TW201132802A - Metal plate coated with resin - Google Patents

Metal plate coated with resin Download PDF

Info

Publication number
TW201132802A
TW201132802A TW99135580A TW99135580A TW201132802A TW 201132802 A TW201132802 A TW 201132802A TW 99135580 A TW99135580 A TW 99135580A TW 99135580 A TW99135580 A TW 99135580A TW 201132802 A TW201132802 A TW 201132802A
Authority
TW
Taiwan
Prior art keywords
resin
mass
film
coated metal
treatment composition
Prior art date
Application number
TW99135580A
Other languages
Chinese (zh)
Other versions
TWI418652B (en
Inventor
Tadashige Nakamoto
Yoshiaki Shinohara
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of TW201132802A publication Critical patent/TW201132802A/en
Application granted granted Critical
Publication of TWI418652B publication Critical patent/TWI418652B/en

Links

Landscapes

  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating With Molten Metal (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)

Abstract

To provide a metal plate coated with a resin not only having corrosion resistance but also having capability of withstanding a roll molding process as well as coating film adhesion subsequent to a post-coating process. The metal plate coated with a resin includes a coating layer of a resin made from a surface treatment composition. The surface treatment composition includes an inorganic component constituted of plural species of colloidal silica each having a different area-averaged mean particle diameter; a resin component constituted of a copolymer of an olefin and an [alpha],[beta]-unsaturated carboxylic acid, a polymer of an [alpha],[beta]-unsaturated carboxylic acid, and an acrylic-modified epoxy resin; a silane coupling agent containing a glycidoxy group; and a metavanadate.

Description

201132802 六、發明說明: 【發明所屬之技術領域】 本發明涉及一種輥成形性和後塗裝後的塗膜密合性優 異的樹脂塗裝金屬板。 【先前技術】 用於建材用途的熔融鍍鋅鋼板有在鋼板上鍍覆純鋅的 熔融鍍鋅鋼板(GI材)及使其合金化的合金化熔融鍍鋅 鋼板(G A材)等。對於GI材,使GI材連續通過排成一 列的多組輥間(成形速度約爲20〜70m/min ),依次進行 成形加工,由平板加工成目的之斷面形狀的成形品(輥成 形)之後,裸露(未施以後塗裝)地用於甲板及輕鋼龍骨 等。另外’對於GA材,在表面上後塗裝鉛酸鈣防銹塗料 、無鉛塗料或電沉積塗料等之後,用於門或百葉窗等。 以往,就提高抗蝕性之目的,而在GI材或GA材等 的表面上實施鉻酸鹽處理。但是,近年來由於環境意識高 漲’因此正在硏究不實施鉻酸鹽處理的處理方法(無鉻酸 . 鹽處理)’迄今已開發在熔融鍍鋅鋼板上形成無鉻酸鹽的 . 樹脂被膜之樹脂塗裝金屬板。例如,日本特開2 009- 6 1 60 8號揭示一種具有由表面處理組成物所得之樹脂被膜 的樹脂塗裝金屬板,其中,該表面處理組成物含有包含矽 酸鋰及膠體二氧化矽的無機成分及含有烯烴-α,β-不飽和羧 酸共聚物以及α,β-不飽和羧酸聚合物及含噁唑啉基的共聚 物之樹脂成分,進而含有含縮水甘油基的矽烷偶合劑及偏 -5- 201132802 釩酸鹽。 上述文獻中記載之樹脂被膜適用於GI材。這是因爲 在輥成形時,GI材受到嚴酷的面壓,而上述文獻中記載 的樹脂被膜的比重大(約爲2)而可薄膜化,因此,在輥 成形中可以減輕對樹脂被膜的輥損傷,難以使樹脂被膜因 與輥的滑動而從GI材表面剝離(產生被膜渣)。另外, 因爲在輥成形時,爲了確保潤滑性同時使加工熱冷卻,而 將冷卻液供給至GI材表面,此冷卻液係重複使用,但即 使樹脂被膜(被膜渣)從GI材剝離而混入冷卻液中,上 述文獻中記載的樹脂被膜因無機成分較多、比重較大而在 冷卻液中沉澱,可以防止被膜渣伴隨冷卻劑液而在冷卻劑 液中浮動之故。 其結果,可以防止如下不良情況的發生,即,在使用 除水墊從GI材表面擦拭除去冷卻液時(除水步驟),被 膜渣堆積在除水墊表面上,此堆積的被膜渣與成形品表面 之間發生摩擦而產生噪音,或成形品無法以均一移動速度 通過除水墊部分而致使製品的形狀或尺寸混亂、成品率變 差。 另一方面’在亦將上述樹脂被膜應用於GA材時,有 後塗裝後的塗膜密著性或抗蝕性不充分之情況。至於塗膜 密著性不充分的原因,認爲是因爲GA材表面粗糙有凹凸 ,本來利用錨定效果使塗膜密著性優異,然而因上述樹脂 被膜掩埋了 GA材表面之凹凸,或僅覆蓋GA材的最外層 ’從而導致GA材的錨定效果消失之故。另外,至於抗蝕 -6- 201132802 性不充分的原因’認爲是因爲因上述樹脂被膜僅覆蓋GA 材的最外層’凹部的底部沒有形成被膜而致使鋅鍍層露出 ,由此當後塗裝後在塗裝面上切入十字切痕(cross cut) 進行抗蝕性試驗時,在塗膜下發生腐蝕之故。進而,有因 凹部的底部產生的空隙而導致在上述抗蝕性試驗中十字切 痕部分周圍起泡(塗料膨脹)之問題;亦有使用具有吸水 性之矽酸鋰作爲樹脂被膜成分之問題。 【發明內容】 (發明所欲解決之課題) 本發明係鑒於上述情況而完成者,本發明的目的在於 獲得一種無鉻酸鹽表面處理組成物及設有由該表面處理組 成物所得之樹脂被膜的樹脂塗裝金屬板,該表面處理組成 物不僅具備抗蝕性,而且兼具G I材要求的耐輥成形性及 G A材要求的後塗裝後的塗膜密著性。 (用以解決課題之手段) 可以解決上述課題之本發明的樹脂塗裝金屬板係設有 由表面處理組成物所得之樹脂被膜之樹脂塗裝金屬板,其 特徵在於,前述表面處理組成物含有60〜80質量份之由表 面積平均粒徑相異之多種膠體二氧化矽(colloidal silica )構成的無機成分及20〜40質量份的由烯烴-α,β-不飽和 羧酸共聚物、α,β-不飽和羧酸聚合物及丙烯酸改性環氧樹 脂構成的樹脂成分,而且進而含有相對前述無機成分和前 201132802 述樹脂成分的合計100質童份爲5〜15質量份的含環氧丙 氧基的矽烷偶合劑及0.5 ~3質量份的偏釩酸鹽。 在本發明中,前述無機成分含有表面積平均粒徑爲 4〜6nm的膠體二氧化矽(A)及表面積平均粒徑爲 10〜2 0nm的膠體二氧化矽(B),前述(A)與(B)之混 合比爲70 : 3 0〜40 : 60 (質量比)爲較佳之實施方式。 又,本說明書中,所謂表面積平均粒徑爲4~6nm的 膠體二氧化矽意指表面積粒徑爲5nm的膠體二氧化矽占 90% (較好95% )以上的膠體二氧化矽。且,所謂表面積 平均粒徑爲l〇~20nm的膠體二氧化矽意指表面積粒徑爲 12nm的膠體二氧化矽占90% (較好95%)以上的膠體二 氧化矽。表面積平均粒徑一般可藉由西爾斯法或BET法 進行測定。爲了更準確地測定表面積平均粒徑,可測定直 接粒徑的電子顯微鏡爲有效。 又,前述樹脂成分含有2〜15質量%的前述丙烯酸改 性環氧樹脂爲較佳實施方式。 進而,前述表面處理組成物的表面張力爲50dyn/cm 以下、前述樹脂被膜的附著量以乾燥質量計爲0.2〜lg/m2 、或具有前述樹脂被膜之金屬板係熔融鍍鋅鋼板或合金化 熔融鎪鋅鋼板爲較佳實施方式。 本發明之樹脂塗裝金屬板,由於具有由特定的表面處 理組成物得到之樹脂被膜,因此,不僅具有抗蝕性,而且 可以滿足GI材要求的耐輥成形性、GA材要求的後塗裝後 的塗膜密著性。 201132802 【實施方式】 本發明之樹脂塗裝金屬板係具有由表面處理組成物得 到的樹脂被膜之樹脂塗裝金屬板,其特徵在於,前述表面 處理組成物含有60~80質量份的由表面積平均粒徑不同的 多種膠體二氧化矽構成的無機成分及20〜40質量份的由烯 烴-α,β -不飽和羧酸共聚物、α, β -不飽和羧酸聚合物及丙烯 酸改性環氧樹脂構成的樹脂成分,而且,進而含有相對前 述無機成分與所述樹脂成分的合計100質量份爲5〜15質 量份的含環氧丙氧基之矽烷偶合劑及0.5〜3質量份之偏釩 酸鹽。以下,對本發明之樹脂塗裝金屬板進行詳細說明。 又,雖然本發明之被膜含有的無機成分比樹脂成分多 很多,但因爲在該領域中大多稱爲“樹脂被膜”,所以在 本發明中亦使用“樹脂被膜”之用語。 (無機成分) 本發明中,不使用矽酸鋰作爲無機成分。由於不使用 顯示吸水性的矽酸鋰,因此,即使在樹脂塗裝金屬板的表 面進行後塗裝、進行十字切痕後進行耐鹽水浸漬實驗或鹽 水噴霧實驗等嚴酷的抗蝕性試驗,亦可抑制塗膜的密著性 變差。 <膠體二氧化矽> 本發明特徵之一是使用表面積平均粒徑不同的多種膠 -9- 201132802 體二氧化矽作爲無機成分。由此,可改善黏合劑樹脂(樹 脂成分)與膠體二氧化矽之親和性(親密性),提高形成 的樹脂被膜之成膜性(膠體二氧化矽粒子之間的結合力) ,同時可形成緻密的被膜。 更具體地而言,作爲無機成分,較好以含有表面積平 均粒徑爲4〜6 nm的膠體二氧化矽(A)及表面積平均粒徑 爲10〜2 0nm的膠體二氧化矽(B )而構成,更好由膠體二 氧化矽(A)及膠體二氧化矽(B)構成》 該膠體二氧化矽,可推測其在腐蝕環境下在被膜缺陷 處溶解·溶出,藉由發揮pH緩衝作用或鈍態被膜形成作用 而抑制金屬板的溶解/溶出,從而提高金屬板的抗蝕性。 爲了充分發揮該等效果,使用膠體二氧化矽(A)爲有效 。另一方面,因爲膠體二氧化矽(A)的表面活性度高, 故而如果只使用膠體二氧化矽(A ),則有表面處理組成 物的液穩定性會經時性變差(在約4 8小時內增粘),或 無法形成緻密被膜之情況,而有提高樹脂被膜中之無機成 分含有率卻不能增大樹脂被膜比重之問題。因此,本發明 人等進行了積極硏究,結果發現若同時使用表面活性度小 、表面積平均粒徑爲10〜20nm的膠體二氧化矽(B ),則 不會使表面處理組成物的液穩定性降低且可提高無機成分 的含有率。又,本說明書中的膠體二氧化矽的表面積平均 粒徑是指:在表面積平均粒徑爲l~l〇nm左右時,係使用 利用西爾斯法測定的値;在表面積平均粒徑爲1〇〜1〇 〇nm 左右時,係使用利用BET法測定的値,或在製造者的手 -10- 201132802 冊中記載的公稱値。 膠體二氧化矽(A)與膠體二氧化矽(B)之混合比 以質量比計較好爲70 : 3 0〜40 : 60、更好爲65 : 3 5~45 : 55。當膠體二氧化矽(A)之質量比超過70時,會有與 樹脂成分的親和性變差,表面處理組成物的液穩定性變差 ’且無法形成均勻、緻密被膜之情況。隨之,樹脂塗裝金 屬板的裸露抗蝕性及後塗裝後的塗膜密著性變差。當膠體 二氧化矽(A)之質量比未達40時,有在腐蝕環境下於 被膜缺陷部溶解·溶出之S i離子量減少,裸露抗蝕性變差 之虞。 膠體二氧化矽有市售品,作爲表面積平均粒徑爲 4〜6nm者,可以例舉例如日產化學工業公司製造之“ Snowtex (註冊商標)XS” 。另外,作爲表面積平均粒 徑爲10~2 0nm的市售品,可以例舉:同樣是日產化學工 業公司製造的“Snowtex (註冊商標)40” 、 “Snowtex ( 註冊商標)N ” 、“ Snowtex (註冊商標)SS ” 、 “[Technical Field] The present invention relates to a resin-coated metal sheet excellent in roll formability and coating film adhesion after post-coating. [Prior Art] The hot-dip galvanized steel sheet used for building materials has a hot-dip galvanized steel sheet (GI material) plated with pure zinc on the steel sheet, and an alloyed hot-dip galvanized steel sheet (G A material) which is alloyed. For the GI material, the GI material is continuously passed through a plurality of sets of rolls arranged in a row (forming speed is about 20 to 70 m/min), and the forming process is sequentially performed, and the flat product is processed into a desired cross-sectional shape (roll forming). After that, bare (not applied later) is used for decks and light steel keels. In addition, for the GA material, after the surface is coated with a calcium lead rust preventive paint, a lead-free paint or an electrodeposition paint, it is used for a door or a blind. Conventionally, chromate treatment has been carried out on the surface of a GI material or a GA material for the purpose of improving corrosion resistance. However, in recent years, due to the high environmental awareness, 'there is a treatment method that does not implement chromate treatment (no chromic acid. salt treatment)' has been developed so far to form chromate-free on molten galvanized steel sheets. The resin is coated with a metal plate. For example, Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. Inorganic component and resin component containing olefin-α,β-unsaturated carboxylic acid copolymer and α,β-unsaturated carboxylic acid polymer and oxazoline group-containing copolymer, and further containing glycidyl group-containing decane coupling agent And partial-5-201132802 vanadate. The resin film described in the above document is suitable for a GI material. This is because the GI material is subjected to a severe surface pressure at the time of roll forming, and the resin film described in the above document has a large specific gravity (about 2) and can be formed into a film. Therefore, the roll for the resin film can be reduced in roll forming. In the damage, it is difficult to peel the resin film from the surface of the GI material due to sliding with the roller (the film residue is generated). In addition, when the roll is formed, the coolant is supplied to the surface of the GI material to ensure the lubricity and the processing heat is cooled, and the coolant is repeatedly used. However, even if the resin film (film residue) is peeled off from the GI material, it is mixed and cooled. In the liquid, the resin film described in the above document precipitates in the cooling liquid because of a large amount of inorganic components and a large specific gravity, and it is possible to prevent the film slag from floating in the coolant liquid accompanying the coolant liquid. As a result, it is possible to prevent the occurrence of a problem that the film slag is deposited on the surface of the water removing mat, and the deposited film slag and the forming are formed when the cooling liquid is wiped off from the surface of the GI material using the water removing mat (water removing step). Friction occurs between the surface of the product to generate noise, or the molded article cannot pass through the water-removing pad portion at a uniform moving speed, causing the shape or size of the product to be disordered and the yield to deteriorate. On the other hand, when the resin film is applied to the GA material, the coating film adhesion after the post-coating or the corrosion resistance may be insufficient. The reason why the coating film adhesion is insufficient is considered to be because the surface of the GA material is rough and uneven, and the anchoring effect is originally excellent in the coating film adhesion. However, the resin film is buried in the surface of the GA material, or only Covering the outermost layer of the GA material, resulting in the disappearance of the anchoring effect of the GA material. In addition, the reason why the corrosion resistance-6-201132802 is insufficient is considered to be because the above-mentioned resin film covers only the outermost layer of the GA material, and the film is not formed at the bottom of the concave portion, so that the zinc plating layer is exposed, thereby being post-painted. When a cross cut is cut on the coated surface, corrosion is caused under the coating film when the corrosion resistance test is performed. Further, there is a problem that foaming (coating material expansion) occurs around the cross-cut portion in the above-described corrosion resistance test due to the void generated in the bottom portion of the concave portion. There is also a problem that lithium hydroxide having water absorbing properties is used as the resin coating component. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a chromate-free surface treatment composition and a resin coating provided by the surface treatment composition. In the resin-coated metal sheet, the surface-treating composition not only has corrosion resistance, but also has the roll formability required for the GI material and the coating film adhesion after the post-coating required for the GA material. (Means for Solving the Problem) The resin-coated metal sheet of the present invention which can solve the above-mentioned problems is a resin-coated metal sheet obtained by providing a resin coating film obtained from a surface-treated composition, wherein the surface-treated composition contains 60 to 80 parts by mass of an inorganic component composed of a plurality of colloidal silica having a difference in surface area average particle diameter and 20 to 40 parts by mass of an olefin-α,β-unsaturated carboxylic acid copolymer, α, a resin component comprising a β-unsaturated carboxylic acid polymer and an acrylic acid-modified epoxy resin, and further comprising a propylene-containing propylene content of 5 to 15 parts by mass based on the total of the inorganic component and the resin component of the above-mentioned 201132802 An oxane coupling agent of oxy group and 0.5 to 3 parts by mass of metavanadate. In the present invention, the inorganic component contains colloidal cerium oxide (A) having a surface area average particle diameter of 4 to 6 nm and colloidal cerium oxide (B) having a surface area average particle diameter of 10 to 20 nm, and the above (A) and The mixing ratio of B) is 70: 3 0 to 40: 60 (mass ratio) is a preferred embodiment. Further, in the present specification, the colloidal cerium oxide having a surface area average particle diameter of 4 to 6 nm means colloidal cerium oxide having a colloidal cerium oxide having a surface area of 5 nm of 90% or more (more preferably 95%) or more. Further, the colloidal cerium oxide having a surface area average particle diameter of from 10 Å to 20 nm means that colloidal cerium oxide having a surface area of 12 nm has a colloidal cerium oxide of 90% or more (more preferably 95%) or more. The surface area average particle size can generally be determined by the Sears method or the BET method. In order to more accurately measure the surface area average particle diameter, an electron microscope capable of measuring a direct particle diameter is effective. Further, the resin component contains 2 to 15% by mass of the above-mentioned acrylic modified epoxy resin as a preferred embodiment. In addition, the surface tension of the surface treatment composition is 50 dyn/cm or less, and the adhesion amount of the resin film is 0.2 to lg/m 2 in terms of dry mass, or a metal plate-based hot-dip galvanized steel sheet having the resin film or alloyed melting. A bismuth zinc plate is a preferred embodiment. Since the resin-coated metal sheet of the present invention has a resin film obtained from a specific surface treatment composition, it is not only corrosion-resistant, but also can satisfy the roll formability required for the GI material and the post-coating required for the GA material. After the coating film adhesion. [Embodiment] The resin-coated metal sheet of the present invention is a resin-coated metal sheet having a resin film obtained by a surface-treated composition, wherein the surface-treated composition contains 60 to 80 parts by mass of an average surface area. Inorganic component composed of a plurality of colloidal ceria having different particle diameters and 20 to 40 parts by mass of an olefin-α,β-unsaturated carboxylic acid copolymer, an α,β-unsaturated carboxylic acid polymer, and an acrylic modified epoxy Further, the resin component of the resin is further contained in an amount of 5 to 15 parts by mass based on 100 parts by mass of the total of the inorganic component and the resin component, and a vanadium oxide-containing decane coupling agent and 0.5 to 3 parts by mass of vanadium Acid salt. Hereinafter, the resin-coated metal sheet of the present invention will be described in detail. Further, although the inorganic component contained in the film of the present invention is much more than the resin component, it is often referred to as a "resin film" in the field. Therefore, the term "resin film" is also used in the present invention. (Inorganic component) In the present invention, lithium niobate is not used as an inorganic component. Since lithium silicate which exhibits water absorption is not used, even after the surface of the resin-coated metal sheet is subjected to post-coating, cross-cutting, and a severe corrosion resistance test such as a salt water immersion test or a salt spray test, The adhesion of the coating film can be suppressed from being deteriorated. <Colloidal cerium oxide> One of the features of the present invention is to use a plurality of types of rubber -9-201132802 cerium oxide having different surface area average particle diameters as inorganic components. Thereby, the affinity (intimacy) of the binder resin (resin component) and the colloidal cerium oxide can be improved, and the film forming property of the formed resin film (the bonding force between the colloidal cerium oxide particles) can be improved and formed at the same time. Dense film. More specifically, as the inorganic component, colloidal cerium oxide (A) having a surface area average particle diameter of 4 to 6 nm and colloidal cerium oxide (B) having a surface area average particle diameter of 10 to 20 nm are preferably used. The composition is better composed of colloidal cerium oxide (A) and colloidal cerium oxide (B). The colloidal cerium oxide is presumed to be dissolved and dissolved in the film defect in a corrosive environment, thereby exerting a pH buffering effect or The passivation film forms a function to suppress dissolution/dissolution of the metal plate, thereby improving the corrosion resistance of the metal plate. In order to fully exert these effects, it is effective to use colloidal cerium oxide (A). On the other hand, since the surface activity of the colloidal cerium oxide (A) is high, if only the colloidal cerium oxide (A) is used, the liquid stability of the surface-treated composition deteriorates with time (at about 4). There is a problem that the dense film is not formed within 8 hours, and the content of the inorganic component in the resin film is not increased, but the specific gravity of the resin film is not increased. Therefore, the inventors of the present invention conducted an active investigation and found that if a colloidal cerium oxide (B) having a small surface activity and a surface area average particle diameter of 10 to 20 nm is used at the same time, the liquid of the surface treatment composition is not stabilized. The property is lowered and the content of the inorganic component can be increased. Further, the surface area average particle diameter of the colloidal cerium oxide in the present specification means that when the surface area average particle diameter is about 1 to 10 nm, the cerium measured by the Sears method is used; When 〇~1〇〇nm or so, the 测定 measured by the BET method is used, or the nominal 値 described in the manufacturer's hand -10- 201132802. The mixing ratio of the colloidal cerium oxide (A) to the colloidal cerium oxide (B) is preferably 70:3 0 to 40:60, more preferably 65:3 5 to 45:55 by mass ratio. When the mass ratio of the colloidal cerium oxide (A) exceeds 70, the affinity with the resin component is deteriorated, and the liquid stability of the surface-treated composition is deteriorated, and a uniform and dense film cannot be formed. Accordingly, the bare corrosion resistance of the resin-coated metal plate and the adhesion of the coating film after the post-coating are deteriorated. When the mass ratio of the colloidal cerium oxide (A) is less than 40, the amount of Si ions dissolved and eluted in the defect portion of the coating film in a corrosive environment is reduced, and the bare corrosion resistance is deteriorated. The colloidal cerium oxide is commercially available, and as the surface area average particle diameter of 4 to 6 nm, for example, "Snowtex (registered trademark) XS" manufactured by Nissan Chemical Industries, Ltd. is exemplified. In addition, as a commercially available product having a surface area average particle diameter of 10 to 20 nm, "Snowtex (registered trademark) 40", "Snowtex (registered trademark) N", and "Snowtex (", manufactured by Nissan Chemical Industries, Ltd.) are also exemplified. Registered trademark) SS ”, “

Snowtex (註冊商標)0”等;ADEKA公司製造的“ ADELAIDE (註冊商標)AT-30” 、 “ A D E L A I D E (註冊商 標)AT-30A”等。在形成樹脂被膜所使用的表面處理組 成物爲水系時,爲了使膠體二氧化矽良好地分散,較好綜 合考慮表面處理組成物的pH來選擇膠體二氧化矽的種類 〇 對於由上述膠體二氧化矽構成的無機成分,其在與後 述的樹脂成分的合計100質量份中占60〜80質量份。無機 -11 - 201132802 成分量在該範圍內的表面處理組成物所形成的樹脂被膜的 成膜性良好,因此不容易發生被膜剝離,可提高樹脂塗裝 金屬板的耐輥成形性。且,表面處理組成物的表面張力降 低(較好爲50dyn/cm以下),表面處理組成物浸入到表 面粗糙、水潤濕性差的GA材的表面(凹部),沿著GA 材的粗糙面形成樹脂被膜,因此亦可提高抗蝕性或塗膜密 著性。 當無機成分量超過80質量份時,因爲樹脂成分不足 ,所以形成的被膜成膜性不充分,無法形成正常被膜。其 結果’會有在腐蝕環境下的勢壘效果亦降低、抗蝕性變差 之情況。另外’被膜變得太硬而易碎、產生裂縫,在輥成 形時容易發生被膜剝離。進而,因爲膠體二氧化矽(無定 形二氧化矽粒子分散在水中成爲膠狀)的表面張力較高( 約爲66〜73dyn/cm),當無機成分量超過80質量份時, 往往會使表面處理組成物的表面張力變大,與形成有樹脂 被膜的金屬板的濕潤性亦變差,而有難以均勻形成薄膜被 膜之情況。特別是難以在GA材表面的凹凸部形成均勻且 極薄的被膜,因此,塗膜密著性和裸露抗蝕性降低。 當無機成分的量少於60質量份時,會有使得到的樹 脂塗裝金屬板的抗蝕性不充分之情況。且,被膜的硬度不 足,而且,因爲被膜的比重不怎麼增大,故而難以使樹脂 被膜薄膜化,在輥成形時容易發生被膜剝離。進而,由於 樹脂被膜的比重未增大,因此,無法使被膜渣在冷卻液接 收槽中沉澱,抑制其在除水墊表面堆積的效果不足,結果 -12- 201132802 會有使操作性及製品形狀惡化之情況。另外,使用無機成 分的量低於60質量份的表面處理組成物在金屬板(特別 是GA材)上形成樹脂被膜時,雖樹脂成分的含有率增加 ’成膜性提高’但因爲抑制腐蝕的S i離子溶出量減少, 故而在樹脂被膜與金屬板表面之間(電鍍層介面)開始腐 餓(塗膜下腐餓)’結果有使後塗裝後的塗膜密著性變差 ’在後塗裝後的耐腐蝕試驗中,十字切痕部周圍起泡之情 況。 在本發明中’在無機成分與樹脂成分的合計100質量 份中’無機成分更好爲65〜75質量份。此時,膠體二氧化 矽(A)與(B)的混合比較好爲50:50(質量比),特 別是可使G A材的裸露抗蝕性或塗膜密著性達到良好程度 (樹脂成分) 本發明中使用的表面處理組成物,除了含有上述無機 成分之外’亦可含有由烯烴- α,β -不飽和羧酸共聚物(以下 有時稱爲“烯烴-酸共聚物”)與α,β -不飽和羧酸聚合物 (以下有時稱爲“羧酸聚合物”)及丙烯酸改性環氧樹脂 構成的樹脂成分。 藉由由含有烯烴-酸共聚物及羧酸聚合物兩者的表面 處理組成物形成樹脂被膜,可提高所得樹脂塗裝金屬板的 抗餓性。其正確機制尙不明確,但可推測爲藉由使用該兩 者’可形成緻密的樹脂被膜,可有效抑制水及氧透過。 -13- 201132802 又,本發明之“烯烴·酸共聚物”意指烯烴與α,β-不 飽和羧酸的共聚物,且源自烯烴的構成單元在共聚物中占 50質量%以上(即,源自α,β-不飽和羧酸的構成單元爲 50質量%以下)。又,“羧酸聚合物”意指以α,β-不飽和 羧酸爲單體所得之聚合物(亦包括共聚物),且源自α,β-不飽和羧酸的構成單元在聚合物中占90質量%以上者。 又,在“ α,β-不飽和羧酸”中,亦包括以後述中和劑中和 一部分羧基而成的“α,β-不飽和羧酸鹽”。 &lt;烯烴-酸共聚物&gt; 本發明中使用的烯烴·酸共聚物可藉由利用已知方法 使烯烴與α,β-不飽和羧酸共聚而製造,而且有市售品。在 本發明中,可以使用1種或2種以上的烯烴·酸共聚物。 對於可用於製造烯烴-酸共聚物的烯烴,並無特別限 定,但較佳爲乙烯、丙烯等,更好爲乙烯。作爲烯烴-酸 共聚物,可使用烯烴構成單元僅源自1種烯烴的構成單元 者或源自2種以上的烯烴的構成單元者之任一者。 可用於製造烯烴-酸共聚物的α,β-不飽和羧酸,亦無 特別限定,可以例舉例如:丙烯酸、甲基丙烯酸、丁烯酸 、異丁烯酸等單羧酸;馬來酸、富馬酸、衣康酸等二羧酸 等。該等中,較佳爲丙烯酸。作爲烯烴-酸共聚物,可使 用α,β-不飽和羧酸的構成單元僅源自一種α,β-不飽和羧酸 的構成單元者或使用源自2種以上的α,β_不飽和羧酸的構 成單元者之任一者。 -14- 201132802 本發明中使用的烯烴-酸共聚物’在不會對作爲本發 明效果的抗蝕性等帶來不良影響的範圍內,亦可含有源自 其他單體的構成單元。在烯烴-酸共聚物中,源自其他單 體的構成單元量較佳爲1 〇質量%以下、更佳爲5質量%以 下,最佳的烯烴-酸共聚物爲僅由烯烴-及α,β-不飽和羧酸 構成。作爲較佳之烯烴-酸共聚物’可例舉乙烯-丙烯酸共 聚物。 烯烴-酸共聚物中的α,β-不飽和羧酸係爲了提高樹脂 被膜與金屬板的密著性而使用者,共聚物中的α,β·不飽和 羧酸量較佳爲5質量%以上、更佳爲1 〇質量。/。以上。但是 如果α,β-不飽和羧酸過量,則有使抗蝕性降低之虞,因此 ,共聚物中的α,β -不飽和羧酸量較佳爲3 0質量。/。以下、 更佳爲2 5質量%以下。 本發明中使用的烯烴-酸共聚物的質量平均分子量( Mw)以聚苯乙烯換算,較佳爲1,000〜10萬,更佳爲 3,000〜7萬、又更佳爲5,〇〇〇〜3萬。該Mw可利用使用聚 苯乙烯爲標準的GPC進行測定。 &lt;羧酸聚合物&gt; 作爲本發明中使用的竣酸聚合物,可例舉1種或2種 以上之α,β -不飽和羧酸之均聚物或共聚物、或進而與其他 單體共聚而成的共聚物。此等羧酸聚合物可用已知方法製 造’且亦有市售品。在本發明中,可使用1種或2種以上 的羧酸聚合物。 -15- 201132802 對於可用於製造羧酸聚合物的α,β -不飽和羧酸,可使 用作爲可用於合成上述烯烴-酸共聚物的α,β -不飽和羧酸 所例示的α,β -不飽和羧酸的任何一種。其中,較佳爲丙烯 酸及馬來酸,更佳爲馬來酸。 羧酸聚合物亦可含有源自α,β-不飽和羧酸以外的單體 之構成單元,源自其他單體的構成單元量在聚合物中爲 10質量%以下’較佳爲5質量%以下,更佳爲僅由α,β-不 飽和羧酸構成之羧酸聚合物。 作爲較佳之羧酸聚合物,可例舉例如:聚丙烯酸、聚 甲基丙烯酸、丙烯酸-馬來酸共聚物、聚馬來酸等,該等 中,從塗膜密著性、樹脂被膜密著性及抗蝕性的觀點考慮 ,更佳爲聚馬來酸。藉由使用聚馬來酸,可使生成的樹脂 乳膠的粒徑變小(20〜60nm ),使成膜得到的被膜緻密, 因此可提高抗蝕性等。又,因爲羧基量多,故樹脂被膜與 金屬板的密著性提高,隨之抗蝕性也進一步提高》 本發明中使用的羧酸聚合物的Mw,以聚苯乙烯換算 ,較佳爲 500〜3萬,更好爲 800〜1萬,又更好爲 900〜3,000,最佳爲1,00 0〜2,000。該Mw可藉由使用聚苯 乙烯爲標準的GPC進行測定。 表面處理組成物中的烯烴-酸共聚物與羧酸聚合物的 含有率爲1,000:1~10:1,較佳爲200:1〜2 0:1,更佳 爲100: 1~1 00: 3。當羧酸聚合物的含有率太低時,無法 充分發揮烯烴·酸共聚物與羧酸聚合物組成的效果,相反 地,當羧酸聚合物的含有率過量時,在表面處理組成物中 -16- 201132802 ’有會使烯烴-酸共聚物與羧酸聚合物發生相分離,無法 形成均勻樹脂被膜之虞。 &lt;丙烯酸改性環氧樹脂&gt; 在上述樹脂成分中,亦含有丙烯酸改性環氧樹脂。迄 今爲止,作爲提高後塗裝的塗膜密著性的方法,已知使作 爲樹脂成分的封端異氰酸酯(熱敏交聯劑)存在於被膜中 ,利用後塗裝後燒結時的熱(燒結溫度)使封端異氰酸酯 的封端劑離解,使活性異氰酸酯基再生,使被膜與塗膜硬 化·交聯之技術。但是,作爲後塗裝塗料於建材領域使用 的鉛酸鈣防銹塗料主流爲不需要利用熱燒結(乾燥)的常 乾型,無法使用上述技術。 本發明人等對上述問題進行了積極硏究,結果發現, 藉由倂用低溫下可成膜的丙烯酸改性環氧樹脂作爲樹脂成 分,可提高樹脂被膜的塗膜密著性。藉由倂用丙烯酸改性 環氧樹脂來提高塗膜密著性的正確機制尙不明確,但可推 測爲:丙烯酸改性環氧樹脂不是作爲無機成分(膠體二氧 化矽)的黏合劑而作用,雖然藉由在樹脂被膜的最表面成 膜(點狀條紋)無助於提高裸露抗蝕性,但是有助於提高 後塗裝後的塗膜密著性。丙烯酸改性環氧樹脂在樹脂被膜 的最表面成膜的原因,可以認爲是由於相對烯烴-酸共聚 物及羧酸聚合物的乳膠粒徑2 0〜6 0 n m,丙烯酸改性環氧樹 脂的乳膠粒徑較大約爲1 00nm以上的緣故。 本發明中使用的丙烯酸改性環氧樹脂可利用如下方法 -17- 201132802 製造,例如,使環氧樹脂及不飽和脂肪酸反應得到的含聚 合性不飽和基團的環氧樹脂與(甲基)丙烯酸共聚合,或 使環氧樹脂及含縮水甘油基的乙烯基單體與胺類反應得到 的含聚合性不飽和基的環氧樹脂與(甲基)丙烯酸共聚合 而製造。 特別是水性丙烯酸改性環氧樹脂有市售品,可以例舉 例如:荒川化學工業公司製造的“ MODEPICS (註冊商標 )3 01&quot; 、 “ MODEPICS (註冊商標)3 02 ” 、 “ MODEPICS (註冊商標)303 ” 、 “MODEPICS (註冊商標 )3 04 ”等。上述丙烯酸改性環氧樹脂可單獨使用,亦可 以兩種以上組合使用。 在樹脂成分1 〇〇質量%中,丙烯酸改性環氧樹脂的含 量較佳爲2質量%以上(更佳爲3質量%以上)且1 5質量 %以下(更佳爲7質量%以下)。丙烯酸改性環氧樹脂的 含量在上述範圍內,可在不損及樹脂塗裝金屬板的耐輥成 形性及裸露抗蝕性的情況下提高後塗裝後的塗膜密著性。 當丙烯酸改性環氧樹脂的含有率未達2質量%時,看 不出後塗裝後的塗膜密著性的提高效果。又,當丙烯酸改 性環氧樹脂的含有率超過1 5質量%時,有使抗蝕性降低 之傾向。特別是於GA材,其塗膜密著性大幅劣化,而且 有起泡之情況。丙烯酸改性環氧樹脂的含有率超過15質 fi %時裸露抗蝕性下降且後塗裝的抗蝕性及塗膜密著性下 降的正確機制尙不明確,但可推測是因爲因丙烯酸改性環 氧樹脂過量存在而阻礙了烯烴-酸共聚物與羧酸聚合物乳 -18- 201132802 膠成膜的緣故。 &lt;含環氧丙氧基的矽烷偶合劑&gt; 在本發明的表面處理組成物中,可包含含環氧丙氧基 的矽烷偶合劑(更詳言之,爲末端具有環氧丙氧基的矽烷 偶合劑)。若使用含環氧丙氧基的矽烷偶合劑,則可提高 金屬板與樹脂被膜的密著性。且,考慮到其亦兼備提高樹 脂被膜中的無機成分與樹脂成分的結合力的效果,耐輥成 形性及裸露抗蝕性的提高效果大。進而,當添加含環氧丙 氧基的矽烷偶合劑時,因爲表面處理組成物的表面張力下 降,故可改善與金屬板的濕潤性,提高表面處理組成物的 塗布性,可形成均勻的樹脂被膜。另外,將表面處理組成 物用噴霧擠乾方式(將表面處理組成物噴射在金屬板表面 後’用擠壓輥擠絞的塗布方法)循環使用時,亦顯現出抑 制由組成物中的表面活性劑引起起泡的效果。 作爲含環氧丙氧基的矽烷偶合劑,可以例舉例如:γ-環氧丙氧基丙基甲基二乙氧基矽烷、γ-環氧丙氧基丙基三 甲氧基矽烷(信越化學工業公司製造、ΚΒΜ403) 、γ-環 氧丙承I基甲基一甲氧基砂院等。 相對無機成分與樹脂成分合計1 00質量份,表面處理 組成物中的含環氧丙氧基的矽烷偶合劑量爲5質量份以上 (較佳爲7質量份以上)且1 5質量份以下(較佳1 3質量 份以下)。當矽烷偶合劑量低於5質量份時,看不出提高 金屬板與樹脂被膜的密著性的效果。另外,有使樹脂被膜 -19- 201132802 成分中的無機成分與樹脂成分的結合力下降,被膜硬度下 降,被膜的緻密性變差,耐輥成形性、塗膜密著性、裸露 抗蝕性下降之情況。即使含環氧丙氧基的矽烷偶合劑量超 過15質量份,因爲金屬板與樹脂被膜的密著性提高效果 及樹脂被膜成分中的無機成分與樹脂成分的結合力提高效 果已經達到頂點,故會成爲成本升高的主要原因。相反地 ,有引起耐輥成形性、塗膜密著性、裸露抗蝕性下降,表 面處理組成物的液穏定性下降,從而導致凝膠化或膠體二 氧化矽沉澱之情況。 &lt;偏釩酸鹽&gt; 本發明的表面處理組成物中,進一步含有偏釩酸鹽。 偏釩酸鹽亦與膠體二氧化矽同樣藉由溶出來抑制金屬板的 溶解·溶出,有提高抗蝕性的效果。特別是對GA材,偏 釩酸鹽可發揮提高裸露抗蝕性的效果。爲了有效地發揮該 效果,相對無機成分與樹脂成分合計100質量份,使用偏 釩酸鹽0.5〜3質量份即可。如果少於0.5質量份,則裸露 抗蝕性提高效果不充分。另外,如果添加量超過3質量份 ,則可看出裸露抗蝕性稍稍下降的傾向。此可推測是因爲 過量的偏釩酸鹽可抑制含環氧丙氧基的矽烷偶合劑的水解 反應,雖然只是少許但會影響無機成分與樹脂成分的結合 力。而且有塗膜密著性顯著降低、表面處理組成物的液穩 定性也變差的傾向。偏釩酸鹽量更佳爲0.7〜1.5質量份。 又,該偏釩酸鹽的最佳量爲V元素換算量。 -20- 201132802 作爲偏釩酸鹽,可以例舉例如:偏釩酸鈉 '偏釩酸銨(nh4vo3)、偏釩酸鉀(κνο3) 釩酸鹽可單獨使用,亦可以兩種以上組合使用 酸鹽有市售品,可容易地獲得。 &lt;其他成分&gt; 本發明的表面處理組成物亦可進一步包含 亞胺基的化合物。碳化二醯亞胺基與烯烴-酸 酸聚合物中的羧基反應,可減少樹脂被膜中的 高耐鹼性。在本發明中,可以使用1種或2種 化二醯亞胺基的化合物。 對於含碳化二醯亞胺基的化合物,可藉由 亞胺化催化劑存在下對異氰酸酯類進行加熱而 異氰酸酯類包括例如:六伸甲基二異氰酸酯( 二甲基二異氰酸酯(XDI)、氫化苯二甲基二 HXDI) 、4,4-二苯甲烷二異氰酸酯(1^01)或 酸酯(TDI )等,且亦可藉由改性使其成爲水 、水乳化性或水分散性)。表面處理組成物爲 佳爲水性的含碳化二醯亞胺基的化合物。而且 子中含有複數個碳化二醯亞胺基的化合物。當 有複數個碳化二醯亞胺基時,利用與樹脂成分 交聯反應,可進一步提高裸露抗蝕性等。 作爲市售的含碳化二醯亞胺基的化合物, 如:Ν,Ν-二環己基碳化二醯亞胺、Ν,Ν-二異丙 (NaV03 ) 等。該等偏 。這些偏釩 含碳化二醯 共聚物及羧 羧基量、提 以上的含碳 在碳化二醯 製造,所述 HDI )、苯 異氰酸酯( 甲苯二異氰 性(水溶性 水系時,較 較佳爲1分 1分子中含 中的羧基的 可以例舉例 基碳化二醯 -21 - 201132802 亞胺等;日清紡公司製造的聚碳化二醯亞胺(1分子中含 有複數個碳化二醯亞胺基的聚合物)的“ Carbodilite ( 註冊商標)”系列。作爲&quot;Carbodilite (註冊商標)”的 等級,有水溶性的 “SV-02” 、 “V-02” 、 “V-02-L2” 、 “V-04” 或乳膠型的 “E-01” 、 “E-02” 等。 可根據作爲交聯對象的烯烴-酸共聚物與羧酸聚合物 的量來設定含碳化二醯亞胺基的化合物量。即,相對烯 烴-酸共聚物與羧酸聚合物合計100質量份,較佳爲0.1 質量份以上,更佳爲0.5質S份以上,進一步較佳爲8質 fi份以上。另一方面,當含碳化二醯亞胺基的化合物量過 fi時,會使烯烴-酸共聚物及羧酸聚合物的組合效果下降 。而且在水系的表面處理組成物中過量使用水性含碳化二 醯亞胺基的化合物時,會對耐水性及抗蝕性帶來不良影響 。從此等觀點考慮,相對上述烯烴-酸共聚物與羧酸聚合 物合計100質量份,含碳化二醯亞胺基的化合物量較佳爲 30質量份以下,更佳爲20質量份以下,進一步較佳爲16 質量份以下。 本發明的表面處理組成物,在不阻礙本發明效果的範 圍內,亦可含有石蠟、交聯劑、稀釋劑、防結皮劑、界面 活性劑、乳化劑、分散劑、流平劑、消泡劑、浸透劑、成 膜助劑、染料、顏料、增黏劑、潤滑劑等。 &lt;表面處理組成物的表面張力&gt; 本發明中使用的表面處理組成物,較好藉由適當調節 -22- 201132802 無機成分與樹脂成分的混合比例(具體而言,無機成分: 樹脂成分=60 : 40〜8 0 : 20 )而降低表面處理組成物的表面 張力,具體爲50dyn/cm以下,更佳爲48dyn/cm以下。由 此’即使在表面粗糙、水濕潤性差的GA材的表面(凹部 )’表面處理組成物亦可侵入,可提高GA材的裸露抗触 性或塗膜密著性。又,表面處理組成物的表面張力的測定 方法如後述。 以上對本發明中使用的表面處理組成物進行了詳細說 明,以下對表面處理組成物的製造方法進行說明。 &lt;表面處理組成物的製造方法&gt; 本發明的表面處理組成物爲可在金屬板表面塗布的溶 劑系組成物或水系組成物的任何一種,但從環境方面的問 題考慮,較佳爲水系組成物。表面處理組成物可藉由將有 機溶劑(於溶劑系組成物的情況)或水較佳爲去離子水( 於水系組成物的情況)、膠體二氧化矽、烯烴-酸共聚物 、羧酸聚合物、丙烯酸改性環氧樹脂、含環氧丙氧基的矽 院偶合劑、偏fL酸鹽、視需要的含碳化二醯亞胺基的化合 物或其他成分按規定量混合、攪拌而製備。 在製備表面處理組成物時,較好在烯烴-酸共聚物及 羧酸聚合物的乳化物(乳膠)中添加含環氧丙氧基的矽烷 偶合劑的一部分及含碳化二醯亞胺基的化合物,製備該等 物質的混合物後,於其中依次添加膠體二氧化矽(較佳從 表面積平均粒徑小的開始按順序添加)、剩餘的含環氧丙 -23- 201132802 氧基的矽烷偶合劑、偏釩酸鹽、丙烯酸改性環氧樹脂。如 果在添加含環氧丙氧基的矽烷偶合劑之前添加偏釩酸鹽, 則會有抑制矽烷偶合劑的水解反應’阻礙矽烷偶合劑的效 果。另外,較佳如上所述分兩次添加含環氧丙氧基的矽烷 偶合劑。這是因爲先添加的矽烷偶合劑使乳膠粒子微細化 ,其結果,使樹脂被膜緻密,有助於提高抗蝕性,後添加 的矽烷偶合劑有助於確保與金屬板的密著性及提高被膜特 性。又,先添加的矽烷偶合劑的量,相對烯烴-酸共聚物 與羧酸聚合物合計100質量份,較佳爲0.1質量份以上( 更佳爲2質量份以上)且10質量份以下(更佳爲7質量 份以下)。且,後添加的矽烷偶合劑的量如前述。 在攪拌上述成分時可進行加熱。特別是在羧酸聚合物 存在下對烯烴-酸共聚物進行乳化時,較好進行加熱。 在製造水系的表面處理組成物時,較好使作爲樹脂成 分的主成分的烯烴-酸共聚物乳化。對於烯烴-酸共聚物, 可藉由使用乳化劑或中和共聚物中的羧基使其乳化。當使 用乳化劑時,可使烯烴-酸共聚物的水性乳膠的平均粒徑 變小,可提高成膜性且據此提高樹脂被膜的緻密度等。 其中,以中和烯烴-酸共聚物中的羧基進行乳化的方 法較佳。這是因爲藉由中和羧基進行乳化,可減少乳化劑 的用量或不使用乳化劑,從而可以減少或消除乳化劑對樹 脂被膜的耐水性及抗蝕性的不良影響。中和烯烴-酸共聚 物中的羧基時,較好相對羧塞使用較好0.5〜0.95當量左 右,更佳0.6〜0.8當量左右的鹼。當中和度過少時,乳化 -24- 201132802 性基本沒有提高,另一方面,當中和度過大時,會有使含 有烯烴-酸共聚物的組成物的粘度變得過高之情況。 作爲用於中和的鹼,可例舉例如:由鹼金屬及鹼土金 屬的氫氧化物(例如NaOH、KOH、Ca(〇H)2等,較佳 NaOH )所組成之群組所構成的強鹼、氨水、一級胺、二 級胺、三級胺(較佳爲三乙胺)。當使用NaOH等強鹼時 ,雖然乳化性提高,但用量過多時可能會使樹脂被膜的抗 蝕性降低。另一方面,低沸點的胺(較好在大氣壓下的沸 點爲1 〇〇°C以下的胺;例如三乙胺)基本上不會使樹脂被 膜的抗蝕性下降。究其原因可以認爲,在塗布表面處理組 成物後,進行加熱乾燥形成樹脂被膜時,低沸點胺揮發等 。但是,因爲胺的乳化性提高效果小,所以較好組合上述 強鹼和胺進行中和。最佳組合爲NaOH與三乙胺的組合。 在組合使用強鹼及胺時,相對烯烴-酸共聚物的羧基量, 較好強鹼的用量爲 0.01〜0.3當量左右,胺的用量爲 0.4〜0.8當量左右。 在使用水系的表面處理組成物時,爲了降低表面張力 、提高對金屬板的濕潤性,可以混合少量的有機溶劑。作 爲用於此的有機溶劑,可以例舉例如:甲醇、乙醇、異丙 醇、丁醇類、己醇、2-乙基己醇、乙二醇乙醚、乙二醇丁 醚、二乙二醇、丙二醇等。 &lt;表面處理組成物的固體成分&gt; 本發明中使用的表面處理組成物的固體成分並無特別 -25- 201132802 限定,配合向金屬板塗布表面處理組成物的方法調整即可 。表面處理組成物的固體成分一般在5~20質量%左右, 例如,在利用噴霧擠乾法(將表面處理組成物噴射在金屬 板表面後,用擠乾輥擠絞的塗布方法)塗布時,較佳爲 1〇~18質量%左右。 &lt;樹脂被膜的形成方法&gt; 本發明中,在金屬板上形成樹脂被膜的方法及條件並 未特別限定,可使用已知的塗布方法,藉由將表面處理組 成物塗布在金屬板表面的一面或兩面上進行加熱乾燥,而 製造樹脂塗裝金屬板。作爲表面處理組成物的塗布方法, 可例舉例如:棒塗布法、簾式流動塗布法、輥塗法、噴霧 法、噴霧擠乾法等,該等中,從成本等觀點考慮,較佳爲 棒塗布法及噴霧擠乾法。且加熱乾燥條件亦未特別限定, 可以示例:作爲加熱乾燥溫度,通常爲50~ 120 °C左右, 較佳爲70〜100°C左右。太高的加熱乾燥溫度會使樹脂被 膜變差,故而不佳。 &lt;樹脂被膜的附著量&gt; 樹脂塗裝金屬板中的樹脂被膜的附著量,以乾燥質量 計’較佳爲0.2〜lg/m2,更佳爲〇.3~0.7g/m2。當附著量未 達0.2g/m2時’難以覆蓋金屬板表面,會大爲損及耐輥成 形性、塗膜密著性、裸露抗蝕性。另一方面,當附著量超 過1 g/m2時’雖然抗蝕性良好,但因爲輥成形時剝離的被 -26- 201132802 膜量增加,所以被膜渣向除水墊的堆積量增加,有成爲發 生故障原因之虞,故而不佳。而且會大爲損及塗膜密著性 。又,本發明的樹脂被膜含有很多無機成分,比重大。因 此,與樹脂成分較多的以往樹脂被膜相比,可在附著量相 同的情況下成功地薄膜化。此亦有助於減少被膜渣。 &lt;金屬板&gt; 本發明中使用的金屬板並無特別限定,可例舉例如: 非鍍覆冷軋鋼板、熔融鍍鋅鋼板(GI )、合金化熔融鍍鋅 鋼板(GA )、電鍍鋅鋼板(EG ) '鋁板及鈦板等。其中 ,本發明中較好爲使用未進行鉻酸鹽處理的熔融鍍鋅鋼板 (GI)、合金化熔融鑛粹鋼板(GA)。 實施例 以下’基於實施例對本發明進行詳細敍述。但下述實 施例並不用以限定本發明,在不脫離前述·後述的主旨的 範圍內實施變更者均包含在本發明的技術範圍內。 首先’實驗例中使用的評價方法說明如下。 (耐輥成形性) 從樹脂塗裝金屬板上切取40mmx300mm的試樣,垂 直固定在拉伸試驗機上,使試樣背面與平板模具(材質: SKD 1 1 )抵接。接下來,使與該平板模具抵接的試樣的相 對面(正面)與具有尖端半徑R = 9.1mm的凸部的夾具( -27- 201132802 半圓柱模具、材質:SKD 1 1 )抵接,沿水平方向對夾具施 加4900N ( 500kgf)的負載,使夾具向下以300mm/min的 速度,在試樣背面與平板模具抵接的範圍內拉伸。之後, 使半圓柱模具離開試樣回到滑動前的位置後,反復進行9 次和上述同樣的滑動操作(合計1〇次)。之後,用X螢 光分析裝置分別分析使半圓柱模具反復滑動的部分(W· )及未滑動部分(WQ)的被膜附著量,由下述式1算出 被膜殘留率,以下述標準進行評價。 被膜殘留率(%) = &amp;X100 (式1) ◎:被膜殘留率爲95%以上 〇:被膜殘留率爲90%以上且未達95% △:被膜殘留率爲80%以上且未達90% X :未達8 0 % 又,被膜附著量係分析被膜中含有的膠體二氧化矽( Si〇2)的Si元素,基於下述式2由被膜中含有的Si元素 的比例計算而得。 被膜附著 m (g/m2) = 5V(mg/w2)x(^^)x(~^~) + 1000 (式 2) C:被膜中的膠體二氧化矽(Si02)的比例 (裸露抗蝕性(SST平板)) 基於J1S Z2371,對樹脂塗裝金屬板實施鹽水噴霧試 -28- 201132802 驗,測定白鏽發生率(1 0 〇 X產生白鏽的面積/樹脂塗裝金 屬板的總面積)達到5 %的時間。又,對於建材用途的裸 露抗蝕性,不管是GI材還是GA材,只要每次鉻酸鹽處 理的S S T經過時間4 8小時內產生的白鏽在5 %以內,實 用上即無問題。且,在其他用途中,只要GI材在9 6小時 以上、G A材在7 2小時以上,亦無問題。 (在J A S 0循環試驗中的裸露抗蝕性(平板)) 基於JIS H8502,進行JASO循環試驗。1次循環爲鹽 水噴霧(溫度3 5 °C X2小時)—乾燥(溫度3 5 °C X濕度 3 0%以下乂4小時)—濕潤(溫度50艽父濕度95%以上&gt;&lt;2小 時) (均包含移行時間)。實施2 0次循環後,以下述 標準評價白鏽發生率(100 X發生白鏽的面積/樹脂塗裝金 屬板的總面積)。 ◎:白鏽發生率未達5 % 〇:白鏽發生率爲5 %以上~未達1 0 % △:白鏽發生率爲10%以上〜未達20% X :白鏽發生率爲20%以上 (表面張力) 依據JIS K224 1,使用離子交換水製備表面處理組成 物的23 %水溶液,在室溫條件下,使用表面張力測定裝置 (島津製作所製)及作爲感測器的金屬環,利用杜諾依、法 求出該水溶液的表面張力。 -29- 201132802 (塗膜密著性) 首先’將鉛酸鈣防銹塗料(日本塗料公司製造、 HERGOM CP淺灰色)用稀釋劑(日本塗料公司製造、塗 料稀釋劑Α)稀釋’調節黏度(在4#福特杯中2〇秒)後 ’以噴霧壓力39Ν ( 4kgf )對樹脂塗裝金屬板進行噴霧塗 裝’熟化12小時後’在溫度8 〇 〇c下乾燥6 〇分鐘,製成 塗料厚35〜4 0 μηι的塗裝材料。 &lt;鹽水噴霧試驗&gt; 接下來,在對塗裝材料的背面·邊緣實施封口後,以 切刀切入十字切痕’依據JIS Ζ2 371進行鹽水噴霧試驗( S S Τ )’經過3 6 0小時後,測定從十字切痕部起的單側最 大膨脹寬度,以下述標準進行評價。 ◎:膨脹寬度未達1.0mm 〇:膨脹寬度爲1.0mm以上且未達1.5mm △:膨脹寬度爲1.5mm以上且未達2.0mm X :膨脹寬度爲2.0mm以上 &lt;耐鹽水浸漬試驗&gt; 在對塗裝材料的背面·邊緣實施封口後,以切刀切入 十字切痕,在液體溫度23°C ±2°C的氯化鈉水溶液(30g/L )中浸漬96小時,然後進行水洗,接著擦掉表面的水分 ’立即實施十字切痕部的膠帶剝離試驗。對於剝離試驗後 的塗裝材料,測定從十字切痕部起的單側最大剝離寬度, -30- 201132802 以下述標準進行評價。 ◎:剝離寬度低於1 . 0 m m Ο :剝離寬度爲1.0mm以上且未達κ5 △:剝離寬度爲1.5mm以上且未達2.〇mm X:刹離寬度爲2.0mm以上 (烯烴-酸共聚物與羧酸聚合物的乳化物(乳膠)的製備 ) 在具有設有擾梓器、溫度、溫度控制器的乳化設備 的高壓釜中,加入作爲烯烴-酸共聚物的乙烯-丙烯酸共聚 物(日本陶氏化學公司製造、Primacor (註冊商標) 59901 ,源自丙烯酸的構成單元:20質量%、質均分子量 (M w ) ·· 2 0,0 0 0,熔融指數:1 3 0 0,酸價·· 1 5 0 ) 200.0 質量份、作爲羧酸聚合物的聚馬來酸水溶液(日本油脂公 司製造的“ nonpol (註冊商標)PMA-50W ” ’ Mw :約 1,100(聚苯乙烯換算)、50質量%者)8.0質量份、三 乙胺35.5質量份(相對乙烯-丙烯酸共聚物的羧基爲〇.63 當量)、4 8 %N a Ο Η水溶液6 · 9質量份(相對乙烯-丙烯酸 共聚物的羧基爲0 . 1 5當量)、妥爾油脂肪酸(哈利瑪化 成公司製造、HARTALL FA3 ) 3.5質量份、離子交換水 792.6質量份並密封,在150 °C及5大氣壓下高速攪拌3 小時後,冷卻到3 0 〇C。接著添加含環氧丙氧基的砍院偶 合劑(邁圖高新材料(原GE東芝有機矽)公司製造' TSL8350、y -環氧丙氧基丙基三甲氧基矽烷)1〇·4質量份 -31 - 201132802 、含碳化二醯亞胺基的化合物(日清紡公司製造的“ Carbodilite (註冊商標)S V - 0 2 ” 、聚碳化二醯亞胺,Snowtex (registered trademark) 0", etc.; "ADELAIDE (registered trademark) AT-30", "ADELAIDE (registered trademark) AT-30A" manufactured by ADEKA, etc. When the surface treatment composition used to form the resin film is water system In order to disperse the colloidal cerium oxide well, it is preferable to select the type of colloidal cerium oxide in consideration of the pH of the surface treatment composition. 〇 For the inorganic component composed of the above-mentioned colloidal cerium oxide, it is in the same manner as the resin component described later. 60 to 80 parts by mass of the total of 100 parts by mass. Inorganic-11 - 201132802 The film formation property of the resin film formed by the surface treatment composition having a component amount within this range is good, so that peeling of the film is unlikely to occur, and resin coating can be improved. The roll formability of the metal plate is reduced, and the surface tension of the surface treatment composition is lowered (preferably 50 dyn/cm or less), and the surface treatment composition is immersed in the surface (concave portion) of the GA material having a rough surface and poor water wettability. The resin film is formed along the rough surface of the GA material, so that the corrosion resistance or the coating film adhesion can be improved. When the amount of the inorganic component exceeds 80 parts by mass, Since the resin component is insufficient, the formed film forming property is insufficient, and a normal film cannot be formed. As a result, the barrier effect in a corrosive environment is also lowered, and the corrosion resistance is deteriorated. It is hard and brittle, and cracks occur, and the film peeling easily occurs during roll forming. Further, since the colloidal cerium oxide (amorphous cerium oxide particles are dispersed in water to form a gel), the surface tension is high (about 66 to 73 dyn/ When the amount of the inorganic component exceeds 80 parts by mass, the surface tension of the surface treatment composition tends to be large, and the wettability of the metal sheet on which the resin film is formed is also deteriorated, and it is difficult to form the film film uniformly. In particular, it is difficult to form a uniform and extremely thin film on the uneven portion on the surface of the GA material, and therefore, the coating film adhesion and the bare corrosion resistance are lowered. When the amount of the inorganic component is less than 60 parts by mass, it may be obtained. The corrosion resistance of the resin-coated metal sheet is insufficient, and the hardness of the film is insufficient, and since the specific gravity of the film is not so large, it is difficult to thin the resin film. When the roll is formed, the film is likely to be peeled off. Further, since the specific gravity of the resin film is not increased, the film slag cannot be precipitated in the coolant receiving tank, and the effect of suppressing the deposition on the surface of the water removing mat is insufficient. Results -12 - 201132802 In the case where the surface of the surface-treated composition having an inorganic component of less than 60 parts by mass is used to form a resin film on a metal plate (particularly a GA material), the content of the resin component is used. Increasing the 'film-forming property improvement', but the amount of S i ions eluted by the corrosion is reduced, so that between the resin film and the surface of the metal plate (the plating layer interface), the rot is hungry (the film is rotted under the film). The coating film adhesion after mounting deteriorates. In the corrosion resistance test after the post-coating, foaming around the cross-cut portion occurs. In the present invention, the inorganic component is more preferably 65 to 75 parts by mass in 100 parts by mass of the inorganic component and the resin component. At this time, the mixing of the colloidal cerium oxide (A) and (B) is preferably 50:50 (mass ratio), and in particular, the bare corrosion resistance or the coating film adhesion of the GA material can be made good (resin composition) The surface treatment composition used in the present invention may contain, in addition to the above inorganic component, an olefin-α,β-unsaturated carboxylic acid copolymer (hereinafter sometimes referred to as "olefin-acid copolymer") and A resin component composed of an α,β-unsaturated carboxylic acid polymer (hereinafter sometimes referred to as "carboxylic acid polymer") and an acrylic modified epoxy resin. By forming a resin film from a surface treatment composition containing both an olefin-acid copolymer and a carboxylic acid polymer, the resistance to starvation of the obtained resin-coated metal sheet can be improved. The correct mechanism is not clear, but it is presumed that a dense resin film can be formed by using the two, and water and oxygen permeation can be effectively suppressed. Further, the "olefin-acid copolymer" of the present invention means a copolymer of an olefin and an α,β-unsaturated carboxylic acid, and a constituent unit derived from an olefin accounts for 50% by mass or more of the copolymer (i.e., The constituent unit derived from the α,β-unsaturated carboxylic acid is 50% by mass or less. Further, "carboxylic acid polymer" means a polymer (also including a copolymer) obtained by using an α,β-unsaturated carboxylic acid as a monomer, and a constituent unit derived from an α,β-unsaturated carboxylic acid is in a polymer. Among those who account for 90% or more. Further, the "α,β-unsaturated carboxylic acid" includes an "α,β-unsaturated carboxylate" in which a part of carboxyl groups are neutralized by a neutralizing agent described later. &lt;Olefin-acid copolymer&gt; The olefin-acid copolymer used in the present invention can be produced by copolymerizing an olefin with an α,β-unsaturated carboxylic acid by a known method, and is commercially available. In the present invention, one type or two or more types of olefin acid copolymers can be used. The olefin which can be used for the production of the olefin-acid copolymer is not particularly limited, but is preferably ethylene, propylene or the like, more preferably ethylene. As the olefin-acid copolymer, any one of a constituent unit derived from only one type of olefin or a constituent unit derived from two or more kinds of olefins can be used. The α,β-unsaturated carboxylic acid which can be used for the production of the olefin-acid copolymer is not particularly limited, and examples thereof include monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, and methacrylic acid; maleic acid and rich Dicarboxylic acid such as horse acid or itaconic acid. Among these, acrylic acid is preferred. As the olefin-acid copolymer, a constituent unit of an α,β-unsaturated carboxylic acid can be used only from a constituent unit of an α,β-unsaturated carboxylic acid or a mixture of two or more α,β-unsaturated Any of the constituent units of the carboxylic acid. -14- 201132802 The olefin-acid copolymer ' used in the present invention may contain a constituent unit derived from another monomer in a range which does not adversely affect the corrosion resistance or the like which is an effect of the present invention. In the olefin-acid copolymer, the amount of the constituent unit derived from the other monomer is preferably 1% by mass or less, more preferably 5% by mass or less, and the most preferable olefin-acid copolymer is only olefin- and α. Composition of β-unsaturated carboxylic acid. As the preferred olefin-acid copolymer', an ethylene-acrylic acid copolymer can be exemplified. The α,β-unsaturated carboxylic acid in the olefin-acid copolymer is preferably 5% by mass in order to increase the adhesion between the resin film and the metal plate. Above, more preferably 1 〇 quality. /. the above. However, if the α,β-unsaturated carboxylic acid is excessive, the corrosion resistance is lowered. Therefore, the amount of the α,β-unsaturated carboxylic acid in the copolymer is preferably 30% by mass. /. The following is more preferably 25% by mass or less. The mass average molecular weight (Mw) of the olefin-acid copolymer used in the present invention is preferably from 1,000 to 100,000, more preferably from 3,000 to 70,000, still more preferably 5, in terms of polystyrene. Million. The Mw can be measured by GPC using polystyrene as a standard. &lt;Carboxylic acid polymer&gt; The tannic acid polymer used in the present invention may, for example, be a homopolymer or a copolymer of one or more kinds of α,β-unsaturated carboxylic acids, or further Copolymers obtained by copolymerization. These carboxylic acid polymers can be produced by known methods' and are also commercially available. In the present invention, one type or two or more types of carboxylic acid polymers can be used. -15- 201132802 For α,β-unsaturated carboxylic acids which can be used in the manufacture of carboxylic acid polymers, α,β-exemplified as α,β-unsaturated carboxylic acids which can be used for the synthesis of the above olefin-acid copolymers can be used. Any of the unsaturated carboxylic acids. Among them, acrylic acid and maleic acid are preferred, and maleic acid is more preferred. The carboxylic acid polymer may further contain a constituent unit derived from a monomer other than the α,β-unsaturated carboxylic acid, and the amount of the constituent unit derived from the other monomer is 10% by mass or less in the polymer, preferably 5% by mass. Hereinafter, a carboxylic acid polymer composed only of an α,β-unsaturated carboxylic acid is more preferable. The preferred carboxylic acid polymer may, for example, be polyacrylic acid, polymethacrylic acid, acrylic acid-maleic acid copolymer or polymaleic acid, etc., in which the coating film is adhered to the resin film. From the viewpoint of properties and corrosion resistance, polymaleic acid is more preferable. By using polymaleic acid, the particle size of the produced resin latex can be made small (20 to 60 nm), and the film obtained by film formation can be made dense, so that corrosion resistance and the like can be improved. In addition, since the amount of the carboxyl group is large, the adhesion between the resin film and the metal plate is improved, and the corrosion resistance is further improved. The Mw of the carboxylic acid polymer used in the present invention is preferably 500 in terms of polystyrene. ~ 30,000, better for 800 ~ 10,000, and better for 900 ~ 3,000, the best for 1, 00 0 ~ 2,000. The Mw can be measured by using polystyrene as a standard GPC. The content of the olefin-acid copolymer and the carboxylic acid polymer in the surface treatment composition is from 1,000:1 to 10:1, preferably from 200:1 to 2:0, more preferably from 100:1 to 1. 00: 3. When the content of the carboxylic acid polymer is too low, the effect of the composition of the olefinic acid copolymer and the carboxylic acid polymer cannot be sufficiently exerted, and conversely, when the content of the carboxylic acid polymer is excessive, in the surface treatment composition - 16-201132802 'There is a problem that the olefin-acid copolymer and the carboxylic acid polymer are phase-separated, and a uniform resin film cannot be formed. &lt;Acrylic Modified Epoxy Resin&gt; The above resin component also contains an acrylic modified epoxy resin. In the past, as a method of improving the adhesion of the coating film of the post-coating, it is known that the blocked isocyanate (thermosensitive crosslinking agent) as a resin component is present in the coating film, and the heat during sintering after the post-coating is used (sintering) Temperature) A technique in which a blocked isocyanate blocking agent is dissociated to regenerate a reactive isocyanate group to harden and crosslink the film and the coating film. However, the mainstream of lead-acid calcium anticorrosive paint used as a post-coating coating in the field of building materials is a normally-dry type which does not require thermal sintering (drying), and the above technique cannot be used. As a result of the above-mentioned problems, the present inventors have found that the coating film adhesion of the resin film can be improved by using an acrylic modified epoxy resin which can be formed at a low temperature as a resin component. The correct mechanism for improving the adhesion of the coating film by using an acrylic modified epoxy resin is not clear, but it is presumed that the acrylic modified epoxy resin does not act as a binder of the inorganic component (colloidal cerium oxide). Although film formation (dot-like streaks) on the outermost surface of the resin film does not contribute to the improvement of the bare corrosion resistance, it contributes to the improvement of the coating film adhesion after the post-coating. The reason why the acrylic modified epoxy resin forms a film on the outermost surface of the resin film is considered to be due to the latex particle size of the olefin-acid copolymer and the carboxylic acid polymer of 20 to 60 nm, and the acrylic modified epoxy resin. The latex has a larger particle size of about 100 nm or more. The acrylic modified epoxy resin used in the present invention can be produced by the following method -17-201132802, for example, a polymerizable unsaturated group-containing epoxy resin obtained by reacting an epoxy resin and an unsaturated fatty acid with (meth) The acrylic acid is copolymerized, or a polymerizable unsaturated group-containing epoxy resin obtained by reacting an epoxy resin and a glycidyl group-containing vinyl monomer with an amine is copolymerized with (meth)acrylic acid. In particular, the water-based acrylic acid-modified epoxy resin is commercially available, and, for example, "MODEPICS (registered trademark) 3 01&quot;, "MODEPICS (registered trademark) 3 02", "MODEPICS (registered trademark) manufactured by Arakawa Chemical Industries, Ltd.) ) 303 ”, “MODEPICS (registered trademark) 3 04 ”, etc. The above-mentioned acrylic modified epoxy resin may be used singly or in combination of two or more. In the resin component 1 〇〇% by mass, the acrylic modified epoxy resin The content of the acrylic acid-modified epoxy resin is preferably within 2% by mass or more (more preferably 3% by mass or more) and 15% by mass or less (more preferably 7% by mass or less). When the roll-to-roll formability and the bare corrosion resistance of the resin-coated metal sheet are impaired, the coating film adhesion after the coating is improved. When the content of the acrylic-modified epoxy resin is less than 2% by mass, In addition, when the content of the acrylic-modified epoxy resin exceeds 15% by mass, the corrosion resistance tends to be lowered, particularly in the case of the GA material. Its coating film is dense The properties are greatly deteriorated, and there is a case where foaming occurs. When the content of the acrylic-modified epoxy resin exceeds 15% by mass, the bare corrosion resistance is lowered, and the corrosion resistance of the post-coating and the coating film adhesion are lowered. It is not clear, but it is presumed that it is due to the excessive presence of the acrylic modified epoxy resin, which hinders the formation of the olefin-acid copolymer and the carboxylic acid polymer emulsion-18-201132802. Decane coupling agent&gt; The surface treatment composition of the present invention may comprise a glycidoxy coupling-containing decane coupling agent (more specifically, a decane coupling agent having a glycidoxy group at the terminal). In the case of a decane coupling agent of a glycidoxy group, the adhesion between the metal plate and the resin film can be improved, and the effect of improving the bonding strength between the inorganic component and the resin component in the resin film is also considered. And the effect of improving the bare corrosion resistance is large. Further, when a decane coupling agent containing a glycidoxy group is added, since the surface tension of the surface treatment composition is lowered, the wettability with the metal sheet can be improved, and the surface treatment composition can be improved. The coating property can form a uniform resin film. Further, when the surface treatment composition is spray-dried (the surface treatment composition is sprayed on the surface of the metal plate, and the coating method is squeezed by a squeeze roll), It also exhibits an effect of suppressing foaming caused by the surfactant in the composition. As the propylene oxide coupling-containing decane coupling agent, for example, γ-glycidoxypropylmethyldiethoxy group can be exemplified.矽, γ-glycidoxypropyltrimethoxydecane (manufactured by Shin-Etsu Chemical Co., Ltd., ΚΒΜ403), γ-epoxy-propyl I-methyl-methoxy sand, etc. Total relative inorganic and resin components 100 parts by mass of the propylene oxide-containing decane coupling amount in the surface treatment composition is 5 parts by mass or more (preferably 7 parts by mass or more) and 15 parts by mass or less (preferably 13 parts by mass or less) . When the decane coupling dose is less than 5 parts by mass, the effect of improving the adhesion between the metal plate and the resin film is not observed. In addition, the bonding strength between the inorganic component and the resin component in the resin film -19-201132802 component is lowered, the film hardness is lowered, and the denseness of the film is deteriorated, and roll formability, coating film adhesion, and bare corrosion resistance are deteriorated. The situation. Even if the dose of the decane coupling agent containing a glycidoxy group exceeds 15 parts by mass, the effect of improving the adhesion between the metal plate and the resin film and the effect of improving the binding force between the inorganic component and the resin component in the resin film component have reached a peak. Become the main reason for the increase in costs. On the other hand, there are cases where the roll formability, the coating film adhesion, and the bare corrosion resistance are lowered, and the liquid enthalpy of the surface treatment composition is lowered to cause gelation or colloidal ruthenium dioxide precipitation. &lt;Transvanadate&gt; The surface treatment composition of the present invention further contains metavanadate. In the same manner as the colloidal ceria, the metavanadate suppresses dissolution and elution of the metal plate by elution, and has an effect of improving corrosion resistance. In particular, for GA materials, metavanadate has an effect of improving the bare corrosion resistance. In order to effectively exhibit this effect, the total amount of the inorganic component and the resin component may be 0.5 parts by mass or less, and the metavanadate may be used in an amount of 0.5 to 3 parts by mass. If it is less than 0.5 part by mass, the effect of improving the bare corrosion resistance is insufficient. Further, when the amount added exceeds 3 parts by mass, the tendency of the bare corrosion resistance to slightly decrease can be seen. This is presumably because an excessive amount of metavanadate suppresses the hydrolysis reaction of the decane coupling agent containing a glycidoxy group, and although it is only a little, it affects the binding force between the inorganic component and the resin component. Further, there is a tendency that the coating film adhesion is remarkably lowered and the liquid stability of the surface treatment composition is also deteriorated. The amount of metavanadate is more preferably 0.7 to 1.5 parts by mass. Further, the optimum amount of the metavanadate is the amount of the V element. -20- 201132802 As the metavanadate, for example, sodium metavanadate 'n-vanadate (nh4vo3) and potassium metavanadate (κνο3) vanadate may be used singly or in combination of two or more. Salt is commercially available and is readily available. &lt;Other components&gt; The surface treatment composition of the present invention may further contain an imine group compound. The reaction of the carbodiimide group with the carboxyl group in the olefin-acid polymer reduces the high alkali resistance in the resin film. In the present invention, one or two kinds of compounds of a diquinone imine group can be used. For the carbodiimide-containing compound, the isocyanate can be heated by the imidization catalyst, and the isocyanate includes, for example, hexamethylene diisocyanate (XDI), hydrogenated benzene. Methyl diHXDI), 4,4-diphenylmethane diisocyanate (1^01) or acid ester (TDI), etc., may also be modified to be water, water emulsifiable or water dispersible). The surface treatment composition is preferably a water-containing carbodiimide-based compound. Further, the compound contains a plurality of compounds of a carbodiimide group. When a plurality of carbodiimide groups are present, the cross-linking reaction with the resin component can further improve the bare corrosion resistance and the like. As a commercially available carbodiimide group-containing compound, for example, ruthenium, osmium-dicyclohexylcarbodiimide, ruthenium, osmium-diisopropyl (NaV03) and the like. The bias. These vanadium-containing carbonized diterpene copolymers and carboxy carboxyl groups, and the above-mentioned carbonaceous carbon are produced in bismuth carbide, the HDI) and phenyl isocyanate (toluene diisocyanate (more preferably 1 point in water-soluble water system) Examples of the carboxyl group contained in one molecule include an example of a carbonized dioxime-21 - 201132802 imine; a polycarbodiimide (a polymer containing a plurality of carbodiimide groups in one molecule) manufactured by Nisshinbo Co., Ltd. "Carbodilite (registered trademark)" series. As a grade of "Carbodilite (registered trademark)", there are water-soluble "SV-02", "V-02", "V-02-L2", "V-04" Or latex type "E-01", "E-02", etc. The amount of the carbodiimide group-containing compound can be set according to the amount of the olefin-acid copolymer and the carboxylic acid polymer to be cross-linked. In other words, the total amount of the olefin-acid copolymer and the carboxylic acid polymer is 100 parts by mass, preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 8 parts by mass or more. When the amount of the compound containing a carbodiimide group exceeds fi, the ene is obtained. The effect of the combination of the acid copolymer and the carboxylic acid polymer is lowered, and when the aqueous carbodiimide group-containing compound is excessively used in the aqueous surface treatment composition, the water resistance and the corrosion resistance are adversely affected. In view of the above, the amount of the carbodiimide group-containing compound is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, based on 100 parts by mass of the total of the olefin-acid copolymer and the carboxylic acid polymer. It is preferably 16 parts by mass or less. The surface treatment composition of the present invention may contain paraffin, a crosslinking agent, a diluent, an anti-skinning agent, a surfactant, an emulsifier, and dispersion, within a range not inhibiting the effects of the present invention. Agent, leveling agent, antifoaming agent, penetrating agent, film forming aid, dye, pigment, tackifier, lubricant, etc. &lt;Surface tension of surface treatment composition&gt; Surface treatment composition used in the present invention It is preferred to reduce the surface of the surface treatment composition by appropriately adjusting the mixing ratio of the inorganic component to the resin component (specifically, inorganic component: resin component = 60: 40 to 80: 20). The tension is specifically 50 dyn/cm or less, more preferably 48 dyn/cm or less. Thus, even if the surface of the GA material having a rough surface and poor water wettability (concave portion) can be invaded, the GA material can be improved. The method of measuring the surface tension of the surface treatment composition will be described later. The surface treatment composition used in the present invention has been described in detail above, and the method for producing the surface treatment composition is as follows. <Method for Producing Surface Treatment Composition> The surface treatment composition of the present invention is any one of a solvent-based composition or a water-based composition which can be applied to the surface of a metal plate, but it is considered from the viewpoint of environmental problems. Jia is a water system composition. The surface treatment composition can be polymerized by using an organic solvent (in the case of a solvent-based composition) or water, preferably deionized water (in the case of a water-based composition), colloidal cerium oxide, an olefin-acid copolymer, or a carboxylic acid. The compound, the acrylic modified epoxy resin, the propylene oxide coupling broth coupling agent, the partial fL acid salt, the optional carbodiimide group-containing compound or other components are mixed and stirred in a predetermined amount. In the preparation of the surface treatment composition, it is preferred to add a part of the propylene oxide-containing decane coupling agent and the carbodiimide group in the olefin-acid copolymer and the emulsifier (latex) of the carboxylic acid polymer. a compound, after preparing a mixture of the substances, sequentially adding colloidal cerium oxide (preferably added sequentially from the surface area average particle diameter), and remaining decane coupling agent containing propylene-propylene-23-201132802 oxy group , metavanadate, acrylic modified epoxy resin. If vanadate is added before the addition of the glycidoxy coupling-containing decane coupling agent, there is a possibility that the hydrolysis reaction of the decane coupling agent is inhibited to hinder the decane coupling agent. Further, it is preferred to add a glycidyloxy group-containing decane coupling agent twice as described above. This is because the decane coupling agent added first makes the latex particles finer, and as a result, the resin film is densely formed, which contributes to improvement of corrosion resistance, and the decane coupling agent added later contributes to ensuring adhesion to the metal plate and improvement. Film properties. In addition, the amount of the decane coupling agent to be added is preferably 0.1 part by mass or more (more preferably 2 parts by mass or more) and 10 parts by mass or less based on 100 parts by mass of the total of the olefin-acid copolymer and the carboxylic acid polymer. Good for 7 parts by mass or less). Further, the amount of the post-added decane coupling agent was as described above. Heating can be carried out while stirring the above ingredients. Particularly, when the olefin-acid copolymer is emulsified in the presence of a carboxylic acid polymer, heating is preferably carried out. When a water-based surface treatment composition is produced, it is preferred to emulsify an olefin-acid copolymer which is a main component of the resin component. For the olefin-acid copolymer, it can be emulsified by using an emulsifier or neutralizing a carboxyl group in the copolymer. When an emulsifier is used, the average particle diameter of the aqueous emulsion of the olefin-acid copolymer can be made small, the film formability can be improved, and the density of the resin film can be increased accordingly. Among them, a method of emulsification by neutralizing a carboxyl group in an olefin-acid copolymer is preferred. This is because the emulsification by neutralizing the carboxyl group can reduce the amount of the emulsifier or the absence of the emulsifier, thereby reducing or eliminating the adverse effect of the emulsifier on the water resistance and corrosion resistance of the resin film. When neutralizing the carboxyl group in the olefin-acid copolymer, it is preferred to use a base of preferably about 0.5 to 0.95 equivalents, more preferably about 0.6 to 0.8 equivalents, relative to the carboxylate. When the degree of neutralization is too small, the emulsification -24-201132802 does not substantially improve. On the other hand, when the degree of neutralization is too large, the viscosity of the composition containing the olefin-acid copolymer may become too high. The base to be neutralized may, for example, be a group consisting of a hydroxide composed of an alkali metal and an alkaline earth metal (for example, NaOH, KOH, Ca(〇H) 2 or the like, preferably NaOH). Alkali, aqueous ammonia, primary amine, secondary amine, tertiary amine (preferably triethylamine). When a strong base such as NaOH is used, although the emulsifying property is improved, the excessively large amount may lower the corrosion resistance of the resin film. On the other hand, a low-boiling amine (preferably an amine having a boiling point of 1 〇〇 ° C or less at atmospheric pressure; for example, triethylamine) does not substantially lower the corrosion resistance of the resin film. The reason for this is considered to be that the low-boiling amine is volatilized when the surface of the composition is coated and then dried by heating to form a resin film. However, since the effect of improving the emulsifying property of the amine is small, it is preferred to neutralize the above-mentioned strong base and amine. The best combination is the combination of NaOH and triethylamine. When a strong base and an amine are used in combination, the amount of the carboxyl group of the olefin-acid copolymer is preferably from 0.01 to 0.3 equivalents, and the amount of the amine is from about 0.4 to about 0.8 equivalents. When the composition is treated with a water-based surface, a small amount of an organic solvent may be mixed in order to lower the surface tension and improve the wettability to the metal plate. The organic solvent to be used herein may, for example, be methanol, ethanol, isopropanol, butanol, hexanol, 2-ethylhexanol, ethylene glycol diethyl ether, ethylene glycol butyl ether or diethylene glycol. , propylene glycol and the like. &lt;Solid content of surface treatment composition&gt; The solid content of the surface treatment composition used in the present invention is not particularly limited to -25 to 201132802, and may be adjusted by a method of applying a surface treatment composition to a metal sheet. The solid content of the surface treatment composition is generally about 5 to 20% by mass, for example, when it is applied by a spray squeezing method (a coating method in which a surface treatment composition is sprayed on a surface of a metal plate and then squeezed by a squeeze roll). It is preferably about 1 to 18% by mass. &lt;Method of Forming Resin Film&gt; In the present invention, the method and conditions for forming the resin film on the metal plate are not particularly limited, and a surface coating composition may be applied to the surface of the metal plate by a known coating method. A resin coated metal plate is produced by heating and drying on one or both sides. The coating method of the surface treatment composition may, for example, be a bar coating method, a curtain flow coating method, a roll coating method, a spray method, a spray squeezing method, etc., and it is preferably from the viewpoint of cost and the like. Bar coating method and spray squeezing method. Further, the heating and drying conditions are not particularly limited, and examples thereof include a heating and drying temperature of usually about 50 to 120 ° C, preferably about 70 to 100 ° C. Too high a heating and drying temperature may deteriorate the resin film, which is not preferable. &lt;Amount of adhesion of the resin film&gt; The amount of adhesion of the resin film in the resin-coated metal sheet is preferably from 0.2 to lg/m2, more preferably from 0.3 to 0.7 g/m2, in terms of dry mass. When the amount of adhesion is less than 0.2 g/m2, it is difficult to cover the surface of the metal sheet, which greatly impairs the roll formability, the coating film adhesion, and the bare corrosion resistance. On the other hand, when the amount of adhesion exceeds 1 g/m2, the corrosion resistance is good, but the amount of film -26-201132802 peeled off during roll forming increases, so the amount of film slag deposited on the water removal mat increases. The cause of the failure is not good. Moreover, it will greatly damage the adhesion of the film. Further, the resin film of the present invention contains a large amount of inorganic components and has a large specific gravity. Therefore, compared with the conventional resin film having a large amount of resin components, it is possible to successfully thin the film when the amount of adhesion is the same. This also helps to reduce the film slag. &lt;Metal Sheet&gt; The metal sheet used in the present invention is not particularly limited, and examples thereof include a non-plated cold-rolled steel sheet, a hot-dip galvanized steel sheet (GI), an alloyed hot-dip galvanized steel sheet (GA), and an electrogalvanized steel. Steel plate (EG) 'Aluminum plate and titanium plate, etc. Among them, in the present invention, it is preferred to use a hot-dip galvanized steel sheet (GI) and an alloyed molten ore steel sheet (GA) which are not subjected to chromate treatment. EXAMPLES Hereinafter, the present invention will be described in detail based on examples. It is to be understood that the following embodiments are not intended to limit the invention, and that modifications may be made without departing from the spirit and scope of the invention. First, the evaluation methods used in the experimental examples are explained below. (Rolling Formability) A sample of 40 mm x 300 mm was cut out from the resin-coated metal plate and fixed vertically on a tensile tester so that the back surface of the sample abutted against the flat mold (material: SKD 1 1 ). Next, the opposite surface (front surface) of the sample abutting on the flat mold is brought into contact with a jig (the -27-201132802 semi-cylindrical mold, material: SKD 1 1 ) having a convex portion having a tip radius R = 9.1 mm. A load of 4900 N (500 kgf) was applied to the jig in the horizontal direction, and the jig was stretched downward at a speed of 300 mm/min while the back surface of the sample abutted against the flat mold. Thereafter, after the semi-cylindrical mold was separated from the sample and returned to the position before the sliding, the same sliding operation as above was repeated 9 times (total 1 time). Then, the coating amount of the portion (W· ) and the unsliding portion (WQ) which repeatedly slide the semi-cylindrical mold was analyzed by an X-ray fluorescence analyzer, and the residual ratio of the film was calculated by the following formula 1 and evaluated by the following criteria. Film Residual Rate (%) = &amp; X100 (Formula 1) ◎: The film residual ratio is 95% or more 〇: The film residual ratio is 90% or more and less than 95% Δ: The film residual ratio is 80% or more and less than 90%. % X: less than 80% The film adhesion amount is obtained by analyzing the Si element of the colloidal cerium oxide (Si〇2) contained in the film, and is calculated from the ratio of the Si element contained in the film based on the following formula 2. Film adhesion m (g/m2) = 5V(mg/w2)x(^^)x(~^~) + 1000 (Formula 2) C: Proportion of colloidal cerium oxide (SiO 2 ) in the film (exposed resist (SST plate)) Based on J1S Z2371, salt spray test -28-201132802 was applied to the resin coated metal plate to determine the incidence of white rust (10 〇X area of white rust/total area of resin coated metal plate) ) 5% of the time. Further, for the bare corrosion resistance of the building materials, whether it is a GI material or a GA material, as long as the white rust generated by the chromatographic treatment S S T within a period of 48 hours is within 5%, there is no problem in practical use. Further, in other applications, there is no problem as long as the GI material is 96 hours or more and the G A material is 72 hours or more. (Exposed corrosion resistance (plate) in J A S 0 cycle test) JASO cycle test was performed based on JIS H8502. 1 cycle is salt water spray (temperature 3 5 °C X2 hours) - dry (temperature 3 5 °CX humidity 3 0% or less 乂 4 hours) - wet (temperature 50 艽 parent humidity 95% or more > < 2 hours) (both travel time). After 20 cycles, the white rust occurrence rate (the area where white rust occurred at 100 X/the total area of the resin-coated metal plate) was evaluated by the following criteria. ◎: The incidence of white rust is less than 5%. 〇: The incidence of white rust is more than 5%~ less than 10% △: The incidence of white rust is more than 10%~ less than 20% X: The incidence of white rust is 20% In the above (surface tension), a 23% aqueous solution of the surface treatment composition was prepared by using ion-exchanged water in accordance with JIS K2241, and a surface tension measuring device (manufactured by Shimadzu Corporation) and a metal ring as a sensor were used at room temperature. The surface tension of the aqueous solution was determined by Dunone. -29- 201132802 (Coating film adhesion) First, 'Determination of calcium sulphate anticorrosive paint (manufactured by Nippon Paint Co., Ltd., HERGOM CP light gray) with thinner (manufactured by Nippon Paint Co., Ltd., paint thinner ') to adjust the viscosity ( After 2 sec. in 4# Ford Cup, spray-coating the resin-coated metal plate at a spray pressure of 39 Ν (4 kgf) 'after 12 hours of aging' and drying at a temperature of 8 〇〇c for 6 , minutes to prepare a coating. A coating material with a thickness of 35 to 40 μm. &lt;Salt spray test&gt; Next, after the back surface and the edge of the coating material were sealed, the cross cut was cut with a cutter 'Brine spray test (SS Τ ) according to JIS Ζ 2 371' after 1600 hours The one-side maximum expansion width from the cross-cut portion was measured and evaluated by the following criteria. ◎: The expansion width is less than 1.0 mm. 〇: The expansion width is 1.0 mm or more and less than 1.5 mm. Δ: The expansion width is 1.5 mm or more and less than 2.0 mm. X: The expansion width is 2.0 mm or more. &lt;Salt-resistant impregnation test&gt; After sealing the back surface and the edge of the coating material, the cross cut was cut with a cutter, and immersed in an aqueous solution of sodium chloride (30 g/L) at a liquid temperature of 23 ° C ± 2 ° C for 96 hours, and then washed with water. Then, the moisture on the surface was wiped off. Immediately, the tape peeling test of the cross-cut portion was carried out. For the coating material after the peeling test, the one-side maximum peeling width from the cross-cut portion was measured, and -30-201132802 was evaluated by the following criteria. ◎: peeling width is less than 1.0 mm Ο : peeling width is 1.0 mm or more and less than κ5 Δ: peeling width is 1.5 mm or more and less than 2. 〇 mm X: brake width is 2.0 mm or more (olefin-acid Preparation of an emulsion (latex) of a copolymer and a carboxylic acid polymer) In an autoclave having an emulsification apparatus provided with a scrambler, a temperature, and a temperature controller, an ethylene-acrylic acid copolymer as an olefin-acid copolymer is added. (Manufactured by Japan Dow Chemical Co., Ltd., Primacor (registered trademark) 59901, constituent unit derived from acrylic acid: 20% by mass, mass average molecular weight (M w ) · · 2 0, 0 0 0, melt index: 1 3 0 0, Acid value·· 1 5 0 ) 200.0 parts by mass of a polymaleic acid aqueous solution as a carboxylic acid polymer ("nonpol (registered trademark) PMA-50W" manufactured by Nippon Oil & Fats Co., Ltd. 'Mw: about 1,100 (polystyrene) 8.0 parts by mass, 35.5 parts by mass of triethylamine (〇.63 equivalent to the carboxyl group of the ethylene-acrylic acid copolymer), and 8.9 parts by mass of the aqueous solution of 4 8 % of the aqueous solution (relatively ethylene) - the carboxyl group of the acrylic copolymer is 0.15 equivalent), tall oil fatty acid (ha Ma of manufactured into, HARTALL FA3) 3.5 parts by mass of ion-exchanged water 792.6 parts by mass and sealed, high speed stirring for 3 hours and 150 ° C for 5 atmospheres, followed by cooling to 30 〇C. Next, a glycopropoxy group-containing chopping coupling agent (made by Momentive Advanced Materials (formerly GE Toshiba Organic Co., Ltd.), 'TSL8350, y-glycidoxypropyltrimethoxydecane, 1 〇·4 parts by mass) was added. -31 - 201132802, a compound containing a carbodiimide group (Carbodilite (registered trademark) SV - 0 2" manufactured by Nisshinbo Co., Ltd., polycarbodiimide,

Mw: 2,700,固體成分40質量%) 31.2質量份、離子交 換水72.8質量份,攪拌10分鐘,製成烯烴-酸共聚物與 羧酸聚合物的乳化物(乳膠)(固體成分濃度約20質量 %、依據JIS K6833進行測定)。 (實驗例1 -1〜1 -1 〇 ) &lt;表面處理組成物的製備&gt; 在上述乳化物中,依次加入表面積平均粒徑爲4〜6nm (公稱値)的膠體二氧化矽(A)(日產化學工業公司製 造,Snowtex (註冊商標)XS(固體成分濃度20% ))及 表面積平均粒徑爲1〇〜20nm (公稱値)的膠體二氧化矽( B )(日產化學工業公司製造,Snowtex (註冊商標)40 (固體成分濃度40% )),將兩者充分混合後’添加含環 氧丙氧基的矽烷偶合劑(信越化學工業公司製造, KBM403 (固體成分濃度100%)),接著添加作爲偏釩酸 鹽的偏釩酸鈉(新興化學工業公司製造’偏釩酸鈉(固體 成分濃度約66% ))。在該混合物中進一步加入丙烯酸改 性環氧樹脂(荒川化學工業公司製造,M0DEPICS (註冊 商標)302 (固體成分濃度33.5%)) ’製成表面處理組 成物。 又,上述表面處理組成物製作中的各成分的混合量( 或混合比)如下。 -32- 201132802 膠體二氧化矽(A)及(B)的質量比 50: 50 無機成分及樹脂成分(上述乳化物中的全部固體成分與丙 烯酸改性環氧樹脂之混合量,以下相同)的質量比 3 〇 70〜95: 5 丙烯酸改性環氧樹脂的混合量 相對上述乳化物中的全 部固體成分95質量份爲5質量份(樹脂成分中爲5質量 %) 含環氧丙氧基的矽烷偶合劑的混合量 相對無機成分及 樹脂成分合計100質量份爲10質量份 偏釩酸鹽的混合量 相對無機成分及樹脂成分合計100 質量份爲1質量份 &lt;樹脂塗裝金屬板的製作&gt; 作爲金屬板,使用鹼脫脂之熔融鍍鋅鋼板GI材(Zn 附著量45g/m2)或合金化熔融鍍鋅鋼板GA材(Zn附著 量45g/m2 ),以棒塗機(Νο·3棒或Νο·4棒)在鋼板的表 面塗布上述表面處理組成物,在板溫90°C加熱乾燥約1 2 秒,製成樹脂被膜附著量爲〇.5g/m2的樹脂塗裝金屬板。 將得到的樹脂塗裝金屬板的評價結果示於表1。 (實驗例1 - 1 1 ) &lt;表面處理組成物的製備&gt; 將Si02/Li20莫耳比爲4.5的矽酸鋰(日產化學工業 公司製造的“矽酸鋰45 ” )與表面積平均粒徑(公稱値 -33- 201132802 )爲4〜6nm的膠體二氧化矽(日產化學工業 Snowtex (註冊商標)XS)以質量比計爲90: 混合,製備無機成分。 在上述乳化物中,添加所得到的無機成分 分混合後,加入含環氧丙氧基的矽烷偶合劑( 業公司製造,KBM403,γ-環氧丙氧基丙基三 ),接著加入偏釩酸鈉(新興化學工業公司製 鈉)。在該混合物中,進一步添加含噁唑啉基 日本觸媒公司製造、Epocros (註冊商標) 固體成分40質量% ),製備表面處理組成物。 又,上述表面處理組成物製作中的各成分 或混合比)如下。 無機成分及上述乳化物中的全部固體成分 基的共聚物的混合物的混合比 70:30 含噁唑啉基的共聚物的混合量 相對 中的全部固體成分95質量份爲5質量份 含環氧丙氧基的矽烷偶合劑的混合量 分與上述乳化物中的全部固體成分及含噁唑啉 的混合物合計1〇〇質量份爲15質量份 偏釩酸鈉的混合11 相對無機成分及上 的全部固體成分及含噁唑啉基的共聚物的混合 質量份爲5質量份 &lt;樹脂塗裝金屬板的製備&gt; 公司製造, 1 0的方式 ,將兩者充 信越化學工 乙氧基矽烷 造、偏釩酸 的共聚物( K-2030E , 的混合量( 及含噁唑啉 上述乳化物 相對無機成 基的共聚物 述乳化物中 物合計1〇〇 -34- 201132802 除了使用實驗例1 -1 1製備的表面處理組成物以外, 與實驗例1 -1同樣操作,製造樹脂塗裝金屬板。將得到的 樹脂塗裝金屬板的評價結果示於表1。 -35- 201132802 GA基板 裸露抗蝕性 (平板) 1 JASO Ο ◎ ◎ ◎ ◎ &lt; X &lt; X X SST § (N VO Os 1 § &lt;24 &lt;24 臓密難 ®鹽水 Ο ◎ ◎ ◎ 〇 &lt; X • X X X SST Ο ◎ ◎ ◎ ◎ 0 &lt;1 1 &lt;1 X X GI基板 表面張力 (dyn/cm) 5 oo v〇 1 *n Ό m 裸露抗蝕性 (平板) JASO 0 ◎ ◎ ◎ ◎ &lt;] X X 1 X ◎ SST 5 § § § § oo ? 00 Ό • &lt;24 00 V〇 S輥 成形 性 〇 ◎ ◎ ◎ 〇 &lt;3 X X 1 X o 附著S (g/m2) *n ο 1» 菡趦蘅 - 含環氧丙 氧基的矽 烷偶合劑 ο »n 樹脂成分 丙烯酸改性is 氧樹脂 乳化物:丙烯酸改性環氧樹脂=95:5 ο fS s g Ο «r&gt; 含嚷唑啉基的 共聚物 乳化物:含嚼哩咐基的共聚物=95:5 1 1 1 fig 3 1 i ||l K s g SI® 無機成分 膠體二氧化矽(B) 平均粒徑 10 〜20nm 〇 m WJ SO o in g 00 s «η σν 矽酸鋰 膠體二氧化矽:矽酸鋰=丨0:90 〇 膠體二氧化矽(A) 平均粒徑 4~6nm 膠體二氧化矽 平均粒徑 4-^nm 實驗例1-1 實驗例1-2 實驗例1_3 實驗例1*4 實驗例1-5 實驗例K 實驗例1-7 實驗例卜8 實驗例1-9 實驗例Μ〇 實驗例卜11 -36- 201132802 (實驗例2-1〜2-10 ) &lt;表面處理組成物的製備&gt; 除了使膠體二氧化矽(A)與膠體二氧化矽(B)的 質量比按1 〇 〇 : 〜: 1 0 0變化以外’與實驗例1 ·3同樣 操作,製作表面處理組成物。 &lt;樹脂塗裝金屬板的製作&gt; 除了使用實驗例2 · 1〜2 - 1 〇製備的表面處理組成物以 外,與實驗例1 -3同樣操作’製造樹脂塗裝金屬板。將得 到的樹脂塗裝金屬板的評價結果示於表2。 (實驗例2-1 1〜2-12 ) 除了使用表面積平均粒徑爲20〜3 Onm (公稱値)的膠 體二氧化矽(日產化學工業公司製造’ Snowtex (註冊商 標)50)或表面積平均粒徑爲40〜5 Onm (公稱値)的膠體 二氧化矽(日產化學工業公司製造’ Snowt ex (註冊商標 )2 0 L )代替膠體二氧化矽(B )以外,與實驗例2 -1同樣 操作,製作表面處理組成物。 &lt;樹脂塗裝金屬板的製作&gt; 除了使用實驗例2-1 1 ~2- 1 2製作的表面處理組成物以 外,與實驗例2-1同樣操作’製造樹脂塗裝金屬板。將得 到的樹脂塗裝金屬板的評價結果示於表2。 -37- 201132802 GA基板 裸露抗蝕性 (平板) JASO ◎ ◎ ◎ ◎ ◎ ◎ &lt; X X X X X I SST § S 艺 &lt;24 &lt;24 &lt;24 塗膜密著性 耐鹽水 〇 ◎ ◎ ◎ ◎ 〇 &lt;] X X X X X SST ◎ ◎ ◎ ◎ ◎ 〇 〇 &lt;] &lt;1 X X X GI基板 裸露抗蝕性 (平板) JASO 〇 ◎ ◎ ◎ ◎ 〇 &lt;1 X X X &lt;1 X SST § § § § Μ oo &lt;24 Η輕成 形性 ◎ ◎ ◎ ◎ ◎ ◎ &lt;] ◎ ◎ &lt;] X X 附著a (咖2) i 1 1_ *n 〇 - 含環氧 丙氧基 的矽烷 偶合劑 O 樹脂成分 無機成分:樹脂成分=70:30 丙烯酸改性環 氧樹脂 乳化物:丙烯酸改性環氧樹sg=95:5 ill 11^ K 1 I S霞g 無機成分 £ | 7 ¥ 2 * ® u &amp; 靉ST S ο *Λ *τί %n s o tn &lt;N Ο o ε 公〇 S 7 i含 II H m鉬 鸥ST E ^ 2 ii m 豳&amp; S &lt;屋 ο s V*» o o jn *n m o O ο 實驗例2-1 贲驗例2-2 實驗例2-3 實驗例24 實驗例2-5 實驗例2·6 實驗例2-7 實驗例2-8 實驗例2-9 實驗例2-10 實驗例2-11 實驗例2-12 -38- 201132802 (實驗例3-1〜3-1 1 ) &lt;表面處理組成物的製備&gt; 除了使丙烯酸改性環氧樹脂的混合量相對上述乳化物 中的全部固體成分80- 1 00質量份爲〇〜2〇質量份(樹脂成 分中爲0〜20質量。/。)以外’與實驗例1 _3同樣操作,製 作表面處理組成物。 &lt;樹脂塗裝金屬板的製作&gt; 除了使用實驗例3 -1〜3 -1 1製備的表面處理組成物以 外’與實驗例1 - 3同樣操作,製作樹脂塗裝金屬板。將得 到的樹脂塗裝金屬板的評價結果示於表3。Mw: 2,700, solid content: 40% by mass) 31.2 parts by mass, 72.8 parts by mass of ion-exchanged water, and stirred for 10 minutes to prepare an emulsion (latex) of an olefin-acid copolymer and a carboxylic acid polymer (solid content concentration of about 20 mass) %, measured according to JIS K6833). (Experimental Example 1-1~1 -1 〇) &lt;Preparation of Surface Treatment Composition&gt; In the above emulsion, colloidal cerium oxide (A) having a surface area average particle diameter of 4 to 6 nm (nominal enthalpy) was sequentially added. (Manufactured by Nissan Chemical Industries, Inc., Snowtex (registered trademark) XS (solid content concentration: 20%)) and colloidal cerium oxide (B) having a surface area average particle diameter of 1 〇 to 20 nm (nominal 値) (manufactured by Nissan Chemical Industries, Ltd. Snowtex (registered trademark) 40 (solid content concentration: 40%), and after mixing the two together, 'add a glycidyloxy-containing decane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KBM403 (solid content concentration: 100%)), Next, sodium metavanadate (manufactured by Emerging Chemical Industry Co., Ltd., 'sodium vanadate (solid content concentration: about 66%)) was added as metavanadate. Further, an acrylic modified epoxy resin (manufactured by Arakawa Chemical Industries, Ltd., M0DEPICS (registered trademark) 302 (solid content concentration: 33.5%)) was added to the mixture to prepare a surface treatment composition. Moreover, the mixing amount (or mixing ratio) of each component in the preparation of the surface treatment composition is as follows. -32- 201132802 Mass ratio of colloidal cerium oxide (A) and (B): 50: 50 Inorganic component and resin component (the amount of all solid components in the above emulsion and the acrylic modified epoxy resin, the same applies hereinafter) The mass ratio of 3 〇 70 to 95: 5 The amount of the acrylic acid-modified epoxy resin is 5 parts by mass based on 95 parts by mass of all the solid components in the emulsion (5% by mass in the resin component). The blending amount of the decane coupling agent is 10 parts by mass based on 100 parts by mass of the total of the inorganic component and the resin component, and the total amount of the inorganic component and the resin component is 1 part by mass based on 100 parts by mass. &lt;Production of resin-coated metal sheet &gt; As a metal plate, an alkali degreased hot-dip galvanized steel sheet GI material (Zn adhesion amount: 45 g/m 2 ) or alloyed hot-dip galvanized steel sheet GA material (Zn adhesion amount: 45 g/m 2 ) was used as a bar coater (Νο·3) The surface-treated composition was applied to the surface of the steel sheet by a bar or a crucible, and dried at a plate temperature of 90 ° C for about 12 seconds to obtain a resin-coated metal plate having a resin film adhesion amount of 0.5 g/m 2 . The evaluation results of the obtained resin-coated metal sheets are shown in Table 1. (Experimental Example 1 - 1 1 ) &lt;Preparation of surface-treated composition&gt; Lithium niobate having a SiO 2 / Li 20 molar ratio of 4.5 ("Niobium Niobate 45" manufactured by Nissan Chemical Industries, Ltd.) and surface area average particle diameter (No. 値-33-201132802) A colloidal cerium oxide (Nissan Chemical Industry Snowtex (registered trademark) XS) of 4 to 6 nm is mixed in a mass ratio of 90: to prepare an inorganic component. In the above emulsion, the obtained inorganic component is added and mixed, and then a glycidoxy coupling-containing decane coupling agent (manufactured by Konica Minolta Co., Ltd., KBM403, γ-glycidoxypropyl III) is added, followed by the addition of vanadium Sodium (sodium produced by Xinxing Chemical Industry Co., Ltd.). In the mixture, a oxazoline-based Nippon Catalyst Co., Ltd. product, Epocros (registered trademark) solid content (40% by mass) was further added to prepare a surface-treated composition. Further, each component or mixing ratio in the production of the above surface treatment composition is as follows. The mixing ratio of the mixture of the inorganic component and the copolymer of all the solid component groups in the above-mentioned emulsion is 70:30. The blending amount of the oxazoline group-containing copolymer is 95 parts by mass of the total solid content, and 5 parts by mass of the epoxy group. a mixed amount of a propoxy coupling agent of a propoxy group and a total of 1 part by mass of a total of 15 parts by mass of sodium metavanadate in a mixture of all solid components and an oxazoline-containing mixture in the above emulsion, 11 relative inorganic components and The mixed mass parts of all the solid components and the oxazoline group-containing copolymer were 5 parts by mass. &lt;Preparation of resin-coated metal sheets&gt; The company manufactured, 10, and the two were charged with the chemical ethoxy decane. The amount of the copolymer of meta-vanadic acid (K-2030E, and the copolymer of the above-mentioned oxazoline-containing emulsifier-inorganic-based emulsifier) 1 〇〇-34- 201132802 except the use of Experimental Example 1 A resin-coated metal plate was produced in the same manner as in Experimental Example 1-1 except for the surface-treated composition prepared in the above paragraph 1. The evaluation results of the obtained resin-coated metal plate are shown in Table 1. -35- 201132802 GA substrate bare Corrosive (flat) 1 JASO Ο ◎ ◎ ◎ ◎ &lt; X &lt; XX SST § (N VO Os 1 § &lt; 24 &lt; 24 臓 难 ® Ο Ο ◎ ◎ ◎ 〇 X &X; X • XXX SST Ο ◎ ◎ ◎ ◎ 0 &lt;1 1 &lt;1 XX GI substrate surface tension (dyn/cm) 5 oo v〇1 *n Ό m Exposed corrosion resistance (flat plate) JASO 0 ◎ ◎ ◎ ◎ &lt;] XX 1 X ◎ SST 5 § § § § oo 00 Ό • &lt;24 00 V 〇 S roll formability 〇 ◎ ◎ 〇 〇 &lt;3 XX 1 X o Attach S (g/m2) *n ο 1» 菡趦蘅- Epoxy propoxy decane coupling agent ο »n Resin component Acrylic modified is Oxygen resin emulsion: Acrylic modified epoxy resin = 95:5 ο fS sg Ο «r> oxazoline group-containing copolymer emulsion : Chewable thiol-containing copolymer = 95:5 1 1 1 fig 3 1 i ||l K sg SI® Inorganic component colloidal cerium oxide (B) Average particle size 10 〜20 nm 〇m WJ SO o in g 00 s «η σν Lithium niobate colloidal cerium oxide: lithium niobate = 丨0:90 〇 colloidal cerium oxide (A) average particle size 4~6nm colloidal cerium oxide average particle size 4-^nm experimental example 1-1 Experimental Example 1-2 Experimental Example 1_3 Experimental Example 1*4 Experimental Example 1-5 Experimental Example K Experimental Example 1-7 Experimental Example 8 Experimental Example 1-9 Experimental Example Μ〇 Experimental Example 11 -36-201132802 (Experimental Example 2-1 to 2-10) &lt;Preparation of surface-treated composition&gt; The same as in the experimental example 1·3 except that the mass ratio of the colloidal cerium oxide (A) to the colloidal cerium oxide (B) was changed by 1 〇〇: 〜: 1 0 0 Operation, making a surface treatment composition. &lt;Production of Resin-Coated Metal Sheet&gt; A resin-coated metal sheet was produced in the same manner as in Experimental Example 1-3 except that the surface-treated composition prepared in Experimental Example 2·1 to 2 -1 使用 was used. The evaluation results of the obtained resin-coated metal sheets are shown in Table 2. (Experimental Example 2-1 1 to 2-12) In addition to the use of colloidal cerium oxide (manufactured by Nissan Chemical Industries, Inc., 'Snowtex (registered trademark) 50) or surface area average granules having an average surface area of 20 to 3 Onm (nominal 値) A colloidal cerium oxide having a diameter of 40 to 5 Onm (nominal 値) (made by Nissan Chemical Industries Co., Ltd. 'Snowt ex (registered trademark) 20 L) was used in the same manner as in Experimental Example 2-1 except for the colloidal cerium oxide (B). , making a surface treatment composition. &lt;Production of Resin-Coated Metal Sheet&gt; A resin-coated metal sheet was produced in the same manner as in Experimental Example 2-1 except that the surface-treated composition prepared in Experimental Example 2-1 1 to 2-2 was used. The evaluation results of the obtained resin-coated metal sheets are shown in Table 2. -37- 201132802 GA substrate bare corrosion resistance (flat plate) JASO ◎ ◎ ◎ ◎ ◎ ◎ &lt; XXXXXI SST § S Art &lt;24 &lt;24 &lt;24 Coating film adhesion salt water resistance 〇 ◎ ◎ ◎ ◎ 〇 〇 ;] XXXXX SST ◎ ◎ ◎ ◎ ◎ 〇〇 〇〇 &lt;] &lt;1 XXX GI substrate bare corrosion resistance (flat) JASO 〇 ◎ ◎ ◎ ◎ 〇 &lt;1 XXX &lt;1 X SST § § § § Μ oo &lt 24 Η light formability ◎ ◎ ◎ ◎ ◎ ◎ &lt;] ◎ ◎ &lt;] XX Attach a (Caf 2) i 1 1_ *n 〇 - Glyoxyloxy-containing decane coupling agent O Resin component Inorganic component: Resin composition = 70:30 Acrylic modified epoxy resin emulsion: Acrylic modified epoxy tree sg=95:5 ill 11^ K 1 IS Xia g Inorganic ingredient £ | 7 ¥ 2 * ® u & 叆ST S ο *Λ *τί %nso tn &lt;N Ο o ε 〇S 7 i contains II H m moose gull ST E ^ 2 ii m 豳& S &lt;屋ο s V*» oo jn *nmo O ο 2-1 Test Example 2-2 Experimental Example 2-3 Experimental Example 24 Experimental Example 2-5 Experimental Example 2·6 Experimental Example 2-7 Experimental Example 2-8 Experimental Example 2-9 Experimental Example 2-10 Experimental Example 2 -11 Experimental Example 2-12 - 38-201132802 (Experimental Example 3-1 to 3-1 1 ) &lt;Preparation of surface-treated composition&gt; In addition to making the amount of the acrylic-modified epoxy resin mixed with the total solid content of the above-mentioned emulsion 80-100 00 The surface treatment composition was produced in the same manner as in Experimental Example 1 to 3 except that the amount was 〇2 to 2 parts by mass (0 to 20 mass% in the resin component). &lt;Production of Resin-Coated Metal Sheet&gt; A resin-coated metal sheet was produced in the same manner as in Experimental Example 1-3 except that the surface-treated composition prepared in Experimental Example 3-1 to 3-1 was used. The evaluation results of the obtained resin-coated metal sheets are shown in Table 3.

S -39- 201132802 m GA基板 裸露抗蝕性 (平® JASO ◎ • ◎ ◎ ◎ Ο 〇 〇 〇 0 X SST • s〇 〇v ίΝ |N s M &lt;24 塗膜密著性 H鹽水 ◎ - ◎ ◎ ◎ ◎ Ο X X &lt;1 X SST ◎ • ◎ ◎ ◎ ◎ 〇 &lt; &lt;1 &lt;1 X GI基板 裸露抗飽性 (平板) JASO ◎ ◎ 1 ◎ ◎ Ο Ο 0 0 X X SST § § t § § § § &lt;24 甜輥 成形性 ◎ ◎ 1 ◎ ◎ ◎ ◎ ◎ ◎ 〇 附著量 (g/m2) 頓菡链蘅 - 含環氧丙 氧基的矽 烷偶合劑 〇 樹脂成分 無機成分:樹脂成分=70:30 丙烯酸改性 環氧樹脂 卜 Ο VJ o 一 r- s 震8 00 On On SO *Tl ON On s Wi 00 o 00 g 無機成分 ω 1 &amp; 7 ^ 〇 f, m ®變 (A):(B)=50:50 &lt; | e ^ m g ϋ 1 豳 η- 實驗例3·1 實驗例3-2 實驗例3-3 實驗例34 實驗例3-5 實驗例3-6 實驗例3-7 實驗例3-8 實驗例3-9 實驗例3-10 實驗例3-11 •40- 201132802 (實驗例4-1〜4-9 ) &lt;表面處理組成物的製備&gt; 除了使含環氧丙氧基之矽院 成分與樹脂成分合計1 〇〇質量仿 實驗例I·3同樣操作,製作表面 目旨塗裝金屬板的製作&gt; 除了使用實驗例4-1〜4_9 m ’與實驗例1 -3同樣操作,製造 的樹脂塗裝金屬板的評價結果示 偶合劑的混合量相對無機 r爲〇~2〇質量份以外’與 處理組成物。 備的表面處理組成物以外 樹脂塗裝金屬板。將得到 於表4。 -41 - 201132802 m &lt; ο 1 Ι 轅s 雖 o —» 〇 ◎ ◎ ◎ ◎ X X 〇 X C/3 JN S V pi (N 艺 V 掏 m 1 翻 V 〇 ◎ ◎ ◎ 〇 X X X X Η 〇 ◎ ◎ ◎ ◎ X &lt;] &lt;] X m R 百 sk | B I « 3 (N m m If 踺 &amp; m Ο V3 &lt; 〇 ◎ ◎ ◎ ◎ X &lt;3 &lt;1 X (- C/3 ί/5 § § s § TJ* V s V 11^ O ◎ ◎ ◎ ◎ X &lt; &lt;1 X _ Ί U&quot;i — K 訟蘅 1¾ S &lt;0 m m m Φ3 « ss «Λ&gt; 卜 〇 W~i o 卜 s Sg m 碧am 1 I r •Λ) I OZI Jg 贿 m 担 i 逻 K 辜雲S SI1 1 m I ι i ff 1 7 趨 ο ffl o 1 ® E « 1 J 一 m m Ά (N s tt 趣 κ s m 舾 vp m M SO 一 s m u r*p m m m 00 m m K On 趣 u -42- 201132802 (實驗例5-1〜5-10) &lt;表面處理組成物的製備&gt; 除了使偏釩酸鹽的混合量相對無機成分和樹脂成分合 g十1 〇〇質量份爲〇〜5質I份以外’與實驗例丨·3同樣操作 ,製作表面處理組成物。 &lt;樹脂塗裝金屬板的製作&gt; 除了使用貫驗例5 -1〜5 -1 〇製備的表面處理組成物以 外,與實驗例1 -3同樣操作,製造樹脂塗裝金屬板。將得 到的樹脂塗裝金屬板的評價結果示於表5。S -39- 201132802 m GA substrate bare corrosion resistance (Ping® JASO ◎ • ◎ ◎ ◎ Ο 〇〇〇 0 X SST • s〇〇v Ν | N s M &lt; 24 Coating adhesion H salt ◎ - ◎ ◎ ◎ ◎ Ο XX &lt;1 X SST ◎ • ◎ ◎ ◎ ◎ 〇 &lt;&lt;1&lt;1 X GI substrate bareness saturation (flat) JASO ◎ ◎ 1 ◎ ◎ Ο Ο 0 0 XX SST § § t § § § § &lt;24 Sweet roll formability ◎ 1 ◎ ◎ ◎ ◎ ◎ ◎ 〇 adhesion amount (g/m2) 菡 chain 蘅 - epoxidizer containing propylene oxide oxime resin component inorganic component: Resin composition = 70:30 Acrylic modified epoxy resin dip VJ o a r- s shock 8 00 On On SO *Tl ON On s Wi 00 o 00 g Inorganic component ω 1 &amp; 7 ^ 〇f, m ® (A): (B)=50:50 &lt; | e ^ mg ϋ 1 豳η- Experimental Example 3·1 Experimental Example 3-2 Experimental Example 3-3 Experimental Example 34 Experimental Example 3-5 Experimental Example 3-6 Experimental Example 3-7 Experimental Example 3-8 Experimental Example 3-9 Experimental Example 3-10 Experimental Example 3-11 • 40-201132802 (Experimental Examples 4-1 to 4-9) &lt;Preparation of Surface Treatment Composition&gt; In addition to the glycosyloxy-containing broth ingredients In the same manner as in the first example, the same procedure was carried out to prepare the surface-coated metal sheet. The same procedure as in the experimental example 1-3 was carried out except that the experimental example 4-1 to 4_9 m ' was used. As a result of evaluation of the resin-coated metal sheet, the amount of the coupling agent to be mixed was equal to that of the inorganic r, and the composition was mixed with a resin-coated metal sheet other than the surface-treated composition. -41 - 201132802 m &lt; ο 1 Ι 辕s Although o —» 〇 ◎ ◎ ◎ ◎ XX 〇 XC/3 JN SV pi (N 艺 V 掏 m 1 翻 V 〇 ◎ ◎ ◎ 〇 XXXX Η 〇 ◎ ◎ ◎ ◎ X &lt;] &lt;] X m R hundred sk | BI « 3 (N mm If 踺&amp; m Ο V3 &lt; 〇 ◎ ◎ ◎ ◎ X &lt;3 &lt;1 X (- C/3 ί/5 § § s § TJ* V s V 11^ O ◎ ◎ ◎ ◎ X &lt;&lt;1 X _ Ί U&quot;i — K 蘅 蘅 13⁄4 S &lt;0 mmm Φ3 « ss «Λ&gt; 〇 〇 W~io 卜Sg m 碧am 1 I r •Λ) I OZI Jg bribe m i i KK 辜云 S SI1 1 m I ι i ff 1 7 ̄ο ffl o 1 ® E « 1 J a mm Ά (N s tt 乐 κ Sm 舾vp m M SO-smur*pmmm 00 mm K On Interest u -42- 201132802 (Experimental Examples 5-1 to 5-10) &lt;Preparation of surface treatment composition&gt; In addition to the amount of metavanadate mixed with inorganic components and In the same manner as in Experimental Example 丨3, a surface treatment composition was prepared in the same manner as in Experimental Example 丨3. &lt;Preparation of Resin-Coated Metal Sheet&gt; A resin-coated metal sheet was produced in the same manner as in Experimental Example 1-3 except that the surface-treated composition prepared in the following Examples 5-1 to 5 -1 was used. The evaluation results of the obtained resin-coated metal sheets are shown in Table 5.

S -43- 201132802 π *S -43- 201132802 π *

GA基板 裸露抗蝕性 (平板) JASO 〇 ◎ ◎ ◎ ◎ ◎ X &lt;3 Ο Ο SST (N s &lt;24 μ &lt;Ν ίΝ 塗膜密著性 耐鹽水 © ◎ ◎ © 〇 〇 ◎ ◎ X X SST ◎ ◎ ◎ ◎ 〇 〇 ◎ ◎ X X GI基板 裸露抗蝕性 (平板) JASO ◎ ◎ ◎ ◎ ◎ ◎ 〇 〇 &lt; &lt;] SST § § § § § § § § Μ 耐輥成 形性 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 〇 附著量 (g/m2) »r&gt; 〇 晒銮趦蟊 *n ο 卜 ο ρ Ο (Ν s ο »Λ» Ο wS m m m ts 訟 &lt;n 〇 &lt;f0 E s 链 SgGA substrate bare corrosion resistance (flat plate) JASO 〇 ◎ ◎ ◎ ◎ ◎ X &lt; 3 Ο Ο SST (N s &lt; 24 μ &lt; Ν Ν Ν 涂 film adhesion water resistance © ◎ ◎ © 〇〇 ◎ ◎ XX SST ◎ ◎ ◎ ◎ 〇〇 ◎ ◎ XX GI substrate bare corrosion resistance (flat plate) JASO ◎ ◎ ◎ ◎ ◎ ◎ 〇〇 & & § § § § § § § § § § § § § Μ Roller formability ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 〇 adhesion amount (g/m2) »r&gt; 〇 銮趦蟊 n*n ο ο ο ρ Ο (Ν s ο »Λ» Ο wS mmm ts &&lt;n 〇&lt;f0 E s Chain Sg

II

mI I K S ^ ^ 链ώ § K s g K) ^ ® £ m II 駿 歴 m | m ^ 兹! f} ^ 鹚 发 κ 〇 (N rn 1 »r&gt; v〇 r- 1 oo as s m g m 匡 挪 趣 趣 m m m 鍇 m m m m tt K Λ u K K u *Λ 趨 舾 -44- 201132802 (實驗例6-1〜6-8 ) &lt;樹脂塗裝金屬板的製作&gt; 除了使樹脂被膜附著量爲〇 . 1〜1 . 5 g/m2以外,與實驗 例1 -3同樣操作,製造樹脂塗裝金屬板。將得到的樹脂塗 裝金屬板的評價結果示於表6。 -45 - 201132802mI I K S ^ ^ ώ § K s g K) ^ ® £ m II 歴 歴 m | m ^ 兹! f} ^ 鹚 κ 〇 (N rn 1 »r&gt; v〇r- 1 oo as smgm 匡 fun fun mmmm 锴mmmm tt K Λ u KK u *Λ 舾-44- 201132802 (Experimental Example 6-1~ 6-8) &lt;Production of Resin-Coated Metal Sheet&gt; A resin-coated metal sheet was produced in the same manner as in Experimental Example 1-3 except that the amount of the resin film adhered was 0.1 to 1.5 g/m2. The evaluation results of the obtained resin-coated metal sheets are shown in Table 6. -45 - 201132802

Co * GA基板 裸露抗蝕性 (平板) JAS0 〇 ◎ © ◎ ◎ X ◎ ◎ SST (N § &lt;24 § 塗膜密著性 耐鹽水 〇 ◎ ◎ ◎ 0 X X X SST 〇 ◎ ◎ ◎ ◎ X X X CH基板 裸露抗蝕性 (平板) JASO 〇 ◎ ◎ ◎ ◎ X ◎ ◎ SST § § § &lt;24 00 Ό 耐輕 成形性 〇 ◎ ◎ ◎ 〇 X &lt;3 X 附著量 (g/m2) (N d 卜· ρ 5 y/-) 一 含環氧丙 氧基的矽 院偶合劑 〇 樹脂成分 丙烯酸改性環 氧樹脂 乳化物:丙烯酸改性環氧樹11=95:5 ^ ^ ^ 链ώ? 2 S?段S E S g S 1 i 無機成分 m % m b ff 1 7 II ΚΙ- 2 酸 (A):(B) =50:50 〇 膠體二氧化矽(A) 平均粒徑 4 〜6nm 實驗例6-1 實驗例6-2 實驗例6-3 實驗例64 實驗例6-5 實驗例6-6 實驗例6-7 實驗例6-8 -46 - 201132802 工業上之可能利用性 本發明可以提供一種不僅滿足抗蝕性、而且滿足GI 材要求的耐輥成形性、GA材要求的後塗裝後的塗膜密著 性的樹脂塗裝金屬板。Co * GA substrate bare corrosion resistance (plate) JAS0 〇 ◎ © ◎ ◎ X ◎ ◎ SST (N § &lt; 24 § coating film adhesion salt water 〇 ◎ ◎ ◎ 0 XXX SST 〇 ◎ ◎ ◎ ◎ XXX CH substrate Exposed corrosion resistance (flat plate) JASO 〇 ◎ ◎ ◎ ◎ X ◎ ◎ SST § § § &lt; 24 00 Ό Light resistance 〇 ◎ ◎ ◎ 〇 X &lt; 3 X Adhesion (g/m2) (N d Bu · ρ 5 y/-) A propylene oxide coupling-containing enamel coupling agent 〇 resin component acrylic modified epoxy resin emulsion: acrylic modified epoxy tree 11=95:5 ^ ^ ^ chain ώ 2 S Section SES g S 1 i Inorganic component m % mb ff 1 7 II ΚΙ-2 Acid (A): (B) = 50:50 〇 Colloidal cerium oxide (A) Average particle size 4 to 6 nm Experimental example 6-1 Experimental Example 6-2 Experimental Example 6-3 Experimental Example 64 Experimental Example 6-5 Experimental Example 6-6 Experimental Example 6-7 Experimental Example 6-8 - 46 - 201132802 Industrial Applicability The present invention can provide a not only satisfaction A resin-coated metal sheet which is resistant to the GI material and which satisfies the roll formability of the GI material and the coating film adhesion after the post-coating required by the GA material.

S -47-S -47-

Claims (1)

201132802 七、申請專利範圍: 1. 一種塗裝樹脂之金屬板,其具有由表面處理組成物 所得之樹脂被膜,其特徵爲, 前述表面處理組成物含有:60〜80質量份之由表面積 平均粒徑相異之多種膠體二氧化矽構成的無機成分,以及 20〜40質量份之由烯烴-α,β-不飽和羧酸共聚物、α,β-不飽和羧酸聚合物及丙烯酸改質之環氧樹脂構成的樹脂成 分, 且含有相對前述無機成分及前述樹脂成分之合計100 質fi份爲5〜15質量份之含環氧丙氧基之矽烷偶合劑及 〇.5~3質fi份之偏釩酸鹽。 2. 如請求項1之塗裝樹脂之金屬板,其中,前述無機 成分含有表面積平均粒徑爲4〜6nm的膠體二氧化矽(A) 及表面積平均粒徑爲10〜20nm的膠體二氧化矽(B),前 述(A)與(B)之混合比以質量比計爲70 : 3 0〜40 : 60。 3. 如請求項1或2之塗裝樹脂之金屬板,其中,前述 樹脂成分含有2〜15質量%之前述丙烯酸改質環氧樹脂。 4. 如請求項1或2之塗裝樹脂之金屬板,其中,前述 表面處理組成物之表面張力爲50dyn/cm以下。 5. 如請求項1或2之塗裝樹脂之金屬板,其中,前述 樹脂被膜的附著量以乾燥質fi計爲0.2〜lg/m2。 6. 如請求項1或2之塗裝樹脂之金屬板,其中,前述 具有樹脂被膜之金屬板爲熔融鍍辞鋼板或合金化熔融鍍鋅 鋼板。 -48- 201132802 四、指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明:無 201132802 五 本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無201132802 VII. Patent application scope: 1. A resin coated metal plate having a resin film obtained by a surface treatment composition, characterized in that the surface treatment composition contains: 60 to 80 parts by mass of surface area average particles An inorganic component composed of a plurality of colloidal cerium oxides having a diameter different from each other, and 20 to 40 parts by mass of an olefin-α,β-unsaturated carboxylic acid copolymer, an α,β-unsaturated carboxylic acid polymer, and an acrylic acid modified a resin component composed of an epoxy resin, and a propylene oxide coupling agent containing 5 to 15 parts by mass based on 100 parts by mass of the total of the inorganic component and the resin component, and 〇. 5 to 3 Metavanadate. 2. The resin-coated metal plate according to claim 1, wherein the inorganic component contains colloidal cerium oxide (A) having a surface area average particle diameter of 4 to 6 nm and colloidal cerium oxide having a surface area average particle diameter of 10 to 20 nm. (B), the mixing ratio of the above (A) and (B) is 70: 30 to 40: 60 by mass ratio. 3. The resin-coated metal sheet according to claim 1 or 2, wherein the resin component contains 2 to 15% by mass of the acrylic modified epoxy resin. 4. The resin-coated metal sheet according to claim 1 or 2, wherein the surface treatment composition has a surface tension of 50 dyn/cm or less. 5. The resin-coated metal sheet according to claim 1 or 2, wherein the amount of the resin film adhered is 0.2 to lg/m2 in terms of dryness. 6. The resin-coated metal sheet according to claim 1 or 2, wherein the metal sheet having the resin film is a molten plated steel plate or an alloyed hot-dip galvanized steel sheet. -48- 201132802 IV. Designated representative map: (1) The representative representative of the case is: None. (2) Simple description of the symbol of the representative figure: None 201132802 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: none
TW99135580A 2009-10-28 2010-10-19 A metal plate for coating resin TWI418652B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009248033A JP5185911B2 (en) 2009-10-28 2009-10-28 Resin coated metal plate

Publications (2)

Publication Number Publication Date
TW201132802A true TW201132802A (en) 2011-10-01
TWI418652B TWI418652B (en) 2013-12-11

Family

ID=44028460

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99135580A TWI418652B (en) 2009-10-28 2010-10-19 A metal plate for coating resin

Country Status (4)

Country Link
JP (1) JP5185911B2 (en)
KR (1) KR101237652B1 (en)
CN (1) CN102069614B (en)
TW (1) TWI418652B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072560A (en) * 2011-09-26 2013-04-22 Daikin Industries Ltd Outer wall panel of air conditioning outdoor unit
BR112015023836A2 (en) * 2013-03-16 2017-07-18 Prc Desoto Int Inc composition for application to a metallic substrate, coated article and method for manufacturing a coated article
JP6285806B2 (en) * 2014-06-04 2018-02-28 ナブテスコ株式会社 Drive device for upper revolving structure by hybrid drive system
JP6946377B2 (en) * 2015-03-19 2021-10-06 株式会社神戸製鋼所 Resin coated metal plate
JP2016175257A (en) * 2015-03-19 2016-10-06 株式会社神戸製鋼所 Resin coated metal plate
JP6705680B2 (en) * 2016-03-30 2020-06-03 株式会社神戸製鋼所 Non-condensation type thermoplastic resin plate for adhesion of thermoplastic resin and composite member using the same
JP6794023B2 (en) * 2016-08-04 2020-12-02 株式会社青山製作所 Rust-proofing liquid for screw parts, manufacturing method of rust-proofing screw parts, and rust-proofing screw parts
EP3950338A4 (en) * 2019-03-29 2022-05-04 Mitsubishi Chemical Corporation Resin composition, film, and multilayer structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298775A (en) * 1997-04-24 1998-11-10 Nkk Corp Galvanized steel sheet for organic resin-coated steel sheet excellent in working adhesion and corrosion resistance
JP3801470B2 (en) * 2001-08-29 2006-07-26 新日本製鐵株式会社 Rust preventive containing water dispersible metal surface treatment agent, surface treatment metal material and method for producing the same
JP4180270B2 (en) * 2001-11-19 2008-11-12 日本ペイント株式会社 Aqueous coating agent for steel, coating method and coated steel
JP2006239622A (en) * 2005-03-04 2006-09-14 Nippon Fine Coatings Inc Coating method and coated metal plate
JP4478057B2 (en) * 2005-03-29 2010-06-09 株式会社神戸製鋼所 Surface-treated metal plate
JP4551847B2 (en) 2005-09-09 2010-09-29 株式会社神戸製鋼所 Resin coated metal plate
JP4688715B2 (en) 2006-03-31 2011-05-25 株式会社神戸製鋼所 Surface-treated metal plate with excellent corrosion resistance and surface properties
JP4810515B2 (en) * 2007-09-04 2011-11-09 株式会社神戸製鋼所 Resin-coated metal plate with excellent roll formability

Also Published As

Publication number Publication date
CN102069614B (en) 2013-07-10
TWI418652B (en) 2013-12-11
JP2011092837A (en) 2011-05-12
KR101237652B1 (en) 2013-02-27
JP5185911B2 (en) 2013-04-17
CN102069614A (en) 2011-05-25
KR20110046350A (en) 2011-05-04

Similar Documents

Publication Publication Date Title
TW201132802A (en) Metal plate coated with resin
EP3730672B1 (en) Surface treatment solution composition for ternary hot-dip zinc alloy-plated steel sheet, providing excellent corrosion resistance and blackening resistance, ternary hot-dip zinc alloy-plated steel sheet surface-treated using same, and manufacturing method therefor
KR100955546B1 (en) Highly conducting resin-coated metal sheet
JP6923433B2 (en) Painted galvanized steel sheet
JP4330638B2 (en) Resin-coated metal plate and surface treatment composition for producing the same
JP5046799B2 (en) Non-chromate chemical conversion electroplated steel sheet with excellent white rust resistance
JP4245853B2 (en) Aqueous coating composition
KR100985627B1 (en) Resin-coated metal plate and surface treatment composition for producing same
KR20180015155A (en) A hydrophilic treatment agent, a method for forming a hydrophilic film, and a hydrophilic film
JP4810515B2 (en) Resin-coated metal plate with excellent roll formability
WO2007102554A1 (en) Aqueous resin composition
JP7112350B2 (en) Painted galvanized steel sheet
KR20100049944A (en) Composition for metal surface treatment and method for preparing thereof
JP6946377B2 (en) Resin coated metal plate
JP2007254796A (en) Highly corrosion-resistant steel panel for fuel tank
KR20180118709A (en) Surface treated zinc plated steel sheet with excellent appearance
JP5503165B2 (en) Resin-coated metal plate with excellent film peeling resistance during roll forming
JP5949707B2 (en) Steel plate for paper passing member
JP2016175257A (en) Resin coated metal plate
JP5929746B2 (en) Surface-treated steel sheet
JP5674606B2 (en) Chemical conversion treated steel sheet and method for producing the same