, cT/d is preferably more than 〇5 and less than 〇9. Further, the image pickup lens of the present invention is characterized in that the thickness of the thinnest portion of the effective perforation of the single lens exceeds i 5 〇 . According to the above configuration, since the single lens does not become too thin, an image pickup lens excellent in productivity can be realized. Further, the image pickup lens of the present invention is characterized in that the focal ratio is less than 3. According to the above configuration, since the focal ratio is less than 3, the amount of received light can be increased, and chromatic aberration can be corrected satisfactorily, so that a high resolution can be obtained. Further, the image pickup lens of the present invention is characterized in that the single lens has a refractive index of more than 1.4 and an Abbe number of more than 43. According to the above configuration, a material having an optical constant having a lower refractive index and a higher dispersion value can be applied to a single lens, so that an option of a material constituting a single lens can be increased, thereby being applicable to inexpensive material selection and materials. Restricted manufacturing procedures. Further, in the image pickup lens of the present invention, the single lens is formed of a thermosetting resin or an ultraviolet curable resin. By forming a single lens from a thermosetting resin or a uv (uhra Violet) curable resin, in the manufacturing stage of the image sensor module of the present invention, a plurality of single lenses can be formed into a resin to form the lens 154059. .doc •37· 201133037 Array, which in turn allows resurfacing of the camera lens. Further, in the image pickup module of the present invention, the (four) image pickup device is a VGA (Vide (Graphics Array) type) image pickup element. According to the above configuration, the VGA type imaging element can be applied as a solid-state imaging element, whereby an imaging module having good resolution can be realized, and the number of lenses can be reduced, thereby reducing the possibility of manufacturing tolerances. 'This makes it possible to manufacture a simple camera module. Further, the image pickup module of the present invention is characterized in that the size of the pixel of the solid-state image sensor is 2.5 μm or less. According to the above configuration, it is possible to realize an image pickup module that effectively utilizes the image-capturing capability of the image pickup lens of the present invention. Further, by miniaturizing the solid-state imaging device, the imaging lens and the imaging module can be downsized, so that an imaging module such as a digital camera can be realized. Further, the image pickup module of the present invention is characterized in that it does not include a mechanism for adjusting the focus position of the image pickup lens. The image pickup lens of the present invention has a good resolution ability in the periphery of an image formed by imaging an object. Accordingly, the camera module of the present invention does not need to adjust the position of the solid-state imaging device in the optical axis direction with respect to the position of the best image plane, so that the focus position for adjusting the image pickup lens which is previously necessary for the adjustment can be omitted. Agency. Moreover, the manufacturing cost can be reduced by omitting the mechanism of the present invention. Further, the image pickup module of the present invention is characterized in that a lens array having a plurality of the above-mentioned single lenses is prepared on the same surface, and a plurality of J54059.doc are provided on the same surface.

-38- 201133037 之上述固體攝像元件的感測器陣列,且以各單透鏡與各固 體攝像元件一一對應而對向配置之方式,於上述透鏡陣列 搭載上述感測器陣列之後,將對向配置之上述單透鏡及固 體攝像元件之組合分割而進行製造。 根據上述構成,可總括地於短時間内製造大量之攝像模 組’故可降低攝像模組之製造成本。 本發明並不限定於上述各實施形態,可於申請專利範圍 所不之範圍内進行各種變更,且將不同實施形態中分別揭 示之技術手段適當組合而成之實施形態亦包含於本發明之 技術範圍。 [產業上之可利用性] 本發明可利用於以搭載於便攜終端之數位相機等為目的 之攝像透鏡及攝像模組。 【圖式簡單說明】 圖1係表示本發明之一實施形態之攝像透鏡之構成之剖 面圖。 圖2係表示本發明之其他實施形態之攝像透鏡之構成之 剖面圖。 圖3係表示本發明之進而其他實施形態之攝像透鏡之構 成的剖面圖。 圖4係表示本發明之其他實施形態之攝像透鏡之構成的 剖面圖。 圖5係表示圖1所示之攝像透鏡之、散焦MTF(Modulati〇n Transfer Functi〇n :調變轉移函數)之曲線。 § 154059.doc •39- 201133037 圖6係表示圖1所示之攝像透鏡之mtf·空間頻率特性之 曲線。 圖7係表示圖1所示之攝像透鏡之mtf·像高特性之曲 線β 圖8係表示圖丨所示之攝像透鏡之各種像差之特性之曲 線’分別於(a)表示散光像差,於(b)表示畸變。 圖9係表示圖2所示之攝像透鏡之、散焦MTF2曲線。 圖1〇係表示圖2所示之攝像透鏡之MTF-空間頻率特性之 曲線》 圖Π係表示圖2所示之攝像透鏡之MTF-像高特性之曲 線。 圖12係表示圖2所示之攝像透鏡之各種像差之特性之曲 線,刀別於(a)表示散光像差’於(b)表示崎變。 圖13係表示圖3所示之攝像透鏡之散iMTF之曲線。 圖14係表示圖3所示之攝像透鏡2MTF_空間頻率特性之 曲線。 圖15係表示圖3所示之攝像透鏡之MTF像高特性之曲 線。 圖16係表示圖3所示之攝像透鏡之各種像差之特性之曲 線刀別於(a)表示散光像差,於(b)表示畸變。 圖17係表示圖4所示之攝像透鏡之散焦1^丁1?之曲線。 圖18係表示圖4所示之攝像透鏡之mtf_空間頻率特性之 曲線。 圖19係表示圖4所示之攝像透鏡之MTF-像高特性之曲 J54059.doc 201133037 線。 圖20係表示圖4所示之攝像透鏡之各種像差之特性之曲 線刀别於(a)表示散光像差,於(b)表示畸變。 圖21⑷〜(c)係表示本發明之一實施形態之攝像模組之製 造方法之剖面圖。 圖22係表示本發明之一實施形態之攝像模組之構成之剖 面圖。 圖23係表示本發明之其他實施形態之攝像模組之構成之 剖面圖。 圖24係表示本發明之進而其他實施形態之攝像模組之構 成之剖面圖。 【主要元件符號說明】 1、100、200 ' 300、400 攝像透鏡 2 孔徑光闌 3 物體 211 透鏡陣列 212 陣列上模 213 陣列下模 214 遮光構件(光闌) 215 、 219 間隔件 216 護罩玻璃 217 感測器陣列 218 感測器(固體攝像元件) 220 分割線 154059.doc 41 201133037 231 241 270 ' 280 ' 290 CG d d' d2 e 1、e2、ea、eb f 透鏡側面 透鏡筒 攝像模組 護罩玻璃 單透鏡之中心厚度 單透鏡之有效孔徑之端部之 厚度 單透鏡中之朝向像面側之面 之中心至像面為止的空氣換 算長度 單透鏡之有效孔徑之端部 焦距 L La Pdis si S1-S4 單透鏡 光軸 自像中心解像能力最大之位 置至像面為止的距離 單透鏡之中心 面 s2 單透鏡之中心 S5 像面-38-201133037, the sensor array of the solid-state imaging device, wherein each of the single lenses and the solid-state imaging devices are arranged in one-to-one correspondence, and the sensor array is mounted on the lens array, and then facing The combination of the single lens and the solid-state imaging device arranged as described above is divided and manufactured. According to the above configuration, a large number of imaging modules can be manufactured in a short period of time, so that the manufacturing cost of the imaging module can be reduced. The present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention, and embodiments in which the respective technical means disclosed in the respective embodiments are appropriately combined are also included in the technology of the present invention. range. [Industrial Applicability] The present invention can be applied to an imaging lens and an imaging module for the purpose of a digital camera or the like mounted on a portable terminal. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing the configuration of an image pickup lens according to an embodiment of the present invention. Fig. 2 is a cross-sectional view showing the configuration of an image pickup lens according to another embodiment of the present invention. Fig. 3 is a cross-sectional view showing the configuration of an image pickup lens according to still another embodiment of the present invention. Fig. 4 is a cross-sectional view showing the configuration of an image pickup lens according to another embodiment of the present invention. Fig. 5 is a graph showing a defocus MTF (Modulati〇n Transfer Functi〇n) of the image pickup lens shown in Fig. 1. § 154059.doc • 39- 201133037 Fig. 6 is a graph showing the mtf·spatial frequency characteristics of the image pickup lens shown in Fig. 1. Fig. 7 is a graph showing the mtf·image height characteristic of the image pickup lens shown in Fig. 1. Fig. 8 is a graph showing the characteristics of various aberrations of the image pickup lens shown in Fig. 1 respectively. (a) indicates astigmatic aberration, respectively. (b) indicates distortion. Fig. 9 is a view showing a defocus MTF2 curve of the image pickup lens shown in Fig. 2. Fig. 1 is a graph showing the MTF-spatial frequency characteristic of the image pickup lens shown in Fig. 2. Fig. 1 is a graph showing the MTF-image height characteristic of the image pickup lens shown in Fig. 2. Fig. 12 is a graph showing the characteristics of various aberrations of the image pickup lens shown in Fig. 2, and Fig. 12 shows that (a) indicates astigmatic aberrations and (b) indicates sag. Fig. 13 is a graph showing the dispersion of iMTF of the image pickup lens shown in Fig. 3. Fig. 14 is a graph showing the MTF_ spatial frequency characteristics of the image pickup lens 2 shown in Fig. 3. Fig. 15 is a graph showing the MTF image height characteristic of the image pickup lens shown in Fig. 3. Fig. 16 is a graph showing the characteristics of various aberrations of the image pickup lens shown in Fig. 3, in which (a) indicates astigmatic aberration and (b) indicates distortion. Fig. 17 is a graph showing the defocus of the image pickup lens shown in Fig. 4; Fig. 18 is a graph showing the mtf_ spatial frequency characteristics of the image pickup lens shown in Fig. 4. Fig. 19 is a view showing the MTF-image height characteristic curve J54059.doc 201133037 of the image pickup lens shown in Fig. 4. Fig. 20 is a graph showing the characteristics of various aberrations of the image pickup lens shown in Fig. 4, in which (a) indicates astigmatic aberration and (b) indicates distortion. 21(4) to (c) are cross-sectional views showing a method of manufacturing an image pickup module according to an embodiment of the present invention. Fig. 22 is a cross-sectional view showing the configuration of an image pickup module according to an embodiment of the present invention. Figure 23 is a cross-sectional view showing the configuration of an image pickup module according to another embodiment of the present invention. Fig. 24 is a cross-sectional view showing the configuration of an image pickup module according to still another embodiment of the present invention. [Main component symbol description] 1, 100, 200 '300, 400 camera lens 2 aperture stop 3 object 211 lens array 212 array upper mold 213 array lower mold 214 light shielding member (optical) 215, 219 spacer 216 cover glass 217 sensor array 218 sensor (solid-state imaging device) 220 dividing line 154059.doc 41 201133037 231 241 270 ' 280 ' 290 CG dd' d2 e 1, e2, ea, eb f lens side lens barrel camera module protection Center thickness of the cover glass single lens Thickness of the end of the effective aperture of the single lens The thickness of the end face of the single lens toward the image surface side to the image plane The length of the effective aperture of the single lens L La Pdis si S1-S4 single lens optical axis from the image center to the maximum resolution of the image to the image surface distance from the center surface of the single lens s2 single lens center S5 image surface

Sa 像中心解像能力最大之位置 154059.doc -42·Sa's position as the center's largest image resolution 154059.doc -42·

Claims (1)

201133037 七、申請專利範圍: 其係自物體侧朝向像面側 且上述單透鏡為凹面朝向 一種攝像透鏡’其特徵在於, 依序具備孔徑光闌及單透鏡、 物體側之凹凸透鏡者,且 將自使物體成像而形成之像之中心處解像能力成為最 大之位置起、於光軸方向上經移動距離恤(其巾㈣ 之位置设為上述像面,且滿足 0.014&lt;Pdis/f&lt;〇.〇3 5 (其中f :攝像透鏡整體之焦距) 之關係、及 υ. 18&lt;d/d2&lt;0.30 (其中d :單透鏡之中心之厚廑 〜序度早透鏡之自朝 向像面側之面之中心至像面為止的空氣換算長幻 之關係,且 又 上述單透鏡其朝向物體側之面及朝向像面側之面之兩 方均為非球面。 2.如請求項!之攝像透鏡,其中上述單透鏡係以滿足 〇.5&lt;d'/d&lt;0.9 (其中d’··單透鏡之有效孔徑之端部之厚度) 之關係的方式而構成。 3·如請求们之攝像透鏡’其中上述單透鏡之有效孔徑之 最薄部分之厚度超過15〇 μιη 〇 4.如請求項1之攝像透鏡’其中焦比小於3。 5·如請求項丨之攝像透鏡’其中上述單透鏡之折射率超過 154059.doc 201133037 1.4 ’且阿貝數超過43。 6. 如請求項1之攝像透鏡,苴巾 ,、中上述早透鏡包含熱硬化性 樹脂或者紫外線硬化性樹脂。 7· 一種攝像模組,其特徵在於具備: 攝像透鏡,其係自物體侧朝向像面側依序具備孔徑光 闌及早透鏡、且上述單透鏡為凹面朝向物體侧之凹凸透 鏡者,且 將自使物體成像而形成之像之中心處解像能力成為最 大之位置起、於光軸方向上經移動距離(其中 之位置設為上述像面,且滿足 〇.014&lt;Pdis/f&lt;〇.〇35 (其中f:攝像透鏡整體之焦距) 之關係、及 〇.18&lt;d/d2&lt;0.30 (其中d:單透鏡之中心之厚度、d2:單透鏡中之朝 向像面側之面之中心至像面為止的空氣換算長度) 之關係,且 上述單透鏡其朝向物體側之面及朝向像面側之面之兩 方均為非球面;及 固體攝像元件,其將利用上述攝像透鏡使物體成像而 形成之像作為光而接收。 8.如請求項7之攝像模組,其中上述固體攝像元件係視頻 圖形P車列(Video Graphics Array : VGA)類型之攝像元 件0 154059.doc201133037 VII. Patent application scope: It is from the object side toward the image surface side and the single lens is concave toward the image pickup lens. The feature is that the aperture stop and the single lens and the object side concave and convex lens are sequentially provided, and The position of the image at the center of the image formed by imaging the object is maximized, and the position of the towel is set in the direction of the optical axis (the position of the towel (4) is set as the image plane, and satisfies 0.014 &lt;Pdis/f&lt; 〇.〇3 5 (where f: the focal length of the entire imaging lens), and υ.18&lt;d/d2&lt;0.30 (where d: the thickness of the center of the single lens 廑~the degree of the self-aligning image side of the early lens The air conversion from the center of the surface to the image surface is a long-distance relationship, and both the surface facing the object side and the surface facing the image surface side of the single lens are aspherical surfaces. 2. The image of the request item! a lens in which the above-described single lens system is configured to satisfy the relationship of 5.5 &lt;d'/d&lt;0.9 (where d'·· the thickness of the end portion of the effective aperture of the single lens). Lens 'the above single through The thickness of the thinnest portion of the effective aperture of the mirror exceeds 15 〇μιη 〇 4. The imaging lens of claim 1 wherein the focal ratio is less than 3. 5 · The image lens of the request item 其中 wherein the refractive index of the above single lens exceeds 154059 .doc 201133037 1.4 'And the Abbe number exceeds 43. 6. The imaging lens of claim 1 , the wipes, the above-mentioned early lens contains a thermosetting resin or an ultraviolet curable resin. 7· A camera module, its characteristics In addition, the imaging lens includes an aperture stop and an early lens from the object side toward the image surface side, and the single lens is a concave-convex lens whose concave surface faces the object side, and the center of the image formed by imaging the object When the resolution is the largest position, the moving distance is in the direction of the optical axis (the position is set to the above image surface, and satisfies 〇.014&lt;Pdis/f&lt;〇.〇35 (where f: the entire lens of the imaging lens) The relationship between the focal length and 〇.18&lt;d/d2&lt;0.30 (where d: the thickness of the center of the single lens, and d2: the air conversion from the center of the face toward the image side in the single lens to the image plane) And the relationship between the surface of the single lens facing the object side and the surface facing the image surface side is an aspherical surface; and the solid-state imaging element uses an image formed by imaging the object by the imaging lens as light. 8. The camera module of claim 7, wherein the solid-state imaging device is a video graphic Array (VGA) type of imaging element 0 154059.doc 201133037 9. 10. 11. 其中上述固體攝像元件之像素 其中不具備用以調整上述攝像 如請求項7之攝像模組 之大小為2.5 μιη以下。 如請求項7之攝像模組 透鏡之焦點位置之機構 攝像模組,其係準備於同-面上具備複數 之上述早透鏡之透鏡陣列、及於同—面上具備複數之上 述固體攝像元件之感測器陣列, 以將各單透鏡與各固體攝像元件一對—對應且對向配 置之方式’於上述透鏡陣列搭載上述感測器陣列之後, 將對向配置之上述單透鏡及固體攝像元件之組合分割 而製造者。 154059.doc201133037 9. 10. 11. The pixel of the above solid-state imaging device does not have the size of the image sensor module for adjusting the above-mentioned imaging, such as the request item 7, which is 2.5 μm or less. The mechanism camera module of the focus position of the camera module lens of claim 7 is prepared by the lens array having the plurality of the early lenses on the same surface and the plurality of solid imaging elements on the same surface The sensor array is configured such that the single lens and the solid-state imaging device are disposed in a pair with each of the solid-state imaging devices in a paired manner, and the sensor array is mounted on the lens array. The combination is divided into manufacturers. 154059.doc
TW100105146A 2010-02-23 2011-02-16 Image sensing lens and image sensing module TWI434071B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037688A JP5037639B2 (en) 2010-02-23 2010-02-23 Imaging module

Publications (2)

Publication Number Publication Date
TW201133037A true TW201133037A (en) 2011-10-01
TWI434071B TWI434071B (en) 2014-04-11

Family

ID=44464226

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100105146A TWI434071B (en) 2010-02-23 2011-02-16 Image sensing lens and image sensing module

Country Status (3)

Country Link
JP (1) JP5037639B2 (en)
CN (1) CN102162903B (en)
TW (1) TWI434071B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452374B (en) * 2011-10-06 2014-09-11 Himax Tech Ltd Method of fabricating optical sensing module

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088903A1 (en) * 2011-12-14 2013-06-20 パナソニック株式会社 Infrared sensor
JP6008253B2 (en) * 2013-12-27 2016-10-19 パナソニックIpマネジメント株式会社 Endoscope camera
CN105136433B (en) * 2013-12-30 2017-07-04 福州锐景达光电科技有限公司 The method of the throughput of optical lens parameter detection instrument detection optical lens
CN104219428B (en) * 2014-08-21 2019-04-26 深圳市金立通信设备有限公司 A kind of camera mounting device
CN104219427A (en) * 2014-08-21 2014-12-17 深圳市金立通信设备有限公司 Camera installation method
JP6008266B2 (en) * 2016-02-10 2016-10-19 パナソニックIpマネジメント株式会社 Endoscope camera
KR101768575B1 (en) * 2016-09-20 2017-08-17 주식회사 소모에너지엔테크놀러지 Long-Wavelength Infrared Camera with 54 degree Angle of View and Lens for the Carera
JP7056897B2 (en) 2017-03-17 2022-04-19 株式会社イシダ Transport device
CN112198633A (en) * 2020-11-02 2021-01-08 中山市众盈光学有限公司 Small-size infrared identification camera lens of simple structure
CN112504474B (en) * 2020-12-17 2022-02-15 天津欧菲光电有限公司 Optical system, lens module and electronic equipment
TWI829423B (en) * 2022-04-08 2024-01-11 大立光電股份有限公司 Imaging lens assembly and electronic device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4001471B2 (en) * 2001-08-13 2007-10-31 株式会社エンプラス Imaging lens
JP2004053812A (en) * 2002-07-18 2004-02-19 Seiko Precision Inc Lens system
JP2007025261A (en) * 2005-07-15 2007-02-01 Matsushita Electric Works Ltd Imaging lens
CN2890966Y (en) * 2006-02-10 2007-04-18 一品光学工业股份有限公司 Square single type optical glass lens for image acquisition
JP2008203822A (en) * 2007-01-24 2008-09-04 Konica Minolta Opto Inc Image pickup lens, image pickup apparatus and mobile terminal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452374B (en) * 2011-10-06 2014-09-11 Himax Tech Ltd Method of fabricating optical sensing module

Also Published As

Publication number Publication date
JP2011175028A (en) 2011-09-08
CN102162903A (en) 2011-08-24
TWI434071B (en) 2014-04-11
CN102162903B (en) 2013-02-27
JP5037639B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
TW201133037A (en) Image sensing lens and image sensing module
TWI451119B (en) Image sensing lens and image sensing module
KR101811570B1 (en) Photographic lens optical system
TWI361915B (en) Optical lens system for taking image
US8908295B1 (en) Optical image capturing lens assembly
TWI443366B (en) Imaging lens, and imaging module
TWI401485B (en) Imaging optical lens assembly
US8885270B2 (en) Imaging lens system, imaging optical device, and digital appliance
TWI585444B (en) Imaging lens
US20140198395A1 (en) Imaging lens
US11835786B2 (en) Imaging lens assembly
TWI507717B (en) An optical imaging lens and an electronic device to which the optical imaging lens is applied
TWI513997B (en) Image pickup module and method for manufacturing image pickup module
TW201232090A (en) Optical lens assembly for image taking
TW201305651A (en) Optical system for imaging pickup
TW201137426A (en) Image sensing module, imaging lens and code reading method
TW201317659A (en) Optical imaging lens and electronic device using the same
TWI429978B (en) Image pickup lens, image pickup module, method for manufacturing image pickup lens, and method for manufacturing image pickup module
KR101729470B1 (en) Photographic Lens Optical System
TW201310057A (en) Optical lens assembly for image pickup
JP5960750B2 (en) Optical imaging lens
JP2010049112A (en) Lens unit and image capturing device
JP4943518B2 (en) Imaging lens, imaging module, and portable information device
JP2011090018A (en) Imaging lens, imaging module, method for manufacturing the imaging lens, and method for manufacturing the imaging module
TW201142348A (en) Image sensing lens and image sensing module

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees