TW201131747A - Memory device and method for fabricating the same - Google Patents

Memory device and method for fabricating the same Download PDF

Info

Publication number
TW201131747A
TW201131747A TW99106295A TW99106295A TW201131747A TW 201131747 A TW201131747 A TW 201131747A TW 99106295 A TW99106295 A TW 99106295A TW 99106295 A TW99106295 A TW 99106295A TW 201131747 A TW201131747 A TW 201131747A
Authority
TW
Taiwan
Prior art keywords
substrate
memory
doped regions
disposed
memory cell
Prior art date
Application number
TW99106295A
Other languages
Chinese (zh)
Other versions
TWI442551B (en
Inventor
Yu-Fong Huang
I-Shen Tsai
Shang-Wei Lin
Miao-Chih Hsu
Kuan-Fu Chen
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW99106295A priority Critical patent/TWI442551B/en
Publication of TW201131747A publication Critical patent/TW201131747A/en
Application granted granted Critical
Publication of TWI442551B publication Critical patent/TWI442551B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A memory device is provided, including a substrate, a conductive layer, a charge storage layer, a plurality of first and second dopant regions and a plurality of first and second cell dopant regions. A plurality of trenches is deployed in the substrate. The conductive layer is disposed on the substrate and fills the trenches. The charge storage layer is disposed between the substrate and the conductive layer. The first and second dopant regions having a first conductive type are configured in the substrate under bottoms of the trenches and in an upper portion of the substrate between two adjacent trenches, respectively. The first and second cell dopant regions having a second conductive type are configured in the substrate between lower portions of side surfaces of the trenches and in the substrate adjacent to the bottoms of the second dopant regions, respectively. The first and the second conductive types are different dopant types.

Description

201131747 i 32287ΐλνf.doc/π 六、發明說明: 【發明所屬之技術領域】 本發明是有關於-種記憶體元件及其製造方法 別是有關於-種具有《記憶胞之記憶體元件及其方 法。 ,、衣。 【先前技術】 記憶體為設計來儲存資訊或資料之半導體4 腦微處理器之功能變得越來越強,軟體所進行的程式= 增加。因此,記憶體的容量需求也就越來越高。 ^各式的記憶體產品中,_發性記龍允許多次的資料 程式化、讀取及抹除操作,且其中儲存的資料即使在 體被斷電後仍可則祕。基於上錢點,非揮發性記憶體 已成為個人電腦和電子設備所廣泛採用的—種記憶體’。 非揮發性記髓巾的可電抹除可程^ t唯讀記憶體 (Electncally Erasable Programmable Read Only Memory > EEPR0M)具有可進行多次資料之存入、讀取、抹除等動 作,且存入之資料在斷電後也不會消失之優點,所以已成 為個人電腦和電子設備所廣泛採用的一種記憶體元件。典 型的可電絲且可程式化唯讀記憶體係以摻雜的多晶石夕製 =洋置問極(Floating Gate)與控制閘極(c〇咖】Gate)。當記 憶體進行程式化(pr〇gram)時,注入浮置間極的電子會均勻 刀布於整個多晶矽浮置閘極層之中。然而,當多晶矽浮置 間極層下方的穿晚化層有㈣存在時,就容|造成元件 201131747 32287t\vf.d〇c/n 的漏電流,影響元件的可靠度。 因此,為了解決可電抹除可程式化 電流之問題,目前習知的一種方法件漏 極。^ ϋΓ )問極結構來取代多晶石夕浮置閘 在元件層取代多㈣浮置_的另—項優點是, 電子僅會在接近源極或沒極上方的通道 '指地儲存。因此,在進行程式化時以 一端的源極區與控制閘極施加_,而:: 層:產生高斯分布的ΐ 匕夕層中產生南斯分布的。 源極/汲極區所施加電壓心在;變= 布的電子或是不存在電子。因此,此種^>^八有呵斯刀 :::胸快閃記憶體’可以在單一的心:: $ 了提升單-記憶胞的位域,f知技術 有垂直記憶胞的記憶體結構,為一種單一種” bks/丨eell)之'_憶體。然而,此具有垂 憶體結構在垂直相鄰的兩位元之間容易發生:”二己 (punch through)的現象,而產生嚴重漏電流的何#牙 垂直記憶胞的記憶體結構還具有不對稱啟始電壓與=稱 201131747… r7〇uu:7u j2287tAvf. doc/π 稱程式化速度等問題,而使得具有垂直記憶胞的記憶體元 件的效能降低。 因此,如何達到更高的記憶體密度,且能解決上述問 題以使記憶體元件保有一定水準的元件效能,仍是目前極 為重要的課題。 【發明内容】 有鑑於此,本發明提供一種記憶體元件,具有較佳的 元件效能。 本發明提供一種記憶體元件的製造方法,可有效地解 決具有垂直記憶胞之記憶體元件的電性問題。 本發明的一實施例提出一種記憶體元件,包括基底、 導體層、電荷儲存層、多個第一摻雜區、多個第二摻雜區、 多個記憶胞摻雜區。基底中具有多個溝渠。導體層配置於 基底上且填滿溝渠。電荷儲存層配置於基底與導體層之 間。第一摻雜區分別配置於溝渠底部下方的基底中,且具 有第一導電型。第二摻雜區分別配置於相鄰兩個溝渠之間 的基底中,且具有第一導電型。記憶胞摻雜區分別配置於 溝渠的側表面的之間的基底中,且具有第二導電型。其中, 第一導電型與第二導電型為不同的摻雜型態。 依照本發明的一實施例所述,在上述之記憶體元件 中,更包括井區,配置於第一摻雜區下方的基底中,且具 有第二導電型。 依照本發明的一實施例所述,在上述之記憶體元件 201131747 32287twf.doc/r 中’各個第-摻雜區的寬度大於各個溝渠 依照本發明的一實施例所述,在上述之^ 中’記憶胞摻雜區包括多個第一記憶胞換 2體元件 :己憶f參雜區。第-記憶胞摻雜區分別配置;二:個第二 :部之間的基底中。第二記憶胞摻雜區分別配;=表 ;弟—摻雜區底部的基底中。 —置於鄰近 依照本發明的—實施例所述,在 二’更包括底介電層及頂介電層。底介電層配,元件 ^與基底之間。TI介電詹配置於電荷心層及導 中 法 區 依照本發明的—實施例所述,在上 更包括金屬砂化物層,配置於導體層上。5己憶體元件 元件的製造方 然後,於基底中形成多個;表面 :表面,而記憶胞摻雜區位於側表 2與多個 朿,於基底基底中。財 —摻雜^與多個第二播雜Ρ。结 別:雜“別配置於下表面下方的基底中。笛第 剐配置於上表面下方的 甘+_中弟二摻雜區分 電型,而第-記憶皰摻:盘第::二摻雜區具有第-導 導電型,且第-導電型盘;胞摻雜區具有第二 之後,於基底上形成i::弟7 為不同的掺雜型態。 體層,導體層覆蓋電;:::層。再者’於基底上形成導 兒何储存層。 依照本發明的〜f4 貧知例所述,在上述之記憶體元件的 201131747… 32287t\vf.d〇c/n 方法中,δ己憶胞摻雜區包括多個弟一記憶胞換雜區及 多個第二記憶胞摻雜區。第一記憶胞摻雜區分別配置於 表面下部之間的基底中。第二記憶胞摻雜區分別配 抑 近於第—摻雜區底部的基底中。 :一 ,土依照本發明的一實施例所述,在上述之記憶體元件的 製造方法中,更包括於形成記憶胞摻雜區之前,於基底中 形成井區’而井區位於記憶胞掺雜區下方。 土― 依照本發明的一實施例所述,在上述之記憶體 製造方法中,側表面、上表面與下表面的形成方法 基底中形成多個溝渠。 、 依照本發明的-實施例所述,在上述之記憶體元 製邊方法中’溝渠的形成方法包括對基底進行—個圖案化 製程,以移除具有記憶胞摻雜區的部份基底。 /、 依照本發明的一實施例所述,在上述之記憶體元件的 製造方法中,各個第一摻雜區的寬度大於各個下表面的寬 度。 , 依照本發明的-實施例所述,在上述之記憶體元件的 製造方法中’第-摻雜區與第二摻雜區的形成方法包括下 列少雜1先,共形地於基底及溝渠絲面上形成犧牲氧 化層接著,對基底進行一個離子植入製程。然後,移除 犧牲氧化層。 依照本發明的-實施例所述,在上述之記憶體元件的 製造方法中’第-摻雜區與第二摻雜區的形成方法包括下 列夕雜首先’於基底中形成側表面,側表面底部各具有 201131747 ^ i. j o\j\j j \j 32287twf.doc/n -個傾斜Φ。接著,共形祕基絲面上形成 然後,對基底進行料狀餘。接下來| =匕層。 層。 夕咏犧牲氧化 本發明的另—實施例提出一種記憶體 底、導體層、電荷儲存層、多個第—摻雜區、多個^括^ 雜區及多個記憶胞摻雜區。基底中具有多個 弟 上表面與多個下表面。導體層配置於基底上。201131747 i 32287ΐλνf.doc/π VI. Description of the Invention: [Technical Field] The present invention relates to a memory element and a method of fabricating the same, and a memory element and method thereof . ,,clothes. [Prior Art] Memory is a semiconductor designed to store information or data. The function of the brain microprocessor is getting stronger and stronger, and the program performed by the software is increased. Therefore, the capacity requirements of the memory are getting higher and higher. ^ Among all kinds of memory products, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Based on the money, non-volatile memory has become a kind of memory widely used in personal computers and electronic devices. Electrocable Erasable Programmable Read Only Memory ( EEPR0M) has the ability to store, read, erase, etc. multiple data, and save The incoming data does not disappear after power failure, so it has become a memory component widely used in personal computers and electronic devices. A typical wire-optic and programmable vocal memory system with doped polycrystalline stone = Floating Gate and Control Gate (Gate). When the memory is programmed (pr〇gram), the electrons injected into the floating interpole are evenly distributed throughout the polysilicon floating gate layer. However, when there is (4) the presence of the latent layer under the polysilicon floating interpole layer, the leakage current of the component 201131747 32287t\vf.d〇c/n is affected, which affects the reliability of the component. Therefore, in order to solve the problem of electrically erasing the programmable current, a conventional method is known as a drain. ^ ϋΓ ) Asking the pole structure to replace the polycrystalline stone floating gate The other advantage of replacing the multiple (four) floating _ in the component layer is that the electron is only stored in the channel near the source or the pole. Therefore, when stylizing, _ is applied to the source region and the control gate at one end, and:: Layer: The distribution of the nesian layer in the 产生 匕 layer that produces the Gaussian distribution. The voltage applied to the source/drain region is changed; the change is the electron of the cloth or there is no electron. Therefore, this kind of ^>^ has a slashed knife::: chest flash memory 'can be in a single heart:: $ to enhance the single-memory cell bit field, f know technology has vertical memory cell memory The structure is a single type of "bks/丨eell"'s memory. However, this has a memory structure that easily occurs between vertically adjacent two-dimensional elements: "punch through" phenomenon, and The memory structure of the vertical vertical memory cell that produces severe leakage current also has an asymmetric starting voltage and = 201131747... r7〇uu:7u j2287tAvf. doc/π is called the stylized speed and so on, so that it has vertical memory cells. The performance of the memory component is reduced. Therefore, how to achieve higher memory density and solve the above problems to maintain a certain level of component performance of memory components is still an extremely important issue at present. SUMMARY OF THE INVENTION In view of the above, the present invention provides a memory device having better component performance. The present invention provides a method of fabricating a memory device that effectively solves the electrical problem of a memory device having vertical memory cells. An embodiment of the invention provides a memory device including a substrate, a conductor layer, a charge storage layer, a plurality of first doped regions, a plurality of second doped regions, and a plurality of memory cell doped regions. There are multiple trenches in the substrate. The conductor layer is disposed on the substrate and fills the trench. The charge storage layer is disposed between the substrate and the conductor layer. The first doped regions are respectively disposed in the substrate below the bottom of the trench and have a first conductivity type. The second doped regions are respectively disposed in the substrate between the adjacent two trenches and have a first conductivity type. The memory cell doped regions are respectively disposed in the substrate between the side surfaces of the trench and have a second conductivity type. Wherein, the first conductivity type and the second conductivity type are different doping types. According to an embodiment of the invention, the memory device further includes a well region disposed in the substrate below the first doped region and having a second conductivity type. According to an embodiment of the present invention, in the memory element 201131747 32287 twf.doc/r, the width of each of the first doped regions is larger than each of the trenches according to an embodiment of the present invention, in the above The 'memory doped region includes a plurality of first memory cells for the 2 body element: the recalled f-doped region. The first-memory cell doped regions are respectively arranged; two: one second: in the substrate between the portions. The second memory cell doped regions are respectively arranged in the base of the bottom of the doped region; - placed adjacent to the embodiment according to the invention, further comprising a bottom dielectric layer and a top dielectric layer. The bottom dielectric layer is matched between the component ^ and the substrate. The TI dielectric is disposed in the charge core layer and the conductive region. According to an embodiment of the present invention, a metal silicide layer is further disposed on the conductor layer. 5 Completion of the component The component is then formed into a plurality of surfaces; the surface: the surface, and the memory cell doped region is located in the side surface 2 and the plurality of defects in the substrate. Treasury - doping ^ with multiple second pods. Junction: Miscellaneous "Do not be placed in the base below the lower surface. The flute is placed under the upper surface of the Gan + _ Zhong Di two doping distinguishes the electric type, while the first - memory blister: disc:: two doping The region has a first-conducting conductivity type, and the first-conducting type disc; after the cell-doped region has a second, i::di is formed on the substrate to have different doping types. The bulk layer, the conductor layer covers the electricity; : Layer. Further, 'the storage layer is formed on the substrate. According to the ~f4 poor example of the present invention, in the above-mentioned memory element 201131747... 32287t\vf.d〇c/n method, δ The memory cell doped region includes a plurality of memory-cell replacement regions and a plurality of second memory cell doped regions. The first memory cell doped regions are respectively disposed in the substrate between the lower portions of the surface. The impurity regions are respectively disposed in the substrate near the bottom of the first doped region. First, the soil is further included in the method for fabricating the memory device according to an embodiment of the present invention. Before the area, the well area is formed in the basement while the well area is located below the memory cell doped area. According to an embodiment of the invention, in the method of fabricating a memory, a plurality of trenches are formed in a substrate for forming a side surface, an upper surface, and a lower surface. According to the embodiment of the present invention, the memory is described above. In the method of forming a trench, the method for forming a trench includes performing a patterning process on the substrate to remove a portion of the substrate having the memory cell doped region. /, in accordance with an embodiment of the present invention, in the memory described above In the manufacturing method of the body member, the width of each of the first doping regions is larger than the width of each of the lower surfaces. According to the embodiment of the present invention, in the method for manufacturing the memory device described above, the first doping region and The method for forming the second doping region comprises the following steps: forming a sacrificial oxide layer conformally on the substrate and the trench surface, and then performing an ion implantation process on the substrate. Then, removing the sacrificial oxide layer. In the above-described method for fabricating a memory device, the method of forming the first doped region and the second doped region includes the following: first forming a side surface in the substrate The bottoms of the side surfaces each have 201131747 ^ i. jo\j\jj \j 32287twf.doc/n - an inclination Φ. Then, the conformal secret base is formed on the surface of the silk, and then the substrate is subjected to a material balance. Next | = 匕Layer. The other embodiment of the present invention provides a memory bottom, a conductor layer, a charge storage layer, a plurality of first doped regions, a plurality of complementary regions, and a plurality of memory cell doping. The substrate has a plurality of upper surfaces and a plurality of lower surfaces, and the conductor layer is disposed on the substrate.

體層之間。第一摻雜區分別配=下:: 具有第一導電型。第二摻雜區分別配置 於上表面下方的基底中,且具有第—導 區分別配置於側表面之間的基底中,且具有:己 型,其中第-導電型與第二導電型為不同的摻雜型態。 =發明的另一實施例所述,在上述之記憶體元件 ;第=區’配置於第一換雜區下方的基底中,且具 ^照本發明的另一實施例所述,在上述之記憶體元件 中’各個第-摻雜區的寬度大於各個下表面的寬度。 依照本發明的另一實施例所述,在上述之記憶體元件 ^ ’§己憶胞摻雜區包括多個第—記憶胞摻雜區及多個第二 記憶胞摻雜區。第—記憶胞摻雜區分別配置於側表面下部 之間的基底巾。第二記憶胞摻雜區分別配置於鄰近於第二 摻雜區底部的.基底中。 依如、本發明的另一實施例所述,在上述之記憶體元件 中,更包括底介電層及頂介電層。底介電層配置於電荷铸 201131747 32287lwf.doc/n =層與基紅間。頂介電層配置㈣荷儲存層及導體層之 中,另一實施例所述,在上述之記憶體元件 中更已括金屬石夕化物層,配置於導體層上。 記憶於^^例之記憶體元件具有第― 電壓、可產生^ 因此具有對稱的起始 此外,當體元件的效能。 時’可防止位於頂部的記‘===意度 :=具有對稱的程式化速度,二:1: 地解:ί右t ΐ明實施例之記憶體元件的製造方法可有 用本;:明記憶胞之記憶體元件的電性問題,因:攻 二之記憶體元件的製造方法可更進〜炎] 口己(·思胞尺寸,以提高儲存密度。 乂‘砵 例,為Γί返特徵和優點能更明顯祕,下文特舉賁} 例’亚配合所附圖式作詳細說明如下。 ^施 【實施方式】 件料為本發明之—實施例的 氧化=圖:=選擇性地於基底10。上,、 饿牲虱化層102的材料例如是氧化矽。设 201131747 i^yauuyt, 32287wf.doc/n 氧化層102的形成方法例如是熱氧化法。 接著’可選擇性地於基底100中形成井區1〇4。井區 1〇4的形成方法例如是離子植入法,所植入的離子例如是p 型掺質,而使得井區104具有P型導電型。形成井區1〇4 的離子植入能量例如是250 KeV至350 KeV,而植入離子 濃度例如是 lxl〇13/Cm2 至 5xl〇13/cm2。 然後,於井區104上方的基底100中形成第一記憶胞 摻雜區106,且第一記憶胞摻雜區1〇6與井區1〇4彼此分 離。第一記憶胞摻雜區106的形成方法例如是離子植入 法’所植入的離子例如是P型掺質,而使得第一記憶胞換 雜區106具有P型導電型。形成第一記憶胞摻雜區106的 能量例如是6〇 KeV至8G KeV ’而離子植入濃度 例如疋 lxl〇]3/Cm2 至 lx1〇14/cm2。 ,下來’於第-記憶胞摻雜區106上方的基底中 =成弟―,己憶胞摻雜區108 ’且第二記憶胞推雜區⑽盥 ==胞摻雜區106彼此分離。第二記憶胞摻雜區108 是離子植入法,所植入的離子例如是p型 ^ *使付苐二記憶胞摻雜區108具有p型導電型。形 ί弟3Γ=胞摻⑽的離子植人能量例如是10 Kev 而離子植入濃度例如是—2至 ,移除犧牲氧化層1G2。犧牲氧化 層102的移除方法例如是濕核刻法。 再者,於基底1GG t形成多個側表面UGa、多個上表 201131747 r y〇Kjxjy\j 32287twf.doc/n 面110b與多個下表面]10C。側表面]i〇a、上表面11〇b 與下表面110c的形成方法例如是於基底1 〇〇中形成多個溝 渠110,且溝渠110包括側表面U〇a與下表面11〇c。第一 記憶胞摻雜區106與第二記憶胞摻雜區1〇8位於側表面 110a之間的基底100中。第一記憶胞摻雜區]%位於溝渠 110的側表面110a的下部之間。溝渠11〇的形成方法例如 是對基底100進行一個圖案化製程,以移除具有第一記憶Between the body layers. The first doped regions are respectively assigned = lower:: having the first conductivity type. The second doped regions are respectively disposed in the substrate below the upper surface, and have the first guiding regions respectively disposed in the substrate between the side surfaces, and have a type: the first conductive type and the second conductive type are different Doping type. According to another embodiment of the invention, in the above memory element; the == region is disposed in the substrate below the first impurity-changing region, and according to another embodiment of the present invention, in the above The width of each of the first doped regions in the memory element is greater than the width of each of the lower surfaces. According to another embodiment of the present invention, in the memory device, the memory cell doped region includes a plurality of first memory cell doped regions and a plurality of second memory cell doped regions. The first memory cell doped regions are respectively disposed on the substrate towels between the lower portions of the side surfaces. The second memory cell doped regions are respectively disposed in the substrate adjacent to the bottom of the second doped region. According to another embodiment of the present invention, in the memory device, the bottom dielectric layer and the top dielectric layer are further included. The bottom dielectric layer is disposed in the charge casting 201131747 32287lwf.doc/n = between the layer and the base red. In the top dielectric layer arrangement (4), the storage layer and the conductor layer are further described. In another embodiment, the metal element layer is further included in the memory element, and is disposed on the conductor layer. The memory component that is memorized in the ^^ example has a ―voltage, which can be generated, thus having a symmetrical start. Furthermore, the effectiveness of the body component. Time 'can prevent the record at the top' ===Ideity: = has a symmetrical stylized speed, two: 1: ground solution: ί right t 制造 The manufacturing method of the memory element of the embodiment can be useful; The electrical problem of the memory component of the memory cell, because: the method of manufacturing the memory component of the attack can be more advanced ~ inflammation] (the size of the cell to increase the storage density. 乂 'example, for the Γ 返 feature And the advantages can be more obvious, the following is a detailed description of the example of the sub-combination. The embodiment is as follows: oxidation of the embodiment of the invention - Figure: = selective The material of the substrate 10, the upper, and the hungry layer 102 is, for example, yttrium oxide. The method for forming the oxide layer 102 of 201131747 i^yauuyt, 32287wf.doc/n is, for example, a thermal oxidation method. The well region 1〇4 is formed in 100. The formation method of the well region 1〇4 is, for example, ion implantation, and the implanted ions are, for example, p-type dopants, so that the well region 104 has a P-type conductivity type. The ion implantation energy of 1〇4 is, for example, 250 KeV to 350 KeV, and the implant ion concentration is, for example, lxl〇1 3/Cm2 to 5xl〇13/cm2. Then, a first memory cell doped region 106 is formed in the substrate 100 above the well region 104, and the first memory cell doped region 1〇6 and the well region 1〇4 are separated from each other. The first memory cell doped region 106 is formed by, for example, ion implantation, wherein the implanted ions are, for example, P-type dopants, such that the first memory cell replacement region 106 has a P-type conductivity. The energy of the memory cell doped region 106 is, for example, 6 〇 KeV to 8 G KeV ' and the ion implantation concentration is, for example, 疋lxl 〇] 3 / Cm 2 to 1 x 1 〇 14 / cm 2 , and is 'under the first - memory cell doped region 106 In the basement = Chengdi, the cell doping region 108' is recalled and the second memory cell doping region (10) 盥 = = the cell doping region 106 is separated from each other. The second memory cell doping region 108 is an ion implantation method, The ion implanted is, for example, p-type ^* such that the memory cell doped region 108 has a p-type conductivity type. The ion implantation energy of the cell (10) is, for example, 10 Kev and the ion implantation concentration is, for example. Yes—2 to remove the sacrificial oxide layer 1G2. The removal method of the sacrificial oxide layer 102 is, for example, a wet core engraving method. Further, a plurality of sides are formed on the substrate 1GG t Surface UGA, a plurality of the above table 201131747 ry〇Kjxjy\j 32287twf.doc/n face 110b and a plurality of lower surfaces] 10C. The side surface] i〇a, the upper surface 11〇b and the lower surface 110c are formed, for example, in A plurality of trenches 110 are formed in the substrate 1 and the trenches 110 include a side surface U〇a and a lower surface 11〇c. The first memory cell doped region 106 and the second memory cell doped region 1〇8 are located on the side surface 110a. Between the base 100. The first memory cell doped region]% is located between the lower portions of the side surfaces 110a of the trenches 110. The method of forming the trench 11〇 is, for example, performing a patterning process on the substrate 100 to remove the first memory.

胞摻雜區106與第二記憶胞摻雜區1〇8的部份基底丨⑽而 形成之。 繼之,於共形地於基底100及溝渠110的表面上形^ 犧牲氧化層112。犧牲氧化層112的厚度例如是5()埃至 埃。犧牲氧化層112的材料例如是氧化發。犧牲氧化層u 的形成方法例如是再氧化法。 *當犧牲氧化層112的厚度在5〇埃至1〇〇埃時,在名 續利用離子植人法形成第—埋人式接雜區(圖W中的㈣ ]14)與弟一埋入式摻雜區(圖lc中的標號他The cell doping region 106 is formed with a portion of the substrate buffer (10) of the second memory cell doping region 1〇8. Subsequently, the sacrificial oxide layer 112 is formed conformally on the surface of the substrate 100 and the trench 110. The thickness of the sacrificial oxide layer 112 is, for example, 5 () angstroms to angstroms. The material of the sacrificial oxide layer 112 is, for example, oxidized hair. The formation method of the sacrificial oxide layer u is, for example, a reoxidation method. * When the thickness of the sacrificial oxide layer 112 is 5 〇 to 1 〇〇, the ionic implant method is used to form the first-buried-type junction region ((4) in Figure W) 14) Doped region (marked in Figure lc

地避免第一埋入式摻雜區盥第_ 二''Γ ^ 且可使得第一拖入' 式摻雜區發生橋接 果。 ;多雜區具有較佳的延伸(extension) 5 ^ 间儿,對基底1〇〇 程,以於基底⑽中形成位於下表面 "6。盆中,所棺入2 %>方的第二埋入式The first buried doping region 盥 _ ' ' Γ ^ is avoided to avoid bridging the first dragged doped region. The multi-hybrid zone has a preferred extension 5 ^ between the substrate 1 to form the lower surface "6 in the substrate (10). In the basin, the second buried type of 2%>

J戶斤植入的離㈣H 埋入式掺雜區114與第二埋 ^貝,而使J is implanted from the (four) H buried doped region 114 and the second buried bead, so that

式摻雜區116具有N 12 201131747 rysuuyo 32287twf.doc/n 濃度例如是聊-⑽ 式摻的導電型態只要第-埋入 電型、井區104室—式多雜區116具有相同的第一導 區⑽具有相同的;雜胞;; 型為不同的摻雜型離即 W3L與第一導電 者所;了並不本貫施例所揭露者為限。 得苐可使 ⑽)的寬度,進而使得第渠11G(或下表面 延伸範圍。笛抽: 式摻雜區114具有更大的 的::夂式摻雜區114的延伸可防止位於頂部 的程Γ度下降,而使得記憶體元件具有對稱 h ’進而提升記賴元件賴作裕度。 弟—埋入式摻雜區丨14八 的基底100中。第二埋A_J別配置於溝渠110底部下方 個溝渠11〇之門的其Λ式摻雜區分別配置於相鄰兩 ⑽鄰近於第里100上部中’且第二記憶胞摻雜區 弟—埋入式摻雜區116底部。 的摻己Ϊ胞摻雜區106與第二記憶胞摻雜區⑽ 垂it鄰t ㈣行促使熱電子的產生以及防止在 提升記生電荷擊穿等優點 ,而可有效地 ’移除犧牲氧化層112。犧牲氧化層112的移除 201131747 r^uuyo 32287twrdoc/n 方法例如是濕式蝕刻法。 接著,請參照圓1D,依 表面上共形地形成底介電屑^岑於基底]〇〇及溝渠〗】〇的 電層122。其_,底介電層曰】Is、電荷儲存層120及頂介 地被形成。底介電層118二】8與頂介電層122可選擇性 電常數材料。在— 實施例中;,如是低介電常數或高介 構形式或是基於能隙工程 電層可以是單層結 的底介電層m的材料例夕Λ:结構形式。單層結構 (HfAlO)。多層結構的 =軋化矽或氧化鋁铪 介電常_叙堆料高 電常數材料之堆疊結構,其例如 =匕石夕/氧切或氧切/氧化邮卿氧切。廣介^ 勺二成广娜是熱氧化法。電荷儲存她的二;The doped region 116 has N 12 201131747 rysuuyo 32287 twf.doc / n concentration is, for example, a talk-type (10)-type conductivity type as long as the first-buried electrical type, the well region 104 - the multi-hybrid 116 has the same first guide The region (10) has the same; the miscellaneous; the type is different from the doping type, that is, the W3L and the first conductor; and is not limited by the disclosure. The width of the (10)) can be made such that the first channel 11G (or the lower surface extension range. The flute: the doped region 114 has a larger:: the extension of the doped region 114 prevents the top portion from being extended The temperature decreases, and the memory element has a symmetry h' to further improve the margin of the recording element. The younger-embedded doping region 丨148 is in the substrate 100. The second buried A_J is disposed in the lower trench below the trench 110 The doped regions of the gates of the 11th gate are respectively disposed in the adjacent two (10) adjacent to the upper portion of the first 100th and the second memory cell doped region - the bottom of the buried doping region 116. The doped region 106 and the second memory cell doped region (10) are perpendicular to the t (four) row to promote the generation of hot electrons and prevent the breakdown charge of the charge generation, thereby effectively removing the sacrificial oxide layer 112. Sacrificial oxidation The removal of the layer 112 201131747 r^uuyo 32287twrdoc / n method is, for example, a wet etching method. Next, please refer to the circle 1D, conformally forming the bottom dielectric chip on the surface ^ 岑 on the substrate 〇〇 and the ditch 〗 】 Electrical layer 122. _, bottom dielectric layer IIs, charge storage layer 120 and The top dielectric layer is formed. The bottom dielectric layer 118B8 and the top dielectric layer 122 are selectively electrically constant materials. In the embodiment, if it is a low dielectric constant or a high dielectric form or based on a gap electrical engineering layer It may be a material example of the bottom dielectric layer m of a single-layer junction: a structural form, a single-layer structure (HfAlO), a multilayer structure, a rolled ruthenium or an aluminum lanthanum dielectric, and a high-constant material. Stacked structure, such as = 匕石夕/ oxygen cut or oxygen cut / oxidized singular oxygen cut. Guangsuke ^ spoon two into Guanga is a thermal oxidation method. Charge storage her two;

二料:其例如是乳化石夕。電荷儲存層120的 I成方法例如疋化學汽相沈積法。頂介電層U 介電材料,其例如是氧化發、氧化二 或氧化_203)。頂介電層122的形成方法例如 疋化學汽相沈積法。 之後,於基底100上形成導體層124。導體層124 如是覆蓋頂介電層]22並填滿溝渠Π0。導體層124的才 料例如是摻雜多晶矽。導體層】24的形成方法二如是 汽相沈積法。 接下來,可選擇性地於導體層m上形成金屬石夕化物 14 201131747 32287twf.d〇c/n 層 126, 以降低阻值並增加導電性。今 材料例如是矽化鎢。全屬矽仆至屬矽化物層126的 化學汽相沈^ 物層126的形成方法例如是 元件呈右例可知’由上4製造方法所製作的記十咅體 上:ΐ;:^Γ106與第二記憶胞摻= U此Zfe體疋件具有對稱的起始Second material: it is, for example, emulsified stone. The method of forming the charge storage layer 120 is, for example, a chemical vapor deposition method. The top dielectric layer U dielectric material, which is, for example, oxidized, oxidized or oxidized _203). The formation method of the top dielectric layer 122 is, for example, a germanium chemical vapor deposition method. Thereafter, a conductor layer 124 is formed on the substrate 100. The conductor layer 124 covers the top dielectric layer 22 and fills the trench Π0. The material of the conductor layer 124 is, for example, doped polysilicon. The second method of forming the conductor layer 24 is a vapor phase deposition method. Next, a metal lithium 14 201131747 32287 twf.d 〇 c/n layer 126 may be selectively formed on the conductor layer m to lower the resistance and increase the conductivity. Today's materials are, for example, tungsten telluride. The method for forming the chemical vapor phase deposition layer 126 of the entire servant layer 126 is, for example, a component of the right example, which is known from the above-mentioned manufacturing method: 记; Γ; The second memory cell is doped = U, this Zfe body element has a symmetrical start

=止在垂直相鄰的兩位元之間發生; 而可有效地提升記賴元件的效能。 牙寺優點’ u〇(m’而當第—埋^式接雜1 114的寬度大於溝渠 時),可防I位;^1)的寬度時(意即具有較大的延伸範圍 記憶胞触式化速度下降,而使得 的操作裕度。肖从化速度,進而提升記憶體元件 件的S問:於決,垂直記憶胞之記憶體元 儲存密度。 了更進一步縮減記憶胞尺寸,以提高 於溝竿Iwtr使㈣—埋人式摻祕114的寬度大 述實施例。町,=^Ge)的寬度的形成方法並不限於上 區11技第二埋人t其他實施例,說㈣—埋入式摻雜 式摻雜區116的其他形成方式。 圖2 A至圖2B戶斤给-认L ◊ A , 所'會不為本發明之另一實施例的第一埋= occurs between vertically adjacent two bits; it can effectively improve the performance of the recording element. The advantage of the temple is 'u〇(m' and when the width of the first-buried type 1 114 is larger than that of the ditch), it can prevent the width of the I-bit; ^1) (meaning that it has a large extended range of memory cells) The speed of the system is reduced, and the operating margin is made. The speed of the singularization increases the S-question of the memory component. In this case, the memory cell storage density of the vertical memory cell is further reduced to further reduce the memory cell size. The gully Iwtr makes the width of the (four)-buried-type doping 114 to be larger. The method of forming the width of the ridge, =^Ge) is not limited to the upper zone 11 technique, the second burying person t other embodiments, say (four) - burying Other ways of forming the doped doped regions 116. Fig. 2A to Fig. 2B are given to recognize L ◊ A, which will not be the first burial of another embodiment of the present invention.

ψ π —埋入式摻雜區的製造流程剖面圖。I 干,與圖1A相同的姓μ , 說明 」的構件則使用相同的標號’同時省略其 15 201131747 ry&wyo 32287t\vf.doc/n 了先’t月參照圖2A’在進行圖1A的步驟之後 犧牲氧化層102。犧牲氧化層1〇2的移除方法例如是濕式 钱刻法。 “’、、 ,著’於基底⑽中形賴表面2lQa、上表面麗 =,面2H)C,而可形成包括側表面⑽及下表面潰 溝渠210的側表面21〇a底部各具有—個傾斜 S憶胞摻雜區1〇6位於溝渠21G的側表面 a的下部之間。溝渠㈣形成方法例如 製程,以移除具有第—記憶胞摻雜區ι〇6 孤胞摻雜區108的部份基底⑽而形成之。 參 ==1的傾斜销由麵㈣針調整侧 犧牲共形地於基底1〇〇及溝渠210的表面上形成 埃。犧=匕氧化層212的厚度例如是5()埃至⑽ 乳匕層212的材料例如是氧化矽。犧牲孽 的形成方法例如是再氧化法。 娜Α化層212 隨後,請參照圖2B,對基底1〇 $雜區214與位於上表面鳩下方的第二 = 埋入式摻雜區214的寬度大於溝渠21〇 = ΐ基分別配置於溝渠210底部下ΐ 個溝:二埋入式摻雜區216分別配置於相鄰I 们溝木210之間的基底】〇 相相 108鄰近於第-埋m… 弟一5己仏皰摻雜區 、弟-埋入式摻雜區216底 16 201131747 ryouuyo 32287twf.doc/n 離子例如是N型掺質,而使 二埋入式摻雜區216 Μ π i + 式杉推S 2U與第 植入法例如是傾斜角離子植入法=成ί 離子 2Η與第二埋入式摻 W 土里入式摻雜區 Κ…5KeV 子植入能量例如是ω 5xl015/cm2。 展度例如是lxl〇】5/cm2至 然後,移除犧牲氧化層212 方法例如是狀_法。 制祕層212的移除 由上述實施例可知,由 * 麗’有助於在利_子植::二成第的 2圍 14。時,可使得第-埋入式摻雜區214具有較大;延伸範 入式至^ C_所緣示為本發明之又—實施例的第-埋 中,二;V、:—埋入式摻雜區的製造流程剖面圖。其 :明相同的構件則使用相同的標號,同時省略其 犧牲=層!^二;的步驟之後,移除 蚀刻法。 魏層搬的移除方法例如是濕式 及下ίΓ於基底刚中形成側表面驗、上表面现 的多個溝而=成包括側表面3他及下表面3i〇c 的㈣f 錢胞摻雜區1G6位於溝渠⑽ mri0-a的下部之間。溝渠310的形成方法例如是對 土-進仃一個圖案化製程,以移除具有第-記憶胞摻 17 201131747 32287t\vf.doc/n 雜區106與第二記憶胞摻. 之。 然後’共形地於基底100及溝渠31〇的表面上形成修 飾乳化層302。在形成修飾氧化層3〇2的過程令,合使溝 =:=的=:=:是氧 化層=移===化層3°2,氧 犧牲=層31°的表面上形成 埃。犧牲氧化層3f2的^ ^3的,列如是50埃請 的形成方法例如是=如是氧终犧牲氧化層- 程,請進行—個離子植入製 3^且第-埋m面3雇下方的第二埋入式穆雜區 度。第一埋入式摻雜====度大於溝渠_的寬 的基底100中。第二 刀別配置於溝渠310底部下方 個溝渠3〗。之間的;二 應鄰近於第二埋 ;二弟—記憶胞穆雜區 離子例如是N型掺底部/中,所植入的 二埋入式摻雜區3161使件弟一埋入式摻雜區3】4與 植入法例如是傾斜角離=型導電型。上述所採用的離子 川與第二埋入式摻雜區^法。第—埋入式穆雜區 316的離子植入能量例如是1〇 18 32287twfd〇c/n 201131747 至25^,而離子植人濃度例如是1><1〇15/咖 5x1(3 /cm。 然後,移除犧牲氧化層312。犧牲氧化層312的 方法例如是濕式蝕刻法。 ” ★由上述實施例可知,由於溝渠31〇的底部圓化, _用離子植入法形成第—埋入式摻雜區314時,可 第一埋入式掺雜區314具有較大的延伸範圍。 元件以下,利㈣1D來介紹本發明之—實闕的記憶體 明麥妝圖1D,記憶體元件包括基底1〇〇、多個第— 憶胞摻雜區106、多個第二記憶胞摻雜區刚、多個第—埋 入式摻雜區114、多個第二埋人式摻雜區ιΐ6、電荷儲 =0及導體層124。基底丨⑻中具有包括多_表面^、 表面mb與多個下表面11Ge,而可形成具有側表 面ll〇a|4下表面110c的多個溝渠11〇。導體層124配置 於基底100上且填滿溝渠110。電荷儲存層120配置於其 ^ 1〇0與導體層124之間。第一埋入式摻雜區114分別‘ 置於溝渠no底部下方的基底⑽中(即,下表面ιι〇 方的基底KK)巾),且具有第—導電型。第—埋 Π4的寬度例如是大於溝渠m的寬度。第二埋入式= 116分別配置於相鄰兩個溝渠110之間的基底1〇〇上部 中(即’上表面1.10b下方的基底100中),且具有第—導電 型。第一記憶胞_區106與第二記憶胞#雜區108位ς 側表面110a之間的基底刚巾。第一記憶胞捧雜區咖 19 32287twf.d〇c/n 201131747 分別配置於溝渠110的 中,且具有第二導電型側^ 11〇a的下部之間的基底⑽ 於鄰近於第二埋人式松第二記憶胞獅區1(38分別配置 有第二導電型。其中^區116底部的基底刚中,且具 摻雜型態。記憶體元件電型與第:導電型為不同的 118、頂介電層122及金:性包括井區104、底介電層 第m掺雜區化物層126。井區104配置於 電型。底介雷展的基底100中,且具有第二導ψ π — A cross-sectional view of the manufacturing process of the buried doped region. I dry, the same surname μ as in Figure 1A, the description of the components use the same label 'while omitted 15 201131747 ry&wyo 32287t\vf.doc/n first 't month reference to Figure 2A' in the implementation of Figure 1A The oxide layer 102 is sacrificed after the step. The method of removing the sacrificial oxide layer 1 〇 2 is, for example, a wet money engraving method. "',,, 'in the base (10), the surface 2lQa, the upper surface 丽 =, the surface 2H) C, and the side surface 21〇a including the side surface (10) and the lower surface collapse channel 210 may be formed at the bottom The oblique S memory cell doped region 1〇6 is located between the lower portions of the side surface a of the trench 21G. The trench (4) is formed by a process such as a process to remove the doped cell doped region 108 having the first memory cell doped region ι6 A portion of the substrate (10) is formed. The inclined pin of =1 = 1 is formed conformally on the surface of the substrate 1 and the trench 210 by the surface (four) pin adjustment side. The thickness of the oxide layer 212 is, for example, 5 () The material of the ruthenium layer 212 is, for example, ruthenium oxide. The formation method of the sacrificial ruthenium is, for example, a reoxidation method. The ruthenium layer 212 Subsequently, please refer to FIG. 2B, and the substrate 1 〇 The second = buried doped region 214 below the surface 鸠 has a larger width than the trench 21 〇 = ΐ is disposed at the bottom of the trench 210, and the second buried trench 216 is disposed adjacent to the trench The base between the woods 210] the phase of the phase 108 is adjacent to the first-buried m... the brother of a 5 blister-doped area, the younger-buried type Zone 216 bottom 16 201131747 ryouuyo 32287twf.doc/n The ion is, for example, an N-type dopant, and the second buried doped region 216 Μ π i + type snail push S 2U and the first implantation method is, for example, a tilt angle ion implantation Method = into ί ion 2 Η and second buried W doped earth doped region Κ ... 5KeV sub-implant energy is, for example, ω 5xl015 / cm 2 . The spread is, for example, lxl 〇 5 / cm 2 to then remove The method of sacrificial oxide layer 212 is, for example, a method. The removal of the secret layer 212 is known from the above embodiment, and it can be made by * 丽's help in the second circumstance of the second: The first-embedded doped region 214 has a larger size; the extended parametiform to the ^C_ is shown as a further embodiment of the present invention - the first buried, the second; the V,: - the buried doped region A cross-section of the manufacturing process. The same components are denoted by the same reference numerals, and the etching method is removed after the step of sacrificing the layer = ^ 2; the removal method of the Wei layer is, for example, wet and under Γ 形成 形成 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在(10) Between the lower portions of mri0-a. The method of forming the trench 310 is, for example, a soiling process to remove the first memory cell doping 17 201131747 32287t\vf.doc/n miscellaneous zone 106 and the second The memory cell is doped. Then, the modified emulsion layer 302 is formed conformally on the surface of the substrate 100 and the trench 31. In the process of forming the modified oxide layer 3〇2, the combination of the groove =:= =:=: It is an oxide layer = shift === layer 3 ° 2, oxygen sacrificial = layer 31 is formed on the surface. Sacrificial oxide layer 3f2 ^ ^ 3, the column is 50 angstroms, for example, if it is = oxygen final sacrificial oxide layer - please perform - ion implantation 3 ^ and the first - buried m surface 3 under the hire The second buried type is mixed. The first buried doping ==== is greater than the width of the trench _ in the substrate 100. The second knife is disposed at the bottom of the ditch 310 at the bottom of the ditch. The second should be adjacent to the second buried; the second brother-memory cell impurity region ion is, for example, N-type doped bottom/middle, and the implanted two buried doped region 3161 enables the embedded one to be embedded. The miscellaneous region 3] 4 and the implantation method are, for example, a tilt angle = type conductivity type. The ion channel and the second buried doping region used above. The ion implantation energy of the first-buried type impurity region 316 is, for example, 1〇18 32287twfd〇c/n 201131747 to 25^, and the ion implantation concentration is, for example, 1><1〇15/coffee 5x1 (3 /cm) Then, the sacrificial oxide layer 312 is removed. The method of sacrificing the oxide layer 312 is, for example, a wet etching method. " ★ As can be seen from the above embodiment, since the bottom of the trench 31 is rounded, the ion implantation method is used to form the first buried When the doped region 314 is implanted, the first buried doped region 314 can have a larger extent. Below the device, the (4) 1D is used to introduce the memory of the present invention. FIG. The substrate includes a substrate, a plurality of first memory cell doped regions 106, a plurality of second memory cell doped regions, a plurality of first buried doped regions 114, and a plurality of second buried doped regions. Ϊ́6, charge storage=0 and conductor layer 124. The substrate 丨(8) has a plurality of trenches 11 including a plurality of surface surfaces, a surface mb and a plurality of lower surfaces 11Ge, and a lower surface 11c having a side surface 11a|| The conductive layer 124 is disposed on the substrate 100 and fills the trench 110. The charge storage layer 120 is disposed between the gate and the conductor layer 124. The first buried doped region 114 is respectively disposed in the substrate (10) below the bottom of the trench no (ie, the base KK of the lower surface), and has a first conductivity type. The width of the first buried layer 4 For example, it is larger than the width of the trench m. The second buried type = 116 is respectively disposed in the upper portion of the substrate 1 between the adjacent two trenches 110 (ie, in the substrate 100 below the upper surface 1.10b), and has the first - Conductive type. The base memory between the first memory cell region 106 and the second memory cell #zab region 108 is located between the side surface 110a. The first memory cell is in the dorm area 19 32287twf.d〇c/n 201131747 respectively The base (10) disposed between the lower portion of the trench 110 and having the second conductive type side 11a is adjacent to the second buried pine second memory cell lion region 1 (38 is respectively configured with the second conductivity type The base of the bottom of the region 116 is just in the middle and has a doped state. The memory device is different from the first: conductivity type 118, the top dielectric layer 122 and the gold: the well region 104, the bottom dielectric a layer m-doped region layer 126. The well region 104 is disposed in an electrical type, and has a second guide in the substrate 100.

門丁1人啻恳θ 配置於電荷儲存層120與基底100之 間。頂介電層〗22配詈於垂_ _The gate 1 θ is disposed between the charge storage layer 120 and the substrate 100. Top dielectric layer 〖22 with 垂 _ _

Pe . M A 置於電何儲存層120及導體層124之 二爐杜物層126配置於導體層124上。記憶體元件 I::树、形成方式及其作用已於前文的實施例中 進仃评、..田的描述,故於此不再贅述。 由上述實施例可知,由於記憶體元件的第一記憶胞播 〇6㈣二記憶胞射麵⑽可控繼直記憶胞中之 上下位元的特性,因此可有$ 文地提升記憶體元件的效能。Pe. M A is disposed on the conductor layer 124 of the second furnace layer 126 of the storage layer 120 and the conductor layer 124. The memory element I:: tree, the formation mode and its function have been described in the previous examples, and are not described here. It can be seen from the above embodiment that since the first memory cell 〇6(4) and the two memory cell surface (10) of the memory element can control the characteristics of the upper and lower bits in the straight memory cell, the performance of the memory device can be improved. .

办此外,當第一埋入式摻雜區114的寬度大於溝渠ιι〇 的見度時,能使得記憶體元件具有對稱的程式化速度,進 而提升記憶體元件的操作裕度。 综上所述,上述實施例之記憶體元件及其製造方法至 少具有下列優點: L由於記憶體元件具有第一記憶胞摻雜區與第二記憶 胞#雜區,因此可有效地提升記憶體元件的效能。 2·當記憶體元件中的第一埋入式摻雜區的寬度大於溝 糸(或下表面)的寬度時,能提升記憶體元件的操作裕度。 20 201131747 rysuuyo 32287twf.doc/n 3.由於記憶體元件可有效地解決具有垂直記憶胞之記 憶體元件的電性問題,因此可更進一步縮減記憶胞尺寸, 以提高儲存密度。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作些許之更動與潤飾,故本 發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1A至圖1D所繪示為本發明之一實施例的記憶體 元件的製造流程剖面圖。 圖2A至圖2B所繪示為本發明之另一實施例的第一埋 入式摻雜區與第二埋入式摻雜區的製造流程剖面圖。 圖3A至圖3C所繪示為本發明之又一實施例的第一埋 入式摻雜區與第二埋入式摻雜區的製造流程剖面圖。 【主要元件符號說明】 100 :基底 102、112、212、312 :犧牲氧化層 104 : 井區 106 : 第一記憶胞摻雜區 108 : 第二記憶胞摻雜區 110、 210、310 :溝渠 110a、210a、310a :侧表面 21 201131747 κνδυυνό 32287t\vf.doc/n 110b、210b、310b :上表面 110c、210c、310c :下表面 114、214、314:第一埋入式摻雜區 116、216、316 :第二埋入式摻雜區 Π8 :底介電層 120 :電荷儲存層 122 :頂介電層 ]24 :導體層 126 :金屬矽化物層 210d :側表面 302 :修飾氧化層In addition, when the width of the first buried doped region 114 is greater than the visibility of the trench, the memory element can have a symmetrical stylized speed, thereby increasing the operational margin of the memory device. In summary, the memory device of the above embodiment and the method of fabricating the same have at least the following advantages: L. Since the memory device has the first memory cell doped region and the second memory cell doped region, the memory can be effectively improved. The performance of the component. 2. When the width of the first buried doped region in the memory element is greater than the width of the trench (or lower surface), the operational margin of the memory device can be increased. 20 201131747 rysuuyo 32287twf.doc/n 3. Since the memory element can effectively solve the electrical problem of the memory element having the vertical memory cell, the memory cell size can be further reduced to increase the storage density. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A to FIG. 1D are cross-sectional views showing a manufacturing process of a memory device according to an embodiment of the present invention. 2A-2B are cross-sectional views showing a manufacturing process of a first buried doped region and a second buried doped region according to another embodiment of the present invention. 3A to 3C are cross-sectional views showing a manufacturing process of a first buried doped region and a second buried doped region according to still another embodiment of the present invention. [Main component symbol description] 100: substrate 102, 112, 212, 312: sacrificial oxide layer 104: well region 106: first memory cell doped region 108: second memory cell doped region 110, 210, 310: trench 110a 210a, 310a: side surface 21 201131747 κνδυυνό 32287t\vf.doc/n 110b, 210b, 310b: upper surface 110c, 210c, 310c: lower surface 114, 214, 314: first buried doped region 116, 216 316: second buried doped region Π8: bottom dielectric layer 120: charge storage layer 122: top dielectric layer] 24: conductor layer 126: metal telluride layer 210d: side surface 302: modified oxide layer

22twenty two

Claims (1)

201131747 rvsuuyo 32287twf.doc/n 七、申請專利範圍: 1. 一種記憶體元件,包括: 一基底,該基底中具有多個溝渠; 一導體層,配置於該基底上且填滿該些溝渠; 一電荷儲存層’配置於該基底與該導體層之間; 多個第一摻雜區,分別配置於該些溝渠底部下方的該 基底中,且具有一第一導電型; 多個第二摻雜區,分別配置於相鄰兩個溝渠之間的該 基底中,且具有該第一導電型;以及 多個記憶胞換雜區,分別配置於該些、溝渠的側表面之 間的該基底中,且具有一第二導電型,其中該第一導電型 與該第二導電型為不同的摻雜型態。 2. 如申請專利範圍第1項所述之記憶體元件,更包 括一井區,配置於該些第一摻雜區下方的該基底中,且具 有該第二導電型。 3. 如申請專利範圍第1項所述之記憶體元件,其中 各該第一摻雜區的寬度大於各該溝渠的寬度。 4. 如申請專利範圍第1項所述之記憶體元件,其中 該些記憶胞摻雜區包括: 多個第一記憶胞摻雜區,分別配置於該些溝渠的側表 面下部之間的該基底中;以及 多個第二記憶胞摻雜區,分別配置於鄰近於該些第二 摻雜區底部的該基底中。 5. 一種記憶體元件的製造方法,該方法包括: 23 201131747 ι^δυυ^ό 32287t\vf.doc/n 於一基底中形成多個記憶胞摻雜區; 於該基底中形成多個側表面、多個上表面與多個下表 面,而該些記憶胞摻雜區位於該些側表面之間的該基底中; 於該基底中形成多個第一摻雜區與多個第二摻雜 區,該些第一摻雜區分別配置於該些下表面下方的該基^ 中,而該些第二摻雜區分別配置於該些上表面下ς其 ,中,其中該些摻雜區具有一第一導電型,; ”與該第二記憶胞摻雜區具有—第二導電型,2 弟一¥電型與該第二導電型為不同的摻雜型態; " 於該基底切成—電荷儲存層;以及 層。於該基底上形成—導體層,該導體層覆蓋該電荷儲存 6·如申請專利範圍M %〜 方法,苴中該此外^ 項所述之記憶體元件的製造 一〒°哀些5己憶胞換雜區包括: 多個第一記憶胞摻雜 之間的該絲巾;以及〜〜彳置於财絲面下部 夕個第一 έ己憶胞換雜ρ. ν 摻雜區底部的該基底中。刀-己置於鄰近於該些第二 7·如申請專利範圍第5 方法’更包括於形成、_^憶體元件的製造 中形成-井區,而該井^此胞_區之前,於該基底 8·如申請專利r二該些記憶胞換雜區下方。 方法,其巾該此触=弟5項所述之記憶體元件的製造 方法包括於絲二成面與該些下表面的形成 24 32287twf.doc/n 201131747 9‘如巾請專利範圍第5項所述之記憶體 方法,各該第-摻顯的寬度大於各該下表面的寬= iU.—種記憶體元件,包括: 又 個下表面 :基底’該基底中具有多個側表面、多個上表面與多 導體層 ’配置於該基底上; ° 。/¾ . L-, 7”儲存層’配置於該基底與該導體層之間; 夕個第一摻雜區,分別配置於該些下表面下方的該基 展中,且具有一第一導電型; 多個第二摻雜區’分別配置於該些上表面下方的該基 氐中,且具有該第一導電型;以及 夕個5己憶胞摻雜區,分別配置於該些側表面之間的該 中且具有一第二導電型,其中該第一導電型與該第 —V電型為不同的摻雜型態。 11·。如申請專利範圍第10項所述之記憶體元件,更包 =區,配置於該些第一摻雜區下方的該基底中,且具 有5亥第二導電型。 如申請專利範圍第10項所述之記憶體元件,其中 k第一摻雜區的寬度大於各該下表面的寬度。 13.如申請專利範圍第1〇項所述之記憶體元件, 该些記憶胞摻雜區包括: 夕個第—記憶胞摻雜區,分別配置於該些側表面下部 Θ的該基底中;以及 夕個第二記憶胞摻雜區,分別配置於鄰近於該些第二 25 201131747 i 32287hvf.doc/n 摻雜區底部的該基底中。 14.如申請專利範圍第10項所述之記憶體元件,更包 括: 一底介電層,配置於該電荷儲存層與該基底之間;以 及 一頂介電層,配置於該電荷儲存層及該導體層之間。201131747 rvsuuyo 32287twf.doc/n VII. Patent Application Range: 1. A memory component comprising: a substrate having a plurality of trenches therein; a conductor layer disposed on the substrate and filling the trenches; a charge storage layer ′ is disposed between the substrate and the conductor layer; a plurality of first doped regions are respectively disposed in the substrate below the bottom of the trenches, and have a first conductivity type; a plurality of second doping The regions are respectively disposed in the substrate between the adjacent two trenches and have the first conductivity type; and the plurality of memory cell replacement regions are respectively disposed in the substrate between the side surfaces of the trenches And having a second conductivity type, wherein the first conductivity type and the second conductivity type are different doping types. 2. The memory component of claim 1, further comprising a well region disposed in the substrate below the first doped regions and having the second conductivity type. 3. The memory device of claim 1, wherein each of the first doped regions has a width greater than a width of each of the trenches. 4. The memory device of claim 1, wherein the memory doped regions comprise: a plurality of first memory cell doped regions disposed between the lower portions of the side surfaces of the trenches respectively And a plurality of second memory cell doped regions respectively disposed in the substrate adjacent to the bottom of the second doped regions. A method of fabricating a memory device, the method comprising: 23 201131747 ι^δυυ^ό 32287t\vf.doc/n forming a plurality of memory cell doped regions in a substrate; forming a plurality of side surfaces in the substrate a plurality of upper surfaces and a plurality of lower surfaces, wherein the memory cell doped regions are located in the substrate between the side surfaces; forming a plurality of first doped regions and a plurality of second dopings in the substrate a region, the first doped regions are respectively disposed in the substrate under the lower surfaces, and the second doped regions are respectively disposed on the upper surfaces, wherein the doped regions are Having a first conductivity type; and the second memory cell doped region has a second conductivity type, and the second and second conductivity types are different doping types; " on the substrate Cutting into a charge storage layer; and forming a conductor layer on the substrate, the conductor layer covering the charge storage 6 as in the patent application range M %~ method, the memory component described in the above Manufacturing a 〒 哀 些 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 Between the silk scarf; and ~~彳 placed in the lower part of the financial surface, the first έ 忆 recalled ρ. ν doped in the bottom of the substrate. The knife - has been placed adjacent to the second 7) If the method of claim 5th method is further included in the formation of the _^ memory element, the well region is formed, and the well is before the cell region, and the substrate 8 is as claimed in the patent. The method of manufacturing the memory element described in the item 5 includes the formation of the surface of the wire and the formation of the lower surface 24 32287 twf.doc/n 201131747 9' The memory method of claim 5, wherein the width of the first-doped display is greater than the width of each of the lower surfaces = iU. - a memory element, comprising: a further lower surface: a substrate in the substrate Having a plurality of side surfaces, a plurality of upper surfaces and a multi-conductor layer 'disposed on the substrate; °. / 3⁄4 . L-, 7" storage layer 'disposed between the substrate and the conductor layer; Miscellaneous regions are respectively disposed in the base exhibit below the lower surfaces and have a first conductivity type; The doped regions are respectively disposed in the substrate under the upper surfaces, and have the first conductivity type; and the 5th memory cell doped regions are respectively disposed between the side surfaces and There is a second conductivity type, wherein the first conductivity type and the first-V type are different doping types. 11·. The memory device of claim 10, further comprising a region, disposed in the substrate below the first doped regions, and having a second conductivity type of 5 hai. The memory device of claim 10, wherein the width of the first doped region of k is greater than the width of each of the lower surfaces. 13. The memory device of claim 1, wherein the memory doped region comprises: a first memory cell doped region, respectively disposed in the substrate of the lower surface of the side surfaces; And the second memory cell doped regions are respectively disposed in the substrate adjacent to the bottoms of the second 25 201131747 i 32287hvf.doc/n doped regions. 14. The memory device of claim 10, further comprising: a bottom dielectric layer disposed between the charge storage layer and the substrate; and a top dielectric layer disposed on the charge storage layer And between the conductor layers. 2626
TW99106295A 2010-03-04 2010-03-04 Memory device and method for fabricating the same TWI442551B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99106295A TWI442551B (en) 2010-03-04 2010-03-04 Memory device and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99106295A TWI442551B (en) 2010-03-04 2010-03-04 Memory device and method for fabricating the same

Publications (2)

Publication Number Publication Date
TW201131747A true TW201131747A (en) 2011-09-16
TWI442551B TWI442551B (en) 2014-06-21

Family

ID=50180451

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99106295A TWI442551B (en) 2010-03-04 2010-03-04 Memory device and method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI442551B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070588B2 (en) 2013-01-25 2015-06-30 Macronix International Co. Ltd. Non-volatile memory structure
TWI548062B (en) * 2012-12-26 2016-09-01 旺宏電子股份有限公司 Non-volatile memory structure and fabricating method thereof
TWI691059B (en) * 2019-01-08 2020-04-11 大陸商長江存儲科技有限責任公司 Three-dimensional memory device and manufacturing method thereof
US10714493B2 (en) 2018-09-27 2020-07-14 Yangtze Memory Technologies Co., Ltd. Semiconductor plug protected by protective dielectric layer in three-dimensional memory device and method for forming the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI548062B (en) * 2012-12-26 2016-09-01 旺宏電子股份有限公司 Non-volatile memory structure and fabricating method thereof
US9070588B2 (en) 2013-01-25 2015-06-30 Macronix International Co. Ltd. Non-volatile memory structure
US10714493B2 (en) 2018-09-27 2020-07-14 Yangtze Memory Technologies Co., Ltd. Semiconductor plug protected by protective dielectric layer in three-dimensional memory device and method for forming the same
TWI691059B (en) * 2019-01-08 2020-04-11 大陸商長江存儲科技有限責任公司 Three-dimensional memory device and manufacturing method thereof
US10854628B2 (en) 2019-01-08 2020-12-01 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device and manufacturing method thereof
US11069712B2 (en) 2019-01-08 2021-07-20 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device
US11515329B2 (en) 2019-01-08 2022-11-29 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device and manufacturing method thereof

Also Published As

Publication number Publication date
TWI442551B (en) 2014-06-21

Similar Documents

Publication Publication Date Title
US9318576B2 (en) Method of manufacturing three-dimensional semiconductor device and variable resistive memory device
JP6182268B2 (en) Split gate nonvolatile flash memory cell having silicon metal floating gate and method of manufacturing the same
JP5629120B2 (en) Semiconductor device
TWI259585B (en) Split gate flash memory and manufacturing method thereof
JP5521555B2 (en) Nonvolatile memory device and manufacturing method thereof
TW200306001A (en) Self-aligned method of forming a semiconductor memory array of floating gate memory cells with buried source line and floating gate, and a memory array made thereby
TW200919737A (en) Nonvolatile memories which combine a dielectric, charge-trapping laye with a floating gate
TWI633651B (en) Semiconductor device and method of manufacturing same
TW201034193A (en) Electronic device including a trench and a conductive structure therein
JP2010192895A (en) Nonvolatile memory cell and method of manufacturing same
TWI358090B (en) Nrom device and method of making same
CN107210203A (en) High density splitting bar memory cell
TW201131747A (en) Memory device and method for fabricating the same
CN105655339A (en) Semiconductor device and manufacturing method thereof
TW200816493A (en) Integrated circuit memory system employing silicon rich layers
JP2011029576A (en) Nonvolatile semiconductor memory device and manufacturing method thereof
TW201023347A (en) Non-volatile memory and fabricating method thereof
TWI251337B (en) Non-volatile memory cell and manufacturing method thereof
US8014203B2 (en) Memory device and methods for fabricating and operating the same
JP2008199018A (en) Non-volatile memory element and manufacturing method thereof
TW201203466A (en) Device including memory array and method thereof
TWI469361B (en) Semiconductor device and method of fabricating the same
TW200816391A (en) Method of manufacturing split gate flash device
TW200832623A (en) Methods of forming non-volatile memory device
TWI331394B (en) Memory structure and fabricating method thereof