TW201132093A - Data transmission with cross-subframe control in a wireless network - Google Patents

Data transmission with cross-subframe control in a wireless network Download PDF

Info

Publication number
TW201132093A
TW201132093A TW099118213A TW99118213A TW201132093A TW 201132093 A TW201132093 A TW 201132093A TW 099118213 A TW099118213 A TW 099118213A TW 99118213 A TW99118213 A TW 99118213A TW 201132093 A TW201132093 A TW 201132093A
Authority
TW
Taiwan
Prior art keywords
subframe
base station
sub
message
data
Prior art date
Application number
TW099118213A
Other languages
Chinese (zh)
Inventor
Ravi Palanki
Aamod Dinkar Khandekar
Kapil Bhattad
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW201132093A publication Critical patent/TW201132093A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/001Orthogonal indexing scheme relating to orthogonal multiplex systems using small cells within macro cells, e.g. femto, pico or microcells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

Techniques for supporting communication in dominant interference scenarios are described. In an aspect, communication in a dominant interference scenario may be supported with cross-subframe control. Different base stations may be allocated different subframes for sending control information. Each base station may send control messages in the subframes allocated to that base station. Different base stations may have different timelines for sending control messages due to their different allocated subframes. With cross-subframe control, control information (e.g., grants, acknowledgement, etc.) may be sent in a first subframe and may be applicable for data transmission in a second subframe, which may be a variable number of subframes from the first subframe. In another aspect, messages to mitigate interference may be sent on a physical downlink control channel (PDCCH).

Description

201132093 t、發明說明: 本專利申請案主張標題為「SYSTEMS AND METHODS OF SUPPORTING RESTRICTED ASSOCIATION/RANGE EXTENSION IN HETEROGENEOUS NETWORKS VIA CROSS SUBFRAME CONTROL」的美國臨時申請案第 61/184,218 號和標題為「TRANSMITTING RESOURCE UTILIZATION MESSAGES ON THE PHYSICAL DOWNLINK CONTROL CHANNEL」的美國臨時申請案第 61/184,224號的優先權,該兩篇美國臨時申請案皆在2009 年6月4日提出申請,已轉讓給其受讓人,並且以引用之 方式併入本文。 【發明所屬之技術領域】 本案大體而言係關於通訊,且更特定而言係關於用於支 援無線通訊網路中資料傳輸的技術。 【先前技術】· 無線通訊網路被廣泛部署來提供各種通訊内容,諸如, 語音、視訊、封包資料、訊息傳遞、廣播等。此等無線網 路可以是多工存取網路,該等多工存取網路能夠藉由共享 可用網路資源來支援多個使用者。此類多工存取網路的實 例係包括分碼多工存取(CDMA )網路、分時多工存取 (TDMA )網路、分頻多工存取(FDMA )網路、正交FDMA (OFDMA )網路以及單載波FDMA ( SC-FDMA )網路。 無線通訊網路可以包括若干基地台,基地台可以支援若 201132093 干使用者裝備(UEs)的通訊,可以經由下行鏈路和上 行鏈路與基地台進行通訊。下行鍵路(或前向鍵路)代表 從基地台到UE的通訊鏈路,而上㈣路(μ 代表從UE到基地台的通訊鏈路。 基地台可以在下行鏈路上向一或多個UE發射資料,並 且可以在上行鏈路上從一或多個UE接收資料。在下㈣ 路上’來自基地台的資料傳輪可能觀測到歸因於來自相鄰 基地台的資料傳輸的干擾。在上行鍵路上,來自每個仰 的資料傳輸可能觀測到歸因於來自與相鄰基地台通訊的 其他的資料傳輸的干擾。對於下行鍵路和上行鍵路兩 者而5,歸因於干擾性基地台和干擾性UE的干擾可能使 效能降級。 【發明内容】 本文描述了用於支援干擾顯著情景下的通訊的技術。干 擾顯著情景是如下情景,在該情景中,UE或基地台觀測 到尚干擾,該高干擾可能使資料傳輸效能嚴重降級。 在I樣中,可以使用跨子訊框控制來支援干擾顯著情 景中的通Λ。可以為不同基地台分配不同的子訊框來發送 控制資訊。每個基地台可以在分配給該基地台的子訊框中 發送控制訊息。歸因於為不同基地台分配不同子訊框,不 同基地台可以具有用於發送控制訊息的不同等時線。使用 跨子訊框控制’控制資訊(例如許可,確認等等)可以在 第一子訊框中被發送,並且可應用於第二子訊框中的資料 201132093 傳輸’該第二子訊框可以距第一子訊框可變數目個子訊 框。 在種5又a十中’控制資訊可以在第一子訊框中被交換 (例如發送或接收)。資料可以基於在第一呼訊框中交換 的控制資訊在第二子訊框中被交換。第二子訊框可以距第 一子訊框可變數目個子訊框。可以在第三子訊框中交換針 對在第二子訊框中交換的資料的確認。第三子訊框亦可以 距第二子訊框可變數目個子訊框。 在另一態樣中,可以在實體下行鏈路控制通道(pdcch ) 上發送訊息以減輕干擾。在一種設計中,基地台可以在 PDCCH上發送訊息以請求降低的干擾。此後,基地台可以 在資源上交換(例如發送或接收)資料,該等資源歸因於 在PDCCH上發送的訊息而具有降低的干擾。在一種設計 中,UE可以監控訊息,該訊息由至少一個基地台在pDccH 上發送以請求降低的干擾。UE可以在資源上交換資料, 該等資源歸因於該至少一個基地台在PDCCH上發送的訊 息而具有降低的干擾。 以下進一步詳細描述本案的各種態樣和特徵。 【實施方式】 本文描述的技術可以用於各種無線通訊網路,諸如, CDMA、TDMA、FDMA、OFDMA、SC-FDMA 以及其他網 路。術語「網路」和「系統」通常可互換使用。〇〇]^八網 路可以實施諸如通用陸地無線電存取(UTRA )、edma2()(^ 201132093 等的無線電技術。UTRA包括寬頻CDMA ( WCDMA )和 CDMA 的其他變體。cdma 2000 涵蓋了 IS-2000、IS-95 和 IS-856標準。TDMA網路可以實施諸如行動通訊全球系統 (GSM )的無線電技術。OFDMA網路可以實施諸如進化 型 UTRA ( E-UTRA)、超行動寬頻..(UMB)、IEEE 802.11 (Wi-Fi )、IEEE 802.16 ( WiMAX ) > IEEE 802.20 ' Flash-OFDM®等的無線電技術。UTRA和E-UTRA是通用 行動電信系統(UMTS)的部分。3GPP長期進化(LTE) 和高級LTE ( LTE-A )是使用E-UTRA的UMTS的新版本, 該版本在下行鏈路上採用 OFDMA,且在上行鏈路上採用 SC-FDMA。在來自名為「第三代合作夥伴計晝」(3GPP) 的組織的文件中描述了 UTRA、E-UTRA、UMTS、LTE、 LTE-A以及GSM。在來自名為「第三代合作夥伴計晝2」 (3GPP2 )的組織的文件中描述了 cdma2000和UMB。本 文描述的技術可以用於上述無線網路和無線電技術以及 其他無線網路和無線電技術。為清楚起見,該等技術的一 些態樣在下文中針對LTE來描述,並且在以下大部分描述 中使用LTE術語。 圖1圖示無線通訊網路1 00,其可以是LTE網路或一些 其他無線網路。無線網路100可以包括若干進化型節點B (eNBs ) 110和其他網路實體。eNB可以是與UE通訊的 實體,並且亦可以被稱為基地台、節點B、存取點等。每 個eNB可以提供對特定地理區域的通訊覆蓋。在3GPP 中,術語「細胞服務區」可以代表,ΝΒ的覆蓋區域及/或 201132093 服務該覆蓋區域的eNB子系統,此取決於使用該術語的上 下文。 eNB可以提供對巨集細胞服務區、微微細胞服務區、毫 微微細胞服務區及/或其他類型的細胞服務區的通訊覆 蓋。巨集細胞服務區可以覆蓋相對大的地理區域(例如, 半徑為數公里),並且可以允許具有服務預訂的UE進行不 受限的存取。微微細胞服務區可以覆蓋相對小的地理區 域’並且可以允許具肴服務預訂的UE進行不受限的存 取。毫微微細胞服務區可以覆蓋相對小的地理區域(例如 家庭),並且可以允許已經與該毫微微細胞服務區相關聯 的UE (例如封閉用戶群組(csg )中的UE )進行受限的 存取。針對巨集細胞服務區的eNB可以稱為巨集eNB。針 對微微細胞服務區的eNB可以稱為微微eNB。針對毫微微 細胞服務區的eNB可以稱為毫微微eNB或者家庭eNB (HeNB )。在圖1所示的實例中,eNB丨丨〇a可以是針對巨 集細胞服務區l〇2a的巨集eNB,eNB u〇b可以是針對微 微細胞服務區102b的微微eNB ,而eNB ll〇c可以是針對 毫微微細胞服務區丨〇2c的毫微微eNB。一個eNB可以支 援一或多個(例如三個)細胞服務區。術語「eNB」、「基 地台」和「細胞服務區」可以在本文中可互換地使用。 無線網路100亦可以包括㈣站。巾繼料以是能夠從 上游站(例如eNB< UE)接收資料的傳輸並向下游站(例 如UE或eNB)發送資料的傳輸的實體。中繼站亦可以是 能夠中繼針對其他UE的值铨的ttp 士门 穴L 的得输的UE。在圖!所示的實例 201132093 中中繼站n〇d可以經由存取鏈路與UE 12〇d進行通訊, 並、i由回載鏈路與巨集eNB ll〇a進行通訊,從而促進eNB U〇a與UE l2〇d之間的通訊。中繼站亦可以稱為中繼 eNB、中繼基地台、中繼設備等。 無線網路100可以是異質網路,其包括不同類型的 WB例如’巨集eNB、微微、毫微微'中繼 等。此等不同類型#侧可卩具有不同的發射功率位準、 不同的覆蓋區域’以及對無線網@⑽中干擾的不同影 響。例如,巨集eNB可以具有高發射功率位準(例如,二 到瓦),而微微eNB、毫微微eNB和中繼可以具 有較低的發射功率位準(例如,〇」到2瓦)。 ^ ,·周路控制器130可以耗合到—組eNB,並且可以為此等 eNB提供協調和控制。網路控制胃⑽可以經由回載與 eNB進行通訊。此等侧亦可以彼此例如直接或經由叙線 或有線回載間接進行通訊。 UE 120可以散佈在整個無線網路丨⑼中,並且每㈣ 可以是固定或行動的,亦可以稱為行動站、終端^ 取終端、用戶單元、站等可以是蜂巢式電話、個> 數位助理(PDA )、無線數據機、無線通訊設備、手持設備 膝上型電腦、無線電話、無線區域迴路(wll )站、智淺 !電話、小筆電、智能本等。UE能夠與巨集咖、微瑕 eNB、毫微微eNB、中繼_等進行通訊。在圖1中,售 箭頭實線指示UE和服務侧之間所要的傳輸,該服務^二 是指定來在下行鏈路及/或上行鏈路上為⑽服務的暑 201132093 雙箭頭虚線指示UE與eNB之間的干擾性傳輸 圖2圖示LTE中分頻多1 (FDD)的示例性訊框結構 200。下行鏈朴上行料巾每—個的傳輪等時線可以被 分成多個無線電訊框單元。每個無線電訊框可以具有預定 的持續時間(例如10毫秒(ms)),並且可以被:成索: 為"”的!〇個子訊框。每個子訊框可以包括兩個時槽。 因此每個無線電訊框可以包括索引為〇至個時 槽。每個時槽可以包括L個符號週期,例如用於一般循環 字首的七個符號週期(如圖2中所示)或者用於擴展循環 字首的六個符號週期。每個子訊框…l個符號週期可 以被指派有索引〇到2L_1。 ㈣在下行鏈路上使用正交分頻多工(_)而在上 行鏈路上使用單載波分頻多工(sc_fdm)〇〇fdm和 SC_FDM將頻率範圍劃分為多個(NFFT個)正交的次載波, 料次載波通常亦被稱為音調(t_)、頻段 母個认載波可以盘資料明创户 、育抖》周製在-起。大體而言 在頻域中以0FDM發乃制符旎 次載波之間的間隔可:是:…—發送, (N w ^ 了以疋固定的’並且次載波的總數 (NFFT)可以取決於系統頻寬。例如,對於125、2 H)或20百萬赫(MHz ·、 128,n…〇48 Γ :分等於 干次頻帶,並且每個次頻帶可統頻寬亦可以被分成若 MHz〇 ’ 以覆蓋一頻率範圍,例如1〇8 固下仃鏈路和上行鍵路可用的時間頻率資源可以 10 201132093 被分成多個資源區塊。每個資源區塊可以覆蓋一個時槽中 的12個次載波,並且可以包括若干資源元素。每個資源 元素可以覆蓋一個符號週期中的一個次載波,並且可以被 用於發送一個調制符號,該調制符號可以為實數或複數 值。 圖3圖 示LTE中用於下行鏈路的具有一般循環字首的兩 種不例性子訊框格式31〇和子訊框格式32〇。用於下行鏈 路的子訊框可以包括其後跟隨有資㈣的控㈣,該子訊 框可以被分時多工。控制區可以包括子訊框的_ m個符號 週期,其中Μ可以等於㈠…戈^在各子訊框間心 以不同,並且可以在子訊框的第一個符號週期中被傳送。 控制區可以承載控制資訊,例如控制訊息。資料區可以包 括子訊框的其餘2L_M個符號週期,並且可以承載資料及/ 或其他資訊。 在LTE + ’ eNB可以在子訊框的控制i中發射實體控制 袼式指示符通道(PCFICH)、實體混合綱指示符通道 (PHICH)和實體下行鍵路控制通道(PDCCH)。PCFICH 可以傳达控制區的大小(例如M的值)。簡⑶可以承載 對在具有混合自動重複請求(HARQ)的上行鏈路上發送 的資料傳輸的肯定確認(ACK)和否定確認(NACK)e 扣,可以承載下行鏈路許可、上行鏈路許可及/或其他 二·Γ貝訊eNB亦可以在子訊框的資料區中發射實體下行 鏈路共予通道(PDSCH)。Pdsch可以承載ue的排程在 下行鏈路上進行資料傳輪的資料。 201132093 子訊框格式310可以用於配備有兩個天線的_。如胞 服務區專用參考信號(CRS)可以在符號週期g、4、7和 U中從天線0和天線1發射。參考信號是發射機和接收機 先驗已知的信號,並且亦可以被稱為引導頻。⑽是細胞 服務區專用的參考信號,例如是基於細胞服務區標識(叫 產生的。在圖3中’對於標記為Ra的給定資源元素調制 符號可以在該資源元素上從天線a發送m有調制符 號可以在該資源元素上從其他天線發送。子訊框格式320 可以用於配備有四個天線的eNBeCRS可以在符號週期〇、 ㈠和U中從天線0和天線i發射,並且在符號週期i 和8中從天線2和天線3發射。對於子訊框格式3ι〇和子 訊框格式320兩者而言,CRS可以在均勻間隔的次載波上 被發射,該等次載波可以基於細胞服務區1〇來決定。不 同的eNB可以在相同或不同的次載波上發射其細胞服務 區的CRS’此取決於此等細胞服務區的細胞服務區出。對 於子訊框格式310和子訊框格式32〇兩者而言,未用於crs 的資源元素可以被用來發射資料或控制資訊。 圖4圖示LTE +詩上行鏈路的示例性子訊框格式 4〇〇。上行鏈路的子訊框可以包括控制區和資料區,該子 訊框可以被分頻多工。控制區可以在系統頻寬的兩個邊緣 處形成’並且可以具有可配置的大小。資料區可以包括控 制區中未包括的所有資源區塊。 可以為UE指派控制區中的資源區塊,以向侧發送控 制貝訊。亦可以為UE指派資料區中的資源區塊,以向_ 12 201132093 發送資料。UE可以在控制區中指派的資源區塊41 〇a和資 源區塊410b中在實體上行鏈路控制通道(PUCCH)上發 送控制資訊。UE可以在資料區中指派的資源區塊420a和 資源區塊420b中在實體上行鏈路共享通道(PUSCH)上 僅發送資料或者發送資料和控制資訊兩者。上行鏈路傳輸 可以跨子訊框的兩個時槽,並且可以在頻率上進行跳躍, 如圖4中所示。 LTE 中的 PCFICH、PDCCH、PHICH、PDSCH、PUCCH、 PUSCH 和 CRS 在標題為「Evolved Universal Terrestrial Radio Access (E-UTRA);Physical Channels and Modulation」的3GPP TS 36.211中進行描述,該文件是公 眾可獲得的。 UE可以位於多個eNB的覆蓋範圍内。此等eNB之一可 以被選擇來為該UE服務。服務eNB可以基於諸如接收信 號強度、接收信號品質、路徑損耗等的各種準則來進行選 擇。接收信號品質可以藉由信號雜訊干擾比(SINr )或一 些其他度量來量化。201132093 t, Invention: This patent application claims US Patent Application No. 61/184,218 entitled "SYSTEMS AND METHODS OF SUPPORTING RESTRICTED ASSOCIATION/RANGE EXTENSION IN HETEROGENEOUS NETWORKS VIA CROSS SUBFRAME CONTROL" and titled "TRANSMITTING RESOURCE UTILIZATION MESSAGES" Priority of US Provisional Application No. 61/184,224 to ON THE PHYSICAL DOWNLINK CONTROL CHANNEL, both of which were filed on June 4, 2009, assigned to their assignee, and cited The manner is incorporated herein. TECHNICAL FIELD OF THE INVENTION The present invention relates generally to communications, and more particularly to techniques for supporting data transmission in a wireless communication network. [Prior Art] Wireless communication networks are widely deployed to provide various communication contents such as voice, video, packet data, messaging, and broadcasting. These wireless networks can be multiplexed access networks that can support multiple users by sharing available network resources. Examples of such multiplexed access networks include code division multiplex access (CDMA) networks, time division multiplex access (TDMA) networks, frequency division multiplex access (FDMA) networks, and orthogonality. FDMA (OFDMA) network and single carrier FDMA (SC-FDMA) network. The wireless communication network can include a number of base stations that can support the communication of the 201132093 Dry User Equipment (UEs) and can communicate with the base station via the downlink and uplink. The downlink key (or forward link) represents the communication link from the base station to the UE, and the upper (four) way (μ represents the communication link from the UE to the base station. The base station can be on the downlink to one or more The UE transmits the data and can receive data from one or more UEs on the uplink. On the next (four) road, the data transmission from the base station may observe interference due to data transmission from the adjacent base station. On the road, data transmission from each of the elevations may observe interference due to other data transmissions from communication with neighboring base stations. For both downlink and uplink routes, 5 due to interfering base stations Interference with interfering UEs may degrade performance. SUMMARY OF THE INVENTION [0001] This document describes techniques for supporting communications in a dominant interference scenario. The dominant interference scenario is a scenario in which the UE or base station observes interference. This high interference may severely degrade the data transmission performance. In the I case, the cross-frame control can be used to support the wanted in the dominant channel. It can be assigned to different base stations. Different sub-frames transmit control information. Each base station can send control messages in the subframes assigned to the base station. Due to different subframes allocated to different base stations, different base stations can be used for different base stations. Send different isochrones of control messages. Use cross-frame control 'control information (eg, license, confirmation, etc.) can be sent in the first subframe, and can be applied to the data in the second subframe 201132093 The transmission 'the second sub-frame can be a variable number of sub-frames from the first sub-frame. In the 5th and 10th, the control information can be exchanged (eg, sent or received) in the first sub-frame. The control information exchanged in the first call frame may be exchanged in the second subframe. The second subframe may be a variable number of subframes from the first subframe. The third subframe may be in the third subframe. Exchanging the acknowledgement for the data exchanged in the second subframe. The third subframe may also be a variable number of subframes from the second subframe. In another aspect, the physical downlink control channel may be used. Sending on (pdcch) To mitigate interference. In one design, the base station may send a message on the PDCCH to request reduced interference. Thereafter, the base station may exchange (e.g., transmit or receive) data on the resource due to transmission on the PDCCH. The message has reduced interference. In one design, the UE can monitor the message, which is sent by at least one base station on pDccH to request reduced interference. The UE can exchange data on resources, which are attributed to the message. The information transmitted by the at least one base station on the PDCCH has reduced interference. Various aspects and features of the present disclosure are described in further detail below. [Embodiment] The techniques described herein may be applied to various wireless communication networks, such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and other networks. The terms "network" and "system" are often used interchangeably. 〇〇]^8 networks can implement radio technologies such as Universal Terrestrial Radio Access (UTRA), edma2() (^ 201132093, etc. UTRA includes Broadband CDMA (WCDMA) and other variants of CDMA. cdma 2000 covers IS- 2000, IS-95 and IS-856 standards. TDMA networks can implement radio technologies such as the Global System for Mobile Communications (GSM). OFDMA networks can be implemented such as Evolved UTRA (E-UTRA), Ultra Mobile Broadband.. (UMB Radio technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX) > IEEE 802.20 'Flash-OFDM®. UTRA and E-UTRA are part of the Universal Mobile Telecommunications System (UMTS). 3GPP Long Term Evolution (LTE) And LTE-Advanced (LTE-A) is a new version of UMTS that uses E-UTRA, which employs OFDMA on the downlink and SC-FDMA on the uplink. UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in the documents of the organization of the "3GPP". In documents from an organization named "3rd Generation Partnership Project 2" (3GPP2) Describes cdma2000 and UMB. The techniques described herein can be used on Wireless networks and radio technologies, as well as other wireless networks and radio technologies. For clarity, some aspects of such techniques are described below for LTE, and LTE terminology is used in much of the description below. Figure 1 illustrates wireless Communication network 100, which may be an LTE network or some other wireless network. Wireless network 100 may include a number of evolved Node Bs (eNBs) 110 and other network entities. The eNB may be an entity that communicates with the UE, and It can be referred to as a base station, a Node B, an access point, etc. Each eNB can provide communication coverage for a specific geographic area. In 3GPP, the term "cell service area" can represent, ΝΒ coverage area and / or 201132093 service The eNB subsystem of the coverage area, depending on the context in which the term is used. The eNB may provide communication coverage for macrocell service areas, pico cell service areas, femtocell service areas, and/or other types of cell service areas. The macro cell service area can cover a relatively large geographic area (for example, a radius of several kilometers) and can allow UEs with service subscriptions to enter Unrestricted access. The picocell service area can cover a relatively small geographic area' and can allow unrestricted access by UEs that have a meal service subscription. The femtocell service area can cover a relatively small geographic area ( For example, the home), and may allow restricted access to UEs that have been associated with the femtocell service area (e.g., UEs in a closed subscriber group (csg)). An eNB for a macro cell service area may be referred to as a macro eNB. An eNB for a picocell service area may be referred to as a pico eNB. An eNB for a femtocell service area may be referred to as a femto eNB or a home eNB (HeNB). In the example shown in FIG. 1, eNB 丨丨〇 a may be a macro eNB for macro cell service area 〇 2a, eNB u 〇 b may be a pico eNB for pico cell service area 102b, and eNB 〇 〇 c may be a femto eNB for the femtocell service area 丨〇 2c. An eNB can support one or more (e.g., three) cell service areas. The terms "eNB", "base station" and "cell service area" may be used interchangeably herein. Wireless network 100 may also include (four) stations. The towel is followed by an entity that is capable of receiving transmissions of data from an upstream station (e.g., an eNB < UE) and transmitting the transmission of the material to a downstream station (e.g., UE or eNB). The relay station may also be a UE that can relay the ttp gate L of the value 其他 for other UEs. In the picture! In the illustrated example 201132093, the relay station n〇d can communicate with the UE 12〇d via the access link, and i communicates with the macro eNB ll〇a by the back-up link, thereby facilitating the eNB U〇a and the UE. Communication between l2〇d. A relay station may also be referred to as a relay eNB, a relay base station, a relay device, or the like. Wireless network 100 may be a heterogeneous network that includes different types of WBs such as 'macro eNB, pico, femto' relay, and the like. These different types of # side can have different transmit power levels, different coverage areas' and different effects on interference in the wireless network @(10). For example, a macro eNB may have a high transmit power level (e.g., two to watts), while a pico eNB, a femto eNB, and a relay may have a lower transmit power level (e.g., "2" to 2 watts). ^, The peripheral controller 130 may consume the group eNB and may provide coordination and control for such eNBs. The network control stomach (10) can communicate with the eNB via the backhaul. These sides can also communicate indirectly, for example, directly or via a line or cable back. The UE 120 may be distributed throughout the wireless network (9), and each (four) may be fixed or mobile, and may also be referred to as a mobile station, a terminal, a subscriber unit, a station, etc., which may be a cellular telephone, a > digit Assistant (PDA), wireless data machine, wireless communication device, handheld device laptop, wireless phone, wireless area loop (wll) station, Zhishao! phone, small notebook, smartbook, etc. The UE can communicate with the macro coffee, the micro eNB, the femto eNB, the relay _, and the like. In Figure 1, the solid arrow arrow indicates the desired transmission between the UE and the service side, which is the summer 201132093 double arrow dotted line designated to serve (10) on the downlink and/or uplink to indicate the UE and Interfering Transmission Between eNBs FIG. 2 illustrates an exemplary frame structure 200 of Frequency Division Multiple 1 (FDD) in LTE. Each of the downstream isochronous towels of the downstream chain can be divided into a plurality of radio frame units. Each radio frame can have a predetermined duration (eg, 10 milliseconds (ms)), and can be: a cable: a sub-frame of "". Each subframe can include two time slots. Each radio frame may include an index to a time slot. Each time slot may include L symbol periods, such as seven symbol periods for a general cyclic prefix (as shown in Figure 2) or for expansion. The six symbol periods of the cyclic prefix. Each subframe...1 symbol period can be assigned an index 〇 to 2L_1. (4) Use orthogonal frequency division multiplexing (_) on the downlink and single carrier on the uplink. The frequency division multiplexing (sc_fdm) 〇〇fdm and SC_FDM divide the frequency range into multiple (NFFT) orthogonal subcarriers, and the subcarriers are also commonly referred to as tones (t_), and the frequency band identification carrier can be disc data. The Mingchuang households and the stimuli are in the system. Generally speaking, in the frequency domain, the interval between the 0FDM and the subcarriers can be: Yes: ...-send, (N w ^ is fixed by 疋'And the total number of subcarriers (NFFT) may depend on the system bandwidth. For example, for 125, 2 H) or 20 megahertz (MHz ·, 128, n... 〇 48 Γ : the number is equal to the dry sub-band, and the sub-band versatile bandwidth can also be divided into if 〇 〇 ' to cover A frequency range, such as a time-frequency resource available for the 1〇8 solid link and the uplink link, can be divided into multiple resource blocks by 201132093. Each resource block can cover 12 subcarriers in one time slot. And may include several resource elements. Each resource element may cover one subcarrier in one symbol period and may be used to transmit one modulation symbol, which may be real or complex. Figure 3 illustrates the use in LTE The two non-existing subframe formats 31〇 and the subframe format 32〇 of the downlink having a general cyclic prefix. The subframe for the downlink may include a control (4) followed by the (4), the sub The frame can be time-multiplexed. The control area can include _m symbol periods of the sub-frame, where Μ can be equal to (1)...go^ is different between each sub-frame and can be the first in the sub-frame Passed in the symbol period The control area can carry control information, such as control information. The data area can include the remaining 2L_M symbol periods of the subframe, and can carry data and/or other information. In LTE + 'eNB can be in the control of the subframe The transmitting entity controls a 指示符-type indicator channel (PCFICH), a physical hybrid indicator channel (PHICH), and a physical downlink control channel (PDCCH). The PCFICH can convey the size of the control region (eg, the value of M). Jane (3) can Affirmative acknowledgement (ACK) and negative acknowledgement (NACK) e-deductions for data transmissions sent on the uplink with hybrid automatic repeat request (HARQ), which may carry downlink grants, uplink grants, and/or other The eNB can also transmit a physical downlink shared channel (PDSCH) in the data area of the subframe. Pdsch can carry ue schedules for data transfer on the downlink. The 201132093 subframe format 310 can be used for _ equipped with two antennas. A Cell Service Area Specific Reference Signal (CRS) can be transmitted from antenna 0 and antenna 1 in symbol periods g, 4, 7, and U. The reference signal is a signal known a priori by the transmitter and receiver and may also be referred to as a pilot frequency. (10) is a reference signal specific to the cell service area, for example based on the cell service area identifier (called generated. In Figure 3, the modulation symbol for a given resource element labeled Ra can be sent from the antenna a on the resource element. The modulation symbols can be transmitted from other antennas on the resource element. The subframe format 320 can be used for eNBeCRS equipped with four antennas to be transmitted from antenna 0 and antenna i in symbol periods (, (1) and U, and in symbol periods I and 8 are transmitted from antenna 2 and antenna 3. For both the subframe format 3 〇 and the subframe format 320, the CRS can be transmitted on evenly spaced subcarriers, which can be based on the cell service area. It is determined that different eNBs may transmit CRSs of their cell service areas on the same or different subcarriers depending on the cell service area of these cell service areas. For subframe format 310 and subframe format 32 For both, resource elements not used for crs can be used to transmit data or control information. Figure 4 illustrates an exemplary subframe format for LTE + Poetry uplink. The subframe may include a control area and a data area, and the subframe may be divided and multiplexed. The control area may be formed at two edges of the system bandwidth and may have a configurable size. The data area may include a control area All resource blocks not included in the system may be allocated to the UE by the resource block in the control area to send the control side to the side. The resource block in the data area may also be assigned to the UE to send data to _ 12 201132093. The UE may send control information on the Physical Uplink Control Channel (PUCCH) in the resource block 41 〇a and the resource block 410b assigned in the control region. The UE may allocate the resource block 420a and the resource region in the data area. In block 420b, only data or both data and control information are transmitted on the physical uplink shared channel (PUSCH). The uplink transmission can span the two time slots of the subframe and can jump on the frequency, such as As shown in Figure 4. PCFICH, PDCCH, PHICH, PDSCH, PUCCH, PUSCH, and CRS in LTE are entitled "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Mo The description is described in 3GPP TS 36.211, which is publicly available. The UE may be located within the coverage of multiple eNBs. One of these eNBs may be selected to serve the UE. The serving eNB may be based on, for example, receiving signals Various criteria such as strength, received signal quality, path loss, etc. are selected. The received signal quality can be quantified by the Signal Noise Interference Ratio (SINr) or some other metric.

UE可能工作在干擾顯著情景(dominant interference scenario )中,在此情景中ue可能觀測到來自於一或多個 干擾性eNB的高干擾。干擾顯著情景可能歸因於受限關聯 而發生。例如,在圖i中,UE 120c可能靠近毫微微eNB 110c,並且可能具有對eNB u〇c的高接收功率。然而,. UE 120c可能歸因於受限關聯而不能夠存取毫微微 110c ’並且隨後可能以較低接收功率連接到巨集eNB 13 201132093 ll〇a。UE 12〇c隨後可能在下行鏈路上觀測到來自毫微微 eNB 並且亦可能在上行鍵路上導致對毫微 微eNB 11 〇c的高干擾。 干擾顯著情景亦可能歸因於範圍擴展而發生,此是如下 情景,在此情景中,UE以比連接到UE所偵測到的一些其 他eNB低的路徑損耗和可能更低的smR連接到一…b。 例如,在圖i中,UE120b可能更靠近微微eNBu〇b而並 非如此罪近巨集eNB ll〇a,並且可能具有針對微微eNB ii〇b的較低的路徑損耗。然而,歸因於微微eNB 與 巨集eNB ll〇a相比具有更低的發射功率位準,故ue 可能具有針對微微eNB 110b而言比針對巨集eNB 11〇&低 的接收功率。然而,對於UE12〇b而言歸因於較低·的路徑 損耗而可能需要連接到微微eNB u〇b。對於UEi2〇b的給 定資料率,範圍擴展可能導致上行鏈路上的較小干擾。範 圍擴展亦可以提供下行鏈路上的細胞服務區分裂增益,因 為多個微微eNB可以為可能以其他方式由巨集eNB服務 的UE服務。範圍擴展因此可以改良整體網路效能。 干擾顯著情景亦可能歸因於中繼操作而發生。例如,中 繼eNB可能對UE具有良好存取鏈路,而對為中繼祕服 務的施主(donor) eNB具有不良的回載鏈路。歸因於中繼 eNB的不良回載鏈路,UE隨後可以與施主eNB直接通訊。 UE隨後可能在下行鏈路上觀測到來自中繼eNB的高干 擾,並且可能在上行鏈路上導致對中繼eNB的高干擾。干 擾顯著情景亦可能在中繼eNB被用於範圍擴展時發生,此 14 201132093 類似於微微eNB的範圍擴展的狀況。 在個態樣中,可以以對下行鏈路控制資源的TDM劃 刀來支援干擾顯著情景中的通訊,該等下行鍵路控制資源 被用來在下行鏈路上發送控制f訊。對於劃分,可 以為不同#携分配不同的時間資源。每個_可以在 為其分配的時間資源中發送其控制資m,此可以具有降低 的來自強干擾性eNB的干擾(例如無干擾)。每個_可 以避免在分配給其他eNB的時間資源中發送控制資訊(或 者可以以較低發射功率位準發送控制資訊),並且可以避 免對其他eNB造成高干擾。此可以使得UE能夠在存在強 干擾性eNB的情況下與較弱的服務eNB通訊。可以基於 U E處的e N B接收功座(而τ甘士人\ τ 莰叹力丰(而不基於eNB的發射功率位準) 將eNB分類為「弱」或「強 -種设計中’可以在子訊框級執行對下行鏈路控制資 源的TDM劃分。在該設計中,可以為不同的_分配不 同的子訊框集。每個eNB可以在分配給該_的子訊框 的控制區中發送其控制資訊。每個侧可以避免在分配給 其他eNB的子訊框的控制區中發送控制資訊(或者可以以 較低發射功率位準發送控制資訊)。 圖5圖示示例性交錯體(interUce )結構綱,其可以用 於LTE中進行卿的下行鏈路和上行鍵路中的每—個。 :圖5中所不’可以定義索引為0到Q-1 # Q個交錯體, 八中Q可以等於4、6、8、1〇或一些其他值。每個交錯體 可以包括間隔開Q個訊框的子訊框。詳言之,交錯體q可 15 201132093 以包括子訊框q、q + Q、q + 2Q等等,其中qe{ 〇,…,Q_1 }。 在一種設計中’可以為不同的eNB分配不同的交錯體。 例如’可以定義八個交錯體’可以為圖1中的微微11 0b 刀配兩個交錯體〇和交錯體4,而可以為巨集eNB 11 〇a分 配其餘六個交錯體。微微eNB 110b可以在交錯體〇和交 錯體4中的子訊框的控制區中發送其控制資訊,並且可以 避免在其他六個交錯體中的子訊框的控制區中發送控制 資此。相反’巨集eNB ll〇a可以在交錯體1、交錯體2、 父錯體3、交錯體5、交錯體6和交錯體7中的子訊框的 控制區中發送其控制資訊,並且可以避免在其他兩個交錯 體中的子訊框的控制區中發送控制資訊。 亦可以為不同eNB分配以其他方式定義的不同的子訊 框集。大體而言,可用的子訊框可以被分配給任何數目的 並且每個eNB可以被分配有任何子訊框集。不同的 eNB可以被分配有相同或不同數目的子訊框。每個可 以在為其分配的子訊框的控制區中發送其控制資訊,並且 了以避免在其他子訊框的控制區中發送控制資訊(或以較 低發射功率位準發送控制資訊)。 如以上所描述,子訊框的控制區可以具有為M個符號週 期的可配置大小。由於控制區大小可變,故干擾性eNB可 能不知道較弱eNB所使用的控制區的大小。在一種設計 中’干擾性eNB可以假設最大可能的控制區大小,此對於 LTE中5 MHz或更大的系統頻寬而言可以為三個符號週 期。干擾性eNB隨後可以避免在假設大小的控制區内發送 16 201132093 負料或控制資訊。在另一種設計中,每個eNB可以具有配 置的控制區大小’社小可以經由eNB t間的協商來決 定,或者可以由指定的網路實體來指派。干擾性eNB隨後 可以在由另一 eNB的配置的控制區大小所決定的若干符 號週』内清理(clear )該另一 eNB的控制區。 在另種设计中,可以在符號級執行對下行鍵路_制資 源的伽劃分。在該設計中,可以為不同eNB^ = 子訊框控制區中不同的符號週期。每個eNB可以在每個子 訊框控魅巾分配給該eNB的—或乡個符料期中發送 其控制資訊,並且可以避免在控制區的其餘符號週期中發 送控制資訊《例如,控制區可以包括M=3個符號週期,可 ^為圖1中的微微eNB 110b分配每個子訊框控制區中的 符號週期2,並且可以為E集eNB】i 〇a分配符號週期〇和 符號週期1。微微eNB 110b可以在每個子訊框的符號週期 2中發送其控制資訊,並且可以避免在每個子訊框的符號 週期〇和符號週期i中發送控制資訊。相反,巨集侧u〇a 可以在每個子訊框的符號週期〇和符號週期j中發送其控 制資訊,並且可以避免在每個子訊框的符號週期2中發送 控制資m。大體而言,每個子訊框控制區中的 期可以被分配給多至河個不同的eNB。每個 Μ個符號週 eNB可以被 分配有控制區中的一或多個符號週期。 在又-種設計中,可以在子訊框級和符號級兩者上執行 對下行鏈路控制資源的TDM劃分。可以為不同_分配 不同子訊框的控龍中不同的符號週期。例如可以定義 17 201132093 :個父錯體,並且控制區可以包括M=3個符號週期。了、 為圖J的巨集_110a分配交錯體。、交錯體2:交錯: 4和父錯體6中子訊框的控制區中的所有三個符號’並且 可以為巨集eNB 110a分配每個其餘子訊框的控制區中二 符號週期G°可以為微微eNB 11Gb分配交錯體!、交錯體 3、交錯體5和交錯體7中子訊框的控制區中的符號週期1 和符號週期2。 亦可以以其他方式,例如基於其他時間單位,來執行對 下行鏈路控制資源# TDM劃分。在—種設計中,可能對 彼此潛在地造成高干擾的不@ _彳以例如由指定的網 路實體預分配有不同的時間資源。在另一種設計中,侧 可以(例如經由回載)協商TDM劃分,以向每個eNB分 配充足的時間資源。大體而言,TDM劃分可以是靜態而不 變的,或者是半靜態且不頻繁地改變的(例如每i 〇〇毫秒 發生改變),或者是動態且依須求頻繁改變的(例如每子 訊框或每無線電訊框發生改變)。 在另一癌樣中’可以以對上行鏈路控制資源的FDM劃 分來支援干擾顯著情景中的通訊,該等上行鏈路控制資源 被用於在上行鏈路上發送控制資訊。對於FDM劃分,可 以為不同eNB分配不同的頻率資源。每個eNB服務的UE 可以在分配的頻率資源中發送控制資訊,此可以具有來自 與其他eNB通訊的UE的降低的干擾。此舉可以使得每個 eNB能夠在存在強干擾性UE的情況下與其UE通訊。 圖6圖示干擾顯著情景中針對三個eNB的上行鏈路控制 18 201132093 資源FDM劃分的設計。在圖6所示的實例中,頻帶η 以用於第- eNB (例如圖!中的巨集eNBu〇a)的上行鏈 路’並且可以具有與系統頻寬相對應的頻寬。冑帶2可以 用於第二eNB (例如微微eNB u〇b)的上行鏈路,並且可 以具有比頻| 1小的頻寬。頻帶3可以用於第三eNB的上 行鏈路,並且可以具有比頻帶2小的頻寬。 與第- eNB通訊的UE可以在形成於頻帶丄兩個邊緣附 近的控制區610中發射PUCCH,並且可以在頻帶ι中央的 資料區612中發射PUSCH。與第二eNB通訊的ue可以在 形成於頻帶2兩個邊緣附近的控制區62〇中發射puccH, 並且可以在頻帶2中央的資料區622中發射puscH。與第 三eNB通訊的UE可以在形成於頻帶3兩個邊緣附近的控 制區630中發射PUCCH,並且可以在頻帶3中央的資料區 632中發射PUSCH。控制區61〇、控制區62〇和控制區 可以如圖6中所示是非重疊的,以便於避免對三個eNB的 上行鏈路控制資訊的干擾。控制區61〇、控制區62〇和控 制區630可以藉由不同的PlJCCH偏移(offset)來定義, 並且每個PUCCH偏移可以指示用於eNB的控制區的外部 頻率(outer frequency)。 圖6圖示對上行鏈路控制資源的FDM劃分的示例性設 計。亦可以以其他方式執行FDM劃分。例如,用於不同 eNB的頻帶可以具有相同頻寬,但是在頻率上可以移位, 以避免控制區重疊。 對下行鏈路控制資源使用TDM劃分可以是所要的。此 19 201132093 可以允許eNB在整個系統頻寬上發射pDCCH並且獲得頻 率分集。然而,FDM劃分亦可以用於下行鏈路控制資源。 對上行鏈路控制資源使用FDM劃分可以是所要的。此可 以允許UE在每個子訊框中發射puccH來降低延時。 劃分可以不影響UE的操作,因為pUCCH通常是在每個時 槽中的一個或幾個資源區塊中發射的,如圖4所示。然而, TDM劃分亦可以用於上行鏈路控制資源。為了清楚,以下 的多數描述假設對下行鏈路控制資源使用TDM劃分並且 對上行鍵路控制資源使用FDm劃分。 =亦可以以紐期干擾減輕來支援干擾顯著情景中的通 訊。干擾減輕可以消除或降低干擾性發射的發射功率,從 而可^對所要的發射達成較高的接收信號品質。干擾減輕 可乂疋短期並且依須求(例如在逐子訊框或者逐封包的基 礎上)執行的。The UE may operate in a dominant interference scenario in which ue may observe high interference from one or more interfering eNBs. Significant interference scenarios may occur due to restricted associations. For example, in Figure i, UE 120c may be close to femto eNB 110c and may have high received power to eNB u〇c. However, the UE 120c may not be able to access the femto 110c' due to the restricted association and may subsequently connect to the macro eNB 13 201132093 ll〇a with lower received power. The UE 12〇c may then observe the femto eNB from the femto eNB and may also cause high interference to the femto eNB 11 〇c on the uplink key. The interference significant scenario may also occur due to range expansion, which is the scenario in which the UE is connected to a lower path loss and possibly lower smR than some other eNBs detected by the UE. ...b. For example, in Figure i, UE 120b may be closer to pico eNBu 〇 b and not so close to macro eNB ll 〇 a, and may have lower path loss for pico eNB ii 〇 b. However, due to the lower transmit power level of the pico eNB compared to the macro eNB ll 〇 a, ue may have lower received power for the pico eNB 110b than for the macro eNB 11 〇 & However, it may be necessary for UE12〇b to be connected to the pico eNB u〇b due to lower path loss. For a given data rate of UEi2〇b, range extension may result in less interference on the uplink. The range extension may also provide cell service area split gain on the downlink since multiple pico eNBs may serve UEs that may otherwise be served by the macro eNB. Range expansion can therefore improve overall network performance. Disturbing significant scenarios may also occur due to relay operations. For example, a relay eNB may have a good access link to the UE and a bad backhaul link to the donor eNB for the relay service. Due to the bad backhaul link of the relay eNB, the UE can then communicate directly with the donor eNB. The UE may then observe high interference from the relay eNB on the downlink and may cause high interference to the relay eNB on the uplink. The interference significant scenario may also occur when the relay eNB is used for range extension, which is similar to the condition of the range extension of the pico eNB. In one aspect, the communication in the dominant channel can be supported by TDM slashing of the downlink control resources, which are used to transmit control messages on the downlink. For partitioning, different time resources can be assigned to different # carry. Each _ may send its control resource m in its assigned time resource, which may have reduced interference from strong interfering eNBs (e.g., no interference). Each _ can avoid transmitting control information in time resources allocated to other eNBs (or can transmit control information at a lower transmit power level), and can avoid causing high interference to other eNBs. This may enable the UE to communicate with the weaker serving eNB in the presence of a strong interfering eNB. The eNB can be classified as "weak" or "strong-in-design" based on the e NB receiving station at the UE (and τ 甘士人 \ τ 力 力 ( (not based on the eNB's transmit power level) The frame level performs TDM partitioning of downlink control resources. In this design, different subframe sets may be allocated for different _. Each eNB may send in the control area allocated to the subframe of the _ Its control information. Each side can avoid sending control information in the control area of the subframe allocated to other eNBs (or can transmit control information at a lower transmit power level). Figure 5 illustrates an exemplary interlace (interUce) a structural outline, which can be used for each of the downlink and uplink keys of the LTE. In Figure 5, the index can be defined as 0 to Q-1 # Q interlaces, eight Q can be equal to 4, 6, 8, 1 or some other value. Each interlace can include a sub-frame with Q frames spaced apart. In detail, the interlace q can be 15 201132093 to include the sub-frame q, q + Q, q + 2Q, etc., where qe{ 〇,...,Q_1 }. In a design 'can Different eNBs allocate different interlaces. For example, 'eight interlaces can be defined' may be two interlaced bodies and interlaces 4 for the pico 11 0b in Fig. 1, and the rest may be allocated for the macro eNB 11 〇a Six interlaces. The pico eNB 110b can transmit its control information in the control region of the subframe in the interlaced body and the interlace 4, and can avoid sending in the control region of the subframe in the other six interlaces. Controlling. In contrast, the macro eNB ll 〇 a can transmit its control in the control region of the subframe in the interlace 1, interlace 2, parent dislocation 3, interlace 5, interlace 6, and interlace 7. Information, and can avoid sending control information in the control area of the subframes in the other two interlaces. It is also possible to allocate different subframe sets defined by other eNBs in other ways. In general, available sub-messages A block may be assigned to any number and each eNB may be assigned any subframe set. Different eNBs may be assigned the same or a different number of subframes. Each may be assigned a subframe. Send it in the control area Information, and to avoid sending control information in the control area of other subframes (or sending control information at a lower transmit power level). As described above, the control area of the subframe may have M symbols The configurable size of the period. Since the size of the control area is variable, the interfering eNB may not know the size of the control area used by the weaker eNB. In one design, the 'interfering eNB can assume the maximum possible control area size, The system bandwidth of 5 MHz or greater in LTE can be three symbol periods. Interfering eNBs can then avoid transmitting 16 201132093 negative or control information within a hypothetically sized control region. In another design, each eNB may have a configured control zone size's small may be determined via negotiation between eNBs or may be assigned by a designated network entity. The interfering eNB may then clear the control region of the other eNB within a number of symbols determined by the configured control region size of the other eNB. In another design, the gamma partitioning of the downstream key source can be performed at the symbol level. In this design, different symbol periods can be used in different eNB^ = subframe control areas. Each eNB may send its control information in each of the subframes assigned to the eNB, or may avoid transmitting control information in the remaining symbol periods of the control region. For example, the control region may include M = 3 symbol periods, the symbol period 2 in each subframe control region can be allocated for the pico eNB 110b in FIG. 1, and the symbol period 〇 and symbol period 1 can be assigned to the E set eNB]i 〇a. The pico eNB 110b can transmit its control information in symbol period 2 of each subframe and can avoid transmitting control information in the symbol period 〇 and symbol period i of each subframe. Conversely, the macro side u〇a can transmit its control information in the symbol period 〇 and symbol period j of each subframe, and can avoid transmitting the control element m in symbol period 2 of each subframe. In general, the period in each subframe control zone can be assigned to as many different eNBs as the river. Each of the symbol weeks eNB may be assigned one or more symbol periods in the control region. In yet another design, TDM partitioning of downlink control resources can be performed on both the subframe level and the symbol level. It is possible to assign different symbol periods in the control dragons of different subframes for different _. For example, you can define 17 201132093: a parent body, and the control area can include M = 3 symbol periods. The interlace is assigned to the macro_110a of Fig. J. Interlace 2: Interlace: 4 and all three symbols in the control region of the neutron frame of the parent faulty body' and may allocate two symbol periods G° in the control region of each of the remaining subframes for the macro eNB 110a. An interlace can be allocated for the pico eNB 11Gb! Symbol period 1 and symbol period 2 in the control region of the interleaver 3, interlace 5, and interlace 7 sub-frames. The downlink control resource # TDM partitioning may also be performed in other manners, such as based on other time units. In a design, not @_彳, which may potentially cause high interference to each other, is pre-allocated with different time resources, for example, by a designated network entity. In another design, the side may negotiate TDM partitioning (e.g., via backhaul) to allocate sufficient time resources to each eNB. In general, TDM partitioning can be static, non-changing, or semi-static and infrequently changed (eg, every i 〇〇 milliseconds change), or dynamic and frequently changing (eg, per sub-information) The box or every radio frame changes). In another cancer sample, the communication in the interference-significant scenario can be supported by FDM allocation of uplink control resources, which are used to transmit control information on the uplink. For FDM partitioning, different eNBs can be assigned different frequency resources. The UE served by each eNB may send control information in the allocated frequency resources, which may have reduced interference from UEs communicating with other eNBs. This can enable each eNB to communicate with its UE in the presence of a highly interfering UE. Figure 6 illustrates the design of uplink control for three eNBs in an interference significant scenario 18 201132093 Resource FDM partitioning. In the example shown in Fig. 6, the frequency band η is used for the uplink ' of the first eNB (e.g., macro eNBu 〇 a in Figure!) and may have a bandwidth corresponding to the system bandwidth. The piggyback 2 can be used for the uplink of the second eNB (e.g., pico eNB u〇b) and can have a smaller bandwidth than the frequency |1. Band 3 can be used for the uplink of the third eNB and can have a smaller bandwidth than Band 2. The UE communicating with the first eNB may transmit the PUCCH in the control region 610 formed near the two edges of the band ,, and may transmit the PUSCH in the data region 612 at the center of the band ι. The ue communicating with the second eNB may transmit puccH in the control region 62A formed near both edges of the band 2, and may transmit puscH in the data region 622 in the center of the band 2. The UE communicating with the third eNB may transmit the PUCCH in the control region 630 formed near both edges of the band 3, and may transmit the PUSCH in the data region 632 in the center of the band 3. The control area 61, the control area 62, and the control area may be non-overlapping as shown in Figure 6 in order to avoid interference with the uplink control information of the three eNBs. The control region 61, the control region 62, and the control region 630 may be defined by different PlJCCH offsets, and each PUCCH offset may indicate an outer frequency for the control region of the eNB. Figure 6 illustrates an exemplary design of FDM partitioning for uplink control resources. FDM partitioning can also be performed in other ways. For example, frequency bands for different eNBs may have the same bandwidth, but may be shifted in frequency to avoid control region overlap. It may be desirable to use TDM partitioning for downlink control resources. This 19 201132093 may allow the eNB to transmit pDCCH over the entire system bandwidth and obtain frequency diversity. However, FDM partitioning can also be used for downlink control resources. The use of FDM partitioning for uplink control resources can be desirable. This allows the UE to transmit puccH in each subframe to reduce latency. The partitioning may not affect the operation of the UE since the pUCCH is typically transmitted in one or several resource blocks in each time slot, as shown in FIG. However, TDM partitioning can also be used for uplink control resources. For clarity, most of the following description assumes that TDM partitioning is used for downlink control resources and FDm partitioning is used for uplink key control resources. = Interference mitigation can also be used to support communication in a significant interference scenario. Interference mitigation can eliminate or reduce the transmit power of the interfering transmission, thereby achieving a higher received signal quality for the desired transmission. Interference mitigation can be performed in the short term and on demand (for example, on a frame-by-frame or packet-by-packet basis).

一圖7圖不具有干擾減輕的下行鏈路資料傳輸方案700的 设計。服務侧可以具有待發送到UE的資料,並且可以 ^於UE正在下行鏈路上觀測到高干擾的知識。例 服務eNB可以從UE接收引導頻量測報告,並且該等 可^日不及/或標識強干擾性eNB。服務eNB可以在 ° 發送資源使用訊息(RUM)觸發》RUM 觸發:可以破稱為RUM請求、干擾減輕觸發等等。RUM 以要求UE請求eNB清理或者降低下行鏈路上的干 (例=料W料在其场料㈣料f料資源 子訊框中的特定次頻帶)、請求的優先順序及/ 20 201132093 或其他資訊。Figure 7 is a diagram showing the design of a downlink data transmission scheme 700 without interference mitigation. The service side may have data to be transmitted to the UE and may be knowledge that the UE is observing high interference on the downlink. The serving eNB may receive a pilot frequency measurement report from the UE and may not be able to identify a strong interfering eNB. The serving eNB may trigger a RUM trigger on the Send Resource Usage Message (RUM): it may be broken into a RUM request, an interference mitigation trigger, and the like. The RUM asks the UE to request the eNB to clean up or reduce the downlink (eg, the specific sub-band in the field material (four) material resource subframe), the priority of the request, and / 20 201132093 or other information .

服務eNB所服務的UE可以接收RUM觸發並且可以向 干擾性eNB發送上行鏈路RUM (UL_RUMh干擾性eNB 可以從觀測到到來自該干擾性eNB的高干擾的其他ue接 收其他UL-RUM。UL-RUM亦可以被稱為降低干擾請求。 UL-RUM可以要求干擾性eNB降低指定資料資源上的干 擾,並且亦可以傳送請求的優先順序、對UE的目標干擾 位準及/或其他資訊》干擾性eNB可以從其相鄰ue及/或 該UE接收UL-RUM,並且可以基於請求的優先順序、干 擾性eNB的緩衝器狀.態及/或其他因素來許可或者拒絕針 對降低干擾的每個請求。若來自UE的請求被許可,則干 擾性eNB可以調整其發射功率及/或控制其發射,以便於 降低對UE的干擾。干擾性eNB可以決定其在該等指定資 料資源上將使用的發射功率位準pDL DMA。 干擾性eNB隨後可以以功率位準Pdlrqirs發射下行鏈 路:貝源品質指示符參考信號(DL-RQJ-RS ),立The UE served by the serving eNB may receive the RUM trigger and may send an uplink RUM to the interfering eNB (the UL_RUMh interfering eNB may receive other UL-RUMs from other ues that observe high interference from the interfering eNB. UL- The RUM may also be referred to as a reduced interference request. The UL-RUM may require the interfering eNB to reduce interference on the designated data resource, and may also transmit the priority order of the request, the target interference level to the UE, and/or other information. The eNB may receive the UL-RUM from its neighboring ue and/or the UE, and may grant or reject each request for interference reduction based on the priority order of the request, the buffered state of the interfering eNB, and/or other factors. If the request from the UE is granted, the interfering eNB may adjust its transmit power and/or control its transmission in order to reduce interference to the UE. The interfering eNB may determine the transmission it will use on the designated data resource. Power level pDL DMA. The interfering eNB can then transmit the downlink with the power level Pdlrqirs: the source quality indicator reference signal (DL-RQJ-RS),

7 /、T ^DL-RQI-rS 可乂荨於Pdl_data或者pDL data的縮放版本。參考, 號亦可以被稱為功率判決引導頻、功率判決引導頻指示符 通道(PDPICH)等等。干擾性eNB可以在dl rqi rs資 源上發送DL-RQI-RS,該等DL_RQI_RS資源可以與指定資 料資源配對。例如,R個資料資源集可以在子訊框(中可 用,並且R個相應的DL_RQI_RS資源集可以在子訊框h 中可用,纟中X可以是固^偏移。每個資料資源集可以對 應於-個資源區塊集,而每個DL_RQI_RS資源集可以對應 21 201132093 於一個資源區塊。干擾性eNB可以在DL-RQI-RS資源r 上發送DL-RQI-RS,該等DL-RQI-RS資源r’可以對應於指 定資料資源r。類似地,服務eNB可以從其相鄰的UE接 收UL-RUM,並且可以回應於該等 UL-RUM而發送 DL-RQI-RS。 在一種設計中,eNB可以在DL-RQI-RS資源上發送其 DL-RQI-RS,該等DL-RQI-RS資源可以是對所有eNB共用 的。DL-RQI-RS資源可以是資料區中被所有eNB預留來發 送DL-RQI-RS的一些資源,或者可以以其他方式定義。 DL-RQI-RS資源可以包括足夠數目的資源元素來賦能精確 的SINR估計。DL-RQI-RS可以使得UE能夠更精確地估 計其服務eNB在指定資料資源上的接收信號品質。 在DL-RQI-RS資源上,UE可以接收來自服務eNB以及 來自干擾性eNB的DL-RQI-RS 〇 UE可以基於接收的 DL-RQI-RS估計對於服務eNB的 DL-RQI-RS資源的 SINR,並且可以基於估計的SINR決定RQI。RQI可以指 示在指定資料資源上的接收信號品質,並且可以類似於通 道品質指示符(CQI )。若強干擾性eNB降低在指定資料資 源上的干擾,則RQI可以指示在此等資料資源上對於服務 eNB有良好接收信號品質。UE可以在PUCCH上向服務 eNB發送RQI。服務eNB可以從UE接收RQI,並且可以 排程UE在指派的資料資源上進行資料傳輸,該等指派的 資料資源可以包括指定資料資源的全部或者子集。服務 eNB可以基於RQI來選擇調制和編碼方案(MCS ),並且 22 201132093 可以根據選擇的MCS來處理資料。服務eNB可以產生下 行鏈路(DL )許可,其可以包括指派的資料資源、選擇的 MCS等等。服務eNB可以在PUCCH上發送下行鏈路許可 到UE,並且在PUSCH上發送資料到UE。UE可以從服務 eNB接收下行鏈路許可和資料,並且可以基於選擇的MCS 對所接收的資料傳輸進行解碼。若資料被正確地解碼,則 UE可以獲得ACK,或者,若資料被錯誤解碼則獲得 NACK,並且UE可以在PUCCH上將該ACK或NACK發 送給服務eNB。 圖8圖示用於具有干擾減輕的上行鏈路資料傳輸的方案 800的設計。UE可以具有待發送到服務eNB的資料,並 且可以在PUCCH上發送排程請求。排程請求可以指示請 求的優先順序、UE待發送的資料量,等等。服務eNB可 以接收該排程請求,並且可以在PDCCH上發送RQI-RS請 求,以要求UE發送上行鏈路RQI參考信號(UL-RQI-RS)。 服務 eNB 亦可以在 PDCCH上發送下行鏈路 RUM (DL-RUM ),以要求干擾性UE降低在指定資料資源上的 干擾。7 /, T ^ DL-RQI-rS can be scaled to Pdl_data or a scaled version of pDL data. The reference number can also be referred to as a power decision pilot frequency, a power decision pilot frequency indicator channel (PDPICH), and the like. The interfering eNB may send DL-RQI-RSs on the dl rqi rs resources, which may be paired with the specified data resources. For example, R data resource sets may be available in a subframe (and R corresponding DL_RQI_RS resource sets may be available in subframe h, where X may be a solid offset. Each data resource set may correspond Each of the DL_RQI_RS resource sets may correspond to a resource block of 21 201132093. The interfering eNB may send the DL-RQI-RS on the DL-RQI-RS resource r, the DL-RQI- The RS resource r' may correspond to a designated material resource r. Similarly, the serving eNB may receive a UL-RUM from its neighboring UEs and may transmit a DL-RQI-RS in response to the UL-RUMs. The eNB may send its DL-RQI-RS on the DL-RQI-RS resource, and the DL-RQI-RS resources may be shared by all eNBs. The DL-RQI-RS resource may be pre-configured by all eNBs in the data area. Some resources left to transmit the DL-RQI-RS may be otherwise defined. The DL-RQI-RS resource may include a sufficient number of resource elements to enable accurate SINR estimation. The DL-RQI-RS may enable the UE to be more capable. Accurately estimate the received signal quality of its serving eNB on the specified data resource. In DL-RQI-RS At the source, the UE may receive the DL-RQI-RS from the serving eNB and from the interfering eNB. The UE may estimate the SINR for the DL-RQI-RS resource of the serving eNB based on the received DL-RQI-RS, and may be based on the estimate. The SINR determines the RQI. The RQI may indicate the received signal quality on the designated data resource and may be similar to the Channel Quality Indicator (CQI). If the strong interfering eNB reduces interference on the designated data resource, the RQI may indicate at this The data resource has good received signal quality for the serving eNB. The UE may send the RQI to the serving eNB on the PUCCH. The serving eNB may receive the RQI from the UE, and may schedule the UE to perform data transmission on the assigned data resource, and the assigned The data resource may include all or a subset of the specified data resource. The serving eNB may select a modulation and coding scheme (MCS) based on the RQI, and 22 201132093 may process the data according to the selected MCS. The serving eNB may generate a downlink (DL) Permission, which may include assigned data resources, selected MCS, etc. The serving eNB may send a downlink grant to the UE on the PUCCH, And transmitting the data to the UE on the PUSCH. The UE may receive the downlink grant and data from the serving eNB, and may decode the received data transmission based on the selected MCS. If the data is correctly decoded, the UE may obtain an ACK. Alternatively, if the data is erroneously decoded, a NACK is obtained, and the UE may send the ACK or NACK to the serving eNB on the PUCCH. Figure 8 illustrates a design of a scheme 800 for uplink data transmission with interference mitigation. The UE may have data to be transmitted to the serving eNB and may send a scheduling request on the PUCCH. The scheduling request may indicate the priority of the request, the amount of data to be sent by the UE, and the like. The serving eNB may receive the scheduling request and may send an RQI-RS request on the PDCCH to request the UE to transmit an uplink RQI reference signal (UL-RQI-RS). The serving eNB may also send a downlink RUM (DL-RUM) on the PDCCH to require the interfering UE to reduce interference on the designated data resource.

UE可以從服務eNB接收RQI-RS請求,並且亦可以從 一或多個相鄰eNB接收一或多個DL-RUM。UE可以基於 來自所有相鄰eNB的DL-RUM決定其在指定資料資源上 將要或者可以使用的發射功率位準PUL-DATA。UE可以隨後 在UL-RQI-RS資源上以發射功率位準Pul-rqi-rs發射 UL-RQI-RS,該發射功率位準PuL-RQI-RS可以等於PuL-DATA 23 201132093 或.Pul-data的.縮放版本。在一種設計中,UE可以在 UL-RQI-RS 資源上發送 UL-RQI-RS,該等 UL-RQI-RS 資 源可以是對所有UE共用的。UL-RQI-RS資源可以是資料 區中所有eNB為UE預留來發送UL-RQI-RS的某些資源, 或者可以以其他方式定義。 月艮務eNB可以在UL-RQI-RS資源上接收來自該UE以及 來自干擾性UE的UL-RQI-RS,並且可以估計UE在此等 資源上的SINR。若干擾性UE將清理指定資料資源,則 SINR可能良好。服務eNB隨後可以在指定資料資源上排 程UE,並且可以基於估計的SINR為UE選擇MCS。服務 eNB可以產生上行鏈路許可,該上行鏈路許可可以包括選 擇的MCS、指臧的資料資源、針對指派的資料資源使用的 發射功率位準等等。服務eNB可以在PDCCH上將上行鏈 路許可發送到UE。UE可以接收該上行鏈路許可,基於選 擇的MCS來處理資料,並在PUSCH上於指派的資料資源 上發送該資料。服務eNB可以接收並解碼來自UE的資 料,基於解碼結果決定ACK或NACK,並在PHICH上將 該ACK或NACK發送到UE。 圖7圖示可以用於支援具有干擾減輕的下行鏈路上的資 料傳輸的示例性訊息序列。圖8圖示可以用於支援具有干 擾減輕的上行鏈路上的資料傳輸的示例性訊息序列。亦可 以以用於在eNB之間決定資料資源使用的其他訊息序列 來支援下行鏈路及/或上行鏈路上的干擾減輕。例如,eNB 可以經由回載來通訊,以便於決定(i)不同eNB為了下 24 201132093 行鏈路干擾減輕而將使用的特定下行鏈路資料資源及/或 發射功率位準,及/或(Π)不同UE為了上行鏈路干擾減 輕而將使用的特定上行鏈路資料資源及/或發射功率位準。 圖7和圖8假設每個eNB和每個.UE可以在適當的子訊 框中發送控制資訊。對於圖7和圖8中的方案,即使在干 擾顯著情景下,eNB亦應當能夠在下行鏈路上可靠地發送 下行鏈路控制訊息,諸如RUM觸發、DL-RUM、RQI-RS 請求、下行鏈路許可、上行鏈路許可和ACK/NACK回饋。 此外,即使在干擾顯著情景下,UE亦應當能夠在上行鏈 路上可靠地發送上行鏈路控制訊息,諸如UL-RUM、排程 請求、RQI和ACK/NACK回饋。下行鏈路控制訊息的可靠 傳輸可以以如上所描述的對下行鏈路控制資源的TDM劃 分來達成。上行鏈路控制訊息的可靠傳輸可以以同樣如上 所描述的對上行鏈路控制資源的FDM劃分來達成。 圖7和圖8亦圖示LTE中可以用於在下行鏈路和上行鏈 路上發送控制訊息的示例性實體通道。在一種設計中,eNB 可以在PDCCH上發送諸如RUM觸發、DL-RUM、RQI-RS 請求、下行鏈路許可和上行鏈路許可的下行鏈路控制訊 息,並且可以在PHICH上發送ACK/NACK回饋。eNB亦 可以在同一控制訊息中發送多個下行鏈路控制訊息(例如 DL-RUM和RQI-RS請求)。eNB可以在分配給該eNB的子 訊框控制區中可靠地發送此等下行鏈路控制訊息,該等子 訊框應當具有降低的來自干擾性eNB的干擾(例如無干 擾)。 25 201132093 在一種設計中’ UE可以在PUCCH上發送諸如 UL-RUM、排程請求、RQ!和ACK/NACK回饋的上行鏈路 控制訊息(如圖7和圖8所示),或者在pusCH上與資料 一起發送(圖7和圖8中未圖示)CUE可以在分配給其服 務eNB的控制區中可靠地發送此等上行鏈路控制訊息,其 中來自與相鄰eNB通訊的干擾性UE的高干擾應當被清 理。 在又一態樣中,跨子訊框控制可以被用於支援下行鏈路 及/或上行鏈路上的資料傳輸,其中對下行鏈路控制資源進 行TDM劃分。可以以TDM劃分為不同eNB分配不同的子 訊框來發送控制資訊。每個eNB可以在分配給該eNB的 子訊框中發送控制訊息以支援資料傳輸。歸因於為不同 eNB分配不同子訊框,故不同eNB可以具有用於發送控制 訊息的不同等時線。使用跨子訊框控,控制f訊(例如 許可’ ACK/NACK等等)可以在第—子訊框中被發送,並 且可應用於第二子訊框中的資料傳輸,該第二子訊框可以 距第一子訊框可變數目個子訊框。 圖9圖示當TDM劃分用於下行鏈路控制資源時用於具 有干擾減輕的下行鍵路資料傳輸的方案犧的料。在圖 9所示的實例中’定義了八個交錯體,為測卜分配交錯 體〇和交錯體4,為eNB 2分配交錯體i和交錯體5,為 eNB 3分配交錯體2和交錯體6,並且為遞斗分配交錯 體3和交錯體7。每個eNB可以在為其分配的交錯體中的 子訊框的控制區中發送控制資訊。每個_可以在任何子 26 201132093 訊框的資料區中發送資料,並且可以與其他eNB爭用下行 鏈路資料資源。祕1'_2、侧3和_4分別為仙 1、 UE 2、UE 3和UE 4服務。圖9假設在流入訊息的接收 與相應流出訊息的發射之間有1子訊框的延遲。 對於下行鏈路上的資料傳輸,eNB卜eNB2、eNB3* eNB 4可以分別在為其分配的交錯體中的子訊框〇、子訊 框1、子訊框2和子訊框3的控制區中發送RUM觸發。 UE 1、UE 2、UE 3和UE 4可以從相鄰eNB接收RUM觸 發,並且可以分別在子訊框2、子訊框3、子訊框4和子 訊框5中向其服務eNB發送UL_RUM。此等UE亦可以在 同一子訊框(例如子訊框5)中發送此等UL_RUM<aeNBi、 eNB 2、eNB 3和eNB 4可以從被服務的UE接收ul_rum, 並且可以在相同下行鏈路資源上在子訊框7中發送The UE may receive an RQI-RS request from the serving eNB and may also receive one or more DL-RUMs from one or more neighboring eNBs. The UE may determine the transmit power level PUL-DATA that it will or may use on the designated material resource based on the DL-RUM from all neighboring eNBs. The UE may then transmit a UL-RQI-RS at a transmit power level Pul-rqi-rs on the UL-RQI-RS resource, which may be equal to PuL-DATA 23 201132093 or .Pul-data .Scaled version. In one design, the UE may transmit UL-RQI-RS on UL-RQI-RS resources, which may be common to all UEs. The UL-RQI-RS resource may be some resources reserved by the eNB in the data area for the UE to transmit the UL-RQI-RS, or may be otherwise defined. The eNB may receive UL-RQI-RS from the UE and from the interfering UE on the UL-RQI-RS resource, and may estimate the SINR of the UE on such resources. If the interfering UE will clean up the specified data resources, the SINR may be good. The serving eNB may then schedule the UE on the designated material resource and may select the MCS for the UE based on the estimated SINR. The serving eNB may generate an uplink grant, which may include the selected MCS, the fingerprint's data resources, the transmit power level for the assigned data resource usage, and the like. The serving eNB may send an uplink grant to the UE on the PDCCH. The UE may receive the uplink grant, process the data based on the selected MCS, and transmit the data on the PUSCH on the assigned data resource. The serving eNB may receive and decode the information from the UE, determine an ACK or NACK based on the decoding result, and transmit the ACK or NACK to the UE on the PHICH. Figure 7 illustrates an exemplary sequence of messages that may be used to support data transmission on the downlink with interference mitigation. Figure 8 illustrates an exemplary sequence of messages that may be used to support data transmission on the uplink with interference mitigation. Interference mitigation on the downlink and/or uplink may also be supported with other sequences of messages used to determine the use of data resources between eNBs. For example, the eNB may communicate via the backhaul in order to determine (i) the particular downlink data resource and/or transmit power level that different eNBs will use for the next 24 201132093 line interference mitigation, and/or (Π Specific uplink data resources and/or transmit power levels that different UEs will use for uplink interference mitigation. Figures 7 and 8 assume that each eNB and each .UE can send control information in the appropriate subframe. For the schemes in Figures 7 and 8, the eNB should be able to reliably transmit downlink control messages on the downlink, such as RUM triggering, DL-RUM, RQI-RS request, downlink, even in a dominant interference scenario. Licensing, uplink grants, and ACK/NACK feedback. In addition, the UE should be able to reliably transmit uplink control messages, such as UL-RUM, scheduling request, RQI, and ACK/NACK feedback, on the uplink, even in a dominant interference scenario. The reliable transmission of the downlink control message can be achieved by the TDM partitioning of the downlink control resources as described above. Reliable transmission of uplink control messages can be achieved by FDM partitioning of uplink control resources as also described above. Figures 7 and 8 also illustrate an exemplary physical channel in LTE that can be used to transmit control messages on the downlink and uplink. In one design, the eNB may send downlink control messages such as RUM trigger, DL-RUM, RQI-RS request, downlink grant, and uplink grant on the PDCCH, and may send ACK/NACK feedback on the PHICH. . The eNB may also send multiple downlink control messages (e.g., DL-RUM and RQI-RS requests) in the same control message. The eNB may reliably transmit such downlink control messages in the subframe control area allocated to the eNB, the subframes shall have reduced interference (e.g., no interference) from the interfering eNB. 25 201132093 In one design 'the UE may send uplink control messages such as UL-RUM, Schedule Request, RQ! and ACK/NACK feedback on PUCCH (as shown in Figures 7 and 8), or on pusCH Transmitted with the data (not shown in Figures 7 and 8), the CUE can reliably transmit the uplink control messages in the control region assigned to its serving eNB, where the interfering UEs are communicating with neighboring eNBs. High interference should be cleared. In yet another aspect, cross-frame control can be used to support data transmission on the downlink and/or uplink, where TDM partitioning is performed on downlink control resources. Different sub-frames can be allocated to different eNBs by TDM to send control information. Each eNB may send a control message in a subframe allocated to the eNB to support data transmission. Due to the different subframes allocated for different eNBs, different eNBs may have different isochrones for transmitting control messages. Using the cross-frame control, the control information (eg, permission 'ACK/NACK, etc.) can be sent in the first subframe, and can be applied to the data transmission in the second subframe, the second subframe The box can be a variable number of sub-frames from the first subframe. Figure 9 illustrates the scenario for the downlink keyway data transmission with interference mitigation when TDM partitioning is used for downlink control resources. In the example shown in FIG. 9, 'eight interlaces are defined, interlaced body and interlace 4 are allocated for the measurement, interlace i and interlace 5 are allocated for eNB 2, and interlace 2 and interlace are allocated for eNB 3. 6, and the interlaced body 3 and the interlaced body 7 are assigned to the transfer bucket. Each eNB may send control information in the control region of the subframe in its assigned interlace. Each _ can send data in the data area of any child 26 201132093 frame and can contend with other eNBs for downlink data resources. Secret 1'_2, side 3, and _4 are services for UE1, UE2, UE3, and UE4, respectively. Figure 9 assumes a 1 subframe delay between the receipt of the incoming message and the transmission of the corresponding outgoing message. For the data transmission on the downlink, the eNB eNB2, the eNB3* eNB 4 may respectively send in the control area of the subframe 子, the subframe 1, the subframe 2 and the subframe 3 in the interlace allocated thereto. RUM trigger. UE 1, UE 2, UE 3, and UE 4 may receive RUM triggers from neighboring eNBs, and may transmit UL_RUMs to their serving eNBs in subframe 2, subframe 3, subframe 4, and subframe 5, respectively. These UEs may also transmit such UL_RUM<aeNBi, eNB 2, eNB 3, and eNB 4 may receive ul_rum from the served UE in the same subframe (e.g., subframe 5), and may be in the same downlink resource. Sent in subframe 7

DL-RQI-RS。UE 1、UE 2、UE 3 和 UE 4 可以從此等 eNB 接收DL-RQI-RS,估計SINR並且在子訊框9中向其服務 eNB 發送 rqi。 eNB 卜 eNB 2、eNB 3 和 eNB 4 可以分別從 1、2、DL-RQI-RS. UE 1, UE 2, UE 3 and UE 4 may receive DL-RQI-RS from these eNBs, estimate the SINR and send rqi to its serving eNB in subframe 9. eNB eNB 2, eNB 3 and eNB 4 may respectively be from 1, 2

UE 3和UE 4接收RQI,並且可以排程UE在下行鏈路上 進行資料傳輸。歸因於1子訊框的處理延遲,eN]B丨、eNB 2、 eNB 3和eNB 4可以分別在為其分配的交錯體的子訊框 12、子訊框13、子訊框14和子訊框11中將下行鏈路許可 發送到 UE 1、UE 2、UE 3 和 UE 4。eNB 1、eNB 2、eNB 3 和eNB 4可以分別在子訊框14到子訊框17中將資料發送 到UE 1、UE 2、UE 3和UE 4,該等子訊框14到子訊框 27 201132093 17可以被eNB共享。UE 1、UE 2、UE 3和UE 4可以在 子訊框1 4到子訊框17中從其服務eNB接收資料,並且可 以分別在子訊框1 6到子訊框19中發送ACK/NACK回饋。 如圖9中所示’ eNB可以在為其 中發送其控制資訊’以避免對控制資訊的高干擾。一或多 個eNB可以在相同子訊框中發送資料,並且可以調整其發 射功率及/或控制其發射,以避免對資料的高干擾。使用跨 子訊框控制,下行鏈路許可可以具有與相應資料傳輸的可 變延遲(而非如圖7中所示在與相應資料傳輸相同的子訊 框中進行發射)。該可變延遲可以產生自為不同eNB分配 不同子訊框來發送控制資訊。此外,一個給定下行鍵路許 可可以應用於下行鏈路上在一或多個子訊框中的資料傳 輸。在圖9所示的實例中,每個侧可以在每第四子訊框 中發送控制資訊’並且—個下行鏈路許可可以應用於多至 四個子訊框中的資料傳輸。大體而言,若_可以在每第 S子訊框中發送控制資訊,則—個下行_許可可以應用 於多至S個子訊框中的資料傳輸。 eNB可以在為其分配的子訊框中發送觸發。_ 之後可以在相同下行鏈路f源上發送dl_rqi_rs,以使得 :^估^針對下行鏈路上後續資㈣輸可以預期的 隨。在來自侧的職觸發與來自該侧的 DL-RQI-RS之間可以存在 控制來支f 變^ W用跨子訊框 圖10圖示在將 ⑽劃分用於下行鏈路控制資源時用於 28 201132093 具有干擾減輕的上行鏈路資料傳輸的方案1〇〇〇的設計。 圖ίο中的實例假定有四個eNB卜eNB 2、eNB 3和eNB 4, 其分別為四個UE 1、UE 2、UE 3和UE 4服務。如以上針 對圖9所描述,每個eNB可以被分配八個交錯體中的兩個 交錯體。UE 3 and UE 4 receive the RQI and can schedule the UE for data transmission on the downlink. Due to the processing delay of 1 subframe, eN]B丨, eNB 2, eNB 3, and eNB 4 can respectively transmit subframe 12, subframe 13, subframe 14 and subframes of the interlace allocated thereto. The downlink grant is sent to UE 1, UE 2, UE 3 and UE 4 in block 11. The eNB 1, the eNB 2, the eNB 3, and the eNB 4 may send data to the UE 1, the UE 2, the UE 3, and the UE 4 in the subframe 14 to the subframe 17, respectively, and the subframe 14 to the subframe 27 201132093 17 can be shared by the eNB. UE 1, UE 2, UE 3 and UE 4 may receive data from their serving eNB in subframe 14 to subframe 17, and may send ACK/NACK in subframe 16 to subframe 19, respectively. Give feedback. As shown in Figure 9, the 'eNB can send its control information' to avoid high interference with control information. One or more eNBs may transmit data in the same subframe and may adjust their transmit power and/or control their transmission to avoid high interference with the data. With cross-frame control, the downlink grant can have a variable delay with the corresponding data transmission (rather than transmitting in the same subframe as the corresponding data transmission as shown in Figure 7). The variable delay can be generated by assigning different subframes to different eNBs to transmit control information. In addition, a given downlink key grant can be applied to data transmission in one or more subframes on the downlink. In the example shown in Figure 9, each side can transmit control information in every fourth subframe and - a downlink grant can be applied to data transmission in up to four subframes. In general, if _ can send control information in every Sth subframe, then a downlink_license can be applied to data transmission in up to S subframes. The eNB may send a trigger in the subframe to which it is assigned. After _, dl_rqi_rs can be sent on the same downlink f source, so that it can be expected for the subsequent (four) transmission on the downlink. There may be a control between the job trigger from the side and the DL-RQI-RS from the side. The cross-sub-frame 10 is used to illustrate the use of the (10) partition for downlink control resources. 28 201132093 Design of a scheme for uplink data transmission with interference mitigation. The example in Figure ί a assumes that there are four eNBs eNB 2, eNB 3 and eNB 4, which serve four UEs 1, UE 2, UE 3 and UE 4, respectively. As described above with respect to Figure 9, each eNB can be assigned two interlaces of eight interlaces.

對於上行鏈路上的資料傳輸,1;£卜1;£2、1;]63和1;£4 可以分別向服務eNB 1、eNB 2、eNB 3和eNB 4發送排程 請求(圖10中未圖示)。eNB j、_ 2、_ 3和_ 4 可以分別在為其分配的交錯體的子訊框〇、子訊框丨、子 訊框2和子訊框3中將DL-RUM發送給干擾性UE,以及 將RQI-RS請求發送給被服務的UE。UE丄、ue 2、ue 3 和UE 4可以從相鄰eNB接收DL_RUM,並從其服務eNB 接收RQI-RS請求。UE 1、UE 2、UE 3和UE 4可以在相 同上行鏈路資源上在子訊框5中發送ul_rqi_rs。eNB工、 eNB 2 ' eNB 3 和 eNB 4 可以分別從 UE 接收 UL_RQI_RS、 估計SINR,以及選擇用於UE丨、UE 2、UE 3和UE 4的 MCS eNB 1、eNB 2、eNB 3 和 eNB 4 可以排程 UE 來進 行上仃鏈路上的資料傳輸,並且可以分別在為其分配的交 錯體的子訊框8、子訊框9、子訊框10和子訊框7中向UE 1、UE 2、UE 3和UE 4發送上行鏈路許可。 UE 1、UE 2、UE 3和UE 4可以分別在子訊框12到子 訊框15中向eNB丄、eNB 2、e· 3和eNB *發送資料。 i、eNB 2、eNB 3和_ 4可以在子訊框i2到子訊 框15中從其所服務的UE接收資料。歸因於1子訊框的處 29 201132093 理延遲’eNB1可以在子訊框16中發送針對在子訊框& 子訊框13和子訊框14巾從UE 1接收的資料的 ACK/NACK,並且可以在子訊框2()中發送針對在子訊框 15中接收的資料的ACK/NACK。侧2可以在子訊框η 中發送針對在子訊框12到子訊框15中從ue 2接收的資 料的ACK/NACK。eNB 3可以在子訊框h中發送針對在 子訊框u中從UE3接收的資料的ack/nack,並且可以 在子訊框18中發送針對在子訊框13、子訊框“和子訊框 15中接收的資料的ACK/NACK。_ 4可以在子訊框μ 中發送針對在子訊框12和子訊框13中從ue 4接收的資 料的ACK/NACK,並且可以在子訊框19中發送針對在子 訊框14和子訊框15中接收的資料的ACK/NAci^ 如圖10中所示,eNB可以在為其分配的交錯體的子訊 框中發送控制資訊。—或多㈤UE可以在相同子訊框中發 送資料,並且可以調整其發射功率及/或控制其發射,以避 免對資料的高干擾。使用跨子訊框控制,上行鏈路許可可 以具有與相應資料傳輸的可變延遲。該可變延遲可以產生 自為不同eNB分配不同子訊框來發送控制資訊。此外,一 個給定上行鏈路許可可以應用於上行鏈路上在一或多個 子訊框中的資料傳輸。 UE可以在相同子訊框中發送上行鏈路上的資料傳輸。 eNB可以在為其分配的交錯體的不同子訊框中發送 ACK/NACK回饋。使用跨子訊框控制,ACK/NACK回饋可 以具有與相應資料傳輸的可變延遲。此外,可以在給定子 30 201132093 吼c中發送針對在可變數目個子訊框中的資料傳輸的 ACK/NACK 回饋。 eNB可以在為其分配的交錯體的不同子訊框中發送 DL-RUM和RQI_RS請求。UE可以在相同上行鍵路資源上For data transmission on the uplink, 1; £1; £2, 1; 63 and 1; £4 can send scheduling requests to the serving eNB 1, eNB 2, eNB 3, and eNB 4, respectively (not shown in Figure 10 Graphic). The eNBs j, _ 2, _ 3, and _ 4 may respectively send the DL-RUM to the interfering UE in the subframe, the subframe 子, the subframe 2, and the subframe 3 of the interlace allocated thereto, And sending the RQI-RS request to the served UE. The UE丄, ue 2, ue 3, and UE 4 may receive the DL_RUM from the neighboring eNB and receive the RQI-RS request from its serving eNB. UE 1, UE 2, UE 3 and UE 4 may send ul_rqi_rs in subframe 5 on the same uplink resource. The eNB worker, the eNB 2 'eNB 3 and the eNB 4 may receive the UL_RQI_RS from the UE, estimate the SINR, and select the MCS eNB 1 , eNB 2, eNB 3 and eNB 4 for the UE 丨, UE 2, UE 3 and UE 4, respectively. The UE is scheduled to perform data transmission on the uplink link, and can be respectively sent to the UE 1 and the UE 2 in the subframe 8, the subframe 9, the subframe 10, and the subframe 7 of the interlace allocated thereto. UE 3 and UE 4 transmit an uplink grant. UE 1, UE 2, UE 3 and UE 4 may send data to subframes eNB, eNB 2, e. 3 and eNB* in subframe 12 to subframe 15, respectively. i. eNB 2, eNB 3 and _ 4 may receive data from the UEs served by them in subframe i2 to subframe 15. Attributable to the location of the 1 subframe 19 201132093 The delay eNB1 may send an ACK/NACK in the subframe 16 for the data received from the UE 1 in the subframe & subframe 13 and the subframe 14 And an ACK/NACK for the material received in the subframe 15 can be transmitted in the subframe 2(). Side 2 may send an ACK/NACK for the information received from ue 2 in subframe 12 to subframe 15 in subframe n. The eNB 3 may send an ack/nack for the data received from the UE3 in the subframe u in the subframe h, and may send in the subframe 18 for the subframe 13, the subframe, and the subframe. The ACK/NACK of the received data in 15 can be sent in the subframe μ by ACK/NACK for the data received from the ue 4 in the subframe 12 and the subframe 13, and can be in the subframe 19. Sending ACK/NAci for the data received in subframe 14 and subframe 15 As shown in FIG. 10, the eNB may send control information in the subframe of the interlace allocated for it. - or more (5) UE may Send data in the same subframe, and adjust its transmit power and/or control its transmission to avoid high interference to the data. With cross-frame control, the uplink grant can have variable transmission with the corresponding data. Delay. The variable delay may be generated by assigning different subframes to different eNBs to transmit control information. In addition, a given uplink grant may be applied to data transmission in one or more subframes on the uplink. Can be sent in the same subframe Data transmission on the link. The eNB may send ACK/NACK feedback in different subframes of the interlace allocated for it. With cross-frame control, the ACK/NACK feedback may have a variable delay with the corresponding data transmission. ACK/NACK feedback for data transmission in a variable number of subframes may be sent in a given subframe 30 201132093 吼c. The eNB may send DL-RUM and RQI_RS in different subframes of the interlace allocated for it. Request. The UE can be on the same uplink resource.

發送UL-RQI-RS,以使得eNB能夠估計針對上行鏈路上後 續資料傳輸可以預期的SINR。在來自eNB RW請求與來自_UL聲RS之間可以存在/變 延遲。該可變延遲可以採用跨子訊框控制來支援。 圖9和圖1〇圖示其中四個eNB可能對彼此造成高干擾 並且可以為每彳ϋ eNB >配兩個交錯體來發送控制資訊的 狀況的示例性等時線。亦可以為eNB分配更少或更多的交 錯體來發送控制資訊”NB則可以具有用於發送各種控制 訊息的不同等時線。對⑨具有干擾減輕的下行鏈路資料傳 輸,在下行鏈路許可與下行鏈路上相ϋ資料傳輸之間可以 存在可變延遲,如圖9中所示。eNB可以在分配給該副 的任何子訊框中在資料傳輸之前或者與資料傳輸一起發 送下行鏈路許可。對於具有干擾減輕的上行鏈路資料傳 輸’在上行鍵路許可與上行鍵路上相應資料傳輸之間可以 存在可變延遲’如圖10中所示。侧可以在分配給該eNB 的任何子訊框中在資料傳輸之前發送上行鏈路許可。 亦可以在刀sn eNB的任何子訊框中在資料傳輸之後 發送ACK/NACK回饋。_用於發送下行鏈路控制訊息和 ACK/NACK回饋的特定子訊框可以取決於分配給該祕 的交錯體。 31 201132093 對於沒有跨子訊框控制的資料傳輪(例如,如圖7和圖 8所示)’在各種傳輸之間彳以存在固定延遲。對於具有跨 子訊框控制的資料傳輸(例如,如圖9和圖ι〇所示),在 各種傳輸之間可以存在可變延遲。表丨列出針對不同資料 傳輸情景其中可以發送許可、資料和ack/nack的子訊 ,。對於具有跨子訊框㈣的情景,偏移χ和偏移乂可以 疋可變.的’並且可以取決於分配給eNB的子訊框。 情景 衣丄 DL/UL 許可資料 ack/nack 圖7中;又有跨子訊框控 制巧下行鏈路資料傳輪 子訊框t子訊框 I——----- v 子訊框 子訊框t t + 4 子訊框t+4 —----- 子訊框t+8 圖8中沒有跨子訊框控 制的上行鏈路資料傳輸 圖9中具有跨子訊框控 制的下行鏈路資料僂輪 r~~— _ 子訊框 子訊框t — t + x 子訊框 t + X + y 圖10中具有跨子訊框 控制的上行鍵路資料傳 輸 *-----— Γ~ 子訊框t子訊框 t + x 子訊框 t + X + y v只椚1f7,排程每個UE在四個子訊 體而β,可以排程UE在一或多個 框中進行資料傳輸。 子訊框令進行資料傳齡 ㈣H —種設Μ ’可以發送針對在 被排程子訊財的資料傳輸的單個下行鏈路或上行 32 201132093 許可在另-種设計中,可以發送針對每個被排程子 訊框中的㈣傳輸的—個下行料或上行鏈料可。亦可 以以其他方式發送下行鏈路和上行鏈路許可。 如以上所#田述,可以以TDM劃分為不同ο·分配不同 子訊框來發送控制資訊。eNB可以避免在分配給其他侧 的子訊框的控制區中發送控制資訊。$而,侧可以持續 在分配給其他eNB的子訊框的控制區及/或資料區中發送 某些#日疋通道及/或信號。例如’ eNB可以在所有子訊框中 (亦即,在分配給該eNB的子訊框以及在分配給其他eNB 的子訊框W發射CRS。料指定通道及/或信號可以被用 來支援舊# UE的操作’該等舊有UE可能希望存在此等 通道及/或信號’並且若不存在此等通道及/或信號,則該 專舊有UE可能不會正確地起作用。 在又一態樣中,UE可以針對一或多個指定通道及/或信 號執行干擾消除,以便於改良控制資訊及/或資料的效能。 為了干擾消除,UE可以估計歸因於指定通道或信號的干 擾,消除所估計的干擾,並且隨後在消除所估計的干擾之 後恢復所要的通道或信號。 在一種設計中,UE可以針對CRS執行干擾消除,該cRS 可以由每個eNB在每個子訊框的控制區和資料區中發 射,例如如圖3中所示。來自eNB的CRS可以以下述方 式中的一或多個方式導致干擾: •CRS對CRS衝突 多個eNB在相同的資源元素上發 迭其CRS, 33 201132093 •CRS對控制衝突---_在另一 eNB針對控制資訊 所用的資源元素上發送其CRS,及 •^CRS對資料衝突 eNB在另—eNB針對資料所用 的負源元素上發送其CRS。 UE可以針對CRS對CRS衝突、或⑽對控制衝突或 CRS對資料衝突或者其組合執行干擾消除。迎可以基於 服務eNB和干擾性侧的細胞服務區id決定在其服務 eNB的CRS與干擾性eNB # CRS之間是否已經發生⑽ 對CRS衝突。若發生,則仙可以藉由估計歸因於來自干 擾性副的CRS的干擾並且從UE處的接收信號中消除所 估計的干擾以獲得干擾消除的信號,來騎⑽對⑽ 衝突執行干擾消除eUE隨後可以基於該干擾消除的信號 中來自服務eNB& CRS執行通道估計。仙能夠藉由消除 歸因於來自干擾性eNB的CRS的干擾來獲得針對服務咖 的更精確的通道估計。 UE可以藉由以下操作來針對⑽對控制衝突執行干擾 /肖除·估計歸因於來自干擾性eNB # CRs的干擾,消除 估計的干擾,並且處理干擾消除的信號(而不是接收传幻 來恢復服務·所發送的控制資訊。耶亦可以藉由考慮 來自干擾性eNB @ CRS的干擾來對控制資訊進行解碼’。、 例如’ UE可以藉由以下操作來執行解碼:⑴對從干擾性 咖料發送⑽的資源元素_到的符號賦予較小權 重’而(ii)對從其他資源元素偵測到的符號賦予較大權 重UE可以以與針對CRS對控制衝突執行干擾消除的方 34 201132093 式類似的方式針對CRS對資料衝突執行干擾消除。 在另一設計中,可以為可能彼此干擾的eNB指派細胞服 務區ID,以使得其CRS在不同資源元素上發送並且因此 不會衝大。此舉可以提高UE的通道估計效能。可以針 . 對CRS對控制衝突及/或crs對資料衝突執行干擾消除。 該無線網路可以支援在下行鏈路的—或多個載波以及 在上行鏈路的一或多個載波上的操作。載波可以代表用於 通訊的頻率範圍並且可以與某些特性相關聯。例如.,載波 可以與描述該載波上的操作的系統資訊等等相關聯。載波 亦可以被稱為通道、頻率通道等等。下行鏈路的載波可以 被稱為下行鏈路載波,而上行鏈路的載波可以被稱為上行 鍵路載波。 本文描述的技術可以用於多載波操作。在一種設計中, 可以為每個下行鏈路載波和每個上行鏈路載波執行本文 描述的技術。例如,可以為eNB分配每個載波上的子訊框 集來在下行鏈路上發送控制資訊。可以為eNB分配不同下 行鏈路載波的交錯子訊框集,從而該eNB可以在盡可能多 .的子訊框中發送控制資訊。亦可以為_分配每個上行鍵 & m的頻率範®來在上行鏈路±接收控制資訊。咖 可以在每個下行鏈路載波的分配的子訊框中發送針對該 下行鏈路載波的RUM觸發、dl_RUm、rqi_rs請求、^ 可及/或其他下行鏈路控制訊息。eNB可以在每個上行鍵路 載波的分配的頻率範圍中接收針對該上行鏈路載波的排 程請求、UL-RUM及/或其他上行鏈路控制訊息。UE可以 35 201132093 監控每個下行鏈路載波,UE可以在該下行鍵路載波上接 收控制資訊,並且可以制RUM觸發、dl_rum、輝心 請求、許可及/或其他下行鍵路控制訊息。ue可以在每個 上行鏈路載波上在該上行鏈路載波的分配的頻率範圍中 發送排程請求、UL-刪及/或其他上行鏈路控制訊息。 在另一種設計中,可以為eNB分配指定下行鍵路載波上 的子訊框集來發送針對所有下行鏈路載波的控制資訊。亦 °、為eNB刀配扣疋上行鏈路載波上的頻率範圍來接收 料所有上行鏈路載波的控制資訊。侧可以在該指定下 订鏈路載波上的分配的子訊框中發送針對所有下行键路 載波的RUM觸發、DL_RUM、卿_RS請求、許可及/或其 他下行鏈路控制訊息。eNB可以在該指定上行鍵路載波的 分配的頻率範圍中接收針對所有上行鏈路載波的排程請 求=L-RUM及/或其他上行鏈路控制訊息。ue可以監控 該指定下行鏈路載波’並且可以谓測針對所有下行鍵路載 波的咖觸發、DL_RUM、RQI_RS請求、許可及/或其他 下打鏈路控制訊息。UE可以在指^上行鏈路載波的分配 的頻率範圍巾發送針對所有上㈣路錢的排程請求、 UL-RUM及/或其他上行鏈路控制訊息。 本文描述的技術可以支援干擾顯著情景中的通訊。在干 擾顯著情景中,UE可以在干擾性侧不在其上進行發射 的資源上可靠地從服務eNB純傳輸4擾性_可以 對服務eNB用於發送控制資訊的資源以及服務測用於 發送資料的資源進行清理(或者在此等資源上以較低功率 36 201132093 位準進行發射上所㈣,可以精下行鏈路進行 聰劃分和對上行料進行舰劃分來對用於控制資訊 的資源進行靜態或半靜離妯、生 1 千静L地π理。可以以短期干擾減輕來 對用於資料的資源進行動態地清理,該短期干擾減輕可以 假設控制#訊能夠在下行鏈路和上行鏈路上可靠地發送。 圖11圖示用於在無線網路中交換資料的程序工⑽的設 。十程序1100可以由UE、基地台/eNB或者—些其他實體 來執行。可以在第一+ 千訊框中父換(例如發送或接收)控 制資訊(方塊1112)。可以基於在第—子訊框中交換的控 制資訊在第二子訊框中交換資料(方*鬼m4)。第二子訊 框可以距第-子訊框可變數目個子訊框。可以在第三子訊 框中父換針對在第:子訊框中交換的f料@ ack/nack 回饋(方塊m6)。第三子訊框亦可以距第二子訊框可變 數目個子訊框。 在一種設計中,第一子訊框可以被分配給一基地台,並 且可以具有降低的來自至少一個干擾性基地台的干擾。第 子λ框可以疋該基地台以及該至少一個干擾性基地台 可用的在種3又§十中,可以為該基地台分配一子訊框集 來發送控制資訊。該基地台可以在該子訊框集中發送控制 貝λ,並且可以避免在其餘子訊框中發送控制資訊。第一 子訊框可以屬於該子訊框集。在另一種設計中,可以為該 基地台分配至少一個交錯體來發送控制資訊。該至少一個 交錯體中的子讯框可以具有降低的來自至少一個干擾性 基地台的干擾。第一子訊框可以屬於分配給該基地台的該 37 I? 201132093 至少一個交錯體。 在種没计中,基地台(例如圖9中的eNB 1 )可以執 仃程序11 00來在下行鏈路上發射資料。基地台可以在方塊 1112中在第一子訊框(例如子訊框12)中發送下行鏈路許 可,並且可以在方塊1114中在第二子訊框(例如子訊框 14)中發送資料。基地台可以在方塊1116中在第三子訊框 (例如子訊框16)中接收針對在第二子訊框中發送的資料 的ACK/NACK回饋。基地台可以在第四子訊框(例如子訊 框〇)中發送訊息(例如RUM觸發)來請求在第二子訊框 中在下行鏈路上降低的干擾。第四子訊框可以距第二子訊 框可變數目個子訊框。基地台可以在第五子訊框(例如子 訊框7)中發送參考信號(例如dl-rqlrs),該第五子訊 框可以距第四子訊框可變數目個子訊框。 在另一種設計中,UE (例如圖9中的UE 1 )可以執行 程序1100來在下行鏈路上接收資料。UE可以在方塊ni2 中在第一子訊框(例如子訊框12 )中接收下行鏈路許可, 並且可以在方塊1U4中在第二子訊框(例如子訊框14) 中接收資料。UE可以在方塊1116中在第三子訊框(子訊 框16)中發送針對在第二子訊框中接收的資料的 ACK/NACK 回饋。 在又一種設計中,基地台(例如圖i 〇中的i )可以 執行程序1100來在上行鏈路上接收資料。基地台可以在方 魂1112中在第一子訊框(例如子訊框8 )中發送上行鏈路 許"T ’並且可以在方塊1114中在第二子訊框(例如子訊框 38 201132093 i”中接收資料。基地台可以在第三子純(例如子訊框 16)中發送針對在第:子訊框中接收的資料的a^nACK 回饋第一子訊框可以距第二子訊框可變數目個子訊框。 基地口可以在第四子讯框(例如子訊框〇 )中發送訊息(例 如DL RUM )來4求在第二子訊框中在上行鏈路上降低的 干擾S S叹s十中,帛四子訊框可以距第二子訊框可變 數目個子訊框’例如如_ 1G中所示。在另—種設計中, 第四子隸可以距第:子訊框固定數目個子訊框。基地台 亦可以在第四子訊框中發送訊息、(例如rqi_rs請求),以 請求UE在第五子訊框(例如子訊框5)中發送參考信號 (例如UL-RQI-RS )。第四子訊框可以距第五子訊框可變 數目個子訊框。基地台可以在第五子訊框中從複數個证 (包括該UE)接收複數個參考信號。基地台可以基於該 複數個參考信號決定該UE #接收信號品質。基地台可以 基於UE的接收信號品質為UE選擇調制和編碼方案 (MCS)’並且可以發送包括所選擇Mcs的上行鏈路許可。 在又-種設計中,UE可以執行程序11〇〇來在上行鍵路 上發送資料。UE可以在方塊1112中在第一子訊框(例如 子訊框8)中接收上行鏈路許可,並且可以在方塊ιιΐ4中 在第二子訊框(例如子訊框12)中發送資料。ue可以在 第三子訊框(例如子訊框16)中接收針對在第二子訊框中 發送的資料的ACK/NACK回饋。 ▲在—種設計中’彳以支援多個冑波上的操作。在一種設 計中’可以在方塊m.2中交換對在複數個載波上的資料傳 39 201132093 輸的許可。可以在方塊1U4中在該許可所指示的複數個載 波上交換資料。 圖12圖示用於在無線網路中交換資料的裝置12〇〇的設 計。裝置1200包括:用於在第一子訊框中.交換控制資訊 的模組1212;用於基於在第一子訊框中交換的控制資訊在 第二子訊框中交換資料的模組1214,其中第二子訊框距第 一子訊框可變數目個子訊框;及用於在第三子訊框中交換 針對在第二子訊框中交換的資料的ack/Nack回饋的模 、·且1216,其中第二子訊框距第二子訊框可變數目個子訊 框。 圖13圖示用於在無線網路中交換資料的程序13〇〇的設 计。程序1 3 00可以由UE、基地台/eNB或者一些其他實體 來執行。可以交換(例如發送或接收)針對UE的至少一 個許可(方塊13 12)。隨後,可以在該至少一個許可所指 示的可變數目個子訊框中交換資料(方塊1314)。 在方塊1312的一種設計中,該至少一個許可可以在被 分配給一基地台並且具有降低的來自至少一個干擾性基 地台的干擾的子訊框中被交換。在一種設計中,可以為該 基地台分配所有可用子訊框中的一子訊框集來發送控制 資訊。該基地台可以在該子訊框集中向觀測到高干擾的ue 發送許可,並且可以避免在其餘子訊框中向此等UE發送 許可。每個許可可以覆蓋單個子訊框或多個子訊框中的資 料傳輸。 在-種設計中,例如如圖9中所示,基地台可以執行程 40 201132093 序測來在下行鏈路上將資料發送給ue。基地台可以在 方塊m2中向UE發送至少一個下行鏈路許可,並且可以 在方塊1314中在可變數目個子訊框中將資料發送給UE。 在另-種設計中,例如如圖9中所示,ue可以執行程 序1300來在下行鏈路上從基地台接收資料。仙可以在方 塊1312中接收至少一個下行鏈路許可,並且可以在方塊 1314中在可變數目個子訊框中接收資料。 在又-種設計中,例如如圖1G所示,基地台可以執行 程序1300來在上行鏈路上從仙接收資料。基地台可以在 方塊1312中向UE#送至少—個上行鏈路許可,並且可以 在方塊1314中在可變數目個子訊框中從接收資料。 在又一種設計中,例如如圖1〇所示,ue可以執行程序 13〇〇來在下行鏈路上向基地台發送資料。ue可以在方塊 1312中接收至少—個上行鏈路許可,並且可以在方塊1314 中在可變數目個子訊框中發送資料。 在:種設計中,可以在方塊1312中向ue發送複數個許 可,一個許可針對可變數目個子訊框的每一個中的資料傳 輸。該複數個許可可以在單個子訊框或者在多個子訊框 (例如—個子訊框針對其中發送資料的每個子訊框)中發 送。在-種設計中’每個許可可以包括對該許可所應用的 子訊框的指示。該指示可以藉由許可中的欄位顯式地提 供,或者藉由該許可發送所在的資源或者用於該許可的擾 頻碼等隱式地提供。在另—種料中,可以在方塊1312 中向UE發送針對所有可變數目個子訊框中的資料傳輸的 41 201132093 單個許可。 圖14圖示用於在無線網路中交換資料的裝置i4〇〇的設 計。裝置1400包括:用於交換針對UE的至少一個許可的 模組14丨2;及用於在該至少—個許可所指示的可變數目個 子訊框中交換資料的模組1 4丨4。 圖15圖示用於在無線網路中交換資料的程序15〇〇的設 計。程序moo可以由基地台/eNB (如以下所描述)或者 一些其他實體來執行。基地台可以在pDCCH上發送訊息 來請求降低的干擾(方# 1512)。此後,基地台可以在歸 因於在PDCCH上發送的該訊息而具有降低的干擾的資源 上交換(例如發送或接收)資料(方塊1514)。 在-種設計中,例如如圖7中所示,基地台可以執行程 序1500來在下行鏈路上發送資料。對於方塊i5i2,基地 口可以在PDCCH上發送訊息(例如RUM觸發),以請求 降低的來自至少-個干擾性基地台的干擾。對於方塊 1514 ’基地台可以在如下資源上肖ue發送資料,該等資 原歸因於纟PDCCH上發送的該訊息而具有降低的來自該 至J -個干擾性基地台的干擾。基地台可以纟pDccH上 將下行鏈路許可發送給UE,並且可以基於該下行鍵路許 可發送資料給UE。 在另-種設計中’例如如圖8所示,基地台可以執行程 序1500來在上行鏈路上接收資料。對於方塊i5i2,基地 〇可以在PDCCH上發送訊息(例如dl_rum ),以請求降 低的來自至少-個干擾性UE的干擾,該至少—個干擾性 42 201132093 UE與至少一個相鄰基地台通訊。對於方塊15〗4,基地台 可以在如下資源上從UE接收資料,該等資源歸因於在 PDCCH上發送的該訊息而具有降低的來自該至少一個干 擾性UE的干擾。在一種設計中,基地台可以在PDCCH上 發送第二訊息(例如RQI-RS請求),以請求UE發送參考 仏號(例如UL-RQI_rs )。基地台可以從包括該UE的複數 個UE接收複數個參考信號,並且可以基於此等參考信號 估。十UE的接收號品質。基地台可以基於所估計的ue 的接收信號品質決定調制和編碼方案(MCS )。基地台可以 產生包括所選擇MCS的上行鏈路許可,在PDCCH上向 UE發送上行鏈路許可,並且基於該上行鏈路許可接收 所發送的資料。 在一種設計中,可以支援多載波操作。在一種設計中, 基地台可以在PDCCH上在複數個載波的每一個上發送訊 息。每個訊息可以請求該訊息發送所在的載波上降低的干 擾。在另一種设計中,基地台可以在PDCCH上在複數個 載波中的指定載波上發送訊息。每個訊息可以請求該複數 個載波中一或多個載波上降低的干擾。 圖16圖示用於在無線網路中交換資料的裝置16〇〇的設 計。裝置1600包括:用於在pDCCH上發送訊息以請求降 低的干擾的模組1612;及用於在歸因於在pDccH上發送 的該訊息而具有降低的干擾的資源上交換資料的模組 1614。 圖17圖示用於在無線網路中交換資料的程序17〇〇的設 43 201132093 計。程序1700可以由UE (如以下所描述)或一些其他實 體執行。UE可以監控由至少一個基地台在pDccH上發送 以請求降低的干擾的訊息(方塊1712 )。UE可以在歸因於 該至少一個基地台在PDCCH上發送的該等訊息而具有降 低的干擾的資源上交換(例如發送或接收)資料(方塊 1714)。 在一種設計中,例如如圖7所示,UE可以執行程序17〇〇 來在下行鏈路上接收資料。UE可以在具有降低的來自至 少一個相鄰基地台的干擾的資源上從服務基地台接收資 料。在-種設計中,UE可以接收第一訊息(例如rum觸 發),該第一訊息由相鄰基地台在PDCCH1發送以請求降 低的干擾。UE可以向該服務基地台發送第二訊息(例如 UL-RUM),以轉發來自該相鄰基地台的對降低的干擾的該 請求。在另-種設計中,UE可以接收第—訊息,該第」 訊息由該服務基地台在PDCCH上發送以請求降低的干 擾。UE可以向該至少一個相鄰基地台發送第二訊息,以 轉發來自該服務基地台的對降低的干擾的該請求^一種 設計中,UE彳以從包括服務基地台和至少一個相鄰基地 台的複數個基地台接收複數個參考信號㈠列如 DL娜-RS)。™可以基於該等參考信號估計該服務基地 台的接收信號品質。UE可以發送RQI,今 v 通指示該服 務基地台的接收信號品質。 在另一種設計中,例如如圖8所示,UE可以執行程序 1700來在上行鏈路上發送資料。UE |以在如下資源上向 44 201132093 服務基地台發送資料,該等資源具有降低的來自與至少_ 個相鄰基地台通訊的至少一個干擾性UE的干擾。在一種 -又计中,UE可以接收至少一個訊息(例如),該 至少一個訊息由至少一個相鄰基地台在pDCCH上發送以 請求降低的干擾。UE可以基於從該至少一個相鄰基地台 接收的該至少—個訊息決定是否在該等資源上發送資 料。UE可以接收服務基地台在pDCCH上發送以請求發射 參考信號的訊息(例如RQI_RS請求)。UE可以回應於來 自該至少-個相鄰基地台的該至少一個訊息和來自該服 務基地台的該訊息,決定針對該等資源的第一發射功率位 準UE可以後以基於該第一發射功率位準決定的第二 發射功率位準來發射參考信號(例如ul_rqi_rs)。 在一種設計中’可以支援多載波操作。在-種設計中, UE可以在複數個載波的每—個上監控來自該至少一個基 地台的訊息。在另一種設計中,UE可以在複數個載波中 的私疋載波上監控來自該至少一個基地台的訊息。 圖18圖不用於在無線網路中交換資料的裝置1綱的設 。十。裝置1800包括:用於監控由至少一個基地台在 上發送以請求降低的干擾的訊息的模组i8i2,·及用於在歸 因於該至少—個基地以扣咖上發送的該等訊息而具 有降低的干擾的資源上交換資料的模組“Μ。 圖12、圖14、圖16和圖18中的模組可以包括處理器、 電子設備、硬體設借、雷;一从 _ Α 備電子兀件、邏輯電路、記憶體、軟 體代碼、韌體代碼等,或其任何組合。 45 201132093The UL-RQI-RS is transmitted to enable the eNB to estimate the SINR that can be expected for subsequent data transmissions on the uplink. There may be a /variation delay between the request from the eNB and the RW from the _UL. This variable delay can be supported by cross-frame control. 9 and 1B illustrate an exemplary isochronous line in which four eNBs may cause high interference to each other and may transmit control information for each eNB > two interlaces. It is also possible to allocate less or more interlaces to the eNB to transmit control information. The NB may have different isochronous lines for transmitting various control messages. The downlink data transmission with interference mitigation for 9 is on the downlink. There may be a variable delay between the grant and the data transmission on the downlink, as shown in Figure 9. The eNB may send the downlink before the data transmission or with the data transmission in any subframe assigned to the secondary. Permission. For uplink data transmission with interference mitigation 'There may be a variable delay between the uplink key grant and the corresponding data transmission on the uplink key' as shown in Figure 10. The side may be in any child assigned to the eNB. The frame sends an uplink grant before the data transmission. It can also send ACK/NACK feedback after data transmission in any subframe of the knife sn eNB. _ used to send downlink control messages and ACK/NACK feedback. The specific subframe can depend on the interlace assigned to the secret. 31 201132093 For data passes without cross-frame control (eg, as shown in Figures 7 and 8) There is a fixed delay between the various transmissions. For data transmissions with cross-frame control (eg, as shown in Figures 9 and 〇), there may be variable delays between the various transmissions. Different data transmission scenarios may send permission, data, and ack/nack sub-messages. For scenarios with cross-frames (4), the offset 乂 and offset 乂 may be variable '' and may depend on the allocation to the eNB Sub-frame. Scenario 丄 DL/UL license information ack/nack Figure 7; cross-sub-frame control tricky downlink data transmission wheel frame t sub-frame I ——---- v Frame sub-frame tt + 4 sub-frame t+4 —----- sub-frame t+8 Figure 8 shows no uplink data transmission with cross-frame control. Figure 9 has cross-frame control. Downlink data 偻 wheel r~~— _ subframe frame t — t + x subframe t + X + y Figure 10 has uplink data transmission with cross-frame control*----- — Γ~ sub-frame t sub-frame t + x sub-frame t + X + yv only 椚 1f7, scheduling each UE in four sub-cells and β, can schedule UE in Data transmission in multiple frames. Sub-frames for data ageing (4) H-species Μ 'Can send a single downlink or uplink for data transmission in the scheduled sub-transportation 32 201132093 License in another In the calculation, one downlink or uplink material may be transmitted for (4) transmission in each scheduled subframe. The downlink and uplink grants may also be sent in other manners. The control information can be transmitted by dividing the TDM into different frames. The eNB can avoid sending control information in the control area allocated to the subframes of other sides. On the other hand, the side may continue to transmit certain #日疋 channels and/or signals in the control area and/or data area of the subframe allocated to other eNBs. For example, the eNB may transmit CRS in all subframes (i.e., in the subframe allocated to the eNB and in the subframes assigned to other eNBs. The designated channel and/or signal may be used to support the old #UE's operation 'The old UEs may wish to have such channels and/or signals' and if there are no such channels and/or signals, then the legacy UE may not function properly. In an aspect, the UE may perform interference cancellation for one or more designated channels and/or signals in order to improve the performance of control information and/or data. For interference cancellation, the UE may estimate interference due to a specified channel or signal, Eliminating the estimated interference and then recovering the desired channel or signal after eliminating the estimated interference. In one design, the UE may perform interference cancellation for the CRS, which may be by each eNB in the control region of each subframe And transmitting in the data area, for example as shown in Figure 3. The CRS from the eNB may cause interference in one or more of the following ways: • CRS conflicts with CRS multiple eNBs advertise on the same resource element CRS, 33 201132093 • CRS pair control conflicts—send its CRS on the resource element used by another eNB for control information, and • CRS for data collision eNB sends on the negative source element used by the other eNB for data The CRS. The UE may perform interference cancellation for CRS for CRS, or (10) for control collision or CRS for data collision or a combination thereof. The CRS and its serving eNB may be determined based on the serving eNB and the interfering side cellular service area id. Whether there is a (10) collision with the CRS between the interfering eNBs #CRS. If so, the estimated interference can be obtained by estimating the interference due to the CRS from the interfering pair and removing the estimated interference from the received signal at the UE. Interference cancellation signal, ride (10) pair (10) collision to perform interference cancellation eUE can then perform channel estimation from the serving eNB & CRS based on the interference cancellation signal. Can eliminate interference due to CRS from interfering eNB Obtain a more accurate channel estimation for the service café. The UE can perform interference/distraction on the control conflict for (10) by the following operations. eNB # CRs interference, eliminates the estimated interference, and processes the interference-cancelled signal (rather than receiving the illusion to recover the service-sent control information. Yeah can also control by considering interference from the interfering eNB @ CRS The information is decoded '. For example, the UE can perform decoding by: (1) giving a smaller weight to the symbol of the resource element _ from the interfering coffee (10) and (ii) detecting from other resource elements The symbol to which the greater-weighted UE is assigned may perform interference cancellation on the data collision for the CRS in a manner similar to the method of performing interference cancellation for the CRS on the control collision. In another design, the eNB may be assigned a cell service area ID for eNBs that may interfere with each other such that their CRS is transmitted on different resource elements and therefore does not become large. This can improve the channel estimation performance of the UE. It is possible to perform interference cancellation on CRS for control conflicts and/or crs for data collisions. The wireless network can support operation on the downlink - or multiple carriers and on one or more carriers on the uplink. The carrier can represent the range of frequencies used for communication and can be associated with certain characteristics. For example, the carrier can be associated with system information or the like that describes the operation on the carrier. Carriers can also be referred to as channels, frequency channels, and the like. The carrier of the downlink may be referred to as a downlink carrier, and the carrier of the uplink may be referred to as an uplink carrier. The techniques described herein can be used for multi-carrier operation. In one design, the techniques described herein may be performed for each downlink carrier and each uplink carrier. For example, the eNB may be assigned a set of subframes on each carrier to transmit control information on the downlink. The eNB may be assigned an interlaced subframe set of different downlink carriers such that the eNB may send control information in as many subframes as possible. It is also possible to assign each uplink key & m frequency range to _ to receive control information on the uplink. The RAKE may send a RUM trigger, dl_RUm, rqi_rs request, ^ and/or other downlink control messages for the downlink carrier in the assigned subframe of each downlink carrier. The eNB may receive scheduling requests, UL-RUMs, and/or other uplink control messages for the uplink carrier in the allocated frequency range of each uplink carrier. The UE may monitor each downlink carrier, and the UE may receive control information on the downlink carrier, and may perform RUM triggering, dl_rum, gratification request, grant, and/or other downlink key control messages. The ue may send a scheduling request, UL-deletion, and/or other uplink control message on the allocated frequency range of the uplink carrier on each uplink carrier. In another design, the eNB may be assigned a set of subframes on a designated downlink carrier to transmit control information for all downlink carriers. Also, the eNB is equipped with a frequency range on the uplink carrier to receive control information for all uplink carriers. The side may send a RUM trigger, DL_RUM, qing_RS request, grant, and/or other downlink control message for all downlink carrier carriers in the assigned subframe on the designated downlink carrier. The eNB may receive scheduling requests for all uplink carriers = L-RUM and/or other uplink control messages in the allocated frequency range of the designated uplink carrier. The ue can monitor the designated downlink carrier' and can refer to coffee triggers, DL_RUM, RQI_RS requests, grants, and/or other downlink control messages for all downlink key carriers. The UE may send scheduling requests, UL-RUMs, and/or other uplink control messages for all of the upper (four) way money in the frequency range of the assigned uplink carrier. The techniques described herein can support communication in a dominant situation. In the interference-significant scenario, the UE can reliably transmit 4-interference from the serving eNB on the resource on which the interfering side is not transmitting. The resource that can be used by the serving eNB to transmit control information and the service to be used for transmitting data can be transmitted. The resources are cleaned up (or on the resources with low power 36 201132093 level (4), the downlink can be narrowed down and the uplinks can be divided to statically or for the resources used to control the information. Semi-static and 1 生 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Figure 11 illustrates the setup of a programmer (10) for exchanging data in a wireless network. The ten program 1100 can be executed by a UE, a base station/eNB, or some other entity. It can be in the first + k-frame The middle parent exchanges (eg, sends or receives) control information (block 1112). The data can be exchanged in the second subframe based on the control information exchanged in the first subframe (party * ghost m4). The second sub-frame can be changed from the first sub-frame by a variable number of sub-frames. In the third sub-frame, the parent can change the f @ ack/nack feedback for the exchange in the first sub-frame (block m6) The third sub-frame may also be a variable number of sub-frames from the second sub-frame. In one design, the first sub-frame may be assigned to a base station and may have reduced from at least one interfering base. The interference of the station. The first sub-lambda box may be used in the base station and the at least one interfering base station, and the sub-frame may be assigned a sub-frame set to send control information. The control shell λ can be sent in the subframe frame, and the control information can be avoided from being sent in the remaining subframes. The first subframe can belong to the subframe set. In another design, the base station can be allocated. At least one interlace transmits control information. The subframes in the at least one interlace may have reduced interference from the at least one interfering base station. The first subframe may belong to the 37 I assigned to the base station. 201132093 At least one interlace. In the case of a seed, the base station (e.g., eNB 1 in Figure 9) may execute procedure 11 00 to transmit data on the downlink. The base station may be in the first subframe in block 1112 ( For example, the downlink grant is sent in subframe 12), and the data may be sent in a second subframe (e.g., subframe 14) in block 1114. The base station may be in the third subframe in block 1116 ( For example, in the subframe 16), an ACK/NACK feedback for the data sent in the second subframe is received. The base station may send a message (eg, a RUM trigger) in the fourth subframe (eg, subframe). Requesting interference reduced on the downlink in the second subframe. The fourth subframe may be a variable number of subframes from the second subframe. The base station may transmit a reference signal (e.g., dl-rqlrs) in a fifth subframe (e.g., subframe 7), and the fifth subframe may be a variable number of subframes from the fourth subframe. In another design, a UE (e.g., UE 1 in Figure 9) may execute routine 1100 to receive data on the downlink. The UE may receive the downlink grant in the first subframe (e.g., subframe 12) in block ni2, and may receive the data in the second subframe (e.g., subframe 14) in block 1U4. The UE may send an ACK/NACK feedback for the data received in the second subframe in the third subframe (subframe 16) in block 1116. In yet another design, a base station (e.g., i in Figure i) can execute program 1100 to receive data on the uplink. The base station may send an uplink grant "T' in the first subframe (e.g., subframe 8) in the square soul 1112 and may be in the second subframe in block 1114 (e.g., subframe 38 201132093) Receiving data in i". The base station may send a^nACK for the data received in the first subframe to transmit the first subframe in the third sub-purity (for example, subframe 16). The variable number of sub-frames may be in the frame. The base port may send a message (eg, DL RUM) in the fourth subframe (eg, subframe 〇) to find the interference SS that is reduced on the uplink in the second subframe. In the tenth sigh, the four sub-frames can be a variable number of sub-frames from the second sub-frame. For example, as shown in _ 1G. In another design, the fourth sub-frame can be separated from the sub-frame. A fixed number of sub-frames. The base station may also send a message (eg, rqi_rs request) in the fourth subframe to request the UE to send a reference signal in the fifth subframe (eg, subframe 5) (eg, UL- RQI-RS). The fourth sub-frame can be a variable number of sub-frames from the fifth sub-frame. The fifth subframe receives a plurality of reference signals from a plurality of cards (including the UE). The base station can determine the UE # received signal quality based on the plurality of reference signals. The base station can select the UE based on the received signal quality of the UE. A modulation and coding scheme (MCS)' and may transmit an uplink grant including the selected Mcs. In a further design, the UE may execute program 11 to transmit data on the uplink key. The UE may be in block 1112. An uplink grant is received in the first subframe (eg, subframe 8), and the data may be sent in the second subframe (eg, subframe 12) in block 。4. ue may be in the third subframe (For example, subframe 16) receives ACK/NACK feedback for the data transmitted in the second subframe. ▲ In the design, '彳 to support operations on multiple chopping. In one design' The permission to transmit data on a plurality of carriers is exchanged in block m.2. The data may be exchanged in block 1U4 on the plurality of carriers indicated by the license. Figure 12 illustrates the use of the wireless network. Exchange of information The device 1200 includes: a module 1212 for exchanging control information in the first subframe; and a second subframe according to the control information exchanged in the first subframe a module 1214 for exchanging data, wherein the second sub-frame is a variable number of sub-frames from the first sub-frame; and ack for exchanging data for the exchange in the second sub-frame in the third sub-frame /Nack feedback mode, and 1216, wherein the second sub-frame is a variable number of sub-frames from the second sub-frame. Figure 13 illustrates the design of a program 13 for exchanging data in a wireless network. The program 1 300 can be executed by the UE, the base station/eNB, or some other entity. At least one license for the UE may be exchanged (e.g., sent or received) (block 13 12). The data may then be exchanged in a variable number of subframes indicated by the at least one license (block 1314). In one design of block 1312, the at least one grant may be exchanged in a subframe that is assigned to a base station and has reduced interference from at least one of the interfering base stations. In one design, the base station can be assigned a subset of all available subframes to send control information. The base station can send a grant to the ue that observes high interference in the subframe set, and can avoid sending grants to the UEs in the remaining subframes. Each license can override the data transfer in a single sub-frame or in multiple sub-frames. In a design, such as shown in Figure 9, the base station can perform a procedure to send data to the ue on the downlink. The base station may send at least one downlink grant to the UE in block m2 and may transmit the data to the UE in a variable number of subframes in block 1314. In another design, such as shown in Figure 9, ue may execute program 1300 to receive data from the base station on the downlink. The singer may receive at least one downlink grant in block 1312 and may receive the data in a variable number of subframes in block 1314. In yet another design, such as shown in Figure 1G, the base station can execute routine 1300 to receive data from the uplink on the uplink. The base station may send at least one uplink grant to UE# in block 1312 and may receive data from a variable number of subframes in block 1314. In yet another design, for example, as shown in FIG. 1A, ue can execute a program to send data to the base station on the downlink. Ue may receive at least one uplink grant in block 1312 and may send the data in a variable number of subframes in block 1314. In the design, a plurality of licenses may be sent to ue in block 1312, one permitting the transfer of data in each of the variable number of sub-frames. The plurality of licenses may be sent in a single subframe or in multiple subframes (e.g., each subframe for which a subframe is sent). In the design - each license may include an indication of the subframe to which the license is applied. The indication may be provided explicitly by a field in the license, or implicitly by the resource in which the license is sent or the scrambling code used for the license. In another material, a 41 201132093 single license for data transfer in all variable number of subframes may be sent to the UE in block 1312. Figure 14 illustrates the design of an apparatus i4 for exchanging data in a wireless network. Apparatus 1400 includes: a module 14 丨 2 for exchanging at least one license for the UE; and a module 144 for exchanging data in a variable number of subframes indicated by the at least one license. Figure 15 illustrates the design of a program 15 for exchanging data in a wireless network. The program moo can be executed by the base station/eNB (as described below) or some other entity. The base station can send a message on the pDCCH to request a reduced interference (party # 1512). Thereafter, the base station can exchange (e. g., transmit or receive) data on resources that have reduced interference due to the message transmitted on the PDCCH (block 1514). In a design, such as shown in Figure 7, the base station can execute program 1500 to transmit data on the downlink. For block i5i2, the base port can send a message (e.g., a RUM trigger) on the PDCCH to request reduced interference from at least one of the interfering base stations. For block 1514', the base station can transmit data on the following resources, which have reduced interference from the to the J-interfering base stations due to the message transmitted on the PDCCH. The base station may transmit a downlink grant to the UE on the pDccH, and may send the data to the UE based on the downlink key grant. In another design, for example, as shown in Figure 8, the base station can execute program 1500 to receive data on the uplink. For block i5i2, the base station may send a message (e.g., dl_rum) on the PDCCH to request reduced interference from at least one interfering UE, the at least one interfering 42 201132093 UE communicating with at least one neighboring base station. For block 15 & 4, the base station may receive data from the UE on a resource having reduced interference from the at least one interfering UE due to the message transmitted on the PDCCH. In one design, the base station may send a second message (e.g., an RQI-RS request) on the PDCCH to request the UE to transmit a reference apostrophe (e.g., UL-RQI_rs). The base station may receive a plurality of reference signals from a plurality of UEs including the UE and may estimate based on the reference signals. The receiving number quality of ten UEs. The base station can determine the modulation and coding scheme (MCS) based on the estimated received signal quality of the ue. The base station may generate an uplink grant including the selected MCS, transmit an uplink grant to the UE on the PDCCH, and receive the transmitted data based on the uplink grant. In one design, multi-carrier operation can be supported. In one design, the base station can transmit information on each of the plurality of carriers on the PDCCH. Each message can request a reduced interference on the carrier on which the message is sent. In another design, the base station can transmit a message on a designated carrier of a plurality of carriers on the PDCCH. Each message may request reduced interference on one or more of the plurality of carriers. Figure 16 illustrates the design of a device 16 for exchanging data in a wireless network. Apparatus 1600 includes a module 1612 for transmitting a message on the pDCCH to request reduced interference, and a module 1614 for exchanging data on resources having reduced interference due to the message transmitted on pDccH. Figure 17 illustrates a program for the exchange of data in a wireless network. Program 1700 can be performed by a UE (as described below) or some other entity. The UE may monitor a message sent by at least one base station on pDccH to request reduced interference (block 1712). The UE may exchange (e. g., transmit or receive) data on resources having reduced interference due to the at least one base station transmitting the messages on the PDCCH (block 1714). In one design, such as shown in Figure 7, the UE may execute program 17 to receive data on the downlink. The UE may receive data from the serving base station on resources having reduced interference from at least one neighboring base station. In a design, the UE may receive a first message (e.g., a rum trigger) that is sent by the neighboring base station at PDCCH 1 to request a reduced interference. The UE may send a second message (e.g., UL-RUM) to the serving base station to forward the request for reduced interference from the neighboring base station. In another design, the UE may receive a first message, which is sent by the serving base station on the PDCCH to request reduced interference. The UE may send a second message to the at least one neighboring base station to forward the request for the reduced interference from the serving base station. In one design, the UE is configured to include the serving base station and the at least one adjacent base station. A plurality of base stations receive a plurality of reference signals (a) such as DL Na-RS. The TM can estimate the received signal quality of the serving base station based on the reference signals. The UE may send an RQI, which indicates the received signal quality of the serving base station. In another design, such as shown in Figure 8, the UE may execute program 1700 to transmit data on the uplink. The UE transmits data to the 44 201132093 serving base station on the following resources, the resources having reduced interference from at least one interfering UE communicating with at least _ neighboring base stations. In one type, the UE may receive at least one message (e.g.,) that is transmitted by the at least one neighboring base station on the pDCCH to request reduced interference. The UE may decide whether to transmit data on the resources based on the at least one message received from the at least one neighboring base station. The UE may receive a message (e.g., an RQI_RS request) that the serving base station transmits on the pDCCH to request to transmit a reference signal. The UE may, in response to the at least one message from the at least one neighboring base station and the message from the serving base station, determine a first transmit power level for the resources, the UE may be based on the first transmit power The second transmit power level determined by the level is used to transmit a reference signal (eg, ul_rqi_rs). In one design, 'multi-carrier operation can be supported. In a design, the UE may monitor messages from the at least one base station on each of the plurality of carriers. In another design, the UE may monitor messages from the at least one base station on a private carrier of the plurality of carriers. Figure 18 is a diagram showing the configuration of a device 1 for exchanging data in a wireless network. ten. Apparatus 1800 includes a module i8i2 for monitoring messages sent by at least one base station for requesting reduced interference, and for transmitting the messages on the deduction based on the at least one base Modules for exchanging data on resources with reduced interference "Μ. The modules in Figures 12, 14, 16, and 18 may include processors, electronic devices, hardware devices, and mines; Electronic components, logic circuits, memory, software codes, firmware codes, etc., or any combination thereof. 45 201132093

圖19圖示基地台/eNB 110和UE 120的設計的方塊圖, 該基地台/eNB 110和UE 120可以為圖i中的基地台/eNB 之一以及圖1中的UE之一。基地台11()可以配備有丁個 天線1934a到1934t,並且UE 120可以配備有R個天線 1952a到1952r ’其中大體而言τη且RU。 在基地台110,發射處理器192〇可以從資料源1912接 收為料,並且可以從控制器/處理器^ 9 4 〇接收控制資訊。 該控制資訊可以包括諸如RUM觸發、DL_RUM、rqi rs 睛求、下行鏈路許可、上行鏈路許可等等的控制訊息。處 理器1920可以處理(例如編碼和調制)該資料和控制資 訊,以分別獲得資料符號和控制符號。處理器192〇亦可 以例如針對CRS、DL_RQI_RS等等產生參考符號。發射 (丁X)多輸入多輪出(MIM0)處理器1930可以對資料符 號、控制符號及/或參考符號(若可應用)執行空間處理(例 1預編碼)’並且可以向T個調制器(MODs)1932a到I932t 提供τ個輸出符號串流。每個調制器1932可以處理各別 的輪出符號串流(例如進行〇FDM等等),以獲得輸出取 樣串流。每個調制器1932可以進一步處㉟(例如轉換為 類比、放大、濾波和升頻轉換)帛出取樣串流,以獲得下 =鏈路信號。來自調制器1932" 19功的了個下行鍵路 以可以分別經由T個天線19仏到19冰被發射。 在UE 120,天線1952a到1952r可以從基地台"ο和装 路信號,並且可以將所接收的信號: …解調器(DEMODs) 19543到1954γ。每個解調器 46 201132093 洲可以調節(例如渡波、放大、降頻轉換和數位化)各 別的接收信號,以獲得輸入取樣。每個解調器1954可以 進一步處理輸入取樣(例如進 疋仃WDM ·#),以獲得接收19 illustrates a block diagram of a design of a base station/eNB 110 and a UE 120, which may be one of the base stations/eNBs in FIG. 1 and one of the UEs in FIG. The base station 11() may be equipped with a plurality of antennas 1934a through 1934t, and the UE 120 may be equipped with R antennas 1952a through 1952r' where substantially τη and RU. At base station 110, transmit processor 192A can receive material from data source 1912 and can receive control information from controller/processor. The control information may include control messages such as RUM triggers, DL_RUM, rqi rs, downlink grants, uplink grants, and the like. The processor 1920 can process (e. g., encode and modulate) the data and control information to obtain data symbols and control symbols, respectively. The processor 192 can also generate reference symbols, for example, for CRS, DL_RQI_RS, and the like. The transmit (D) multiple input multiple rounds (MIM0) processor 1930 can perform spatial processing (example 1 precoding) on data symbols, control symbols, and/or reference symbols (if applicable) and can be directed to T modulators (MODs) 1932a through I932t provide τ output symbol streams. Each modulator 1932 can process a respective round-robin symbol stream (e.g., 〇FDM, etc.) to obtain an output sample stream. Each modulator 1932 can further extract (e.g., convert to analog, amplify, filter, and upconvert) a sample stream to obtain a lower = link signal. A downlink key from the modulator 1932" 19 can be transmitted via T antennas 19 to 19, respectively. At UE 120, antennas 1952a through 1952r can be routed from the base station " and and can receive the received signals: ... demodulator (DEMODs) 19543 through 1954 gamma. Each demodulator 46 201132093 can adjust (eg, wave, amplify, downconvert, and digitize) individual received signals to obtain input samples. Each demodulator 1954 can further process input samples (e.g., WDM · #) for reception

符號。ΜΙΜΟ偵測器i956可以你张古办加A J U從所有R個解調器1954a 到19541•獲得接收符號’若 』應用則對該等接收符號執行 ΜΙΜΟ偵測,並且提供偵 只J巧的捋唬。接收處理器1958 可以處理(例如解調和解碼)路伯…ηsymbol. ΜΙΜΟDetector i956 can send you AJU from all R demodulator 1954a to 19541• Get the received symbol 'If' application, perform ΜΙΜΟ detection on these received symbols, and provide 侦 J 巧 巧. Receive processor 1958 can process (e.g., demodulate and decode) Luber...

)斤債測到的符號,將針對UE 120的解碼資料提供給資料 . 貝τ寸價”60,並且將解碼的控制資 訊提供給控制器/處理器1 9 8 〇。 在上行鏈路上’在UE120處,菸鼾1Ω〇 ^ 赞射處理Is 1964可以從 資料源1962接收資料,並且可 立了以從控制器/處理器1980接 收控制資訊。該控制資訊可 貝了以包括諸如排程請求、 UL-RUM、RQI等的控制訊息。 ^ 蛟理益1964可以處理(例 如編碼和調制)該資料和控剎 、 資°凡’以分別獲得資料符號 和控制符號。處理器1964亦 W J以例如針對UL-RQI-RS產 生參考符號。來自發射處理 处理15 1964的符號可以由ΤΧ ΜΙΜΟ處理器1966預編碼(若可庇 了應用),進一步由調制器 1954a到1954r處理(例如 J又延仃bC-FDM、OFDM等),並 且被發射到基地台110以及可能的其他基地台。在基地台 來自UE 120和其他UE的上行鍵路信號可以由天線 1934接收,由解調器i932虛 處理,由ΜΙΜΟ偵測器1936 偵測(若可應用),並且進一舟 步由接收處理器193 8處理, 以獲得經解碼的UE 120和其# ΤΤϋ找 ^ 利再他UE發送的資料和控制資 訊。處理器IMS可以將經觫 左解碼的資料提供給資料槽1939, 47 201132093 並且將經解碼的控制資訊提供給控制器/處理器194Q。 控制器/處理器1940和控制器/處理器198〇可以分別引 導基地台11 〇和UE〗2 η瘅άΑ π仏 處的操作。基地台110處的處理 器侧及/或其他處理器和模組可以執行或者引導圖W 的程序11GG、圖13中的程序丨鳩、圖15中的程序㈣ 及/或本文描述技術的其他程序。UE 12〇處的處理器mo 及/或其他處理器和模組可以執行或者引導圖η中的程序 H00H3中的程序13〇〇、圖17中的程序17〇〇及/或本 文描述技術的其他程序1憶體1942和記憶體1982可以 分別為基地台110#〇 UE 12〇儲存資料和程式碼。排程器 洲可以排程UE在下行鏈路及/或上行鏈路上進行資料傳 輸。 本領域技藝人士將理解,可以使用各種不同的技藝和技 術中的任-種來表示資訊和信號。例如,以上在全文的描 述中可能引用的資料、指令、命令、資訊、信號、位元、 符號以及碼片可以用電壓、電流、電磁波、磁場或磁性粒 子、光場或光學粒子、或者其任何組合來表示。 技藝人士將進-步瞭解,結合本文的揭示内容所描述的 各種說明性的邏輯區塊、模組、電路以及演算法步驟可以 實施為電子硬體、電腦軟體或兩者的組合。為了清晰說明 硬體和軟體的可互換性,以上已經將各種說明性的元件、 方塊、模組、電路以及步驟大體按照其功能性進行了描 述。此功能性是實施為硬體還是軟體取決於加在整個系2 上的特定應用和設計約束。本領域技藝人士可以針對每種 48 201132093 特定應用以變化的方式來實施所描述的功能性,但是此等 實施決策不應該認為是導致偏離本案的範嘴。 結合本文的揭示内容所描述的各種說明性的邏輯區 塊、模組以及電路可以用被設計為執行本文描述的功能的 通用處理器、數位信號處理器(DSP)、特定應用積體電路 (ASIC)、現場可程式閘陣列(FpGA)或其他可程式邏輯 設備、個別閘門或電晶體邏輯、個別的硬體元件、或者其 任何組合來實施或執行。通用處理器可以是微處理器,但 疋替代地’處理器可以是任何一般的處理器、控制器、微 控制器或狀態機。處理器亦可以實施為計算設備的組合, 例如’ DSP和微處理器的組合、複數個微處理器、與贈 核心協同工作的-或多個微處理器,或者任何其他此類配 置。 —本文的揭示内容所描㈣方法或演算法的步驟可 以:硬體、處理器執行的軟體模組,或者兩者的組合來直 接實施。軟體模組可以常駐於R A M記憶體、快閃記憶體、 ROM記憶體、EPR〇M _、eepr〇m記憶體、暫存器、 硬碟、可移除磁碟 '⑶·R〇M或本領域已知的任何其他形 式的儲存媒體中。示例性儲存媒體被麵合到處理器,從而 =器=該健存媒體讀取資訊,並將資訊寫入該儲存 儲存媒體可以整合到處理器中。處理器和 :存媒體可以常駐於廳中。廳可以常駐於使用者線 2。替代地,處理器和儲存媒體可以作為 常 駐於使用者終端中。 干而节 49 201132093 在或多個不例性設計中,所描述的功能可以用硬體、 軟體、韌體或其任何έ人决 λ 仃D來實轭。右用軟體實施,則此等 功能可以料„或多個指令或代碼在電腦可讀取媒體上 被儲存或傳輸。電腦可讀取媒體包括電腦儲存媒體和通訊 媒體兩者,通訊媒體包括促進電腦程式從一個位置到另— 個位置的傳送的任何媒體。儲存媒體可以是通用電腦或專 用電腦可以存取的任何可用媒體。舉例而言(但並非限 制),此類電腦可讀取媒體可以包# ram、r〇m、 PROM CD-R〇m或者其他光碟儲存、磁碟儲存或其他 磁性儲存設備、或者可以用㈣帶或儲存指令或資料結構 形式的所要的程式碼構件並且可以由通用電腦或專用電 腦或者通用處理器或專用冑理器存取的任何其他媒體。此 外,任何連接皆可以被適當地稱作電腦可讀取媒體。例 如’若使用同軸電纜、光纖電纜、雙絞線、數位用戶線路 (DSL )或無線技術(諸如’紅外、無線電和微波)從網 站、伺服器或其他遠端源發送軟體,則此等同軸電纜、光 纖電境、雙絞線、DSL或無線技術(諸如,紅外、無線電 和微波)被包括在媒體的定義中。如本文所使用,磁碟 (disk)和光碟(disc)包括壓縮光碟(CD)、雷射光碟、 光碟、數位多功能光碟(DVD)、軟碟以及藍光光碟,其 中磁礴(disk)通常磁性地再現資料,而茏碟(disc)通常 用雷射來光學地再現資料。上述的組合亦應該被包括在電 腦可讀取媒體的範疇内。 上文對本案的描述被提供來使本領域任何技藝人 t 月t» 50 201132093 夠實現或使用本案。對本案的各種修改對本領域技藝人士 而言將是顯而易見的,並且本文所定義的一般性原理可以 在不偏離本案的精神或料的情況下應用於其他變體。因 此,本案並非意欲受限於本文描述的實例和設計,而是要 符合與本文揭示的原理和新賴特徵一致的最廣泛的範嘴。 【圖式簡單說明】 圖1圖示無線通訊網路。 圖2圖示示例性訊框結構。 圖3圖示用於下行鏈路的兩種示例性子訊框格式。 圖4圖示用於上行絲欠 _ 一 仃鏈路的不例性子訊框格式。 圖5圖示示例性交錯體結構。 ^圖示用於上行鏈路的示例性分頻多工(職)劃分。 示下行鏈路和上行鏈 輕的資料傳輸。 ,卞《減 圖9和圖10分別 不下行鏈路和上行鏈路上具有干擾 劃分。 、中對下仃鏈路進行分時多工(TDM) 圖11和圖12分別圖 下交換資料.的程序和=用於在進行跨子訊框控制的情況 圖13和圖14分 中的資料傳輪的至w、圖不用於發送針對可變數目個子訊框 圖15和圖“分二個Γ的程序和裝^ 減輕的訊息的程序和=於在PDCCH±發送針對干擾 51 201132093 圖17和圖18分別圖示用於接收在PDCCH上發送的針 對干擾減輕的訊息的程序和裝置。 圖19圖示基地台和UE的方塊圖。 【主要元件符號說明】 100 無線通訊網路/無線網路 102a 巨集細胞服務區 102b 微微細胞服務區 102c 毫微微細胞服務區 110 進化型節點B ( eNB ) 110a 巨集eNB 110b 微微eNB 110c 毫微微eNB llOd 中繼站 120 UE 120b UE 120c UE 120d UE 130 網路控制器 200 示例性訊框結構 310 子訊框格式 320 子訊框格式 400 示例性子訊框格式 410a 資源區塊 52 201132093 410b 二欠 貝 420a 資 420b 資 500 示 610 控 612 資 620 控 622 資 630 控 632 資 700 方 800 方 900 方 1000 方 1100 程 1112 方 1114 方 1116 方 1200 裝 1212 模 1214 模 1216 模 1300 程 1312 方 源區塊 源區塊 源區塊 例性交錯體結構 制區 料區 制區 料區 制區 料區 案 案 案 案 序 塊 塊 塊 置 組 組 組 序 塊 53 201132093 13 14 方塊 1400 裝置 1412 模組 1414 模組 1500 程序 15 12 方塊 1514 方塊 1600 裝置 1612 模組 1614 模組 1700 程序 1712 方塊 1714 方塊 1800 裝置 1812 模組 1814 模組 1912 資料源 1920 發射處理器 1930 發射(TX)多輸入多輸出(ΜΙΜΟ )處理器 1932a 調制器(MOD) 1932t 調制器(MOD) 1934a 天線 1934t 天線 1936 ΜΙΜΟ偵測器 54 201132093 1938 接收處理器 1939 資料槽 1940 控制器/處理器 1942 記憶體 1944 排程器 1952a 天線 1952r 天線 1954a 解調器(DEMOD) /調制器 1954r 解調器(DEMOD) /調制器 1956 ΜΙΜΟ偵測器 1958 接收處理器 1960 資料槽 1962 資料源 1964 發射處理器 1966 ΤΧ ΜΙΜΟ處理器 1980 控制器/處理器 1982 記憶體 55The symbol measured by the debt is provided to the data of the decoding data of the UE 120. The price is "60", and the decoded control information is provided to the controller/processor 1 9 8 〇. On the uplink At UE 120, the soot 1 Ω 赞 ^ 射 I Is 1964 can receive data from the data source 1962 and can be set to receive control information from the controller/processor 1980. The control information can be included to include, for example, scheduling requests, Control messages for UL-RUM, RQI, etc. ^ 蛟理益 1964 can process (eg, encode and modulate) the data and control the brakes, and obtain the data symbols and control symbols separately. The processor 1964 also uses, for example, The UL-RQI-RS generates reference symbols. The symbols from the transmit processing process 15 1964 can be precoded by the processor 1966 (if applicable), and further processed by the modulators 1954a through 1954r (eg, J is extended to bC- FDM, OFDM, etc.), and are transmitted to the base station 110 and possibly other base stations. The uplink signal from the UE 120 and other UEs at the base station can be received by the antenna 1934, by the demodulator i932 The detection is detected by the detector 1936 (if applicable), and further processed by the receiving processor 193 8 to obtain the decoded UE 120 and its #ΤΤϋΤΤϋ^^ The processor IMS can provide the left decoded data to the data slot 1939, 47 201132093 and provide the decoded control information to the controller/processor 194Q. The controller/processor 1940 and the controller/processor 198 The operations at the base station 11 and the UE 2 η 瘅άΑ 仏 can be separately guided. The processor side and/or other processors and modules at the base station 110 can execute or guide the program 11GG of FIG. Programs in Figure 丨鸠, Program (4) in Figure 15 and/or other programs of the techniques described herein. The processor mo and/or other processors and modules at the UE 12〇 may execute or direct the program H00H3 in Figure n The program 13A, the program 17 of FIG. 17, and/or other programs 1 of the techniques described herein, and the memory 1982, may store data and code for the base station 110#〇UE 12, respectively.器洲 can schedule UE under Data transmission is performed on the link and/or uplink. Those skilled in the art will appreciate that information and signals may be represented using any of a variety of different techniques and techniques. For example, data that may be referenced above in the full text description The instructions, commands, information, signals, bits, symbols, and chips may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or optical particles, or any combination thereof. The skilled artisan will further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the disclosure herein can be implemented as an electronic hardware, a computer software, or a combination of both. To clearly illustrate the interchangeability of hardware and software, various illustrative elements, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether this functionality is implemented as hardware or software depends on the specific application and design constraints imposed on the entire system 2. Those skilled in the art can implement the described functionality in varying ways for each particular application, but such implementation decisions should not be considered as a departure from the scope of the present disclosure. The various illustrative logic blocks, modules, and circuits described in connection with the disclosure herein can be utilized with a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC) designed to perform the functions described herein. ), Field Programmable Gate Array (FpGA) or other programmable logic device, individual gate or transistor logic, individual hardware components, or any combination thereof to implement or perform. A general purpose processor may be a microprocessor, but alternatively the processor may be any general processor, controller, microcontroller or state machine. The processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, or a plurality of microprocessors in conjunction with a core, or any other such configuration. - The steps of the method or algorithm described in the disclosure of this document may be implemented directly by hardware, a software module executed by a processor, or a combination of both. The software module can be resident in RAM memory, flash memory, ROM memory, EPR〇M_, eepr〇m memory, scratchpad, hard disk, removable disk '(3)·R〇M or this Any other form of storage medium known in the art. An exemplary storage medium is surfaced to the processor such that the device reads the information and writes the information to the storage medium. The storage medium can be integrated into the processor. Processor and : The storage media can be resident in the hall. The hall can be resident on the user line 2. Alternatively, the processor and storage medium can reside in the user terminal. Dry section 49 201132093 In one or more of the alternative designs, the functions described can be conjugated with hardware, software, firmware or any of them. If the software is implemented right, these functions can be stored or transmitted on computer-readable media. Computer-readable media includes both computer storage media and communication media. The communication media includes the promotion of computers. Any medium that transfers a program from one location to another. The storage medium can be any available media that can be accessed by a general purpose computer or a dedicated computer. For example (but not limited to), such computer readable media can be packaged. # ram, r〇m, PROM CD-R〇m or other CD storage, disk storage or other magnetic storage device, or (4) with or in the form of a command or data structure, and can be used by a general purpose computer Or any other medium accessed by a special purpose computer or a general purpose processor or a dedicated processor. In addition, any connection may be appropriately referred to as a computer readable medium. For example, 'if coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL) or wireless technology (such as 'infrared, radio and microwave') from websites, servers or other remote sources Sending software, such coaxial cable, fiber optic, twisted pair, DSL, or wireless technologies (such as infrared, radio, and microwave) are included in the definition of the media. As used herein, disks and discs (disc) includes compact discs (CDs), laser discs, compact discs, digital versatile discs (DVDs), floppy discs, and Blu-ray discs. Disks usually reproduce data magnetically, while discs are usually used. The laser is used to optically reproduce the data. The above combination should also be included in the scope of computer readable media. The above description of the case is provided to enable any skilled person in the art to implement or use t t 50 201132093 Various modifications to the present invention will be obvious to those skilled in the art, and the general principles defined herein may be applied to other variants without departing from the spirit of the invention. Therefore, the present invention is not intended to be It is limited to the examples and designs described herein, but is to conform to the widest range of nozzles consistent with the principles and new features disclosed herein. [Simplified Schematic] Figure 1 A wireless communication network is shown in Figure 2. Figure 2 illustrates an exemplary frame structure. Figure 3 illustrates two exemplary subframe formats for the downlink. Figure 4 illustrates an example for an upstream wire-to-link link. Sexual frame format. Figure 5 illustrates an exemplary interlace structure. ^ illustrates an exemplary frequency division multiplexing (duplex) partition for the uplink. Shows downlink and uplink light data transmission. Subtraction Figure 9 and Figure 10 do not have interference division on the downlink and uplink respectively. Time-division multiplexing (TDM) for the middle-to-lower link, Figure 11 and Figure 12 respectively. In the case of cross-sub-frame control, the data transfer to the w in FIG. 13 and FIG. 14 is not used to transmit the program and the device for the variable number of sub-frames 15 and the figure. The procedure of the mitigated message and = in PDCCH ± transmission for interference 51 201132093 Figure 17 and Figure 18 respectively illustrate a procedure and apparatus for receiving a message for interference mitigation transmitted on the PDCCH. Figure 19 illustrates a block diagram of a base station and a UE. [Main component symbol description] 100 wireless communication network/wireless network 102a macro cell service area 102b pico cell service area 102c femto cell service area 110 evolved node B (eNB) 110a macro eNB 110b pico eNB 110c femto eNB llOd relay station 120 UE 120b UE 120c UE 120d UE 130 network controller 200 exemplary frame structure 310 subframe format 320 subframe format 400 exemplary subframe format 410a resource block 52 201132093 410b two owe 420a 420b Capital 500 610 control 612 620 control 622 630 630 control 632 capital 700 side 800 side 900 side 1000 side 1100 process 1112 side 1114 side 1116 side 1200 installed 1212 mode 1214 modulo 1216 modulo 1300 process 1312 square source block source block source Block Instance Interlaced Structure Area Area Area Area Area Area Area Case Case Block Block Set Group Block Sequence Block 53 201132093 13 14 Block 1400 Unit 1412 Module 1414 Module 1500 Procedure 15 12 Block 1514 Block 1600 Device 1612 Module 1614 Module 1700 Program 1712 Block 1714 Block 1800 Device 1812 Module 1814 Module 1912 Data Source 1920 Transmit Processor 1930 Transmit (TX) Multiple Input Multiple Output (ΜΙΜΟ) Processor 1932a Modulator (MOD) 1932t Modulator (MOD) 1934a Antenna 1934t Antenna 1936 ΜΙΜΟ Detect 54 201132093 1938 Receiver 1939 Data slot 1940 Controller/processor 1942 Memory 1944 Scheduler 1952a Antenna 1952r Antenna 1954a Demodulator (DEMOD) / Modulator 1954r Demodulator (DEMOD) / Modulator 1956 ΜΙΜΟ ΜΙΜΟ Detector 1958 Receive Processor 1960 Data Slot 1962 Data Source 1964 Transmit Processor 1966 ΤΧ ΜΙΜΟ Processor 1980 Controller/Processor 1982 Memory 55

Claims (1)

201132093 七、申請專利範圍: 1. -種用於無線通訊的方法,包括以下步驟: • 在一第一子訊框中交換控制資訊;及 訊 百 ·&於在該第-子訊框中交換的該控制資訊在一第二子 框中父換貝料’該第二子訊框距該第一子訊框一可變數 個子訊框。 2. 如哨求項1之方法,進一步包括以下步驟: 該 子 =一第三子訊框中交換針對在該第二子訊框中交換的 貝料的月疋確認/否定確認(ack/nack)回饋,該第三 Λ框距該第二子訊框一可變數目個子訊框。 基 干 個 3. 如請求項!之方法’其中該第一子訊框被分配給— 地台,並且具有降低的來自於至少一個干擾性基地台的 擾並且其中該第二子訊框可用於該基地台和該至少— 干擾性基地台。 4 ·如凊求項1之方法,進一步包括以下步驟: 來 第 決定分配給一基地台來發送控制資訊並且具有降低的 自至少一個干擾性基地台的干擾的一子訊框集,其中該 一子訊框在該子訊框集中。 5.如請求項1之方法,進一步包括以下步驟: 56 201132093 決定分配給一基地台來發送控制資訊的至少—個交錯 體’其中該至少一個交錯體中的子訊框具有降低的來自至 少一個干擾性基地台的干擾’並且其中該第一子訊框屬於 分配給該基地台的該至少一個交錯體。 6.如請求項1之方法,其中該交換控制資訊之步驟包括 以下步驟:在該第一子訊框中發送一下行鏈路許可,並且 其中該交換資料之步驟包括以下步驟:在該第二子訊框中 發送資料。 .邪印水項1之万法,其中該交換控制資訊之步驟包括 以下步驟:在該第一子訊框中接收一下行鏈路許可,並且 其中該交換資料之步驟包括以下步驟:在該第二子訊框中 接收資料。 8·如請求項}之方法,其中該交換控制資訊之步驟包括 以下步驟:在該第—子訊框中發送一上行鏈路許可,並且 其中該交換資料之步驟包括以下步驟:在該第二子訊框中 接收資料D 泉項1之方法,其中該交換控制資訊之步驟包括 立二驟:在該第-子訊框中接收一上行鏈路許可,並且 其中該交換資料之步驟包括以下步驟:在該第 發送資料。 于訊框中 57 201132093 如明求項1之方法,進一步包括以下步驟: 子Λ框中發送一訊息,以請求在該第二子訊框中 在下行鏈路上降低的干擾,該第三子訊框距該第二子訊框 一可變數目個子訊框。 士。月求項10之方法,進一步包括以下步驟: 在一第四子訊框中發送—參考信號,該第四子訊框距該第 二子訊框一可變數目個子訊框。 α如請求項i之方法,進一步包括以下步驟: 在-第三子訊框中發送一訊息,以請求在該第二子訊框中 在上订鏈路上降低的干擾,該第三子訊框距該第二子訊框 一可變數目個子訊框。 月求項1之方法’進一步包括以下步驟: =一=二子訊框中發送—訊息以請求—使用者裝備⑽ 四子訊框中發送一參考信號,該第三子訊框距該筹 四子訊框一可變數目個子訊框。 ·=如咕求項13之方法,進一步包括以下步驟: 在Sx第四子汛框中從包括該UE的複數個使用者裝備 (UEs)接收複數個參考信號;及 基於該複數個參考信號來決定該UE的接收信號品質。 58 201132093 15.如清求項】之方法 以下步驟:交換針對旗I、中該交換控制資訊之步驟包括 並且苴中卜、 ⑨個載波上的資料傳輪的-許可, 八中該父換資料之步驟包括以下步驟. 示的該複數個載波上交換.f料。 .在該許可所指 16. —種用於無線通訊的裝置,包括: 用於在-第—子訊框中交換控制資訊的構件;及 用於基於在續笛 v_ ^ . 隹该第一子訊框中交換的該控制資 r框中交換資料的構件,該第二子訊框距:第在一子:: 可變數目個子訊框。 17_如請求項16之裝置,進一步包括: ;在第二子訊框中父換針對在該第二子訊框中交換 的該資料的肯定確認/否定確認(ACK/NACK )回饋的構 件該第二子訊框距該第二子訊框一可變數目個子訊框。 18·如請求項16之裝置’進一步包括: 用於在一第三子訊框中發送一訊息以請求在該第二子訊 框中在下行鏈路上降低的干擾的構件,該第三子訊框距該 第二子訊框—可變數目個子訊框。 19.如請求項18之裝置,進一步包括: 用於在—第四子訊框中發送一參考信號的構件,該第四子 59 201132093 訊框距該第三子訊框一可變數目個子訊框。 20_如請求項16之裝置,進一步包括·· 用於在-第三子訊框中發送—訊息以請求在該第.二子訊 框中在上行鏈路上降低的干擾的構件,該第三子訊框距該 第二子訊框一可變數目個子訊框。 21. —種用於無線通訊的裝置,包括: 至少一個處理器,其被配置為:在一第一子訊框中交換控 制-貝訊,及基於在該第一子訊框中交換的該控制資訊在一 第二子訊框中交換資料,該第二子訊框距該第一子訊框一 可變數目個子訊框。 22. 如請求項21之裝置,其中該至少一個處理器被配置為 在一第二子訊框中交換針對在該第二子訊框中交換的該 資料的肯定確認/否定確認(ACK/NACK)回饋,該第三子 訊框距該第二子訊框一可變數目個子訊框。 23. 如明求項21之裝置’其中該至少一個處理器被配置為 在一第二子訊框中發送一訊息’以請求在該第二子訊框中 在下行鍵路上降低的干擾’該第三子訊框距該第二子訊框 一可變數目個子訊框。 4.如“求項23之裝置,其中該至少一個處理器被配置為 60 201132093 在一第四子訊框中發送一參考信號,該第四子訊框距該第 三子訊框一可變數目個子訊框。 25_如請求項21之裝置,其中該至少一個處理器被配置為 在一第三子訊框中發送一訊息’以請求在該第二子訊框中 在上行鏈路上降低的干擾’該第三子訊框距該第二子訊框 一可變數目個子訊框。 26. —種電腦程式產品,包括: 一電腦可讀取媒體’該電腦可讀取媒體包括: 用於使至少一個電腦在一第一子訊框中交換控制資訊的 代碼,及 用於使該至少一個電腦基於在該第一子訊框中交換的該 控制資訊在一第二子訊框中交換資料的代碼,該第二子訊 框距該第一子訊框一可變數目個子訊框。 種用於無線通訊的方法,包括以下步驟: 交換針對—使用者裝備(UE)的至少-個許可;及 在·該至少 個許· "δΓ ώί· — °寸』所4曰不的一可變數目個子訊框中交換 資料。 28.如請求項27之古、+ ^ <万法’其中該交換至少一個許可之步驟 包括以下步驟: •刀配給一基地台並且具有降低的來自至 少一個干擾性基地& 口的干擾的一子訊框中交換該至少一 61 201132093 個許可。 29. 如請求項28之方法,其中該基地台被分配所有可用子 Λ杧中的—子訊框集來發送控制資訊,並且其中該基地台 在該子讯框集中向觀測到高干擾的UE發送許可,並且不 在其餘子訊框中向觀測到高干擾的該等UE發送許可。 30. 如請求項27之方法,其中該交換至少一個許可之步驟 〇括以下步驟:向該UE發送至少一個下行鏈路許可,並 且其中該交換資料之步驟包括以下步驟:在該可變數目個 子訊框中向該UE發送資料。 31. 如請求項27之方法,其中該交換至少一個許可之步驟 匕括以下步驟:在該UE處接收至少一個下行鏈路許可, 並且其中該交換資料之步驟包括以下步驟:在該ue處在 該可變數目個子訊框中接收資料。 :,如請求項27之方法’其中該交換至少一個許可之步驟 包括以下步驟:向該UE發送至少一個上行鏈路許可,並 :其中該交換資料之步驟包括以下步驟:在該可變數目個 千Λ框中從該UE接收資料。 33.如請求項27之方法, 包括以下步驟:在該UE 其中該交換至少—個許可之步驟 處接收至少一個上行鏈路許可, 62 201132093 並且其中該交換資 個子訊框中驟包括以下步驟:在該可變數目 Y從該UE發送資料。 3 4.如請求項2 7 包括以下步驟: 該可變數目個子 之方法,其中該交換至少—個許可之步驟 向該UE發送複數個許可,一個許可針對 Λ框的每—個中的資料傳輸。 3 5 ·如請求項3 4之方法 訊框中發送的。 其中該複數個許可是在一單個子 36.如請求項34之方法 用的一子訊框的一指示 供,或者藉由該許可發 擾頻碼提供。 其中每個許可包括對該許可所應 ,該指示藉由該許可中的一欄位提 送所在的一資源或用於該許可的一 3勺7.如5月求項27之方法’其中該錢至少—個許可之步驟 、下步驟·發送針對所有該可變數目個子訊框中的資 料傳輪的一單個許可。 3 8·—種用於無線通.訊的裝置,包括·_ 用於父換針對-使用者裝備(UE )的至少一個許可的構 件;及 ^ ;在該至夕一個許可所指示的一可變數目個子訊框中 交換資料的構件。 63 201132093 摄8之裝置,其中該用於交換至少-個許可的 件=且!於在該UE處接收至少—個下行鏈路許可的構 二中該用於交換資料的構件包括用於在該仙處 在該了變數目個子訊框中接收資料的構件。 :二Γ項38之裝置,其中該用於交換至少-個許可的 :件:括用於在該UE處接收至少—個上行鏈路許可的構 目個子該用於交換資料的構件包括用於在該可變數 目個子訊框中從該UE發送資料的構件。 求項38之裝置’其中該用於交換至少-個許可的 =括用於向該UE發送複數個許可的構件,一個許可 +該可變數目個子訊框的每一個中的資料傳輸。 38之裝置,其中該用於交換至少—個許可的 料傳=發送針對所有該可變數目個子訊框中的資 傳輪的一皁個許可的構件。 種用於無線通訊的裝置,.包括: =個處理器,其被配置為:交換針對一使用者裳備 可變數的至少一個許可;及在該至少一個許可所指示的― 數目個子訊框中交換資料。 64 201132093 44. 一種電腦程式產品,包括: 一電腦可讀取媒體,該電腦可讀取媒體包括: 用於使至少一個電腦父換針對一使用者裝備(UE )的至少 •一個許可的代碼,及 - 用於使該至少一個電腦在該至少一個許可所指示的—可 變數目個子訊框中交換資料的代碼。 45. —種用於無線通訊的方法,包括以下步驟: 在一實體下行鏈路控制通道(PDCCH )上發送一訊息,以 請求降低的干擾;及 在資源上交換資料’該等資源歸因於在該PDCCH上發送 的該訊息而具有降低的干擾。 46. 如請求項45之方法,其中該發送該訊息之步驟包括以 下步驟:由一基地台在該PDCCH上發送該訊息,以請求 降低的來自至少一個干擾性基地台的干擾,並且其中該交 換資料之步驟包括以下步驟:在該等t源上向一使用者裝 備(UE)發送資料,該等資源歸因於在該PDCCH上發送 參 的該訊息而具有降低的來自該至少一個干擾性基地台的 • 干擾。 47.如請求項46之方法,進一步包括以下步驟: 在該PDCCH上向該UE發送一下行鏈路許可,其中資料是 基於該下行鏈路許可而發送給該UE的。 65 201132093 月求項45之方法’其中該發送該訊息之步驟包括以 下步驟:由-基地台在肖PDCCH上發送該訊息,以請求 降低的來自至少一個干擾性使用者裝備(ue)的干擾,該 至少-個干擾性UE與至少一個相鄰基地台通訊,並且其 中^換資料之步驟包括以下步驟:在該等資源上從- UE 接收資料’料f源歸因於在該pdcch上發送的該訊息 而具有降低的來自該至少一個干擾性UE的干擾。 49.如請求項48之方法,進一步包括以下步驟: 在該PDCCH上向該UE#送—上行鏈路許可,其中資料是 由該UE基於該上行鏈路許可而發送的。 50.如請求項45之方法,進一步包括以下步驟: 在該PDCCH上發送—第二訊息,以請求—使用者褒備 (UE )發送一參考信號; 從包括該UE的複數個UE接收複數個參考信號; 基於該複數個參考信號來估計該UE的接收信號品質;及 基於所估計的該UE的該接收信號品質來決定用於在該等 資源上交換的該資料的一調制和編碼方案。 51.如凊求項45之方法,進一步包括以下步驟: 在該PDCCH上在複數個載波的每一個上發送訊息,每個 讯息請求該訊息發送所在的一載波上降低的干擾。 66 201132093 52.如請求項45之方法,進一步包括以下步驟: 在該PDCCH上在複數個載波中的一指定載波上發送訊 息’每個訊息請求該複數個載波中的一或多個載波上降低 的干擾。 53_ —種用於無線通訊的裝置,包括: 用於在一實體下行鏈路控制通道(PDCCH)上發送一訊息 以請求降低的干擾的構件;及 用於在資源上交換資料的構件,該等資源歸因於在該 PDCCH上發送的該訊息而具有降低的干擾。 5 4.如凊求項53之裝置,其中該用於發送該訊息的構件包 括用於由一基地台在該PDCCH上發送該訊息以請求降低 的來自至夕一個干擾性基地台的干擾的構件,並且其中該 用於交換f料的構件&括用於在料㈣上向一使用者 裝備(UE )發送資料的構件,該等資源歸因於在該 上發送的該訊息而具有降低的來自該至少一個干擾性基 地台的干擾。 士哨求項53之裝置’其中該用於發送該訊息的構件包 用;由基地口在該pDCCH上發送該訊息以請求降低 的來自至少一個干擾性使用者裝備(UE)的干擾的構件, 該至少-個干擾性UE與至少一個相鄰基地台通訊,並且 67 201132093 其中該用於交換資料的構件包括用於在該.等資源上從— UE接收資料的構件,該等資源歸因於在該Pdcch上發送 的該sfL息而具有降低的來自該至少一個干擾性UE的干 擾。 56. 如請求項53之裝置,進一步包括: 用於在該PDCCH上發送一第二訊息以請求一使用者装備 (UE)發送一參考信號的構件; 用於從包括該UE的複數個UE接收複數個參考信號的構 件; 用於基於該複數個參考信號來估計該UE的接收信號品質 的構件;及 用於基於所估計的該UE的該接收信號品質來決定用於在 該等資源上交換的該資料的一調制和編碼方案的構件。 57. —種用於無線通訊的裝置,包括: 至少一個處理器,其被配置為在一實體下行鏈路控制通道 (PDCCH )上發送一訊息,以請求降低的干擾;及在資源 上交換資料’該等資源歸因於在該PDCCH上發送的該訊 息而具有降低的干擾。 5 8 · —種電腦程式產品,包括: 一電腦可讀取媒體,該電腦可讀取媒體包括: 用於使至少一個電腦在一實體下行鏈路控制通道 68 201132093 (PDCCH )上發送一訊息以請求降低的干擾的代碼;及 用於使該至少一個電腦在資源上交換資料的代碼,該等資 源歸因於在該PDCCH上發送的該訊息而具有降低的干擾。 59. —種用於無線通訊的方法,包括以下步驟: 監控訊息,該等訊息由至少一個基地台在一實體下行鏈路 控制通道(PDCCH)上發送以請求降低的干擾;及 在 > 源上父換資料’該等資源歸因於該至少一個基地台在 該PDCCH上發送的該等訊息而具有降低的干擾。 60. 如請求項59之方法’其中該交換資料之步驟包括以下 步驟:在該等資源上從一服務基地台接收資料,該等資源 具有降低的來自至少一個相鄰基地台的干擾。 61. 如請求項60之方法,進一步包括以下步驟: 接收一第一訊息’該第一訊息由一相鄰基地台在該PDCCH 上發送以請求降低的干擾;及 向該服務基地台發送一第二訊息,以轉發來自該相鄰基地 台的對降低的干擾的該請求。 62. 如請求項6〇之方法,進一步包括以下步驟: 接收一第一訊息,該第一訊息由該服務基地台在該PDCCH 上發送以請求降低的干擾;及 向該至少一個相鄰基地台發送一第二訊息,以轉發來自該 69 201132093 服務基地台的對降低的干擾的該請求。 〇·如請求項59之方法,進一步包括以下步驟: 從包括一服務基地台和至少一個相鄰基地台的複數個基 地台接收複數個參考信號; 基於該複數個參考信號來估計該服務基地台的接收信號 品質;及 ; 發送資源品質指示符(RQI)’該資源品質指示符指示該服 務基地台的該接收信號品質。 64. 如請求項59之方法,其中該交換資料之步驟包括以飞 步驟:在該等資源上向—服務基地台發送資料,該等資渴 具有降低的來自至少一個干擾性使用者裝備(叫的开 擾’該至少-個干擾性™與至少-個相鄰基地台通訊。 65. 如請求項59之方法,進一步包括以下步驟: :收至少一個訊息’該至少一個訊息由至少一個相鄰基地 台在該PDCCH上發送以請求降低的干擾; 接收-服務基地台在該PDCCH上發送以請求發射 信號的一訊息; 回應於來自該至少—個相鄰基地台的該至少一個訊 來自該服務基地台的該訊息,決定針對該等資源的一 ^ 一 發射功率位準;及 以基於該第-發射功率位準決定的一第二發射功 70 201132093 信號 來發送一參考 66.如請求項59 接收至少 之方法,進一步包括以下步驟: 的千得A個相鄰基地台在該PDCCH上發送以請求降低 的干擾的至少-個訊息;A 基於從該至 β 相鄰基地台接收的該至少一個訊息來 疋否在該等資源上發送資料。 67·如請求項59 步驟: 之方法,其中該監控訊息之步驟包括以下 個基地 在複數個載波的每— J可個載波上監控來自該至少 台的訊息。 68.如請求項59$ 士 步驟: 之方法,其中該監控訊息之步驟包括以下 疋載波上監控來自該至少 個基 在複數個載波中的—指 地台的訊息。 69. —種用於無線通訊的裝置,包括 用於監控訊息的構件,該蓉印自+ s I ^ 再干忑等訊息由至少一個基地台在一實 體下行鏈路控制通道(pDcrH、 CCH)上發送以請求降低的干 璦;及 用於在資源上交換資料的構件,該等資源歸因於該至少_ 個基地台在該PDCCH上發送的該等訊息而具有降低的干 71 201132093 擾〇 70.如請求項69之裝置,進一步包括: 用於接收一第一訊息的構件,該第一訊息由一相鄰基地台 在該PDCCH上發送以請求降低的干擾;及 用於向一服務基地台發送一第二訊息以轉發來自該相鄰 基地台的對降低的干擾的該請求的構件。 71·如請求項69之裝置,進一步包括: 用於接收至少-個訊息的構件,該至少—個訊息由至少一 個相鄰基地台在該PDCCH上發送以請求降低的干擾; 用於接收一服務基地台在該PDCCH上發送以請求發射一 參考信號的一訊息的.構件; 用於回應於來自該至少一個相鄰基地台的該至少一個訊 息和來自該服務基地台的該訊息,決定針對該等資源的一 第一發射功率位準的構件;及 用於以基於該f一發射功率位準決定的一第=發射功率 位準來發送一參考信號的構件。 72. —種用於無線通訊的裝置,包括: 至少-個處理器,其被配置m訊息,該等訊息由至 少一個基地台在一實體下行鏈路控制通道(pdcch)上發 送以請求降低的干擾;及在資源上交換資料,肖等資源歸 因於該至少-個基地台在該PDCCH上發送的該等訊息而 72 201132093 具有降低的干擾。 73· 一種電腦程式產品,包括: 一電腦可讀取媒體’該電腦可讀取媒體包括: 以 資 訊 用於使至少-個電腦監控訊息的代喝,胃等訊息由至少 個基地台在一實體下行鏈路控制通道(pDCCH)上發送 請求降低的干擾;及 用於使該至少一個電腦在資源上交換資料的代碼,該等 源歸因於該至少一個基地台在該PDCCH上發送的該等 息而具有降低的干擾。 73201132093 VII. Patent application scope: 1. A method for wireless communication, including the following steps: • exchanging control information in a first sub-frame; and in the first sub-frame The exchanged control information is changed in a second sub-frame by the parent's second sub-frame from the first sub-frame to a variable number of sub-frames. 2. The method of claim 1, further comprising the step of: exchanging a monthly confirmation/negative confirmation for the bedding exchanged in the second sub-frame (ack/nack) in the sub-a third subframe In the feedback, the third frame is a variable number of sub-frames from the second subframe. Basics 3. As requested! Method [wherein the first subframe is assigned to a platform and has reduced interference from at least one interfering base station and wherein the second subframe is available to the base station and the at least - interference Base station. 4. The method of claim 1, further comprising the steps of: determining a set of subframes assigned to a base station to transmit control information and having reduced interference from at least one interfering base station, wherein the one The sub-frame is in the sub-frame. 5. The method of claim 1, further comprising the steps of: 56 201132093 determining at least one interlace assigned to a base station to transmit control information, wherein the subframe in the at least one interlace has a reduced from at least one The interference of the interfering base station' and wherein the first subframe belongs to the at least one interlace assigned to the base station. 6. The method of claim 1, wherein the step of exchanging control information comprises the steps of: transmitting a downlink grant in the first subframe, and wherein the step of exchanging data comprises the step of: Send data in the sub-frame. The method of exchanging water items 1 wherein the step of exchanging control information comprises the steps of: receiving a downlink license in the first subframe, and wherein the step of exchanging data comprises the following steps: The second sub-frame receives the data. 8. The method of claim 1, wherein the step of exchanging control information comprises the steps of: transmitting an uplink grant in the first subframe, and wherein the step of exchanging data comprises the step of: The method of receiving the data item 1 in the subframe, wherein the step of exchanging the control information comprises: performing an initial step of: receiving an uplink grant in the first subframe, and wherein the step of exchanging data comprises the following steps : Send the information in the first. In the method of claim 1, the method of claim 1, further comprising the steps of: sending a message in the sub-frame to request interference reduced on the downlink in the second subframe, the third sub-signal The frame is a variable number of sub-frames from the second sub-frame. Shi. The method of claim 10, further comprising the steps of: transmitting a reference signal in a fourth subframe, the fourth subframe being a variable number of subframes from the second subframe. α, as in the method of claim i, further comprising the steps of: transmitting a message in the third subframe to request a reduced interference on the subscribed link in the second subframe, the third subframe A variable number of sub-frames from the second sub-frame. The method of the monthly claim 1 further includes the following steps: = one = two sub-frame transmission - message to request - user equipment (10) four sub-frames send a reference signal, the third sub-frame is from the four sub-frames The frame is a variable number of sub-frames. The method of claim 13, further comprising the steps of: receiving a plurality of reference signals from a plurality of user equipments (UEs) including the UE in a fourth sub-frame of Sx; and based on the plurality of reference signals The received signal quality of the UE is determined. 58 201132093 15. The method of clearing the item] The following steps: exchanging the information for the exchange of control information for the flag I, including the 传中中, the data transmission on the nine carriers-permission, the eight-in-a-family exchange information The steps include the following steps: exchanging the .f material on the plurality of carriers shown. The device for wireless communication referred to in the license includes: means for exchanging control information in the -th subframe, and for using the first sub-based on the re-sequence v_^. The component of the exchange data in the control box r frame exchanged in the frame, the second sub-frame distance: the first sub-:: a variable number of sub-frames. 17_ The device of claim 16, further comprising: ; in the second subframe, the parent replaces the member of the positive acknowledgment/negative acknowledgment (ACK/NACK) feedback for the material exchanged in the second subframe The second sub-frame is a variable number of sub-frames from the second sub-frame. 18. The apparatus of claim 16 further comprising: means for transmitting a message in a third subframe to request interference reduced on the downlink in the second subframe, the third subframe The frame is from the second subframe - a variable number of subframes. 19. The apparatus of claim 18, further comprising: means for transmitting a reference signal in the fourth subframe, wherein the fourth sub-key 59 201132093 is a variable number of sub-messages from the third sub-frame frame. 20_ The apparatus of claim 16, further comprising: means for transmitting a message in the third subframe to request interference reduced on the uplink in the second subframe, the third sub The frame is a variable number of sub-frames from the second sub-frame. 21. An apparatus for wireless communication, comprising: at least one processor configured to: exchange control-bein in a first subframe, and based on the exchange in the first subframe The control information exchanges data in a second subframe, and the second subframe is a variable number of subframes from the first subframe. 22. The device of claim 21, wherein the at least one processor is configured to exchange a positive acknowledgment/negative acknowledgment (ACK/NACK) for the material exchanged in the second subframe in a second subframe In response, the third sub-frame is a variable number of sub-frames from the second sub-frame. 23. The apparatus of claim 21, wherein the at least one processor is configured to send a message in a second subframe to request interference reduced on the downlink key in the second subframe The third sub-frame is a variable number of sub-frames from the second sub-frame. 4. The device of claim 23, wherein the at least one processor is configured as 60 201132093 to transmit a reference signal in a fourth subframe, the fourth subframe is variable from the third subframe The apparatus of claim 21, wherein the at least one processor is configured to send a message in a third subframe to request a lowering on the uplink in the second subframe The third sub-frame is a variable number of sub-frames from the second sub-frame. 26. A computer program product comprising: a computer readable medium 'The computer readable medium includes: And causing at least one computer to exchange control code information in a first subframe, and for causing the at least one computer to exchange the control information exchanged in the first subframe in a second subframe The code of the data, the second sub-frame is a variable number of sub-frames from the first sub-frame. The method for wireless communication includes the following steps: exchanging at least one for user equipment (UE) Licensing; and at least "δΓ ώί· - ° inch" is not a variable number of sub-frames to exchange data. 28. As requested in item 27, + ^ < Wanfa' where the exchange of at least one license step includes The following steps: • The knife is assigned to a base station and has a reduced interference from at least one of the interfering bases & the port exchanges the at least one 2011 20113093 license. 29. The method of claim 28, wherein The base station is assigned a set of subframes in all available subframes to transmit control information, and wherein the base station transmits a grant to the UE that observes high interference in the subframe group, and does not in the remaining subframes. The method of claim 27, wherein the step of exchanging at least one grant further comprises the step of: transmitting at least one downlink grant to the UE, and wherein the exchange of data The step includes the steps of: transmitting data to the UE in the variable number of subframes. 31. The method of claim 27, wherein the step of exchanging at least one license includes The following steps: receiving at least one downlink grant at the UE, and wherein the step of exchanging data includes the step of: receiving data in the variable number of subframes at the ue.: Method of requesting item 27. The step of exchanging at least one grant comprises the steps of: transmitting at least one uplink grant to the UE, and wherein the step of exchanging data comprises the step of receiving from the UE in the variable number of frames 33. The method of claim 27, comprising the steps of: receiving at least one uplink grant at a step of the UE in which the at least one license is exchanged, 62 201132093 and wherein the exchange subframe includes the following Step: Send data from the UE at the variable number Y. 3. The request item 2 7 includes the following steps: the variable number of methods, wherein the exchanging at least one license step sends a plurality of licenses to the UE, and one license transmits data for each of the frames . 3 5 · If the method of request 3 4 is sent in the message box. Wherein the plurality of licenses are provided in an individual sub-frame 36. An indication of a sub-frame for use in the method of claim 34, or provided by the grant scrambling frequency code. Each of the licenses includes a license for the license, and a resource for the license is provided by a field in the license or a method for the license. The money is at least a licensed step, the next step is to send a single license for all of the variable number of subframes. 3 8 - a device for wireless communication, comprising: - for at least one licensed component of the parent-to-user equipment (UE); and ^; one of the licenses indicated by the license A component that exchanges data in a number of sub-frames. 63 201132093 Take the device of 8th, which is used to exchange at least one licensed piece = and! The means for exchanging data at the UE receiving at least one downlink grant includes means for receiving data in the variable number of subframes. The apparatus of the second item 38, wherein the means for exchanging at least one of the licenses comprises: a configuration for receiving at least one uplink grant at the UE, the means for exchanging data includes A means for transmitting data from the UE in the variable number of subframes. The means of claim 38 wherein the means for exchanging at least one of the licenses comprises means for transmitting a plurality of grants to the UE, and a license + data transfer in each of the variable number of sub-frames. The apparatus of 38, wherein the means for exchanging at least one license = transmitting a component of a soap permit for all of the variable number of subframes. An apparatus for wireless communication, comprising: = a processor configured to: exchange at least one license for a user's inventory variable number; and in a number of subframes indicated by the at least one license Exchange information. 64 201132093 44. A computer program product comprising: a computer readable medium, the computer readable medium comprising: at least one license code for causing at least one computer parent to change to a user equipment (UE), And - a code for causing the at least one computer to exchange data in a variable number of subframes indicated by the at least one license. 45. A method for wireless communication, comprising the steps of: transmitting a message on a physical downlink control channel (PDCCH) to request reduced interference; and exchanging data on resources 'the resources are attributed to The message transmitted on the PDCCH has reduced interference. 46. The method of claim 45, wherein the step of transmitting the message comprises the step of transmitting, by the base station, the message on the PDCCH to request reduced interference from the at least one interfering base station, and wherein the exchange The step of data includes the steps of: transmitting data to a user equipment (UE) on the t-sources, the resources having reduced information from the at least one interfering base due to the transmitting the information on the PDCCH • Interference from the station. 47. The method of claim 46, further comprising the step of: transmitting a downlink grant to the UE on the PDCCH, wherein the data is transmitted to the UE based on the downlink grant. 65 201132093 The method of claim 45, wherein the step of transmitting the message comprises the step of: transmitting, by the base station, the message on the Xiao PDCCH to request a reduced interference from at least one interfering user equipment (ue), The at least one interfering UE is in communication with the at least one neighboring base station, and wherein the step of replacing the data comprises the step of: receiving data from the UE on the resources, the source of the material f is attributed to being sent on the pdcch The message has a reduced interference from the at least one interfering UE. 49. The method of claim 48, further comprising the step of: transmitting an uplink grant to the UE# on the PDCCH, wherein the data is transmitted by the UE based on the uplink grant. 50. The method of claim 45, further comprising the steps of: transmitting a second message on the PDCCH to request a user equipment (UE) to transmit a reference signal; and receiving a plurality of UEs from the plurality of UEs including the UE a reference signal; estimating a received signal quality of the UE based on the plurality of reference signals; and determining a modulation and coding scheme for the data exchanged on the resources based on the estimated received signal quality of the UE. 51. The method of claim 45, further comprising the step of: transmitting a message on each of the plurality of carriers on the PDCCH, each message requesting reduced interference on a carrier on which the message is transmitted. 66. The method of claim 45, further comprising the steps of: transmitting a message on a designated one of the plurality of carriers on the PDCCH, each message requesting a decrease in one or more of the plurality of carriers Interference. 53_A device for wireless communication, comprising: means for transmitting a message on a physical downlink control channel (PDCCH) to request reduced interference; and means for exchanging data on a resource, such The resource has reduced interference due to the message sent on the PDCCH. 5. The apparatus of claim 53, wherein the means for transmitting the message comprises means for transmitting, by the base station, the message on the PDCCH to request a reduction of interference from an interfering base station to the evening. And wherein the means for exchanging f material & includes means for transmitting material to a user equipment (UE) on the material (four), the resources having a reduced value due to the message transmitted thereon Interference from the at least one interfering base station. The device of the whistle item 53, wherein the component for transmitting the message is used; the component is sent by the base port on the pDCCH to request a reduced interference from at least one interfering user equipment (UE), The at least one interfering UE is in communication with at least one neighboring base station, and 67 201132093 wherein the means for exchanging data includes means for receiving data from the UE on the resource, etc., the resources are attributed to The sfL information transmitted on the Pdcch has reduced interference from the at least one interfering UE. 56. The apparatus of claim 53, further comprising: means for transmitting a second message on the PDCCH to request a user equipment (UE) to transmit a reference signal; for receiving from a plurality of UEs including the UE a component of a plurality of reference signals; means for estimating a received signal quality of the UE based on the plurality of reference signals; and for determining to exchange on the resources based on the estimated received signal quality of the UE A component of the modulation and coding scheme of the material. 57. An apparatus for wireless communication, comprising: at least one processor configured to transmit a message on a physical downlink control channel (PDCCH) to request reduced interference; and to exchange data on a resource 'The resources have reduced interference due to the message sent on the PDCCH. 5 8 - A computer program product comprising: a computer readable medium, the computer readable medium comprising: for causing at least one computer to send a message on a physical downlink control channel 68 201132093 (PDCCH) a code requesting reduced interference; and a code for causing the at least one computer to exchange data on the resource, the resources having reduced interference due to the message transmitted on the PDCCH. 59. A method for wireless communication, comprising the steps of: monitoring messages sent by at least one base station on a physical downlink control channel (PDCCH) to request reduced interference; and at > source The upper parent exchanges data that the resources have reduced interference due to the messages sent by the at least one base station on the PDCCH. 60. The method of claim 59 wherein the step of exchanging data comprises the step of receiving data from a serving base station on the resources, the resources having reduced interference from at least one neighboring base station. 61. The method of claim 60, further comprising the steps of: receiving a first message 'The first message is sent by a neighboring base station on the PDCCH to request reduced interference; and transmitting a first message to the serving base station Two messages to forward the request for reduced interference from the neighboring base station. 62. The method of claim 6, further comprising the steps of: receiving a first message sent by the serving base station on the PDCCH to request reduced interference; and to the at least one neighboring base station A second message is sent to forward the request for reduced interference from the 69 201132093 serving base station. The method of claim 59, further comprising the steps of: receiving a plurality of reference signals from a plurality of base stations including a serving base station and at least one neighboring base station; estimating the serving base station based on the plurality of reference signals Received signal quality; and; a Transmit Resource Quality Indicator (RQI) 'The resource quality indicator indicates the received signal quality of the serving base station. 64. The method of claim 59, wherein the step of exchanging data comprises the step of flying: transmitting data to the service base station on the resources, the thirst having reduced at least one interfering user equipment (called The at least one interfering TM communicates with at least one adjacent base station. 65. The method of claim 59, further comprising the steps of: receiving at least one message 'the at least one message is by at least one neighbor The base station transmits on the PDCCH to request reduced interference; the receiving-serving base station transmits a message on the PDCCH to request to transmit a signal; and the at least one message from the at least one neighboring base station comes from the service The base station's message determines a level of transmit power for the resources; and transmits a reference 66 based on the second transmit work 70 201132093 signal determined based on the first transmit power level. Receiving at least the method, further comprising the steps of: transmitting at least one of the neighboring base stations on the PDCCH to request the reduced interference A is based on the at least one message received from the neighboring base station to the beta base station to send data on the resources. 67. The method of claim 59, wherein the step of monitoring the message comprises the following base Each of the plurality of carriers monitors a message from the at least one station. 68. The method of claim 59, wherein the step of monitoring the message comprises monitoring on the carrier from the at least one base Among the plurality of carriers, the information refers to the ground station. 69. A device for wireless communication, including a component for monitoring a message, the message from + s I ^ re-drying, etc. by at least one base station a physical downlink control channel (pDcrH, CCH) transmitting to request reduced interference; and means for exchanging data on the resource, the resources being attributed to the at least _ base station transmitting on the PDCCH The message has a reduced amount of 71 201132093. The apparatus of claim 69, further comprising: means for receiving a first message, the first message consisting of A neighboring base station transmits on the PDCCH to request reduced interference; and means for transmitting a second message to a serving base station to forward the request for reduced interference from the neighboring base station. The apparatus of claim 69, further comprising: means for receiving at least one message, the at least one message is sent by the at least one neighboring base station on the PDCCH to request reduced interference; for receiving a serving base station a means for transmitting a message requesting to transmit a reference signal on the PDCCH; for responding to the at least one message from the at least one neighboring base station and the message from the serving base station, deciding for the resources a first transmit power level component; and means for transmitting a reference signal at a first transmit power level determined based on the f-transmit power level. 72. Apparatus for wireless communication, comprising: at least one processor configured to m messages, the messages being sent by at least one base station on a physical downlink control channel (pdcch) to request a decrease Interference; and exchange of information on resources, such as Xiao and other resources due to the at least one base station transmitting the message on the PDCCH 72 201132093 has reduced interference. 73. A computer program product comprising: a computer readable medium 'The computer readable medium comprises: information for causing at least one computer to monitor the generation of messages, stomach, etc. by at least one base station in an entity Transmitting the reduced interference on the downlink control channel (pDCCH); and a code for causing the at least one computer to exchange data on the resource, the sources being due to the at least one base station transmitting on the PDCCH Interesting and reduced interference. 73
TW099118213A 2009-06-04 2010-06-04 Data transmission with cross-subframe control in a wireless network TW201132093A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US18422409P 2009-06-04 2009-06-04
US18421809P 2009-06-04 2009-06-04
US12/792,121 US9565011B2 (en) 2009-06-04 2010-06-02 Data transmission with cross-subframe control in a wireless network

Publications (1)

Publication Number Publication Date
TW201132093A true TW201132093A (en) 2011-09-16

Family

ID=43298579

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099118213A TW201132093A (en) 2009-06-04 2010-06-04 Data transmission with cross-subframe control in a wireless network

Country Status (11)

Country Link
US (2) US9565011B2 (en)
EP (2) EP2493108B1 (en)
JP (1) JP5551241B2 (en)
KR (2) KR101430016B1 (en)
CN (2) CN104702393B (en)
BR (1) BRPI1010753A2 (en)
CA (1) CA2763230A1 (en)
RU (1) RU2497288C2 (en)
TW (1) TW201132093A (en)
WO (1) WO2010141912A2 (en)
ZA (1) ZA201200035B (en)

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101472750B1 (en) 2009-04-01 2014-12-15 삼성전자주식회사 Communication system and method for mitigating interference in hierarchical cell structure
US9565011B2 (en) * 2009-06-04 2017-02-07 Qualcomm Incorporated Data transmission with cross-subframe control in a wireless network
US9106378B2 (en) 2009-06-10 2015-08-11 Qualcomm Incorporated Systems, apparatus and methods for communicating downlink information
WO2010148119A2 (en) * 2009-06-19 2010-12-23 Research In Motion Limited Downlink reference signal for type ii relay
US9014138B2 (en) * 2009-08-07 2015-04-21 Blackberry Limited System and method for a virtual carrier for multi-carrier and coordinated multi-point network operation
US9144037B2 (en) 2009-08-11 2015-09-22 Qualcomm Incorporated Interference mitigation by puncturing transmission of interfering cells
US8724563B2 (en) 2009-08-24 2014-05-13 Qualcomm Incorporated Method and apparatus that facilitates detecting system information blocks in a heterogeneous network
US9277566B2 (en) 2009-09-14 2016-03-01 Qualcomm Incorporated Cross-subframe control channel design
US8942192B2 (en) 2009-09-15 2015-01-27 Qualcomm Incorporated Methods and apparatus for subframe interlacing in heterogeneous networks
KR20110038994A (en) * 2009-10-09 2011-04-15 삼성전자주식회사 Method of receiving and transmitting multi-user control channels in wireless communication system with multiple antennas and apparatus thereof
US20120210786A1 (en) * 2009-10-30 2012-08-23 Robert Bosch Gmbh Sensor Arrangement for a Vehicle and Corresponding Method for Producing such a Sensor Arrangement
US9042840B2 (en) * 2009-11-02 2015-05-26 Qualcomm Incorporated Cross-carrier/cross-subframe indication in a multi-carrier wireless network
WO2011114729A1 (en) * 2010-03-19 2011-09-22 パナソニック株式会社 Wireless communication device and wireless communication method
US9154260B2 (en) 2010-03-26 2015-10-06 Qualcomm Incorporated Method and apparatus for reliable transmission of control information in a wireless communication network
WO2011122829A2 (en) * 2010-03-29 2011-10-06 엘지전자 주식회사 Effective method and device for transmitting control information for supporting uplink multi-antenna transmission
US9271167B2 (en) 2010-04-13 2016-02-23 Qualcomm Incorporated Determination of radio link failure with enhanced interference coordination and cancellation
US9226288B2 (en) 2010-04-13 2015-12-29 Qualcomm Incorporated Method and apparatus for supporting communications in a heterogeneous network
US9125072B2 (en) 2010-04-13 2015-09-01 Qualcomm Incorporated Heterogeneous network (HetNet) user equipment (UE) radio resource management (RRM) measurements
US9392608B2 (en) 2010-04-13 2016-07-12 Qualcomm Incorporated Resource partitioning information for enhanced interference coordination
US8737187B2 (en) 2010-04-30 2014-05-27 Qualcomm Incorporated Interference cancellation
US9425915B2 (en) 2010-04-30 2016-08-23 Qualcomm Incorporated Interference cancellation
KR101868622B1 (en) * 2010-06-17 2018-06-18 엘지전자 주식회사 Method and apparatus for transmitting and receiving r-pdcch
US8886190B2 (en) 2010-10-08 2014-11-11 Qualcomm Incorporated Method and apparatus for measuring cells in the presence of interference
WO2012106975A1 (en) * 2011-02-12 2012-08-16 中兴通讯股份有限公司 Method for transmitting acknowledgement/negative acknowledgement and terminal for implementing the same
US8638131B2 (en) 2011-02-23 2014-01-28 Qualcomm Incorporated Dynamic feedback-controlled output driver with minimum slew rate variation from process, temperature and supply
US9503285B2 (en) 2011-03-01 2016-11-22 Qualcomm Incorporated Channel estimation for reference signal interference cancelation
US9565655B2 (en) 2011-04-13 2017-02-07 Google Technology Holdings LLC Method and apparatus to detect the transmission bandwidth configuration of a channel in connection with reducing interference between channels in wireless communication systems
US20120263117A1 (en) * 2011-04-13 2012-10-18 Motorola Mobility, Inc. Method and Apparatus to Adjust the Control Region of a Subframe for Reducing Interference Between Channels in Wireless Communication Systems
US20140092811A1 (en) * 2011-05-04 2014-04-03 Lg Electronics Inc. Method for transmitting channel status information and user equipment, and method for receiving channel status information and base station
KR101989896B1 (en) * 2011-05-16 2019-06-17 엘지전자 주식회사 Method and device for terminal to execute uplink harq operation in wireless communication system
HUE057796T2 (en) * 2011-06-03 2022-06-28 Beijing Xiaomi Mobile Software Co Ltd Scheduling of downlink data resources
GB2491859C (en) * 2011-06-14 2021-02-17 Sca Ipla Holdings Inc Telecommunications method and system
GB2491858C (en) * 2011-06-14 2020-07-29 Sca Ipla Holdings Inc Telecommunications method and system
US9264208B2 (en) * 2011-07-12 2016-02-16 Qualcomm Incorporated Downlink control with control-less subframes
US8755324B2 (en) * 2011-08-03 2014-06-17 Blackberry Limited Allocating backhaul resources
CN103036657B (en) * 2011-09-30 2015-06-17 华为技术有限公司 Method and device for data transmission
CN103891205B (en) 2011-10-27 2017-12-08 瑞典爱立信有限公司 Cache in cordless communication network
US9585156B2 (en) 2011-11-14 2017-02-28 Qualcomm Incorporated Supporting different LTE-TDD configurations in neighboring regions and/or adjacent carriers
US9042287B2 (en) * 2011-11-14 2015-05-26 Qualcomm Incorporated Methods and apparatus for improving network loading
WO2013133645A1 (en) * 2012-03-07 2013-09-12 엘지전자 주식회사 Method for performing hierarchical beamforming in wireless access system and device therefor
WO2013134948A1 (en) * 2012-03-16 2013-09-19 Telefonaktiebolaget L M Ericsson (Publ) Methods for reliable reception of harq feedback information in heterogeneous deployments
WO2013143088A1 (en) * 2012-03-28 2013-10-03 Nokia Corporation Inter-cell interference detection for inter portable long term evolution local area network interference
GB2502274B (en) 2012-05-21 2017-04-19 Sony Corp Telecommunications systems and methods
GB2502275B (en) * 2012-05-21 2017-04-19 Sony Corp Telecommunications systems and methods
EP2865117B1 (en) 2012-06-21 2018-05-09 Telefonica S.A. A method for cancelling downlink interference in a lte-advanced network
US9930678B2 (en) 2012-07-19 2018-03-27 Qualcomm Incorporated Multiplexing UEs with different TDD configurations and some techniques to mitigate UE-to-UE and base station-to-base station interference
US9131517B2 (en) * 2012-08-13 2015-09-08 St-Ericsson Sa Achieving best effort performance with interfering communications system equipment
WO2014035078A1 (en) * 2012-08-31 2014-03-06 엘지전자 주식회사 Receiving method for interference cancellation, and terminal
US10194423B2 (en) * 2012-09-28 2019-01-29 Lg Electronics Inc. Uplink transmission method and uplink transmission device
WO2014051697A1 (en) * 2012-09-28 2014-04-03 Research In Motion Limited Methods and apparatus for enabling further l1 enhancements in lte heterogeneous networks
EP2903380A4 (en) * 2012-10-16 2015-08-26 Huawei Tech Co Ltd Transmission scheduling request method and apparatus, user equipment and base station
US9647818B2 (en) 2013-01-03 2017-05-09 Intel IP Corporation Apparatus and method for single-tone device discovery in wireless communication networks
WO2014110793A1 (en) * 2013-01-18 2014-07-24 华为技术有限公司 Method for sending control information, base station, and user equipment
US10841037B2 (en) * 2013-01-22 2020-11-17 Qualcomm Incorporated Managing interference in a network
CN104969493B (en) * 2013-02-06 2018-03-27 Lg电子株式会社 For be provided in a wireless communication system detect down link control information region of search method and the device for it
US10090983B2 (en) 2013-03-16 2018-10-02 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods for configuring redundant transmissions in a wireless network
WO2014147673A1 (en) 2013-03-22 2014-09-25 富士通株式会社 Radio communication system, radio communication method, receiver apparatus and transmitter apparatus
HUE041916T2 (en) 2013-03-29 2019-06-28 Intel Ip Corp Extended paging discontinuous reception (drx) cycles in wireless communication networks
EP2983307B1 (en) * 2013-04-03 2020-01-22 LG Electronics Inc. Method and apparatus for allocating resources to multiple sites which use same frequency band
US9160515B2 (en) 2013-04-04 2015-10-13 Intel IP Corporation User equipment and methods for handover enhancement using scaled time-to-trigger and time-of-stay
KR101664876B1 (en) * 2013-05-14 2016-10-12 삼성전자 주식회사 Method and apparatus of interference measurement for inter-cell interference mitigation in tdd wireless communication system
WO2014190506A1 (en) * 2013-05-29 2014-12-04 华为技术有限公司 Interference control method and device for networking of macro and micro base station at same frequency
EP3044898A1 (en) * 2013-09-13 2016-07-20 Telefonaktiebolaget LM Ericsson (publ) Reference signal allocation for flexible data lengths
US9332465B2 (en) * 2013-10-15 2016-05-03 Qualcomm Incorporated Long term evolution interference management in unlicensed bands for wi-fi operation
CN105264985B (en) 2013-12-20 2019-04-19 华为技术有限公司 Transmit method, user equipment and the base station of information
TWI521907B (en) * 2013-12-24 2016-02-11 瑞昱半導體股份有限公司 Beamformer and wireless communication method thereof
JP2015207816A (en) 2014-04-17 2015-11-19 富士通株式会社 Receiver, reception method, and wireless communication system
JP6843735B2 (en) * 2014-07-11 2021-03-17 クゥアルコム・インコーポレイテッドQualcomm Incorporated Multiplexing of peer-to-peer (P2P) and wide area network (WAN) communications
US9949285B2 (en) * 2015-01-07 2018-04-17 Futurewei Technologies, Inc. System and method for digital communications with interference avoidance
WO2016122812A1 (en) * 2015-01-26 2016-08-04 Intel IP Corporation Otdoa (observed time difference of arrival) positioning enhancement by using heterogeneous reference signals
US9906985B2 (en) * 2015-01-30 2018-02-27 Huawei Technologies Co., Ltd. Method and device for selecting uplink data
US9936519B2 (en) 2015-03-15 2018-04-03 Qualcomm Incorporated Self-contained time division duplex (TDD) subframe structure for wireless communications
US10075970B2 (en) 2015-03-15 2018-09-11 Qualcomm Incorporated Mission critical data support in self-contained time division duplex (TDD) subframe structure
CN106160974B (en) * 2015-04-08 2020-11-24 中兴通讯股份有限公司 Method and base station for realizing channel transmission
CN115333711A (en) * 2015-04-21 2022-11-11 苹果公司 User equipment and method for Physical Uplink Control Channel (PUCCH) resource allocation and communication
WO2016184798A1 (en) * 2015-05-15 2016-11-24 Telefonaktiebolaget Lm Ericsson (Publ) Communicating a transport block in a wireless network
US9992790B2 (en) 2015-07-20 2018-06-05 Qualcomm Incorporated Time division duplex (TDD) subframe structure supporting single and multiple interlace modes
CN108353420B (en) * 2015-11-05 2022-04-15 富士通株式会社 Communication device and wireless communication method
US11234218B2 (en) 2016-01-25 2022-01-25 Qualcomm Incorporated Descriptor channel designs for uplink channels in a shared radio frequency spectrum band
CN108028727A (en) * 2016-07-13 2018-05-11 北京小米移动软件有限公司 Data transmission method and device, computer program and storage medium
US20180035455A1 (en) * 2016-07-28 2018-02-01 Qualcomm Incorporated Techniques for adaptive transmissions during urllc
KR20240024308A (en) 2016-11-03 2024-02-23 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 Uplink control information transmission method, terminal device, and network device
EP3592065B1 (en) * 2017-03-20 2021-09-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting data, and terminal device
WO2019097702A1 (en) * 2017-11-17 2019-05-23 株式会社Nttドコモ User terminal and wireless communication method

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5513379A (en) 1994-05-04 1996-04-30 At&T Corp. Apparatus and method for dynamic resource allocation in wireless communication networks utilizing ordered borrowing
JP3386586B2 (en) * 1994-08-18 2003-03-17 松下電器産業株式会社 Mobile communication method
US6885694B1 (en) 2000-02-29 2005-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Correction of received signal and interference estimates
US7006466B2 (en) 2001-03-09 2006-02-28 Lucent Technologies Inc. Dynamic rate control methods and apparatus for scheduling data transmissions in a communication network
RU2207723C1 (en) 2001-10-01 2003-06-27 Военный университет связи Method of distribution of resources in electric communication system with multiple access
TW595857U (en) 2001-11-29 2004-06-21 Us 091219345
DE10244696A1 (en) * 2002-09-24 2004-04-01 Philips Intellectual Property & Standards Gmbh Method and data transmission system for the transmission of data packets between a transmitter and a receiver
US7082305B2 (en) 2002-11-22 2006-07-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for generating a neighbor cell list
US20040100921A1 (en) * 2002-11-27 2004-05-27 Farooq Ullah Khan Time-orthogonal CDMA wireless communication system
US7406314B2 (en) 2003-07-11 2008-07-29 Interdigital Technology Corporation Wireless transmit receive unit having a transition state for transitioning from monitoring to duplex connected states and method
KR101000391B1 (en) * 2003-09-01 2010-12-13 엘지전자 주식회사 method of controlling data rate over reverse link
DE60325394D1 (en) 2003-12-19 2009-01-29 Panasonic Corp HARQ protocol with synchronous repeats
US7218936B2 (en) 2004-07-07 2007-05-15 Nokia Corporation Transmitting of cell management information in a cellular communication network
US8144658B2 (en) * 2005-02-11 2012-03-27 Qualcomm Incorporated Method and apparatus for mitigating interference in a wireless communication system
US8081592B2 (en) 2005-10-26 2011-12-20 Qualcomm Incorporated Flexible medium access control (MAC) for ad hoc deployed wireless networks
CN101341768B (en) * 2005-10-26 2014-01-29 高通股份有限公司 Interference management using resource utilization masks
KR100996023B1 (en) 2005-10-31 2010-11-22 삼성전자주식회사 Apparatsu and method for transmitting/receiving of data in a multiple antenna communication system
WO2007078171A2 (en) 2006-01-05 2007-07-12 Lg Electronics Inc. Method of transmitting feedback information in a wireless communication system
KR20070098283A (en) * 2006-03-31 2007-10-05 삼성전자주식회사 Method and system for allocating resource in a communication system
JP4430052B2 (en) 2006-06-19 2010-03-10 株式会社エヌ・ティ・ティ・ドコモ Mobile communication system, user apparatus and transmission method
US8369424B2 (en) 2006-07-14 2013-02-05 Qualcomm Incorporated Frequency selective and frequency diversity transmissions in a wireless communication system
US8295243B2 (en) 2006-08-21 2012-10-23 Qualcomm Incorporated Method and apparatus for random access in an orthogonal multiple-access communication system
US20080101211A1 (en) 2006-10-31 2008-05-01 Rao Anil M Method of assigning uplink acknowledgement channels in scheduled packet data systems
JP2008172443A (en) 2007-01-10 2008-07-24 Toshiba Corp Wireless communication system, base station, and wireless communication method
GB2447883A (en) 2007-03-02 2008-10-01 Fujitsu Ltd Bandwidth allocation in multi-hop wireless communication systems
US20080232307A1 (en) 2007-03-23 2008-09-25 Zhouyue Pi Method and apparatus to allocate resources for acknowledgments in communication systems
KR100929850B1 (en) 2007-04-02 2009-12-04 삼성전자주식회사 Apparatus and Method for Eliminating Interference in Broadband Wireless Communication Systems
KR20080092222A (en) 2007-04-11 2008-10-15 엘지전자 주식회사 Data transmission method in tdd system
KR101384837B1 (en) 2007-08-22 2014-04-16 삼성전자주식회사 Method and apparatus for transmitting ack/nack information in orthogonal frequency division multiplexing access systems based on time-division duplexing
JP2009065403A (en) * 2007-09-06 2009-03-26 Nec Corp Method and device for estimating reception quality in radio communication
KR101401387B1 (en) * 2007-09-11 2014-05-30 삼성전자주식회사 Method and apparatus for controlling transmission power in mobile communication system based fractional frequency reuse
CN101400130B (en) * 2007-09-30 2010-06-16 华为技术有限公司 Method, system and device for system information block mapping
US9510360B2 (en) * 2007-10-06 2016-11-29 Alcatel-Lucent Usa Inc. Method and apparatus for a coordinated scheduling method to avoid multiplexing of control and data for power limited users in the LTE reverse link
TWI433559B (en) 2007-10-16 2014-04-01 Mediatek Inc A method and a mobile station for providing an interference measurement result, a method for configuring radio resource allocation ,a method for scheduling a mobile station, and a cellular orthogonal frequency division multiple access system
US8705506B2 (en) 2007-11-16 2014-04-22 Qualcomm Incorporated Time reservation for a dominant interference scenario in a wireless communication network
PL2241049T3 (en) 2008-01-08 2019-09-30 Hmd Global Oy Sounding reference signal arrangement
US8280375B2 (en) 2008-01-25 2012-10-02 Texas Instruments Incorporated System and method for managing radio link failures
US8281201B2 (en) 2008-02-03 2012-10-02 Lg Electronics Inc. Method and apparatus for supporting HARQ
US8274930B2 (en) * 2008-03-10 2012-09-25 Mitsubishi Electric Research Laboratories, Inc. Analog beamforming to reduce interference in WiMAX networks
US8326292B2 (en) 2008-06-03 2012-12-04 Innovative Sonic Limited Method and apparatus for determining dedicate searching space in physical downlink control channel
US8238954B2 (en) 2008-06-25 2012-08-07 Samsung Electronics Co., Ltd. Inter-cell interference avoidance for downlink transmission
US20100309876A1 (en) 2009-06-04 2010-12-09 Qualcomm Incorporated Partitioning of control resources for communication in a dominant interference scenario
US9565011B2 (en) 2009-06-04 2017-02-07 Qualcomm Incorporated Data transmission with cross-subframe control in a wireless network

Also Published As

Publication number Publication date
US20100309867A1 (en) 2010-12-09
CN104702393A (en) 2015-06-10
KR20130143133A (en) 2013-12-30
RU2011153702A (en) 2013-08-27
KR101430016B1 (en) 2014-08-14
US9565011B2 (en) 2017-02-07
US9225495B2 (en) 2015-12-29
ZA201200035B (en) 2012-09-26
CN104702393B (en) 2019-05-14
WO2010141912A3 (en) 2011-07-14
CN102449948A (en) 2012-05-09
US20120300738A1 (en) 2012-11-29
JP5551241B2 (en) 2014-07-16
JP2012529786A (en) 2012-11-22
WO2010141912A2 (en) 2010-12-09
CA2763230A1 (en) 2010-12-09
CN102449948B (en) 2015-03-11
KR20120026124A (en) 2012-03-16
KR101386177B1 (en) 2014-04-17
BRPI1010753A2 (en) 2016-03-22
EP2438704A2 (en) 2012-04-11
EP2438704B1 (en) 2013-10-16
RU2497288C2 (en) 2013-10-27
EP2493108B1 (en) 2013-10-16
EP2493108A1 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
TW201132093A (en) Data transmission with cross-subframe control in a wireless network
TWI805689B (en) Uplink and downlink preemption indications
KR102385277B1 (en) Control resource set for single-carrier waveforms
TWI822926B (en) Pruning rules for dci repetition
KR101457454B1 (en) Multiplexing of peer-to-peer (p2p) communication and wide area network (wan) communication
KR101579151B1 (en) Uplink data transmission with interference mitigation
TW201132090A (en) Partitioning of control resources for communication in a dominant interference scenario
US8953507B2 (en) Frequency and time domain range expansion
JP5814358B2 (en) Configuration of uplink grant search space and downlink grant search space in OFDM-based mobile communication system
TW201933932A (en) Signaling for slot aggregation
KR20130081296A (en) Method and apparatus for managing inter-cell interference coordination actions for time-domain partitioned cells
TW201108641A (en) Asynchronous time division duplex operation in a wireless network
CN104285405A (en) Systems and methods for reduced overhead in wireless communication systems
KR20130043115A (en) Systems and methods for enhancing uplink coverage in interference scenarios
TW201212571A (en) Modified spatial diversity schemes for coverage enhancement
CN111480370A (en) Inter-cell interference mitigation for uplink ultra-reliable low-latency communications
TWI778066B (en) Long uplink burst channel design
US10652893B2 (en) Beam determination during a reference signal transmission
JP2021511742A (en) Uplink power control configuration
JP2020536435A (en) Single packet coded channel state information (CSI) design for new radio (NR) multi-input multi-output (MIMO)
CN107005379B (en) Method, apparatus and computer readable medium for multiplexing of peer-to-peer (P2P) communications and Wide Area Network (WAN) communications
TWI760520B (en) Physical uplink control channel (pucch) sequence configuration
CN112703784A (en) Remote interference management design