TW201131894A - Methods for reducing near-field radiation and specific absorption rate (SAR) values in communications devices - Google Patents

Methods for reducing near-field radiation and specific absorption rate (SAR) values in communications devices Download PDF

Info

Publication number
TW201131894A
TW201131894A TW099116692A TW99116692A TW201131894A TW 201131894 A TW201131894 A TW 201131894A TW 099116692 A TW099116692 A TW 099116692A TW 99116692 A TW99116692 A TW 99116692A TW 201131894 A TW201131894 A TW 201131894A
Authority
TW
Taiwan
Prior art keywords
antenna
antenna structure
signals
elements
relative phase
Prior art date
Application number
TW099116692A
Other languages
Chinese (zh)
Other versions
TWI532256B (en
Inventor
Mark T Montgomery
Frank M Caimi
Tornatta, Jr
Mark W Kishler
Li Chen
Original Assignee
Skycross Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Skycross Inc filed Critical Skycross Inc
Publication of TW201131894A publication Critical patent/TW201131894A/en
Application granted granted Critical
Publication of TWI532256B publication Critical patent/TWI532256B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/245Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with means for shaping the antenna pattern, e.g. in order to protect user against rf exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • H01Q21/293Combinations of different interacting antenna units for giving a desired directional characteristic one unit or more being an array of identical aerial elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/04Multimode antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

A method is provided for reducing near-field radiation and specific absorption rate (SAR) values in a communications device. The communications device includes a multimode antenna structure transmitting and receiving electromagnetic signals and circuitry for processing signals communicated to and from the antenna structure. The antenna structure includes: a plurality of antenna ports operatively coupled to the circuitry; a plurality of antenna elements, each operatively coupled to a different one of the antenna ports; and one or more connecting elements electrically connecting the antenna elements at a location on each antenna element that is spaced apart from an antenna port coupled thereto to form a single radiating structure and such that electrical currents on one antenna element flow to a connected neighboring antenna element and generally bypass the antenna port coupled to the neighboring antenna element, the electrical currents flowing through the one antenna element and the neighboring antenna element being generally equal in magnitude, such that an antenna mode excited by one antenna port is generally electrically isolated from a mode excited by another antenna port at a given desired signal frequency range and the antenna structure generates diverse antenna patterns. The method includes adjusting the relative phase between signals fed to neighboring antenna ports of the antenna structure such that a signal fed to the one antenna port has a different phase than a signal fed to the neighboring antenna port to provide antenna pattern control and to increase gain in a selected direction toward a receive point. The method features using a transmit power lower than the transmit power used in a non-pattern control operation of the antenna structure such that the communications device obtains generally equivalent wireless link performance with the receive point using reduced transmit power compared to the non-pattern control operation, thereby reducing the specific absorption rate.

Description

201131894 六、發明說明: 【号务明所屬技名好々貝3 相關申請案之交互參考 此申請案是2010年3月30日提出申請的名稱為 「Multimode Antenna Structure」的美國專利申請案第 12/750,196號案的部分延續案,美國專利申請案第 12/750,196號案是2008年4月8日提出申請的名稱為 「Multimode Antenna Structure(核發為美國專利第 7,688,273號案)」的美國專利申請案第12/099,320號案的延 續案,而美國專利申請案第12/099,320號案是2007年6月27 曰提出申請的名稱為「Multimode Antenna Structure(核發為 美國專利第7,688,275號案)」的美國專利申請案第 11/769,565號案的部分延續案,且美國專利申請案第 11/769,565號案是基於2007年4月20日提出申請的名稱為 「Multimode Antenna Structure」的美國臨時專利申請案第 60/925,394號案及2007年5月8日提出申請的名稱亦為 「Multimode Antenna Structure」的美國臨時專利申請案第 60/916,655號案。此申請案還基於2009年5月26日提出申言青 的名稱亦為「Multimode Antenna Structure」的美國臨時專 利申請案第61/181,176號案。上述該等申請案中的每一者於 此併入參考。 本發明係有關於用以在通訊裝置中減少近場輻射及比 吸收率值之方法。 【先前技術3 4 201131894 發明背景 本發明大體與無線通訊裝置有關,且較特別的是與用 以在此等裝置中減少近場輕射及比吸收率(sar)值之方法 有關。 許多通訊裝置具有多個緊密封褒在—起(例如,之間間 隔不到四分之-波長)且可同時地在相同頻帶中操作的天 線。這些通訊裝置的常見例子包括諸如蜂巢式手機,個人 數位助理(PDA),以及無線網路裝置或個人電腦(pc)之資料 卡的可攜式通訊產品m統架構(諸如,多輸入輸出 (ΜΙΜΟ))和行動無線通訊|置的標準協々諸如無線lan的 8〇2·11η 和諸如 8〇2_1ΜΜΜΑΧ)、Η_Α 以及 1xEvd(^3g 資料通訊)需要多個天線同時操作。 【發明内容J 發明實施例之概要 根據-個或更多實施例,提供了一種用以在一通訊裝 置中減少近場輻射及比吸收率(SAR)值的方法。該通訊裝置 包括發送及接收電磁信號的一多模天線結構,以及用以處 理傳送至該天線結構之信號與來自該天線結構之信號的電 路。該天線結構包含:複數個被可操作地耦接到該電路的 天線埠;複數個天線元件,每一個天線元件被可操作地耦 接到該等天線埠之中不同的一個;及一個或更多連接元 件,分別在每一個天線元件上的一位置處電連接對應的天 線元件,每一個天線元件被耦接於此的一天線埠隔開以形 成一單一的輻射結構,且使得一個天線元件上的電流流到 201131894 一個所連接的相鄰天線元件,而通常不流到被耦接到該相 鄰天線元件的該天線埠,且流經該一個天線元件及該相鄰 天線元件的該等電流一般地在量測值上相等,因此在一給 定期望信號頻率範圍内由一個天線埠激發的一天線模式一 般地與由另外一天線埠激發的一模式被電氣隔離,且該天 線結構產生分集式天線場型。該方法包括調整被饋入到該 天線結構之相鄰天線埠之信號間的相對相位,以使被饋入 到該一個天線埠的一信號相較於被饋入到該相鄰天線槔的 一信號而具有一個不同的相位,以提供天線場型控制且增 加朝向一接收點的一選定方向上的增益。該方法的特徵在 於使用低於在該天線結構的一非場型控制操作中使用的該 傳輸功率的一傳輸功率,而使得該通訊裝置使用低於該非 場型控制操作的傳輸功率來獲取與該接收點大致相當的無 線鏈結性能,從而減少該比吸收率。 根據一個或更多另外的實施例,提供了 一種用以在一 通訊裝置中減少近場輻射及比吸收率(SAR)值的方法。該通 訊裝置包括用以發送及接收電磁信號的一天線陣列,以及 用以處理傳送至該天線陣列之信號與來自該天線陣列之信 號的電路。該天線陣列包含複數個輻射元件,每一個輻射 元件具有可操作地耦接到該電路的一天線埠。該方法包括 調整被饋入到該天線陣列之該等天線谭之信號間的相對相 位,以使被饋入到一個天線埠的一信號相較於被饋入到另 一天線埠的一信號具有一個不同的相位,以提供天線場型 控制且增加朝向一接收點的一選定方向上的增益。該方法 6 201131894 的特徵在於使用低於在該天線陣列的一非場型控制操作中 使用的該傳輸功率的一傳輸功率,而使得該通訊裝置使用 低於該非場型控制操作的傳輸功率來獲取與該接收點大致 相當的無線鏈結性能,從而減少該比吸收率。 圖式簡單說明 第1A圖說明一個有兩個平行偶極的天線結構。 第1B圖說明由第1A圖天線結構中的一個偶極激發產 生的電流。 第1C圖說明一個對應於第1A圖天線結構的模型。 第1D圖是一個說明第1C圖天線結構之散射參數的圖 解。 第1E圖是一個說明第1C圖天線結構之電流比的圖解。 第1F圖是一個說明第1C圖天線結構之增益場型的圖 解。 第1G圖是一個說明第1C圖天線結構之包絡相關性的 圖解。 第2A圖根據本發明之一個或更多實施例說明透過連接 元件被連接至兩個平行偶極的一個天線結構。 第2B圖說明一個對應於第2A圖天線結構的模型。 第2C圖是一個說明第2B圖天線結構之散射參數的圖 解。 第2D圖是一個說明第2B圖天線結構之散射參數的圖 解,其中在天線結構的兩個埠處有集總元件阻抗匹配。 第2 E圖是一個說明第2 B圖天線結構之電流比的圖解。 201131894 第2F圖是一個說明第2B圖天線結構之增益場型的圖 解。 第2G圖是一個說明第2B圖天線結構之包絡相關性的 圖解。 第3A圖根據本發明之一個或更多實施例說明透過曲折 的連接元件被連接至兩個平行偶極的一天線結構。 第3B圖是一個顯示第3A圖天線結構之散射參數的圖 解。 第3 C圖是一個說明3 A圖天線結構之電流比的圖解。 第3 D圖是一個說明3 A圖天線結構之增益場型的圖解。 第3E圖是一個說明3A圖天線結構之包絡相關性的圖 解。 第4圖根據本發明之一個或更多實施例說明一接地或 地網(counterpoise)的一個天線結構。 第5圖根據本發明之一個或更多實施例說明一個平衡 天線結構。 第6 A圖根據本發明之一個或更多實施例說明一個天線 結構。 第6B圖是一個顯示第6A圖之有關一特定偶極寬度大 小天線結構之散射參數的圖解。 第6C圖是一個顯示第6A圖之有關另一偶極寬度大小 天線結構之散射參數的圖解。 第7圖根據本發明之一個或更多實施例說明在一印刷 電路板上被製造的一天線結構。 8 201131894 第8A圖根據本發明之一個或更多實施例說明具有雙關 共振的一天線結構。 第8B圖是一個說明第8A圖天線結構之散射參數的圖 解。 第9圖根據本發明之一個或更多實施例說明一個可調 頻天線結構。 第10A和10B圖根據本發明之一個或更多實施例說明 具有沿天線元件長度指向不同位置之連接元件的天線結 構。 第10C和10D圖是分別說明第1〇A和10B圖天線結構之 散射參數的圖解。 第Π圖根據本發明之一個或更多實施例說明包括具有 開關之連接元件的一天線結構。 第12圖根據本發明之一個或更多實施例說明具有一連 接元件的一天線結構,其中一濾波器被耦接到該連接元件。 第13圖根據本發明之一個或更多實施例說明具有兩個 連接元件的一天線結構,其中一些濾波器被耦接到該等連 接元件。 第14圖根據本發明之一個或更多實施例說明具有一個 可調頻連接元件的一天線結構。 第15圖根據本發明之一個或更多實施例說明被安裝在 一PCB組合上的一天線結構。 第16圖根據本發明之—個或更多實施例說明被安裝在 一PCB組合上的另一天線結構。 201131894 第17圖根據本發明之一個或更多實施例說明可被安裝 在一 PCB組合上的一備選天線結構。 第18 A圖根據本發明之一個或更多實施例說明一個三 模式天線結構。 第18B圖是一個說明第18 A圖天線結構之增益場型的 圖解。 第19圖根據本發明之一個或更多實施例說明一天線結 構的一天線和功率放大器組合器應用。 第20A和20B圖根據本發明之一個或更多另外實施例 說明可用在,例如,一 WiMAX USB或ExpressCard/34裝置 中的一多模天線結構。 第20C圖說明一個被用來測量第20A和20B圖天線之性 能的測試組合》 第20D到20J圖說明第20A和20B圖之天線的測試測量 結果。 第21A和21B圖根據本發明之一個或更多備選實施例 說明可用在’例如,一WiMAX USB伺服器鑰(dongle)中一 多模天線結構。 第22A和22B圖根據本發明之一個或更多備選實施例 說明可用在,例如,一WiMAX USB伺服器鑰中一多模天線 結構。 第23A圖說明一個被用來測量第21A和21B圖之天線性 能的測試組合。 第2 3 B到2 3 K圖說明第21A和21B圖之天線的測試測量 10 201131894 結果。 第2 4圖是一個根據本發明之一個或更多實施例的具有 一波束控制機制之天線結構的概要方塊圖。 第25A到25G圖說明第25A圖天線的測試測量結果。 第26圖根據本發明之一個或更多實施例說明一天線結 構的增益優點作為饋電點間相位角差的函數。 第2 7 A圖是一個說明一簡單雙頻帶支線單極天線結構 的概要圖。 第27B圖說明在第27A圖天線結構中的電流分佈。 第27C圖是一個說明一支線(spurline)帶阻濾波器的概 要圖。 第27D和27E圖是說明在第27A圖天線結構中頻率抑制 的測試結果。 第2 8圖是一個說明根據本發明之一個或更多實施例的 有一帶阻槽天線結構的概要圖。 第29A圖說明一個根據本發明之一個或更多實施例的 有一帶阻槽的備選天線結構。 第29B和29C圖說明第29A圖天線結構的測試測量結 果。 第30圖說明針對1900MHz頻帶中的場型控制應用的具 有兩埠天線結構的一示範性USB伺服器鑰。201131894 VI. Invention Description: [No. Partial continuation of Case No. 750,196, US Patent Application No. 12/750,196 is the United States filed on April 8, 2008 under the name "Multimode Antenna Structure" (issued as US Patent No. 7,688,273) The continuation of the patent application No. 12/099, 320, and the US patent application No. 12/099, 320 is June 27, 2007. The name of the application is "Multimode Antenna Structure" (issued as US Patent No. 7,688,275) Part of the continuation of U.S. Patent Application Serial No. 11/769,565, and U.S. Patent Application Serial No. 11/769,565 is based on U.S. Provisional Patent entitled "Multimode Antenna Structure" filed on April 20, 2007. Application No. 60/925,394 and the name of the application filed on May 8, 2007 are also US Provisional Patent Application No. 60/916 of "Multimode Antenna Structure". Case No. 655. This application is also based on US Provisional Patent Application No. 61/181,176, which was also filed on May 26, 2009 and is also entitled "Multimode Antenna Structure". Each of the above-identified applications is hereby incorporated by reference. The present invention is directed to a method for reducing near field radiation and specific absorption values in a communication device. BACKGROUND OF THE INVENTION The present invention relates generally to wireless communication devices and, more particularly, to methods for reducing near field light shot and specific absorption rate (sar) values in such devices. Many communication devices have multiple antennas that are tightly sealed (e.g., less than four-quarters apart) and that can operate simultaneously in the same frequency band. Common examples of such communication devices include portable communication products such as cellular phones, personal digital assistants (PDAs), and data cards for wireless network devices or personal computers (PCs) (such as multi-input and output (ΜΙΜΟ )) and mobile wireless communication | standard protocols such as wireless LAN 8〇2·11η and such as 8〇2_1ΜΜΜΑΧ), Η_Α and 1xEvd (^3g data communication) require multiple antennas to operate simultaneously. SUMMARY OF THE INVENTION Overview of Embodiments of the Invention According to one or more embodiments, a method for reducing near field radiation and specific absorption rate (SAR) values in a communication device is provided. The communication device includes a multimode antenna structure for transmitting and receiving electromagnetic signals, and circuitry for processing signals transmitted to the antenna structure and signals from the antenna structure. The antenna structure includes: a plurality of antennas operatively coupled to the circuit; a plurality of antenna elements, each antenna element being operatively coupled to a different one of the antennas; and one or more a plurality of connecting elements electrically connecting the corresponding antenna elements at a position on each of the antenna elements, each antenna element being separated by an antenna 耦 coupled thereto to form a single radiating structure, and causing an antenna element The current flows to a connected adjacent antenna element of 201131894, and typically does not flow to the antenna 被 coupled to the adjacent antenna element, and flows through the one antenna element and the adjacent antenna element The currents are generally equal in magnitude, such that an antenna pattern excited by one antenna 在一 within a given desired signal frequency range is generally electrically isolated from a pattern excited by another antenna ,, and the antenna structure is generated Diversity antenna field type. The method includes adjusting a relative phase between signals fed to adjacent antennas of the antenna structure such that a signal fed to the one antenna is compared to a signal fed to the adjacent antenna The signal has a different phase to provide antenna field control and increase the gain in a selected direction toward a receiving point. The method is characterized by using a transmission power lower than the transmission power used in a non-field type control operation of the antenna structure, such that the communication device acquires the transmission power using the transmission power lower than the non-field type control operation The receiving point is roughly equivalent to the wireless link performance, thereby reducing the SAR. In accordance with one or more additional embodiments, a method for reducing near field radiation and specific absorption rate (SAR) values in a communication device is provided. The communication device includes an antenna array for transmitting and receiving electromagnetic signals, and circuitry for processing signals transmitted to the antenna array and signals from the antenna array. The antenna array includes a plurality of radiating elements, each radiating element having an antenna port operatively coupled to the circuit. The method includes adjusting a relative phase of signals fed to the antennas of the antenna array such that a signal fed to one antenna has a signal compared to a signal fed to another antenna A different phase provides antenna field control and increases the gain in a selected direction toward a receiving point. The method 6 201131894 is characterized in that a transmission power lower than the transmission power used in a non-field type control operation of the antenna array is used, so that the communication device acquires using a transmission power lower than the non-field type control operation. The wireless link performance is approximately equivalent to the receiving point, thereby reducing the specific absorption rate. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1A illustrates an antenna structure having two parallel dipoles. Figure 1B illustrates the current generated by a dipole excitation in the antenna structure of Figure 1A. Figure 1C illustrates a model corresponding to the antenna structure of Figure 1A. Fig. 1D is a diagram illustrating the scattering parameters of the antenna structure of Fig. 1C. Figure 1E is a diagram illustrating the current ratio of the antenna structure of Figure 1C. Fig. 1F is a diagram illustrating the gain pattern of the antenna structure of Fig. 1C. Figure 1G is a diagram illustrating the envelope correlation of the antenna structure of Figure 1C. Figure 2A illustrates an antenna structure connected to two parallel dipoles through a connecting element in accordance with one or more embodiments of the present invention. Figure 2B illustrates a model corresponding to the antenna structure of Figure 2A. Figure 2C is a diagram illustrating the scattering parameters of the antenna structure of Figure 2B. Figure 2D is a diagram illustrating the scattering parameters of the antenna structure of Figure 2B with lumped element impedance matching at the two turns of the antenna structure. Figure 2E is a diagram illustrating the current ratio of the antenna structure of Figure 2B. 201131894 Figure 2F is a diagram illustrating the gain field pattern of the antenna structure of Figure 2B. Figure 2G is a diagram illustrating the envelope correlation of the antenna structure of Figure 2B. Figure 3A illustrates an antenna structure connected to two parallel dipoles by meandering connecting elements in accordance with one or more embodiments of the present invention. Fig. 3B is a diagram showing the scattering parameters of the antenna structure of Fig. 3A. Figure 3C is a diagram illustrating the current ratio of the antenna structure of Figure 3A. Figure 3D is an illustration of the gain field pattern of the antenna structure of Figure 3A. Figure 3E is a diagram illustrating the envelope correlation of the antenna structure of Figure 3A. Figure 4 illustrates an antenna structure of a ground or ground network in accordance with one or more embodiments of the present invention. Figure 5 illustrates a balanced antenna structure in accordance with one or more embodiments of the present invention. Figure 6A illustrates an antenna structure in accordance with one or more embodiments of the present invention. Figure 6B is a diagram showing the scattering parameters of a particular dipole width antenna structure of Figure 6A. Figure 6C is a diagram showing the scattering parameters of the antenna structure of another dipole width in Fig. 6A. Figure 7 illustrates an antenna structure fabricated on a printed circuit board in accordance with one or more embodiments of the present invention. 8 201131894 Figure 8A illustrates an antenna structure with apex resonance in accordance with one or more embodiments of the present invention. Fig. 8B is a diagram illustrating the scattering parameters of the antenna structure of Fig. 8A. Figure 9 illustrates a tunable antenna structure in accordance with one or more embodiments of the present invention. 10A and 10B illustrate an antenna structure having connecting elements pointing in different positions along the length of the antenna element in accordance with one or more embodiments of the present invention. Figures 10C and 10D are diagrams illustrating the scattering parameters of the antenna structures of Figures 1A and 10B, respectively. The first diagram illustrates an antenna structure including a connecting element having a switch in accordance with one or more embodiments of the present invention. Figure 12 illustrates an antenna structure having a connection element to which a filter is coupled, in accordance with one or more embodiments of the present invention. Figure 13 illustrates an antenna structure having two connecting elements, some of which are coupled to the connecting elements, in accordance with one or more embodiments of the present invention. Figure 14 illustrates an antenna structure having an adjustable frequency connection element in accordance with one or more embodiments of the present invention. Figure 15 illustrates an antenna structure mounted on a PCB assembly in accordance with one or more embodiments of the present invention. Figure 16 illustrates another antenna structure mounted on a PCB assembly in accordance with one or more embodiments of the present invention. 201131894 Figure 17 illustrates an alternative antenna structure that can be mounted on a PCB assembly in accordance with one or more embodiments of the present invention. Figure 18A illustrates a three mode antenna structure in accordance with one or more embodiments of the present invention. Figure 18B is a diagram illustrating the gain pattern of the antenna structure of Figure 18A. Figure 19 illustrates an antenna and power amplifier combiner application of an antenna structure in accordance with one or more embodiments of the present invention. 20A and 20B illustrate a multimode antenna structure that can be used, for example, in a WiMAX USB or ExpressCard/34 device, in accordance with one or more additional embodiments of the present invention. Fig. 20C illustrates a test combination used to measure the performance of the antennas of Figs. 20A and 20B. Figs. 20D to 20J illustrate test results of the antennas of Figs. 20A and 20B. 21A and 21B illustrate a multimode antenna structure that can be used, for example, in a WiMAX USB server dongle, in accordance with one or more alternative embodiments of the present invention. 22A and 22B illustrate a multimode antenna structure that can be used, for example, in a WiMAX USB server key, in accordance with one or more alternative embodiments of the present invention. Figure 23A illustrates a test combination used to measure the antenna performance of Figures 21A and 21B. Figure 2 3 B to 2 3 K illustrates the test measurements of the antennas of Figures 21A and 21B. 10 201131894 Results. Figure 24 is a schematic block diagram of an antenna structure having a beam steering mechanism in accordance with one or more embodiments of the present invention. Figures 25A through 25G illustrate the test measurements of the antenna of Figure 25A. Figure 26 illustrates the gain advantage of an antenna structure as a function of the phase angle difference between the feed points, in accordance with one or more embodiments of the present invention. Figure 2 7A is a schematic diagram illustrating the structure of a simple dual-band branch monopole antenna. Figure 27B illustrates the current distribution in the antenna structure of Figure 27A. Figure 27C is a schematic diagram illustrating a spurline band stop filter. Figures 27D and 27E are test results illustrating frequency suppression in the antenna structure of Figure 27A. Figure 28 is a schematic diagram showing the structure of a band-stopped antenna in accordance with one or more embodiments of the present invention. Figure 29A illustrates an alternate antenna structure having a resisting slot in accordance with one or more embodiments of the present invention. Figures 29B and 29C illustrate test measurement results for the antenna structure of Figure 29A. Figure 30 illustrates an exemplary USB server key with a two-turn antenna configuration for field control applications in the 1900 MHz band.

第31圖說明藉由模擬第30圖之該裝置而確定的SAR 值。 【實施方式;1 11 201131894 較佳實施例之詳細說明 根據本發明的各種實施例,提供多模天線結構用於在 通訊裝置中發送和接收電磁信號。該等通訊裝置包括用於 處理通訊至和來自一天線結構之信號的電路。該天線結構 包括複數個被可操作地耦接到該電路的天線埠以及複數個 天線元件,每一天線元件被可操作地耦接一個不同的天線 埠。該天線結構也包括一個或更多電連接該等天線元件的 連接元件,以使得在一給定信號頻率範圍内由一個天線埠 激發的一天線模式一般地與由另外一天線埠激發的一模式 電氣隔離。此外,由該等埠產生的天線場型呈現具有低相 關性的定義良好的場型分集。 根據本發明之各種實施例的天線結構在這樣的通訊裝 置中特別有用,即需要多個天線緊密地封裝在一起(例如, 間隔小於四分之一波長)’包括其中一個以上的天線被同時 使用並且特別是在相同的頻帶中被同時使用的裝置。該等 天線結構於其中可以被使用之裝置的常見例子包括諸如蜂 巢式手機、PDA以及無線網路裝置或Pc資料卡的可攜式通 訊產品。該等天線結構在需要多個天線同時操作的諸如 ΜIΜ Ο的系統架構和行動無線通訊裝置的標準協定(諸如無 線 LAN 的 802·11η 和諸如 8〇2.16e(WiMAX)、HSDPA 和 lxEVDO的3G資料通訊)中也特別有用。 第1A-1G圖說明一天線結構100的操作。第丨八圖概要地 說明具有兩個平行天線’特別是長為L的平行偶極1〇2、1〇4 的天線結構100,該等偶極1〇2、1〇4被一距離(1分隔,並且 12 201131894 沒有透過任何連接元件被連接。該等偶極1G2、1G4具有一 個近似對應於L=X/2的基本共振頻率。每—偶極被連接到可 在同-頻率操作的-獨立發送/接收系統。該系統連接對兩 個天線來說可具有同一個特性阻抗z〇,在這個例子中是 50ohm。 當-個偶極正在發送-信號時,透過該偶極被發送的 信號中的一些將被直接耦接到相鄰偶極中。最大量耦合通 糸發生在個別偶極的半波共振頻率附近,並且隨著做得較 小的間隔距離d而增加。例如,對於d<a/3,耦合幅值大= 0.1或-10dB ’對於γλ/8,耦合幅值大於_5犯。 、 當一個偶極正在發送一信號時,透過該偶極被發送的 信號中的一些將被直接耦接到相鄰偶極中。最大量耦合通 吊發生在個別偶極的半波共振頻率附近,並且隨著做得較 小的間隔距離d而增加。例如,對於d<w3,耦合幅值大於 0·1或-10dB ’對於d<X/8 ’ _合幅值大於_5(^。 所期望的是不耦合(即’完全隔離)或減小天線之間的耦 合。舉例來說,如果該耦合是_1〇(18,則1〇%的傳輪功率被 損失掉,這是因為該功率量被直接地耦合到相鄰天線中。 也可旎有不利的系統效應,諸如被連接到該相鄰天線的接 收益飽和及降低靈敏度或者被連接到該相鄰天線的發射機 性能降格。在該相鄰天線上被誘導產生的電流較由—單獨 偶極所產生增益場型使增益場型失真。這種效應已知降低 了由該等偶極產生的增益場型之間的相關性。因此,儘管 耦合可提供一些場型分集,其具有如上所述的不利系統= 13 201131894Figure 31 illustrates the SAR value determined by simulating the device of Figure 30. [Embodiment] 1 11 201131894 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In accordance with various embodiments of the present invention, a multimode antenna structure is provided for transmitting and receiving electromagnetic signals in a communication device. The communication devices include circuitry for processing signals to and from an antenna structure. The antenna structure includes a plurality of antennas operatively coupled to the circuit and a plurality of antenna elements, each antenna element being operatively coupled to a different antenna. The antenna structure also includes one or more connection elements electrically coupled to the antenna elements such that an antenna pattern excited by one antenna 在一 in a given signal frequency range is generally associated with a pattern excited by another antenna 埠Electrically isolated. In addition, the antenna pattern produced by the pupils exhibits well-defined field diversity with low correlation. Antenna structures in accordance with various embodiments of the present invention are particularly useful in communication devices that require multiple antennas to be closely packed together (e.g., less than a quarter wavelength apart) 'including more than one of the antennas being used simultaneously And especially devices that are used simultaneously in the same frequency band. Common examples of devices in which such antenna structures can be used include portable communication products such as cellular handsets, PDAs, and wireless network devices or Pc data cards. These antenna structures are standard protocols such as 系统IΜ Ο system architecture and mobile wireless communication devices that require multiple antennas to operate simultaneously (such as 802.11n for wireless LAN and 3G data such as 8〇2.16e(WiMAX), HSDPA, and lxEVDO). It is also especially useful in communication). The 1A-1G diagram illustrates the operation of an antenna structure 100. The eighth diagram schematically illustrates an antenna structure 100 having two parallel antennas, particularly parallel dipoles 1〇2, 1〇4 of length L, which are separated by a distance (1) Separated, and 12 201131894 is not connected through any connecting elements. The dipoles 1G2, 1G4 have a fundamental resonant frequency approximately corresponding to L = X/2. Each dipole is connected to operate at the same frequency - Independent transmit/receive system. The system connection can have the same characteristic impedance z〇 for both antennas, in this case 50 ohms. When a dipole is transmitting a signal, the signal transmitted through the dipole Some of them will be directly coupled into adjacent dipoles. The maximum amount of coupling occurs around the half-wave resonance frequency of the individual dipoles and increases with a smaller separation distance d. For example, for d<;a/3, large coupling amplitude = 0.1 or -10dB 'For γλ/8, the coupling amplitude is greater than _5. When a dipole is transmitting a signal, some of the signals transmitted through the dipole Will be directly coupled to the adjacent dipole. Maximum amount of coupling through the sling Near the half-wave resonance frequency of the individual dipoles, and increases with a smaller separation distance d. For example, for d<w3, the coupling amplitude is greater than 0·1 or -10 dB 'for d<X/8' _ Width is greater than _5 (^. It is expected that there is no coupling (ie 'complete isolation') or reduce the coupling between the antennas. For example, if the coupling is _1 〇 (18, then 1% The transmission power is lost because the amount of power is directly coupled into the adjacent antenna. There may also be unfavorable system effects, such as being connected to the adjacent antenna, receiving saturation and reducing sensitivity or being connected. The performance of the transmitter to the adjacent antenna is degraded. The induced current on the adjacent antenna distorts the gain pattern compared to the gain pattern generated by the individual dipole. This effect is known to be reduced by the even The correlation between the gain field patterns generated by the poles. Therefore, although the coupling can provide some field type diversity, it has the disadvantageous system as described above = 13 201131894

ο 該等天線由於緊密耦合而不獨立地起作用’於是可被 認為是一個具有對應於兩個不同增益場型之兩對終端或埠 的天線系統。使用任—埠實質上涉及包括兩個偶極的整個 結構。相鄰偶極的寄生激發使分集能夠在緊密偶極間隔實 現,但疋在該偶極上被激發的電流經由源阻抗傳遞,從而 表明埠之間的互耦合。 第1C圖說明對應於第1圖中所示之天線結構1〇〇的用於 模擬的一模型偶極對。在這個例子中’該等偶極102、104 具有一個lmmxlmm的正方形橫截面及56mm的長度(L)。當 被附接到一50ohm源上時,這些大小產生一個2.45GHz的中 心共振頻率。在s玄頻率處的自由空間波長是122mm。一 10mm或近似λ/12間隔距離(d)的散射參數S11和S12的平面 圖被顯示在第1D圖中。由於對稱性和互易性,S22=S11, S12=S21。為了簡化起見,僅S11和S12被顯示和討論。在該 組配中,由S12所表示的偶極之間的耦合達到一個最大值 -3.7dB。 第1E圖顯示在埠106被激發,埠108被被動地終止的條 件下該天線結構的偶極10 4上的垂直電流對偶極1 〇 2上的垂 直電流的比(在圖中被標示為“幅值Ι2/ΙΓ)。電流比(偶極104/ 偶極102)是一最大值處的頻率對應於偶極電流之間具有 180度相位差的頻率’且僅在頻率上稍高於在第1D圖中所示 的最大耦合點處的頻率。 第1F圖顯示在埠106激發下若干頻率的方位角增益場 14 201131894 型°玄等場型不是全向均勻的,並且由於不斷改變的耦合 巾田值和相位而隨著頻率改變。由於對稱性,由埠108激發產 生的%型將是埠106激發產生場型的鏡像。因此,場型從左 到右越是不均勻,其在增益幅值上越是多變。 場型之間相關係數的計算提供場型分集的一個定量特 性描述。第1G圖顯示埠106和埠1〇8天線場型之間計算而得 的相關〖生。該相關性遠低於透過克拉克(Clark)理想偶極模 型所預測的相關性。這是由於透過互耦合所引人的場型中 的差異引起的。 第2A-2F說明根據本發明之一個或更多實施例的一個 示範性兩埠天線結構200的操作。該兩埠天線結構200包括 兩個^岔間隔的共振天線元件202、204,並且在埠206、208 之間提供低場型相關性和低耦合。第2A圖概要地說明該兩 埠天線結構200。該結構類似於在第1B圖中所示的包含該偶 極對的天線結構1〇〇 ’但是附加地在埠2〇6、2〇8的每—側在 該等偶極之間包括水平導電連接元件21〇、212。這兩個埠 206、208位於與第1圖天線結構相同的位置。當一個埠被激 發時,該組合結構與未被附接偶極對的結構呈現類似的共 振,但是耦合顯著減小,場型分集明顯增加。 一個有一 10 m m偶極間隔之天線結構2 〇 〇的示範性模型 被顯示在第2B圖中。該結構一般地具有與第1C圖中所示的 天線結構100相同的幾何結構,但是具有額外兩個電連接該 等天線元件且略高於和略低於該等埠的兩個水平連接元件 210、212。該結構在與未附接偶極相同的頻率處顯示出— 15 201131894 個強共振,但是如在第2C圖中所示有非常不同的散射參 數。耦合中有一深脫離(dr〇p-〇ut)(-20dB以下),並且輸入阻 抗中有一漂移,如由S11所指示。在這個例子中,最佳的阻 抗匹配(sii最小值)不與最小耦合相重合(S12最小值)。可使 用一匹配網路來提高輸入阻抗匹配,以及進一步達到如在 第2D圖中所示的报低的耦合。在這個例子中,一集總元件 匹配網路包含一系列電感,接著一並聯電容器被增加在每 一皡和該結構之間。 第2E圖顯示偶極元件2〇4上的電流與由埠206激發產生 的偶極元件202上的電流之間的比率(在本圖中被確認為 “幅值Ι2/ΙΓ)。該圖顯示在共振頻率以下,該電流實際上大 於偶極元件204上的電流。在共振附近,隨著頻率的增加, 偶極元件2 0 4上的電流相對於偶極元件2 〇 2上電流開始減 小。最小耦合點(在該情況下是2 44GHz)在該頻率附近發 生’其中在該處兩個偶極元件上的電流在幅值上大體相 等。在該頻率處’偶極元件204上電流的相位較偶極元件202 上電流的相位落後大約160度。 與第1C圖沒有連接元件的偶極不同,第2B圖組合天線 結構200的天線元件204上的電流沒有被迫使通過埠208的 終端阻抗。相反產生一共振模式,其中電流從天線元件204 流下,穿過連接元件210、212,然後向上流到天線元件202, 如第2A圖中顯示的箭頭所指示。(注意該電流代表一半共振 週期;在另一半共振週期中,該電流方向被反向)。該組合 結構的共振模式具有以下特徵:(1)天線元件204上的電流大 16 201131894 部分不流到埠208,從而允許埠206、208之間更高的隔離 度,以及(2)兩個天線元件202、204上電流的幅值近似相等, 其允許不相同和不相關的增益場型,如以下之進一步詳細 描述。 因為該等天線元件上電流的幅值幾乎相等,較第1C圖 之有未附接偶極的天線結構100的情況,一個方向性更強的 場型被產生(如在第2F圖中所顯示)。當該等電流相等時,使 場型在x(或者phi=0)方向上為零的條件是偶極204上電流的 相位落後於偶極202上電流的相位量π-kd(其中1ί=2π/λ,λ是 有效波長)。在這種情況下,從偶極204在phi=0方向上傳播 的磁場將與偶極202那些磁場的相位成180度,因此這兩者 的組合將在phi=0方向上具有一個零值。 在第2B圖的模範例子中,d是10mm或是一有效電長度 λ/12。在該情況下,kd等於π/6或30度,因此對於phi=0為零, Phi=180有最大增益之一方向性方位角輻射場型的條件是 偶極204上的電流落後偶極202上的電流150度。在共振的時 候’該等電流接近通過該條件(如在第2E圖中顯示),這解 釋了場型的方向性。在偶極204激發的情況下,該輻射場型 是相對第2F圖那些輻射場型的鏡像,最大增益在phi=0方 向。如在第2G圖中所示,從這兩個埠所產生的天線場型中 的差異具有一個相關的低預測包絡相關性。因此,該組合 天線結構具有兩個彼此隔離並且產生具有低相關性之增益 場型的蟑。 因此,該耦合的頻率回應取決於連接元件210、212的 17 201131894 特性’包括其阻抗和電氣長度。根據本發明的一個或更夕 實施例’於其上一所期望的隔離量可被保持的頻率和帶寬 透過合適地組配該等連接元件被控制。組配交又連接的 種方法疋改變連接元件的實體長度。這方面的一個例子透 過第3A圖的多模天線結構300被顯示,其中一曲折部八 (meander)被增加到連接元件310、3 12的交叉連接通略。〜 〇這 具有增加在這兩個天線元件302、304之間連接的電氣長户 和阻抗的一般作用。這個結構的性能特性包括如分別在第 3B、3C、3D和3E中所顯示的散射參數、電流比率、增益場 型和場型相關性。在該實施例中,改變實體長度沒有顯著 地改變該結構的共振頻率,但是S12有一個顯著的改變,較 沒有該曲折部分的結構有更大的帶寬和一較大的最小值。 因此’透過改變該等連接元件的電氣特性來最佳化和提高 隔離性能是可能的。 根據本發明之各種實施例的示範性多模天線結構可被 設計從一接地或地網402(如透過第4圖中的天線結構400所 顯示的),或者如一平衡結構(如透過第5圖中的天線結構500 所顯示的)被激發。在任何一種情況下,每一天線結構包括 兩個或更多天線元件(第4圖中的402、404,以及第5圖中的 502、504)以及一個或更多導電連接元件(第4圖中的4〇6,以 及第5圖中的506、5〇8)。為了便於說明,僅一個兩埠結構 在該範例圖中被說明。然而,根據本發明的各種實施例擴 展該結構使之包括兩個以上的埠是可能的。在每一天線元 件處提供到該天線結構或埠(第4圖中的418、412,以及第5 18 201131894 圖中的510、512)的一信缺造姓 η 連接。該等連接元件在該頻率或 在感興趣的頻率範圍内提供在 ^ .. 、^兩個天線元件之間的電連 接。儘管該天線在實體上或電氣 电虱上是一個結構,直操作可 透過將其考慮成兩個獨立的天 " ,,,.^ 綠進行解釋。對於諸如一天 線…構100的不包括連接元件 線結構,該結構的埠106 可以說成被連接到天線1〇4。纨 —,人 …、而’在諸如天線結構400的 該組合結構情況下,埠418 β +fe/1 破稱為與一天線模式相關,以 及埠412可被稱為與另—天線 ^等㈣元件被設計成在所料的齡頻率或頻率範 圍共振。當—天線元件具 ^ Rtb . 刀之一波長的一電長度時, 最低的共振發生。因此, ^ 在—非平衡組配的情況下,一 個間皁的元件設計是一個八 的模式也是 —波長單極0使用更高階 社様 "b、。例如’由四分之-波長單極形成的- 結構也呈現雙模式線 有高的隔❹。、% 倍基本頻率的—頻率處 _俄 又。此,更高階的模式可被開發來產生一多 9 Γ/二同樣地’在―平衡組配中,該等天線元件可以 然而,該天波長中饋式偶極中的互補四分之—波長元件。 的复_ W構也可以由在所期望頻率或頻率範圍共振 =型的天線元件形成。其他可能的天線元件組配包 曲折外形限::旋形線圈、寬頻帶平面外形、晶片天線、 形式。 ’以及諸如平面倒F天線(PIFA)的電感分流 根據本發明> 元件不_ 〈 一個或更多實施例的一天線結構的天線 “有相同的幾何結構或相同類型的天線元件。 19 201131894 =線元件應該在所期望的操作頻蝴率範圍各自具 根據本發明之一個或更多實施例,一 元件具有相同的幾何結構。這對於設計簡單化:說 可取的’特別是當對於縣—料的連 : 需求是相同的的時候。 “生&的 的線結構的帶寬和共振解可受料天線元件 f寬和共振頻率控制。因此,更寬頻寬的元件可被用來 Γ=第6A,和6C圖中所說明之組合結構的模式產 生一個更寬的帶宽。第6A圖說明—個包括兩個透過連接元 _、_被連接至偶極602、604的多模天線結構_。該 專偶極602、604各自具有一寬度(w)和—長度⑹並且被 -距離⑷間隔開。第6B圖說明具有以下示範性大小之結構 的散射參數,其中W=lmm、L=57.2mm以及㈣_。第π 圖說明具有以下示範性大小之結構的散射參數,立中 w,腿、L,.4mm以及d=1〇mm。如所顯示,從―到 1〇画增加W’而通常保持其他大小㈣,產生該天線結構 的一個更寬的隔離帶寬和阻抗帶寬。 同夺毛見的疋,增加該等天線元件之間的隔離度增加 了一天線結構的隔離帶寬和阻抗帶寬。 般絲,該連接元件在該組合共振結構的高電流區 域中。因此’對於-連接元件來說具有—高導電率是較佳 的0 如果匕們作為獨立天線被操作,該等崞將位於該等天 20 201131894 線元件的饋電點。匹配元件或結構可被用來使槔阻抗與所 期望的系統阻抗相匹配。 根據本發明之一個或更多實施例,多模天線結構可以 是一個被併入到,例如,如第7圖中所示之一印刷電路板中 的平面結構。在這個例子中,天線結構700包括在埠708、 710透過連接元件706被連接的天線元件7〇2、704。該天線 結構在一印刷電路板基材712上被製造。在本圖中所顯示的 該等天線元件是簡單的四分之一波長單極。然而,該等天 線元件可以是產生一等效有效電氣長度的任何幾何結構。 根據本發明之一個或更多實施例,具有雙共振頻率的 天線元件可被用來產生有雙共振頻率,從而有雙操作頻率 的—組合天線結構。第8A圖顯示一多模偶極結構800的一個 示範性模型’其中偶極天線元件802、804分別被分成兩個 不等長的指狀構造806、8〇8和810、812。該等偶極天線元 件具有與這兩個不同指狀構造長度中的每一個相關的共振 頻率,因此呈現一個雙共振。同樣地,該使用雙共振偶極 臂的多模天線結構呈現其中高隔離度(或小S 21)如在第8 B 圖中所示被獲得的兩個頻帶。 根據本發明之一個或更多實施例,提供在第9圖中所示 的—多模天線結構900,其具有形成一調頻天線的可變長度 天線元件902、904。這可透過諸如在每一天線元件9〇2、904 之—RF開關906、908的一可控裝置改變該等天線元件的有 效電氣長度實現。在這個例子中,開關可被打開(透過操作 該可控裝置)來產生一較短電氣長度(用於較高頻率操作), 21 201131894 或者被閉合來產生一較長電氣長度(用於操作的較低頻 率)。包括高隔離度特徵的該天線結構900的操作頻帶透過 調整兩個天線元件於一致被調整。該方法可以與各種改變 該等天線元件之有效電氣長度的方法一起被使用,該等方 法包括’例如,使用一可控介電材料、下載具有諸如一 MEMs 裝置、變容器或可調頻介電電容器之一可變電容器的天線 元件’以及打開或關閉寄生元件。 根據本發明之一個或更多實施例,該或該等連接元件 在該等天線元件之間提供一電連接,其中該等天線元件具 有一近似等於該等元件之間電氣距離的一電氣長度。在這 種情況下,以及當該等連接元件被附接在該等天線元件的 埠末端時,該等埠在該等天線元件之共振頻率附近的一頻 率處被隔離。該配置可在特定頻率處產生接近完美的隔離。 可選擇性地,如前所討論,連接元件的電氣長度可被 增加來擴大於其上隔離超過一特定值的帶寬。例如,天線 元件之間的筆直連接可在一特定頻率產生一個_25dB的最 小S2卜S21<-10dB的帶寬可以是ioomHz。透過增加電氣長 度可獲得一個新的回應,其中最小S21被增加到-i5dB,但 是S21 <-1 OdB的帶寬可被增加到150MHz。 根據本發明之一個或更多實施例的各種其他多模天線 結構是可能的。例如’連接元件可具有一不同的幾何結構, 以及其可以被構造包括改變該天線結構特性的組件。這些 組件可包括’例如,主動電感和電容器元件,共振器或濾 波器結構或諸如相移器的主動組件。 22 201131894 根據本發明之一個或更多實施例,連接元件沿天線元 件長度的位置可被改變來調整該天線結構的特性。於其上 該等埠被隔離的頻帶可在頻率上向上搬移,透過移動該連 接元件在該等天線元件上的附著點遠離該等埠和靠近該等 天線元件的遠端。第10A和10B圖分別說明多模天線結構 1000、1002,每一天線結構具有電連接到該等天線元件的 一連接元件。在第10A圖天線結構1000中,連接元件1004 位於該結構之中,使得連接元件1004和接地平面的上邊緣 1006之間的空隙是3mm。第10C圖顯示該結構的散射參數, 顯示出在該組配中高隔離度在頻率1.15GHz處被獲得。一並 聯電容器/串聯電感匹配網路被用來在M5GHz處提供阻抗 匹配。第10D圖顯示第10B圖的結構1002的散射參數,其中 連接元件1008和接地平面的上邊緣1010之間的空隙是 19mm。第10B圖的天線結構1002呈現在近似1.50GHz處有 高隔離度的一操作頻帶。 第11圖概要地說明根據本發明之一個或更多另外實施 例的一多模天線結構1100。該天線結構1100包括兩個或更 多連接元件1102、1104,其中的每一個電連接天線元件 1106、1108。(為了便於說明,僅兩個連接元件被顯示在本 圖中,應理解的是,使用兩個以上的連接元件也被設想。) 該等連接元件1102、1104沿該等天線元件1106、1108彼此 之間被隔開。連接元件1102、1104中的每一個包括一開關 1112、1110。峰值隔離頻率可透過控制該等開關1110、1112 被選定。例如,一頻率fl可透過閉合開關1110和打開開關 23 201131894 1112被選定。一個不同的頻率f2可透過閉合開關1112和打開 開關1110被選定。 第12圖說明根據本發明之一個或更多備選實施例的一 多模天線結構1200。該天線結構1200包括一濾波器12〇4可 操作地耦接到其的一連接元件1202。該濾波器1204可以是 一被選定的低通或帶通濾波器,因此該等連接元件在天線 元件1206、1208之間的連接僅在諸如高隔離度共振頻率之 所期望的頻帶中是有效的。在較高的頻率處,該結構將發 揮沒有透過導電連接元件耦接且之間開路的兩個獨立天線 元件的作用。 第13圖說明根據本發明之一個或更多備選實施例的一 多模天線結構1300。該天線結構1300包括分別包括濾波器 1306、1308的兩個或更多連接元件13〇2、1304。(為了便於 說明,僅兩個連接元件被顯示在本圖中,應理解的是,使 用兩個以上的連接元件也被設想。)在一個可能的實施例 中,天線結構1300在連接元件13〇4(其靠近該等天線埠)上具 有一低通濾波器1308,以及在連接元件13〇2上具有一高通 濾波器1306 ’以產生一個具有兩個高隔離度頻帶的天線結 構,即,一雙頻帶結構。 第14圖說明根據本發明之一個或更多備選實施例的一 多模天線結構1400。該天線結構14〇〇包括一個或更多具有 一個可調頻元件1406可操作地連接到其的連接元件14〇2。 該天線結構1400也包括天線元件14〇8、141〇。該可調頻元 件1406改變電連接的延遲或相位,或者改變電連接的電抗 24 201131894 性阻抗。散射參數S21/S12的幅值和頻率響應受電氣延遲或 阻抗中改變的景^響,因此一天線結構可使用該可調頻元件 1406使適應或一般最佳化用於特定頻率的隔離。 第15圖說明根據本發明之一個或更多備選實施例的一 多模天線結構15 00。該多模天線結構丨5 〇 〇可被用在,例如, 一WIMAX USB伺服器鑰中。該天線結構15〇〇可被組配用 於,例如在從2300到2700MHz的WiMAX頻帶中操作。 §玄天線結構1500包括透過一導電連接元件丨5〇6被連接 的兩個天線元件1502、1504。該等天線元件包括一些用來 增加該等元件電氣長度的槽,以獲得所期望的操作頻率範 圍。在這個例子中,該天線結構最佳地用於235〇MHz的一 中心頻率。該等槽的長度可被減小以獲得更高的中心頻 率。該天線結構被安裝在一印刷電路板組合15〇8上。一兩 組件集總元件匹配在每一天線饋電處被提供。 該天線結構1500可由,例如金屬衝壓件製造。其可由 0.2mm厚的銅合金板製成。該天線結構丨5〇〇在該結構的質 心在該連接元件上包括一拾取形體(pickup feature)l510,其 可被用在一自動化撿一放型组裝流程中。該天線結構也與 表帖重組(reflow)組合相容。 第16圖說明根據本發明之一個或更多備選實施例的一 多模天線結構1600。如第15圖的天線結構1500,該天線結 構1600可被用在,例如一 wiMAX USB伺服器鑰中。該天線 結構可被組配用於’例如在從2300到2700MHz的WiMAX頻 帶中操作。 25 201131894 該天線結構1600包括兩個天線元件1602、1604,每一 天線元件包含一曲折單極。曲折部分的長度決定了中心頻 率。在本圖中所顯示的該示範性設計最佳用於2350MHz的 一中心頻率。為了獲得更高的中心頻率,曲折部分的長度 可被減小。 一連接元件1606電連接該等天線元件。在每一天線饋 電處提供一兩組件集總元件匹配。 該天線結構可由例如銅製造’作為被安裝在一塑膠載 體1608上的一彈性印刷電路(FPC)。該天線結構可由fpc的 金屬部分產生。該塑膠載體提供機械支援和使到一PCB組 合1610的安裝更容易。可選擇性地’該天線結構可由金屬 板形成。 第17圖說明根據本發明之另外一個實施例的一多模天 線結構1700。a亥天線设计可被用於,例如usb、Express 34 和Express 54資料卡格式。在本圖中顯示的示範性天線結構 被設計來在從2_3到6GHz的頻率操作。該天線結構可,例如 由金屬板或由一塑膠載體1702上的FPC製造。 第18A圖說明根據本發明之另外一個實施例的一多模 天線結構1800。該天線結構18〇〇包含一個具有三個埠的三 模式天線。在這個結構中,三單極天線元件18〇2、18〇4、 1806使用包含連接相鄰天線元件之一導電環的一連接元件 1808連接。該等天線元件透過一常見地網或一單一空心導 電圓柱體套筒1810被平衡。該天線具有三個用於連接該天 線結構到一通訊裝置的同軸電繞1812、1814、1816 ^該等 26 201131894 同軸電纜1812、1814、1816穿過該中空的套筒1810。該天 線組合可由被包裹在一圓柱體中的一單一彈性印刷電路構 造,並且可被封裝在一圓柱形塑膠外殼中,以提供取代三 個獨立天線的一單一天線組合。在一示範性配置中,該圓 柱體的直徑是l〇mm,該天線的總長度是56mm,以在 2.45GHz在埠之間以高隔離度操作。該天線結構可與,舉例 來說諸如ΜΙΜΟ的多天線無線電系統或在2.4到2.5GHz頻帶 中操作的80.211N系統一起使用。除了埠到埠的隔離以外, 每一埠有利地產生如在第18B圖中所示的一個不同的增益 場型。然而這只是一個特定的例子,可理解的是,該結構 可按比例縮放以操作在任何所期望的頻率。也可理解的 是,先前在兩埠天線上下文中所述的用於調整、操控帶寬 和產生多頻帶結構的方法可被施加到該多埠結構。 儘管以上實施例被顯示為一個真正的圓柱體,但是使 用其他具有三個天線元件和連接元件的產生相同優點的配 置是可能的。這包括,但不限於有筆直連接因此該等連接 元件形成一三角形或另外一個多邊形幾何結構的配置。透 過類似地連接三個獨立偶極元件,而不是三個單極元件用 一常見地網來構造一個類似的結構也是可能的。同時,儘 管天線元件的對稱配置有利地從每一埠產生等效的性能, 例如,相同的帶寬、隔離度、阻抗匹配,根據應用非對稱 地或者用不相等的間隔佈置該等天線元件也是可能的。 第19圖說明根據本發明之一個或更多實施例的一多模 天線結構1900在一組合器應用中的使用。如在本圖中所 27 201131894 示,發送信號可被同時地施加到該天線結構1900的兩個天 線埠。在該配置中,該多模天線可發揮天線和功率放大器 組合器的作用。天線埠之間的高隔離度限制了兩個放大器 1902、1904之間的互動,這已知具有諸如信號失真或效率 損失的所不期望的影響。可在該等天線埠提供在1906的可 取捨阻抗匹配。 第20A和20B圖說明根據本發明之一個或更多備選實 施例的一多模天線結構2000。該天線結構2〇〇〇也可被用 在’例如一WiMAX USB或ExpressCard/34裝置中。該天線 結構可組配用於操作’例如在從23 00到6000MHz的WiMAX 頻帶。 該天線結構2000包括兩個天線元件2〇〇 1、2004,每一 天線元件包含一個寬單極。一連接元件2〇〇2電連接該等天 線元件。槽(或其他切口)2005被用來提高5000MHz頻率以上 的輸入阻抗匹配。在本圖中所顯示的該示範性設計最佳地 用來覆蓋從2300到6000 MHz的頻率。 該天線結構2000可用,例如金屬衝壓件製造。其可由 〇.2mm厚的銅合金板製成。該天線結構2〇〇〇在該連接元件 2002上大體在該結構的質心包括一拾取形體2〇〇3,其可被 用在一自動化撿一放型組裝流程中。該天線結構也與表帖 重組組合相容。該天線的饋電點2〇〇6提供到一PCB上射頻 電路的連接點,同時也發揮該天線到該PCB之一結構安裝 支撐的作用。額外的接觸點2〇〇7提供結構支撐。 第20C圖說明用來測量天線2〇〇〇之性能的一測試組合 28 201131894 2010。本圖也顯示遠場場型的座標參考。天線2〇〇〇被安裝 在代表一ExpressCard/34裝置的一3〇x88mm PCB 2011 上。 PCB 2011的接地部分被附接到一個更大的金屬板2〇12(在 本例子中具有165x254mm的大小)上來表示典型一筆記型 電腦的地網大小。PCB 2011上的測試埠2014、2016經由 5Oohm帶狀傳輸線被連接到該天線。 第20D圖顯示在該等測試埠2014、2016被測量的 VS WR。第20E圖顯示在這些測試埠之間被測量的耦合(S2丄 或S12)。該VSWR和耦合在寬頻率範圍(例如從2300到 6000MHz)内有利地低。第20F圖顯示參照該等測試埠 2014(埠1)、2016(埠2)所測量到的輻射效率。第20G圖顯示 在透過激發測試埠2014(埠1)產生的輻射場型與透過激發測 試埠2016(埠2)產生的那些輻射場型之間計算而得的相關 性。在感興趣的頻率處,輻射效率有利地高,而場型之間 的相關性有利地低。第20H圖顯示在頻率2500MHz透過激發 測試埠2014(埠1)或測試埠2016(埠2)產生的遠場增益場 型。第201和20J圖分別顯示在3500和5200MHz頻率處的同樣 場型測量。在φ=0或XZ平面中以及在θ=90或XY平面中由測 試埠2014(埠1)產生的場型是不同的,並且與測試埠2016(埠 2)的那些互補。 第21Α和21Β圖說明根據本發明之一個或更多備選實 施例的一多模天線結構2100。該天線結構2100可被用在, 例如一 WiMAX USB伺服器錄中。該天線結構可被組配用 於,例如在從2300到2400MHz的WiMAX頻帶中操作。 29 201131894 該天線結構2100包括兩個天線元件2102、2104,每一 天線元件包含一個曲折單極。曲折部分的長度決定中心頻 率。諸如,舉例來說螺旋形線圈和迴路的其他彎曲結構可 被用來提供一個所期望的電氣長度。在本圖中所顯示的該 示範性設計最佳用於一 2350MHz中心頻率。一連接元件 2106(在第21B圖中被顯示)電連接該等天線元件21〇2、 2104。在每一天線饋電處提供一兩組件集總元件匹配。 該天線結構可例如由銅製造,作為被安裝在一塑膠載 體2101上的一彈性印刷電路(FPC)21〇3。該天線結構可由 FPC 2103的金屬部分產生《該塑膠載體21〇1提供用於附接 該天線到一PCB組合(圖未示)的安裝接腳或接腳2107,以及 用於將該FPC 2103固定到該載體2101上的接腳2105。2103 的金屬部分包括暴露部分或用於使該天線與PCB上的電路 電氣接觸的墊片2108。 為了獲得更高的中心頻率,該等元件2102、2104的電 氣長度可被減小。第22A和22B圖說明一多模天線結構 22〇0,其設計最佳用於一 2600MHz中心頻率。該等元件 22〇2、2204的電氣長度較第21A和21B圖的元件2102、2104 的電氣長度短,因為在該等元件2202、2204末端的金屬化 已經被移除,元件饋電端的寬度被增加。 第23A圖使用第21A和21B圖的天線2100連同遠場場型 座標參考一起說明一測試組合23 00。第2 3 B圖顯示在測試埠 2302(埠1)、2304(埠2)所測量到的VSWR。第23C圖顯示在 該等測試埠2302(埠1)、2304(埠2)之間所測量到的耦合(S21 30 201131894 或S12)。該VSWR和耦合在感興趣的頻率處(例如從2300到 2400MHZ)有利地低。第23D圖顯示參照該等測試埠所測量 到的輻射效率。第23E圖顯示透過激發測試埠2302(埠1)產 生的輻射場型與透過激發測試埠2 3 04(埠2)產生的那些輻射 場型之間計算而得的相關性。在感興趣的頻率處,輻射效 率有利地高,而場型之間的相關性有利地低。第23F圖顯示 透過在頻率2400MHz激發測試埠2302(埠I)或測試槔 2304(埠2)產生的遠場增益場型。在φ=〇或者XZ平面中以及 在θ=90或ΧΥ平面中由測試埠2302(埠1)產生的場型是不同 的,並且與測試埠2304(埠2)的那些場型互補。 第23G圖顯示在天線2200取代天線2100的組合2300的 該等測試埠所測量到的VSWR。第23Η圖顯示在該等測試琿 之間所測量到的耦合(S21或S12)。該VSWR和耦合在感興趣 的頻率處(例如從2500到2700ΜΗΖ)有利地低《第231圖顯示 參照該等測試埠所測量到的輻射效率《第23 J圖顯示透過激 發測試埠2302(埠1)產生的輻射場型與透過激發測試埠 2304(埠2)產生的那些輻射場型之間計算而得的相關性。在 感興趣的頻率處,輻射效率有利地高,而場型之間的相關 性有利地低。第23Κ圖顯示透過在頻率2600MHz激發測試埠 2302(槔1)或測试槔2304(埠2)產生的遠場增益場型。在φ=〇 或ΧΖ平面中以及在θ=90或ΧΥ平面中由測試埠23〇2(埠丨)產 生的場型是不同的,並且與測試埠2304(埠2)的那些場型互 補。 本發明的一個或更多另外的實施例針對波束場型控制 31 201131894 技術,用於零控(null steering)和波束指向的目的。當該技 術被施加到一習知陣列天線(包含根據一波長的 一些小部 分被隔開的獨立天線元件)時,該陣列天線的每一元件被饋 入一信號,该信號是一參考信號或波長的相移變形。對於 有相等激發的非均勻線性陣列,所產生的波束場型可透過 陣列因數F描述,其取決於每一單個元件的相位以及元件間 的元件間隔d。 yV-l ^ = XexP[7^(>0rf cos^ + a)] 其中’ β=2π/λ,N=元件總數#,α=連續元件之間的相移, 以及θ=始於陣列軸的角度 透過控制相位a等於值aj ’ F的最大值可被調整到一個 不同的方向,從而控制一最大信號被廣播或接收的方向。 在習知陣列天線中的元件間間隔通常處於1/4波長的 數量級’並且天線可被具有幾乎相同極化方向地緊密耦 合。這有利地降低元件之間的耦合,因為耦合可導致若干 陣列天線設計和性能中的問題。例如,諸如場型失真和掃 描盲區的問題(參考Stutzman,Antenna Theory and Design, Wiley 1998’ 第 122-128和 135-136以及466-472頁)可能由過 度的元件間耦合以及一給定元件數可獲得的最大增益的減 小引起。 波束場型控制技術可有利地被施加到於此所描述的所 有多模天線結構’該等天線結構具有透過一個或更多連接 元件被連接且在多個饋電點之間呈現高隔離度的天線元 32 201131894 件在问卩w離度天線結構中的蜂之間的相位可被用控制天 線場型。已經發現由於減小了饋電點之間的耦合,當該天 線被用作一個簡單的波束成形陣列時,一更高的峰值增益 在給定方向中是可實現的。因此,更大的增益可在選定方 向中由一高隔離度天線結構實現,其中該高隔離度天線結 構根據本發明之各種實施例利用於其饋電端被表示的載波 信號的相位控制。 在天線根據退小於1 /4波長的間隔被分隔的手機應用 中,習知天線中的互耦合效應降低了陣列的輻射效率,因 此減小了可實現的最大增益。 根據各種貫施例透過控制被提供給一高隔離度天線之 每一饋電點的載波信號的相位,由該天線場型產生的最大 增益的方向可被控制。透過波束操控所獲得的例如3dB增益 優點是有利的,特別是在波束場型是固定的,而裝置定向 隨機地受使用者控制的可攜式裝置應用中。如圖所示,例 如在根據各種實施例說明一場型控制裝置24〇〇的第24圖的 概要方塊圖中,一相對相移α透過相移器24〇2被施加到施加 至於每一天線饋電2404、2408的RF信號。該等信號分別被 饋入到天線結構2410的天線埠。 相移器2402可包含諸如,舉例來說電控相移裝置或標 準相移網路的標準相移組件。 第25A-25G圖對於該天線兩個饋電之間的不同的相位 差α,提供由偶極天線的一個緊密間隔2_D習知陣列產生的 天線場型和由根據本發明的各種實施例之高隔離度天線的 33 201131894 一個2-D陣列產生的天線場型的比較。在第25A-25G圖中, 曲線顯示了 θ=90度的天線場型。在該圖中實線代表由根據 各種實施例的被隔離饋電單一元件天線產生的天線場型, 而虛線代表由兩個獨立單極習知天線產生的天線場型,其 中該習知天線被等於該單一元件被隔離饋電結構之寬度的 一距離分隔。因此,該習知天線和該高隔離度天線大體具 有相等的大小。 在该等圖中所顯示的所有情況中,當與這兩個獨立 習知偶極相比較時’由根據各種實施例的高隔離度天線 生的峰值增益產生_更大的增益邊限,同時提供波束場 的方位角控制。這個行為使在其中在一特定方向需要或 ^額外增益的發送或接收應財使用高隔離度天線成為 月匕該方向可透過調整策動點信號之間的相對相位被 制。這對於接近諸如,舉例來說—基地台之純點 接月b里的可彳|式|置來說特別有利。當與兩個以—類似 的早f知天線元件相比較時,該組合高隔離 天線提供更大的優點。 在第25A®巾⑽*,該根據各種實關的 用各—合偶 ,顯,大心叫差) 在第2 5 C圖中所顯示,該根據各種實施例的組合偶 34 201131894 用一被移位的方位角場型(α=6〇(饋電點之間有60度相位差) 的θ=90圖)顯示出更大的峰值增益(在卜〇)。 如在第25D圖中所顯示,該根據各種實施例的組合偶極 用一被移位的方位角場型(α=9〇(饋電點之間有9〇度相位差) 的Θ-90圖)顯示出甚至更大的峰值增益(在_〇)。 如在第25Ε圖中所顯示,該根據各種實施例的組合偶極 用一被移位的方位角場型(α=12〇(饋電點之間有120度相位 差)之更大反向波瓣(在φ=18〇)的θ=9〇圖)顯示出更大的峰值 增益(在Φ^ο)。 如在第25F圖中所顯示,該根據各種實施例的組合偶極 用,α=150(饋電點之間有150度相位差)之甚至更大反向波 瓣(在φ=180)的一被移位的方位角場型(θ=9〇圖)顯示出更大 的峰值增益(在φ=〇)。 如在第2 5 G圖中所顯示,該根據各種實施例的組合偶極 用一 a = 18 0 (饋電點之間有18 0度相位差)雙波瓣方位角場型 (θ=90圖)顯示出更大的峰值增益(在φ=〇&18〇)。 第26圖說明該根據一個或更多實施例的兩個獨立偶極 的組合高隔離度天線的理想增益優點作為一兩饋電點天線 陣列之饋電點間相角差的函數。 根據本發明的一個或更多實施例,使用透過曲折連接 元件被連接至兩個平行偶極的一天線結構進行場型控制而 獲取的增加增益可用以改進一無線鏈結的範圍或可靠性。 可選擇的是,該增加增益可允許一可攜式或其他裝置獲取 具有減少的傳輸功率的等效無線鏈結性能.例如,由場型 35 201131894 ^龍⑽⑽-平均傳輸增錢進將允許該傳輸功率 二3二’瞻持相同的鏈結性能。傳輸功率的減少在若 干方面中是有利的。首弁, τ揭式無線裝置通常需要滿足 二吸收率(SAR)管制限制,但是不在性能上做出 某些妥協 ^、以'足此限制。傳輪功率的減少可使SAR峰值相應 厂> ’而Μ要在性能上做出妥協。除此之外傳輸功率 減少使輸出Μ的負擔減輕’允許針對較低功率及較高線性 度的設計。此外,傳輸功率的減少有益於延長可攜式或其 他裝置的f池壽命且減低它們的散熱需求。 在使用相位控制而產生—所欲的遠場增益增加的同 時,相位㈣的改變也可改變近場且影響SAR值。為了實 現一 SAR㈣料少’天線遠場增益的增加應該大於任何 S辦值的增加。透過實驗,巾請人已發現實際上⑽值 隨相位的改變較遠場增益來說相對較小。 針對19〇OMHz頻帶中的場型控制應用的具有兩蜂天線 結構的紐USB舰料在第糊巾顯示出來。如第 31圖中所示,由模擬第3〇圖之結構而確定的該sar值相對 獨立於用於場独制策動難叙_㈣相位,使得 已量測SAR峰值的減少之益處為可由所有相對相位值來實 現,同時提供對該波束場型的全面的方位角控制。 本文所描述的用以減少近場輕射位準及s A R值的該等 技術較佳地與上文所描述的具有電連接料天線元件的連 接7L件的該等高隔減多模天線結構_起使用。,然而該 等技術還可職-般地與包含可操控相仙提供天線場型 36 201131894 控制且增加一選定方向上的增益的複數個輻射元件的天線 陣列一起使用。 本發明之另外的實施例針對在一給定頻率範圍内於彼 此接近操作的多頻帶天線埠之間提供被增加的高隔離度的 多模天線結構。在這些實施例中,一帶阻槽被併入在該天 線結構之該等天線元件其中的一個中,以在該槽被調整到 的頻率處提供減小的耦合。 第27A圖概要地說明一個簡單的雙頻帶支線單極天線 2700。該天線2700包括一個帶阻槽2702,其定義兩個分支 共振器2704 ' 2706。該天線被信號產生器2708驅動。根據 天線2700被驅動的頻率,各種電流分配在這兩個分 器2704、2706上被實現。 如在第27A圖中所示’定義槽2702的實體大小:宽户為 Ws ’長度為Ls。當激發頻率滿足條件Ls=l〇/4時,槽特徵變 成共振。這時電流分佈集中環繞該槽短路部分,如在第27b 圖中所示。 流經分支共振器2704 ' 2706的電流近似相等,並且,八 槽2702的兩側指向相反的方向。這使得天線結構27〇〇以與 支線帶阻濾波器2720(在第27C圖中被概要地顯示)相似的 方式表現’其將天線輸入阻抗向下轉換到明顯低於標定源 阻抗。該大的阻抗不匹配導致如在第27D和27E圖中所顯示 的一個很高的VSWR,結果產生所期望的頻率排斥。 該帶阻槽技術可被施加到有兩個(或更多)彼此接近操 作之天線元件的一天線系統,其中一個天線元件需要通過 37 201131894 具有一期望頻率的信號,而另一個不通過。在一個或更多 實施例中,這兩個天線元件中的一個包括一帶阻槽,而另 一個不包括。第28圖概要地說明—天線結構28〇〇,其包括 一第一天線元件2802、一第二天線元件28〇4,以及一連接 元件2806。該天線結構2800在天線元件2802和2804分別包 括埠2808和2810。在這個例子中,一信號產生器在埠28〇8 驅動該天線元件2802,同時一計量器被耦接到該埠281〇來 測量埠2810的電流。然而,應理解的是,其中兩個埠中的 任一個或兩個埠都可被信號產生器驅動。該天線元件28〇2 包括定義兩個分支共振器2814、2816的一帶阻槽2812。在 這個實施例中’該等分支共振器包含該天線結構的主發送 部分’而該天線元件2804包含該天線結構的一分集接收部 分。 由於在具有帶阻槽2812之天線元件2802埠處的大的不 匹配’該天線元件2802與該分集接收天線元件28〇4之門的 互耦合(實際上在該槽的共振頻率處匹配)將很小,於是將產 生相當高的隔離度。 第29Α圖是一個根據本發明之一個或更多另外實施例 的包含一個在G P S頻帶中使用該帶阻槽技術之多頻帶分$ 接收天線系統的一多模天線結構2900的透視圖。 是1575.42MHz,有20MHz的帶寬)該天線結構2900在—彈十生 膜電介質基片(dielectric substrate)2902,其中該基片在— 电 解質載體2904上形成為一個層。該天線結構2900在該天線 結構2900的主發送天線元件2908上包括一GPS帶卩且槽 38 201131894 2906。該天線結構2900也包括一分集接收天線元件2910, 以及連接該分集接收天線元件2910和該主發送天線元件 2908的一連接元件2912。一 GPS接收器(圖未示)被連接到該 分集接收天線元件2910。為了在這些頻率處一般地使來自 該主發送天線元件2908的天線耦合減小到最小,以及一般 地使分集天線輻射效率達到最大,該主天線元件2908包括 帶阻槽2906,並且靠近GPS頻帶中心被調整到一四分之一 電氣波長。該分集接收天線元件2910不包含這樣的一個帶 阻槽,但是包含一個適當地與該主天線源阻抗匹配的GPS 天線元件,因此其與GPS接收器之間一般地將有最大功率 轉換。儘管兩個天線元件2908、2910相接近地共同存在, 但是由於槽2906在主發送天線元件2908處的高VSWR在槽 2906被調整到頻率處減小了到該主天線元件源阻抗的耦 合,從而在GPS頻率處於兩個天線元件2908、2910之間提 供隔離。在GPS頻帶中介於兩個天線元件2908、2910之間 的不匹配大到足以能解耦合該等天線元件,以滿足該系統 設計的隔離需求,如在第29B和29C圖中所示。 於此根據本發明的各種實施例所描述的天線結構、天 線元件以及連接元件較佳地形成一單一整合輻射結構,因 此被饋入到任一埠的一信號激發整個天線結構以作為一個 整體輻射,而不是作為單獨的輻射結構。這樣,於此所描 述的技術提供天線埠的隔離,而不在天線饋電點使用解耦 合網路。 將理解的是,儘管本發明以上已經根據一些特定實施 39 201131894 例被描述,上述的實施例僅提供作為說明,並不限制或界 定本發明的範圍。 包括但不限於以下所述的各種其他的實施例也在該等 申請專利範圍的範圍中。例如,於此所描述的各種多模天 線結構的元件或組件可進一步被分成額外的組件或結合在 一起形成更少的用於執行相同功能的組件。 既已描述本發明的較佳實施例,應該顯然的是,可在 不脫離本發明之精神和範圍的情況下做出修改。 I:圖式簡單說明3 第1A圖說明一個有兩個平行偶極的天線結構。 第1B圖說明由第1A圖天線結構中的一個偶極激發產 生的電流。 第1C圖說明一個對應於第1A圖天線結構的模型。 第1D圖是一個說明第1C圖天線結構之散射參數的圖解。 第1E圖是一個說明第1C圖天線結構之電流比的圖解。 第1F圖是一個說明第1C圖天線結構之增益場型的圖解。 第1G圖是一個說明第1C圖天線結構之包絡相關性的 圖解。 第2 A圖根據本發明之一個或更多實施例說明透過連接 元件被連接至兩個平行偶極的一個天線結構。 第2B圖說明一個對應於第2A圖天線結構的模型。 第2C圖是一個說明第2B圖·天線結構之散射參數的圖 解。 第2D圖是一個說明第2B圖天線結構之散射參數的圖 40 201131894 解,其中在天線結構的兩個槔處有集總元件阻抗匹配。 第2E圖是一個說明第2B圖天線結構之電流比的圖解。 第2F圖是一個說明第2B圖天線結構之增益場型的圖 解。 第2G圖是一個說明第2B圖天線結構之包絡相關性的 圖解。 第3 A圖根據本發明之一個或更多實施例說明透過曲折 的連接元件被連接至兩個平行偶極的一天線結構。 第3B圖是一個顯示第3A圖天線結構之散射參數的圖 解。 第3C圖是一個說明3A圖天線結構之電流比的圖解。 第3 D圖是一個說明3 A圖天線結構之增益場型的圖解。 第3E圖是一個說明3A圖天線結構之包絡相關性的圖 解。 第4圖根據本發明之一個或更多實施例說明一接地或 地網(counterpoise)的一個天線結構。 第5圖根據本發明之一個或更多實施例說明一個平衡 天線結構。 第6A圖根據本發明之一個或更多實施例說明一個天線 結構。 第6B圖是一個顯示第6A圖之有關一特定偶極寬度大 小天線結構之散射參數的圖解。 第6C圖是一個顯示第6A圖之有關另一偶極寬度大小 天線結構之散射參數的圖解。 41 201131894 第7圖根據本發明之一個或更多實施例說明在一印刷 電路板上被製造的一天線結構。 第8A圖根據本發明之一個或更多實施例說明具有雙關 共振的一天線結構。 第8B圖是一個說明第8A圖天線結構之散射參數的圖 解。 第9圖根據本發明之一個或更多實施例說明一個可調 頻天線結構。 第10A和10B圖根據本發明之一個或更多實施例說明 具有沿天線元件長度指向不同位置之連接元件的天線結 構。 第10C和10D圖是分別說明第10A和10B圖天線結構之 散射參數的圖解。 第11圖根據本發明之一個或更多實施例說明包括具有 開關之連接元件的一天線結構。 第12圖根據本發明之一個或更多實施例說明具有一連 接元件的一天線結構,其中一滤波器被耦接到該連接元件。 第13圖根據本發明之一個或更多實施例說明具有兩個 連接元件的一天線結構,其中一些濾波器被耦接到該等連 接元件。 第14圖根據本發明之一個或更多實施例說明具有一個 可調頻連接元件的一天線結構。 第15圖根據本發明之一個或更多實施例說明被安裝在 一PCB組合上的一天線結構。 42 201131894 第16圖根據本發明之一個或更多實施例說明被安裝在 一PCB組合上的另一天線結構。 第17圖根據本發明之一個或更多實施例說明可被安裝 在一 PCB組合上的一備選天線結構。 第18A圖根據本發明之一個或更多實施例說明一個三 相:式天線結構。 第18B圖是一個說明第18A圖天線結構之增益場型的 圖解。 第19圖根據本發明之一個或更多實施例說明一天線結 構的一天線和功率放大器組合器應用。 第20A和20B圖根據本發明之一個或更多另外實施例 說明可用在,例如,一WiMAX USB或ExpressCard/34裝置 中的一多模天線結構。 第20C圖說明一個被用來測量第20A和20B圖天線之性 能的測試組合。 第20D到20J圖說明第20A和20B圖之天線的測試測量 結果。 第21A和21B圖根據本發明之一個或更多備選實施例 說明可用在,例如,一 WiMAX USB伺服器鑰(dongle)中一 多模天線結構。 第22A和22B圖根據本發明之一個或更多備選實施例 說明可用在,例如,一 WiMAX USB伺服器鑰中一多模天線 結構。 第23A圖說明一個被用來測量第21A和21B圖之天線性 43 201131894 能的測試組合。 第23B到23K圖說明第21A和21B圖之天線的測試測量 結果。 第24圖是一個根據本發明之一個或更多實施例的具有 一波束控制機制之天線結構的概要方塊圖。 第25A到25G圖說明第25A圖天線的測試測量結果。 第2 6圖根據本發明之一個或更多實施例說明一天線結 構的增益優點作為饋電點間相位角差的函數。 第27A圖是一個說明一簡單雙頻帶支線單極天線結構 的概要圖。 第27B圖說明在第27A圖天線結構中的電流分佈。 第27C圖是一個說明一支線(spurline)帶阻濾波器的概 要圖。 第27D和27E圖是說明在第27A圖天線結構中頻率抑制 的測試結果。 第28圖是一個說明根據本發明之一個或更多實施例的 有一帶阻槽天線結構的概要圖。 第29A圖說明一個根據本發明之一個或更多實施例的 有一帶阻槽的備選天線結構。 第29B和29C圖說明第29A圖天線結構的測試測量結 果。 第30圖說明針對1900MHz頻帶中的場型控制應用的具 有兩埠天線結構的一示範性U S B伺服器鑰。o These antennas do not function independently due to tight coupling' and can therefore be considered an antenna system with two pairs of terminals or ports corresponding to two different gain field types. The use of 任-埠 essentially involves the entire structure including two dipoles. The parasitic excitation of adjacent dipoles enables diversity to be achieved at close dipole spacing, but the current that is excited on the dipole is transmitted via the source impedance, indicating mutual coupling between the turns. Fig. 1C illustrates a model dipole pair for simulation corresponding to the antenna structure 1 所示 shown in Fig. 1. In this example, the dipoles 102, 104 have a square cross section of 1 mm x 1 mm and a length (L) of 56 mm. These sizes produce a center resonance frequency of 2.45 GHz when attached to a 50 ohm source. The free space wavelength at the s Xuan frequency is 122 mm. A plan view of the scattering parameters S11 and S12 of a 10 mm or approximately λ/12 separation distance (d) is shown in Fig. 1D. Due to symmetry and reciprocity, S22 = S11, S12 = S21. For the sake of simplicity, only S11 and S12 are shown and discussed. In this combination, the coupling between the dipoles represented by S12 reaches a maximum of -3.7 dB. Figure 1E shows the ratio of the vertical current on the dipole 10 4 of the antenna structure to the vertical current on the dipole 1 〇 2 under the condition that the 埠 106 is excited and the 埠 108 is passively terminated (marked as " Amplitude Ι2/ΙΓ). The current ratio (dipole 104/dipole 102) is a frequency at a maximum corresponding to a frequency having a phase difference of 180 degrees between the dipole currents and is only slightly higher in frequency. The frequency at the maximum coupling point shown in the 1D graph. Figure 1F shows the azimuth gain field at several frequencies excited by 埠106. The 201131894 type is more omnidirectional and is due to the changing coupling scarf. Field value and phase change with frequency. Due to symmetry, the % type generated by the excitation of 埠108 will be the image of the field pattern excited by 埠106. Therefore, the field pattern is uneven from left to right, and its gain amplitude The value is more variable. The calculation of the correlation coefficient between the field types provides a quantitative description of the field diversity. The 1G graph shows the correlation between the 埠106 and 埠1〇8 antenna field types. Sex is much lower than the ideal dipole model through Clark Predicted correlation. This is due to differences in the field pattern introduced by mutual coupling. 2A-2F illustrates the operation of an exemplary two-turn antenna structure 200 in accordance with one or more embodiments of the present invention. The two-turn antenna structure 200 includes two spaced apart resonant antenna elements 202, 204 and provides low field type correlation and low coupling between the turns 206, 208. Figure 2A schematically illustrates the two turns antenna structure 200. The structure is similar to the antenna structure 1'' including the dipole pair shown in FIG. 1B but additionally includes a level between the dipoles on each side of 埠2〇6, 2〇8 Conductive connection elements 21, 212. The two turns 206, 208 are located at the same position as the antenna structure of Figure 1. When a turn is excited, the combined structure exhibits a similar resonance to the structure without the attached dipole pair , but the coupling is significantly reduced, and the field diversity is significantly increased. An exemplary model of an antenna structure 2 有一 with a 10 mm dipole spacing is shown in Figure 2B. The structure generally has the same as shown in Figure 1C. Antenna structure 100 with the same geometry But with two additional horizontal connection elements 210, 212 electrically connecting the antenna elements and slightly above and slightly below the turns. The structure is shown at the same frequency as the unattached dipoles - 15 201131894 Strong resonance, but there are very different scattering parameters as shown in Figure 2C. There is a deep detachment (dr〇p-〇ut) (below -20dB) in the coupling, and there is a drift in the input impedance, as by As indicated by S11. In this example, the optimal impedance matching (sii minimum) does not coincide with the minimum coupling (S12 minimum). A matching network can be used to improve input impedance matching and further reach as in 2D. The low coupling shown in the figure. In this example, a lumped component matching network contains a series of inductors, and then a shunt capacitor is added between each turn and the structure. Figure 2E shows the ratio between the current on the dipole element 2〇4 and the current on the dipole element 202 generated by the excitation of 埠206 (identified as "amplitude Ι2/ΙΓ" in this figure). Below the resonant frequency, this current is actually greater than the current on the dipole element 204. Near the resonance, as the frequency increases, the current on the dipole element 220 decreases relative to the current on the dipole element 2 〇2. The minimum coupling point (2 44 GHz in this case) occurs near the frequency where the currents on the two dipole elements are substantially equal in magnitude. At this frequency, the current on the dipole element 204 The phase is less than about 160 degrees behind the phase of the current on the dipole element 202. Unlike the dipole of the unconnected element of Figure 1C, the current on the antenna element 204 of the combined antenna structure 200 of Figure 2B is not forced through the termination impedance of the 埠208. Conversely, a resonant mode is generated in which current flows from the antenna element 204, through the connecting elements 210, 212, and then up to the antenna element 202, as indicated by the arrows shown in Figure 2A. (Note that this current represents half of the resonance In the other half of the resonance period, the current direction is reversed. The resonance mode of the combined structure has the following characteristics: (1) The current on the antenna element 204 is large 16 201131894 The portion does not flow to the 埠 208, thereby allowing the 埠 206 Higher isolation between 208, and (2) the magnitudes of the currents on the two antenna elements 202, 204 are approximately equal, which allows for different and uncorrelated gain patterns, as described in further detail below. The magnitudes of the currents on the antenna elements are nearly equal, and a more directional field pattern is produced (as shown in Figure 2F) than in the case of antenna structure 100 with uncoupled dipoles in Figure 1C. When the currents are equal, the condition that the field type is zero in the x (or phi = 0) direction is that the phase of the current on the dipole 204 lags behind the phase of the current on the dipole 202 by π-kd (where 1 ί = 2 π) /λ, λ is the effective wavelength.) In this case, the magnetic field propagating from the dipole 204 in the phi=0 direction will be 180 degrees from the phase of the dipole 202, so the combination of the two will be in phi There is a zero value in the =0 direction. The model example in Figure 2B , d is 10mm or an effective electrical length λ/12. In this case, kd is equal to π/6 or 30 degrees, so for phi=0 is zero, Phi=180 has one of the maximum gains of directional azimuthal radiation field. The condition of the type is that the current on the dipole 204 lags the current on the dipole 202 by 150 degrees. At resonance, the currents approach the passing condition (as shown in Figure 2E), which explains the directionality of the field pattern. In the case of dipole 204 excitation, the radiation pattern is a mirror image of those radiation patterns relative to the 2F map, and the maximum gain is in the phi=0 direction. As shown in Figure 2G, the two pupils are generated. The difference in the antenna pattern has an associated low prediction envelope correlation. Therefore, the combined antenna structure has two turns that are isolated from each other and produce a gain field with low correlation. Therefore, the frequency response of the coupling depends on the 17 201131894 characteristics of the connecting elements 210, 212 'including its impedance and electrical length. The frequency and bandwidth at which a desired isolation amount can be maintained in accordance with one or more embodiments of the present invention is controlled by suitably assembling the connecting elements. The method of grouping and connecting is to change the physical length of the connecting element. An example of this is shown by the multimode antenna structure 300 of Figure 3A, in which a meander is added to the cross-connect of the connecting elements 310, 312. ~ 〇 This has the general effect of increasing the electrical length and impedance of the connection between the two antenna elements 302, 304. The performance characteristics of this structure include the scattering parameters, current ratio, gain pattern, and field type correlation as shown in 3B, 3C, 3D, and 3E, respectively. In this embodiment, changing the length of the body does not significantly change the resonant frequency of the structure, but S12 has a significant change, with a larger bandwidth and a larger minimum than the structure without the meandering portion. It is therefore possible to optimize and improve the isolation performance by changing the electrical characteristics of the connecting elements. An exemplary multimode antenna structure in accordance with various embodiments of the present invention can be designed from a ground or ground grid 402 (as shown by antenna structure 400 in FIG. 4), or as a balanced structure (eg, through FIG. 5) The antenna structure 500 in the display is activated. In either case, each antenna structure includes two or more antenna elements (402, 404 in FIG. 4, and 502, 504 in FIG. 5) and one or more conductive connection elements (Fig. 4) 4〇6 in the middle, and 506, 5〇8) in Fig. 5. For ease of explanation, only one two-inch structure is illustrated in this example diagram. However, it is possible to extend the structure to include more than two turns in accordance with various embodiments of the present invention. A missing link η connection to the antenna structure or 埠 (418, 412 in Figure 4, and 510, 512 in Figure 5 18 201131894) is provided at each antenna element. The connecting elements provide electrical connections between the two antenna elements at the frequency or within the frequency range of interest. Although the antenna is a structure physically or electrically, the direct operation can be interpreted by considering it as two separate days ",,,. For a line structure such as a one-day line 100 that does not include a connection element line structure, the structure 106 of the structure can be said to be connected to the antenna 1〇4.纨—, person... and 'in the case of such a combined structure such as the antenna structure 400, 埠418 β +fe/1 is broken to be associated with an antenna pattern, and 埠412 may be referred to as another antenna^(4) The components are designed to resonate at the expected age frequency or frequency range. When the antenna element has an electrical length of one of the wavelengths of the Rtb., the lowest resonance occurs. Therefore, in the case of a non-equilibrium combination, the design of a component of a soap is an eight-mode model—wavelength unipolar 0 uses a higher order 様 "b. For example, the structure formed by a quarter-wavelength monopole also exhibits a high mode barrier with a dual mode line. , % times the fundamental frequency - the frequency _ Russia again. Thus, higher order modes can be developed to produce a more than 9 Γ / 2 in the same 'in-balanced combination, the antenna elements can, however, be complementary quadruplets in the mid-wavelength feed dipole - wavelength element. The complex structure can also be formed by an antenna element of resonance = type at a desired frequency or frequency range. Other possible antenna element sets are packaged. Zigzag shape limits:: rotating coil, wide-band planar shape, chip antenna, form. 'And inductive shunting such as Planar Inverted F Antenna (PIFA) according to the invention> The element does not have an antenna structure of the same structure or antenna type of the same type. 19 201131894 = The line elements should each have one or more embodiments in accordance with the present invention in a desired range of operating frequency ratios, one element having the same geometry. This is simple for design: it is preferable to 'in particular for the county The connection: The demand is the same. The bandwidth and resonance solution of the line structure of "Life &" can be controlled by the antenna element f width and resonance frequency. Therefore, a wider bandwidth component can be used for Γ = 6A, and the pattern of the combined structure illustrated in Figure 6C produces a wider bandwidth. Fig. 6A illustrates a multimode antenna structure _ including two transmission elements _, _ connected to dipoles 602, 604. The haptics 602, 604 each have a width (w) and a length (6) and are spaced apart by a distance (4). Figure 6B illustrates scattering parameters for structures having the following exemplary sizes, where W = 1 mm, L = 57.2 mm, and (iv) _. The πth diagram illustrates scattering parameters for structures having the following exemplary sizes, center w, leg, L, .4 mm, and d = 1 mm. As shown, increasing W' from "to 1" and usually maintaining another size (4) produces a wider isolation bandwidth and impedance bandwidth of the antenna structure. Increasing the isolation between the antenna elements increases the isolation bandwidth and impedance bandwidth of an antenna structure. Typically, the connecting element is in the high current region of the combined resonant structure. Therefore, it is preferable to have a high conductivity for the -connecting element. If they are operated as separate antennas, they will be located at the feeding point of the line elements of the day 2011. A matching component or structure can be used to match the 槔 impedance to the desired system impedance. According to one or more embodiments of the present invention, the multimode antenna structure may be a planar structure incorporated into, for example, a printed circuit board as shown in Fig. 7. In this example, antenna structure 700 includes antenna elements 7, 2, 704 that are connected through ports 706 at ports 708, 710. The antenna structure is fabricated on a printed circuit board substrate 712. The antenna elements shown in this figure are simple quarter-wave monopoles. However, the antenna elements can be any geometry that produces an equivalent effective electrical length. In accordance with one or more embodiments of the present invention, an antenna element having a dual resonant frequency can be used to produce a combined antenna structure having a dual resonant frequency, thereby having a dual operating frequency. Figure 8A shows an exemplary model of a multimode dipole structure 800 in which the dipole antenna elements 802, 804 are divided into two unequal length finger configurations 806, 8 〇 8 and 810, 812, respectively. The dipole antenna elements have a resonant frequency associated with each of the two different finger configuration lengths, thus exhibiting a double resonance. Likewise, the multimode antenna structure using the dual resonant dipole arms exhibits two frequency bands in which high isolation (or small S21) is obtained as shown in Fig. 8B. In accordance with one or more embodiments of the present invention, a multimode antenna structure 900 is shown in FIG. 9 having variable length antenna elements 902, 904 forming a frequency modulated antenna. This can be accomplished by varying the effective electrical length of the antenna elements, such as by a controllable device of each of the antenna elements 902, 904, RF switches 906, 908. In this example, the switch can be opened (by operating the controllable device) to produce a shorter electrical length (for higher frequency operation), 21 201131894 or closed to produce a longer electrical length (for operation) Lower frequency). The operating band of the antenna structure 900, including the high isolation feature, is adjusted for uniformity by adjusting the two antenna elements. The method can be used with a variety of methods for varying the effective electrical length of the antenna elements, including, for example, using a controllable dielectric material, having a device such as a MEMs, a varactor or a tunable dielectric capacitor. One of the antenna elements of the variable capacitor' and the parasitic element is turned on or off. In accordance with one or more embodiments of the present invention, the or the connecting elements provide an electrical connection between the antenna elements, wherein the antenna elements have an electrical length approximately equal to the electrical distance between the elements. In this case, and when the connecting elements are attached to the ends of the antenna elements, the turns are isolated at a frequency near the resonant frequency of the antenna elements. This configuration produces near perfect isolation at a specific frequency. Alternatively, as previously discussed, the electrical length of the connecting element can be increased to expand over the bandwidth over which a particular value is isolated. For example, a straight connection between antenna elements can produce a minimum of s25 dB at a particular frequency. <-10dB bandwidth can be ioomHz. A new response can be obtained by increasing the electrical length, with the minimum S21 being increased to -i5dB, but S21 The bandwidth of <-1 OdB can be increased to 150 MHz. Various other multimode antenna structures in accordance with one or more embodiments of the present invention are possible. For example, the connecting element can have a different geometry, and it can be constructed to include components that alter the structural characteristics of the antenna. These components may include, for example, active inductor and capacitor components, resonator or filter structures or active components such as phase shifters. 22 201131894 In accordance with one or more embodiments of the present invention, the position of the connecting element along the length of the antenna element can be varied to adjust the characteristics of the antenna structure. The frequency bands on which the turns are isolated may be shifted upwards in frequency by moving the attachment points of the connecting elements on the antenna elements away from the turns and near the distal ends of the antenna elements. Figures 10A and 10B illustrate multimode antenna structures 1000, 1002, respectively, each having a connection element electrically connected to the antenna elements. In the antenna structure 1000 of Fig. 10A, the connecting member 1004 is located in the structure such that the gap between the connecting member 1004 and the upper edge 1006 of the ground plane is 3 mm. Figure 10C shows the scattering parameters of the structure, showing that the high isolation is at frequency 1. It was obtained at 15 GHz. A combined capacitor/series inductor matching network is used to provide impedance matching at M5GHz. Figure 10D shows the scattering parameters of structure 1002 of Figure 10B, wherein the gap between connecting element 1008 and the upper edge 1010 of the ground plane is 19 mm. The antenna structure 1002 of Fig. 10B is presented at approximately 1. There is a high isolation operating band at 50 GHz. Figure 11 is a schematic illustration of a multimode antenna structure 1100 in accordance with one or more additional embodiments of the present invention. The antenna structure 1100 includes two or more connection elements 1102, 1104, each of which electrically connects the antenna elements 1106, 1108. (For ease of illustration, only two connecting elements are shown in this figure, it being understood that the use of more than two connecting elements is also contemplated.) The connecting elements 1102, 1104 are along the other such antenna elements 1106, 1108 They are separated. Each of the connecting elements 1102, 1104 includes a switch 1112, 1110. The peak isolation frequency can be selected by controlling the switches 1110, 1112. For example, a frequency fl can be selected by closing the switch 1110 and opening the switch 23 201131894 1112. A different frequency f2 can be selected by closing switch 1112 and opening switch 1110. Figure 12 illustrates a multimode antenna structure 1200 in accordance with one or more alternative embodiments of the present invention. The antenna structure 1200 includes a connection element 1202 to which a filter 12〇4 is operatively coupled. The filter 1204 can be a selected low pass or band pass filter such that the connections of the connecting elements between the antenna elements 1206, 1208 are only effective in a desired frequency band such as a high isolation resonant frequency. . At higher frequencies, the structure will function as two separate antenna elements that are not coupled through the conductive connection elements and open between them. Figure 13 illustrates a multimode antenna structure 1300 in accordance with one or more alternative embodiments of the present invention. The antenna structure 1300 includes two or more connection elements 13A2, 1304 that include filters 1306, 1308, respectively. (For ease of illustration, only two connecting elements are shown in this figure, it being understood that the use of more than two connecting elements is also contemplated.) In one possible embodiment, the antenna structure 1300 is in the connecting element 13 4 (which is adjacent to the antenna 埠) has a low pass filter 1308, and a high pass filter 1306' on the connecting element 13 〇 2 to produce an antenna structure having two high isolation bands, ie, Dual band structure. Figure 14 illustrates a multimode antenna structure 1400 in accordance with one or more alternative embodiments of the present invention. The antenna structure 14A includes one or more connection elements 14A2 having a frequency tunable element 1406 operatively coupled thereto. The antenna structure 1400 also includes antenna elements 14A, 141A. The adjustable frequency component 1406 changes the delay or phase of the electrical connection or changes the reactance of the electrical connection. The amplitude and frequency response of the scattering parameters S21/S12 are affected by changes in electrical delay or impedance, so an antenna structure can be used to adapt or generally optimize isolation for a particular frequency. Figure 15 illustrates a multimode antenna structure 150 in accordance with one or more alternative embodiments of the present invention. The multimode antenna structure 丨5 〇 〇 can be used, for example, in a WIMAX USB server key. The antenna structure 15A can be used, for example, to operate in the WiMAX band from 2300 to 2700 MHz. The sinusoidal antenna structure 1500 includes two antenna elements 1502, 1504 that are connected through a conductive connecting element 丨5〇6. The antenna elements include slots for increasing the electrical length of the components to achieve a desired operating frequency range. In this example, the antenna structure is optimally used for a center frequency of 235 〇 MHz. The length of the slots can be reduced to achieve a higher center frequency. The antenna structure is mounted on a printed circuit board assembly 15〇8. A two component lumped element match is provided at each antenna feed. The antenna structure 1500 can be fabricated, for example, from a metal stamping. It can be 0. Made of 2mm thick copper alloy sheet. The antenna structure 包括5〇〇 includes a pickup feature 510 on the connecting element at the center of the structure, which can be used in an automated pick-and-place assembly process. The antenna structure is also compatible with the reflow combination. Figure 16 illustrates a multimode antenna structure 1600 in accordance with one or more alternative embodiments of the present invention. As with the antenna structure 1500 of Figure 15, the antenna structure 1600 can be used, for example, in a wiMAX USB server key. The antenna structure can be configured to operate, for example, in a WiMAX band from 2300 to 2700 MHz. 25 201131894 The antenna structure 1600 includes two antenna elements 1602, 1604, each of which includes a meandering monopole. The length of the meandering part determines the center frequency. This exemplary design shown in this figure is best used for a center frequency of 2350 MHz. In order to obtain a higher center frequency, the length of the meandering portion can be reduced. A connecting element 1606 electrically connects the antenna elements. A two-component lumped element match is provided at each antenna feed. The antenna structure can be fabricated, for example, of copper as a flexible printed circuit (FPC) mounted on a plastic carrier 1608. The antenna structure can be produced by a metal portion of the fpc. The plastic carrier provides mechanical support and makes installation to a PCB assembly 1610 easier. Alternatively, the antenna structure may be formed of a metal plate. Figure 17 illustrates a multimode antenna structure 1700 in accordance with another embodiment of the present invention. The ahai antenna design can be used, for example, in the usb, Express 34 and Express 54 data card formats. The exemplary antenna structure shown in this figure is designed to operate at frequencies from 2_3 to 6 GHz. The antenna structure can be fabricated, for example, from a metal plate or from an FPC on a plastic carrier 1702. Figure 18A illustrates a multimode antenna structure 1800 in accordance with another embodiment of the present invention. The antenna structure 18A includes a three-mode antenna having three turns. In this configuration, the three monopole antenna elements 18 〇 2, 18 〇 4, 1806 are connected using a connecting element 1808 comprising a conductive loop connecting one of the adjacent antenna elements. The antenna elements are balanced by a common ground grid or a single hollow conductive cylindrical sleeve 1810. The antenna has three coaxial windings 1812, 1814, 1816 for connecting the antenna structure to a communication device. The 26 201131894 coaxial cables 1812, 1814, 1816 pass through the hollow sleeve 1810. The antenna assembly can be constructed from a single flexible printed circuit wrapped in a cylinder and can be packaged in a cylindrical plastic housing to provide a single antenna combination in place of three separate antennas. In an exemplary configuration, the diameter of the cylinder is l〇mm and the total length of the antenna is 56 mm to 2. 45GHz operates with high isolation between turns. The antenna structure can be, for example, a multi-antenna radio system such as a chirp or at 2. 4 to 2. 80. Operating in the 5 GHz band. The 211N system is used together. In addition to the isolation from 埠, each 埠 advantageously produces a different gain pattern as shown in Figure 18B. However, this is only a specific example, it being understood that the structure can be scaled to operate at any desired frequency. It will also be appreciated that the methods previously described in the context of two antennas for adjusting, manipulating bandwidth and generating a multi-band structure can be applied to the multi-turn structure. Although the above embodiment is shown as a true cylinder, it is possible to use other configurations having three antenna elements and connecting elements that produce the same advantages. This includes, but is not limited to, configurations in which there are straight connections such that the connecting elements form a triangle or another polygonal geometry. It is also possible to construct a similar structure by similarly connecting three independent dipole elements instead of three monopole elements with a common ground net. At the same time, although the symmetric configuration of the antenna elements advantageously produces equivalent performance from each turn, for example, the same bandwidth, isolation, impedance matching, it is possible to arrange the antenna elements asymmetrically or at unequal intervals depending on the application. of. Figure 19 illustrates the use of a multimode antenna structure 1900 in a combiner application in accordance with one or more embodiments of the present invention. As shown in Figure 31 201131894, the transmit signal can be applied simultaneously to the two antennas of the antenna structure 1900. In this configuration, the multimode antenna can function as an antenna and power amplifier combiner. The high isolation between the antenna turns limits the interaction between the two amplifiers 1902, 1904, which is known to have undesired effects such as signal distortion or loss of efficiency. The impedance matching at 1906 can be provided at these antennas. 20A and 20B illustrate a multimode antenna structure 2000 in accordance with one or more alternative embodiments of the present invention. The antenna structure 2 can also be used in, for example, a WiMAX USB or ExpressCard/34 device. The antenna structure can be configured to operate, for example, in the WiMAX band from 23 00 to 6000 MHz. The antenna structure 2000 includes two antenna elements 2 〇〇 1, 2004, each antenna element comprising a wide unipolar. A connecting element 2〇〇2 electrically connects the antenna elements. Slots (or other slits) 2005 were used to improve input impedance matching above 5000 MHz. The exemplary design shown in this figure is best used to cover frequencies from 2300 to 6000 MHz. The antenna structure 2000 can be used, for example, in the manufacture of metal stampings. It can be 〇. Made of 2mm thick copper alloy sheet. The antenna structure 2 大 on the connecting member 2002 generally includes a pick-up body 2〇〇3 at the center of mass of the structure, which can be used in an automated pick-and-place assembly process. The antenna structure is also compatible with the signature recombination combination. The feed point 2〇〇6 of the antenna provides a connection point to the RF circuit on a PCB, and also functions as a structure mounting support for the antenna to the PCB. Additional contact points 2〇〇7 provide structural support. Figure 20C illustrates a test set used to measure the performance of the antenna 2 28 201131894 2010. This figure also shows the coordinate reference for the far field field type. The antenna 2〇〇〇 is mounted on a 3〇x88mm PCB 2011 representing an ExpressCard/34 device. The ground portion of PCB 2011 is attached to a larger metal plate 2〇12 (165x254 mm in this example) to represent the ground grid size of a typical notebook computer. The test on PCB 2011 was connected to the antenna via a 5Oohm ribbon transmission line in 2014 and 2016. Figure 20D shows the VS WR measured during these tests 、 2014, 2016. Figure 20E shows the coupling (S2丄 or S12) measured between these test turns. The VSWR and coupling are advantageously low over a wide frequency range (e.g., from 2300 to 6000 MHz). Figure 20F shows the radiation efficiencies measured with reference to these tests 埠 2014 (埠1), 2016 (埠2). Figure 20G shows the correlation calculated between the radiation pattern generated by the excitation test 埠2014(埠1) and those generated by the excitation test 埠2016(埠2). At the frequencies of interest, the radiation efficiency is advantageously high and the correlation between the field types is advantageously low. Figure 20H shows the far field gain field generated by the excitation test 埠2014(埠1) or test埠2016(埠2) at a frequency of 2500MHz. Figures 201 and 20J show the same field measurements at frequencies of 3500 and 5200 MHz, respectively. The field patterns produced by the test 埠 2014 (埠 1) in the φ = 0 or XZ plane and in the θ = 90 or XY plane are different and are complementary to those of the test 埠 2016 (埠 2). 21 and 21 illustrate a multimode antenna structure 2100 in accordance with one or more alternative embodiments of the present invention. The antenna structure 2100 can be used, for example, in a WiMAX USB server record. The antenna structure can be used, for example, to operate in the WiMAX band from 2300 to 2400 MHz. 29 201131894 The antenna structure 2100 includes two antenna elements 2102, 2104, each of which includes a meandering monopole. The length of the meandering portion determines the center frequency. Other curved structures such as, for example, spiral coils and loops can be used to provide a desired electrical length. The exemplary design shown in this figure is best used for a 2350 MHz center frequency. A connecting element 2106 (shown in Figure 21B) electrically connects the antenna elements 21A2, 2104. A two-component lumped element match is provided at each antenna feed. The antenna structure can be made, for example, of copper as a flexible printed circuit (FPC) 21〇3 mounted on a plastic carrier 2101. The antenna structure can be produced by a metal portion of the FPC 2103. The plastic carrier 21〇1 provides mounting pins or pins 2107 for attaching the antenna to a PCB assembly (not shown), and for fixing the FPC 2103 To the pin 2105 on the carrier 2101. The metal portion of 2103 includes an exposed portion or pad 2108 for electrically contacting the antenna with circuitry on the PCB. In order to achieve a higher center frequency, the electrical length of the elements 2102, 2104 can be reduced. Figures 22A and 22B illustrate a multimode antenna structure 22〇0 that is optimally designed for a 2600 MHz center frequency. The electrical lengths of the elements 22A2, 2204 are shorter than the electrical lengths of the elements 2102, 2104 of Figures 21A and 21B because the metallization at the ends of the elements 2202, 2204 has been removed and the width of the component feed end is increase. Figure 23A illustrates a test combination 23 00 using antenna 2100 of Figures 21A and 21B along with a far field field coordinate reference. Figure 2 3 B shows the VSWR measured at test 埠 2302 (埠1), 2304 (埠2). Figure 23C shows the coupling measured between the tests 埠 2302 (埠1), 2304 (埠2) (S21 30 201131894 or S12). The VSWR and coupling are advantageously low at frequencies of interest (e.g., from 2300 to 2400 MHz). Figure 23D shows the radiation efficiency measured with reference to the test cartridges. Figure 23E shows the correlation between the radiation pattern generated by the excitation test 埠 2302 (埠 1) and those generated by the excitation test 埠 2 3 04 (埠 2). At the frequencies of interest, the radiation efficiency is advantageously high and the correlation between the field types is advantageously low. Figure 23F shows the far field gain pattern generated by the excitation test 2302 (埠I) or test 槔 2304 (埠2) at a frequency of 2400 MHz. The field patterns produced by the test 埠 2302 (埠 1) in the φ = 〇 or XZ plane and in the θ = 90 or ΧΥ plane are different and are complementary to those of the test 埠 2304 (埠 2). Figure 23G shows the VSWR measured at the test 埠 of antenna 2200 in place of combination 2300 of antenna 2100. Figure 23 shows the coupling measured between these test ( (S21 or S12). The VSWR and coupling are advantageously low at the frequency of interest (eg, from 2500 to 2700 ΜΗΖ). Figure 231 shows the radiation efficiency measured with reference to the test 《. Figure 23 J shows the transmitted excitation test 埠 2302 (埠1 The correlation between the generated radiation pattern and those generated by the excitation test 埠 2304 (埠 2). At the frequencies of interest, the radiation efficiency is advantageously high and the correlation between the field types is advantageously low. Figure 23 shows the far-field gain pattern generated by exciting test 埠 2302 (槔1) or test 槔 2304 (埠2) at a frequency of 2600MHz. The field patterns produced by the test 埠23〇2(埠丨) in the φ=〇 or ΧΖ plane and in the θ=90 or ΧΥ plane are different and complement those of the test 埠 2304 (埠2). One or more additional embodiments of the present invention are directed to beam pattern control 31 201131894 techniques for null steering and beam pointing purposes. When the technique is applied to a conventional array antenna (including separate antenna elements separated by small portions of a wavelength), each element of the array antenna is fed with a signal that is a reference signal or The phase shift of the wavelength is deformed. For a non-uniform linear array with equal excitation, the resulting beam pattern can be described by an array factor F, which depends on the phase of each individual element and the element spacing d between the elements. yV-l ^ = XexP[7^(>0rf cos^ + a)] where 'β=2π/λ, N=total number of components#, α=phase shift between successive elements, and θ=starts from the array axis The angle can be adjusted to a different direction by controlling the phase a equal to the maximum value of the value aj 'F, thereby controlling the direction in which a maximum signal is broadcast or received. The inter-element spacing in conventional array antennas is typically on the order of 1/4 wavelength' and the antennas can be tightly coupled with nearly the same polarization direction. This advantageously reduces coupling between components because coupling can cause problems in several array antenna designs and performance. For example, problems such as field distortion and scanning dead zones (see Stutzman, Antenna Theory and Design, Wiley 1998's 122-128 and 135-136 and pages 466-472) may be due to excessive inter-element coupling and a given number of components. A reduction in the maximum gain that can be achieved. Beam field control techniques can advantageously be applied to all of the multimode antenna structures described herein. The antenna structures have connections that are connected through one or more connection elements and exhibit high isolation between multiple feed points. Antenna element 32 201131894 The phase between the bees in the structure of the antenna can be used to control the antenna pattern. It has been found that since the coupling between the feed points is reduced, a higher peak gain is achievable in a given direction when the antenna is used as a simple beamforming array. Thus, a greater gain can be achieved in a selected direction by a high isolation antenna structure that utilizes phase control of the carrier signal represented at its feed end in accordance with various embodiments of the present invention. In cell phone applications where the antennas are separated by an interval of less than 1/4 wavelength, the mutual coupling effect in conventional antennas reduces the radiation efficiency of the array, thus reducing the maximum achievable gain. The direction of the maximum gain produced by the antenna pattern can be controlled by controlling the phase of the carrier signal supplied to each feed point of a high isolation antenna in accordance with various embodiments. An advantage of, for example, 3 dB gain obtained by beam steering is advantageous, particularly in portable device applications where the beam pattern is fixed and the device orientation is randomly controlled by the user. As shown, for example, in a schematic block diagram of Fig. 24 illustrating a field type control device 24A in accordance with various embodiments, a relative phase shift α through phase shifter 24〇2 is applied to each antenna feed applied thereto. The RF signals of the 2404, 2408. The signals are fed to the antenna 天线 of the antenna structure 2410, respectively. Phase shifter 2402 can include standard phase shifting components such as, for example, electronically controlled phase shifting devices or standard phase shifting networks. 25A-25G for different phase differences a between the two feeds of the antenna, providing an antenna pattern produced by a closely spaced 2_D conventional array of dipole antennas and high by various embodiments in accordance with the present invention Isolation Antenna 33 201131894 A comparison of antenna field patterns produced by a 2-D array. In the 25A-25G diagram, the curve shows the antenna pattern of θ = 90 degrees. In the figure the solid line represents the antenna pattern produced by the isolated feed single element antenna according to various embodiments, and the dashed line represents the antenna pattern produced by two independent monopole conventional antennas, wherein the conventional antenna is Equal to the separation of the single element by a distance of the width of the isolated feed structure. Therefore, the conventional antenna and the high-isolation antenna are generally of equal size. In all of the cases shown in the figures, when compared to the two independent conventional dipoles, 'the peak gain produced by the high isolation antennas according to various embodiments yields a larger gain margin, while Provide azimuth control of the beam field. This behavior makes it possible to use a high-isolation antenna in the transmission or reception in which a particular direction is required or an additional gain. This direction can be made by adjusting the relative phase between the signal of the decision point. This is particularly advantageous for applications such as, for example, the pure point of the base station. The combined high isolation antenna provides greater advantages when compared to two similar antenna elements. In the 25A® towel (10)*, which is based on various realities, each of which is shown in Figure 25, which is shown in Figure 25, is a combination of the various embodiments according to various embodiments. The azimuthal field pattern of the shift (α = 6 〇 (the θ = 90 graph with a 60-degree phase difference between the feed points) shows a larger peak gain (in the dip). As shown in Fig. 25D, the combined dipole according to various embodiments uses a shifted azimuthal field pattern (α = 9 〇 (9 相位 phase difference between feed points) Θ-90 Figure) shows an even larger peak gain (at _〇). As shown in Fig. 25, the combined dipole according to various embodiments uses a shifted azimuth field type (α = 12 〇 (120 degree phase difference between feed points). The lobes (θ = 9 〇 in φ = 18 〇) show a larger peak gain (at Φ^ο). As shown in Figure 25F, the combined dipole according to various embodiments uses an even larger lobes (at φ = 180) with a = 150 (150 degree phase difference between feed points). A shifted azimuthal field pattern (θ = 9 〇 map) shows a larger peak gain (in φ = 〇). As shown in Figure 25G, the combined dipole according to various embodiments uses an a = 18 0 (18 0 degree phase difference between feed points) double lobe azimuth field (θ = 90 Figure) shows a larger peak gain (in φ = 〇 & 18 〇). Figure 26 illustrates the ideal gain advantage of the combined high isolation antenna of two independent dipoles in accordance with one or more embodiments as a function of the phase angle difference between the feed points of a two feed point antenna array. In accordance with one or more embodiments of the present invention, the increased gain obtained by field mode control using an antenna structure that is connected to two parallel dipoles through a meandering connection element can be used to improve the range or reliability of a wireless link. Alternatively, the increased gain may allow a portable or other device to obtain equivalent wireless link performance with reduced transmission power. For example, by the field type 35 201131894 ^Dragon (10) (10) - the average transmission increase will allow the transmission power to be the same as the chain performance. The reduction in transmission power is advantageous in several aspects. First, the τ-receiving wireless device usually needs to meet the second absorption rate (SAR) regulatory limit, but does not make some compromises in performance. The reduction in the power of the transmission wheel allows the SAR peak to correspond to the factory> and the performance is compromised. In addition to this, the reduction in transmission power reduces the burden on the output ’, allowing for designs with lower power and higher linearity. In addition, the reduction in transmission power is beneficial for extending the life of the f-pool of portable or other devices and reducing their heat dissipation requirements. While phase control is used to produce the desired far field gain increase, the phase (four) change can also change the near field and affect the SAR value. In order to achieve a SAR (four) material less, the increase in antenna far-field gain should be greater than the increase in any S-value. Through experiments, the towel has found that the actual (10) value is relatively small with respect to the phase gain compared to the far field gain. A New USB ship with a two-bee antenna structure for field-type control applications in the 19 〇OMHz band is shown in the wipes. As shown in Fig. 31, the sar value determined by simulating the structure of the third diagram is relatively independent of the phase-inducing _(four) phase, so that the benefit of the measured SAR peak reduction is The relative phase value is achieved while providing full azimuth control of the beam pattern. The techniques described herein for reducing the near field light level and the sAR value are preferably compared to the above described high impedance multimode antenna structure having a 7L piece of electrically connected antenna elements. _ use. However, such techniques are also useful for use with antenna arrays that include a plurality of radiating elements that are steerable to provide antenna field type 36 201131894 control and that increase the gain in a selected direction. Further embodiments of the present invention provide an increased high isolation multimode antenna structure between multi-band antennas 接近 that are operating close to each other over a given frequency range. In these embodiments, a band stop is incorporated into one of the antenna elements of the antenna structure to provide reduced coupling at the frequency to which the slot is adjusted. Figure 27A schematically illustrates a simple dual band spur monopole antenna 2700. The antenna 2700 includes a strip stop 2702 that defines two branch resonators 2704 ' 2706. The antenna is driven by a signal generator 2708. Depending on the frequency at which antenna 2700 is being driven, various current distributions are implemented on the two dividers 2704, 2706. As shown in Fig. 27A, the physical size of the groove 2702 is defined: the width of the household is Ws' and the length is Ls. When the excitation frequency satisfies the condition Ls = l 〇 / 4, the groove characteristics become resonance. At this point the current distribution concentrates around the shorted portion of the slot, as shown in Figure 27b. The current flowing through the branch resonators 2704 ' 2706 is approximately equal, and the sides of the eight slots 2702 point in opposite directions. This causes the antenna structure 27 to behave in a manner similar to the tributary band stop filter 2720 (shown schematically in Figure 27C) which converts the antenna input impedance down to significantly below the nominal source impedance. This large impedance mismatch results in a very high VSWR as shown in Figures 27D and 27E, resulting in the desired frequency rejection. The band stop technique can be applied to an antenna system having two (or more) antenna elements operating close to each other, wherein one antenna element needs to pass a signal of 37 201131894 with a desired frequency and the other does not. In one or more embodiments, one of the two antenna elements includes a strip stop and the other does not. Figure 28 is an illustration of an antenna structure 28A including a first antenna element 2802, a second antenna element 28A4, and a connecting element 2806. The antenna structure 2800 includes 埠 2808 and 2810 at antenna elements 2802 and 2804, respectively. In this example, a signal generator drives the antenna element 2802 at 埠28〇8, while a meter is coupled to the 埠281埠 to measure the current of 埠2810. However, it should be understood that either or both of the two turns can be driven by the signal generator. The antenna element 28〇2 includes a strip stop 2812 defining two branch resonators 2814, 2816. In this embodiment, the branch resonators comprise the main transmitting portion of the antenna structure and the antenna element 2804 comprises a diversity receiving portion of the antenna structure. Due to the large mismatch at the antenna element 2802埠 with the resistive slot 2812, the mutual coupling of the antenna element 2802 with the gate of the diversity receiving antenna element 28〇4 (actually matching at the resonant frequency of the slot) will Very small, so it will produce a fairly high degree of isolation. Figure 29 is a perspective view of a multimode antenna structure 2900 including a multi-band sub-receiver antenna system using the band-stop technique in the G P S band in accordance with one or more additional embodiments of the present invention. It is 1575. 42 MHz with a bandwidth of 20 MHz. The antenna structure 2900 is in a dielectric substrate 2902 in which the substrate is formed as a layer on the electrolyte carrier 2904. The antenna structure 2900 includes a GPS tape and slot 38 201131894 2906 on the primary transmit antenna element 2908 of the antenna structure 2900. The antenna structure 2900 also includes a diversity receive antenna element 2910, and a connection element 2912 that connects the diversity receive antenna element 2910 and the primary transmit antenna element 2908. A GPS receiver (not shown) is coupled to the diversity receive antenna element 2910. In order to generally minimize antenna coupling from the primary transmit antenna element 2908 at these frequencies, and generally maximize the diversity antenna radiation efficiency, the primary antenna element 2908 includes a band stop slot 2906 and is near the center of the GPS band. It is adjusted to one quarter of the electrical wavelength. The diversity receive antenna element 2910 does not include such a stop slot, but includes a GPS antenna element that is properly matched to the primary antenna source impedance so that there will typically be maximum power conversion between the GPS receiver and the GPS receiver. Although the two antenna elements 2908, 2910 coexist in close proximity, since the high VSWR of the slot 2906 at the primary transmit antenna element 2908 reduces the coupling to the source impedance of the primary antenna element when the slot 2906 is adjusted to frequency, Isolation is provided between the two antenna elements 2908, 2910 at the GPS frequency. The mismatch between the two antenna elements 2908, 2910 in the GPS band is large enough to decouple the antenna elements to meet the isolation requirements of the system design, as shown in Figures 29B and 29C. The antenna structure, antenna element and connecting element described herein in accordance with various embodiments of the present invention preferably form a single integrated radiating structure such that a signal fed to either of the turns excites the entire antenna structure to radiate as a unitary body. Instead of being a separate radiating structure. Thus, the techniques described herein provide isolation of the antenna , without using a decoupling network at the antenna feed point. It will be understood that, although the invention has been described above in terms of the specific embodiments of the invention, the above-described embodiments are only provided by way of illustration and not limitation. Various other embodiments, including but not limited to the following, are also within the scope of the appended claims. For example, the elements or components of the various multi-mode antenna structures described herein may be further divided into additional components or combined to form fewer components for performing the same function. While the preferred embodiment of the invention has been described, I: Schematic description of the figure 3 Figure 1A illustrates an antenna structure with two parallel dipoles. Figure 1B illustrates the current generated by a dipole excitation in the antenna structure of Figure 1A. Figure 1C illustrates a model corresponding to the antenna structure of Figure 1A. Figure 1D is a diagram illustrating the scattering parameters of the antenna structure of Figure 1C. Figure 1E is a diagram illustrating the current ratio of the antenna structure of Figure 1C. Figure 1F is an illustration of the gain field pattern of the antenna structure of Figure 1C. Figure 1G is a diagram illustrating the envelope correlation of the antenna structure of Figure 1C. Figure 2A illustrates an antenna structure connected to two parallel dipoles through a connecting element in accordance with one or more embodiments of the present invention. Figure 2B illustrates a model corresponding to the antenna structure of Figure 2A. Fig. 2C is a diagram illustrating the scattering parameters of the antenna structure of Fig. 2B. Figure 2D is a diagram illustrating the scattering parameters of the antenna structure of Figure 2B. 40 201131894, where there is lumped element impedance matching at the two turns of the antenna structure. Figure 2E is a diagram illustrating the current ratio of the antenna structure of Figure 2B. Fig. 2F is a diagram illustrating the gain field pattern of the antenna structure of Fig. 2B. Figure 2G is a diagram illustrating the envelope correlation of the antenna structure of Figure 2B. Figure 3A illustrates an antenna structure connected to two parallel dipoles through a meandering connecting element in accordance with one or more embodiments of the present invention. Fig. 3B is a diagram showing the scattering parameters of the antenna structure of Fig. 3A. Figure 3C is a diagram illustrating the current ratio of the antenna structure of Figure 3A. Figure 3D is an illustration of the gain field pattern of the antenna structure of Figure 3A. Figure 3E is a diagram illustrating the envelope correlation of the antenna structure of Figure 3A. Figure 4 illustrates an antenna structure of a ground or ground network in accordance with one or more embodiments of the present invention. Figure 5 illustrates a balanced antenna structure in accordance with one or more embodiments of the present invention. Figure 6A illustrates an antenna structure in accordance with one or more embodiments of the present invention. Figure 6B is a diagram showing the scattering parameters of a particular dipole width antenna structure of Figure 6A. Figure 6C is a diagram showing the scattering parameters of the antenna structure of another dipole width in Fig. 6A. 41 201131894 Figure 7 illustrates an antenna structure fabricated on a printed circuit board in accordance with one or more embodiments of the present invention. Figure 8A illustrates an antenna structure having apex resonance in accordance with one or more embodiments of the present invention. Fig. 8B is a diagram illustrating the scattering parameters of the antenna structure of Fig. 8A. Figure 9 illustrates a tunable antenna structure in accordance with one or more embodiments of the present invention. 10A and 10B illustrate an antenna structure having connecting elements pointing in different positions along the length of the antenna element in accordance with one or more embodiments of the present invention. Figures 10C and 10D are diagrams illustrating the scattering parameters of the antenna structures of Figures 10A and 10B, respectively. Figure 11 illustrates an antenna structure including a connecting element having a switch in accordance with one or more embodiments of the present invention. Figure 12 illustrates an antenna structure having a connection element to which a filter is coupled, in accordance with one or more embodiments of the present invention. Figure 13 illustrates an antenna structure having two connecting elements, some of which are coupled to the connecting elements, in accordance with one or more embodiments of the present invention. Figure 14 illustrates an antenna structure having an adjustable frequency connection element in accordance with one or more embodiments of the present invention. Figure 15 illustrates an antenna structure mounted on a PCB assembly in accordance with one or more embodiments of the present invention. 42 201131894 Figure 16 illustrates another antenna structure mounted on a PCB assembly in accordance with one or more embodiments of the present invention. Figure 17 illustrates an alternate antenna structure that can be mounted on a PCB assembly in accordance with one or more embodiments of the present invention. Figure 18A illustrates a three-phase antenna structure in accordance with one or more embodiments of the present invention. Figure 18B is a diagram illustrating the gain pattern of the antenna structure of Figure 18A. Figure 19 illustrates an antenna and power amplifier combiner application of an antenna structure in accordance with one or more embodiments of the present invention. 20A and 20B illustrate a multimode antenna structure that can be used, for example, in a WiMAX USB or ExpressCard/34 device, in accordance with one or more additional embodiments of the present invention. Figure 20C illustrates a test combination used to measure the performance of the antennas of Figures 20A and 20B. Figures 20D through 20J illustrate test measurements of the antennas of Figures 20A and 20B. 21A and 21B illustrate a multimode antenna structure that can be used, for example, in a WiMAX USB server dongle, in accordance with one or more alternative embodiments of the present invention. 22A and 22B illustrate a multimode antenna structure that can be used, for example, in a WiMAX USB server key, in accordance with one or more alternative embodiments of the present invention. Figure 23A illustrates a test combination that can be used to measure the antenna properties of Figures 21A and 21B. Figures 23B to 23K illustrate the test measurement results of the antennas of Figs. 21A and 21B. Figure 24 is a schematic block diagram of an antenna structure having a beam steering mechanism in accordance with one or more embodiments of the present invention. Figures 25A through 25G illustrate the test measurements of the antenna of Figure 25A. Figure 26 illustrates the gain advantage of an antenna structure as a function of the phase angle difference between the feed points, in accordance with one or more embodiments of the present invention. Figure 27A is a schematic diagram showing the structure of a simple dual band spur monopole antenna. Figure 27B illustrates the current distribution in the antenna structure of Figure 27A. Figure 27C is a schematic diagram illustrating a spurline band stop filter. Figures 27D and 27E are test results illustrating frequency suppression in the antenna structure of Figure 27A. Figure 28 is a schematic diagram showing the structure of a band-stopped antenna in accordance with one or more embodiments of the present invention. Figure 29A illustrates an alternate antenna structure having a resisting slot in accordance with one or more embodiments of the present invention. Figures 29B and 29C illustrate test measurement results for the antenna structure of Figure 29A. Figure 30 illustrates an exemplary U S B server key with a two-turn antenna configuration for field control applications in the 1900 MHz band.

第31圖說明藉由模擬第30圖之該裝置而確定的SAR 44 201131894 值。 【主要元件符號說明】 100.. .天線結構 102.. .偶極 104.. .偶極 106.. .埠 108…埠 200.. .兩埠天線結構 202.. .元件 204.. .元件 206".埠 208".埠 210.. .連接元件 212.. .連接元件 300.. .多模天線結構 302.. .天線元件 304.. .天線元件 310.. .連接元件 312.. .連接元件 400.. .天線結構 402.. .天線元件 404.. .天線元件 406.. .天線元件 412···埠 418…埠 500.. .天線結構 502.. .天線元件 504.. .天線元件 506.. .天線元件 508.. .天線元件 510…埠 512···埠 600.. .多模天線結構 602.. .偶極 604.. .偶極 606.. .連接元件 608.. .連接元件 700.. .天線結構 702.. .天線元件 704.. .天線元件 706.. .連接元件 708.. .埠 710.••埠 712…印刷電路板基材 800.. .多模偶極結構 802.. .偶極天線元件 45 201131894 804.. .偶極天線元件 806.. .指狀構造 808.. .指狀構造 810.. .指狀構造 812.. .指狀構造 902.. .天線元件 904.. .天線元件 906.. .RF 開關 908.. .RF 開關 1000…多模天線結構 1002.. .多模天線結構 1004.. .連接元件 1006.. .接地平面上邊緣 1008.. .連接元件 1010.. .接地平面上邊緣 1100.. .多模天線結構 1102.. .連接元件 1104.. .連接元件 1106.. .天線元件 1108.. .天線元件 1110.. .開關 1112…開關 1200.. .多模天線結構 1202.. .連接元件 1204.. .濾波器 1206.. .天線元件 1208.. .天線元件 1300.. .多模天線結構 1302.. .連接元件 1304.. .連接元件 1306.. .濾波器 1308.. .濾波器 1400.. .多模天線結構 1402.. .連接元件 1406.. .可調頻元件 1408.. .天線元件 1410.. .天線元件 1500.. .多模天線結構 1502.. .天線元件 1504.. .天線元件 1506.. .導電連接元件 1508.. .印刷電路板組合 1510.. .拾取形體 1600.. .多模天線結構 1602.. .天線元件 1604.. .天線元件 1606.. .連接元件 1608.. .塑膠載體 46 201131894 1610.. .PCB 組合 1700.. .多模天線結構 1702…塑膠載體 1800.. .多模天線結構 1802…三單極天線元件 1804.. .三單極天線元件 1806.. .三單極天線元件 1808.. .連接元件 1810.. .套筒 1812.. .同軸電纜 1814.. .同軸電纜 1816.. .同軸電纜 1900.. .多模天線結構 1902.. .放大器 1904.. .放大器 2000.. .多模天線結構 2001.. .天線元件 2002.. .連接元件 2003.. .拾取形體 2004.. .天線元件 2005.. .槽 2006.. .饋電點 2007.. .接觸點 2010.. .測試組合Figure 31 illustrates the SAR 44 201131894 value determined by simulating the device of Figure 30. [Description of main component symbols] 100.. . Antenna structure 102.. Dipole 104.. Dipole 106.. .埠108...埠200.. . Two-antenna antenna structure 202.. Components 204.. Components 206".埠208".埠210.. . Connection element 212.. Connection element 300.. . Multimode antenna structure 302.. Antenna element 304.. Antenna element 310.. . Connection element 312.. Connecting element 400.. Antenna structure 402.. Antenna element 404.. Antenna element 406.. Antenna element 412···埠418...埠500.. Antenna structure 502.. Antenna element 504.. Antenna Element 506.. Antenna Element 508.. Antenna Element 510...埠512···埠600.. . Multimode Antenna Structure 602.. Dipole 604.. Dipole 606.. Connection Element 608. . Connecting element 700.. Antenna structure 702.. Antenna element 704.. Antenna element 706.. Connecting element 708.. .埠710.••埠712... Printed circuit board substrate 800.. Mode dipole structure 802.. dipole antenna element 45 201131894 804.. dipole antenna element 806.. finger structure 808.. finger structure 810.. finger structure 812.. finger structure 902.. . Antenna Element 904.. . Antenna Element 906.. .R F switch 908.. RF switch 1000... Multimode antenna structure 1002.. Multimode antenna structure 1004.. Connection element 1006.. Ground plane upper edge 1008.. Connection element 1010.. . 1100.. . Multimode antenna structure 1102.. Connecting element 1104.. Connecting element 1106.. Antenna element 1108.. Antenna element 1110.. Switch 1112... Switch 1200.. Multimode antenna structure 1202. . Connecting element 1204.. Filter 1206.. Antenna element 1208.. Antenna element 1300.. Multimode antenna structure 1302.. Connecting element 1304.. Connecting element 1306.. Filter 1308. . Filter 1400.. Multimode Antenna Structure 1402.. Connecting Element 1406.. Adjustable Frequency Element 1408.. Antenna Element 1410.. Antenna Element 1500.. Multimode Antenna Structure 1502.. Antenna Element 1504.. Antenna Element 1506.. Conductive Connection Element 1508.. Printed Circuit Board Assembly 1510.. Pickup Body 1600.. Multimode Antenna Structure 1602.. Antenna Element 1604.. Antenna Element 1606. . Connecting element 1608.. plastic carrier 46 201131894 1610.. .PCB combination 1700.. .Multimode antenna structure 1702...Plastic carrier 1800.. .Multimode Line structure 1802... three monopole antenna elements 1804.. three monopole antenna elements 1806.. three monopole antenna elements 1808.. connecting elements 1810.. sleeve 1812.. coaxial cable 1814.. coaxial Cable 1816.. . Coaxial cable 1900.. Multimode antenna structure 1902.. Amplifier 1904.. Amplifier 2000.. Multimode antenna structure 2001.. Antenna component 2002.. . Connecting component 2003.. Pickup Shape 2004.. . Antenna Element 2005.. . Slot 2006.. Feed Point 2007.. . Contact Point 2010.. Test Combination

2011.. .PCB 2012.. .金屬板 2014…測試埠 2016.. .測試埠 2100···多模天線結構 2101.. .塑膠載體 2102.. .天線元件 2103.. .彈性印刷電路(FPC) 2104.. .天線元件 2105.. .接腳 2106.. .連接元件 2107.. .接腳 2108.. .墊片 2200…多模天線結構 2202.. .天線元件 2204.. .天線元件 23 00...測試組合 2302…測試埠 2304.. .測試璋 2400.. .場型控制裝置 2402.. .相移器 2404.. .天線饋電 2408.. .天線饋電 2410.. .天線結構 47 201131894 2700.. .單極天線 2702.. .帶阻槽 2704.. .分支共振器 2706.. .分支共振器 2708.. .信號產生器 2720.. .支線帶阻濾波器 2800.. .天線結構 2802.. .第一天線元件 2804.. .第二天線元件 2806.. .連接元件 2808 •"埠 2810.. .埠 2812.. .帶阻槽 2814.. .分支共振器 2816.. .分支共振器 2900.. .多模天線結構 2902.. .彈性膜電介質基片 2904.. .電解質載體 2906.. .帶阻槽 2908.. .天線元件 2910.. .天線元件 2912.. .連接元件 511.. .散射參數 512.. .散射參數 521.. .散射參數 482011.. .PCB 2012.. .Metal Plate 2014...Test 埠2016.. .Test 埠2100···Multimode Antenna Structure 2101..Plastic Carrier 2102.. .Antenna Element 2103.. .Flexible Printed Circuit (FPC 2104.. . Antenna element 2105.. . Pin 2106.. . Connecting element 2107.. . Pin 2108.. Pad 2200... Multimode antenna structure 2202.. Antenna element 2204.. Antenna element 23 00...test combination 2302...test 埠2304..test 璋2400.. field type control device 2402.. phase shifter 2404.. antenna feed 2408.. antenna feed 2410.. antenna Structure 47 201131894 2700.. . monopole antenna 2702.. with stop groove 2704.. branch resonator 2706.. branch resonator 2708.. signal generator 2720.. branch line band rejection filter 2800.. Antenna structure 2802.. 1st antenna element 2804.. 2nd antenna element 2806.. . Connecting element 2808 •"埠2810.. .埠2812.. .Restriction groove 2814.. branch resonance 2816.. branch resonator 2900.. multimode antenna structure 2902.. elastic film dielectric substrate 2904.. electrolyte carrier 2906.. with stop groove 2908.. antenna element 2910.. antenna element 2912.. . Connecting element 51 1.. . Scattering parameters 512.. . Scattering parameters 521.. . Scattering parameters 48

Claims (1)

201131894 七、申請專利範圍: 1. 一種在一通訊裝置中減少近場輻射及比吸收率(SAR)值 的方法,該通訊裝置包括發送及接收電磁信號的一多模 天線結構,以及用以處理傳送至該天線結構之信號與來 自該天線結構之信號的電路,該天線結構包含:複數個 被可操作地耦接到該電路的天線埠;複數個天線元件, 每一個天線元件被可操作地耦接到該等天線埠之中不 同的一個;及一個或更多連接元件,分別在每一個天線 元件上的一位置處電連接對應的天線元件,每一個天線 元件被耦接於此的一天線埠隔開以形成一單一的輻射 結構,且使得一個天線元件上的電流流到一個所連接的 相鄰天線元件,而通常不流到被耦接到該相鄰天線元件 的該天線埠,且流經該一個天線元件及該相鄰天線元件 的該等電流一般地在量測值上相等,因此在一給定期望 信號頻率範圍内由一個天線埠激發的一天線模式一般 地與由另外一天線埠激發的一模式被電氣隔離,且該天 線結構產生分集式天線場型;該方法包含以下步驟: 調整被饋入到該天線結構之相鄰天線埠之信號間 的相對相位,以使被饋入到該一個天線埠的一信號相較 於被饋入到該相鄰天線埠的一信號具有一個不同的相 位,以提供天線場型控制且增加朝向一接收點的一選定 方向上的增益;及 使用低於在該天線結構的一非場型控制操作中使 用的該傳輸功率的一傳輸功率,使得該通訊裝置使用低 49 201131894 於》亥非場型控制操作的傳輸功率來獲取與該接收點大 致相g的無線鏈結性能,從而減少該比吸收率。 2·如申請專利範圍第丨項所述之方法,其中調整信號間的 該相對相位包含使用一電控相移裝置來調整該等信號 間的該相對相位。 3.如申請專利範圍第i項所述之方法,其中調整信號間的 «亥相對相位包含使用__相移網路來調整該等信號間的 該相對相位。 4·如申請專利範圍第!項所述之方法,其中調整信號間的 該相對相位包含藉由控制於該等複數個天線棒中的每 一個天線埠被提供的一載波信號之相位來調整該等信 號間的該相對相位。 5·如申請專利範圍第i項所述之方法,其中該通訊裝置是 蜂巢式手機、個人數位助理(pDA)、無線網路裝置或 一個個人電腦(PC)資料卡。 6. 如申請專利範圍第!項所述之方法,其中該等天線元件 包含螺旋線圈、寬頻帶平面外形、晶片天線、曲折外形、 迴路或電感分流形式。 7. 如申請專利範圍第i項所述之方法’其中該多模天線結 構包含-個在-印刷電路板基材上被製造的平面結構。 8·如申請專利範圍第i項所述之方法,其中該多模天線結 構包含金屬衝壓件,且該金屬衝壓件包括一個在該金屬 衝壓件之質心的拾取形體,以在一自動化檢_放型組裝 流程中使用。 50 201131894 9. 如申請專利範圍第1項所述之方法,其中該多模天線結 構包含被安裝在一塑膠載體或一裝置的一塑膠外殼上 的一彈性印刷電路。 10. 如申請專利範圍第1項所述之方法,其中該接收點是一 基地台、一行動終端機或一路由器。 11. 如申請專利範圍第1項所述之方法,其中調整信號間的 該相對相位包含動態地調整被饋入到相鄰天線埠之信 號間的該相對相位,以維持到達該接收點的一個一般最 佳化通訊鏈結。 12. —種在一通訊裝置中減少近場輻射及比吸收率(SAR)值 的方法,該通訊裝置包括用以發送及接收電磁信號的一 天線陣列,及用以處理傳送至該天線陣列之信號與來自 該天線陣列之信號的電路,該天線陣列包含複數個輻射 元件,每一個輻射元件具有可操作地耦接到該電路的一 天線埠;該方法包含以下步驟: 調整被饋入到該天線陣列之該等天線埠之信號間 的該相對相位,以使被饋入到一個天線埠的一信號相較 於被饋入到另一天線埠的一信號具有一個不同的相 位,以提供天線場型控制且增加朝向一接收點的一選定 方向上的增益;及 使用低於在該天線陣列的一非場型控制操作中使 用的該傳輸功率的一傳輸功率,使得該通訊裝置使用低 於該非場型控制操作的傳輸功率來獲取與該接收點大 致相當的無線鏈結性能,從而減少該比吸收率。 51 201131894 4申請專利範圍第η項所述之方法,其中調整信號間的 忒相對相位包含使用_電控相移裝置來調整該等信號 間的該相對相位。 ' 14·如申請專利範圍第12項所述之方法,其中調整信號間的 该相對相位包含使用—相移網路來調整該等信號間的 該相對相位。 15. 如申請專利範圍第丨2項所述之方法,其中調整信號間的 該相對相位包含藉由控制於該等複數個天線蜂中的每 -個天線料提供的—載波錢之該相位來調整該等 信號間的該相對相位。 16. 如申請專㈣圍第12項所述之方法,其中該通訊裝置是 蜂巢式手機、PDA、無線網路裝置或一個pC資料卡。 17·如申請專利範圍第12項所述之方法,其中該等輻射元件 包含螺旋線圈、寬頻帶平面外形、晶片天線、曲折外形、 迴路或電感分流形式。 】8.如申睛專利範圍第12項所述之方法,其巾該天線陣列包 含一個在一印刷電路板基材上被製造的平面結構。 19. 如申請專利第12項所叙方法,其巾該天線陣列包 含金屬衝壓件,且該金屬衝壓件包括_個在該金屬衝壓 件之質心的拾取形體,以在一自動化撿_放型組裝流程 中使用。 20. 如申請專利範圍第12項所述之方法,其中該天線陣列包 含被安裝在一塑膠載體或一裝置的一塑膠外殼上的一 彈性印刷電路。 52 201131894 21. 如申請專利範圍第12項所述之方法,其中該接收點是一 基地台、一行動終端機或一路由器。 22. 如申請專利範圍第12項所述之方法,其中調整信號間的 該相對相位包含動態地調整被饋入到該等天線埠之信 號間的該相對相位,以維持到達該接收點的一個一般最 佳化通訊鏈結。 53201131894 VII. Patent application scope: 1. A method for reducing near-field radiation and specific absorption rate (SAR) values in a communication device, the communication device comprising a multi-mode antenna structure for transmitting and receiving electromagnetic signals, and for processing a circuit for transmitting signals to the antenna structure and signals from the antenna structure, the antenna structure comprising: a plurality of antennas operatively coupled to the circuit; a plurality of antenna elements, each of the antenna elements being operatively Coupling to a different one of the antennas; and one or more connecting elements, respectively electrically connecting the corresponding antenna elements at a position on each of the antenna elements, each antenna element being coupled to the day The turns are spaced apart to form a single radiating structure, and such that current on one antenna element flows to a connected adjacent antenna element, and typically does not flow to the antenna port coupled to the adjacent antenna element, And the currents flowing through the one antenna element and the adjacent antenna elements are generally equal in magnitude, thus a given desired signal frequency An antenna pattern excited by an antenna 一般 is generally electrically isolated from a pattern excited by another antenna ,, and the antenna structure produces a diversity antenna pattern; the method comprises the steps of: adjusting the feed to the antenna The relative phase between the signals of adjacent antennas of the structure such that a signal fed to the one antenna has a different phase than a signal fed to the adjacent antenna to provide an antenna Field mode control and increasing gain in a selected direction toward a receiving point; and using a transmission power lower than the transmission power used in a non-field type control operation of the antenna structure, such that the communication device uses a low 49 In 201131894, the transmission power of the non-field control operation is used to obtain the wireless link performance substantially equal to the receiving point, thereby reducing the specific absorption rate. 2. The method of claim 2, wherein adjusting the relative phase between the signals comprises using an electronically controlled phase shifting device to adjust the relative phase between the signals. 3. The method of claim i, wherein adjusting the relative phase of the signal comprises using a __ phase shifting network to adjust the relative phase between the signals. 4. If you apply for a patent scope! The method of claim wherein adjusting the relative phase between the signals comprises adjusting the relative phase between the signals by controlling a phase of a carrier signal provided by each of the plurality of antenna bars. 5. The method of claim i, wherein the communication device is a cellular handset, a personal digital assistant (pDA), a wireless network device, or a personal computer (PC) data card. 6. If you apply for a patent scope! The method of claim wherein the antenna elements comprise a helical coil, a broadband planar profile, a wafer antenna, a meander profile, a loop or an inductive shunt. 7. The method of claim i wherein the multimode antenna structure comprises a planar structure fabricated on a printed circuit board substrate. 8. The method of claim i, wherein the multimode antenna structure comprises a metal stamping member, and the metal stamping member comprises a picking body at a centroid of the metal stamping member for an automated inspection _ Used in the assembly process. The method of claim 1, wherein the multimode antenna structure comprises an elastic printed circuit mounted on a plastic carrier or a plastic housing of a device. 10. The method of claim 1, wherein the receiving point is a base station, an mobile terminal, or a router. 11. The method of claim 1, wherein adjusting the relative phase between signals comprises dynamically adjusting the relative phase between signals fed to adjacent antennas to maintain a destination that reaches the receiving point. Generally optimized communication links. 12. A method of reducing near field radiation and specific absorption rate (SAR) values in a communication device, the communication device comprising an antenna array for transmitting and receiving electromagnetic signals, and for processing transmission to the antenna array a circuit and a signal from the antenna array, the antenna array including a plurality of radiating elements, each radiating element having an antenna 可 operatively coupled to the circuit; the method comprising the steps of: adjusting is fed to the The relative phase between the signals of the antennas of the antenna array such that a signal fed to one antenna has a different phase than a signal fed to the other antenna to provide an antenna Field mode control and increasing gain in a selected direction toward a receiving point; and using a transmission power lower than the transmission power used in a non-field type control operation of the antenna array such that the communication device is used below The non-field type controls the transmission power of the operation to obtain a wireless link performance substantially equivalent to the reception point, thereby reducing the specific absorption rate. 51 201131894 4 The method of claim n, wherein adjusting the relative phase of the signals comprises using an electronically controlled phase shifting device to adjust the relative phase between the signals. The method of claim 12, wherein adjusting the relative phase between the signals comprises using a phase shifting network to adjust the relative phase between the signals. 15. The method of claim 2, wherein the relative phase between the adjustment signals comprises the phase of the carrier money provided by each antenna material controlled by the plurality of antenna bees. Adjust the relative phase between the signals. 16. The method of claim 12, wherein the communication device is a cellular phone, a PDA, a wireless network device or a pC data card. 17. The method of claim 12, wherein the radiating elements comprise a helical coil, a broadband planar shape, a wafer antenna, a meander profile, a loop or an inductive shunt. 8. The method of claim 12, wherein the antenna array comprises a planar structure fabricated on a printed circuit board substrate. 19. The method of claim 12, wherein the antenna array comprises a metal stamping member, and the metal stamping member comprises a picking body at a centroid of the metal stamping member, in an automated 捡-type Used in the assembly process. 20. The method of claim 12, wherein the antenna array comprises an elastic printed circuit mounted on a plastic carrier or a plastic housing of a device. The method of claim 12, wherein the receiving point is a base station, an mobile terminal, or a router. 22. The method of claim 12, wherein adjusting the relative phase between the signals comprises dynamically adjusting the relative phase between signals fed to the antennas to maintain one of the receiving points. Generally optimized communication links. 53
TW099116692A 2009-05-26 2010-05-25 Methods for reducing near-field radiation and specific absorption rate (sar) values in communications devices TWI532256B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US18117609P 2009-05-26 2009-05-26

Publications (2)

Publication Number Publication Date
TW201131894A true TW201131894A (en) 2011-09-16
TWI532256B TWI532256B (en) 2016-05-01

Family

ID=45838081

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099116692A TWI532256B (en) 2009-05-26 2010-05-25 Methods for reducing near-field radiation and specific absorption rate (sar) values in communications devices

Country Status (4)

Country Link
JP (1) JP2012528531A (en)
KR (1) KR101727303B1 (en)
CN (1) CN102576936A (en)
TW (1) TWI532256B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102810126A (en) * 2012-07-18 2012-12-05 上海交通大学 Method for reducing specific absorption rate (SAR) of multiple input multiple output (MIMO)-user equipment (UE) and simulation system thereof
CN103067763B (en) * 2012-12-25 2015-10-28 广东远峰电子科技有限公司 A kind of TV box promoting transmission of wireless signals efficiency
CN104412449B (en) * 2014-03-03 2016-10-12 华为终端有限公司 A kind of antenna and wireless terminal
KR102532660B1 (en) * 2016-09-19 2023-05-16 삼성전자주식회사 Electronic Device Comprising Antenna
CN109638459B (en) * 2018-12-29 2021-07-09 瑞声科技(南京)有限公司 Packaged antenna module and electronic equipment
CN112421211B (en) * 2019-08-23 2022-01-14 华为技术有限公司 Antenna and electronic equipment
CN110474167B (en) * 2019-08-26 2021-07-16 联想(北京)有限公司 Electromagnetic wave control method and device
CN113540758B (en) * 2020-04-22 2022-10-25 华为技术有限公司 Antenna unit and electronic device
KR20220006925A (en) * 2020-07-09 2022-01-18 삼성전자주식회사 ANTENNA APPARATUS FOR VEHICLE, AND METHOD FOR CONTROLLING THE SAME, computer READABLE MEDIUM STORING A PROGRAM FOR PERFORMING THE SAME METHOD

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239755B1 (en) * 1999-10-28 2001-05-29 Qualcomm Incorporated Balanced, retractable mobile phone antenna
FI119861B (en) * 2002-02-01 2009-04-15 Pulse Finland Oy level antenna
KR20040103082A (en) * 2003-05-30 2004-12-08 엘지전자 주식회사 Device and the Method for processing the electromagnetic wave of mobile phone
TW200629772A (en) * 2004-01-14 2006-08-16 Interdigital Tech Corp Method and apparatus for dynamically selecting the best antennas/mode ports for transmission and reception
US7183994B2 (en) * 2004-11-22 2007-02-27 Wj Communications, Inc. Compact antenna with directed radiation pattern
US7688275B2 (en) * 2007-04-20 2010-03-30 Skycross, Inc. Multimode antenna structure
US7688273B2 (en) * 2007-04-20 2010-03-30 Skycross, Inc. Multimode antenna structure

Also Published As

Publication number Publication date
JP2012528531A (en) 2012-11-12
CN102576936A (en) 2012-07-11
KR101727303B1 (en) 2017-04-14
TWI532256B (en) 2016-05-01
KR20120015352A (en) 2012-02-21

Similar Documents

Publication Publication Date Title
TWI505563B (en) Multimode antenna structure
US9680514B2 (en) Methods for reducing near-field radiation and specific absorption rate (SAR) values in communications devices
US9401547B2 (en) Multimode antenna structure
TWI532256B (en) Methods for reducing near-field radiation and specific absorption rate (sar) values in communications devices
US20080258991A1 (en) Multimode Antenna Structure
JP5616955B2 (en) Multimode antenna structure
WO2010138453A2 (en) Methods for reducing near-field radiation and specific absorption rate (sar) values in communications devices

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees